
Autonomous Emergency Landing of a Helicopter: Motion Planning with Hard
Time-Constraints

Sanjiban Choudhury
sanjiban@cmu.edu

Graduate Research Assistant
Carnegie Mellon University

Pittsburgh, PA

Sebastian Scherer
basti@cmu.edu

Systems Scientist
Carnegie Mellon University

Pittsburgh, PA

Sanjiv Singh
ssingh@cmu.edu

Research Professor
Carnegie Mellon University

Pittsburgh, PA

ABSTRACT
Engine malfunctions during helicopter flight poses a large risk to pilot and crew. Without a quick and coordinated reac-
tion, such situations lead to a complete loss of control. An autonomous landing system is capable of reacting quickly
to regain control, however current emergency landing methods focus only on the offline generation of dynamically
feasible trajectories while ignoring the more severe constraints faced while autonomously landing a real helicopter
during an unplanned engine failure. We address the problem of autonomously landing a helicopter while considering
a realistic context: hard time-constraints, challenging terrain, sensor limitations and availability of pilot contextual
knowledge. We designed a planning system that deals with all these factors by being able to compute alternate routes
(AR) in a rapid fashion. This paper presents an algorithm, RRT*-AR, building upon the optimal sampling-based al-
gorithm RRT* to generate AR in realtime while maintaining optimality guarantees and examines its performance for
simulated failures occurring in mountainous terrain. After over 4500 trials, RRT*-AR outperformed RRT* by provid-
ing the human 280% more options 67% faster on average. As a result, it provides a much wider safety margin for
unaccounted disturbances, and a more secure environment for a pilot.

INTRODUCTION

Helicopters are in use for a variety of missions such as con-
tinuous surveillance, delivering goods in constrained environ-
ments and emergency rescue operations. Like all aerial ve-
hicles, failures at any level can result in serious consequences
finally leading to a crash. The loss of torque from the main ro-
tor is one such common failure, occurring due to mechanical
issues or fuel deficiency.

In such situations the pilot has to quickly execute a maneu-
ver, known as autorotation, to land safely. For an autonomous
system, precise control as well as choose a minimum risk
landing zone within these time constraints becomes a very dif-
ficult task . As the vehicle descends at a fixed rate, the size of
reachable landing zone exponentially decays. Since the vehi-
cle cannot slow down to hover and is limited to a finite per-
ception range, the planning time directly limits the number of
options available to avoid an unmapped obstacle.

Research on this topic mainly focuses on the dynamical so-
lution to autorotation. Optimal trajectories minimizing touch-
down speed have been derived by Johnson (Ref. 1) and Lee
et al. (Ref. 2), used to calculate control inputs by Aponso
et al. (Ref. 3), and as pilot assistance during emergencies by
Aponso et al. (Ref. 4) and Bachelder et al. (Ref. 5). The dy-
namics of flare have been a special focus for determining its

Presented at the AHS 69th Annual Forum, Phoenix, Arizona,
May 21–23, 2013. Copyright c© 2013 by the American Heli-
copter Society International, Inc. All rights reserved.

feasibility by Tierney (Ref. 6) as well as in imitation learning
by Abbeel et al. (Ref. 7) and model predictive control by Dala-
magkidis et al. (Ref. 8). Recently, a complete feasible solution
from glide to touchdown has been demonstrated (Yomchinda
et al. (Ref. 9)). However, these approaches have not focussed
on the issues of being real time in a planning problem with
hard time-constraints, dealing with obstacles, limited sensor
range and the effects of having a human in the loop. In this
paper, we design a planning system that computes alternate
routes (AR) as shown in Fig. 2 to address these issues thus
maximizing the possibilities of a safe landing.

In summary, the main contributions are

• derivation of the need for alternate routes to increase the
safety of the system,

• an algorithm to rapidly compute alternate routes and

• a multi-objective planning system to autonomously land
a vehicle after engine failure.

PROBLEM FRAMEWORK

In this section, we take a look at the emergency landing plan-
ning problem that we wish to solve and identify the key fea-
tures that make it challenging.

In Fig. 2, the different stages of emergency landing after
engine failure at a nominal height is shown. Within 4 seconds
of engine failure, the helicopter establishes autorotation - a
trim state where the combination of forward and downward

1

Fig. 1. Sample route set for safe landing after engine fail-
ure. This example shows a set of potential engine-out tra-
jectories for a Bell 206 using the proposed RRT*-AR algo-
rithm. The paths were calculated from a registered dataset
from prior elevation maps, pointcloud, and image data
collected onboard the aircraft.

Engine Fails

Autorotation Established

Flare Initiated

Touchdown

2000 ft

1950 ft

150 ft

1950 feet

0 ft

GLIDE

t = 0s

t = 4s

t = 60s

t = 70s

Distance travelled = 2500m

Avoid hills, no fly zones,
radio towers

AND
reach LZ of small slope, no

rocks, trees or debris

700m laser

Fig. 2. Hard time-constraints of the emergency landing
planning problem. On one hand, the vehicle descends
almost 2000 feet in 60 seconds while flying over difficult
terrain and aiming for a feasible landing zone (LZ). On
the other hand, the perception limitations allow almost no
time for re-planning in case of debris on the LZ or un-
mapped terrain obstacles.

velocity ensures that rotor energy is preserved. The helicopter
glides to avoid terrain and man-made obstacles while aiming
for a feasible landing zone. On reaching a certain height above
the landing zone, the helicopter flares - it trades off the energy
stored in the rotor to come to a smooth touchdown. The entire
procedure lasts roughly 70 seconds.

The problem we wish to solve is to have a framework for
an autonomous system that safely lands a helicopter after en-
gine failure. We specifically target the glide stage of this pro-
cedure - the stage where the vehicle covers the most ground
and spends the most time in. The following factors make the
planning for this stage challenging:

Hard Time-Constraints

Autorotation landing is a very fast, one-shot process. Engine
failure at a height of 2000 feet would leave around 60 sec-
onds for the vehicle to touchdown. The vehicle does not have
an option to hover as it waits for a plan to guide it to safety.
Within these time constraints, it has to plan trajectories that
are over 3 km long. The terrain can be arbitrarily complex
with only patches of feasible landing areas.

