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Abstract Accurately mapping the course and vegetation
along a river is challenging, since overhanging trees block
GPS at ground level and occlude the shore line when viewed
from higher altitudes. We present a multimodal perception
system for the active exploration and mapping of a river
from a small rotorcraft. We describe three key components
that use computer vision, laser scanning, inertial sensing and
intermittant GPS to estimate the motion of the rotorcraft, de-
tect the river without a prior map, and create a 3D map of the
riverine environment. Our hardware and software approach
is cognizant of the need to perform multi-kilometer missions
below tree level with size, weight and power constraints. We
present experimental results along a 2 km loop of river us-
ing a surrogate perception payload. Overall we can build an
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Notation

Sk a vehicle state at time #;

X; a single measurement collected with one
of the sensors

m the total number of vehicle states
considered in the optimization

n the total number of measurements
acquired with a set of different sensors
that are considered in the optimization

p(xi, s1,...,8,) aprobability density function (PDF)
describing the distribution of the
measurements x;

h;(s1,...,8n)  afunction modeling the sensor that

provided measurement x; based on the
vehicle states sy, ..., S;.

1 Introduction

We are developing perception and planning algorithms to
be used by a low-flying micro air vehicle (MAV) to au-
tonomously explore rivers; mapping their width and the sur-
rounding canopy. In some cases, the canopy can be so thick
and high covering a river that it blocks GPS signals and the
problem becomes one of simultaneous localization and map-
ping in an unstructured three-dimensional environment. The
localization and mapping problem is complicated because
in our mission the vehicle will fly one-way up the river and
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Fig. 1 A typical riverine environment that we expect to map. A small
rotorcraft can fly above the shallow, fast-moving water and yet remain
below the thick canopy to navigate and map the river. The foliage along
the banks is dense enough to block or seriously degrade GPS signals

then return quickly at high altitude. Figure 1 shows a typical
riverine environment. Exploration from a flying vehicle is at-
tractive because it extends the sensing horizon and removes
complications of navigating in shallow water and aquatic
vegetation. However, a flying solution also adds constraints
on the size, weight and power available for perception. This
is a significant constraint given that the multi-kilometer mis-
sions will force all the sensing/computation to be conducted
onboard. Given the size of rotorcraft that could reasonably
fly in environments with thick canopy, it will be necessary
to keep all the sensing and computation components to less
than one kilogram.

These constraints on payload and the inability to rely on
GPS have significant implications for our approach. First,
we will need to depend on perception to produce a high
resolution 6 degree of freedom (DOF) pose estimate that
is much more stable than can be produced by simply inte-
grating inertial sensors. Second, any active imaging, such as
from laser scanning, will be required to be very lightweight
and low power and hence will be short range. Third, predict-
ing the river’s course and following it without a prior map
will require a perception system that looks significantly fur-
ther than could be sensed through laser ranging.

In summary we derive the following requirements to nav-
igate autonomously:

1. alocally consistent state estimation system,
2. the ability to sense and avoid obstacles, and,
3. adirection to follow the course of the river.

After navigating the river the returned map requires:

a global reference frame,

the course of the river,

the width of the river, and

the height of vegetation along the shore.

el NS

In this paper we describe our approach for mapping on a mi-
cro aerial vehicle in four stages: The first is a graph-based
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optimization for state estimation of the vehicle’s motion in
6DOF. Using both relative and global constraints from vi-
sual odometry, inertial sensing, and sparse GPS, we demon-
strate its ability to globally estimate the vehicle’s state while
maintaining an accuracy that allows for precise local map-
ping. The second is a long range color vision system that
uses a forward pointing color camera to automatically find
the river even with significant variation in the appearance
of the river. We solve this problem with a self-supervised
method that continually learns to segment images based only
on an estimate of the horizon (from inertial sensing) and
some simple heuristics that describe riverine environments.
The third is an efficient method for creating obstacle maps
for motion planning in 3D that are high resolution and can
be scrolled over distances of multiple kilometers efficiently.
The fourth contribution is a short range, laser-ranging based
system tasked with obstacle detection and the creation of a
metric, three-dimensional map.

Parts of our system were first shown in Chambers et al.
(2011) and Achar et al. (2011). Since then our approaches
have been refined to reflect our latest results. In state es-
timation we have improved our method, describe in de-
tail how we achieve accuracy for loop closure and reduce
computation with node merging. The river detection algo-
rithm includes more analysis, a sun reflection detection, and
a detailed description of artificial horizon line estimation.
We have added a section on an improved distance trans-
form algorithms and a comparison with other state of the
art aproaches.

1.1 Related work

Previous work in autonomous river mapping has utilized
small boats (Leedekerken et al. 2010) or higher altitude,
fixed wing UAVs (Rathinam et al. 2007). While these plat-
forms could be more practical in simple riverine environ-
ments, we aim to develop a platform that can perform in
the most difficult situations such as rapidly flowing water,
obstructed waterways, or dense forest canopies. Preliminary
work in river mapping on small rotorcraft using passive vi-
sion and ultrasonic ranging (for elevation estimation) has
been reported over short distances (Yang et al. 2011). Our
work is similarly motivated but we explicitly consider sub-
stantially longer missions in which it is important to not only
map the extent of the river but also to map the vegetation
along the shore line and avoid obstacles that might appear in
the middle of the river.

Obstacle avoidance is a necessary capability to operate
close to the trees present at low altitude. Hrabar and Gau-
rav (2009) performed experiments using optical flow for ob-
stacle avoidance, however additionally a stereo camera was
used to prevent collisions from straight ahead zero-flow re-
gions. Stereo image processing with evidence grid based fil-
tering was also used by Andert et al. (2010), Andert and
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Goormann (2007) to create a map based on stereo imagery
that avoided obstacles reactively in simulation. Viquerat et
al. (2007) presented a reactive approach to avoid obstacles
using Doppler radar. Grzonka et al. (2009) presented a quad-
rotor that is capable of localization and simultaneous local-
ization and mapping (SLAM). Mapping with a monocular
camera was shown in Weiss et al. (2011) and a line laser in
Shen and Kumar (2011).

The four main focus areas of this paper are position esti-
mation, river detection, mapping, and obstacle detection for
a lightweight flying vehicle. Next we discuss related work
in each of these areas:

State estimation using a suite of heterogeneous sensors
constitutes a well-studied problem in robotics. In the past,
recursive filters have been successfully demonstrated for a
variety of applications (e.g. Reid et al. 2007; Eustice et al.
2005). In our application however, we expect the state to
change significantly whenever sparse GPS measurements
become available, which renders approaches that linearize
only once not well suited. Furthermore, recent research by
Strasdat et al. (2010) suggests that recursive filtering per-
forms inferiorly compared to optimization approaches for
most problems.

We treat the state estimation as a non linear optimization
problem, using a graph to represent the interdependence of
vehicle states and measurements. In this sense, our approach
covers a sub-class of problems that are addressed by g2o0
in Kuemmerle et al. (2011). In contrast to this work how-
ever, we employ an on-line graph reduction scheme simi-
lar to Folkesson and Christensen (2007) and Konolige and
Agrawal (2008) which enables real-time throughput for a
sliding window of vehicle states spanning multiple min-
utes. The estimation is performed using a sparse optimiza-
tion framework by Lourakis (2010) which itself shares sim-
ilarities with g2o and provides interfaces to a similar set of
sparse solvers.

In the second area, our system uses a visual river segmen-
tation algorithm to detect the extent of the river for mapping
and long-range guidance. Most previous work on detecting
water in images has been focused on detecting water haz-
ards like puddles using color, texture and stereo disparity
cues for autonomous ground vehicles (Rankin et al. 2004;
Rankin and Matthies 2010). Our solution automatically
learns models of river and shore appearance for segmenta-
tion by exploiting the structure of riverine environments in a
scheme that shares some similarities to self supervised road
detection (Dahlkamp et al. 2006).

In the third area of 3D mapping, a probabilistic map sim-
ilar to Martin and Moravec (1996) is kept to filter the sensor
data and to compute the likelihood of occupancy. For mo-
tion planning we require an obstacle expansion that is typi-
cally calculated by searching for the closest obstacle within
a desired radius. However, aerial vehicles must stay far away

from obstacles and therefore want a large obstacle expan-
sion. The obstacle expansion is related to the distance trans-
form and Meijster et al. (2000) presented an efficient algo-
rithm to globally calculate the distance transform. Kalra et
al. (2006) showed an algorithm to incrementally construct
Vornonoi diagrams. We show an efficient algorithm similar
to D* Lite (Koenig and Likhachev 2002) that updates the
distance transform up to a limit incrementally. We expand
on our previous work (Scherer et al. 2009) and incorporate
some of the changes of Lau et al. (2010).

