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Abstract. Natural language provides a flexible, intuitive way for peo-
ple to command robots, which is becoming increasingly important as
robots transition to working alongside people in our homes and work-
places. To follow instructions in unknown environments, robots will be
expected to reason about parts of the environments that were described
in the instruction, but that the robot has no direct knowledge about.
However, most existing approaches to natural language understanding
require that the robot’s environment be known a priori. This paper pro-
poses a probabilistic framework that enables robots to follow commands
given in natural language, without any prior knowledge of the environ-
ment. The novelty lies in exploiting environment information implicit
in the instruction, thereby treating language as a type of sensor that
is used to formulate a prior distribution over the unknown parts of the
environment. The algorithm then uses this learned distribution to in-
fer a sequence of actions that are most consistent with the command,
updating our belief as we gather more metric information. We evaluate
our approach through simulation as well as experiments on two mobile
robots; our results demonstrate the algorithm’s ability to follow naviga-
tion commands with performance comparable to that of a fully-known
environment.

1 Introduction

Robots are increasingly performing collaborative tasks with people at home,
in the workplace, and outdoors, and with this comes a need for efficient com-
munication between human and robot teammates. Natural language offers an
effective means for untrained users to control complex robots, without requiring
specialized interfaces or extensive user training. Enabling robots to understand
natural language instructions would facilitate seamless coordination in human-
robot teams. However, interpreting instructions is a challenge, particularly when
the robot has little or no prior knowledge of its environment. In such cases, the
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(d) This process repeats as the robot ac-
quires new observations, refining its belief.

Fig. 1. Visualization of one run for the command “go to the hydrant behind the cone,”
showing the evolution of our beliefs (the possible locations of the hydrant). The robot
begins with the cone in its field of view, but does not know the hydrant’s location.

robot should be capable of reasoning over the parts of the environment that are
relevant to understanding the instruction, but may not yet have been observed.

Oftentimes, the command itself provides information about the environment
that can be used to hypothesize suitable world models, which can then be used
to generate the correct robot actions. For example, suppose a first responder
instructs a robot to “navigate to the car behind the building,” where the car
and building are outside the robot’s field-of-view and their locations are not
known. While the robot has no a priori information about the environment,
the instruction conveys the knowledge that there is likely one or more buildings
and cars in the environment, with at least one car being “behind” one of the
buildings. The robot should be able to reason about the car’s possible location,
and refine its prior as it carries out the command (e.g., update the car’s possible
location when it observes a building).

This paper proposes a method that enables robots to interpret and execute
natural language commands that refer to unknown regions and objects in the
robot’s environment. We exploit the information implicit in the user’s command
to learn an environment model from the natural language instruction, and then
solve for the policy that is consistent with the command under this world model.
The robot updates its internal representation of the world as it makes new metric
observations (such as the location of perceived landmarks) and updates its policy
appropriately. By reasoning and planning in the space of beliefs over object
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locations and groundings, we are able to reason about elements that are not
initially observed, and robustly follow natural language instructions given by a
human operator.

More specifically, we describe in our approach (Section 3) a probabilistic
framework that first extracts annotations from a natural language instruction,
consisting of the objects and regions described in the command and the given re-
lations between them (Fig. 1(a)). We then treat these annotations as noisy sensor
observations in a mapping framework, and use them to generate a distribution
over a semantic model of the environment that also incorporates observations
from the robot’s sensor streams (Fig. 1(b)). This prior is used to ground the
actions and goals from the command, resulting in a distribution over desired be-
haviors. This is then used to solve for a policy that yields an action that is most
consistent with the command, under the map distribution so far (Fig. 1(c)). As
the robot travels and senses new metric information, it updates its map prior
and inferred behavior distribution, and continues to plan until it reaches its
destination (Fig. 1(d)). This framework in outlined in Figure 2.

