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ABSTRACT
Abstract— Autonomous helicopters are required to fly at a wide range of speed close to ground and eventually land in
an unprepared cluttered area. Existing planning systems for unmanned rotorcrafts are capable of flying in unmapped
environments, however they are restricted to a specific operating regime dictated by the underlying planning algorithm.
We address the problem of planning a trajectory that is computed in real time, respects the dynamics of the helicopter,
and keeps the vehicle safe in an unmapped environment with a finite horizon sensor. We have developed a planning
system that is capable of doing this by running competing planners in parallel. This paper presents a planning archi-
tecture that consists of a trajectory executive - a low latency, verifiable component - that selects plans from a planner
ensemble and ensures safety by maintaining emergency maneuvers. Here we report results with an autonomous he-
licopter that flies missions several kilometers long through unmapped terrain at speeds of upto 56 m/s and landing in
clutter. In over 6 months of flight testing, the system has avoided unmapped mountains, popup no fly zones, and has
come into land while avoiding trees and buildings in a cluttered landing zone. We also present results from simulation
where the same system is flown in challenging obstacle regions - in all cases the system always remains safe and ac-
complishes the mission. As a result, the system showcases the ability to have a high performance in all environments
while guaranteeing safety.

INTRODUCTION
Autonomous helicopters have a high demand in applications
such as cargo delivery, emergency rescue operations and
surveillance due to their dexterity in operating in close vicin-
ity to ground. These operations typically involve traveling at
high speeds at low altitudes and eventually landing in an un-
structured and partially occluded environment. From a motion
planning perspective, this problem has several challenging as-
pects. Firstly, the operating environment is mostly unmapped,
requiring rapid online planning as the sensor incrementally
discovers new obstacles. Secondly, the speed of operation
scales across a wide spectrum requiring plans to adapt accord-
ingly. Thirdly, the missions require the vehicle to proceed as
fast as possible to touchdown, thus demanding high perfor-
mance as well as guarantees on safety. Finally, the planner
has to respect the dynamics of the under-actuated non-linear
system.

Motion planning literature (LaValle (Ref. 11)) is divided
into various classes based on the representation of the search
graph and the methodology for updating this graph. Each
class has its advantages and disadvantages and usually the ap-
plication dictates the effectiveness of a given approach. Sur-
veys in the field of autonomous rotorcraft systems by Kendoul
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Fig. 1: Boeing’s Unmanned Little Bird autonomously lands in
snow. The planning system plans direct to touchdown avoid-
ing enroute no fly zones, unmapped terrain, trees and clutter
in the landing zone.

(Ref. 9) and Goerzen et al. (Ref. 6) have revealed however that
all classes of approach are used in practice. These algorithms
are usually modified to leverage some assumption about the
specific problem statement to gain performance advantages
over other approaches.

The most general approach to the planning problem is to
create a search graph and perform deterministic search. Such
methods come with guarantees of resolution optimality and
complexity bounds. In the area of field robotics, the nomi-
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nal graph search has undergone several augmentations to plan
in real time. Anytime search methods as reviewed by Fer-
guson et al. (Ref. 3) take advantage of the incremental cost
update and need to replan in robotics. Differential constraints
are handled using custom lattice (Pivtoraiko et al. (Ref. 16))
and multi-resolution graphs (Likhachev et al. (Ref. 12)) fo-
cus the search to improve performance. There has been some
promising results for micro-aerial vehicles (MacAllister et al.
(Ref. 14)), however, such methods have been used in a lim-
ited way for aerial vehicles. The state of the art results use 3D
A* to generate waypoints (Tsenkov et al. (Ref. 20), Whalley
et al. (Ref. 21)). A possible reason for not having extended
use is that designing an appropriate search graph in the high
dimensional space to get quality trajectories in real time is a
non-trivial problem.

Numerical optimization techniques are popular for plan-
ning trajectories offline. Situations where obstacles are
known, the problem can be framed as a NLP problem or
more efficient techniques such as MILP (Schouwenaar et al.
(Ref. 19)) can be applied. However, these methods are not
suited for real-time obstacle avoidance. Another school of
thought in optimization is perturbing around an initial guess of
the optimal. Quinlan and Khatib introduced the concept of a
trajectory as an elastic band (Ref. 17) where obstacles stretch
the elastic band. More recently, methods such as CHOMP
(Ratliff et al. (Ref. 18) ) have had a lot of success by taking
covariant gradients. However, in a complex environment, gra-
dient based methods tend to get trapped in a local minimum.

Sampling based approaches have had the widest popular-
ity for high dimensional search, primarily due to the ease of
their implementation. These methods did not come with any
guarantee of optimality, until recently with the introduction
of RRT* by Karaman and Frazzoli (Ref. 4). This method
provides asymptotic optimality by the virtue of repairing the
search tree. For certain environments, sampling provides
quick feasible solutions. However, once quality of the trajec-
tory becomes an issue, the stochasticity of the samples cause
oscillatory results. Usually some level of post processing and
relaxation is required.

Motion planning algorithms by themselves cannot guaran-
tee the safety of the system. Even in the case where an al-
gorithm can be proved to be sub-optimal, an architecture is
required to handle cases where the planner is unable to find
a feasible path. Goerzen and Whalley (Ref. 7) present an ar-
chitecture where the speed is modulated based on the ability
of the vehicle to stop within the sensor range. However, this
method is far too conservative to enable high performance.
Moreover, there is no discussion of how one can introduce for-
mal verification techniques in the planning paradigm to ensure
safety.

In this paper, we present a systems architecture that uses
an ensemble of complimentary planners running in parallel to
deal with diverse situations. This process of letting planners
compete takes away the need of reasoning about which plan-
ner best suits a planning problem. We also present the trajec-
tory executive, a low latency verifiable module which picks a

plan and ensures safety of the system. We have tested the ar-
chitecture by conducting numerous flight tests on the Boeing’s
Unmanned Little Bird (The ULB) as part of the Autonomous
Aerial Cargo Utility System (AACUS)) program as shown in
Fig. 1.

PROBLEM DEFINITION

The general planning and control structure is as follows. The
trajectory planner subsystem computes a dynamically feasible
command trajectory and sends it to the Flight Control System
(FCS). The FCS tracks a reference point on this trajectory,
known as a lookahead, and sends feedback to the trajectory
planner. In order to respect controller assumptions, the trajec-
tory planner is only allowed to replan from beyond the looka-
head.