In the fourth area of obstacle detection and 3D mapping
with an articulated 2D lidar, researchers have investigated
various mounting and articulation schemes to focus the lidar
scan pattern in specific regions of interest (Wulf and Wagner
2003; Holz et al. 2010). Typically, only a qualitative com-
parison of different scan patterns is offered. However, Desai
and Huber (2009) provide a objective, quantitative method
for choosing a ladar mounting and articulation pattern by
measuring density and uniformity of sensor measurements
in simulation. An open area of research is to compare ob-
stacle detection probability for small obstacles for different
laser scanning patterns. This is particularly important for mi-
cro aerial vehicles (MAVs) since a collision with any size
obstacle can potentially damage and destroy the vehicle. We
analyze our 3D scan pattern to find the probability of detect-
ing small obstacles in the path of the rotorcraft and we use
this information to dictate maximum safe vehicle velocities.

1.2 Contributions

In summary, the contributions of this paper are

— an online state estimation system that combines visual
odometry and inertial measurements with intermittent
GPS information,

— a self supervised vision based river detector that can the
handle large intra- and inter-scene variations in water sur-
face appearance commonly observed in riverine environ-
ments,

— a scrolling incremental distance transform algorithm for
efficient local obstacle cost calculation used in planning,
and

— anovel scanning ladar configuration and analysis for ob-
stacle detection and mapping.

2 Approach

Our approach to solving the river mapping problem is dic-
tated by the dominate perception challenges of the applica-
tion domain. Challenges include state estimation, navigating
the course of the river, obstacle detection, and measuring the
river’s width and the clearance and structure of the canopy
above the water.
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Fig. 2 The perception architecture. The sensor inputs for perception are a stereo camera pair, a 3D scanning ladar, and GPS/INS. The inputs are

used to estimate the vehicle’s state, detect rivers, and map obstacles

To meet the perception challenges we must combine sev-
eral sensors: GPS, IMU, stereo camera pair and lidar. We
must use light-weight and low fidelity sensing because the
payload is limited. No single sensor is reliable on its own.
We draw on the complementary characteristics of the sensor
suite to provide the capabilities for our rotorcraft to execute
a river mapping mission. For example, cameras are good at
estimating motion, however not reliable enough to detect ob-
stacles. Laser scanners on the other hand can detect obsta-
cles well, but are difficult to use for localization or detecting
the river. Our overall perception architecture that summa-
rizes the algorithms developed and how they fit together is
shown in Fig. 2.

For state estimation, described in Sect. 2.1, the GPS
is low accuracy and has intermittent coverage, the stereo-
camera can be used for precise relative motion estimates,
but integrating the estimates gives a solution that drifts un-
boundedly, and likewise an IMU produces unbounded po-
sition drift, but can be used over a short period to correct
small error and can be used to bound pitch and roll. Our
approach fuses GPS, IMU and visual odometry within a ro-
bust framework that can seamlessly handle the dropouts and
the various frequencies in the sensor measurements and pro-
vide a solution in dense, occluded, natural and dynamic ter-
rain, comparable in relative accuracy to a high-end, heavy,
GPS/INS unit operating in wide-open environments.

For predicting the course of the river, Sect. 2.2, we need a
long range sensor, which rules out a lightweight short range
laser scanner and, therefore, we use a computer vision solu-
tion based on a color camera to detect the extent of the river
and to choose a suitable course to follow.

Our approach for obstacle and environment mapping is
presented in Sect. 2.3. The approach uses a scrolling 3D ev-
idence grid to efficiently update the distance to the closest
obstacle. This distance or cost is important for motion plan-
ning since it allows us to stay away from obstacles if possi-
ble and get close if necessary.

The final part of the approach, described in Sect. 2.4,
is the 3D laser scanner for obstacle avoidance and canopy
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mapping. We use a lightweight laser scanner that when sta-
tionary provides a single plane of range information, which
we actuate in a novel configuration that is spinning and tilted
off-axis to give a 360 degree view around the vehicle (albeit
with small cone-shaped blind-spots directly above and be-
low the vehicle). We explain key details such as analyzing
the probability of detecting small obstacles at various veloc-
1ties.

2.1 State estimation

Knowledge of the position and orientation of a mobile robot
is essential for a variety of applications such as path plan-
ning and mapping. To autonomously follow a river and
avoid obstacles, we need information about the state to back-
project laser scans and river detection results into locally
accurate maps, while maintaining a consistent estimate of
the position and orientation in a global coordinate frame.
While visual odometry and inertial measurements can be
employed to accurately estimate the change in the vehicle
state, they are prone to drift, resulting in unbounded errors.
On the other hand, GPS provides an estimate of the position
in a global coordinate frame with a bounded error. Unfor-
tunately, riverine environments will seriously degrade any
GPS signal, resulting in intermittent availability of global
position information. In fact, we expect GPS to fail for pe-
riods of several minutes. During these periods, the vehicle
state will drift, which will result in a potentially significant
displacement in the estimated position from the global posi-
tion measurement when the GPS signal is regained.
To summarize, we require our state estimation

— to fully exploit the information provided by intermittent
GPS readings,

— to be able to deal with significant changes in the state in a
global coordinate frame,

— to avoid discontinuities in the vehicle path and resulting
inconsistencies in the map, and

— to provide state estimates with real-time throughput.
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In order to meet these requirements, we employ an ap-
proach that treats state estimation as a nonlinear optimiza-
tion problem over a history of states and measurements
with a graphical representation. Our approach is most sim-
ilar to Folkesson and Christensen (2007), but in contrast to
that work which uses a Gauss-Seidel type relaxation, our
optimization employs the Levenberg-Marquardt algorithm
(Marquardt 1963) and changes multiple states per update
step.

Given a set of measurements, we determine the optimal
set of vehicle states as the one for which the given set of
measurements were most likely to occur.

The probability of making a single measurement x; for a
given set of vehicle states S = [sy, ..., sy,] is given by the
conditional probability p(x; | s1, ..., Sm)-

As the measurements are assumed to be conditionally in-
dependent given the states, a set of measurements taken at
different times results in the overall conditional probability

n
POt X | St osm) o[ [ pGei 110 sm) e

i=1

Then, the optimal set of vehicle states [sy, ..., s,] is the one

which maximizes the overall probability
[s1, .0y 8m] =argm§1x(p(x1,...,xn |s1,...,sm)) 2)

Rather than finding the maximum of this distribution, it is
more common to minimize the negative logarithm of the
likelihood function.

[S1, ..., 8m] = argmsin(—log(p(xl,...,xn | 51, ...,sm)))

= argmxin<— Zlog(p(xi [ S1,.-., sm))> 3)

i=1

In the following we will assume that the measurement error
is zero-mean Gaussian distributed. This is not a necessary
assumption and in fact other probability distributions may
be utilized in a graph-based approach. However, with this
assumption, it is easier to motivate the problem as a nonlin-
ear least square optimization, and it is a valid approximation
for many real world applications.

Let v; be a Gaussian distributed random vector with zero
mean and covariance matrix C;, then a measurement is mod-
eled as x; =h; (51, ..., 5m) + ;.

Minimizing the negative logarithm of the correspond-
ing probability desity function leads to the nonlinear least
square problem

[S17~-'7sm]

= argmsin (Z %(hi S — Xi)TCi_l (h,-(S) — xi))

i=1

=argﬁ}}n<2“ Qi(hi(S1,-~-,Sm)—xi)H2> “)

i=1

where Q; is a symmetric, positive definite matrix for
which C;~! = QiTQi. Thus, each measurement provides
a weighted displacement of the modeled measurement
h;(s1, ..., S») to the measurement x; that the sensor pro-
vided.

2.1.1 Graph-based representation of the problem

The problem of estimating the vehicle state in an optimal
fashion can be modeled as a graph of nodes that are con-
nected by edges. In this model, the state s; of the vehicle at
a discrete point in time # is represented by a node. An edge
in the graph respresents a constraint between states induced
by a sensor reading x;.

