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Abstract— State estimation for Micro Air Vehicles (MAVSs) is
challenging because sensing instrumentation carried on-board
is severely limited by weight and power constraints. In addition,
their use close to and inside structures and vegetation means
that GPS signals can be degraded or all together absent. Here
we present a navigation system suited for use on MAVs that
seamlessly fuses any combination of GPS, visual odometry,
inertial measurements, and/or barometric pressure. We focus
on robustness against real-world conditions and evaluate per-
formance in challenging field experiments. Results demonstrate
that the proposed approach is effective at providing a consistent
state estimate even during multiple sensor failures and can be
used for mapping, planning, and control.

I. INTRODUCTION

Micro aerial vehicles can fly close to and under build-
ings and vegetation which makes them especially useful
in environments where GPS is unreliable or unavailable.
In these environments it is necessary to estimate velocities
and position using exteroceptive sensors because available
proprioceptive sensors (inertial measurement units) are not
accurate enough to enable velocity and position control.

The demand for micro aerial vehicles that can carry out
missions in outdoor remote environments is ever increasing.
With little or no prior information of the area and relying on
limited on-board sensing capabilities, micro air vehicles can
carry out these difficult missions if they are able to estimate
their pose (position, orientation) and rates (velocity, angular
rates) to enable control and mapping of the environment. In
this paper we consider the mission of autonomous river map-
ping with micro aerial vehicles. Rivers are often challenging
visual and GPS-degraded environments that require a filter
that can handle drop-outs and bad measurements.

There has been some prior work in state estimation for
GPS-denied flight of micro aerial vehicles, however, it has
focussed on showing the feasibility of the filtering approach.
Long missions in GPS-degraded environments are only pos-
sible if the filtering approach is robust to outliers, outages,
and is able to successfully fuse a wide variety of sensors.

Here we propose a robust unscented kalman filter (UKF)
framework that can fuse and accept/reject measurements
from multiple sensor modalities such visual odometry (VO),
GPS, barometric pressure, and inertial measurement units
(IMU) to create a smooth state estimate. To convey the
performance of our system we show significant autonomous
test flights in outdoor environments.
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Fig. 1: The micro aerial vehicle used in the state estimation
and control experiments. The vehicle is equipped with an
inertial measurement unit, GPS and a stereo camera. These
sensors are used to estimate the state of the vehicle.

II. RELATED WORK

There is a rich field of work in the area of combined
inertial and visual state estimation for air and ground ve-
hicles. The low cost of commodity IMUs and cameras have
also encouraged research in the area. Research into combined
inertial-visual state estimation can be broadly split into two
categories: loosely and tightly coupled approaches.

Tightly coupled systems calculate expected visual mea-
surements directly in the state estimation by estimating the
position of visual landmarks and the vehicle pose at the same
time [1], [2]. By incorporating the tracked feature points into
the state vector, the covariance between the vehicle pose and
the feature points is maintained to improve estimation results
at a computational and latency cost. On the other hand,
loosely coupled systems allow visual estimation subsystems
to calculate pose information which is then combined in a
higher level filter or optimization.

Visual odometry is a pose estimation method that com-
putes relative camera motion by comparing sequential im-
ages. These algorithms take a structure from motion (SfM)
approach and track visual features over two or more cam-
era frames to compute the relative motion [3], [4], [5].
Monocular cameras can be used if additional sensors are
used to disambiguate scale [6] or the vehicle operates within
a constrained environment [7].

Konolidge et al. [8] present results over large distance for
a system combining inertial and feature-point stereo visual
odometry measurements. Their low-level IMU filter assumes
zero average acceleration to identify the gravity vector and



is too restrictive for MAV applications. Rehder [9] combined
frame-to-frame stereo visual odometry, inertial sensing, and
extremely sparse GPS readings in a graph optimization to
determine state, however the approach is not optimized for
a low latency.

A challenge when using visual odometry measurements is
determining the correct method for integrating the relative
pose measurements into the filtering architecture. Various
techniques such as numerical differentiating for average
velocity [10], [11], pseudo-absolute measurements [12], and
the introduction of delayed states have been explored in the
literature. This work makes use of the last approach by using
the relative delayed state (or Stochastic cloning) technique
introduced by Mourikis and Roumeliotis [13] and therefore
is most similar to approaches by [14], [15] who combine
visual odometry and inertial sensing in an extended Kalman
filter (EKF) for state estimation. However, this work extends
state estimation to an Unscented Kalman filter (UKF).

