RRT*-AR: Sampling-Based Alternate Routes Planning with Applications to
Autonomous Emergency Landing of a Helicopter

Sanjiban Choudhury, Sebastian Scherer and Sanjiv Singh

Abstract— Engine malfunctions during helicopter flight poses
a large risk to pilot and crew. Without a quick and coordinated
reaction, such situations lead to a complete loss of control.
An autonomous landing system could react quicker to regain
control, however current emergency landing methods only
generate dynamically feasible trajectories without considering
obstacles. We address the problem of autonomously landing
a helicopter while considering a realistic context: multiple
potential landing zones, geographical terrain, sensor limitations
and pilot contextual knowledge. We designed a planning system
to generate alternate routes (AR) that respect these factors
till touchdown exploiting the human-in-loop to make a choice.
This paper presents an algorithm, RRT*-AR, building upon
the optimal sampling-based algorithm RRT* to generate AR in
realtime and examines its performance for simulated failures
occurring in mountainous terrain, while maintaining optimality
guarantees. After over 4500 trials, RRT*-AR outperformed
RRT* by providing the human 280% more options 67 % faster
on average. As a result, it provides a much wider safety margin
for unaccounted disturbances, and a more secure environment
for a pilot. Using AR, the focus can now shift on delivering
safety guarantees and handling uncertainties in these situations.

I. INTRODUCTION

Helicopters are in use for a variety of missions such
as continuous surveillance, delivering goods in constrained
environments and emergency rescue operations. Like all
aerial vehicles, failures at any level can result in serious
consequences finally leading to a crash. The loss of torque
from the main rotor is one such common failure, occurring
due to mechanical issues or fuel deficiency.

In such situations the pilot executes a maneuver, known as
autorotation, to land safely. The rotor drag is overcome by
the flow of air through the blades, allowing the gravitational
potential energy of the helicopter to be transferred to the
rotor. The pilot controls the helicopter in a glide path and
at the end trades off the energy in a move known as flare,
to slow down and come to a safe touchdown. However, to
do both precise control as well as choose a minimum risk
landing zone, becomes a very difficult task for a human. Sim-
ilarly, a single optimum path computed by an autonomous
system cannot always reflect human preference or be quickly
modified when obstacles are detected.

Research on this topic mainly focuses on the dynamical
solution to autorotation. Optimal trajectories minimizing
touchdown speed have been derived by Johnson [1] and Lee
et al. [2], used to calculate control inputs by Aponso et al.

S. Choudhury, S. Scherer and S. Singh are with The Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A., {san-
jiban,basti,ssingh }@cmu.edu

Fig. 1. Sample route set for safe landing after engine failure. This example
shows a set of potential engine-out trajectories for a Bell 206 using the
proposed RRT*#-AR algorithm. The paths were calculated from a registered
dataset from prior elevation maps, pointcloud, and image data collected
onboard the aircraft.

[3], and as pilot assistance during emergencies by Aponso et
al. [4] and Bachelder et al. [5]. The dynamics of flare have
been a special focus for determining its feasibility by Tierney
[6] as well as in imitation learning by Abbeel et al. [7] and
model predictive control by Dalamagkidis et al. [8]. Recently,
a complete feasible solution from glide to touchdown has
been demonstrated (Yomchinda et al.[9]). However, these
approaches have not focussed on the issues of being real
time, dealing with obstacles, limited sensor range and the
effects of having a human in the loop. In this paper, we
design a planning system that computes alternate routes (AR)
that addresses these issues thus maximizing the possibilities
of a safe landing.

In summary, the main contributions are

« a definition of an algorithm to provide alternate routes
as a solution to an optimization problem,

« acceleration of the algorithm by leveraging allowable
variation in optimum cost and by leveraging differential
constraints of the vehicle and

« a multi-objective planning system to autonomously land
a vehicle after engine failure.

In Section II we formulate the optimization problem and
define AR. In Section III, we present the RRT*-AR algorithm
as components building upon the RRT* algorithm to generate
AR. In Section IV we present a system architecture using a
multiple objective planning method to control the helicopter
through all stages post-failure. In Section V we present

results on both quality and speed of AR for simulations in
mountainous regions and conclude in Section VI summariz-
ing the improvements.