In such situations, the planner needs to be able to find a
path quickly and improve it as rapidly as possible. Since the
feasible landing area of the helicopter reduces exponentially
with time, it is important to guide the vehicle in the general
direction of the optimum while continuing to refine the path.
Information has to be retained and re-used across planning cy-
cles, which is made possible by having a “life-long planner”.

Limited Perception

The perception system of the vehicle is a 3-D scanning
LADAR with a range of up to 700 metres. Even though it is
possible to acquire a detailed terrain and landing zone map a
priori, a perception system is required for detecting unmapped
obstacles and clutter on landing zones. Helicopters will have
17 seconds to clear an unmapped obstacle, and coupled with
the dynamical constraints of this phase and the sensing period,
the reaction time is less than 1.25 seconds.

In such cases, trajectories should make the fullest use of
the perception system by flying over the landing zone before
coming in to land such that any clutter in the landing zone can
be detected well before-hand. When unmapped obstacles are
detected, the planner must be able to switch to another safe
plan instantaneously. This requires the maintenance of back
up or alternative plans. The nature of the backups should be
such that they are good candidates when the optimum is no
longer safe.

Pilot Experience

The pilot can offer valuable experience on which trajectories
are inherently safer to follow. Moreover, he/she is aware of
the contextual information about which places are safe to fly
over and thus is in a better position to make a choice. Given

2

the severe time limitations, this mode of human computer in-
teraction must be carefully designed. The options given to the
pilot must be limited, distinct and helpful and contain candi-
dates from interesting solution classes.

In summary, the desired attributes are

• A backup set of alternative routes,

• A limited set of route options which are easy to choose
from, thus being helpful for pilots and

• A rapid, “life-long" planner.

ALTERNATE ROUTES AND REALTIME
PLANNING

In the previous section, we introduced the key features of the
emergency landing planning problem and how they motivate
the nature of the planning approach. In this section, we advo-
cate the use of alternate routes (AR) - a set of spatially differ-
ent, locally optimal paths, as a powerful tool to address several
of the afore-mentioned issues.

What is the relevance of Alternate Routes?

As we previously concluded, computing a set of alternate
routes can lead to two main advantages - allowing the pilot-in-
loop to make a contextual decision and having a safe alternate
plan to switch to when the original plan is infeasible. We will
now show that both these apparently different properties can
be captured by the same optimization objective function.

Interesting set of path options for pilot - Consider the case
of an engine failure occurring near the mountains as shown
in Fig. 3. In such a scenario, it is not immediately obvious
what the correct plan is. The first path is a risky path that
goes through a mountainous region but reaches a safe flat area
to land in by the coast. The second path stays clear of the
mountain but aims for a risky landing in a clearing among
the trees. There is very little room for error if the landing
zone has clutter or rubbles. The third path lands in a similar
clearing among the trees as the second path, however it has a
good visibility of the landing site before it touches down. This
can allow the sensor to detect clutter on the landing zone and
have plenty of time to react if needed.

In such a situation, using the experience and contextual
knowledge of the pilot is essential. By utilizing the pilot-in-
loop, the system is able to offload the task of deciding “what is
the right plan for the vehicle to follow in this context?” How-
ever, since the pilot has to make a decision very quickly, he
can only be offered a very limited set of choices. Within this
limited set, the planner must try to capture all classes of so-
lutions the pilot might be interested in. Having two similar
looking solutions in the set is ineffective. For example, in Fig.
3 these solution classes are “risky but good lz”, “safe but risky
lz” and “good lz visibility”. Since each option is effectively

Risky path
Good LZ

Safe path
Risky LZ

Good LZ
visibility

Fig. 3. A set of interesting options for the pilot consist of
spatially separated, locally optimal solutions. Each path
must be distinct and have a defining feature. “Risky path /
Good LZ” comes close to the mountain but lands near the
sea shore. “Safe path / Risky LZ” has a safe descent but
lands near trees. “Good LZ visibility” has a safe descent
while flying over the LZ and getting a good laser scan to
check for debris.

representing a solution class, it must be the optimal candidate
for the solution class.

Thus the desired properties are - spatially separated and
locally optimal solutions.

A set of emergency backup plans - Consider the case of the
selected landing zone being covered in rubble, which is out-
side the range of the perception system as shown in Fig. 4 (a).
If there were no backup plans, when the vehicle approaches
the landing zone and senses the rubble, as shown in Fig. 4 (b),
there isn’t enough time to re-plan a new path. However, if the
planner had computed a set of backup paths, it would have an
alternate path going to another landing site. It can switch to
this path instantaneously as the rubble is detected.

A set of backup plans has some key characteristic features.
Firstly, they should all be low cost feasible paths. Secondly,
the set should be limited in size. The larger the set of back-
ups, the more computationally intensive it is to go through
each of the paths and verify which one to switch to. Thirdly,
the different backups should be spatially different. If they are
passing through the same volume, when one path becomes in-
feasible, they all become infeasible. For example, in Fig. 4,
if the backups went to the same LZ, then the detection of the
rubble would render all the backups ineffective.

Thus the desired properties are - cost of each path should
be close to optimal and the paths should be spatially separated.

3

X

(a) (b)

Fig. 4. Having a backup plan allows the helicopter to instantly switch when the current path is infeasible. (a) He-
licopter hasn’t yet detected the rubble at the LZ, but already has an alternative plan pre-computed. (b) Helicopter
instantaneously switches plan when the rubble is detected.

How to compute AR?

To generate a set of alternate routes that satisfy the specified
criteria, an appropriate optimization problem is required.

One such way to do it is to define multiple cost functions
and solve each one separately. A typical greedy approach
would be to solve for the original cost function. Then a new
cost function can be created that penalizes proximity to the
existing solution. The solution to this problem becomes the
second member in the set. This process is iterated for the to-
tal number of members required in the set. This approach has
many drawbacks. Firstly, it is very computationally expensive
as redundant collision checks have to be repeated. Given the
hard time-constraints, this is particularly unsuitable for our
case. Secondly, since it is effectively planning afresh for ev-
ery member of the set, it doesn’t qualify to serve the role of a
backup set generator. A backup set required computations of
many plans in the same planning time as a single plan - this
method offers no such facilities.