Historically, EKFs are the typical choice for low-latency,
efficient computation of state estimation. To propagate Gaus-
sian probability density functions through non-linear pro-
cesses or measurement functions, the EKF performs a 1st or-
der Taylor series approximation. In cases where the functions
show a high degree of local nonlinearity, Iterative Extended
Kalman filters (IEKFs) have been utilized [2]. Recent work
by Van Der Merwe et al. [16], and more recently by Arasarat-
nam and Haykin [17] demonstrated the improved accuracy
of Sigma-Point Kalman filters and Cubature Kalman Filters
over traditional EKFs with similar computational complexity.
EKFs still perform well with functions which display high
local linearity or when the variance over the state estimate
is small. However, as observed by Voigt et al. [15], large
variance for unobservable variables can cause EKF filter
divergence. Unscented Kalman filters [18], a subclass of
Sigma-Point Kalman filters, are better able to handle highly
nonlinear functions or larger state variance.

In our work we exploit the prior work, however we
combine the real-time filter with a delayed filter state for
visual odometry and show signifcant flight test results where
actual GPS and visual odometry outages occured.

III. PROBLEM

In this paper we address the problem of fusing multiple
redundant motion sensors to generate a smooth consistent
state estimate for control and mapping. Our estimator em-
phasizes smoothness and latency over global accuracy to
prevent sudden unexpected control inputs to the vehicle and
map jumps after accurate global measurement appear from
reaquired GPS. We need the estimator to be able to cope with
sparse GPS measurements, and visual odometry dropouts be-
cause of signal occlusions and adverse scene geometry. The
varying availability and redundancy of the sensors requires
careful checking before measurements can be integrated. In
addition, since the estimate is used for control onboard a
micro aerial vehicle we require a low(<5ms) latency.

IV. APPROACH
A. Overview

Our filter robustly fuses measurements from a varity of
sensor subsystems into a consistent, smooth estimate of the
vehicle’s state (See Fig. 2). The Unscented Kalman filter
(UKF) was chosen based on the demonstrated improvements
over the Extended Kalman filter (EKF) for better estimation
and filter consistency of non-linear systems. For details on
how sigma points are created and used to calculate the
estimate state and covariance, the interested reader should
refer to [19], [18], [20]. In brief, an EKF propagates the
multivariate Gaussian distribution representing the vehicle’s
state through the nonlinear system by using a first-order lin-
earization around the mean. In contrast, an unscented Kalman
filter (UKF) deterministically chooses a set of sigma points
that capture the same multivariate Gaussian distribution.
These sigma points are propagated through the nonlinear
system dynamics and combined to approximate the posterior
mean and covariance of the distribution. This derivative-free
method achieves at least a 2nd order approximation of the
nonlinear system dynamics.

The problem is defined using the following nonlinear
equations:

e = f (-1, Ug—1,Wi—1) (1)
h (X, vie) 2

where the unobserved system state x; evolves over time
as a nonlinear function f(-) of the previous system state
Xx—1, control inputs uy_, and process noise wy_1. Observable
sensor measurements z; are a nonlinear function A (-) of
the vehicle’s state corrupted with observation noise vi. The
process and observation noise are assumed to be normally
distributed random variables with zero mean and covariance
Oy and Ry, respectively.
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For vehicle control and mapping, the primary variables of
interest are the vehicle’s pose in the world frame and the
translational velocity in the vehicle body frame. In addition
to pose estimation, the filter needs to estimate state variables
for specific sensors. MEMS IMUs suffer from a drifting bias
along each axis of the accelerometer and gyroscope, which
must be estimated to reduce error in the motion prediction.
Over long missions, barometric air pressure will drift with
changing temperature and weather conditions. A drifting bias
term is tracked for the barometric sensor. Finally, to incorpo-
rate relative frame-to-frame visual odometry measurements,
a delayed state is tracked which captures the vehicle’s pose
at the previous camera frame. By adding these bias terms
and previous pose vectors to the state vector, we attempt to
satisfy the Markov assumption that the state vector contains
all the information needed to predict the next state given the
control input. The vehicle’s state is represented as the vector
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Fig. 2: The Overall Filter Design. The filter combines mea-
surements from several sources and robustifies the integration
by gating the measurements to produce a smooth estimate for
mapping, motion planning, and control.
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where p is the 3-dimensional vehicle’s position in the world
coordinate system, ¢ is a unit quaternion representing the
rotation of the world frame to the vehicle’s body frame, v is
the translational velocity in body coordinates. For simplicity,
the vehicle’s body frame is defined as the IMU’s frame.
The bias terms b, and b, are 3-by-1 vectors that track the
accelerometer and gyroscope drifting bias along each axis.
The barometric pressure drifting bias is b, and the elements
pa and g, represent delayed state vectors, which capture the
delayed position and quaternion. The delayed states will be
explain in Sect. IV-C.