II. PROBLEM FORMULATION

We express the planning problem as an optimization
minimizing a risk, and solve for AR. This can be expressed
as

find : o; = (x(t),u(t)) Vi=1---m
minimize : J(x(t),u(x,t),t5)
constraints : X = f(x(t),u(x,1),1)

x(0) =xo,x(t7) € Xz M

8(x(),u(r),tr) <0
o, X"

where x(¢) is the state of the vehicle and u(z) the action, x
is the state at which engine failure occurs, X;z is the set of
allowable landing zones, J is the cost function representing
the desire to minimize risk, g is the set of environmental and
vehicle constraints, o; is a path and X* is the set of AR.

Abraham et al. [10] describe AR as a set satisfying the
following conditions:

1) J(o;n{opU---Uo;_1}) < ¥J|lo*|| (Limited Sharing

of new alternative and previous alternative paths)

2) o; is T-locally optimal for T = aJ(0*) (Local Opti-

mality)

3) J(o;) is (14+€)J(o*) (Uniform Bound Stretch)

ITI. RRT*-AR

There has been a significant amount of research on the
planning problem of optimizing a cost function under differ-
ential constraints summarized by LaValle[11]. A significant
contribution in this area has been the RRT* algorithm pro-
posed by Karaman et al.[12] unifying the speed of sampling
based planners with asymptotic optimality guarantees. RRT*
can plan across large spaces by producing a feasible solution
quickly and improving it with time. A state is sampled from
the configuration space and neigbours within a ball of radius
Tmear are selected the parent which would result in least cost
from root is selected. Then attempts to “rewire” the nodes
in X,., using this state as a parent is done. To solve the
optimization problem presented, the RRT* algorithm must
be able to generate AR in real time. To achieve this, we
propose a way to partially trade off exploitation and precision
in exchange for exploration and speed. We call this the RRT*-
Accelerated Alternate Routes with Replanning (RRT*-AR).

A. Alternate Routes

Solving the optimization problem proposed in Section II,
subject to the constraints in the definition of AR, is not trivial.
A simple approach would be to apply the RRT* algorithm on
the multiple goal region problem. At the end of the planning
cycle, we obtain multiple leaf vertices corresponding to the
set of candidate solutions. A subset of these candidates,
which satisfy the definition of AR, is selected and returned.
For the algorithm to be effective, we require two main

~
_ 7 Penalize
extension

parent

(a) (b)

Fig. 2. (a) Presence of a sibling vertex (x.;4) in the equivalence class
(shaded area of radius d,,) penalizes Xpqens for contesting to be parent
of Xsampie (b) Applying equivalence class creates more variation in the
otherwise dense RRT* tree, creating 5 routes instead of just one.

Algorithm 1 (X, Omin) = ChooseParentAlternate(Xnear, Xrand , T'nears Cip)
Input: X, = set of near vertices, X,4,s = a sampled point, r,.qr = radius
of near neighbours, ¢;, = lower bound cost

Output: x,,;, = parent resulting in lowest cost, Oy, = trajectory from parent

1 Cpin <, Xmin < NULL , 0,,in <+ NULL
2 for xyeqr € Xpear do

3 o «Steer(xuear, Xrand)> deg <MiN(Deg, Pruear)

4 ¢ +Cost(x,eqr)+Cost(o)

5 if Jxgy sit ngq —x,,,,,dH < dey and Xpeqr =Parent(x.,) then
6 cc+Ecy

7 if ¢ < cpin then

8 Cmin <C

9 Xmin <= Xnear s Omin <= O

0

10 return (X, Omin)

Algorithm 2 G = RewireAlternate((V,E), Xuear Xrand Tnear>Cip)

Input: V = vertices, E = edges, Xpeqr = set of near vertices, X,q,q = a
sampled point, 7.4 = radius of near neighbours, ¢;, = lower bound cost
Output: G is the tree returned

1 for Xnear € Xnear dO

2 o <Steer(Xrund:Xnear)> deg <MiN(Deg, Prnear)
3 ¢ «Cost(x,4mqa)+Cost(o)

4 if Ireg 8.t ||Yeqg — Xnear|| < deg and x,4,q =Parent(x,q) then
5 cc+Ecy

6 if ¢ < Cost(x,eqr) then

7 if CollisionFree(o) then

8 xparent <*Parent(xnear)

9 E<+E \ {xparent.xnear}

10 E«+~EU {xrand,xnear}

11 return G = (V,E)

characteristics. Firstly, the solution set must have enough
variation to ensure that it contains a set of potential AR.
Secondly, the process of selecting the final set should be
computationally cheap.