We evaluate our algorithm (Section 4) through a series of simulation-based
and physical experiments on two mobile robots that demonstrate its effectiveness
at carrying out navigation commands, as well as highlight the conditions under
which it fails. Our results indicate that exploiting the environment knowledge
implicit in the instruction enables us to predict a world model upon which we can
successfully estimate the action sequence most consistent with the command,
approaching performance levels of complete a priori environment knowledge.
These results suggest that utilizing information implicitly contained in natural
language instructions can improve collaboration in human-robot teams.

2 Related Work

Natural language has proven to be effective for commanding robots to follow
route directions [1–5] and manipulate objects [6]. The majority of prior ap-
proaches require a complete semantically-labeled environment model that cap-
tures the geometry, location, type, and label of objects and regions in the envi-
ronment [2, 5, 6]. Understanding instructions in unknown environments is often
more challenging. Previous approaches have either used a parser that maps lan-
guage directly to plans [1, 3, 4], or trained a policy that reasons about uncertainty
and can backtrack when needed [7]. However, none of these approaches directly
use the information contained in the instruction to inform their environment rep-
resentation or reason about its uncertainty. We instead treat language as a sensor
that can be used to generate a prior over the possible locations of landmarks by
exploiting the information implicitly contained in a given instruction.

State-of-the-art semantic mapping frameworks focus on using the robot’s
sensor observations to update its representation of the world [8–10]. Some ap-
proaches [10] integrate language descriptions to improve the representation but
do not extend the maps based on natural language. Our approach treats natural
language as another sensor and uses it to extend the spatial representation by
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Fig. 2. Framework outline.

adding both topological and metric information, which is then used for plan-
ning. Williams et al. [11] use a cognitive architecture to add unvisited locations
to a partial map. However, they only reason about topological relationships to
unknown places, do not maintain multiple hypothesis, and make strong assump-
tions about the environment limiting the applicability to real robot systems.
In contrast, our approach reasons both topologically and metrically about ob-
jects and regions, and can deal with ambiguity, which allows us to operate in
challenging environments.

As we reason in the space of distributions over possible environments, we
draw from strategies in the belief-space planning literature. Most importantly, we
represent our belief using samples from the distribution, similar to work by Platt
et al. [12]. Instead of solving the complete Partially-Observable Markov Decision
Process (POMDP), we instead seek efficient approximate solutions [13, 14].

3 Technical Approach

Our goal is to infer the most likely future robot trajectory xt+1:T up to time
horizon T , given the history of natural language utterances Λt, sensor observa-
tions zt, and odometry ut (we denote the history of a variable up to time t with
a superscript):

arg max
xt+1:T ∈<n

p
(
xt+1:T |Λt, zt, ut

)
. (1)

Inferring the maximum a posteriori trajectory (1) for a given natural language
utterance is challenging without knowledge of the environment for all but trivial
applications. To overcome this challenge, we introduce a latent random variable
St that represents the world model as a semantic map that encodes the location,
geometry, and type of the objects within the environment. This allows us to
factor the distribution as:

arg max
xt+1:T ∈<n

∫
St

p(xt+1:T |St, Λt, zt, ut) p(St|Λt, zt, ut) dSt. (2)
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As we maintain the distribution in the form of samples S
(i)
t , this simplifies to:

arg max
xt+1:T ∈<n

∑
i

p(xt+1:T |S(i)
t , Λt, zt, ut) p(S

(i)
t |Λt, zt, ut). (3)

Based upon the robot’s sensor and odometry streams and the user’s natural
language input, our algorithm learns this distribution online. We accomplish
this through a filtering process whereby we first infer the distribution over the
world model St based upon annotations identified from the utterance Λt (second
term in the integral in (2)), upon which we then infer the constraints on the
robot’s action that are most consistent with the command given the current
map distribution. At this point, the algorithm solves for the most likely policy
under the learned distribution over trajectories (first term in the integral in (2)).
During execution, we continuously update the semantic map St as sensor data
arrives and refine the policy according to the re-grounded language.

