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Abstract

Mapping a rivers course and width provides valuable information to help un-
derstand the ecology, topology and health of a particular environment. Such maps
can also be useful to determine whether specific surface vessels can traverse the
rivers. While rivers can be mapped from satellite imagery, the presence of vegeta-
tion, sometimes so thick that the canopy completely occludes the river, complicates
the process of mapping. Here we propose the use of a micro air vehicle flying under
the canopy to create accurate maps of the environment. We study and present a sys-
tem that can autonomously explore rivers without any prior information, and demon-
strate an algorithm that can guide the vehicle based upon local sensors mounted on
board the flying vehicle that can perceive the river, bank and obstacles. Our field
experiments demonstrate what we believe is the first autonomous exploration of
rivers by an autonomous vehicle. We show the 3D maps produced by our system
over runs of 100-450 meters in length and compare guidance decisions made by our
system to those made by a human piloting a boat carrying our system over multiple
kilometers.

1 Introduction

Riverine systems are an increasingly important focus for many applications like
mapping, monitoring and surveillance where it is desirable to use autonomous ex-
ploration to traverse the river and collect up to date information. A small lightweight
system that can travel below the tree line to sense the river width, the river direction
and canopy clearance is advantageous since this information is often not possible to
measure from satellite imagery because tree canopy cover occludes the river from
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above. Further, narrow, densely-forested, rivers are difficult to navigate by surface
craft because of submerged and semi-submerged obstacles and therefore we develop
a Micro Aerial Vehicle (MAV) that is small and nimble and able to traverse the dif-
ficult terrain.

MAV	  Autonomously	  Exploring	  River	  

Desired	  informa:on	  :	  intersec:on	  between	  river	  and	  bank	  

(a) Micro Aerial Vehicle (MAV) autonomously navigating river environment.

(b) Close-up of vehicle exploring
river environment.

Spinning	  3D	  Laser	  Scanner	  

Color	  Stereo	  Camera	  Pair	  

(c) Vehicle local sensing consists of a
lightweight spinning laser scanner and stereo
color camera pair.

Fig. 1 A Micro Aerial Vehicle is used to autonomously explore and map the river environment. The
information of interest is the intersection between bank and river. The vehicle is lightweight and
agile and not suseptible to submerged and semi-submerged obstacles such as would be hazardous
to a surface vehicle. To avoid obstacles and to perceive the extent and course of the river the vehicle
is fitted with a spinning 3D laser scanner and color stereo pair.

Existing applications for autonomous river operations focus on collecting infor-
mation from robotic boats navigating based on stored directions. These existing



works have used pre-determined GPS waypoints as a navigation guide. Often river-
ine systems are densely overgrown with vegetation and autonomous exploration
cannot depend on the irregular and erroneous GPS measurements in these surround-
ings. Due to their dense canopy, estimating an initial map of the waterways from
satellite images is also not a viable option. Further riverine environments are also
continuously evolving, and current information of the width and course is often
not available. For all of these reasons river environments must be explored without
relying on pre-determined maps or waypoints. To date, there has not been a truly au-
tonomous exploration system demonstrated in a river environment. We present what
we believe is the first such system that can explore a river solely from local sensing,
and in addition our vehicle is the first that can fly through river environments to
quickly explore while avoiding submerged and semi-submerged obstacles.

We build on our existing work in river environments for autonomous perception,
positioning, and obstacle avoidance work [1, 3, 4, 12, 11] and extend to add the
key capability of truly autonomous exploration. Our contribution here is to present
a new exploration algorithm based on a multi-variate cost function to maximize the
information collected in a river map given the fixed duration of a mission. We use
two sensor modailities which are different in range and accuracy, namely vision and
laser in local sensing for the proposed algorithm. We demonstrate that our method
is more adept than traditional exploration algorithms and can traverse the river to
gather more information during a mission.

2 Related Work

Much work has been placed in development of autonomous vehicles for navi-
gating waterways, using a variety of different types of crafts such as automated
catamarans [5, 9], small lightweight fanboats [15], kayaks [8] or small inflatable
craft [6]. Most of these existing waterway navigation works rely on predefined GPS-
waypoints, or a pre-defined map generated from satellite imagery [6]. In contrast our
work is focused on autonomous exploration, where the environment is perceived by
onboard sensors and the vehicle reacts by planning routes that navigate the vehicle
along the waterway and maps the direction and width of the river-bank.