When the RRT* samples a point, it tends to join it with its
best parent. This implies points nearby to each other would
all have the same parent. This exploitation property tends to
create dense trees, with the density being centred around the
optimal path. For alternate routes to exist, nearby vertices
should consider alternate parents which have similar cost to
the best possible parent. For example, in a 2D case, this
allows the tree to have a segment in every homotopy class.
One such way would be, if the best parent to a vertex already

has children nearby, the second best parent gets a chance. We
formally try to capture this in Algorithm 1 and 2.

We first define an equivalence class of vertices which
are within d,, distance of each other. Formally, samples x;
and x; are said to belong to the same equivalence class if
[lx1 —x2|| < deg. With the assumption of a continuous cost
function, vertices belonging to an equivalence class have a
bounded variation in the cost it takes to reach them from
the root. Given two equivalent vertices v and vy, it is likely
that both will have the same parent v, and in that case the
existence of both these vertices will be redundant. However,
when v, is being created, if we add a phantom cost to the
edge joining v, and v, we allow for v; to search for another
parent. This phantom cost then corresponds to how much of
exploration we allow for discovery of other routes. If Xpqrens
is the parent of x| then it is penalized by a phantom cost ¢y,
(the maximum cost variation allowed among alternate routes)
while being evaluated as a parent of x;. This is shown in Fig
2(a) where a penalization is applied due to equivalence class
presence.

The intuition behind this approach is that the RRT* tree
looks a lot more like a graph, without carrying the burden of
a graph like representation as we can see in Fig 2(b). This
algorithm is asymptotically optimal, by including the term p
and ensuring:

2 1 u(Xfree) 1
YRRT*AR 2> (l_p)((H-d)(Z, N, p<1l (2

where p is the ratio of d,, to the radius of near neighbours
Tn, d is the dimension of the space, Xy is the volume of
free space and {; is the volume of an unit d-dimensional
ball. The proof of this result can be found in Choudhury et
al.[13].

Finding a combination of m AR from a set of M candidate
solutions requires considering upto (%) combinations. For
efficiency purposes, we settle for the greedy suboptimal
solution of finding the first m lowest cost trajectories which
satisfy the AR constraints. For every candidate in the cost
sorted list of trajectories, a similarity metric is computed
with respect to a running buffer set of accepted AR, and if
it satisfies all constraints, it is appended to buffer set.

B. Accelerated Planning

Our key emphasis has been on generating AR in real
time. To achieve this speed up we introduce two algorithms
- Algorithm 3 uses cost approximation and Algorithm 4
exploits the unique reachability volume of the system.

Algorithm 3 demonstrates how we trade off precision in
cost for a boost in speed. A bottleneck for speed in RRT* is
when it makes a connection between a parent and a child, it
ranks the parents by evaluating the true cost. But for the
best parent to get the lowest rank, the cost need not be
true, it just needs to have the same order. So making an
approximation on evaluation can boost iteration speed many
times but there is a probability of being wrong, i.e, choosing
the wrong parent. For asymptotic optimality, this probability
p(n) has to be bounded [13] as follows:

Algorithm 3 (Xin, Omin) = ChooseParentApprox(Xuear, Xrand, Cip)

Input: X, = set of near vertices, x,4,s = a sampled point, ¢;, = lower
bound cost

Qutput: x,,;, = parent resulting in lowest cost, Gy, = trajectory from parent

1 pSet < {} , Xmin < NULL , Gpin < NULL

2 for Xnear € Xn@ar do

3 coa < SteerCostApproxOptim (xpear, Xrana) +COSt(Xnear)
4 if copur < (1 + E)Clb then

5 pSet — pSet U {cevalaxnear}

6 pSet <sort(pSet)

7 for xpurem € pSet do

8 o «Steer(xparent, Xrand)

9 if CollisionFree(c) then

10 Cmin <—C0St(Xnear)+CoOSt(0)
1 Xmin <= Xnear > Omin <= O
12 break

13 return (Xmiy, Omin)