To efficiently convert unstructured natural language to symbols that rep-
resent the spaces of annotations and behaviors, we use the Distributed Corre-
spondence Graph (DCG) model [5]. The DCG model is a probabilistic graphical
model composed of random variables that represent language λ, groundings γ,
and correspondences between language and groundings φ and factors f . Each fac-
tor fij in the DCG model is influenced by the current phrase λi, correspondence
variable φij , grounding γij , and child phrase groundings γcij . The parameters in

each log-linear model υ are trained from a parallel corpus of labeled examples
for annotations and behaviors in the context of a world model Υ . In each, we
search for the unknown correspondence variables that maximize the product of
factors:

arg max
φ∈Φ

∏
i

∏
j

fij

(
φij , γij , γcij , λi, Υ, υ

)
. (4)

An illustration of the graphical model used to represent Equation 4 is shown
in Figure 3. In this figure, the black squares, white circles, and gray circles
represent factors, unknown random variables, and known random variables re-
spectively. It is important to note that each phrase can have a different number
of vertically aligned factors if the symbols used to ground particular phrases
differ. In this paper we use a binary correspondence variable to indicate the ex-
pression or rejection of a particular grounding for a phrase. We construct the
symbols used to represent each phrase using only the groundings with a true
correspondence and take the meaning of a utterance as the symbol inferred at
the root of parse tree.

Figure 2 illustrates the architecture of the integrated system that we consider
for evaluation. First, the natural language understanding module infers a distri-
bution over annotations conveyed by the utterance (Annotation Inference). The
semantic map learning method then uses this information in conjunction with
the prior annotations and sensor measurements to build a probabilistic model
of objects and their relationships in the environment (Semantic Mapping). We
then formulate a distribution over robot behaviors using the utterance and the
semantic map distribution (Behavior Inference). Next, the planner computes a
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Fig. 3. A DCG used to infer annotations or behaviors from the utterance “go to the
hydrant behind the cone.” The factors fij , groundings γij , and correspondence variables
φij are functions of the symbols used to represent annotations and behaviors.

policy from this distribution over behaviors and maps (Policy Planner). As the
robot makes more observations or receives additional human input, we repeat
the last three steps to continuously update our understanding of the most recent
utterance. We now describe in more detail each of these components.

3.1 Annotation Inference

The space of symbols used to represent the meaning of phrases in map inference
is composed of objects, regions, and relations. Since no world model is assumed
when inferring linguistic annotations from the utterance, the space of objects is
equal to the number of possible object types that could exist in the scene. Regions
are some portion of state-space that is typically associated with a relationship
to some object. Relations are a particular type of association between a pair of
objects or regions (e.g., front, back, near, far). Since any set of objects, regions,
and relations may be inferred as part of the symbol grounding, the size of the
space of groundings for map inference grows as the power set of the sum of these
symbols. We use the trained DCG model to infer a set of annotations αt from
the positively expressed groundings at the root of the parse tree.

3.2 Semantic Mapping

We treat the annotations inferred from the utterance as noisy observations α
that specify the existence and spatial relations between labeled objects in the
environment. We use these observations along with those from the robot’s sensors
to learn the distribution over the semantic map St = {Gt, Xt}:

p(St|Λt, zt, ut) ≈ p(St|αt, zt, ut) (5a)

= p(Gt, Xt|αt, zt, ut) (5b)

= p(Xt|Gt, αt, zt, ut)p(Gt|αt, zt, ut), (5c)
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where the last line expresses the factorization into a distribution over the en-
vironment topology (graph Gt) and a conditional distribution over the metric
map (Xt). Owing to the combinatorial number of candidate topologies [10], we
employ a sample-based approximation to the latter distribution and model the
conditional posterior over poses with a Gaussian, parametrized in the canonical

form. In this manner, each particle S
(i)
t = {G(i)

t , X
(i)
t , w

(i)
t } consists of a sampled

topology G
(i)
t , a Gaussian distribution over the poses X

(i)
t , and a weight w

(i)
t .

We note that this model is similar to that of Walter et al. [10], though in this
work we don’t treat the labels as being uncertain.