Let X ⇢ R4 be a compact set. Let s(t) =
{x(t),y(t),z(t),y(t)} 2 X be the time parameterized com-
mand trajectory of the coordinates of the centre of mass of the
helicopter and the heading of the vehicle (North East Down
convention). s(t) is defined over the domain [0, t f ] , where t f
is the total time duration.

Let s0 denote the lookahead point of the controller follow-
ing the trajectory s(t). The look ahead point is the reference
point for the controller. In order to prevent step jumps in the
reference, this point should remain unchanged. Let S f ⇢ X
denote a terminal invariant set. This set can be of two dis-
tinct classes. Firstly, it can be a set of steady state allowable
touchdown positions. Secondly, it can also be a loiter pattern.
In that case the goal of the planner is to reach a state on the
pattern and engage a repetitive loiter loop.

The trajectory s(t) is subjected to a set of dynamics con-
straints g(s(t), ṡ(t), s̈(t), . . .)  0. These inequality con-
straints are defined over derivatives of s(t) up to order 3.
Since the underlying helicopter control is a hybrid controller,
these constraints are defined by two distinct behaviours based
on a transition speed. Firstly, the high speed behaviour
enforces a non-holonomic coordinated turn constraint with
bounded sideslip. This implies that the heading, y(t), must
be closely aligned with the velocity vector tan�1 ẏ(t)

ẋ(t) . The dif-

ference b (t) = |y(t)� tan�1 ẏ(t)
ẋ(t) | is the align angle. In this

mode acceleration constraints are place along y(t) (longitu-
dinal) and z̈ (vertical). Secondly, the low speed behaviour de-
couples the heading from velocity vector. Acceleration con-
straints are now also placed on lateral acceleration. This along
with other aerodynamics constraints are described in detail in
Table 1.

The cost J is a line integral over the cost functional c(s(t))
over the domain [0, t f ]. This cost functional is a weighted sum
of several functionals ci(s(t)) as shown in Table 2. Firstly,
total time duration is penalized. Secondly, proximity to ob-
stacles is penalized. This is based on a time to collision met-
ric (Arora et al. (Ref. 1)). Thirdly, a penalization is applied
for entering a human defined area known as No Fly Zone,
XNFZ ⇢ X . Finally, a penalization is applied for entering a
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Table 1: Constraints on trajectory

Definition Equation
Transition speed vtrans

Align angle b (t) = |y(t)� tan�1 ẏ(t)
ẋ(t) |

Roll angle f(t) = tan�1 v(t)ẏ(t)
g

Longitudinal velocity
Lateral velocity


vlong(t)
vlat(t)

�
= RT (y(t)


ẋ(t)
ẏ(t)

�

High Speed Constraint
(v(t) � vtrans)

Equation

Roll |f(t)|< fmax
Roll rate |ḟ(t)|< ḟmax
Sideslip |b (t)|< bmax

Sideslip rate |ḃ (t)|< ḃmax
Longitudinal velocity |vlong(t)|< vlong,max

Lateral velocity |vlat(t)|< vlat,max
Vertical velocity |ż(t)|< vvert,max

Longitudinal acceleration |v̇long(t)|< along,max
Vertical acceleration |v̇vert(t)|< avert,max

Glide slope ż
vvert

< gmax

Low Speed Constraint
(v(t) < vtrans)

Equation

Heading rate |y(t)|< ymax
Longitudinal velocity |vlong(t)|< vlong,max

Lateral velocity |vlat(t)|< vlat,max
Vertical velocity |ż(t)|< vvert,max

Longitudinal acceleration |v̇long(t)|< along,max
Lateral acceleration |v̇lat(t)|< alat,max
Vertical acceleration |v̇vert(t)|< avert,max

Glide slope ż
vvert

< gmax

low velocity state while a high tail wind. This situation leads
to a destabilizing state for the helicopter.

The goal of the trajectory planner is to find an optimal path
that respects the constraints. This is defined as follows:

Table 2: Cost functionals

Cost Functional
R

ci(s(t))dt Equation
Time duration t f

Time to collision
R
(tmax � tcoll(s(t)))2dt

No Fly Zone • if 9t,s(t) 2 XNFZ
Wind Cost • if 9t,s(t) 2 Xtail,wind

f ind s(t) = {x(t),y(t),z(t),y(t)} , t f

minimize : J =
R t f

0 c(s(t))dt
constraints : s(0) = s0

s(t f ) 2 S f
g(s(t), ˙s(t), ¨s(t), . . .)  0

J < •

(1)

The key reason which makes this non-linear optimization
problem hard to solve is the finite sensing horizon. Given
the fact that the helicopter is moving at a high speed and un-
mapped obstacles are known only when they enter the sensor
horizon, there is a demand for planning safe optimal trajecto-
ries rapidly.

Before committing to an approach methodology, important
design criteria have to be investigated - both from the perspec-
tive of the nature of the optimization problem and from a prac-
tical system design standpoint. We summarize this as set of
observations and requirements.

Difficulty in making assumptions about the environment

Planning algorithm rely on assumptions about the environ-
ment to lay claims on feasibility and optimality. However, it
is unclear how to map the real environment a helicopter oper-
ates in to the space of assumptions. For example, to say that a
search graph must have at least one feasible path is enforcing
a non-trivial constraint on the required probability distribution
of environments. Similarly to say that there must not be a lo-
cal minima also leads to a non-trivial probability distribution.
Moreover, taking each of these assumptions to the conserva-
tive limit cancels out environments in which the helicopter is
actually required to operate.

The constrained non-linearity of the optimization problem
aggravates the need for strong assumptions to still be able
to deliver real time solutions. Search based methods have
to make graphs on this non-linear manifold, gradient based
methods have to enforce sufficient smoothness and sample
based planners have to bias samples with considerations on
the reachability of the system.

Difficulty in characterizing algorithm performance

In the event that assumptions made by the algorithm holds,
the performance of the algorithm can still have large fluctu-
ations. In the case of discrete search algorithms or gradient
based optimizers, the stochasticity comes from obstacle dis-
tributions. In case of sampling based planners, performance
varies even more widely due to their inherent stochasticity.
This makes it unclear that given a snapshot of the current en-
vironment, which method would be able to produce a plan
within the given time budget.