We achieve this with a spinning 3D laser scanner, which has also been demon-
strated for local obstacle avoidance [5] and [6] to navigate around obstacles discov-
ered above the water surface. However, we do not use any prior information and
rely on intelligent path and goal planning based on the information received by our
local sensing. One somewhat related work is by [10] where rivers are detected and
tracked from aerial vehicles, although unlike our work these are higher flying ve-
hicles making them as unsuitable as satellite images, whereas our system operates
beneath the tree-line, close to the river surface.

In terms of exploration strategies, a common approach is to optimize the robot
pose accuracy and the accuracy of the resulting map, [2, 7]. In contrast we rely
on separate positioning algorithms [11] for pose accuracy, and instead we focus



our exploration algorithm to maximize the length of riverbank discovered. In some
exploration strategies, information maximization is focused on reducing uncertainty
in pose and likelihood of map cells being an obstacle or free space, [2, 7]. Other
approaches more closely related to ours define exploration goals that select view-
points that are expected to yield the highest increase in entropy [14, 13] resulting
in the robot seeking out regions that have not yet been explored. Overall, these
strategies are closely related to the standard frontier exploration systems [16]. Our
method is similar in nature, although we introduce a multi-variate cost-map, which
finds trajectories that maximize the length of a river explored for a given mission
time.

3 Approach

The key aim of the work we present here is to plan goals for the vehicle to execute
trajectories to realize the following behaviors:

• Follow river, whilst maintaining stable flight and avoiding obstacles
• Maximize the information collected over the course of the river

3.1 Environment Modeling and Sensing

The riverine system is modeled as a planar grid (χ). Each cell χ i in the grid repre-
sents a cell in the world at location xi,yi , and the rivermap values of this cell in the
grid is as follows:

χ
i
r = χ

xi,yi
r =


1 if the cell is part of river
−1 if the cell is part of bank
0 if the cell has not been observed

(1)

Taking χ we form a function that defines the current information that we have
of the river. We define the intersection between river and bank as the pertinent in-
formation for mapping the width and course and use these cells as a measure of
information. To achieve this we form a new information map as follows to search
for discontinuities in the current river model:

I(xi,yi) =
u=xi+1

∑
u=xi−1

v=yi+1

∑
v=yi−1

(sign(χ(xi,yi)
r ) 6= sign(χ(u,v)

r )) (2)

Our exploration algorithm seeks to extract desirable trajectories for the vehicle that
will maximize the entropy in I.

The above formulation is derived from data collected from local sensing mounted
onboard the vehicle, see Fig.1(c). The laser scanner and the camera onboard gen-



erate environment maps which are used for goal planning. We segment images re-
ceived through a camera and use the probabilities generated to create a river map by
projecting them onto the river surface using the method from [1] as shown inFig.2.

Fig. 2 Pixels with probability greater than .5 after river segmentation are classified as river and
marked red [1]. They are then projected onto river plane to create an initial map of the environment.
This image is from a dataset taken from McCarthy river, Mississipi.

We use a lightweight spinning laser range scanner to create a 3D scan of the en-
vironment (see Fig.1(c) and [12]). The maximum range of this scanner depends on
ambient illumination and reflectance characteristics of objects, but in typical out-
door environments we observe maximum ranges of approximately 15 meters. We
use this range to determine which laser missed returns are due to limited range and
which are due to water absorbtion (i.e. we can detect the river from these laser
misses). The laser range measurements are converted into a 3D point cloud in the
world frame using an accurate positioning system that operates in GPS denied en-
vironments ([12] and [11]). In addition to global positioning we measure the cur-
rent height above the river surface, which cannot be derived purely from the global
frame, since the height will vary according to current water level. To achieve this
we extract specular returns from the water surface in a tight cone directly below the
vehicle.