To efficiently maintain the semantic map distribution over time as the robot
receives new annotations and observations during execution, we use a Rao-
Blackwellized particle filter [15]. This filtering process has two key steps: First,
the algorithm proposes updates to each sampled topology that express object
observations and annotations inferred from the utterance. Next, the algorithm
uses the proposed topology to perform a Bayesian update to the Gaussian dis-
tribution over the node (object) poses, and updates the particle weights so as to
approximate the target distribution. We perform this process for each particle
and repeat these steps at each time instance. The following paragraphs describe
each operation in more detail.

During the proposal step, we first augment each sample topology with an
additional node and edge that model the robot’s motion ut, resulting in a new

topology S
(i)−
t . We then sample modifications to the graph ∆

(i)
t = {∆(i)

αt , ∆
(i)
zt }

based upon the most recent annotations (αt) and sensor observations (zt):

p(S
(i)
t |S

(i)
t−1, αt, zt, ut) = p(∆(i)

αt |S
(i)−
t , αt) p(∆

(i)
zt |S

(i)−
t , zt) p(S

(i)−
t |S(i)

t−1, ut). (6)

This updates the proposed graph topology S
(i)−
t with the graph modifications

∆
(i)
t to yield the new semantic map S

(i)
t . The updates can include the addition of

nodes to the graph representing newly hypothesized or observed objects. They
also may include the addition of edges between nodes to express spatial relations
inferred from observations or annotations.

The graph modifications are sampled from two similar but independent pro-
posals for annotations and observations in a multi-stage process:

p(∆(i)
αt |S

(i)−
t , αt) =

∏
j

p(∆(i)
αt,j |S

(i)−
t , αt,j) (7a)

p(∆(i)
zt |S

(i)−
t , zt) =

∏
j

p(∆(i)
zt,j |S

(i)−
t , zt,j). (7b)

For each language annotation component αt,j , we use a likelihood model over
the spatial relation to sample landmark and figure pairs for the grounding (7a).
This model employs a Dirichlet process prior that accounts for the fact that
the annotation may refer to existing or new objects. If the landmark and/or the
figure are sampled as new objects, we add these objects to the particle, and create
an edge between them. We also sample the metric constraint associated with this
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edge, based on the spatial relation. Similarly, for each object zt,j observed by
the robot, we sample a grounding from the existing model of the world (7b). We
add a new constraint to the object when the grounding is valid, and create a
new object and constraint when it is not.

After proposing modifications to each particle, we perform a Bayesian update
to their Gaussian distribution. We then re-weight each particle by taking into
account the likelihood of generating language annotations, as well as positive
and negative observations of objects:

w
(i)
t = p(zt, αt|St−1)w

(i)
t−1 = p(αt|St−1) p(zt|St−1)w

(i)
t−1. (8)

For annotations, we use the natural language grounding likelihood under the
map at the previous time step. For object observations, we use the likelihood
that the observations were (or were not) generated based upon the previous map.
This has the effect of down-weighting particles for which the observations are
unexpected. We normalize the weights and re-sample if their entropy exceeds a
threshold [15].

3.3 Behavior Inference

Given the utterance and the semantic map distribution, we now infer a distribu-
tion over robot behaviors. The space of symbols used to represent the meaning
of phrases in behavior inference is composed of objects, regions, actions, and
goals. Objects and regions are defined in the same manner as in map inference,
though the presence of objects is a function of the inferred map. Actions and
goals specify how the robot should perform a behavior to the planner. Since any
set of actions and goals can be expressed to the planner, the space of groundings
also grows as the power set of the sum of these symbols. For the experiments
discussed later in Section 4 we assume a number of objects, regions, actions, and
goals that are proportional to the number of objects in the hypothesized world
model. We use the trained DCG model to infer a distribution of behaviors β
from the positively expressed groundings at the root of the parse tree.

3.4 Policy Planner

Since it is difficult to both represent and search the continuum for a trajectory
that best reflects the entire instruction in the context of the semantic map, we
instead learn a policy that predicts a single action that maximizes the one-step
expected value of taking the action at from the robot’s current pose xt. This
process is repeated until the policy declares it is done following the command
using a separate action astop.