Difficulty in ensuring system safety

In the event that assumptions made by the algorithm fail, it
is desired that the system executes a safe response. To know
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Fig. 2: Planner ensemble and trajectory executive architec-
ture.

a-priori when this will happen is non-trivial. If the event does
occur, whether the system is in a state that can reach a safe
state is also a requirement.

Difficulty in verification of algorithm functionality

Verification of any practical system is vital. For a general
scenario, an implementation of a planning algorithm is non-
trivial to verify. This is because when seen as a blackbox unit,
the input to a planner is an infinite space of environments and
constraints, and the correctness of the output is an optimiza-
tion problem in itself. As a compromise, it is at least required
that the system behave safely at all times and abide by the
rules imposed by the controller.

APPROACH OVERVIEW
In the previous section, we defined the problem and estab-
lished the need for a planning system that can verifiably en-
sure safety while being able to adjust its search approach as
the environment changes. We will now introduce a system
architecture that addresses this issue.

The central idea is to have an ensemble of planners running
in parallel. These planners explore the state spaces in parallel
in a complimentary fashion and bid their plans. These plans
are then fed to a trajectory executive. The executive is a low
latency verifiable unit whose job is to receive plans, ensure
safety and send the best plan to the controller.

Fig. 2. shows the system architecture. The planner ensem-
ble submit their plans to a dynamics filter module. This mod-
ule is capable of taking sufficiently smooth plans and checking
or enforcing dynamics constraints. The trajectory executive
receives these feasible plans and selects the best plan. It keeps
around alternate plans in order to have a low latency reaction
to minor obstacles. It then uses an emergency maneuver li-
brary to check if a plan is safe and executes the maneuver if
not.

TRAJECTORY EXECUTIVE
In this section, we introduce the concept of a trajectory ex-
ecutive. The trajectory executive is a trajectory selection and

verification unit that guarantees the safety of the vehicle. We
will discuss the rationale behind this modular approach, how
trajectories are selected and how the module ensures safety.

Rationale

A nominal planning system consists of a trajectory planner
operating at a fixed frequency. Every planning cycle it looks
at the current pose of the vehicle and plans a path to the goal
while optimizing a cost function along the way. In planning
literature as reviewed by LaValle (Ref. 11), various guaran-
tees exist on the properties of planning algorithms, however,
it is difficult to translate these guarantees to the system on the
whole. These difficulties are summarized below

1. Safety perspective - A single planner framework makes
it difficult to ensure that the vehicle is safe at all times
while attempting to compute the optimal path to goal.
This requires a very high frequency monitoring of the en-
vironment and regulation of vehicle velocity to be com-
bined with a more lower frequency computationally in-
tense process of computing an optimal path.

2. Systems perspective - Even though a single algorithm can
be laboriously constructed to handle all corner cases, it is
difficult to ensure that the module will behave properly
when faced with issues such as latency in the pipeline,
inadequate planning budget, memory corruption errors
and modules temporarily dying. The planner has to take
appropriate evasive actions in such cases making it flight
critical.

3. Algorithm perspective - A helicopter performing mis-
sions over long distances which involves take-off and
landing encounters a wide variety of situations of dif-
ferent fidelity. It is not evident that a single best ap-
proach can exist. A trajectory optimizer quickly perturbs
a plan locally to arrive at a sensible answer but can of-
ten get trapped in undesirable local minima. A discrete
graph planner always arrives at the optimal solution but
its planning time and plan quality is dependent on the
resolution of the graph. A sampling based planner at-
tempts to balance between both plans but has an inherent
stochastic variation.

In our approach, we make our system modular and create a
flight critical component - the trajectory executive. Operating
at a high frequency (⇠10 Hz), it ensures that the vehicle fol-
lows a safe, feasible trajectory. It has the following properties:

1. It collects trajectories, evaluates closed loop behavior of
these trajectories and picks the optimal one.

2. It retains a set of alternate trajectories which are sub-
optimal but potential candidates for being optimal in case
an obstacle appears on the path of the current command
trajectory.

3. It ensures the trajectory being followed is guaranteed
safe.
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Fig. 3: The sequence of events that occur in the planning
subsystem. (a) An obstacle enters the sensor range (b) The
obstacle appears in the obstacle map (c) In the next iteration,
the planner ensemble receives the planning problem. Note
that by now the executive has invalidated the old plan and is
either following an alternate or following the old trajectory as
long as its safe. (d) The planners asynchronously submit plans
to the executive (e) The executive selects a plan which is sent
out to the vehicle (f) It repairs the alternates and keeps them
in reserve.

4. It guarantees that at least one backup emergency maneu-
ver always exists.

5. It is minimal, constant memory, and constant runtime to
enable DO-178B verification.

6. In the event of there being no feasible trajectories or a
critical module failure, it executes the backup emergency
maneuver to take the vehicle to a safe invariance set.

Because of the well defined nature of these requirements, it
becomes possible to fully verify the correctness of the trajec-
tory executive - which implies the correctness of the vehicle.

Trajectory Selection

The trajectory executive needs a pool of trajectories to choose
from. In a later section, we will expand on how this pool
is generated. In this subsection, we discuss how it selects a
trajectory from the pool as well as how it decides to choose M
alternate trajectories. An illustration of the sequence of events
is shown in Fig. 3. The selection cycle is as follows:

1. Collect at most N trajectories submitted by planners and
add them to a queue.

2. Repair old plans, i.e., plans that originate from before
the control lookahead point. It repairs them by running
a polynomial interpolation from the lookahead to a pro-
jection point on the trajectory. If the resultant is not dy-
namically feasible, it is rejected.

3. Discard plans which are not guaranteed safe.

4. From the list of trajectories, select the one that has the
least cost and set the corresponding trajectory as com-
mand.

5. Choose M alternate trajectories from remaining trajecto-
ries in the queue based on a fitness function and retain
them in the queue while throwing the rest out.

This ensures that the trajectory executive selects from at most
N +M plans at any given cycle, thus bounding its cycle time.

To choose M alternate trajectories, a fitness function is
used. The fitness function awards diversity while ensuring the
cost of the paths are within a bounded variation from optimal.
Thus it solves the following problem

f ind : si = (x(t),u(t)) 8i = 1 · · ·m

subject to the following constraints

1. (S(si)\ {S(s0)[ · · ·[S(si�1)})  g kS(s⇤)k (Limited
sharing of new alternative and previous alternative tra-
jectory swath )

2. Jcl(si) is (1 + e)Jcl(s⇤) (Bounded variation from opti-
mal cost)

where S(.) is the swath of a trajectory, i.e. a volume of safety
radius around a trajectory. Jcl(s) is the cost of the closed loop
trajectory following s .