B. Process Model

The system process model predicts forward in time using
IMU mechanization for pose. IMU mechanization use the
IMU measurements instead of vehicle control inputs to pre-
dict the motion of the vehicle. This approach has the advan-
tage of being vehicle agnostic since new dynamics models
are not required for different vehicles or changing vehicle
weights or configurations. The IMU provides a measurement
of acceleration and angular rate but these measurements have
additional terms which must be removed. The following
model is used to express the measured acceleration (a,,) and
measured rotation rate (@,,) in the IMU body frame:

am = a+R(;1g+ba+Wa 6)

Wy, = O+bg+w, @)

The true acceleration a and angular rate @ of the IMU
are corrupted by the walking bias terms (b, and b,) and
wide-band noise (w, and wg). The wide-band sensor noise
is assumed to be independent between axes of the sensor and
is distributed with normal probability around a zero mean.
The measured acceleration a,, has an additional contribution
from gravity g rotated from the inertial frame into the IMU
frame with the rotation matrix qul defined by the current
rotation quaterion.

The true acceleration and angular rate are the inputs for
the state propagation equations:

p = Ry 3
i = 3003 ©
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by = wy, (13)
pa = O3x1 (14)
Ga = O3x1 (15)

Rj is a rotation matrix formed from the unit rotation quater-
nion §.
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Q(w) is the quaternion kinematic matrix determined from
the 3-by-1 angular rotation rates vector @ measured in IMU
coordinates [21].
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[wx] is the skew-symmetric matrix to perform cross-product
operations. The IMU and barometric pressure bias terms
evolve over time according to a random walk with a driving
noise sources wp,,, Wy and Wb, for the accelerometer, gy-
roscope, and barometric pressure respectively. Since delayed
states p,; and g, represent the vehicle’s pose at a previous
point in time, these estimates do not change in the process
model. The noise parameters for the wide-band and walking
bias of the accelerometer and gyroscope can be found by
performing an Allan variance analysis on the sensors [22].

a) Quaternion Representation: For a singularity-free
rotation representation, we parameterize the vehicle’s attitude
using a unit quaternion. Special consideration must be made
when using the quaternion in the UKF since the barycentric
mean computed by sigma points does not necessarily repre-
sent the correct mean unit quaternion [23]. During prediction
and correction steps, a local error state quaternion 8§ is
defined [21], which aligns the estimated quaternion § with
the true quaternion g according to the relation

Gg=08634®4 (19)

During prediction and correction steps, the rotation is pa-
rameterized by the local error quaternion

sg~[1 lseoT ] (20)



00 is a three dimensional angular error vector which de-
scribes attitude errors in a minimal representation. The full
state vector (5) is reduced from a 24 element vector to a
22 element error state vector. The error state vector and the
resulting 22-by-22 error state covariance matrix are used for
filter prediction and correction cycles. The error state vector
is defined as

xse:[p 00 v b, by b, py 56d] (21)

Before each prediction/correction cycle, the angular error
states are set to zero.

06 = 0351
06, =

(22)

0351 (23)

The Orh sigma point which represents the mean of the
multivariate state distribution will retain zeros for the angular
error state. The other 2n sigma points will have non-zero
angular error based on the Cholesky decomposition of the
error state covariance matrix. The attitude quaternion for the
remaining sigma points is calculated based on Eq. 19 and 20.

Ig=18G®q,j=1---2n (24)

At the end of the prediction step, the weighted mean
and variance of the sigma points is used for the predicted
mean and covariance of the error state vector and error state
covariance respectively. The local error quaternion for each
sigma point is found as

I8G='5® (%) . j=1+2n (25)

where °7 is the quaternion found at the Otk sigma point.