A very different approach to solving this problem is to
sample from a distribution of paths. The parent path set is a
pre-calculated set of paths up to the sensor horizon, and sam-
pling is done by selecting a manageable sub set. Green Kelly
et al. (Ref. 10) proposed a way of sampling paths to maxi-
mize “dispersion”, i.e., iteratively add paths that are most dis-
tinct from the paths already added. Erickson et al. (Ref. 11)
had a similar metric for sampling paths where the paths were
selected according to “survivability”, i.e, selecting a set that
maximizes the expected survivability of a path considering a
uniform distribution of obstacles. However these methods do
not exactly address the same problem that we are proposing.
Firstly, the methods reason about paths up to a finite horizon.
Because we have a very detailed prior of the environment, our
reasoning must extend all the way to the goal. At such large
horizons, the methods are no longer tractable. Secondly, the

methods only reason about collision avoidance and are agnos-
tic to a cost function. In our case, the reasoning is based on
optimizing a cost function which is dependent on factors other
than just obstacles.

We want to frame an optimization problem that returns as
a solution a set of answers, ensures all the solutions in the
set have costs close to the optimal cost and are spatially dis-
tinct. Abraham et al. (Ref. 12) frame the same problem on a
discrete graph to solve for alternate routes in road networks.
Generalizing the problem to a continuous domain for emer-
gency landing, we express it as

f ind : σi = (x(t),u(t)) ∀i = 1 · · ·m
minimize : J(x(t),u(x, t), t f)

constraints : ẋ = f (x(t),u(x, t), t)
x(0) = x0,x(t f) ∈ XLZ

g(x(t),u(t), t f)≤ 0
σi ∈ Σ∗

(1)

where x(t) is the state of the vehicle and u(t) the action,
x0 is the state at which engine failure occurs, XLZ is the set
of allowable landing zones, J is the cost function representing
the desire to minimize risk, g is the set of environmental and
vehicle constraints, σi is a path and Σ∗ is the set of AR.

Alternate routes should have the following salient proper-
ties

1. J(S(σi) ∩ {S(σ0)∪·· ·∪S(σi−1)}) ≤ γJ ‖S(σ∗)‖ (Lim-
ited sharing of new alternative and previous alternative
path swath)

2. σi is T -locally optimal (Local Optimality)

3. J(σi) is (1+ ε)J(σ∗) (Uniform Bound Stretch)

4

where S(.) is a swath around the path. Each of the above
properties are expanded on below:

Limited sharing of new alternative and previous alterna-
tive path swath - A swath is define as the volume of space up
to a radius r around the path. Limited sharing of swath im-
plies that we want to minimize the amount of common shar-
ing of volume by the alternate routes. This enforces them to
be spatially separated. This is enforced by constraining only
a fraction of the swath of any route in the set to be in common
with the swath of any other route.

Local optimality - Local optimality, termed as T -locally
optimal, ensures that every subpath is optimal. This checks
for an obvious shortcut along the path which can lower the
cost of the route.

Uniform Bound Stretch - This ensures that the cost of the
path is within a bounded variation from the optimal cost. Thus
the route has a bounded sub-optimal nature.

Does the optimization meet the desired characteristics?

Now we will examine if this optimization satisfies the original
design criteria. We make the following observations about the
optimization.

When solved at the moment of engine failure, the opti-
mization creates an interesting set of path options for pi-
lots The cost function is a concatenation of many smaller
cost functions - avoiding obstacles, ensuring good landing
zone visibility, penalizing curvature and landing zone feasi-
bility. When engine failure occurs, the vehicle is at a con-
siderable height above ground. At this height, the variety of
possible solutions is large. Criteria 3 of the optimization prob-
lem ensures that all paths being considered are bounded in
their sub-optimality. This means a particular routes excels in
at least one of the criteria - either it is very safe, or has good
LZ visibility and so on. Criteria 1 ensures that two paths near
each other do not co-exist in the route set. This results in paths
of different solution class in the final set. Finally, criteria 2 en-
sures that each candidate is locally optimal. Combining these
criteria ensures that the pilot has an interesting set of repre-
sentative options to choose from.

When solved at distances closer to the LZ, the optimiza-
tion creates a reliable set of backup plans As the vehicle
approaches the LZ, it has already committed to one of the so-
lution classes that we mentioned before. The variety of paths
from start to goal is not as large. Criteria 3 of the optimiza-
tion problem does not play as interesting a role as before.
It still ensures that all paths in the route have bounded sub-
optimality. Criteria 1 plays the most critical role - ensuring
that paths are spatially separated. This maximizes the surviv-
ability of a path - if the optimal path is found to pass through a
“pop-up” obstacle, the chances that the obstacle affects other
paths as well is minimized. This is a defining criteria for be-
ing a backup path. Criteria 2 enforces local optimality which

is important as well in removing paths which have too many
unnecessary diversions.

At this point, it is important to note that we had previously
summarized the need for a rapid “life-long” planner. Now
that this planner has to compute not only one route, but a set
of routes, the emphasis on hard time-constraints is even more
emphasized. In the coming sections, we will introduce our
approach to solving the optimization in a computationally ef-
ficient way.

EMERGENCY LANDING SYSTEM

Previously we motivated the need for alternate routes and
framed an optimization problem to solve for them. We now
present the entire architecture to control and land a helicopter
which will use the computation of alternate routes as one of its
key components. We start by describing the specific planning
problem and then introduce our approach to solve it.

Planning Problem

The planning problem we are looking to solve is to safely land
a helicopter whose engine has failed mid-air. The helicopter
is equipped with a GPS/INS system providing accurate pose,
a device to measure rotor speed, and a 3-D scanning LADAR
with range of up to 700 metres. The system is provided with
a terrain map of the area and a detailed landing map with a
continuous score of landing feasibility.

Formally the problem is framed as follows

minimize : J =
∫ t f

0 c(x(t))dt + c(x(t f))
constraints : ẋ = f (x(t),u, t)

x(0) = x0
x(t f) ∈ XLZ
g≤ 0,J < ∞

(2)

where x is the 13 dimensional state space of positions, eu-
ler angles, the corresponding derivatives and the main rotor
speed as shown below:

x = {xE ,yE ,zE , ẋE , ẏE , żE ,φ ,θ ,ψ, φ̇ , θ̇ , ψ̇,Ω}

where the E superscript designates a North East Down
(NED) coordinate frame. The command u is the collective,
cyclic and pedal inputs as shown below:

u = {δcol ,δlon,δlat ,δpedal}

x0 is the state of the vehicle at the time of engine failure, t f
is the terminal time, XLZ is the set of allowable landing zones.
J is the optimization objective function that encodes the cri-
teria for safety of the vehicle. g is a set of environmental and
vehicle constraints. f represents the autorotation dynamics
of the helicopter. We use the autorotation model from Tier-
ney (Ref. 6).