Condition 1 ensures that the alternate trajectories are di-
verse. Specifically, if one of the alternate trajectories ends up
in collision with an obstacle, the other trajectories are more
likely to not be affected. Condition 2 ensures that the tra-
jectories have bounded sub-optimality - only trajectories of
acceptable quality are retained.

Ensuring Safety

A critical purpose of the trajectory executive is to ensure
safety. Here safety does not just imply a collision free tra-
jectory, but a trajectory that is guaranteed safe (Arora et al.
(Ref. 1)). This is defined as a trajectory from which an emer-
gency maneuver always exists within the known free space
volume. The trajectory executive ensure the safety of the ro-
torcraft by using the emergency maneuver library to enforce
the constraint that the current and next state of the helicopter
always lies in the positive invariant set, which does not inter-
sect the obstacles and stays within the known volume. The
algorithm to ensure safety is explained in Algorithm 1.
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Algorithm 1: Emergency Maneuver Trajectory Set Appli-
cation for Reactive Safety
Input: Safety library at previous timestep FPrevious, Currently
executed trajectory s(t)
Output: Command trajectory g(t) , Safety library at current
timestep FNew

1. FNew = { /0}.

2. st = s(t)

3. for 8fc 2 F(st)

4. if W(fc) ✓ Kt/Ot

5. FNew = {FNew,{fc}}

6. endif

7. endfor

8. if FNew = { /0}

9. g(t) = fe 2 FPrevious

10. else

11. g(t) = s(t)

12. endif

The algorithm queries for emergency maneuver library at
a future state of the rotorcraft, and ensures it can transition
to an emergency maneuver which lies in known obstacle free
space. If the there are no such maneuvers, one of the emer-
gency maneuvers computed at the previous step(for the cur-
rent state) are executed. This operation has a maximum limit
on run-time and is guaranteed to keep the vehicle safe. The
algorithm is explained with a working example in figure 4.

PLANNER ENSEMBLE AND TRAJECTORY
EXECUTIVE

A trajectory planner ensemble is a collection of independent
planners attempting to solve the same planning problem. The
planners then submit their plans to the executive in an asyn-
chronous fashion. These plans comprise the pool of trajec-
tories from which the executive chooses. It is important to
note that these plans no longer require a guarantee to keep the
vehicle safe. In the worst case, if no trajectory is submitted
the executive follows an emergency maneuver. However, the
quality and abundance of plans determines the performance
of the vehicle. Thus it is important that the planner ensemble
is able to solve problems of varying difficulty.

The ensemble is an effective way of dealing with the prob-
lem of having no good measure which planning algorithm is
appropriate in a given world configuration. By allowing plan-
ners to compete in parallel, the executive picks the overall

(a) (b)

(c) (d)

Fig. 4: Emergency maneuver library from data collected in
flight test in Manassas, VA. (a) The helicopter approaches a
large simulated wall with the emergency maneuver library. b)
As the helicopter gets closer to the wall, the emergency ma-
neuvers intersect the wall and become invalid. c) Fewer emer-
gency maneuvers are left but some of them are still valid for
future states d) An emergency maneuver is executed as the
future state is no longer safe.

best trajectory without having to reason about which planner
to pick. We pick 3 diverse planning algorithms - a gradient
based optimizer, RRT* and Anytime D*. We also use a tra-
jectory library to tackle clutter in the pretouchdown phase.

Covariant Gradient Descent

We pick CHOMP (Ratliff et al (Ref. 18)) as the basis for
our trajectory optimizer. CHOMP is a covariant gradient de-
scent based algorithm. While normal gradient descent cre-
ates a perturbation Ds such that the step is small in the sense
of DsT Ds < e , a covariant gradient descent choses Ds such
DsT DDs < e where D is a distance metric. This metric can
specify weights on higher derivatives of Ds such that the gra-
dient step is smooth. Then the gradient step at iteration k be-
comes

sk+1 = sk �
1
l

D�1gk

where sk+1 is the new trajectory, sk is the old trajectory, l
is a lagrange multiplier and gk is the gradient. This distribu-
tion is akin to the Newton Raphson Steepest Descent gradient
distribution. Fig. 5. illustrates how the covariant gradient
affects the trajectory.

An analytical dubin’s visibility graph is used to compute
an initial guess which avoids NFZs and reaches the goal. The
time to collision metric is used to derive gradients which are
then distributed to get a smooth update. Even though the plan
produced is smooth upto s̈ , it relies on the dynamics filter for
non-linear dynamics enforcement.

The algorithm favours cases where the initial guess needs
to be perturbed slightly to stay clear of obstacles. For an au-
tonomous helicopter flying in mostly a sparse environment,
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(a) (b)

(c) (d)

Fig. 5: Advantage of taking a covariant gradient. (a) Gradient
along a trajectory point along directions of minima (b) Nom-
inal gradient descent makes a small perturbation in trajectory
space. This leads to a small, non-smooth change. Several
iterations of this would be required to avoid the minima (c)
Covaraint gradient makes a small step in derivative space of
the trajectory. This translates to a distribution of the gradient
which preserves smoothness (d) A single iteration takes the
trajectory out of collision while preserving smoothness.

a

b

a

b

(a) (b)

Fig. 6: Improvement of the RRT* tree over RRT. (a) RRT
does not repair the tree, leading to answers with no bound on
quality (b) RRT* repairs the tree leading to an asymptotically
optimal trajectory.

this proves to be the most practical approach. However it has
a tendency to get stuck in a bad local minima. This usually
the case if the trajectory is passing through an obstacle that
has a flat or non-convex outer profile. A typical scenario is
flying between a tree line on approach such that it can neither
fly over, nor can it escape out of the local minima.

RRT*

The RRT* algorithm (Karaman and Frazolli (Ref. 8) ) is an
asymptotically optimal sample based planning algorithm. The
algorithm grows a search tree by sampling a point in free
space, connecting it to the optimal parent in the tree and then
rewiring the tree. This has an enormous difference to RRTs
as shown in Fig. 6. We generalized this approach to RRT*-
AR (Ref. 2) (Choudhury et al.) that can return a set of diverse
trajectories. It does so in a rapid fashion by injecting variation
in the search tree and using approximation of cost bounds to
get large speedups. The RRT*-AR uses a dubin’s primitive as
a steering function due to its analytic form. It, like the opti-
mizer, run the dynamics filter as a post processing step.

