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ABSTRACT

Autonomous rotorcrafts are required to operate in cluttered, unknown, and unstructured environments. Guaranteeing
the safety of these systems is critical for their successful deployment. Current methodologies for evaluating or ensuring
safety either do not guarantee safety or severely limit the performance of the rotorcrafts. Autonomous vehicles need to
operate at their limits to effectively complete their tasks. Safety of the vehicle needs to be ensured while respecting the
constraints imposed by sensory and dynamic limitations of the vehicle. To design a guaranteed safe rotorcraft, we have
defined safety for an autonomous rotorcraft flying in unknown environments given sensory and dynamic constraints.
We have developed an approach that ensures vehicle’s safety while pushing the limits of safe operation limits of the
vehicle. Furthermore, the presented safety definition and the presented approach are independent of the vehicle and
planning algorithm used on the rotorcraft. In this paper we present a real time algorithm to guarantee the safety of the
rotorcraft through a diverse set of emergency maneuvers. We prove that the related trajectory set diversity problem
is monotonic and sub-modular which enables to develop an efficient, bounded sub-optimal trajectory set generation
algorithm. We present safety results for an autonomous Unmanned Little Bird Helicopter flying up to speeds of 56m/s
in partially-known environments. Through months of flight testing the helicopter has been avoiding trees, performing
autonomous landing, avoiding mountains while being guaranteed safe. We also present simulation results of the

helicopter flying in the Grand Canyon, with no prior map of the environment.

INTRODUCTION

Rotorcraft are used in a wide variety of tasks including cargo
delivery, casevac (casualty evacuation), surveillance and peo-
ple transport. Therefore, the rotorcraft is operating in unstruc-
tured and partially-known environments which pose particular
challenges for the safety concept of the rotorcraft.

Safe operation of rotorcraft is essential for its applica-
tions in these environments, consequently, the problem of mo-
tion safety is becoming increasingly important in robotics re-
search. Current safety assessment approaches for autonomous
rotorcraft address the problem of safety either conservatively
using the distance necessary to slow down the rotorcraft for
hovering or do not guarantee safety using swerving distances
to determine the maximum safe velocity. These heuristics
either do not enable sufficient performance or fail to ensure
safety. In this work, we examine the problem of ensuring
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Fig. 1: Autonomous Unmanned Little Bird, coming in for
landing in snowy conditions. Helicopter used in experiments

safety for an autonomous rotorcraft while maintaining the ca-
pability to operate the vehicle at its performance limits. The
key idea is to ensure that the vehicle is always in a safe
state from which it can transition to a loiter pattern or to a



hovering flight within the known obstacle-free space. All
these states are inside the control invariant set of the rotor-
craft (Ref. 15), which is a well-known approach to ensure fea-
sibility for model predictive control applications (Ref. 3). De-
termining loiter patterns or trajectories resulting in hovering
flight in various environments is computationally challenging
especially when the rotorcraft has non-linear dynamics. Ad-
ditionally, it is required that the safety evaluation has a low
worst-case run time so that it can be used for on-line motion
planning at high speeds.

In order to ensure the on-line capability of the safety eval-
uation, the problem is decoupled in an off-line and an on-line
part. The off-line part generates a set of optimized control
invariant trajectories allowing the rotorcraft to reach a safe
state. The trajectory set is designed to maximize the probabil-
ity of finding at least one emergency maneuver in the known
unoccupied environment. The on-line part determines if the
set contains a collision-free trajectory regarding the current
state and environment of the rotorcraft. Thereby, the off-line
generated trajectory set reduces the search space for the on-
line part. This resulting safety evaluation approach serves as
a computationally tractable algorithm with bounded run time.

It can be shown, that the problem of generating such kind
of trajectory set is NP-hard (Ref. 4). We present an efficient,
bounded sub-optimal approximate solution that finds a trajec-
tory set maximizing the probability of containing at least one
safe trajectory given a prior obstacle distribution. The pro-
posed novel safety assessment approach based on the emer-
gency maneuver library is compared to other common known
approaches such as the stopping distance based safety limits,
giving the maximum safe velocity allowed and safe planning
reaction times. Therefore, real flight tests from various mis-
sions on an Unmanned Little Bird equipped with a range sen-
sor are used. The evaluation also includes results from using
the novel emergency maneuver library with a motion planner
for autonomous flying. In all evaluated scenarios the novel
safety assessment approach outperforms known common ap-
proaches by allowing for higher velocities of the rotorcraft
while guaranteeing safety for the rotorcraft at all times.