5

An interesting thing to note is that the dynamics of the
auto-rotating model has a continuum of trim states where no
rotor energy is lost. Every trim state has a pair of correspond-
ing airspeeds and descent velocities. The two critical points
of concern are minimum descent speed and maximum glide
slope. They reflect the two different operating points we want
to plan around - either optimize for minimum descent rate but
restrict reachability or maximize glide slope but run the risk
of having a larger descent rate.

Approach

Given the difficult dynamic constraints and the fact that the
trajectories span several kilometres, we do not attempt to
solve the generic autorotation problem in real-time. Instead
we make a set of reasonable assumptions to more clearly de-
fine the problem we wish to solve.

Assumption 1 The engine failure occurs at a high enough
altitude such that the 3 distinct stages of autorotation can be
achieved - Entry into glide, Glide and Flare. When the engine
fails, the idea is to transition to the trim state, stay in it so as
to prevent the loss of rotor energy, reach a height from which
flare can be achieved and execute the flare maneuver. This
puts the minimum AGL at which engine failure can occur at
500 feet. At heights below this limit, the decoupled 3 stage
approach will not work - a more coupled approach is required.

Assumption 2 The vehicle has a minimum airspeed when
the engine fails such that it can be transitioned into a desired
trim state within 5 seconds. This limits the speed between 60
knots and 140 knots. If the airspeed is beyond these limits,
the maneuver required to bring it to trim state might take so
much time that Assumption 1 is violated. At speeds beyond
the limit, the vehicle can potentially enter a dangerous vortex
state, which requires a much more specific planner.

Assumption 3 When the engine fails, the vehicle isn’t im-
mediately surrounded by obstacles till it is in trim state. The
maneuver which transitions to trim state deals with the full
13 dimensional state, is pre-computed and cannot path plan
around obstacles. Essentially the vehicle needs a known
safety volume of maximum 250 m which is well within per-
ception range and can easily be ensured.

The above assumptions essentially define a set of reason-
able initial conditions, which we leverage to simplify the
problem and in turn make a robust real-time approach. We
decompose the problem into various sub-problems, link them
via a state machine and frame it as a multiple objective plan-
ning problem (Scherer et al. (Ref. 13)). This is motivated pri-
marily by the fact that the planning problem during the flare
phase being different from the glide phase in terms of scope,
precision and difficulty. The overview of the system architec-
ture is shown in Fig. 5.

Originally the vehicle is in cruise mode when the engine
has not failed yet. The planning system runs in the back-
ground computing plans at a fixed interval. On engine failure,
a state machine is activated.

The state machine of objectives are

• Entry glide: After engine failure, the helicopter tran-
sitions to a trim state to arrest rotor energy loss. A
fixed time, typically around 5 seconds, is assigned to this
state, during which it continuously provides a set of glide
paths. The pilot browses through the paths and selects
one.

• Glide: The vehicle attempts to follow the command tra-
jectory, while continuing to compute AR. The pilot or
the system can switch paths any time during the phase.

• Entry flare: At a height above the LZ, the helicopter tran-
sitions to a safe flare initiation state.

• Flare: The vehicle engages in a precise move to use its
rotor energy to come to a halt and touchdown.

Among these sub-problems, computing optimal glide paths
is an interesting problem from a pure planning perspective.
The solution space of glide paths that satisfy constraints is
very large as the plans originate at altitudes well above ter-
rain. Our approach is to translate these constraints into costs,
thus searching for solutions of good quality. We adopt the
unconstrained planning problem approach from Scherer et al.
(Ref. 13) which only imposes the condition that cost incurred
must be finite. The cost function used in all subproblems are
summarized below.

• Jstate(xstate) : Weighted distance from a desired xstate.

• Jobs : Cost decays with squared distance from occupied
cells in the evidence grid. The grid uses terrain informa-
tion as a prior and updates from sensor data.

• Jcurv : The curvature cost increases exponentially as cur-
vature reaches constraint limits. This ensures paths do
not demand large accelerations.

• Jlzd : (X ,Y) distance from predicted LZ. This attempts
to maximize the sensor’s viewing time of the LZ so a
cluttered LZ can be evaluated before hand.

• Jrpm : Deviation from 100% RPM. This retains control
authority incase unmapped obstacles appear.

• Jlz : Depending on potential risk of LZ (slope or clutter),
a terminal cost is assigned.

• Ju : Energy expended by control actions

The planning problem structure is represented as:

minimize : Ji =
∫ t f

0 c(x(t))dt + c(x(t f))
constraints : ẋ = f (x(t),u(x, t,Pc), t)

x(0) = x0
x(t f) ∈ Xend,i
gi ≤ 0,Ji < ∞

(3)

where i = 1,2,3,4 is the index of the states in the state ma-
chine. The approach is to generate an initial command guess

6

Cruise
Mode

Entry
Glide

Glide
Entry
Flare

Flare

Engine
Failure

Glide State
Reached

Fixed height above
 flare reached

Flare height
reached

Planner

Autorotation
Controller

Plans emergency
landing alternate

routes as a
precaution.

Loads precomputed
maneuver to transition to

trim state

Background planner provides
alternate routes to pilot while

it continues to plan

Continues to plan
alternate routes at a

fixed frequency
allowing pilot to

switch to a new plan
anytime

Loads precomputed
flare trajectory

library, prunes path
in collision and

selects best path
given the situation

Transitions vehicle
from current state

to a safe flare
initiation state

Disengaged
(regular controller on)

Feeds through the
maneuver till near

trim, maintains
reference trim state

Follows glide path
Attempts to reach
pre-defined desired

state for flare initiation

Feeds through flare
maneuver

1
2

3 1

2
3

Fig. 5. Multi-objective state machine for emergency landing. For each stage, the activities of the planner and controller
is stated and a schematic of vehicle progress is shown.