Algorithm 4 G = ConstrainedRRT*((V,E),N)

Input: V = vertices, E = edges, N=number of iterations
Output: G is the tree returned

1 fori=1,...,N do
2 Xpgq <Sample
argmin r

xeR™ reR

| Ball(x,r) N Zpack (Xrand)
8 (xprp) &

2 Ball (xram]a rnear) N pack (xrand)

4 Xuearp < Near(V,xp,rp)
5 (Xmin, Omin) <—ChooseParent(X,carp,Xrand)
6 if CollisionFree(o,,i,) then
7 V <« VU{Xrana}
8 E<—EU {(xmin,xmnd)}

argmin r I Bal[(x7 }") n Z"frzmt (xrand) }
9 (xe, rg) < xeR™reR

2 Ball(Xrand, Tnear) NV X front (Xrand)

10 Xneare <+ Near(V,x.,r.)
12 (V,E) <Rewire((V,E), Xnearcs Xrand)
13 return G = (V,E)

p(n) <n UHVD - yp>pm 3)
where d is the dimension of the space and M is a very
large integer.

Algorithm 3 shows how cost approximation while choos-
ing a parent for a sample has to be optimistic. We note that
an optimistic cost can often return finite cost for segments
passing through obstacles, and in such cases we move to the
second best parent and so on. On the other hand, the rewiring
process considers the pessimistic cost approximation.

Secondly, we also address the case of a vehicle with
dynamic constraints represented as reachability volume, the
volume that it can reach being X, and the volume
that can reach in X,,. We consider the special case of
L front (X) N Zpack (x) = {x}, i.e., the vehicle cannot loop. In
such a case, symmetric nearest neighbor lookups in RRT*
will neither have a lot of parents nor children. We solve this
issue by breaking symmetry in this lookup and creating two
smaller lookups - one for finding parents and one for chil-
dren. Algorithm 6 shows this, and the radius of the lookup
ensures asymptotic optimality by definition. Practically, the
speedup will not work in all cases unless 7 is adjusted. (See
Choudhury et al. for details[13])

C. Reuse Tree

To retain the effort of creating the search tree and cost
evaluation of trajectory segments across iterations, we im-
plement a method to reuse the tree by finding a way to
“latch” the vehicle state onto an existent tree. In the first
step, the cost of all vertex from root is made invalid (-1),
even though the cost from their parents is retained. Next,
the current state of the vehicle is taken and a set of near
vertices from the tree is obtained. This near vertices have
to be sorted by their depth in the existing tree. The current
state is now rewired to the tree. Since all vertices have cost
from root as -1 before rewiring and the current state has no
parent, after rewiring it becomes the root of the valid tree. By
depth sorting the near vertices, the current state attempts to
rewire by giving vertices with lower depth more priority. This
is because on rewiring to these vertices first, their subtrees
are also made valid, making the rewiring process efficient.
The most common example of reusing a tree would be that
the current state would rewire to most of the children of the
previous root. This would result in most of the tree remaining
static, while vertices near the root would change parents. The
next step involves executing the RRT* in the usual way and
returning the new tree.

IV. EMERGENCY LANDING OF A HELICOPTER

In Section III, we described the general planning algo-
rithm. We now present the entire architecture to control and
land a helicopter which will use RRT*-AR as one of its key
components. We start by framing the planning problem and
then propose our approach to solve it.

A. Planning Problem

The planning problem discussed in Section II is now
formulated for landing a helicopter after engine failure. We
use the autorotation model from Tierney [6]. To provide an
idea of the time constraints, the average time for a helicopter
to descend from 600 m after engine failure is 60 seconds.
During this time safe plans spanning distances of over 2.4
km must be computed. For a safe touchdown, the terminal
state of the helicopter has to be on the ground at rest. A
continuous landing zone (LZ) feasibility/risk prior is given
to the planner to always encourage a path to ground.

B. Approach

Solving the full optimal control problem is computation-
ally expensive and not always numerically stable. Instead,
we decompose it into various sub-problems, link them via a
state machine and frame it as a multiple objective planning
problem (Scherer et al. [14]). This is motivated primarily by
the assumption that failure occurs at high altitudes, which
results in the planning problem during the flare phase being
different from the glide phase in terms of scope, precision
and difficulty.