C. Observation Models

Measurements from barometric pressure, visual odometry,
and GPS provide corrections for the filter’s predictions. Fig. 3
shows the varying frequencies and asynchronous arrival
times of different sensor measurements. As new measure-
ments arrive, the process model is predicted forward in time
with the latest IMU measurements and then a measurement
correction step is performed. A common problem in real
systems is measurement latency caused by processing and
communication delays. In our system, the time between the
stereo camera pair capturing the images and availability of
the stereo visual odometry results is roughly 100 ms [24].
Rather than waiting for latent measurements, the system is
controlling based on the latest IMU data (50 Hz with roughly
18 ms lag) to allow for a high frequency, low latency control
loop. To integrate latent measurements into the filter, recent
incoming measurements and the corresponding filter state are
stored in a ring buffer. When a new measurement arrives, the
filter is rewound back to the last filter state before the new
measurement’s time stamp. The filter is then re-run on the
new measurement and all subsequent data. Measurements
with latency greater than the ring buffer size (in our case,
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Fig. 3: Asynchronous prediction and correction updates

2 seconds) are discarded. There is additional computational
cost for re-running the filter but this method provides the
most accurate estimation.

Stereo Visual Odometry: In our loosely coupled system,
stereo visual odometry is an independent subsystem which
provides a measurement for the relative translation and
orientation between the stereo camera pair at two points in
time. Visual features are detected and matched between four
images (previous left, previous right, current left, and current
right) and the 3D location of matched visual features are
triangulated in space using the known stereo camera calibra-
tion. The motion of the stereo pair is computed by finding
motion parameters which minimize the sum of squared
reprojection error for matched features between current and
previous image pairs. To provide robustness against outliers
such as mismatched features and tracked features on moving
objects in the environment, the minimization is wrapped in a
RANSAC loop. For our stereo visual odometry system, we
make use of the open-source library LIBVISO2 [11]. The
state estimation filter is agnostic with respect to the under-
lying visual odometry implementation. As visual odometry
algorithms improve, the newer algorithms can be used.

A challenge when using the relative motion computed by
visual odometry is how to best integrate this measurement
into the filtering architecture. During the correction step, the
filter must be able to derive an estimate based on the current
state vector to compare against the actual measurement.
The constant acceleration EKF estimation bundled with
LIBVISO2 and Oskiper et al. [10] are examples of filters
that convert visual odometry measurements to an average
translational and rotational velocity over the measurement
time period. This average velocity is used to correct the
instantaneous velocity estimate of the filter. Unfortunately,
the average velocity may be a poor approximation for the
instantaneous velocity especially during aggressive changes
in direction. An alternative is the relative delayed state
method.

Relative Delayed State: Since visual odometry is pro-
viding a relative measurement between two instances in
time (current and previous camera shutter times), we can
augment the state vector to include the previous pose. The
visual odometry measurement can then provide a correction
for the relative difference between the current and delayed
poses. This approach is known as Stochastic cloning and has
been used successfully to model the relative measurements
provided by wheel odometry and visual odometry [13], [14],
[15]. The augmented terms of the state vector are [ Pd  qa ]



and represent the delayed position and orientation at the time
of the previous camera frame.
The expected measurement is created from the state vector

as T
R. (p—p
f—h(ﬁ)—l i, (00 (26)

which is the relative difference in pose between the delayed
state and the current state. R; is the rotation matrix formed
from the quaternion §,.

Directly after a measurement update, the delayed portion
of the state vector [ pg G4 | is set equal to the current pose
vector [ p g |. The state covariance matrix is updated by
copying the covariance blocks from the current to the delayed
pose covariance. This can most easily be shown as a matrix
operation [14]:

P=TPTT 27
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The new covariance matrix P is found by applying a trans-
formation matrix 7 to a sub-block of the full error state
covariance matrix that we define as P, immediately after
a measurement update. The sub-block of the covariance
matrix is only a 16-by-16 matrix and does not include the
cloned delayed states. The variance of the delayed state and
covariance between the current and the delayed states is set
equal to the variance of current state.

GPS: GPS measurements of vehicle’s global position
and velocity correct the filter’s prediction. The expected
measurement is created from the state vector as

A - P

2=h(®) = { R0 ]
with body velocities v rotated into the global coordinate sys-
tem. Measurement noise is obtained by the GPS subsystem’s
self-reported error.