RELATED WORK

Autonomous rotorcrafts and unmanned aerial vehicles(UAVs)
have matured over the years. As these systems are devel-
oped for field applications (Refs. 1, 11, 13, 17), the need for
robust and safe autonomous UAVs is highlighted. The previ-
ous work on safety of UAVs can be broadly divided into two
paradigms. One of the paradigms is to make sure that the vehi-
cle can stop within the sensor range while applying maximum
allowed longitudinal deceleration. Scherer et al. (Ref. 17),
Goerzen et al. (Refs. 8,9) and Adolf et al. (Ref. 2) use the
stopping distance of the vehicle to limit vehicle speed, in or-
der to keep it safe. The stopping distance based velocity limit
does not exploit the complete dynamics of the vehicle, leading
to conservative velocity limits.

Another paradigm is to simplify the non-linear dynamics
of the UAVs and plan a path that is guaranteed to stay within

the known unoccupied region. Schouwenaars et al. (Ref. 18),
uses mixed integer linear programming to plan paths that stay
within the known region. Frazzoli et al. (Ref. 5) use sim-
plified dynamics in a sampling based graph, while limiting
the maximum planning time to ensure safety. The assump-
tion is that the planner can always plan an obstacle free path
if allowed to run until the maximum planning time. Enright
et al. (Ref. 11) use Dubins curves to plan paths within the
known space. These methods also suffer from not being able
to exploit the UAV’s full dynamic capabilities.

It is also important to quantify the safety of the au-
tonomous UAV systems. Mettler et al. (Ref. 14) suggested
using distance from obstacles as a metric for safety of a UAV
navigating through an obstacle field. This metric does not take
into account the sensory and dynamics limitations of the ve-
hicle and cannot comment if the vehicle is safe or not.

In the next section, we present a safety metric that con-
siders both sensory and dynamics constraints of the vehicle
to evaluate the vehicle safety. We then present an emergency
maneuver library based method that utilizes the true dynamics
model of the vehicle to find a positive control invariant set in
the known unoccupied space. We formulate the the problem
of finding this trajectory set as an NP hard path diversity op-
timization (Refs. 4,6, 10). We prove the path diversity prob-
lem to be monotonic, sub-modular and present an efficient,
bounded sub-optimal algorithm (Ref. 12) to solve for the tra-
jectory set.

DEFINING SAFETY

The safety of an autonomous system is dependent on its sen-
sory and dynamic capabilities. In a fully known environment a
rotorcraft is unsafe if it enters a state for which there is no tra-
jectory that avoids a collision, such a state is called Inevitable
Collision State (Ref. 7). In a static partially-known environ-
ment the unknown regions may contain obstacles. Therefore,
to ensure the safety of the vehicle it should be made sure that
the vehicle never enters a state for which it cannot transition to
a control invariant state within the known region. We now for-
mally define safety for robots operating in uncertain environ-
ments. Let, X(¢) be the state of the robot at time ¢ in the state
space X which is in a manifold X C R". The workspace of the
robot is defined as ¥V and the occupancy of the robot system
in the workspace at a certain state is given as A(x(z)) C W.
Let, Q(x) be the function that maps a state x of the robot to its
workspace, Q(x) C W. The known space of the workspace at
a given time ¢ is denoted as K; C W. The occupancy of the
known obstacles at time ¢ is given by O; C IC; C W. Let ®g(s)
be the search space of trajectories for a given state x, that end
in a control invariant state. Let ¢(x) be such a trajectory and
let ¢ (x,7) be the state of the vehicle at time T, along the tra-
jectory ¢(x), which is by definition rooted at state x. Then
any trajectory followed by the vehicle can be considered safe
if at all times on the trajectory there exists a trajectory ¢(x)
which completely maps to known obstacle-free space at that
time. Equation (1) presents this definition succinctly:
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Fig. 2: The helicopter is approaching an obstacle, the stopping
distance trajectory is hitting an obstacle but an emergency ma-
neuver is completely in known, obstacle free volume, making
the helicopter state safe.

Definition 1 (Motion Safety):

VI,VT,E(P(X) | A(‘P(X?T)) C (]CI\OZ) (1)

In the next the section we discuss the real-time application
of this safety definition to an autonomous helicopter. We also
discuss a time to collision cost function that augments safety.