Once the global position and relative height above the surface is known, we can
then proceed to use the laser measurements to form our environment map. In partic-
ular the following rules are applied:

• All missed laser returns (those with the maximum laser range), that pass through
the river plane, are considered as river cells at the intersection of the ray and the
river plane {χ i

r = 1 }
• All laser hits less than maximum range are projected on the environment grid

and based on the density of these projected hits in a cell, the cell is classified as
part of the river bank. {χ i

r =−1 }



3.2 Goal Planning for River Following

The main task in autonomous exploration is to take local perception of the envi-
ronment and to extract goals for the vehicle to traverse towards. The goals are then
fed in as input to the low-level motion planning algorithm. The low-level motion
planning we have developed in earlier in [4]. The exploration algorithm we present
here sets goals that seek to maximize the information gained during the mission.

To achieve desired behaviors we introduce multivariate cost maps, that respect
the characteristics of the sensing and extend the abilities of more simplistic tradi-
tional frontier exploration algorithms [16]. In particular the costs we derive enable
the vehicle to observe the maximum amount of the riverbank whilst following the
course of the river, and where possible avoid returning to unexplored portions of the
river that are behind the vehicle. Unexplored frontier that was not observed as the
vehicle passed by initially, may become larger in size than a narrow passage that
the vehicle encounters directly ahead, however, it is suboptimal to return to these
locations as little new information is collected on the journey back to previously
explored areas.

For one we develop a riverbank hugging behavior which uses a distance trans-
form based cost function, Cd(·) that aims to keep the vehicle away-from but near-
enough distance to the riverbank to both assist the 3D mapping of the bank and
ensure the local motion estimation is functional. This range is designed to result in
maximal information gain of the riverbank. To arrive at CD(i) we compute a dis-
tance transform fD(i) that returns the distance to the nearest obstacle (χ j

r < 0). We
very efficiently compute this distance cost as described in detail in [12]. After cal-
culating the distance transform we apply a function to penalize goals very close to
obstacles and also penalize goals far away from obstacles using a desired distance
κD as follows:

CD(i) = 1− exp(kD( fD(i)−κD)
2 +

1
fD(i)

) (3)

fD(i) = argmin
j=1:N
χ

j
r <0

||(xi,yi)− (x j,y j)|| (4)

where kd is a tuning constant. The resulting functional is depicted in Fig. 3(a), where
the cost is high near the obstacles and descends to a minima at κD.

The next cost we introduce is designed to avoid retracing steps, in particular we
assign cells that have been observed more recently with lower cost than those behind
the vehicle, that were observed further in the past. We take the elapsed time since
the ith cell was last observed as χ i

t and use it to penalize retracing through cells seen
previously as follows:

CT (i) = t−χ
i
t (5)

Fig. 3(b), visualizes this temporal observation cost. An important cost we introduce
is CR(i). The range the cell is from the current vehicle-location, which is designed
to maximize distance traversed along river:



(a) Distance transform (b) Relative temporal differences be-
tween observations

(c) Range of the cell to the current ve-
hicle location

(d) Combined multi-variate cost func-
tion

Fig. 3 Visualizations of the multi-variate cost functions. Obstacles are highlighted in red, the cells
observed as river are rendered a shade from white to blue, where deep blue represents low cost to
go. Cells with lowest cost in a map represent the next goal point for navigation. For the combined
cost functions we indicate the cluster of lowest cost cells in green.

CR(i) = ||(xi,yi)− (xt ,yt)|| (6)

where (xt ,yt) is the current position of the vehicle, see Fig. 3(c).
Next we introduce a cost to favor the vehicle continuing on its current course to

avoid the issue of isotropic sensor input that typically occurs at commencement of a
mission when no obstacles are within range and the aforementioned costs are at an
equilibrium and do not return stable goals.

CH(i) = expκH (θ v
z−∆θ ) (7)

∆θ = arctan((
xt − xi

yt − yi
)

2
) (8)

Where kH and κH are constants that are empirically determined to create a dip in
cost around zero heading to enable vehicle to maintain its course when the sensory
inputs do not provide stable goals, such as in open waters.