In general, sensor readings can be classified based on
whether they measure a relative change in the state and thus
a local measurement or whether they measure the state in a
global coordinate frame and hence only depend on the ve-
hicle state at a single point in time. Visual odometry is an
example of a local measurement, as it measures a relative
transformation between successive states. On the other hand,
a GPS measurement provides information about a single ve-
hicle state in a global coordinate frame. In order to represent
both classes of sensor measurements in a unified way, we
introduced a fictitious zero state s at the origin of the coor-
dinate frame as suggested by Konolige (2004). In our current
implementation, all readings of the onboard sensors can be
modeled as functions of exactly two states, either succes-
sive ones x; = h; (sx—1, sx) in case of visual odometry and
integrated gyroscope readings or as dependent on one vehi-
cle state and the zero state x; = h; (s(’)“, sr) for global mea-
surements. As before, we assume measurement errors to be
Gaussian distributed with zero mean.

In this sense, a node is memory that stores state infor-
mation, while an edge is the realization of a cost function
£(sz, sk, x;) = Qi (h; (sy, sx) — x;).

Although the approach was motivated as a Maximum
Likelihood Estimation in Sect. 2.1, one may think of the
edges in the graph as nonlinear springs that apply forces
to the nodes (Folkesson and Christensen 2007). Solving the
nonlinear least square problem may in this sense be thought
of as finding a state of the system where the overall energy
in the system is minimal.

2.1.2 State parametrization and sensor models
We parametrize the state as

s=[W, 11" =1[¢,0, ¥, te, 1y, 1] ®)
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where ¥ = [¢, 0, w]T denotes the orientation in Euler an-
gles, and t = [1y, ty, tZ]T denotes the position in the global
coordinate frame defined by GPS. Euler angles have the ad-
vantage of constituting a minimal parametrization of the ori-
entation. Thus, they have a natural representation of the co-
variance as 3 x 3 matrix. On the other hand, Euler angles
suffer from singularities. Through an appropriate choice of
Euler angle conventions and vehicle coordinate frame in our
implementation, these singularities coincide with kinemati-
cally infeasible orientations of the rotorcraft in normal oper-
ation.

The state is estimated based on sensor inputs from stereo
visual odometry, integrated gyroscope readings, GPS loca-
tion measurements, and inclination sensing from accelerom-
eters.

In the following, function R(¥) will denote a R?
R3*3 mapping of Euler angles ¥ to a rotation matrix R and
function R~!(R) the inverse mapping from a rotation ma-
trix R to Euler angles. The weight matrices Q, employed
in each sensor constraint function, depend on the estimated
measurement covariances of each sensor as described in
Sect. 2.1. For simplicity, we assume that the coordinate sys-
tems of all sensors coincide with the vehicle coordinate
frame. In our implementation, we have taken close care to
accurately calibrate for the 6 degrees of freedom (DOF)
transformations between the different sensors.

We employ the stereo visual odometry approach by
Geiger et al. (2011) which provides a measurement of the
relative 6 DOF transformation x = [W,,, fy,]T that the ve-
hicle underwent from state s; to state s; along with an es-
timate C,, of the uncertainty of the transformation. With
C~!' = QT 0.0, the visual odometry constraint is defined
as

fvo (sis 8, [Wos tvo])
R RWDHTRW)) — Yo

=0wl R = 1) =t

(6)

Note that state nodes are appended to the graph at the
rate of the visual odometry subsystem and that the 6 DOF
transformation is used to propagate the most recent state to
obtain an initial estimate for the newly added state.

Gyroscope readings Wy, are integrated according to
Bryson and Sukkarieh (2007) and constrain the relative ori-
entation of successive vehicle states

fgyru(sia Sj, lIlgyra) = ngro [R_l (R(WZ)TR(W])) - q/gyru]
@)

Using the fictitious zero state s, location measurements
tgps obtained with the GPS receiver can be expressed simi-
larly as dependent on two states:

fops (505 5+ Teps) = Qgps [R(WJ)T(U —15) = tgps] ®)
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Fig. 3 A graphical representation of the vehicle state estimation prob-
lem. Nodes represent the vehicle state at different times # while edges
corresponds to constraints on these states introduced by measure-
ments x;. Odometry measurements result in constraints on successive
states, while intermittent global measurements anchor the state to a fic-
titious zero state s;. The graph is sparsely interconnected, as each node
is only constrained by measurements depending on a limited number
of other nodes in the graph

Using accelerometers as an inclinometer as proposed by
Konolige and Agrawal (2008), the orientation of the vehicle
in the global coordinate frame can be constrained in 2 DOF.
With the gravity vector g and accelerometer measurement
ag, the resulting constraint is expressed as

o (55 55> a4¢) = Qg [RW)TR(¥)g — ] ©)

Since Q, has to account for measurement noise of the ac-
celerometers and for accelerations of the aerial platform in
flight as well, it was chosen to be sufficiently large in our
implementation.

2.1.3 Sparse optimization

In our graph-based framework, the state of the system can be
determined by collecting the information of all nodes, each
of which holds a single vehicle state si. The state of the over-
all system is S = [sq,...,5n]T. The energy of the system
may be obtained by collecting the energy terms of all edges
E =[f,...,f,]T. In order to move the system to a state with
a lower overall energy, we employ the Levenberg-Marquardt
algorithm (Marquardt 1963), using an optimized, publicly
available implementation (Lourakis 2010). With the Jaco-
bian Jg =6 E/4S, the augmented normal equation is given
by

(JE'JE +A)AS = —JETS (10)

where [ is the identity matrix and A is a damping parameter
that is appropriately chosen so that the resulting matrix is
always positive definite. As a result, the energy function is
linearized around the current system state in every update
step, thus making the solution exact and the framework able
to deal with highly nonlinear constraints.

As depicted in Fig. 3, the local nature of most state mea-
surements results in a sparsely interconnected graph struc-
ture, which directly corresponds to a sparsity pattern in the
normal equation. The structure of the normal euqatio is pre-
dominantly block diagonal with additional non-zero entries
in rows and columns corresponding to the fictitious zero
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state. This structure ensures that the normal equation is well
conditioned in most cases and allows for the application of
sparse solvers, reducing the complexity of solving the sys-
tem to a fraction of the complexity as compared with a dense
system. Nevertheless, there is an upper bound to the number
of past states that can be incorporated into the optimization
while meeting the requirement for real-time throughput of
the state estimation. Real-time throughput can be guaranteed
by performing the optimization over a sliding window of the
most recent states and their attached constraints, rather than
the entire graph. This technique essentially keeps all past
states prior to the sliding window constant, anchoring the
global position and orientation of the more recent states by
their connecting constraints.

2.1.4 Graph reduction

Inertial measurements only constrain the global orientation
of the vehicle in 2 DOF, while global heading is not observ-
able solely based on these measurements. In our implemen-
tation, heading is inferred from multiple GPS measurements
which is applicable only if multiple GPS measurements are
incorporated into the sliding window of adjustable states.
Hence, the frequency at which GPS readings are available
determines the size of the sliding window.

In order to extend the time frame spanned by the sliding
window and thus relax the requirements for GPS availabil-
ity, the state estimation includes a graph reduction scheme,
similar to Konolige and Agrawal (2008) and Folkesson and
Christensen (2007). We apply the following steps in order to
marginalize a single state node s, from the graph ... (also
see Rehder et al. 2012)

1. Solve the optimization problem for the sub-graph of
nodes and edges directly connected to s,. Determine the
overall state S of the sub-system as well as its approxi-
mated Hessian H = JEJ £ at the state of minimal energy.

2. Using the Schur complement (Konolige and Agrawal
2008), marginalize the rows and columns corresponding
to state s, from S and H. Select a vehicle state node from
the sub-graph as root node and transform state S and Hes-
sian H into the coordinate system of this state.

3. Render node s, and all directly attached constraints in-
active and introduce a new edge that constrains the re-
maining states in the sub-system where the transforma-
tion of the connected nodes into the coordinate system of
the root node constitutes the sensor modeling function £
and the transformed optimal transformations S constitute
the measurement x with H = QT Q.

The state estimation repeatedly marginalizes every other
node from the sliding window until about 60 consecutive
vehicle states have been removed. The number of consecu-
tively marginalized states was derived empirically as a trade

off between accuracy and the requirement to represent a time
frame of sufficient extent to incorporate multiple sparse GPS
readings. For stability, it does not marginalize nodes belong-
ing to a small set of the most recently added nodes or vehi-
cle states for which GPS measurements are available. As all
states are used to back-project laser scans and river segmen-
tation results into a global map, marginalized nodes are not
discarded but rather attached to remaining active nodes by
a constant 6 DOF transformation, thus successively forming
sub-maps of rigidly connected states that are transformed
according to the state of the attached active node.