APPROACH

It is computationally expensive to find a trajectory that sat-
isfies (1) while respecting the non-linear dynamics of a ro-
torcraft. The problem is made even more challenging by the
real-time nature of the constraints, if a trajectory is not found
within the temporal constraints, the helicopter might collide
into an obstacle. The current methods in use, lead to a very
conservative behavior, with helicopters moving well under
their dynamic and sensory capabilities. We provide a method
that stays independent of the goal directed behavior but en-
sures safety. We overcome the real-time computation chal-
lenges by calculating emergency maneuver trajectory sets off-
line, that are produced by efficiently sub-sampling the search
space of control invariant trajectories. The velocity of the ve-
hicle is then modulated such that the state of the vehicle al-
ways satisfies the definition of safety reactively. We provide
a solution that ensures the safety of the vehicle irrespective of
the planner used to guide the vehicle to the goal.

Emergency Maneuver Library

Instead of solving for dynamically feasible trajectories that
end in a control invariant state on-line, we approximate the
search space by a set of such trajectories. The trajectory set
is designed such that the probability that at least one of the
trajectories stays collision free, given a generic prior on the
obstacle configuration for a given state is maximized. We for-
mulate this problem as a NP hard optimization (Refs. 4,6) and
then prove that it is monotonic sub-modular, providing a sub-
optimality bounds for greedily solving the problem and then
provide a greedy solution.

Problem Definition

We want to find a trajectory set that maximizes the probabil-
ity that the set contains at least one collision-free trajectory.
The trajectory set should be optimized regarding all possible
workspaces of the robot. Therefore, we assume a workspace
which is populated by Ny obstacles and which positions in
the workspace are distributed by probability density functions
(pdfs). We assume that there exists the function P, (V) which
determines the probability of a volume V C W being unoccu-
pied. The volume which is sweeped by the robot following a
certain trajectory ¢ is expressed as V (A(¢)) = sweep(A(¢)),
where sweep(-) is the volume which represents all points p in
the workspace which the robot occupies along its path (Ref. 1)

sweep(A(9)) = {plpcW,3t pc A(¢(1))}.

In the rest of the paper we use the shorter notation
Vs =V(A(¢)) to denote the sweeped volume of the robot.
The probability of a path being safe is given by the probabil-
ity of the sweeped volume being unoccupied

R ((P) = Pu(V¢)
which allows to determine the probability of path ¢; or ¢»
being unoccupied

Pu(¢1U¢2) = Ri(¢1) + Ru($2) — Ru(¢1 N ¢2)

where,

PU(‘PI ﬂ%) :PU(V¢1 n V¢z)~

Using the inclusion-exclusion principle, we get the probabil-
ity of a path set ® = {¢;,¢,...,¢,} having an obstacle free
path as

n

Pu(®) ki(l)“( y

1<i) < <ig<n

Pi(¢y 0.0 g)). ()

In order to maximize the safety of the robot, a finite path set
@ must be determined maximizing the probability that at least
one path is collision-free. This is formulated as the path di-
versity problem:

Problem 1 (Path Diversity): The desired trajectory set d;
maximizes the probability of finding at least one obstacle-free
path.

Dy := argmax P, (D)

subject to || Pq|| < No 3)

where, @3 C g

Since the path diversity problem is known to be NP-hard,
we present a greedy method to optimize (3). But before that
we prove that greedily optimizing equation (3) is bounded
sub-optimal. To prove bounded sub-optimality we prove the
P, (D) is sub-modular and monotonically increasing in the car-
dinality of &.



Monotonicity Proof

In the following we show that the probability of at least one
path in a path set being collision-free is monotonically in-
creasing by the cardinality of the path set.

Proposition 1 (Monotonicity of Path Sets). Given a path set
Dy, a path ¢, and a path set g = { D4, {9, }} the probabil-
ity that the set ®p contains at least one collision-free path is
bigger or equal than for the set ®y

Py(®p) — Py(D4) > 0.

Proof. The probability of the path set ®; having at least one
obstacle-free path is given by

Pu(®p) = Ri(PaU{9a})-
Using inclusion exclusion principle lead to

Pu(q)B) :PU(¢A)+Pu(¢a)_Pu(¢Am¢a)
Pu(q)B)*Pu(q)A):Pu(¢a)*Pu(q)Am¢a)' 4
For all ¢,, P,(¢,) > 0 and max[P, (P4 N @,)] = Pu(¢,), which

is the case when all the volume covered by path ¢, is already
covered by ®4. This implies that

PU(‘Pa) _Pu((DA ﬂ%) > 0

and inserted in (4) leads to P,(®p) — Py(P4) >0 O

Prop. | proves that adding more trajectories to a path set,
cannot decrease the probability of finding an obstacle-free
path in the set. In other words, P,(®) is monotonically in-
creasing in the cardinality ®.