Barometric Pressure: Barometric pressure acts as another
loosely coupled subsystem. Altitude is calculated by the sub-
system using pressure, temperature, and humidity reported to
the UKF for filtering. The expected measurement is

(29)

t=h(2) = [p.—by]

where p, is the altitude (z) component of the global
position. The pressure bias b, is initialized at vehicle turn-on
time as the difference between GPS altitude and barometric
pressure altitude estimates. Noise parameters for barometric
pressure measurement and the random walk driving noise
are determined by performing an Allen variance analysis

(30)

on a stationary pressure sensor during an offline calibration
process.

D. Robustification

Two screening gates are used to reject erroneous or
outlying sensor measurements. The first gate rejects sen-
sor measurements with a self-reported error greater than
a fixed threshold value. Both the visual odometry and the
GPS subsystems estimate their measurement error based on
the feature point distribution and the satellite configuration
respectively. For example if the estimated horizontal error in
GPS position is greater than 5 meters, the measurement is
discarded. The second screening gate evaluates the innova-
tion (or measurement residual) using a Chi-squared test. The
innovation covariance matrix Sy is the sum of the predicted
measurement covariance matrix P ; and the measurement
covariance matrix Rj. The predicted measurement covariance
matrix is calculated during the UKF measurement update
process [18] and the measurement covariance matrix is either
generated by the sensor subsystem or found during offline
calibration.

Sk =Py 5 + Ry 3D

The Chi-squared test:

X =(—2)" S (e —2) (32)

with z; as the actual measured output of the sensor and Z;
as the predicted measurement. If %2 exceeds the Chi-squared
value for a desired confidence level, the measurement update
will not complete and the measurement is skipped over. We
keep the failed measurement in the measurement ring buffer
and will attempt to apply the measurement again if additional
(latent) measurements arrive to change the state of the filter.
Repeated innovation gate failures of an individual sensor
can signal a higher-level health monitoring process that the
sensor has failed and should be disabled.

This test performs well at detecting failures caused by sud-
den jumps in the measurement data such as incorrect visual
odometry optimization convergence caused by degenerative
scene geometry or large GPS jumps. However, this test will
not detect errors caused by drifting biases or sensors that
fail in a gradual manner. For example, many commercial
GPS units apply a motion model to their output position and
a GPS failure will appear to be a smoothed position drift
rather than a position jump.

V. EXPERIMENTS
A. Experimental Setup

The following experiments were performed using a custom
built MAV with all sensing and computing on-board. The
airframe is an off-the-shelf Mikrokopter octocopter with
custom mounts for the added hardware. The vehicle’s sensors
include a wide baseline stereo camera, spinning LIDAR,
barometric pressure sensor, and a MEMS IMU. The visual
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Fig. 4: Velocity error for GPS-denied data set with manually
removed visual odometry sections.

odometry, states estimation, mapping, planning, and control
algorithms are run in real time on a single board computer
with an Intel Core 2 Duo processor.

B. Robustness Tests

Given the noisy MEMS IMU measurements, we cannot
expect the state estimate to remain error-free during sensor
failures. However, the state covariance matrix P must capture
the uncertainty growth during these periods and remain
consistent and if GPS or visual odometry should drop out
the estimate should remain stable.

We show three sets of results to test the robustness of our
filtering approach. In the first experiment, multiple segments
of visual odometry measurements are manually removed
from a GPS-denied flight data set. The UKF is run over
the trimmed data set to compare the performance of the state
filter during visual odometry outages versus the performance
of the filter without any missing visual odometry data. In the
second experiment the octocopter is manually flown from a
bright, sunny outdoor environment into a completely dark
warehouse, and then back out again. This experiment exam-
ines the effect of the slow degradation of visual odometry
and GPS to the point of complete failure. Ground truth
from GPS is not available for most of warehouse data set
since GPS is lost when entering the building. In the third
set of results, we present autonomous flights where GPS or
visual odometry failed and the filter was able to maintain a
consistent estimate.

Fig. 4 plots the velocity error for a GPS-denied data set.
The data set contains IMU, barometric, and visual odometry
measurements. To test robustness again the lose of both GPS
and visual odometry, a total of eleven three-second segments
were removed from the visual odometry log. The green line
plots the original state estimate. The blue line shows the
estimated velocity with the trimmed log. The red line plots
the velocity estimate from the VO subsystem alone as a
comparison. As expected, the esimated velocity is identical
up until the first visual odometry cut at roughly 25 seconds. Z
velocity remains the most accurate since barometric pressure
provides redundant observations of altitude.