The state machine of objectives are

o Entry glide: After engine failure, the helicopter tran-

sitions to a trim state to arrest rotor energy loss. A
fixed time, typically around 5 seconds, is assigned to

this state, during which it continuously provides a set
of glide paths. The pilot browses through the paths and
selects one.

o Glide: The vehicle attempts to follow the command
trajectory, while continuing to compute AR. The pilot or
the system can switch paths any time during the phase.

o Entry flare: At a height above the LZ, the helicopter
transitions to a safe flare initiation state.

« Flare: The vehicle engages in a precise move to use its
rotor energy to come to a halt and touchdown.

Among these sub-problems, computing optimal glide paths is
an interesting problem from a pure planning perspective. The
solution space of glide paths that satisfy constraints is very
large as the plans originate at altitudes well above terrain.
Our approach is to translate these constraints into costs,
thus searching for solutions of good quality. We adopt the
unconstrained planning problem approach from Scherer et
al. [14] which only imposes the condition that cost incurred
must be finite. The cost function used in all subproblems are
summarized below.

o Jstare(Xstare) : Weighted distance from a desired Xqre.

e Jops : Cost decays with squared distance from occupied
cells in the evidence grid. The grid uses terrain infor-
mation as a prior and updates from sensor data.

e Jeury The curvature cost increases exponentially as
curvature reaches constraint limits. This ensures paths
do not demand large accelerations.

e Jizq ¢ (X,Y) distance from predicted LZ. This attempts
to maximize the sensor’s viewing time of the LZ so a
cluttered LZ can be evaluated before hand.

e Jypm : Deviation from 100% RPM. This retains control
authority incase unmapped obstacles appear.

¢ J;; : Depending on potential risk of LZ (slope or clutter),
a terminal cost is assigned.

o J, : Energy expended by control actions

The planning problem structure is represented as:

minimize : J; = [y e(x(t))dt +(x(t))
constraints . x= f(x(t),u(x,t,P.),t)
x(0) =xo 4)

where i = 1,2,3,4 is the index of the states in the state
machine. The approach is to generate an initial command
guess P, perform trajectory optimization based on predicted
result, and a low-level tracking controller tracks the guess.
Table I describe the problem parameters where X, is a valid
flare initiation state, x;; is a touchdown state and Xy, is a
set of states where the vehicle is not in collision. The initial
guesses are defined as follows:

1) Entry glide and Entry Flare: Both these states have
a simple straight line guess to the desired trim state. The
trim tracking controller has to optimize Jyare (Xtrim) + Jus
thus an LQR controller is used while trajectory optimization
optimizes J,p;.

TABLE I
PLANNING PROBLEM DEFINITIONS

i State Cost Function (J;) Xend.i gi
1 Entry glide Jobs + Jstate (xlrim) +Ju - -
2 Glide Jobs FJeurv +J1zd X]{r -
+J, rpm + le
3 Entry flare Jobs + Jstate (xflareinit) +Ju - -
4 Flare Jstute (xtd) +]u Xtd X e Xsafe

2) Glide: The cost function reflects the desire to minimize
risk. Ensuring the pilot has options and there exists feasible
backup trajectories, make AR very critical. The RRT*-AR is
used to generate initial guesses for this state. In addition to its
original definitions, it is given some special attributes. Firstly,
the sampling is restricted to the reachability volume Xy,
of the vehicle, and biased towards the LZ with a distribution
proportional to J;,. Secondly, the command plan is generated
in a 3D task space for this 13 degree of freedom system. A
variable arc primitive is used to cover a more general spectra
of solutions.

3) Flare: This planning problem poses difficulties in cre-
ating real-time solutions. It is not trivial to adapt aforemen-
tioned real-time flare controllers to avoid obstacles. The state
and end constraints made the optimal control problem hard
to solve, and the extreme non-linear nature of the dynamics
made it difficult to design a very high fidelity tracking
controller. Thus the problem was solved by constructing
an “end game” trajectory library [15] offline by solving
the problem for a large number of initial conditions. While
running online, the trajectory library was invoked, collision
trajectories pruned out, and the command corresponding to
nearest neighbor in this library executed.