Table 1. Planning Problem Definitions
i State Cost Function (Ji) Xend,i gi
1 Entry glide Jstate(xtrim)+ Ju - -
2 Glide Jobs + Jcurv + Jlzd X f s -

+Jrpm + Jlz
3 Entry flare Jstate(x f lareinit)+ Ju - -
4 Flare Jstate(xtd)+ Ju xtd x ∈ Xsa f e

Pc, perform trajectory optimization based on predicted result,
and a low-level tracking controller tracks the guess. Table 1
describe the problem parameters where X f s is a valid flare ini-
tiation state, xtd is a touchdown state and Xsa f e is a set of states
where the vehicle is not in collision. The initial guesses are
defined as follows:

Entry glide The desired trim state is chosen to be either
minimizing descent speed or maximizing glide slope. The
vehicle is transitioned to this state by a precomputed ma-
neuver. Dependent on the current airspeed, a particular ma-
neuver is loaded. This maneuver transitions the vehicle to a
basin around the trim state. The controller subsequently sta-
bilizes the vehicle around the trim state. The cost function
Jstate(xtrim)+Ju is used to derive LQR gains for the collective
and cyclic.

Glide The cost function reflects the desire to minimize risk.
Ensuring the pilot has options and there exists feasible backup
trajectories, makes alternate routes very critical. The planning

algorithm used to generate the initial guess will be covered
in detail in the next section. The planner generates a set of
routes, in addition to ensuring that the route chosen by the
pilot is still feasible. In case the cost of the current path in-
creases, the system will choose to switch to a back up path.
The controller in this phase attempts to track the path as well
as it can. All the plans terminate at X f s, a valid flare initiation
state.

Entry Flare The cost function is similar to the entry glide
state. However, no precomputed maneuver is required in this
stage since the planner is near trim state when it enters this
stage. Only the LQR control is enough to ensure stability
around the flare initiation trim state.

Flare This planning problem poses difficulties in creating
real-time solutions. It is not trivial to adapt aforementioned
real-time flare controllers to avoid obstacles. The state and
end constraints makes the optimal control problem hard to
solve, and the extreme non-linear nature of the dynamics
made it difficult to design a very high fidelity tracking con-
troller. Thus the problem was solved by constructing an “end
game” trajectory library (Ref. 14) offline by solving the prob-
lem for a large number of initial conditions. While running
online, the trajectory library was invoked, collision trajecto-
ries pruned out, and the command corresponding to nearest
neighbor in this library executed.

7

Algorithm 1 G = RRT*-AR((V,E),N)
Input: V = vertices, E = edges, N=number of iterations
Output: G is the tree returned

1 for i = 1, . . . ,N do
2 xrand ←Sample
3 Xnear←Near(V,xrand ,rnear)
4 (xmin,σmin)←ChooseParent(Xnear,xrand)
5 if CollisionFree(σmin) then
6 V ←V ∪{xrand}
7 E← E ∪{(xmin,xrand)}
8 (V,E)←Rewire((V,E),Xnear,xrand)
9 return G = (V,E)

Autonomous Control

The control system block consists of an inner loop attitude
control and an outer loop path following control. The inner
loop is a PID controller with airspeed based gain scheduling.
The outer loop is a trajectory tracking control, which com-
putes desired accelerations to track the path and feeds desired
attitudes to the inner loop control.

The inner attitude control loop is similar to Yomchinda et
al. (Ref. 9), where the pitch and roll commands are filtered
by a second order response. The difference between current
and desired response is tracked by a feedback PID controller
to compute the cyclic and pedal commands. The gains are
pre-computed and scheduled according to the airspeed of the
vehicle.

The outer path follower tries to minimize cross track error
between the vehicle and the path. Similar to an approach in
Park et al. (Ref. 15), a point on the trajectory is selected and
used to calculate desired lateral acceleration, desired forward
and vertical velocity. This is then used to compute bank and
pitch angles. The collective is directly computed by desired
vertical acceleration required to match the glide slope.

In the case of entry glide and entry flare, since a trim state
has to be tracked, the controller is a much simpler LQR con-
troller whose gains are obtained by using the cost function
mentioned in Table 1.

RRT*-AR

Previously, we enlisted as a requirement the need for a rapid,
“life-long” planner. We then introduced the need for AR and
proposed an optimization problem for generating them. How-
ever, it remained to be seen what kind of a planner can gen-
erate AR within the hard time-constraints. Specifically, we
require a planner that

• Can solve the optimization problem to generate AR.

• Is rapid enough to meet the hard time-constraints.

• Carries information across planning cycles to improve
plan over time.

Algorithm 2 (xmin,σmin) = ChooseParent
(Xnear,xrand ,rnear,clb)
Input: Xnear = set of near vertices, xrand = a sampled point,
rnear = radius of near neighbours, clb = lower bound cost
Output: xmin = parent resulting in lowest cost, σmin = trajec-
tory from parent

1 pSet←{} , cmin← ∞ , xmin←NULL , σmin←NULL
2 for xnear ∈ Xnear do
3 deq←min(Deq,ρrnear)
4 ceval ←SteerCostApproxOptim(xnear,xrand)

+Cost(xnear)
5 if ceval < (1+ ε)clb then
6 if ∃xeq s.t

∥∥xeq− xrand
∥∥< deq

and xnear =Parent(xeq) then
7 ceval ← ceval + εclb
8 pSet← pSet ∪{ceval ,xnear}
9 pSet←sort(pSet)

10 for xparent ∈ pSet do
11 σ ←Steer(xparent ,xrand)
12 if CollisionFree(σ) then
13 cmin←Cost(xnear)+Cost(σ)
14 xmin← xnear , σmin← σ

15 break
16 return (xmin,σmin)

There has been a significant amount of research on the plan-
ning problem of optimizing a cost function under differential
constraints summarized by LaValle (Ref. 16). A significant
contribution in this area has been the RRT* algorithm pro-
posed by Karaman et al. (Ref. 17) unifying the speed of sam-
pling based planners with asymptotic optimality guarantees.
A state is sampled from the configuration space and neigh-
bours within a ball of radius rnear are selected the parent which
would result in least cost from root is selected. Then attempts
to “rewire” the nodes in Xnear using this state as a parent is
done. RRT* can plan across large spaces by producing a fea-
sible solution quickly and improving it with time.