The RRT*-AR generates a random tree in the state space.

S

G

S

G

S

G

(a) (b) (d)

Fig. 7: Anytime D* gives interim suboptimal paths at almost
no extra computation (a) The full A* expands 19 cells and has
the optimal path (b) AD* with e = 2.5 gives a path after only
13 expansions (c) Continuing AD* to e = 1.0 gives a path
after 10 expansions. In total the AD* expands 23 cells but is
able to provide paths at anytime interim.

Due to this inherent stochasticity, it becomes very difficulty
to predict performance and coverage statistics for this planner
and is an important topic for future work. However, the abil-
ity of the algorithm to jump across the state space and repair
the search tree allows it to reach a solution (albeit sub-optimal
in quality) very quickly. Empirically, we observed that this
planner was more robust in a given time scale than other plan-
ner and thus proves to be a vital component in the ensemble.
For it to be able to generate high quality trajectories, we ap-
plied methods such as warping the search space around the
analytic dubin’s path and using importance sampling (Kobi-
larov (Ref. 10)).

Anytime D*

Likhachev et al. (Ref. 13) proposed an anytime version of a
discrete optimal graph search. The algorithm quickly finds
a suboptimal plan by inflating the search heuristic and then
proceeds to repair the path. Thus at anytime, it has a sub-
optimal path available. Fig. 7. shows the concept behind
repairing graphs. This algorithm is used over a custom state
lattice in this paper.

This algorithm comes with a lot of guarantees in terms of
optimality and complexity. However the representation of a
graph becomes very crucial as the search does not scale well
in dimension. A state lattice accommodates the non-linear
constraints into its construction but to get similar run time per-
formance as the other algorithms, a lot of design choices have
to be made. In this paper, we use the standard state lattice ver-
sion of the algorithm and note that this is considerably slower
than the other algorithms.

Trajectory Library

Trajectory libraries (Frazzoli et al. (Ref. 5)) are popular be-
cause they offload the nonlinear constraint matching part to an
offline optimizer and restrict the optimal solution to lie in the
basis of the library. Libraries are pretty efficient to use when
the underlying dynamics are too constrained to be solved on-
line and having a trajectory restricted to the basis is an accept-
able compromise.
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Fig. 8: The end game library unit circle. The unit circle is
composed of analytical polynomials in curvature space. By
concatenating such circles recursively, vast pool of trajectories
can be synthesized.

(a)

(b)

Fig. 9: The dynamics filter creates a feasible trajectory within
a bounded volume of infeasible trajectory (a) The planner en-
semble plans an infeasible path (dotted lines) while the filter
outputs a conservative feasible path (b) The feasible path is
guaranteed to stay within a funnel around the infeasible.

Such a case occurs during the pretouchdown phase of a
helicopter. It is often the case where the mode of the dynam-
ics undergo a high speed to low speed transition making the
optimal trajectory more difficult to compute. Since the touch-
down zone is known apriori, the search space is a bounded
static area. This allows one to apply rapid collision checks by
leveraging a mapping from {x,y,z}! si where si are part of
a trajectory collection.

We define this library as the end game library which can
provide high quality solutions to cluttered landing zones. In
addition to rapid collision checks, this library provides an easy
offline way to enforce adhoc close to touchdown rules that a
helicopter should obey. Fig. 8. provides an illustration of how
the library is grown.

Dynamics Filter

The purpose of this module is to check and enforce dynamic
feasibility on a plan. It does so by creating a fictitious vehicle
model out of the constraints and then tracks the input plan.
The traced out trajectory is dynamically feasible by construc-
tion and passed along to the executive. An illustration of this
is shown in Fig. 9.

Algorithm 2 gives an overview of the dynamics filter.
The key requirement is that the input trajectory has bounded

Algorithm 2: Dynamics Filter
Input: Initial Guess sinitial(t), Constraints g(.)
Output: Dynamically feasible trajectory s(t)

1. Based on constraints g(.), construct a model Ẇ =
F(W,u) where u is the set of highest order terms which
have constraints. For example in high speed mode, u =⇥

along ḃ z̈ ḟ
⇤

. Saturation is applied to W and u
based on g(.). The trajectory of W(t) is sW(t).

2. Construct a policy u = K(W,s) and the control lyapunov
function V (W,u,s) using backstepping on the cascaded
system W.

3. Let sinitial =
Sn

i=0 si,i0 [ si0,i+1 where si,i0 is infeasible
and si0,i+1 is feasible.

4. In the infeasible section, |Vi0 �Vi| < M
��si,i0

��
BV where

kskBV is the bounded variation of a trajectory segment

5. In the feasible section, Vi+1 <Vi0

6. Hence the total variation of the feasible around the infea-
sible is bounded by Sn

i=0M
��si,i0

��
BV

7. The trajectory returned sW(t) is dynamically feasible by
construction.

Goal

Obs

Obs
Goal

Obs

Obs

(a) (b)

Fig. 10: Simple benchmark scenario for planning from start
to goal (a) Two poles (b) Four walls

lengths of constraint violation which limit Sn
i=0M

��si,i0
��

BV .
The Control Lyapunov function of the fictitous model then
converges on the feasible sections and diverges by a bounded
amount in the infeasible sections.

SIMULATION EXPERIMENTS
In this section, we discuss the set of experiments performed in
simulation to design and verify the planning system. We will
start with a generic experiment with planners and then move
on to simulations with the actual system that is to be flown.

Simplified scenarios

The purpose of this experiment is to get a set of empirical
results in an artificially created benchmark scenario to gain
an understanding of performance of planning algorithms and
the role of an executive. In Fig. 10. two benchmark sce-
narios are shown. The objective is to plan from start to
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Table 3: Planner selection statistics averaged for 100 trials

Algorithm Two poles Four walls
Optimizer 87.25% 13.61%
RRT*-AR 12.75% 76.19%

AD* 0.00% 3.40%

Table 4: Executive statistics averaged for 100 trials

Criteria Two poles Four walls
Success rate with

single planner 83.00% 5.00%

Success rate with
executive 100.0% 100.0%

Average switches
to alternate 0.7 3.8

Maximum alternate routes
in a run 3 7

goal given the dynamics and sensor constraints of the system.
The vehicle has a maximum speed vmax = 25m/s, roll limit
fmax = 45deg, roll rate limit ḟmax = 22.5deg/s and vertical
speed limit vvert = 2.5m/s. It has to reach the goal 500m away
at the illustrated heading without slowing down. The mounted
laser sensor has a range of 150m, field of view 100deg nod-
ding passively at a speed of 180deg/s. These set of con-
straints created a difficult scenario where planning time had
a large effect on system performance. The two scenarios dif-
fer in the obstacle distribution. In one of them, there are two
poles between the start and the goal. In the other, there is a
sequence of four walls which will eventually force the planner
to circle around and find the only opening.