V. RESULTS

To test the system in a realistic setting we setup an experi-
ment in simulation with a UH-60L Black Hawk experiencing
failures at different locations over the mountains of San
Juan National Forest, Colorado (37° 40’ 28.00”,-107° 34’
4.5264”) at an average height of 900m AGL. Grid obstacle
cost in this case was purely derived from the digital elevation
map. Fig 3 shows a typical glide planning scenario over a
land which has 2 minimas in landing cost. The planners were
given the time period of entry glide state, i.e. 5 seconds.

RRT* converges to having 2 routes, 1 going to each of the
peaks. RRT*-AR comes up with 6 routes (the total number
asked for) which include the solutions arrived at by RRT*.
These solutions are interesting because they are placed on
either side of mountain peaks, have different amounts of LZ
visibility and curvature and thus provide a comprehensive set
to the pilot. The results in Table II, for 791 runs of 5s each
with AR parameters (€ =4,y=0.7,d,, = 500,d,, = 500,p =
0.2) show that RRT*-AR comes up with a much higher
number of routes (2.82 times) while having an allowable
best cost variation (18%). The RRT* shows the typical
aggressively optimal nature with a sharp distribution in AR
frequency and cost. RRT*-AR has a smoother distribution of
cost and frequency.

(b)

Fig. 3. AR for a failure over the mountains. (a) RRT* comes up with 2
routes - each going to a maximal feasible LZ (b) RRT*-AR coming with 6
routes including the routes of RRT* - each path having its own merit.

TABLE II
COMPARISON BETWEEN RRT* AND RRT*-AR

RRT* RRT*-AR
Cost (var) Frequency Cost (var) Frequency
Best 1.0(£0.0) 100% 1.18(£0.25) 100%
Pathl | 1.89(£1.21) 87.36% 1.51(£0.47) 99.75%
Path2 | 2.98(£1.96) 57.3% 2.07(+1.07) 95.95%
Path3 | 3.05(£0.97) 15.42% 2.92(+1.77) 85.71%
Path4 | 3.65(£1.39) 4.05% 3.77(£2.25) 66.12%
Path5 | 3.87(£0.65) 1.14% 4.51(+2.83) 43.74%
TABLE III

COST COMPARISONS BETWEEN RRT* AND AFTER SPEEDUPS

Cost Cost Time to

7=0.6s 7=1.0s cost = 1.1
RRT* 1.97(£1.28) | 1.60(+0.86) | 4.40(£1.28)
Approx 1.65(+1.03) | 1.37(+0.61) | 2.62(x1.07)
Constrained | 1.63(+£0.84) | 1.38(+0.57) | 2.89(+0.77)

The acceleration due to both improvements, for 3318
runs till 1000 vertex additions, shown in Table III show
the Approximation and Constraint based approaches achieve
similar rates of cost reduction (15.4% and 17.3%). Fig 4
shows that the key performance enhancement is because
RRT*-AR produces an acceptable path (0.29s and 0.40s)
faster than RRT* (0.54s), and maintains a similar rate of
cost reduction initially. As per definition, both approaches
slow down with increasing vertices and approach the original
RRT*. Fig 5 shows that the variance of RRT*-AR reduces
sharply before flattening out while RRT* variance goes to
zero. This is because RRT*-AR adds vertex to a tree much
more rapidly than RRT* at the expense of the approximation
error.

The reuse of trees made the system more reliable as shown
in Fig 6 after 450 runs. It quickly converts most paths to
near optimal while creating a new tree every time would
take several iterations till arriving at the right answer. The
histogram’s decay shape shows how effective a method is,
which in case of reusing peaks at the optimal while for
planning afresh is more level. Fig 7 shows the testing of the
system in a virtual reality platform with the pilot interface.
A video of demonstration of the system can be found in
http://y2u.be/AwRhaQtpVxU .

241
---RRT*

— Approx
Constrained

N
N
T

Ratio of cost to best RRT*

4 5
Time (sec)

Fig. 4. Accelerated planner costs decay rapidly in the beginning indicating
fast exploration of search space and an increased rate of vertex addition.

---RRT*
1.6/ —Approx
- Constrained

0.8F

Variance of normalized cost

Fig. 5. RRT*-AR rapidly reduces variance before flattening out. This
rapidness is credited to rate of vertex addition. The flattening out is due
to the approximation error that has been accumulated. RRT* continues to
decrease variance to zero.