To solve the optimization problem presented, the RRT* al-
gorithm must be able to match our requirements and gener-
ate AR in real time. To achieve this, we propose a way to
partially trade off exploitation and precision in exchange for
exploration and speed. We call this the RRT*-Accelerated Al-
ternate Routes with Replanning (RRT*-AR).

Alternate Routes

Solving the optimization problem proposed in Eq 1 is not triv-
ial. A simple approach would be to apply the RRT* algorithm
on the problem, but assuming a goal region instead of a goal,
thus allowing multiple solutions. At the end of the planning
cycle, we obtain multiple leaf vertices corresponding to the set
of candidate solutions. A subset of these candidates, which
satisfy the definition of AR, is selected and returned. For the
algorithm to be effective, we require two main characteristics.
Firstly, the solution set must have enough variation to ensure

8

Algorithm 3 G = Rewire((V,E),Xnear,xrand ,rnear,clb)
Input: V = vertices, E = edges, Xnear = set of near vertices,
xrand = a sampled point, rnear = radius of near neighbours, clb
= lower bound cost
Output: G is the tree returned

1 for xnear ∈ Xnear do
2 ceval←SteerCostApproxPessim(xrand ,xnear)+Cost(xrand)
3 if ∃xeq s.t

∥∥xeq− xnear
∥∥ < deq and xrand =Parent(xeq)

then
4 ceval ← ceval + εclb
5 if ceval < (1+ ε)clb and ceval <Cost(xnear)then
6 σ ←Steer(xrand ,xnear), deq←min(Deq,ρrnear)
7 if Cost(xrand)+Cost(σ)< Cost(xnear) then
8 if CollisionFree(σ) then

10 xparent ←Parent(xnear)
11 E← E \

{
xparent,xnear

}
12 E← E ∪

{
xrand,xnear

}
13 return G = (V,E)

deq

Greedy Parent

RRT*

deq

RRT*-AR

(a) (b)

Fig. 6. RRT* exploits the cost function while RRT*-AR
allows for more variation. (a) RRT* joins all the vertices in
the ball of diameter deq to the optimal parent which seems
redundant. (b) RRT*-AR treats the vertices to belong in
the same equivalence class, penalized the greedy parent
and allows other connections.

Start

Goal

RRT*

1

Start

Goal

RRT*-AR

1

2

3
4

5

(a) (b)

Fig. 7. RRT*-AR computes 5 routes while RRT* computes
just 1. (a) RRT* tree is dense around optimal which con-
nects to all vertices reaching the goal (b) RRT*-AR seems
to have multiple dense clusters corresponding to different
routes.

that it contains a set of potential AR. Secondly, the process of
selecting the final set should be computationally cheap.

When the RRT* samples a point, it tends to join it with its
best parent. This implies points nearby to each other would
all have the same parent. This exploitation property tends to
create dense trees, with the density being centred around the
optimal path. For alternate routes to exist, nearby vertices
should consider alternate parents which have similar cost to
the best possible parent. For example, in a 2D case, this al-
lows the tree to have a segment in every homotopy class. One
such way would be, if the best parent to a vertex already has
children nearby, the second best parent gets a chance. We for-
mally try to capture this in Algorithm 2 and 3.

We first define an equivalence class of vertices which
are within deq distance of each other. Formally, samples x1
and x2 are said to belong to the same equivalence class if
‖x1− x2‖ < deq. With the assumption of a continuous cost
function, vertices belonging to an equivalence class have a
bounded variation in the cost it takes to reach them from the
root. Given two equivalent vertices v1 and v2, it is likely that
both will have the same parent vp1 and in that case the ex-
istence of both these vertices will be redundant. However,
when v2 is being created, if we add a phantom cost to the
edge joining vp1 and v2, we allow for v2 to search for another
parent. This phantom cost then corresponds to how much of
exploration we allow for discovery of other routes. If xparent
is the parent of x1 then it is penalized by a phantom cost εclb
(the maximum cost variation allowed among alternate routes)
while being evaluated as a parent of x2. This is shown in Fig 6
where a penalization is applied due to equivalence class pres-
ence.

An important question is - what is the effect of penalizing
the greedy parent in terms of the asymptotic optimality guar-
antees of the algorithm? To restore the guarantees, the value
deq shrinks as a constant fraction of the RRT* radius rnear.
Thus, in the limit the algorithm converges to the same struc-
ture as RRT*. To prevent the loss of the alternate routes via
rewiring, a periodic “latching” procedure is applied. In this
procedure, alternate routes are computed, then locked from
rewiring till the next procedure comes up. This preserves the
alternate routes while continuing to improve their local opti-
mality. The proofs and analysis of this result can be found in
Choudhury et al. (Ref. 18). As shown in Fig 7, the RRT*-
AR has more variety in solution while still having the optimal
solution in its set.

Finding a combination of m AR from a set of M candidate
solutions requires considering up to

(M
m

)
combinations. For

efficiency purposes, we settle for the greedy suboptimal solu-
tion of finding the first m lowest cost trajectories which satisfy
the AR constraints. For every candidate in the cost sorted list
of trajectories, a similarity metric is computed with respect
to a running buffer set of accepted AR, and if it satisfies all
constraints, it is appended to buffer set.

We now review whether RRT*-AR matches the require-
ments for AR.

9

(a) (b)

Fig. 8. RRT*-AR has a 10 times speed up on obstacle cost
checks. (a) RRT* evaluates path by calculating obstacle
cost in a nominal way - step along every grid cell on the
path and accumulate the cost (b) RRT*-AR uses optimistic
/ pessimistic bounds on the cost - the pessimistic bound is
to find nearest obstacle distance and assume it remains the
same for the entire line.

Start

Goal

RRT*

1

Goal

Start

RRT*-AR

1

2

3

(a) (b)

Fig. 9. After 0.5 seconds, RRT*-AR has a tree 6 times big-
ger, and has already computed 3 routes. (a) RRT* does a
correct but expensive evaluation process and has very few
paths reaching goal (b) RRT*-AR does a fast evaluation
process with asymptotic correctness, thus growing many
paths to goal.

• Limited sharing of a path swath - The similarity metric
mentioned above applies this constraint. The variation of
parent children combinations in RRT*-AR ensures that
such paths exist if possible.