Fig. 5 shows the satellite view for the warehouse data
set. The warehouse is completely dark inside and will result
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Fig. 5: Satellite view of warehouse data set. Here the vehicle
was flown into a dark building to force a GPS and visual
odometry failure. The filtered solution (blue) is significantly
close to the GPS track (green) than visual odometry alone
(black).

GPS failure

(a) Point cloud and flight path

588.985 1+ pose,pose. position.y
ﬁ“‘v---.

i

588.9807

588,9751

meters

e v v v v T v T v
112 114 116 118 120 122 124 126 128
time (s)

(b) GPS Output

-354 ™ Ppose.pose. postion.y

404 \
451 \\

»
T 06
[ v A
= pose.covariancel7] WAV n
£ Ssellss Ly, i,
v o L
0.4+ ez W ”
i o M
0.2+ a
B P e — . ~ - ——
110 112 114 116 118 120 122 124 126 128
time (s)

(c) UKF Filter Output

Fig. 6: An example GPS-degraded autonomous flight test.
The vehicle autonomusly flew under a bridge and the vertical
line (in Fig. b and c) shows approximately when the robot
enters the area under the bridge. Note that the filter maintains
a consistent estimate while the GPS position jumps.



Global Axis | Final Position Error (m) [ UKF 30 Error Estimate (m) |

X -1.73 +14.78
Y -12.61 +14.82
Z 0.10 +1.25

TABLE I: Final position error of warehouse data set
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(b) A single axis UKF position and associated covariance.

Fig. 7: An example transition from VO+GPS+IMU+Baro
to GPS+IMU+Baro. In this example the visual odometry
system stopped working during autonomous flight and the
system continued to fly without noticable performance de-
gredation.

in failure for both GPS and VO. GPS is valid during the
beginning and end of the flight but unavailable while the
rotorcraft is inside the building. Several instances of com-
plete visual odometry failure in the dark warehouse cause any
position estimate from visual odometry alone to be grossly
incorrect. Even with the visual odometry failures, the UKF is
able to maintain a reasonable position estimate using IMU
predictions and barometric corrections. Table I reports the
final position error of the UKF estimate by using GPS at the
landing spot. As demonstrated with other experiments, the
filter remains consistent by accurately estimating the upper
bound on its position error.

The last set of experiments present autonomous flight tests
where the micro aerial vehicle was controlled using the UKF
filter output and experienced sensor failures. The filter output
is also used to register the onboard lidar data to create a
consistent 3D map that is color coded by height in the plots.

Fig.6a shows part of a mission where the vehicle flies
under a small train bridge. As the vehicle enters the area
under the bridge, Fig. 6b shows the position reported by
the GPS jump by several meters. The UKF filter output is
not significantly effected by this GPS failure, producing the

trajectory in Fig.6c which matches the flight path.

Fig. 7 shows a mission where visual odometry fails
permanently. In Fig.7a the vehicle can be seen turning a
corner as it navigates towards a distant goal. During the turn,
a computer process terminates causing the visual odometry
to fail for the rest of the mission. The UKF filter output
shown in Fig.7b makes a smooth, stable transition from
(VO+GPS+IMU+Baro) on the left of the vertical line to
(GPS+IMU+Baro) on the right. The UKF filter covariance
shows a transition away from the high local accuracy of
visual odometry to the high global accuracy yet poor local
accuracy of the GPS. Even with a sustained visual odometry
failure the robot is able to complete the mission.

VI. CONCLUSIONS AND FUTURE WORK

In this research we achieved accurate, low-latency state
estimation by combining multiple redundant sensors to esti-
mate motion. We use an an Unscented Kalman filter (UKF)
to capture the non-linearities in the motion estimates and
combined it with robustness tests to enable smooth estimates
in visually challenging and degraded GPS environments. The
use of IMU mechanization rather than a dynamical vehicle
model allows the state estimation system to be transplanted
easily and without modification to other vehicles (aerial,
ground, or underwater). Overall we demonstrated significant
flight test results of GPS-denied operation of a micro aerial
vehicle in challenging environments with varying availability
of different sensor modalities.
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