Sub-Modularity Proof

In order to show that a greedy algorithm for the path diversity
problem (Prop. 1) is bounded sub-optimal, we will that P, (D)
is a submodular set function. This means, that the difference
in the probability P, that a single trajectory makes when added
to the path set decreases as the size of the path set increases.

Proposition 2. Let there be a path set & C Oy C 'V, where
P, :2Y — R. Now, assume a path @,,such that ¢, C V\Y De-
fine ®ri. ={®r, 9.}, Pyi. = { Py, }. For sub-modularity

Ale]Y) < A(ell)
where, \(.) is the discrete derivative.

Proof. The discrete derivative of A(e|T") is defined as

A(e|l) = Pu(®Pre) — Pu(Pr)
= Py(®ruU¢.) — Pu(%r)
:Pu(d) )"'P ((Pe) (Cpl"m(be)_Pu(q)F)
= Pu(¢c) — Pu(Prnge)
and similarly
Ale|Y) = Pu(¢e) — Po(Pyr N @e).

Taking the difference of the discrete derivatives

Ale|l') = Ale|Y) =
= Pu(9e) — Pi(PrNge) — Pu(9e) + Pu(PrN¢e)
= Py(PrN@e) — Pu(PrNge)
= R((PrU®y/r)Nge) — Ri(PrNge)
=R ((PrN¢e) U(Py/rNee)) — Pu(Prng.)
= Py(PrN¢e) + Pu(Py/r N oe)
—Ri(PrN¢.NPyr) — Pu(Prnee)
= Po(Py;rN¢e) — Puo(PrN e NPy /)
Applying Baye’s Rule
PU(CDF NP mcI>Y/I“) =
it follows that
A(e|l) = Ale]Y) = Po(Py/r N e ) (1 = Pu(Pr|de NPy /).

With Py(Py/r N ¢e)(1 — Po(Pr|¢e NPy /1)) > O the equation
can be rewritten as

A(e|T) — Ale]Y) > 0.

Po(Pr|(¢e NPy/r))Pu(Py/r N 9e)

Greedy Algorithm

Since, Py(®) is monotonic sub-modular, the path diversity
problem (Prop. 1) can be greedily optimized while maintain-
ing a sub-optimality bound of (1 —1/e) ~ 63% (Refs. 12, 106).
We describe the greedy algorithm in Alg. 1. We start with

Algorithm 1: Greedy Optimization for a Emergency Ma-
neuver Trajectory Set

Initialize: 5 =0

while |CDG| < N¢ do
¢s = argmax Py(@cU{¢})
e /PG
P = {q)G U {¢s}}
end

an empty trajectory set and search through @ to find the tra-
jectory that maximizes P,. This trajectory is saved in ®¢ and
in the next step, the search for trajectory that maximizes P,
is conducted in ®r /D¢, and added to ®;. The process of
greedily selecting trajectories from @ /®¢ and adding them
to ®¢ is repeated till the desired number of trajectories Ny
have been added. In the next section we explain how to use
this greedily generated set to guarantee safety.

Safety Algorithm

We ensure the safety of the rotorcraft by using the emergency
maneuver library to enforce the constraint that the current and
next state of the helicopter always lies in the positive invariant
set, which does not intersect the obstacles and stays within the



Algorithm 2: Emergency Maneuver Trajectory Set Ap-
plication for Reactive Safety

Initialize: (I)Previous = CI)SI

while mission active do
CI)Ncw = {0}
for V. € ®(s;41) do
if vVt A(¢.(7)) C (K;\ O;) then
‘ (I)New == {q)NeWa {(PL}}
end
end
if ®New = {0} then
‘ execute (Pe € cI)Previous
else
‘ ¢Previous = CDNew
end

end

Fig. 3: Data from a flight test conducted on 18th December
2013 in Manassas,Virgina. a) Helicopter approaches a large
simulated wall with the emergency trajectory libraries wih no
emergency maneuver in contact with the wall. b) As the heli-
copter gets closer to the wall, the emergency maneuvers inter-
sect the wall and become invalid. Only valid maneuver are
displayed. c) More emergency maneuvers pruned away as
they come in contact with the wall d) Emergency maneuver
is executed as the future state is no longer safe.

known volume. The algorithm to ensure safety is explained in
Alg. 2.