2.2 Visual river detection and mapping

To explore the river, the rotorcraft needs some mechanism
for determing the river’s course so that it can move in
the correct direction. Also, river width measurements are
needed to build the river map. One approach would be to
use the onboard laser sensor, but it has an effective range
of around 10 to 15 meters which is sufficient for obsta-
cle avoidance but not always enough for keeping the river
banks in view or estimating the course of the river. Our so-
lution segments color images from an onboard camera to
find the extent of the river from the current viewpoint of the
rotorcraft. Using knowledge of the vehicle’s orientation and
height above the river provided by the state filter, the extent
of the river in the image can be projected into a local coor-
dinate frame. This forms a local map of the river for guiding
the rotorcraft along the river’s course. Pose estimates gener-
ated by the visual odometry system are used to register these
local maps to each other and by fusing many such local maps
over time a complete river map is built.

2.2.1 Challenges

The main challenge in detecting the extent of the river in im-
ages taken from the rotorcraft is the variability in water’s ap-
pearance. From satellite imagery or the viewpoint of a high
flying aircraft, waterbodies reflect the sky which makes them
fairly homogeneous in appearance and easy to segment. The
situation is different for a low flying air vehicle. The wa-
ter has reflections from the foliage and other structures on
the bank; reflections from the sky and dark regions in the
shadows of foliage. In addition, ripples in the water create
variations in texture. As a result, the river appears to be
highly inhomogeneous from the rotorcraft’s point of view.
This variability in river appearance in an image is illustrated
in Fig. 4.

In addition, the appearance of the water’s surface can
vary greatly between riverine environments and even within
the same environment as conditions change. Figure 5 shows
three images taken from the same location on a river at dif-
ferent times of day and year. This high degree of variability
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makes it difficult to use a supervised learning approach to
build a single model for water appearance or a single classi-
fier that will work robustly in different environments under
varying conditions.

2.2.2 Self supervised river detection

We exploit scene structure to build a self supervised system
that learns and constantly updates a function for discriminat-
ing between river and non-river regions. The algorithm uti-
lizes artificial horizon line information provided by the on-
board IMU to automatically generate training data and up-
date the classifier at every frame. We assume that the river
lies on or below the ground plane (this is true except for
places with a significant upward slope like waterfalls and
rapids) which means that everything appearing above the ar-
tificial horizon line must be part of the non-river area in the
image.

We then assume that areas below the horizon line that
are similar in appearance to the above horizon region are
unlikely to be part of the river and that areas below the hori-
zon line that look dissimilar to the above horizon region are
likely to be part of the river. By looking for areas below the
horizon most dissimilar to those above, candidate river re-
gions are found which are used for training as examples of
the river class. Everything appearing above the horizon line
is used to generate training examples for the non-river class.

Foliage

Foliage
Reflections

Reflections

Fig.4 Anexample image illustrating the variation of river appearance
within a single image

Thus training examples are automatically selected at every
frame to train a classifier to segment the image into river and
non-river regions.

Feature extraction The input image from the camera is di-
vided into 5 x 5 pixel patches with a regular grid and a fea-
ture descriptor (X € R") is calculated for each patch. This
feature descriptor contains information about the patch’s
appearance and position in the image. The motivation be-
hind computing the features over patches instead of indi-
vidual pixels is to reduce computational requirements. By
varying grid size, segmentation resolution can be traded off
against speed. The most commonly used attributes for visual
scene analysis tasks are color, texture, perspective informa-
tion (parallel lines, vanishing points etc.) and image posi-
tion. Position in an image provides a strong prior, the higher
up in an image a region is the less likely it is to be part of the
river and depending on the orientation of the camera with
respect to the river, regions appearing away from the center
towards the sides of the images could be less likely to be part
of the river. Straight lines are largely absent in natural scenes
so the feature descriptor we use does not include perspective
cues.

The color descriptor part of the feature vector contains
6 elements, the color information encoded in the RGB and
Lab colorspaces. The texture descriptor used is the response
to the Laws’ Masks (Laws 1980) over 4 different scales on
the 3 channels of the Lab image. We used eight of the nine
3x3 Laws’ Masks leaving out the mask that performs low
pass filtering, so the resulting texture descriptor had length
4 x 3 x 8 =96. To compute the response to a filter over a
patch we use the L' norm of the filter response of all the
pixels in the patch. While chosing the texture descriptor we
evaluated a number of different options including the SIFT-
like DAISY descriptor. We found that for our application,
different texture descriptors all performed roughly the same
so we chose the Law’s Masks because they were the compu-
tationally efficient. Details of our feature evaluation experi-
ments can be found in Achar et al. (2011). The position of a
patch in the image is described using 3 numbers, the signed
perpendicular distance (in pixels) of the patch from the hori-

Fig.5 Three images taken at the same spot on the Allegheny River at different times. Variations in lighting, water surface ripples and surrounding
foliage cause large changes in the river’s appearance
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(b) Sky Detection

(d) Automatically Selected Training Examples

Fig. 6 Steps in the river detection algorithm (Color figure online)

zon line and the distance in pixels of the patch to the left and
to the right of the image center.

Sky detection ~ As a preprocessing step, we first segment out
the sky and ignore it during all further computations. This is
done because sky tends to be washed out and can thus be
easily confused with shiny, mirror like parts of the water’s
surface. Also, removing the sky region saves computational
effort in future steps.

A linear support vector machine trained over a set of la-
beled images is used to detect the sky region in each image.
Sky regions in images have a number of characteristics; they
appear high up in the image, they tend to be bright or washed
out, they have little texture and are generally either blue in
hue or unsaturated. The sky is relatively easy to segment out
with a globally trained classifier as its appearance is not as
variable as that of the river. Figure 6(b) shows an example of
sky detection. The remainder of the image needs to be clas-
sified as either being part of the river or part of the shore.

The next step is to find the position of the artificial hori-
zon line in the image. For an air vehicle flying at low alti-
tudes, the onboard inertial sensors provide all the informa-
tion needed to calculate the position of the horizon line in an
image from a calibrated camera as the horizon line depends
only on the camera orientation with respect to the gravity
vector. The horizon line in 3D world space is the line at in-
finity on the ground plane in front of the camera. This line
can be projected into the image using the camera projection
equation to find the horizon line in the image.

Let the rotation of the camera be represented by the 3 x 3
matrix R where R is calculated with respect to a reference
frame where the y axis of the camera is aligned with the

(e) Post MRF Labelling

(f) Final Segmentation Result

gravity vector. Also, we use r; to denote the ith column
of R. The horizon line in 3D world space consists of all
points on the ground plane (points for which y = 0) that
are at an infinite distance along the camera’s z axis (the
forward direction). Thus, the horizon line in world space
is the set of (homogenous) points Ps, =[x 0 1 017 where
x € R. These points can be projected into the image as
Poo = K[R | 03x1] Psc Where p is the homogenous image
coordinate of the horizon point Py, and K is the camera’s
intrisic calibration matrix. It can be shown that the points
Poo satisfy the line equation /7 po, = 0 where

|=Kri x Kr3 (11)

The horizon computation assumes that the region the ro-
torcraft is operating in is locally flat and so the river lies on
the plane perpendicular to the gravity vector. In practice, our
algorithm is robust to small inaccuracies in the estimate of
the horizon line position and can be calculated simply from
the IMU or using the state estimator output.

Appearance modeling The goal of appearance modeling
is to assign to each patch a probability of being part of the
river (R) or being part of the shore (—R) on the basis of the
feature vector (X) that describes it. This probability is then
used to find candidate river patches (patches that have a high
probability of belonging to the river).

Appearance modeling depends on being able to create
a generative model of appearance from a set of observed
samples. A number of methods exist for estimating a joint
probability distribution P(X) over a set of d variables X =
{x1,x2,x3,..., x4} from a set of [ samples {Xl, X2 ..., Xl}
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drawn independently from the underlying distribution. We
chose to use a Chow Liu tree (Chow and Liu 1968). A Chow
Liu tree approximates the joint probability distribution of a
set of random variables (often discrete variables) by factor-
izing it into a product of second order distributions. It repre-
sents a significant improvement over a Naive Bayes model
as it allows for first order dependencies between variables.
A Chow Liu tree is optimal in the sense that it is the distri-
bution of its class that minimizes the KL divergence to the
real joint probability distribution.