Table 3 shows the statistics for plans being selected. As
expected the smooth gradients in the case of pole scenario
allows the optimizer to dominate. In the wall scenario, the
large policy change that is required is computed by the RRT*-
AR which becomes the dominant planner. The case of AD*
can be explained as purely a computational drawback. As the
implementation involved a simple state lattice and a simple
heuristic, it could neither produce a path quick enough in the
4 dimensional space, nor did it have the quality as the other
planners due to discretization oscillations. We would like to
refer to implementations such as MacAllister et al. (Ref. 14)
which address such problems. However, based on these statis-
tics we chose to stop development on the AD* planner and
focus our investigation of the other planners.

Table 4 shows the executive usage statistics. Because the
executive ensures safety it always succeeds in keeping the ve-
hicle safe and reaching the goal. In contrast the single planner
suffers because it is not keeping the vehicle safe while plan-
ning. The scenarios are also indicative of the alternate route
usage and diversity. Because the walls require diverse pol-
icy changes, upto 7 alternates are maintained. The average
switching indicates how many times alternates had to be in-
voked because none of the current planners had a plan. With-
out the executive in such a situation maintaining alternates, a

Fig. 11: A mission to land at a helipad in the Grand Canyon.
The planner is not given a prior map and has to follow the
canyon as it senses it.

Table 5: Planner selection statistics for grand canyon

Algorithm Selection
Optimizer 65.82%
RRT*-AR 34.18%

mission failure would occur. For example in the wall case, on
an average 3.8 times an alternate route was used.

Landing in the Grand Canyon

We move on to simulation experiments with the actual system
to be flown. To stress test the obstacle avoidance and char-
acterize performance, we ran mission in the grand canyon as
shown in Fig. 11. The mission speed is set at 30m/s. Table 5
shows that RRT*-AR was selected more often than for nom-
inal cases (34.18%). This is reflective of the fact that even
though the grand canyon has a clear optimal path, the sensor
limitations often encourage planners to “shortcut” across the
canyon only to later detect that there is an obstruction.

Fig. 12(a). shows the standard scenario of the optimizer
computing an optimal trajectory while the RRT*-AR does an
oscillation as an artifact of the random sampling. However as
the optimizer tries to cut across unknown space it gets trapped
in a local minima on discovering obstacles Fig. 12(b). The
RRT*-AR on the other hand is immune to such minima and
plans around the obstacle.

The grand canyon is an environment where many obstacles
lie in occlusion of others. It provides situations where obsta-
cles appear late in the field of view of the laser. Fig. 13(a) is
one such example. The obstacle invalidates the current plan.
We can see that the executive is maintaining diverse alternates
and thus has one that can avoid the obstacle. In the next time
step Fig. 13(b), the alternate is chosen. This feature is crit-
ical to performance as otherwise the delay could trigger the
emergency maneuver behaviour.

Fig. 14. shows an application of the emergency library. In
this situation, RRT*-AR is not being used as a result of which
the chosen path is the optimizer path. Since it is guaranteed
safe, the executive proceeds along it while retaining trajecto-
ries from the library. As soon as the future point is no longer
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RRT*

Optimizer Optimizer

RRT*

(a) (b)

Fig. 12: Both RRT*-AR and Optimizer dominate interchangeably in the Grand Canyon mission (a) Optimizer dominates here
because the gradients from the edges push it into a global minima (b) Optimizer gets trapped in a bad local minima in a space
between two obstacles. RRT*-AR plans around the obstacle.

Obstacle

Planned path
Alternate Obstacle

Selected
Alternate

(a) (b)

Fig. 13: Executive switches to alternate routes when an obstacle enters the field of view at a very late stage (a) The instant when
the obstacle appears and invalidates the planned path. There are already alternates in the executive avoiding the obstacle (b) In
the next time step (0.1s) later, the executive switches to the alternate.
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Optimizer Optimizer 

Emergency 
maneuvers
available

Future point
safe

(a) (b)

Future point
unsafe

Emergency 
maneuver
executed

Optimizer
finds

safe path 

(c) (d)

Fig. 14: Emergency maneuver takes the system out of an undesired configuration. (a) Since we run the experiment without
an RRT*-AR, the selected path is the optimizer path. This lies in a local minima between two walls of the grand canyon (b)
The system follows this path since the future point is safe (c) The future point is no longer safe and an emergency maneuver is
selected (d) The optimizer is now in a configuration where it can find a safe path again.
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Table 6: Planner selection statistics for SanDiego

Algorithm Selection
Optimizer 29.17%
RRT*-AR 70.83%

safe, the executive overrides the current plan with the maneu-
ver. As the maneuver is being executed, the optimizer finds it
in a state from where the initial guess can lie in a safe area.
Thus the executive restores normal status.

Benchmark

The obstacle field navigation benchmark (Mettler et al.
(Ref. 15)) is a popularized standard for evaluating systems
in different standardized scenarios. The benchmark aims to
evaluate speed, energy consumption and safety of the system
in these scenarios. However since we had no control over the
controller and dynamics which are that of a large helicopter,
we evaluated the benchmark as follows. Each mission was
scaled up in size by 10 times. The helicopter then follows the
mission at a speed of 30m/s subject to its original dynamics.
Following this the metrics are scaled down by 10 and com-
pared to the baseline. All 6 scenarios are evaluated along with
some missions from sandiego. Since the helicopter acceler-
ation limits are very conservative (0.981m/s2) the missions
were started with the helicopter in a trim state at 30m/s and
was commanded to maintain that speed and loiter at the end.
This only increased the difficulty of the system.

Fig. 15. shows the results for the Cube Baffle mission.
The conservative dynamics are apparent from the angular rate
difference. Given that limitation, the system stays safer and
reaches the goal in a comparable time. For the other 5 sce-
narios, we found similar results that the optimizer alone was
enough to solve the problem.