The algorithm queries the emergency maneuver library at a
future state of the rotorcraft, and ensures it can transition to an
emergency maneuver which lies in known obstacle free space.
If the there are no such maneuvers, one of the emergency ma-
neuvers computed at the previous step (for the current state)
are executed. This operation has a maximum limit on run-time
and is guaranteed to keep the vehicle safe. The algorithm is
explained with a working example in Fig. 3.

RESULTS

We implemented the emergency maneuver trajectories to en-
sure the safety of the autonomous Unmanned Little Bird He-
licopter, equipped with a large field of view range sensor. The
dynamic constraints of the helicopter are given in Tab. 1.

Table 1: Constraints on trajectory

Constraint Velocity ||v(z)]|
> 20m/s <20 m/s
Roll [°] 2500  28.50
Roll rate [/s] 15.00 —
Heading rate [°/s] — 28.50
Longitudinal vel. [m/s] 60.00 20.00
Vertical vel. [m/s] 5.00 5.00
Longitudinal accel. [m/s?] 0.75 0.75
Vertical accel. [m/s2] 1.00 1.00
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Fig. 4: Emergency Maneuver Library for a rotorcraft at 25 nys

Given these constraints we approximate ®r(s), by five
hundred trajectories each forming a positive control invariant
set. The trajectories for this application end in a hover and can
trivially be extended to end in a loiter if desired. Each trajec-
tory slows down the helicopter using the maximum allowed
deceleration. The trajectories are generated by sampling the
roll rate and z acceleration uniformly. Once the helicopter has
made a 180° co-ordinated turn the radius of the turn is fixed
and the vertical velocity is forced to be 0m/s. We use a con-
stant resolution three dimensional grid as our representation
and assume uniform probability of occupation of each voxel.
The probability of a trajectory set containing at least one unoc-
cupied trajectory is calculated using inclusion-exclusion prin-
ciple as suggested by Branicky et. al (Ref. 4). Thirty three
trajectories out of these five hundred trajectories are selected
greedily. Fig. 4 shows the top view of a trajectory set cal-
culated at 25m/s. Given a trajectory set we can calculate the
sensor range required for different velocities. Equation 5 tells
the minimum sensor range required for a velocity, given an
emergency maneuver library.

range = min(max(¢ (9c))) )

where, ¢, € ¢ (s) § returns a vector of the euclidean distance
between starting state s and all the states in ¢,.

The best case sensor range required while using the emer-
gency maneuver library is given by (5). The worst case is the
same as the stopping distance. Hence, the emergency maneu-
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Fig. 5: Changes in Sensor Requirements. The sensor range
required for safe operation of the vehicle when using stopping
distance for safety is displayed in red, in green is the sensor
range required for safe operation of the vehicle when using
emergency maneuver library for helicopter safety.

ver library is guaranteed to provide at least as much perfor-
mance as the stopping distance safety enforcer, Fig. 5.

Fig. 6 shows the mountain avoidance case during flight
tests in Mesa, Phoenix. As the helicopter approaches the
mountain the maximum safe speed is 30m/s. While the he-
licopter is avoiding the mountain some of the emergency ma-
neuvers intersect the mountain and are unavailable for execu-
tion. Yet the safe speed does not decrease as the helicopter
still has the option of taking other emergency maneuvers at
the safe speed. This shows that the emergency maneuver li-
brary works well under partial obstruction/occlusion and al-
lows maximum time to the planner before the execution of
the emergency maneuver.

We can quantify the performance of an emergency maneu-
ver trajectory by calculating the maximum safe velocity it al-
lows the helicopter during a mission and the planning time it
allows the planner before it becomes imperative for the he-
licopter to execute the emergency maneuver library. Fig. 7
shows the maximum safe velocity and allowed planning times
for a flight test conducted in Quantico, Virginia. The red line
shows the path where the helicopter is travelling to turn to-
wards the landing zone. The orange part of the path cor-
responds to the part of the mission for which the sensor on
the helicopter focuses on the landing zone for its evaluation.
This implies, when the helicopter is travelling through the
path in orange the sensor stops looking for obstacles and he-
licopter comes increasingly close to the known/unknown vol-
ume boundary, leading to drop in maximum safe velocity and
allowed planning time. The red part of the path corresponds
to turns, it should be noticed how the maximum safe veloc-
ity according to the stopping distance decreases as the vehi-
cle turns. This happens due to reduction in effective range of

the sensor beacause of sparsity of observations in front of the
vehicle while turning. The maximum safe speed by the emer-
gency maneuver library is unaffected, as it efficiently utilizes
the known space.