As the robot moves in the environment, it builds and updates a graph of
locations it has previously visited, as well as frontiers that lie at the edge of
explored space. This graph is used to generate a candidate set of actions that
consists of all frontier nodes F as well as previously-visited nodes V that the
robot can travel to next:

At = F ∪ V ∪ {astop}. (9)
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(a) t = 0 (b) t = 4 (c) t = 8

Fig. 4. Visualization of the value function over time for the command “go to the hy-
drant behind the cone,” where the triangle denotes the robot, squares denote observed
cones, and circles denote hydrants that are sampled (empty) and observed (filled). The
robot starts off having observed the two cones, and hypothesizes possible hydrants that
are consistent with the command (a). The robot first moves towards the left cluster,
but after not observing the hydrant, the map distribution peaks at the right cluster
(b). The robot then moves right and observes the actual hydrant (c).

The policy selects the action with the maximum value under our value function:

π(xt) = arg max
at∈At

V (xt, at). (10)

The value of a particular action is a function of the behavior and the se-
mantic map, which are not observable. Instead, we solve this using the QMDP
algorithm [13] by taking the expected value under the distributions of the se-
mantic map St and inferred behavior βj :

V (xt, at) ≈
∑
S

(i)
t

∑
βj

V
(
xt, at;S

(i)
t , βj

)
p
(
βj |S(i)

t

)
p
(
S
(i)
t

)
. (11)

There are many choices for the particular value function to use, in this work we
define the value for a semantic map particle and behavior as an analogue of the
MDP cost-to-go:

V
(
xt, at;S

(i)
t , βj

)
= γd(at,gs), (12)

where γ is the MDP discount factor and d is the Euclidean distance between
the action node and the behavior’s goal position gs. Our belief space policy π
then picks the maximum value action. We re-evaluate this value function as
the semantic map and behavior distributions improve with new observations.
Figure 4 demonstrates the evolution of the value function over time.

4 Results

To analyze our approach, we first evaluate the ability of our natural language
understanding module to independently infer the correct annotations and behav-
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Table 1. Natural language understanding results with 95% confidence intervals.

Model Accuracy (%) Training Time (sec) Inference Time (sec)

Annotation 62.50 (10.83) 145.11 (7.55) 0.44 (0.03)
Behavior 55.77 (6.83) 18.30 (1.02) 0.05 (0.00)

iors for given utterances. Next, we analyze the effectiveness of our end-to-end
framework through simulations that consider environments and commands of
varying complexity, and different amounts of prior knowledge. We then demon-
strate the utility of our approach in practice using experiments run on two
mobile robot platforms. These experiments provide insights into our algorithm’s
ability to infer the correct behavior in the presence of unknown and ambiguous
environments.

4.1 Natural Language Understanding

We evaluate the performance of our natural language understanding component
in terms of the accuracy and computational complexity of inference using holdout
validation. In each experiment, the corpus was randomly divided into separate
training and test sets to evaluate whether the model can recover the correct
groundings from the utterance and the world model. Each model used 13,716
features that checked for the presence of words, properties of groundings and cor-
respondence variables, and relationships between current and child groundings
and searched the model with a beam width of 4. We conducted 8 experiments
for each model type using a corpus of 39 labeled examples of instructions and
groundings. For annotation inference we assumed that the space of groundings
for every phrase is represented by 8 object types, 54 regions, and 432 relations.
For behavior inference we assumed that noun and prepositions ground to hy-
pothesized objects or regions while verbs ground to 2 possible actions, 3 possible
modes, goal regions, and constraint regions. In the example illustrated in Fig. 3
with a world model composed of seven hypothesized objects the annotation in-
ference DCG model contained 5,934 random variables and 2,964 factors while the
behavior inference DCG model contained 772 random variables and 383 factors.
In each experiment 33% of the labeled examples in the corpus were randomly
selected for the holdout. The mean number of log-linear model training exam-
ples extracted from the 26 randomly selected labeled examples for annotation
and behavior inference was 83,547 and 9,224 respectively. Table 1 illustrates the
statistics for the annotation and behavior models.