Finally an obstacle path cost CO(i) is derived from the set of cells (P) connecting
the vehicle position with cell i:

CO(i) = argmax
p∈P

( fO(p)) (9)

fO(p) =

{
0 if χ

p
r == 1

κO otherwise
(10)

Where κO is a suitably large constant to avoid obstacles. Individually these costs do
not produce desirable behavior, however when correctly fused together, the vehicle
maintains course. Therefore, the final objective of the goal planning algorithm is to
combine the costs and extract the resulting goal χG that is to be passed to the motion
planning algorithm.

Then to extract goals we compile a set Ψ that contains the cells with the lowest
n% cost, then find a weighted mean over this set:

G = argmin
ψ∈Ψ

( Σ
i=1:N

(||(xψ ,yψ)− (xi,yi)|| ·C(ψ))) (11)

4 Results

We validate our method in a set of experiments, beginning with controlled simu-
lations executed within maps of real-world data, continuing with results from au-
tonomous flights over rivers and waterways and then we present open loop compar-
ison with human operator on real-world data.

4.1 Simulated Exploration on Real-world Data

For simulation we use an environment model generated from data collected over
a section of McCarthy River in Mississippi, USA. A 3D point cloud registered in
world coordinates is generated from data collected through the sensor suite carried
on a boat traversing the river. From this point cloud we can simulate the laser mea-
surements given a particular pose of the robot and the known characteristics of our
laser scanner. This gives us the means to evaluate our autonomous exploration al-
gorithm based on multi-variate cost maps against a traditional frontier exploration
algorithm.

We use planning cycles executed every 10 seconds and use a fixed number of
planning cycles to give a fair evaluation. Each algorithm is given the same initial
conditions and we measure the information gained at each time step during the sim-
ulated mission. In Fig. 4 the information gained with approach is plotted against
time, where clearly the more traditional frontier approach has difficulties maintain-



ing advantageous trajectories for mapping the riverbank. When narrow passages
appear in the river, the frontier algorithm oscillates between returning to explore
the earlier unexplored frontier segments and returning to the narrow passages. Our
method both maintains optimal distance from the riverbank to avoid suboptimal tra-
jectories and also selects trajectories with higher probability of maintaining course
along the river and avoid backtracking down the river to observe portions of the
bank.
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Fig. 4 Simulation of autonomous exploration comparing our method using multi-variate cost maps
against a more traditional frontier exploration algorithm [16]. The simulation is given the same
initial conditions within an environment model formed from real-data collected from a section of
McCarthy River in Mississippi, USA. The information gained using each algorithm is compared.
When presented with a narrow passage appears, the frontier algorithm oscillates between returning
to earlier unexplored segments of the river, whereas our algorithm continues in the trajectory that
is far greater probability of increasing the information collected of the riverbank.

4.2 Autonomous Flights

After demonstrating in simulation that our exploration algorithm is more optimal at
returning favorable trajectories, we now proceed to evaluate our approach in real-
world truly autonomous flights over rivers and waterways. We manually bring our
system into a hover over a river and switch into autonomous mode and from there
let the vehicle explore the river autonomously at a velocity of 1 m/s with no further
human inputs.

The flights are on tight and densely vegetated sections of a river, and demonstrate
the complete system for planning trajectories that avoid overhanging tree obstacles
and maintaining course along the river. The algorithm is able to plan trajectories
which enable the system to stay in range of both riverbanks where possible resulting
in an optimal trajectory for maximizing information.



(a) (b)

Fig. 5 (a)Laser-point cloud collected from the autonomous flight through the densely-forested
river environment. The detected river extent is colored with blue cells and the bank and overhanging
trees are colored by height above river surface. (b) Environment where we test the system’s ability
to fly autonomously through a densely forested river.

Fig. 5 shows an example of the cluttered river environment the robot is flying
through during an autonomous 100m flight. The canopy and the river/bank classifi-
cation map from this flight are shown in Fig. 6. This experiment demonstrates the
advantage of our algorithm against getting information from satellite images as we
are able to classify the areas lying underneath the canopy as river or bank.

Finally we demonstrate the ability of the system to navigate a river over long
distances. In the longest autonomous run on a river, the robot flew for about 450m
along the length of a narrow river. The limiting factor in the distance covered during
this test was the battery life of the vehicle.