200 :
" BReuse Tree
[0}

2 150l BFresh Plan
]

(6]

©

© 100

(0]

£

S 50

pd

1 15 2 25 3 385 4 45 5 55 6
Ratio of cost to best cost

Fig. 6. If the search tree is reused across iterations, more paths are closer
to optimal than if a new tree is created at every iteration.

Reachable

A { ey cuoe.
d fmew T
Lz Rotor Flight
e ‘?‘r { Energy _ Status

(

(a) (b)

Fig. 7. Example of the planner in action. (a) Engine failure occurs over a
realistic terrain (b) GUI information provided to the pilot

[
=

r

VI. CONCLUSION

We presented an algorithm for generating alternate routes
in real-time. In the context of emergency landing of he-
licopters, the planning system makes a significant stride
forward - it can compute safe paths in real time, deal with
unmodelled obstacles or cluttered landing zones and takes a
human decision into account. The RRT*-AR algorithm is ef-
fective in maximizing the likelihood of safe alternative routes
by returning 2.8 times the expected number of AR as does
RRT* with speedups of 67%. With the local optimality and
spatial separation features of AR, the RRT*-AR increases the
probability of finding a risk free path if the sensor detects
an obstacle on descent or if the pilot wishes to over-ride the
current path that is being followed.

In future work, we intend to explore the benefits AR
gives towards system robustness. For example, ARs can be
computed ahead of time at regions of high risk. We also
intend to address issues such as safety metrics of AR for a
more comprehensive landing system.

REFERENCES

[1] W. Johnson, “Helicopter optimal descent and landing after power loss,”
1977.

[2] A. Lee, A. Bryson, and W. Hindson, “Optimal landing of a helicopter
in autorotation,” 1986.

[3] B. Aponso, D. Lee, and E. Bachelder, “Evaluation of a rotorcraft
autorotation training display on a commercial flight training device,”
Journal of the American Helicopter Society, vol. 52, no. 2, pp. 123—
133, 2007.

[4] B. Aponso, E. Bachelder, and D. Lee, “Automated autorotation for un-

manned rotorcraft recovery,” in AHS international specialists meeting

on unmanned rotorcraft, 2005.

E. Bachelder and L. Bimal, “Using optimal control for rotorcraft

autorotation training,” in Proceedings of the American Helicopter

Society 59th Annual Forum, Phoenix, Ariz, 2003.

S. Tierney, “Autorotation path planning using backwards reachable

set and optimal control,” Master’s thesis, The Pennsylvania State

University, 2010.

P. Abbeel, A. Coates, T. Hunter, and A. Ng, “Autonomous autorotation

of an rc helicopter,” in Experimental Robotics. Springer, 2009, pp.

385-394.

K. Dalamagkidis, K. Valavanis, and L. Piegl, “Autonomous autorota-

tion of unmanned rotorcraft using nonlinear model predictive control,”

in Selected papers from the 2nd International Symposium on UAVs,

Reno, Nevada, USA June 8-10, 2009. Springer, 2010, pp. 351-369.

[9] T. Yomchinda, J. Horn, and J. Langelaan, “Autonomous control and
path planning for autorotation of unmanned helicopters,” in Proceed-
ings of the American Helicopter Society 68th Annual Forum, Fort
Worth, Texas, May 1-3, 2011.

[10] 1. Abraham, D. Delling, A. Goldberg, and R. Werneck, “Alternative
routes in road networks,” Experimental Algorithms, pp. 23-34, 2010.

[11] S. LaValle, Planning algorithms. Cambridge Univ Press, 2006.

[12] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proc. Robotics: Science and Systems,
2010.

[13] S. Choudhury, S. Scherer, and S. Singh, “Realtime alternate routes
planning:the rrt*-ar algorithm,” Robotics Institute, Pittsburgh, PA,
Tech. Rep. CMU-RI-TR-12-27, December 2012.

[14] S. Scherer and S. Singh, “Multiple-objective motion planning for
unmanned aerial vehicles,” in Intelligent Robots and Systems (IROS),
2011 IEEE/RSJ International Conference on. IEEE, 2011, pp. 2207—
2214.

[15] M. Stolle and C. Atkeson, “Policies based on trajectory libraries,” in
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on. 1EEE, 2006, pp. 3344-3349.

[5

—

[6

=

[7

—

[8

=