This experiment demonstrates that we are able to learn many of the relation-
ships between phrases, groundings, and correspondences with a limited number
of labeled instructions, and infer a distribution of symbols quickly enough for
the proposed architecture. As expected the training and inference time for the
annotation model is much higher because of the difference in the complexity of
symbols. This is acceptable for our framework since the annotation model is only
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Table 2. Monte Carlo simulation results with 1σ confidence intervals (Hydrant, Cone).

Success Rate (%) Distance (m)

World Range (m) Relation Known Ours Known Ours

1H, 1C 3.0 null 100.0 93.9 8.75 (1.69) 16.78 (7.90)
1H, 1C 3.0 “behind” 100.0 98.3 8.75 (1.69) 13.43 (7.02)
1H, 2C 3.0 null 100.0 100.0 11.18 (1.38) 32.54 (18.50)
1H, 2C 3.0 “behind” 100.0 99.5 11.18 (1.38) 40.02 (29.66)
2H, 1C 3.0 null 100.0 54.4 10.49 (1.81) 21.56 (10.32)
2H, 1C 3.0 “behind” 100.0 67.4 10.38 (1.86) 18.72 (10.23)
2H, 1C 5.0 “nearest” 100.0 46.2 9.19 (1.54) 12.05 (5.76)

used once to infer a set of observations, while the behavior model is used con-
tinuously to process the map distributions as new observations are integrated.

4.2 Monte Carlo Simulations

Next, we evaluate the entire framework through an extended set of simulations in
order to understand how the performance varies with the environment configura-
tion and the command. We consider four environment templates, with different
numbers of figures (hydrants) and landmarks (cones). For each configuration,
we sample ten environments, each with different object poses. For these environ-
ments, we issued three natural language instructions “go to the hydrant,” “go
to the hydrant behind the cone,” and “go to the hydrant nearest to the cone.”
We note that these commands were not part of the corpus that we used to train
the DCG model. Additionally, we considered six different settings for the robot’s
sensing range (2 m, 3 m, 5 m, 10 m, 15 m, and 20 m) and performed approximately
100 simulations for each combination of environment, command, and range. As
a ground-truth baseline, we performed ten runs of each configuration with a
completely known world model.

Table 2 presents the success rate and distance traveled by the robot for these
100 simulation configurations. We considered a run to be successful if the planner
stops within 1.5 m of the intended goal. Comparing against commands that do
not provide a relation (i.e., “go to the hydrant”), the results demonstrate that
our algorithm achieves greater success and yields more efficient paths by taking
advantage of relations in the command (i.e., “go to the hydrant behind the
cone”). This is apparent in environments consisting of a single figure (hydrant)
as well as more ambiguous environments that consist of two figures. Particularly
telling is the variation in performance as a result of different sensing range.
Figure 5 shows how success rate increases and distance traveled decreases as
the robot’s sensing range increases, quickly approaching the performance of the
system when it begins with a completely known map of the environment.

One interesting failure case is when the robot is instructed to “go to the
hydrant nearest to the cone” in an environment with two hydrants. In instances
where the robot sees a hydrant first, it hypothesizes the location of the cone, and
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Fig. 5. Distance traveled (top) and success rate (bottom) as a function of the sensor
range for the commands “go to the hydrant behind the cone” (left) and “go to the
hydrant nearest to the cone” (right) in simulation.

then identifies the observed hydrants and hypothesized cones as being consistent
with the command. Since the robot never actually confirms the existence of the
cone in the real world, this results in the incorrect hydrant being labeled as the
goal.

4.3 Physical Experiments

We applied our approach to two mobile robots, a Husky A200 mobile robot
(Fig. 6(a)) and an autonomous robotic wheelchair [16] (Fig. 6(b)). The use of
both platforms demonstrates the application of our algorithm to mobile robots
with different vehicle configurations, underlying motion planners, and sensor
configurations. The actions determined by the planner are translated into lists
of waypoints that are handled by each robot’s motion planner. We used AprilTag
fiducials [17] to detect and estimate the relative pose of objects in the environ-
ment, subject to self-imposed angular and range restrictions.