This experiment was conducted on a very shallow river about 10-15m in width
with dense vegetation on both banks. The robot localizes itself without any GPS
input and is able to classify the cluttered environment into river and obstacles to
explore and plan through it. There were some pauses in robot trajectory in some
sections of the river due to trees with branches hanging over the river blocking the
path for the robot. Shallow areas in the river made the problem harder as they would
be classified as obstacles due to large number of laser returns. Wind was also a
challenge as a slight drift from the trajectory would take the robot too close to an
obstacle. The final map of the bank and the trajectory of the vehicle during this
experiment is displayed in Fig. 7. The system operates without manual intervention
successfully exploring the river and turning according to the river direction.

4.3 Open Loop Comparison

Finally, we compare vision and laser sensors for navigation against a human op-
erator, whom we consider to make expert decisions on how to navigate along the
river. Human decisions are either left or right turn decisions which are measured



Fig. 6 Map generated from autonomous flight through narrow and densely vegetated river-
segment. Top: Satellite view of river segment. Left: Map of river where green is the bank and
overhanging trees detected by the laser scanner. Right: Traversable river extent detected by the
laser scanner. Notice the overhanging trees in the middle of the segment are removed and a clear
and traversable path is discovered underneath by the flying vehicle. The traversable river map, for
example, could be used by a surface craft following the flying vehicle enabling it to have knowl-
edge of where it is safe to travel.

from heading changes in pose estimate. We perform an open loop comparison of
the sensors and human operator on data collected by the robot platform fixed on a
boat driven along McCarthy river.

We compare the decisions made by the human operator against the turn decisions
made based on goal-points received from the multi-variate exploration algorithm
using laser as well as vision sensing.

Since the laser scanner has a short range, laser based navigation follows the con-
tours of a bank closely making more reactive decisions. The vehicle is able to look
further ahead using vision to make intelligent and time-efficient decisions. This dif-
ference is emphasized in a wide river, where vision will lead the vehicle down the
river following its general course, but laser navigation will stick to the bank and
follow its contours which is time-inefficient and in contradiction to what a human
operator would do. After an initial 50m, the next 150m stretch is more than 25m
wide and vision performs much better than laser for this stretch, see Fig. 8(b), (c).



Fig. 7 Autonomous flight: Top: Satellite image with overlaid flight trajectory and Bottom: The
river/bank map (blue) and canopy map (green) generated by the robot from data collected in a
450m autonomous flight along a river.

5 Conclusion

Our work demonstrates that autonomous autonomous exploration is possible in river
environments and that neither GPS waypoints nor prior maps are necessary. In ad-
dition we also demonstrate GPS denied flight with planning algorithms that can
robustly extract goal points in challenging unstructured terrain. While there is much
work in autonomous exploration for ground-vehicles, these algorithms do not di-
rectly translate to river environments. Our system is developed to respect the spe-
cific physical layout and properties of the river and bank and the behavior of the
sensors and perception algorithms in these environments.

In future work, we still see challenges to increase the operating velocity in a
safe manner. One avenue to explore is to predict ahead the course of the river with
more accuracy giving confidence of which directions are most likely to possess free-
space and when turns, dead-ends or forks are likely to appear. We also see persistent
monitoring a waterway as an important means to detect pertinent changes to the
environment. Further we see that small flying vehicles while fast and nimble, have
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Fig. 8 (a) Comparison of turn commands over time. Long range vision commands are more stable
and do not require the vehicle to change directions unnecessarily. Laser commands are more jittery
as they consider a much smaller environment while planning and react suddenly to any changes.
(b) % accuracy of vision and laser turn requests by comparing them to the ground truth. Results
from the 50-200m wide stretch show a larger difference in vision and laser accuracies. (c)The 1.5
km path followed on McCarthy river.

limited time of flight and must be combined with a supporting vehicle which is
larger and trails behind offering the ability for the flying vehicle to return for landing
and recharging. These non-homogenous teams of vehicles pose many interesting
research challenges, in both high fidelity localization and tracking and with relative
motion planning for high-speed take-offs and landings ,in addition to information
sharing to exploit the different sensing characteristics and viewing perspectives of
the vehicles.
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