• Local Optimality - RRT*-AR initially explores by try-
ing different parent child combination. As the radius of
the disk shrinks, the exploitation nature dominates. The
latching procedure ensures that the routes themselves are
preserved, but at the same time are locally improved.

• Uniform Bound Stretch - The penalization factor in
RRT*-AR is the specified allowable cost variation. This
ensures that paths beyond the cost bound is never con-
sidered.

Accelerated Planning

Our key emphasis has been on generating AR in real time.
RRT*-AR achieves this by trading off precision in cost for a
boost in speed. A bottleneck for speed in RRT* is when it
makes a connection between a parent and a child, it ranks the
parents by the true cost of the trajectory joining the two. But
for the best parent to get the lowest rank, the cost need not

be true, it just needs to have the same order. So making an
approximation on evaluation can boost iteration speed many
times. In Fig. 8, while the RRT* evaluates the obstacle cost
by stepping over every grid cell that the path passes through,
RRT*-AR evaluates a bound on the cost. While choosing a
parent the cost is optimistic (Algorithm 2) such that a viable
parent isnt suppressed due to cost approximation errors. Dur-
ing rewiring (Algorithm 3) the cost is pessimistic. In this ap-
proach, there is a probability of being wrong, i.e, choosing the
wrong parent. Still by bounding the probabbility, asymptotic
optimality can be guaranteed (Ref. 18).

Reuse Tree

To retain the effort of creating the search tree and cost eval-
uation of trajectory segments across iterations, we implement
a method to reuse the tree by finding a way to “latch” the ve-
hicle state onto an existent tree as shown in Fig 10. In the
first step, the cost of all vertices from the root is made invalid
(-1), even though the cost from their parents is retained. Next,
the current state of the vehicle is taken and a set of near ver-
tices from the tree is obtained. This near vertices have to be
sorted by their depth in the existing tree. The current state
is now rewired to the tree. Since all vertices have cost from
root as -1 before rewiring and the current state has no parent,
after rewiring it becomes the root of the valid tree. By depth
sorting the near vertices, the current state attempts to rewire
by giving vertices with lower depth more priority. This is be-
cause on rewiring to these vertices first, their subtrees are also
made valid, making the rewiring process efficient. The most
common example of reusing a tree would be that the current
state would rewire to most of the children of the previous root.
This would result in most of the tree remaining static, while
vertices near the root would change parents. The next step in-
volves executing the RRT* in the usual way and returning the
new tree.

RESULTS

To test the system in a realistic setting we setup an experi-
ment in simulation with a UH-60L Black Hawk experiencing
failures at different locations over the mountains of San Juan
National Forest, Colorado (37◦ 40’ 28.00”,-107◦ 34’ 4.5264”)
at an average height of 900m AGL. Grid obstacle cost in this
case was purely derived from the digital elevation map. Fig.
11 shows a typical glide planning scenario over a land which
has 2 minimas in landing cost. The planners were given the
time period of entry glide state, i.e. 5 seconds.

RRT* converges to having 2 routes, 1 going to each of the
peaks. RRT*-AR comes up with 6 routes (the total number
asked for) which include the solutions arrived at by RRT*.
These solutions are interesting because they are placed on ei-
ther side of mountain peaks, have different amounts of LZ
visibility and curvature and thus provide a comprehensive set
to the pilot.

The alternate routes also show the expected safety be-
haviour when an unmapped obstacle is sensed. In Fig. 12,

10

6

9

10

8

7

1 2

3

4

5

6

9

10

8

7

1 2

3

4

5

6

9

10

8

7

1 2

3

4

5

6

9

10

8

7

(a) (b) (c) (d)

Fig. 10. Life-long planning by re-using search tree across planning cycles. (a) Search tree in previous iteration. (b) Root
moves forward and wishes to latch onto the existing tree, which is de-activated for the moment. It does a near neighbour
lookup and retrieves vertices which are sorted by their depth in the search tree. (c) The new root attempts to rewire to
vertices in the sorted order. On successful rewiring, the sub-branch is re-activated and costs to the vertices is restored
(branches in red). (d) If the current root is a better parent to vertices of greater depth, the vertices are rewired (vertex
9).

Table 2. Comparison between RRT* and RRT*-AR
RRT* RRT*-AR

Cost (var) Count Cost (var) Count
Best 1.0(±0.0) 100% 1.18(±0.25) 100%
Path1 1.89(±1.21) 87.36% 1.51(±0.47) 99.75%
Path2 2.98(±1.96) 57.3% 2.07(±1.07) 95.95%
Path3 3.05(±0.97) 15.42% 2.92(±1.77) 85.71%
Path4 3.65(±1.39) 4.05% 3.77(±2.25) 66.12%
Path5 3.87(±0.65) 1.14% 4.51(±2.83) 43.74%

Table 3. Cost comparisons between RRT* and after
speedups

Cost Cost Time to
τ = 0.6s τ = 1.0s cost = 1.1

RRT* 1.97(±1.28) 1.60(±0.86) 4.40(±1.28)
RRT*-AR 1.65(±1.03) 1.37(±0.61) 2.62(±1.07)

the helicopter maintains back up plans going to another land-
ing site. Interestingly, it chooses to fly over the landing zone
(enhanced LZ visibility reduces cost of path), while maintain-
ing backups which reach the other landing site. This allows it
to instantly switch routes.

The results in Table 2, for 791 runs of 5s each with AR pa-
rameters (ε = 4,γ = 0.7,dnn = 500,deq = 500,ρ = 0.2) show
how many times each planner could compute up to 5 routes,
and the cost of the routes computed. RRT*-AR comes up with
a much higher number of routes (2.82 times) while having an
allowable best cost variation (18%). The RRT* shows the typ-
ical aggressively optimal nature with a sharp distribution in
AR frequency and cost. RRT*-AR has a smoother distribu-
tion of cost and frequency.

After 3318 runs, each run continuing till 1000 vertex ad-
ditions, RRT*-AR achieves 15.4% in terms of cost reduction
than RRT* as shown in Table 3. Fig. 14 shows that the key
performance enhancement is because RRT*-AR produces an
acceptable path (0.29s) faster than RRT* (0.54s), and main-
tains a similar rate of cost reduction initially.