We wish to assign to each patch a probability of being
part of the river (R) or being part of the shore (—R) on the
basis of the feature vector (X) that describes it. By Bayes’
Rule we have

P(X|—R)P(—R)

P(—R|X)= PX) (12)

Since the labels (R and —R) are the hidden quantities that
are to be determined it is not possible to estimate P(X | =R)
directly. A new boolean variable H is defined which is true
for regions below the horizon and false for regions above the
horizon. Unlike R, the value of H for each position in the
image is known because the equation of the horizon line is
known. As mentioned earlier, it has been assumed that the
appearance of the shore regions above the horizon is repre-
sentative of the entire shore region in the image, this implies
that P(X | =R) =~ P(X | —H) which gives
P(=R | X)~ P(X|—H)P(—=R) (13)

P(X)
P(X|-H)P(—R)
- P(X|—H)P(—H)+ P(X | H)P(H)

(14)

It now remains to form generative appearance models
P(X | —H) and P(X | H). These appearance distributions
P(X | —H) and P(X | H) are modeled using Chow Liu
trees. The feature vector X contains color, texture and image
position information and has high dimensionality as it con-
tains many texture filter responses. We create an abridged
feature vector X € RY for the Chow Liu modelling where the
texture descriptor subvector is replaced by its L, norm be-
cause using the unabridged feature vector would slow down
computation. Additionally, X does not include image posi-
tion. Since we are modeling only appearance, including po-
sition information in X would introduce an undesirable bias.
The complete unabridged feature vector is used in the later
stage of the algorithm for the linear support vector machine
where computation is less of an issue and the position infor-
mation would not create a bias.

Although a Chow Liu tree can be used in a continuous do-
main, we discretize the feature vectors X € R for each im-
age patch into a new feature vector X € S? where each fea-
ture in X is assigned to 1 of 16 levels (S={0, 1,2,...,15})
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using equally sized bins that span the range of values taken
by that feature. This discretization provides a simple solu-
tion to representing non Gaussian, multimodal distributions
of features. Each discretized feature vector X contains the
R, G, B, L, a and b channels of the associated patch along
with the patch’s texture.

Two trees are built, one using the feature vectors of
patches above the horizon (X ¢ H) to model P(X | —H)
and another using the feature vectors of below horizon
patches (X € H) to model P(X | H). The feature occu-
rance and co occurance probabilities needed to build the
trees are estimated directly from the available image data
by counting, with pseudocounts added to prevent probabil-
ities of 0 and 1. These trees are used in (13) to calculate
P (=R | X) for each patch in an image. An example is shown
in Fig. 6(c), the regions considered to have a high probability
of being part of the river are in cold colors and regions with a
high probability of being part of the shore (high P(—R | X)
are in warm colors.

Finding reflections Reflections are a useful cue for deter-
mining the extent of the river. If an object and its reflection
can be found it is fairly safe to assume that the reflection was
from the water’s surface. We look for reflections of salient
points (Harris and Stephens 1988) that occur above the hori-
zon line. We treat the water surface as part of a plane of
known orientation and distance from the camera. With this
information it is easy to use the geometry of reflections to
find a small region under the horizon where each salient
point’s reflection (if present) should occur. We search this
region for patches that are similar to a vertically mirrored
version of the patch centered around the point being consid-
ered. The similarity measure used is normalized cross cor-
relation. Pairs of patches that get similarity scores above
a threshold are marked as object-reflection pairs. Patches
surrounding the reflection are added to the support vector
machine’s training data as examples of river patches. Fig-
ure 6(d) shows the reflections that were detected in an image
(the highlighted areas below the horizon).

Finding novel regions When new appearance models for
the river and non-river regions are built from scratch for ev-
ery new frame, the algorithm is unable to handle novel ob-
jects like piers or boats that appear below the horizon be-
cause of the assumption that the above horizon part of the
image is representative of the entire non-river region. To
solve this problem we maintain two appearance models for
the river, one built as before from just the current frame,
P.,, and another built from patches sampled from the river
region segmented out in previously images P,;4. Patches are
sampled selectively from previous frames to build P,;4, with
patches from older images being less likely to be used than
patches from more recently seen images. The probability of
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a patch from the kth frame before the current frame being
sampled for P,;q is A¥ where A < 1 is a rate of decay param-
eter. We define a heuristic measure of novelty n(X) for each
patch whose value is given by

Peyr (X)
Pyia(X)

n(X) =log 15)

n(X) is a measure of how well a patch fits with the
appearance model of the river built over previous images.
Patches with a high value of n(X) are different in appear-
ance from the river and are likely to be part of the bank or an
object in the water. We threshold 7 (X) to select high novelty
patches below the horizon which are added to the set of neg-
ative training examples in the SVM classifier. Figure 6(d)
shows the novel patches (marked in purple) that the algo-
rithm found in an image.

Classifier training For each patch, the probability of be-
ing part of the shore region P(—R | X) is calculated using
(13). The patches that are least likely to be on the shore
(P(—R | X) < 0) are used as candidate river patches. Using
a low value for 6 reduces the chance that shore patches are
accidentally used as candidate river patches, but if 6 is set
too low then the selected region will be too small to provide
a good representation of the river region. In our experiments,
0 was set to 0.01. Patches where reflections were found are
also added to the set of river training examples. The train-
ing examples used for the shore class are the patches that
are considered to be novel and all the non-sky patches that
appear above the horizon line. These training examples are
used to train a two class (river/shore) linear support vector
machine.

The SVM uses the unabridged, continuous valued feature
vectors X, including image position and the complete tex-
ture descriptor. The support vector machine is trained using
an online stochastic gradient descent method. Since we are
learning a new classifier for each new frame, while the ap-
pearance of the river is likely to remain fairly constant over
short periods of time, the SVM training updates the SVM
model learnt on the previous frame. This reduces the num-
ber of gradient descent iterations needed to train the clas-
sifier for each new frame. Figure 6(d) shows the river and
shore training examples picked by the algorithm in an im-
age. Candidate river patches (patches for which P(—=R | X)
was below the threshold 6) are in red, the highlighted re-
gions are places where reflections were detected. The green
patches are the patches selected as shore training examples
because they lie above the horizon and the patches in purple
were selected as shore training examples because they are
sufficiently novel in appearance.

Using the output of the Chow Liu tree directly to classify
the scene (say by thresholding P(—R | X) at 0.5) does not

work well. There are many image regions that would be mis-
labelled by the Chow Liu tree, the SVM introduces a height
prior and has access to a more discriminative (but longer)
feature descriptor which enables it to classify ambiguous re-
gions better.

Detecting water The learnt SVM is a vector of weights
w € R. This SVM is used to assign a label y’ that could ei-
ther be ‘river’ or ‘shore’ to each patch x’. One way to clas-
sify patches would be to consider each patch in isolation and
assign it to the river class if its dot product with the weight
vector is positive and assign it to the non river class other-
wise.

;1 ifwext >0 16)
y —1 ifw-xI<0

This approach disregards the spatial distribution of la-

bels. Neighboring patches are likely to share the same label,
this fact can not be exploited if a hard assignment of labels
is made to patches individually. Instead, a soft assignment
of labels is made (y' € (0, +1))

. 1
y' =0.5+ —arctan(kw - x) a7
T

The effect of the soft assignment is that patches closer
to the SVM decision boundary are labeled with less confi-
dence than points with larger margins. These label assign-
ments are used to construct a Markov Random Field (Li
1994). The MREF structure chosen is a regular lattice with
each patch forming a node connected to its 4 neighbors. The
soft assignments y’ made by the support vector machine are
used as measurements and a Gauss-Markov energy model is
applied to find the most likely continuous label I’ for each
patch. This goal is equivalent to finding the labeling L that
minimizes the energy U (L)

UL =a Y (V) +Y (' —1) (18)

(i.j)e€ ieV

where a node pair (i, j) is in £ if they are neighbors, V is the
set of all nodes and « is a parameter that controls the amount
of spatial smoothing performed by the MRF. This energy
function U (L) can be minimized efficiently in one step as it
is equivalent to a system of linear equations. An example of
the values assigned by the MRF is in Fig. 6(e). Values of /
closer to one (river areas) are in shades of blue and patches
with low [ values (shore region) are in red. Figure 6(f) shows
the final output of the segmentation algorithm formed by
thresholding Fig. 6(e) at zero.