The San Diego missions were completely contrary to this
as seen from the statistics in Table 6 where the RRT*-AR
dominates for more than 70% of the time. Given the lim-
ited range of the sensor, situations would often arise where a
building is observed to obstruct the optimizers initial guess.
In easier cases, as shown in Fig. 16(a), the path is clipping a
corner of a building. The gradient in this case is well behaved
and pushes out the trajectory. The RRT*-AR computes trajec-
tories around the cost valley but not as precise as the optimum.
However the more common case is Fig. 16(b) where the opti-
mizer is trapped in a local minima when it passes through the
middle of the building. Notice that as the evidence grid devel-
ops, it is likely to leave “holes” acting as perfect local minima
traps for the optimizer. The RRT*-AR avoids the building and
takes the system to a state from where the optimizer becomes
dominant. This interplay between the planners is observed
throughout the SanDiego mission.

FLLIGHT TEST EXPERIMENTS
The planning system has been stress tested on an autonomous
helicopter over a period of months. Missions have ranged

Description of simple benchmarks
Chad Goerzen, Bernie Mettler

May 11, 2010

This set contains six simple problems with a world containing two or fewer geometric 

primitives and a ground plane. These problems all have a goal separated from the starting 

point by 100 m, and all obstacles have a maximum height of 20 m above the ground plane. 

Start and end points are 10 m above the ground plane, and the velocity is constrained to zero 

for both start and end points. In the out-and-back task, there is no velocity constraint on the 

intermediate waypoint.  Note that these obstacles can be “flattened” to two dimensions for use 

in testing ground vehicle guidance systems and scaled to a size that is appropriate for the 

vehicle type and capabilities.

     

Plan view drawings of the simple benchmark terrains
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Fig. 15: The Cube Baffle benchmark from the obstacle field
navigation set. The original helicopter dynamics and sensor
range are scaled down by 10 preserving relative ratios. As a
result the system is more conservative but can solve the prob-
lem in realtime with only the optimizer.
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RRT*OPTIMIZER

(a)

OPTIMIZER

RRT*

(b)

Fig. 16: Planners selected interchangeably in the SanDiego
mission scenario. (a) The optimizer follows a nice gradient
around the building while the RRT*-AR computes paths that
miss the optimum valley (b) The more familiar scenario of the
optimizer getting trapped in a local minima inside a building.
The RRT*-AR circumvents the obstacle.

from avoiding no fly zones, terrain obstacles and landing
straight to ground while avoiding enroute trees, facing the
wind direction and dealing with clutter at the landing zone.
In this paper, we focus only on the trajectory planning results
that show how the system deals with unmapped obstacles.

Fig. 17 and Fig. 18 shows a collection of missions flown
at Quantico, VA and Mesa, AZ. The two locations had very
different terrains and the system adapted accordingly. Table
7 shows statistics for the Quantico mission. Overall the mis-
sion involves very little interaction with obstacles and hence

Fig. 17: Collections of missions flown in a day at Quantico,
VA. The missions were permutations of landing, wave off, dif-
ferent wind directions, different popup NFZs.

Table 7: Planner statistics averaged over 8 flights in Quantico

Statistics Values
Maximum speed 52.2 m/s
Speed at tree line 10 m/s

Min time to collision to tree 10 s
Max RRT*-AR usage 0
Max alternate usage 3

Fig. 18: Collection of missions flown at Mesa, AZ over a
few flight days. The terrain is very different from Quantico.
Similar permutations were flown here, the difference being
that terrain avoidance was required in several cases.

the optimizer alone is good enough. The only interesting sec-
tion is the intersection with trees. The original mission is al-
ways intersecting with a tree which is occluded and hence is
seen late. However, since the executive maintains alternates
it seamlessly switches trajectories. Table 8 shows statistics
for the Mesa mission. This mission involved more interaction
with terrain leading to situations where RRT*-AR and alter-
nates were used.

Flight around a mountain

Fig. 19. shows obstacle avoidance of a mountain while flying
at 30 m/s in Mesa, AZ. In this scenario the helicopter was fol-
lowing a mission to loiter behind the mountain. The obstacle
is detected and a trajectory is planned such that the minimum
time to collision is 5.0s.

Fig. 19 (c) shows the time to collision heat map and re-
sultant gradient. Given the configuration of the obstacle, this
gradient direction is well defined. Fig. 19 (d) shows the co-
variant gradient descent undertaken by the optimizer. This
can be seen by the large perturbations in the trajectory while
maintaining a smooth profile. This is similar to the illustration

Table 8: Planner statistics averaged over 5 flights at Mesa

Statistics Values
Maximum speed 56 m/s

Max speed near mountain 30 m/s
Min time to collision to mountain 5.0 s

Max RRT*-AR usage 2
Max alternate usage 1
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shown in Fig. 5. Fig. 19 (e) shows the optimizer reducing the
cost with iterations, while the RRT*-AR lies on either side of
the cost valley. The jump to the minimum by the optimizer
indicates the rapid effect of covariant descent. The RRT*-AR
in this case cannot compete with the optimizer as shown in
Fig. 19(f). The tree doesn’t get a sample in the valley of the
cost function and hence produces a path takes a more extreme
diversion and is no longer time optimal. There are rare cases
where the optimal path in the tree is on the other side of the
cost valley and closer to the obstacle. The RRT*-AR how-
ever does give a nice variance to the pool of alternates in the
executive if the optimized plan is invalidated later on.

Flight between NFZ and a mountain

Fig. 20 shows a scenario where the planner has to plan be-
tween a known NFZ and an unmapped mountain at 30 m/s in
Mesa, AZ. In this scenario the planner is going to land at a
point behind the NFZ.

This case is very different from the previous experiment
around the mountain. The NFZ is treated here as a constraint
and thus has no gradients outside of it. This is because it is dif-
ficult to associate a cost function with being outside the NFZ
as it will be a fictitious cost function and may dominate the
real time to collision cost. The gradient from the mountain,
even though it has a well defined direction, pushes the trajec-
tory against the NFZ. If the gradient descent step results in an
iteration where the trajectory is inside the NFZ, it is rejected.
As a result, after 4 iterations, the optimizer gets stuck in a
local minima. Ideally the optimal path would require the tra-
jectory to contort far before the mountain NFZ junction. Since
the gradients do not percolate far back enough, this cannot be
achieved. The optimizer computes a path with a critically low
time to collision.