The reuse of trees made the system more reliable as shown
in Fig. 15 after 450 runs. It quickly converts most paths to
near optimal while creating a new tree every time would take

several iterations till arriving at the right answer. The his-
togram’s decay shape shows how effective a method is, which
in case of reusing peaks at the optimal while for planning
afresh is more level.

Fig. 13 shows the testing of the system in a virtual real-
ity platform. A video of demonstration of the system can be
found in http://youtu.be/o1J3qIG4R4c .

CONCLUSIONS

We presented a complete autonomous landing system for a
helicopter after engine failure. In the context of emergency
landing of helicopters, the planning system makes a signif-
icant stride forward - it can compute safe paths in real time,
deal with unmodelled obstacles or cluttered landing zones and
takes a human decision into account. The RRT*-AR algo-
rithm is effective in maximizing the likelihood of safe alter-
native routes by returning 2.8 times the expected number of
AR as does RRT* with speedups of 67%. With the local op-
timality and spatial separation features of AR, the RRT*-AR
increases the probability of finding a risk free path if the sen-
sor detects an obstacle on descent or if the pilot wishes to
over-ride the current path that is being followed.

In future work, we intend to explore the benefits AR gives
towards system robustness. For example, ARs can be com-
puted ahead of time at regions of high risk. We also intend to
address issues such as safety metrics of AR for a more com-
prehensive landing system.

REFERENCES
1Johnson, W., “Helicopter optimal descent and landing after

power loss,” , 1977.

2Lee, A., Bryson, A., and Hindson, W., “Optimal landing of
a helicopter in autorotation,” , 1986.

3Aponso, B., Lee, D., and Bachelder, E., “Evaluation of
a Rotorcraft Autorotation Training Display on a Commercial
Flight Training Device,” Journal of the American Helicopter
Society, Vol. 52, (2), 2007, pp. 123–133.

11

(a) (b)

Fig. 11. AR for a failure over the mountains. (a) RRT* comes up with 2 routes - each going to a maximal feasible LZ (b)
RRT*-AR coming with 6 routes including the routes of RRT* - each path having its own merit.

Helicopter

LZ-1

LZ-2

Optimal

AR-1

AR-2

Laser Range

OK

OK

Helicopter

LZ-1

LZ-2

Optimal

AR-1

Laser Range

BAD

OK

(a) (b)

Fig. 12. Alternate Routes allow quick reaction to clutter in LZ during a landing scenario in the valley. (a) The optimal
path (blue) is followed by the helicopter while simultaneously planning alternate (yellow) routes (b) LZ-1 comes within
the sensor range and is observed to be infeasible. The helicopter instantaneously switches to an alternate route.

12

(a) (b)

(c) (d)

Fig. 13. Successful landing of a helicopter in a virtual reality platform. (a) Helicopter is in cruise mode (b) Engine failure
occurs and autonomous system takes over (c) While glide established, system has already come up with alternate routes
which a pilot can choose from (d) Helicopter flares and touches down.

13

0 2 4 6 8 10 12 14 16 18
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

R
at

io
 o

f c
os

t t
o

op
tim

al

Time (sec)

RRT*

RRT* AR

Fig. 14. RRT*-AR costs decay rapidly in the beginning in-
dicating fast exploration of search space and an increased
rate of vertex addition.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 60

50

100

150

200

Ratio of cost to best cost

N
um

be
r o

f c
as

es

Reuse Tree
Fresh Plan

Fig. 15. If the search tree is reused across iterations, more
paths are closer to optimal than if a new tree is created at
every iteration.

4Aponso, B., Bachelder, E., and Lee, D., “Automated au-
torotation for unmanned rotorcraft recovery,” AHS interna-
tional specialists meeting on unmanned rotorcraft, 2005.

5Bachelder, E. and Bimal, L., “Using Optimal Control for
Rotorcraft Autorotation Training,” Proceedings of the Amer-
ican Helicopter Society 59th Annual Forum, Phoenix, Ariz,
2003.

6Tierney, S., Autorotation Path Planning Using Backwards
Reachable Set and Optimal Control, Master’s thesis, The
Pennsylvania State University, 2010.

7Abbeel, P., Coates, A., Hunter, T., and Ng, A., “Au-
tonomous autorotation of an RC helicopter,” Experimental
Robotics, 2009.

8Dalamagkidis, K., Valavanis, K., and Piegl, L., “Au-
tonomous autorotation of unmanned rotorcraft using nonlin-
ear model predictive control,” Selected papers from the 2nd
International Symposium on UAVs, Reno, Nevada, USA June
8–10, 2009, 2010.

9Yomchinda, T., Horn, J., and Langelaan, J., “Autonomous
Control and Path Planning for Autorotation of Unmanned He-
licopters,” Proceedings of the American Helicopter Society
68th Annual Forum, Fort Worth, Texas, May 1-3, 2011.

10Green, C. J. and Kelly, A., “Toward Optimal Sampling in
the Space of Paths,” ISRR, 2007.

11Erickson, L. H. and LaValle, S. M., “Survivability: Mea-
suring and ensuring path diversity,” ICRA, 2009.

12Abraham, I., Delling, D., Goldberg, A., and Werneck, R.,
“Alternative routes in road networks,” Experimental Algo-
rithms, 2010, pp. 23–34.

13Scherer, S. and Singh, S., “Multiple-objective motion plan-
ning for unmanned aerial vehicles,” Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference
on, 2011.

14Stolle, M. and Atkeson, C., “Policies based on trajectory
libraries,” Robotics and Automation, 2006. ICRA 2006. Pro-
ceedings 2006 IEEE International Conference on, 2006.

15Park, S., Deyst, J., and How, J. P., “A new nonlinear guid-
ance logic for trajectory tracking,” AIAA Guidance, Naviga-
tion, and Control Conference (GNC), August 2004 (AIAA
2004-4900).

16LaValle, S., Planning algorithms, Cambridge Univ Press,
2006.

17Karaman, S. and Frazzoli, E., “Incremental sampling-
based algorithms for optimal motion planning,” Proc.
Robotics: Science and Systems, 2010.

18Choudhury, S., Scherer, S., and Singh, S., “Realtime Al-
ternate Routes Planning:The RRT*-AR Algorithm,” Techni-
cal Report CMU-RI-TR-12-27, Robotics Institute, Pittsburgh,
PA, December 2012.

14