2.2.3 2D river mapping

We build a 2D map of the river by registering the outputs
of the self-supervised river detector into a global frame us-
ing vehicle pose estimates from the state filter. The output
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(a) (b)

Fig. 7 Local 2D River Mapping: (a) Image with the detected extent
of the river (thresholded at P;;y., = 0.5) overlaid in red. (b) The same
detected extent of the river projected into a top down view. Blue regions
are part of the river and red regions are the shore. The surrounding
green area is unobserved in this image as it lies outside the viewing
frustum (Color figure online)

of the river detector is used as an estimate of the probabil-
ity of each point in the image being part of the river. Since
the river surface is assumed to lie on the ground plane, the
probabilistic labeling from the vehicle’s viewpoint can be
projected into a top down view using knowledge of the ve-
hicle orientation and height provided by the state filter. Each
of these top down views is a local, vehicle centered map of
a small section of the river (Fig 7(b)). These local maps are
registered globally with position information from the state
filter and fused into a global map of the river using occu-
pancy grid mapping, see Fig. 19(b).

2.3 Obstacle mapping

We keep a three dimensional representation of the world
to allow for obstacle avoidance and motion planing. The
3D evidence grid expresses the belief that a volume of
space is occupied and represents relevant obstacle occu-
pancy (Martin and Moravec 1996). An evidence grid can be
updated in realtime and can incorporate sensor uncertainty.
It is arranged as a regular grid of voxels that store the log-
likelihood ratio of the voxel being occupied. The raw range
sensor data from the ladar is transformed to an occupancy
probability and the result is mapped into an evidence grid us-
ing position and orientation information from the state filter.
The method used to update the evidence grid can be found
in Scherer et al. (2008).

2.3.1 Distance transform

In addition to the evidence grid, a key element required for
motion planning and obstacle avoidance on the rotorcraft is
a cost map based on the 3D evidence grid information. The
dominant factor for the cost of occupying a location is the
distance to the closest obstacle. For this reason we use a dis-
tance transform based on the evidence grid that stores the
distance to the closest obstacle at each grid cell. An effi-
cient non-incremental linear time algorithm to calculate the
distance transform was proposed by Meijster et al. (2000).
While efficient if the environment does not change, it has
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been shown in Scherer et al. (2009) that repeatedly recom-
puting the result for changing obstacles takes too long to be
useful for navigation on a large grid.

A simple incremental approach is to update the grid with
a mask of the distances to the obstacles. Every time an ob-
stacle is added, a convolution of the surrounding area is per-
formed to check if any of the distances are larger than the
distance in the mask. In the case of obstacle removal, cells
in the mask are set to infinity and a region of two times the
size of the mask is scanned for existing obstacles that are
re-added. While better than recomputing the entire distance
transform when new information is received, this algorithm
has to check many cells that are already correct especially if
multiple obstacles close to each other are modified.

An efficient incremental algorithm was proposed in
Scherer et al. (2009) based on the propagation of wavefronts
outwards from added or removed obstacles to modify only
cells that need updating. This algorithm was improved in
Lau et al. (2010) to reduce duplicated work at the wavefronts
and reduce the storage required at each cell. Our algorithm
is a modified version of the Lau algorithm, which fixes a bug
and further improves the algorithm by removing duplicated
cell processing at the wavefronts and reducing the storage
required at each cell. The bug (lines 17-20 of Algorithm 1
in Lau et al. 2010) causes some cells to be given the wrong
priority in the queue because they have their distance reset
to maximum before being added to the queue with the max-
imum distance, rather than the existing distance, used as the
priority.

The input to the distance transform update algorithm is
a list of grid cells that have been changed by either adding
or removing an obstacle. Distances are stored as square Eu-
clidean distances to allow for the use of compact fixed point
numbers and to remove an expensive square root operation
when calculating the distance. The expansion is limited to
a maximum distance of d2,_ to limit the number of cells
that must be modified when obstacles are added or removed.
Cells further than the maximum distance from an obstacle
are not modified, however all cells are initialized with a dis-
tance of d2,,. The method is based on the propagation of
wavefronts with the cells in the wavefront kept in a prior-
ity queue. Each cell s is a structure that contains the dis-
tance to the closest obstacle, dist,, an in-queue flag indicat-
ing whether it is on the queue, inQ,, and a reference to the
position of the closest obstacle, obst,. The in-queue flag is
always set immediately prior to adding the cell to the queue
and cleared when the cell is dequeued. The obstacle refer-
ence can be a pointer to the cell which is the closest obstacle,
however a more compact method is described below. The
cells are initialized to have the maximum distance, d2,.,
and a null obstacle reference. Figure 8 contains all the func-
tions used by the Euclidean distance transform algorithm,
with the priority queue or Open list being referred to as O in
the algorithm.
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Fig. 8 Distance transform algorithm

There are two types of processes that can be called when
a cell is dequeued, LOWER or RAISE. The LOWER pro-
cess propagates out new lower distances from a new obsta-
cle or valid cell. A valid cell is one that references an ob-
stacle that has not been removed. The RAISE process prop-
agates out cleared distances when an obstacle is removed.
The differences between our algorithm and the Lau algo-
rithm are the use of the in-queue flag to prevent duplication
of the wavefront during raise and lower propagations and
the use of wave sequencing. When a valid cell is added to
the queue, it is given a key of d* + d2,,, where d? is the
cell’s square distance at the time of adding. When a non-
valid cell is added to the queue, it is given a key equal to
the square distance it had before it was cleared. This means
that keys of cells added to the queue are always proportional
to the distance from the origin of the current wave ensuring
a uniformly expanding wavefront. The extra d2,, term for
valid cells ensures they always have a larger key than non-
valid cells resulting in wave sequencing, i.e. a full raise wave
is completed before continuing the propagation of a lower
wave. This has no impact when obstacles are being added,
however when obstacles are removed, a raise wave is prop-
agated outwards until all the nearby invalid cells have been
cleared and all nearby valid cells have been found. Only then
is a lower wave propagated from the valid cells to give the
cleared cells new distances. The Lau algorithm adds both
cleared and valid cells with a key equal to the distance from
the relevant wave’s origin such that the two waves, raise and
lower, run simultaneously. In many situations this leads to
cells being added to the queue multiple times creating extra
work. Figure 9 shows a raise wavefront completing before a
subsequent lower wave is propagated.

As a consequence of the sequenced waves, the order in
which obstacles are added or removed makes a difference.
If all the updates, adds and removes, are processed together
the removed obstacles will be processed first because of the

(a) (b)

(c) (d)

Fig. 9 Obstacle Removal: A raise wavefront propagates outwards
clearing invalid cells and finding a surface of valid cells due to nearby
obstacles. When all the invalid cells have been cleared a lower wave-
front propagates out from the surface of valid cells and terminates when
the maximum distance is reached

higher priority given to raise waves. In many situations this
results in some cells being needlessly cleared and then later
given a new distance by a new obstacle in the same update.
By adding all the new obstacles and running a full update
before removing any obstacles, many of those cells can be
preemptively given a new distance without being modified
twice. When the obstacles are removed, the raise wave will
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not have to propagate as far because it will terminate at the
now valid cells created by the new obstacles.

Each cell must store a reference to its closest obstacle;
the simplest way to do this is to store a pointer to the obsta-
cle cell. Pointers can be large especially on 64-bit systems
which when multiplied by the number of cells in a large grid
can greatly increase memory requirements. The storage re-
quired can be reduced by replacing both the pointer and dis-
tance stored in each cell with an index into a pre-computed
array of possible obstacle offsets and distances. This method
leverages the fact that the distance to the closest obstacle
will be at most d,,,,, and is a trade off between the reduced
memory used by each cell and the memory used to store
the pre-computed look-up table. In most cases the savings at
each cell, which are multiplied across the entire grid, will far
outweigh the space required to store the look-up table. For
example a 1000 x 1000 x 200 grid would require 2000 MB
of memory if a pointer is used, and only 800 MB if an index
is used. The look-up table for a fairly large, 50 cell, distance
expansion only requires an additional 5 MB.

2.3.2 Map scrolling

The area traversed by an aerial vehicle can be very large,
in particular the rivers we explore with the rotorcraft can be
many kilometers long. Covering the entire area with a single
grid would require a prohibitively large number of cells. The
map scrolling algorithm moves the distance transform as the
vehicle moves such that obstacle information is always de-
fined in the region around the vehicle but the active memory
required remains constant. The terminology used during a
scroll event can be seen in Fig. 10.