The RRT*-AR on the other hand samples enough vertices
to pass safely through the gap. As seen from Fig. 20 (g). the
cost has distinct stepwise decrements. This is indicative of the
RRT*-AR repairing the branch passing through the junction.
It finally finds a good enough solution that is safer than the
optimizer.

Flying between trees in approach

Fig. 21 shows a flight in between trees at Quantico, VA. In
this scenario, the planner is going to land beyond the trees.

This case is different due to how late the obstacle is dis-
covered by the sensor. Fig 21 (b) shows the point cloud ac-
cumulated by the time the planner has already avoided the
trees. The sensor planner first ensures safety of a trajectory
by checking if emergency maneuvers are possible all the way
to landing and then focuses its efforts on the landing zone.
Hence the tree below the path in 21 (a) is not detected as
shown by how little points landed in the encircled area in Fig
21 (b).

The executive has in its collection alternates collected from
RRT*-AR and optimizer which vary around the optimal. As

soon as the tree appears in the obstacle map, it invalidates
the current plan shown in 21 (c). The executive switches to
the alternate even before the optimizer has had a chance to
react. The executive has a time budget 20 times faster than
the optimizer making this an example where it played a very
critical role.

Flying above trees in approach

As seen previously, trees are the most realistic challenge for
a helicopter. They occlude the landing zone and intersect the
mission glide slope. Climbing above the tree line is not always
an option due to glide slope constraints. Sometimes a lateral
avoidance is required.

Fig. 22. shows a scenario of climbing above the tree line
at Flying Circus, VA. In this case, the sensor sees the tree
line as it banks to approach the landing zone against the wind
direction. On detecting the trees, it climbs in height. The
climb is limited by the allowable glide slope. There is no
lateral solution as the tree line exists on both sides.

Fig. 23. shows a scenario where a single tree appears on
the mission glide slope. This mission was repeated several
times and the planner choses an avoidance direction dictated
by the gradient. Like the previous situation, this problem is
constrained by the glide slope and the landing direction and
location.

It is important to note that the tree is a near to earth ob-
stacle. From the point cloud itself, it is as much an obsta-
cle as the ground to which the trajectory is being planned to.
What distinguishes the cases is the time to collision because
of different velocities. If the trajectory was passing through
the ground at a similar speed of 10m/s, the trajectory would
be optimized to rise above the ground to kill off the speed and
then land.

CONCLUSIONS

We have developed a planning system for autonomous heli-
copters that performs a wide range of near to earth missions
dealing with a diverse set of environments. In our exper-
iments, the autonomous helicopter is given a mission con-
sisting of waypoints several kilometers apart with no prior
map. The system avoided terrain such as mountains and trees
as well as human defined popup NFZ at speeds ranging up
to 56 m/s. To accomplish these results, our system uses an
ensemble of planners running in parallel exploring the state
space for a feasible solution. The heart of the system is a low
latency verifiable module known as the trajectory executive
which selects the plan from the ensemble, verifies it and main-
tains safety. Having a diverse collection of planners bidding
plans solves the problem of which planning algorithm favours
a given environment. The executive plays a crucial role of
having redundant verifiable safety in the system. This system
architecture allowed the system to be commanded to land at
unprepared locations and allowed the system to correct hu-
man errors while designing the mission as a side result. Flight
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Fig. 19: Flying around an unmapped mountain in Mesa, AZ. (a) Safety pilot’s view of the mountain (b) The sensor’s view of
the mountain (c) The gradient due to time to collision takes the trajectory away from the obstacle (d) Path for every one of the 8
iterations that leads to convergence to the optimal (e) The log normalized cost function valley with distance from the mountain
peak. The optimizer descends into the valley within 8 iterations. The RRT*-AR computes alternate routes lying on either side
of the valley. (f) The RRT*-AR optimal path avoids the mountain by a much larger distance than required. The RRT*-AR tree
contains branches on either side of the cost valley.
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Fig. 20: Flying between a NFZ and an unmapped mountain in Mesa, AZ (a) The skid camera view of the scenario (b) The
sensor’s view of the situation (c) The gradient due to the time to collision pushes the trajectory into the forbidden NFZ. (d)
The optimizer gets stuck in a local minima and has a critically low time to collision (e) The RRT*-AR tree is very diverse and
contorts to find a near optimal trajectory (f) Comparison of the RRT*-AR trajectory to optimizer shows that RRT*-AR is safer
(g) The best path in the RRT*-AR tree converges near optimal after sampling around 320 vertices. (h) The local optimizer
cannot lower cost below a certain limit because perturbations at this point enter the NFZ.
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Fig. 21: Flight in between trees near the landing zone (a) The point of view from the onboard camera. The original mission
intersects with a tree (highlighted) that is detected very late by the sensor. (b) The point cloud of the scene after the planner has
already adjusted its path. The encircled obstacle is detected late but is critically near the mission path. (c) The tree is partially
occluded and discovered very late in the approach. It invalidates the current trajectory. The executive has maintained a list of
alternates (d) The executive switches to an alternate in the next time step.
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Fig. 22: Flying over a high tree line near the landing zone at Flying Circus, VA (a) The mission glide slope is such that it is
well below the tree line. (b) The point of view from onboard sensor. The mission goes through the trees while the optimizes
path climbs over. (c) The original planned path when the tree line had not been discovered by the sensor (d) On discovering the
tree line, the optimized path goes over.
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Fig. 23: Flying over a tree in approach at at Flying Circus, VA (a) The helicopter avoids a tree on its way to land (b) The point
of view from onboard sensor. The tree invalidates the mission to land (c) The tree enters range but has not yet appeared in the
obstacle map. The planned path goes through the tree (d) The planned path flies above the tree as soon as its detected. There is
also a lateral deviation.

tests in Manassas, Mesa and Quantico extending a period of
months validates the architecture.

We intend to address certain issues in future work. Run-
ning planner is parallel leads to redundant work done by each
node. Even though the computational budget of the system
was high, it can be more effectively used if planners do no
repeat work done by each other. So a cooperative layer be-
tween algorithms will lead to a large improvement and allow
the planners to work together to deal with more difficult cases.
Secondly, the executive uses safety as a very reactive module.
If safety was used with a larger horizon, the executive can se-
lect plans which have more tendency to be guaranteed safe in
the future. This direction takes the system from being safe to
pushing performance limits while still being safe.
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