In each experiment, a human operator issues natural language commands
in the form of text that involve (possibly null) spatial relations between one or
two objects. The results that follow involve the commands “go to the hydrant,”
“go to the hydrant behind the cone,” and “go to the hydrant nearest to the
cone.” As with the simulation-based experiments, these instructions did not
match those from our training set. For each of these commands, we consider
different environments by varying the number and position of the cones and
hydrants and by changing the robot’s sensing range. For each configuration of
the environment, command, and sensing range, we perform ten trials with our
algorithm. For a ground-truth baseline, we perform an additional run with a
completely known world model. We consider a run to be a success when the
robot’s final destination is within 1.5 m of the intended goal.

Table 3 presents the success rate and distance traveled by the wheelchair for
these experiments. Compared to the scenario in which the command does not
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(a) Husky (b) Wheelchair

Fig. 6. The setup for the experiments with the (a) Husky and (b) wheelchair platforms.

Table 3. Experimental results with 1σ confidence intervals (Hydrant, Cone).

Success Rate (%) Distance (m)

World Range (m) Relation Known Ours Known Ours

1H, 1C 2.5 null 100.0 100.0 4.69 16.56 (7.20)
1H, 1C 2.5 “behind” 100.0 100.0 4.69 9.91 (3.41)
1H, 2C 3.0 “behind” 100.0 100.0 4.58 7.64 (2.08)
2H, 1C 2.5 “behind” 100.0 80.0 5.29 6.00 (1.38)
2H, 1C 4.0 “nearest” 100.0 100.0 4.09 4.95 (0.39)
2H, 1C 3.0 “nearest” 100.0 50.0 6.30 7.05 (0.58)

provide a relation (i.e., “go to the hydrant”), we find that our algorithm is able
to take advantage of available relations (“go to the hydrant behind the cone”)
to yield behaviors closer to that of ground truth. The results are similar for
the Husky platform, which resulted in an 83.3% success rate when commanded
to “go to the hydrant behind the cone” in an environment with one cone and
one hydrant. These results demonstrate the usefulness of utilizing all of the
information contained in the instruction, such as the relation between various
landmarks in the environment that can be helpful during navigation.

The robot trials exhibited a similar failure mode as the simulated experi-
ments: if the environment contains two figures (hydrants) and the robot only
detects one, the semantic map distribution then hypothesizes the existence of
cones in front of the hydrant, which leads to a behavior distribution peaked
around this goal and plans that do not look for the possibility of another hy-
drant in the environment. As expected, this effect is most pronounced with
shorter sensing ranges (e.g., a 3 m sensing range for the command “go to the
hydrant nearest to the cone” resulted in the robot reaching the goal in only half
of the trials compared to a 4 m sensing range).
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5 Conclusions

Enabling robots to reason about parts of the environment that have not yet been
visited solely from a natural language description serves as one step towards
effective and natural collaboration in human-robot teams. By treating language
as a sensor, we are able to paint a rough picture of what the unvisited parts
of the environment could look like. We utilize this information during planning,
and update our belief with actual sensor information during task execution.

Our approach exploits the information implicitly contained in the language
to infer the relationship between objects that may not be initially observable,
without having to consider those annotations as a separate utterance. By learn-
ing a distribution over the map, we generate a useful prior that enables the
robot to sample possible hypotheses, representing different environment possi-
bilities that are consistent with both the language and the available sensor data.
Learning a policy that reasons in the belief space of these samples achieves a
level of performance that approaches full knowledge of the world ahead of time.

We have evaluated our approach in simulation and on two robot platforms.
These evaluations provide a preliminary validation of our framework. Future
work will test the algorithm’s ability to scale to larger environments (e.g., rooms
and hallways), and handle utterances that present complex relations and more
detailed behaviors than those considered so far. Additionally, we will focus on
handling streams of commands, including those that are given during execu-
tion (e.g., “go to the other cone” uttered as the robot is moving towards the
wrong cone). An additional direction for following work is to explicitly reason
over exploratory behaviors that take information gathering actions to resolve
uncertainty in the map. Currently, any exploration on the part of the algorithm
is opportunistic, which might not be sufficient in more challenging scenarios.
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