When a scroll of the distance map is triggered, a new
volume in the direction of travel must be represented. This
is done by clearing the vacated volume behind the new grid
position and reallocating its memory. To minimize the work
required, cells in the existing volume that remain unchanged
are not copied or moved. As a result the physical position
of cells does not map directly to their position in memory.
A memory mapping function takes the position in the grid
of acell (x, y, z), and how much the grid has scrolled along
each dimension (sx, sy, sz). The output is an index indicat-
ing where the cell is stored in memory. The scroll parame-
ters keep track of the current wrap around of the grid rather
than store the absolute offset from the starting position. This
ensures that the scroll parameters stay small, taking values
from O to the grid’s size in each dimension, without limiting
how far the grid can scroll. The memory mapping function
first undoes the wrap around of the grid in each dimension
giving the cell’s memory space coordinates, i.e. the 3D posi-
tion the cell would have in an unscrolled grid. Equation (19)
shows how a cell’s memory space x-coordinate is found us-
ing the x-component of its position in the grid, x, the current
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Fig. 10 Scroll Event: The grid has 3 obstacles. It is scrolled to the
right creating errors at the trailing and leading edges. A raise wave
is triggered at invalid cells on the trailing edge and a lower wave is
triggered at valid cells on the leading edge. The wavefronts propagate
out fixing the errors

(e)

wraparound in the x-direction, s, and the size of the grid
along the x-direction, d,. An equivalent equation is used for
the y and z components. Equation (20) shows how the mem-
ory index is found from the memory space coordinates of a
cell and the dimensions of the grid.

mx=x+sx+Lx;rs"de (19)

X

i =mydyd; +myd, +m; (20)

As a result of scrolling, cells can become inconsistent at
the trailing and leading edges. Errors occur at the trailing
edge if there is an obstacle in the vacated volume and cells
continue to point to it. When the vacated volume is cleared
and the memory reallocated these cells will end up pointing
to an unrelated cell on the other side of the map causing se-
rious problems. These inconsistent cells need to be cleared
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or changed to point to a different obstacle that is inside the
new grid boundaries. Errors occur at the leading edge when
an obstacle inside the existing volume is near the leading
edge and there are newly added cells on the other side of the
edge that should have a lower distance. Both these errors are
present in Fig. 10. After clearing the cells in the vacated vol-
ume and reassigning their memory, the errors are corrected
by clearing and triggering a raise wave at any cells on the
trailing edge that are not valid and a lower wave at any cells
on the leading edge that are valid. The waves are triggered
by adding the cells to the priority queue and running an up-
date as described in Sect. 2.3.1. These waves will proceed
as normal, clearing any non-valid cells then propagating out
new lower distances to cells that need them.

As the vehicle moves, scroll events need to be triggered
so that the distance map can keep up. When a scroll is trig-
gered the grid is moved so that the vehicle is in the center of
the grid. Deciding when to scroll the map is dependent on a
number of considerations. The first is that all new sensor in-
formation should always be captured. To fulfill this require-
ment the grid must scroll before the vehicle gets closer than
its maximum sensor range to an edge of the grid. The sec-
ond consideration is that the amortized work required (the
total time spent performing scrolling operations) should be
minimized while the latency should be maximized. Latency
is dependent on the per event work required, and is impor-
tant because the distance transform can not be updated with
new sensor information while it is being scrolled. The work
performed during a scroll event primarily involves clearing
the cells in the vacated volume and correcting the inconsis-
tencies at the trailing and leading edges. Frequent scrolling
means that the edges have to be corrected more often but
there are less cells to be cleared at each event. The last con-
sideration is which dimensions the grid should scroll along.
The size of the trailing and leading edges, surfaces in 3D,
is greatly increased if the grid is scrolled in multiple di-
rections. This creates extra work to ensure the distances are
consistent along these edges. For this reason the scroll trig-
ger is checked separately along each dimension and the grid
is only centered around the vehicle in the dimension of the
trigger. This reduces the per scroll work load because each
dimension is usually scrolled separately, although they could
occur simultaneously, and only when a scroll is actually re-
quired along that dimension. For example our aerial vehi-
cle does not change its altitude enough to require the grid
to scroll in the vertical direction. Checking the dimensions
separately stops small unnecessary grid movements in the
vertical direction because of scrolls triggered at the horizon-
tal edges.

by < a1y, (21)

The trigger for the x-direction is shown in Eq. (21) where
b, is the distance to the closest boundary along the x-axis,

rp is the maximum horizontal sensor range and ¢, is a tun-
able parameter. The horizontal parameters are shared by the
triggers along the x and y-axis, the z-axis trigger uses sep-
arate parameters. Changing the value of « affects how of-
ten the grid is scrolled. The value of « can vary from 1,
which means the grid will not scroll until the maximum sen-
sor range is at the boundary, to half the grid size along the
relevant axis, which means the grid will scroll every time
the vehicle moves. Setting « is a trade off between total
scrolling work done over time and work required per scroll
event.

2.4 3D Ladar scanner

The rotorcraft must be able to operate in the space between
the water’s surface and the tree canopy. In this cluttered
space, a reliable short range perception system is necessary
for obstacle avoidance and mapping. To measure 3D infor-
mation about the environment, we use an off-axis rotating
2D laser line scanner. As seen in Fig. 11(a), a Hokuyo UTM-
30LX is mounted with the scan plane tilted at 45° with re-
spect to a sweep motor axis.

Other ladar mounting and actuation configurations such
as nodding, spinning on-axis, or roundly swinging (Mat-
sumoto and Yuta 2010), did not provide the same scan den-
sity or sensing field of view. Our configuration has the ad-
vantage of equal detection of horizontal and vertical obsta-
cles with a full 360° field of view, which matches the om-
nidirectional mobility of the rotorcraft. Figure 11 shows the
hatched scan pattern sensed by the spinning scanner. This
scan pattern detects thin horizontal and vertical obstacles
equally well as opposed to a nodding laser, which has dif-
ficulty detecting thin horizontal obstacles or a vertically-
mounted on-axis spinning laser, which has difficulty de-
tecting thin vertical obstacles. In a natural river environ-
ment, thin horizontal and vertical tree branches should be
expected and can be reliably sensed with our configura-
tion.

2.4.1 Registration

To register ranged data points P, from the laser into a
non-spinning base frame P, we apply a series of 4 x 4
homogeneous coordinate transformations to each ranged
point.

Py =TyTy,Ts Py (22)

P.: Ranged point in the coordinate frame of the ladar opti-
cal receiver.

Ts: Time dependent transform around a single axis of ro-
tation, which expresses the orientation of the rotating
mirror within the laser scanner.
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Motor spins the
lasera [

Sweep
motor axis

(a) Off-axis spinning scanner

(b) Isometric View

(c) Side View

Fig. 11 Laser scan pattern when the scan plane is tilted at 45° to the sweep motor axis. The horizontal magenta line segment in (c) shows the

widest unseen visual angle at the hatched diagonals (Color figure online)

T,,: Full 6 DOF transformation, which remains constant
and represents the mounting configuration of the scan-
ner on the sweep axis mount. This transform takes into
account the tilt of the laser scan plane, the translation
between sweep axis of rotation and the laser receiver,
and any mechanical misalignment and can be found us-
ing a nonlinear optimization similar to Fairfield (2009)
or Harrison and Newman (2008).

T,: Time dependent transform around a single axis of ro-
tation to account for the rotation of the laser module
around the sweep motor axis. This angle is calculated
by assuming a constant sweep motor speed and inter-
polating the angle given by the motor encoder at the
beginning and end of each line scan.

Py,: Position of the 3D point in the non-spinning base frame
of the system. The origin of the base frame contains the
sweep motor axis.

2.4.2 Obstacle detection confidence

We developed a model of the laser’s obstacle detection per-
formance to provide a confidence measure for the detection
of variously sized obstacles at different vehicle velocities.
Obstacles are modeled as thin, floating objects to account for
a worst case senario such as a hanging vine or thin branch.
The magenta line in Fig. 11(c) represents a horizontal obsta-
cle. In our model, obstacles are defined only by their length,
which is valid for the small tree branches that will pose sig-
nificant danger to the rotorcraft above the river. We make
two important assumptions: (1) if a scan line falls on the
object, the object will be detected (i.e., the scan is dense)
and (2) the rotation of the hatched scan pattern varies ran-
domly from sweep to sweep. This random rotation variation
could come from external perturbations in the vehicle’s yaw
or could be manually introduced by adding an angular off-
set to the motor for each sweep. The unseen angle between
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scans after one sweep is:

2T A
6, =2 ’;w (23)

N

where A,, is the sweep rate of the motor and X; is the line
scan rate of the ladar. The factor of /2 expresses the greatest
unseen angle, which is at the diagonal of the square in the
hatched scan pattern. The visual angle 9, of an obstacle with
length [ at a distance r is expressed as:

[
0, = 2arctan ( —) (24)
2r

The probability of detection after one sweep is simply the
ratio of the obstacle’s visual angle to the unseen angle, with
a maximum probability of one. Here we consider a static
obstacle directly in the path of the vehicle moving at velocity
v from an initial starting distance Dg. The distance r and
thus the visual angle will be reduced for each new sweep.
The probability of an observation after k sweeps is

k
pr(obs)=1— (1 —min<9"9(r), 1)) (25)
r=py- L 26

where the object’s visual angle 6, depends on r.