Fig. 9 shows the maximum safe velocity and allowed plan-
ning times for seven flight tests, Fig. 8, conducted in Quantico,
Virginia. As can be seen in Fig. 9, the maximum safe speed
is always greater that the helicopter speed, which means the
helicopter is always safe. The stopping distance based safe
velocity limit is always well below the flying speeds at which
the missions are conducted. The use of emergency maneu-
ver library also allows higher available planning times, while
keeping the vehicle safe. Thus results in a vehicle traveling
safely at higher speeds with the option of using higher plan-
ning times for better quality solutions

Fig. 10 shows a simulated grand canyon mission. The
example, Fig. 11, emphasizes the coupling between a gradi-
ent based planner and the emergency maneuver library. The
planner optimistically assumes that the known space is empty,
and plans through an occluded canyon wall. By the time the
canyon wall is observed the local gradient based planner can-
not plan out of the wall. The emergency maneuver library
rescues the helicopter and immediately leads to a change in
the direction in which the helicopter is headed. This leads
the planner to search in a different region in the search space,
allowing the robot to follow a goal based trajectory before it
comes to the end of the emergency maneuver. This strong
coupling between the emergency maneuver library and the
planner leads to a guaranteed safe robot which can recover
from the breakdowns in the motion planning system.

CONCLUSIONS

The main contributions of this paper is to define a metric to
guaranty safety of autonomous flying vehicles operating in
unknown environments. We use the metric to design an algo-
rithm to guarantee the safety of any autonomous robot flying
in unknown environments. The algorithm is independent of
the planner guiding the vehicle to the goal. It allows the robot
to follow the planned goal directed behavior for as long as
possible. We demonstrated how the safety library may be used
to find velocity limits and sensor requirements. We have also
shown improvements in performance for systems using the
emergency maneuver library as a safety governor than using
guaranteed safe receding horizon or stopping distance based
safety governors and present results from real flight test data.
We have shown a clear benefit of using our approach over ex-
isting stopping distance based approaches.

In the future, we want to develop a closer coupling between
emergency maneuvers and planners, such that the planner pro-
actively responds to potentially unsafe situations rather than
just react to them. Another focus of our current research is to
include wind and obstacle distributions to augment the emer-
gency maneuver library further.
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Fig. 6: Mountain avoidance, flight test conducted in Mesa, AZ a) View of the mountain form the helicopter cockpit. b) Point
cloud data and planned path around the mountain. ¢) Emergency Maneuver library before the helicopter starts avoiding the
mountain. d) Emergency trajectories intersect the mountain(shown in red) and become invalid, rest of the emergency maneuver
trajectories are still valid and the helicopter stays in a safe statement.
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Fig. 9: The figures show the allowed plan time, distance to the landing zone and safe velocity relative to the executed velocity
of the helicopter. The black line shows the mean and the gray dashed line illustrates the upper and the lower bound of the
measurements of all considered flight tests.
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Fig. 11: Emergency maneuver takes the system out of an undesired configuration. (a) Since we run the experiment with a
gradient based optimizer. This lies in a local minimum between two walls of the grand canyon (b) The system follows this path
since the future point is safe (c) The future point is no longer safe and an emergency maneuver is selected (d) The optimizer is

now in a configuration where it can find a safe path again.
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Fig. 7: Safety Quantization: Flight test in Quantico, Virginia.
a) Shows an autonomous landing mission conducted in Quan-
tico, Virginia on Unmanned Little Bird. b) Shows the safe ve-
locity of the helicopter with the emergency maneuver library
during the flight tests in dashed line, the executed velocity in
solid line and the safe velocity if stopping distance is used in
dotted line. c¢) This figure shows planning time available to
the planner, before the vehicle will reach the edge of known
space and execute one of the emergency maneuvers. The plan-
ning time calculated assuming the helicopter will follow the
current planned trajectory.
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Fig. 8: Paths taken by the autonomous Unmanned Little Bird
during landing and wave-off missions conducted in Quantico,
on 26 Feb. 2014.
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