For a desired observation confidence, safe maximum ve-
locities are found which satisfy the following equation with
a fixed C-Space expansion L, reaction time #,, and maxi-
mum vehicle acceleration a:

k v?
Dy—Lc>|—+1t |Jv+— 27
Aw a

The inequality states that the rotorcraft must observe the
obstacle, react, and come to a stop in a distance equal to
or less than the maximum laser range minus the C-Space
expansion. Figure 12 plots safe rotorcraft velocities versus
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Fig. 12 Worst case analysis of maximum safe velocity for varying
obstacle lengths. Maximum velocities increase in discrete steps since
we require that a full sweep must be completed before an obstacle can
be detected (Color figure online)

obstacle length from 0.1 m to 1 m for three different maxi-
mum laser ranges. We have found that the effective range of
the Hokuyo laser scanner can be as low as 10 m or 15 m in
bright, outdoor conditions. In this figure, obstacle detection
confidence set to 95 %, C-Space expansion is 0.5 m, reac-
tion time is 0.1 s, maximum acceleration is 5 m/s2, scan rate
is 40 Hz and sweep rate is 1 Hz. A velocity is considered
safe if the rotorcraft can detect the obstacle and come to a
stop before violating the C-Space expansion. Maximum ve-
locities increase in discrete steps since we require that a full
sweep be completed before an obstacle can be detected.

3 Results

We evaluate our results based on the ability of our sensing
and perception algorithms to enable river navigation while
avoiding obstacles and generating an accurate map of the
river’s course, width, and canopy height. Section 3.1 de-
scribes the sensor suite, datasets, and computing hardware
and Sect. 3.2 details results from the state estimation system.
Visual river detection in Sect. 3.3 shows mapping results for
the course and width of the river as well as a direction of
travel for the vehicle. We finish with ladar based evidence
grid mapping in Sect. 3.4 and show final integrated mapping
results for canopy height and shoreline structure in Sect. 3.5.

Finally, Sect. 3.6 reveals various insights into our system
and analyzes our criteria for success.

3.1 Experimental setup

Sensor data to validate our system was collected on a stretch
of the Allegheney river, Pennsylvania, USA, in a narrow

L1 GPS/

Stereo

i " Camera
gy = | Pairs

Fig. 13 Surrogate data collection system at the test site on the Al-
legheney river. Here we see the GPS, IMU, ladar and stereo cam-
era pairs (one temporary COTS unit and the other a lightweight in—
house device). There is also a high-end, heavy GPS unit that we use to
groundtruth the experiment

passage created by an elongated island named Washing-
ton’s Landing. This river passage is approximately 30 me-
ters wide, with several car and railway bridges crossing over-
head, and on either side of the passage there are tall trees and
a steep embankment—all acting to create intermittent GPS
coverage. To evaluate the river detection algorithm under
varying conditions, we conducted additional testing across
four datasets captured at different times of the day and year
on two different rivers in southwest Pennsylvania; the Al-
legheney river and the Youghiogheny river.

3.1.1 Sensing hardware

For the complete system test, we deployed our sensor suite
on a surrogate data collection platform, seen in Fig. 13. We
have a flight ready version using the same sensors and em-
bedded computing, as describe below, but at present we have
not flown on a river because of the inherent risks involved
with autonomous flight over a body of water. We have con-
ducted flight tests on land as shown in Haines (2011).

The surrogate platform is substantially over the 1 kg pay-
load of the rotorcraft. However, the excess weight comes
from test computing and test mounts—whereas individually,
the sensors, lightweight rotorcraft mounts, and embedded
computing are within the total weight budget. Also seen in
Fig. 13 is the high-accuracy L1/L2 GPS unit used for posi-
tion information ground truth.

3.1.2 Embeded computing

The entire system runs at real-time on-board our rotorcraft,
using an embedded Intel Core 2 Duo 1.86 GHz processor in
the COM Express form factor with a custom designed car-
rier board based on the open-source PIXHAWK pxCOMex
(Meier et al. 2011). To reduce the computational load on
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Fig. 14 Estimated path demonstrating the state estimation perfor-
mance for different levels of GPS availability, overlaid onto an aerial
map and a highly accurate L1/L2 GPS reference path. The path de-
picted in (a) was generated using 194 L1 GPS measurements. The

the main embedded processor, we compute feature detec-
tion and matching for visual odometry using a small array of
digital signal processors connected via USB (Haines 2011).

3.2 Vehicle state estimation

Figure 14 depicts the estimated vehicle positions for differ-
ent levels of GPS availability and is overlaid onto an aerial
map of the river. For ground truth, we acquired position in-
formation with a high accuracy L1/L2 GPS post-processed
with RTKLIB (Takasu et al. 2007), which is shown in green.
The sequence spans about 2 km and roughly 10,000 video
frames. Figure 14(a) depicts results for a state estimation
that incorporated measurements of a consumer-grade GPS
receiver at a rate of roughly 0.3 Hz. As seen in Fig. 14(a)
the estimated vehicle path closely resemble the ground truth
path, despite employing a significantly lighter and less ac-
curate GPS receiver. Figure 14(b) displays the same dataset,
but GPS availability was synthetically degraded to 6 mea-
surements over the entire course of the experiment. To sim-
ulate extensive GPS dropouts, we evenly subdivided the tra-
verse into six segments and randomly sampled a single GPS
reading from each segment. These GPS measurements are
marked as red crosses in the figure. Even though GPS read-
ings were incorporated only six times over 2 km, the result-
ing path is comparable to the results demonstrated with 194
GPS measurements in Fig. 14(a). This similar performance
demonstrates that the state estimation system is able deal
with seriously limited GPS coverage. Figure 14(c) depicts
an estimation for the minimal case for which global head-
ing is observable. The state estimation proves capable of
inferring global position and heading up to reasonable ac-
curacy, although the divergence of the estimated path from
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estimations shown in (b) and (c¢) incorporated 6 and 2 global position
measurements, corresponding to a rate of about a single GPS reading
every 90 seconds and 270 seconds respectively (Color figure online)

ground truth is more apparent. In the experiments shown in
Fig. 14(b) and Fig. 14(c), the graph reduction scheme sim-
plified the graph of initially 10,000 stereo pairs to roughly
170 active state nodes and solved the resulting reduced sys-
tem in about 300 ms on our computer hardware.

3.3 River detection

We tested the river detection algorithm on four datasets cap-
tured on different rivers under varying conditions. Three
of the datasets were collected on the Allegheny River near
Herr’s Island in Pittsburgh, PA. The first (Allegheny Day)
was collected on a summer afternoon, the second (Allegheny
Dusk) was captured near dusk, and the third (Allegheny Fall)
was collected in autumn around noon. The forth dataset was
collected at Perryopolis, PA on the Youghiogheny River. The
Youghiogheny dataset was collected around noon during the
summer. Each dataset contains 120 to 150 images captured
from a small motorboat.

All the images in these datasets were manually seg-
mented into three labels (river, shore and sky) to provide
ground truth for performance evaluation. Since our algo-
rithm generates only two labels and differentiating between
the shore region and the sky is not our goal, we treat them as
a single class for the purpose of evaluating performance. The
performance metric we used is the mean error rate, which is
the percentage of pixels misclassified by the algorithm com-
pared to the ground truth labeling. This includes both river
pixels misclassified as shore and shore pixels misclassified
as river.

We compare our self supervised approach to a fully su-
pervised alternative.
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Table 1 Supervised Segmentation Performance: Mean Error Rate
(percent). Each row corresponds to a test dataset and each column cor-
responds to a training dataset. A supervised approach to river segmen-

tation performs well when trained and tested on the same environment,
but often suffers significant performance degradation when run on an
environment different from the one it was trained on

Dataset Allegheny day Allegheny dusk

Allegheny fall Yough All but self All

Allegheny day 2.54 5.60
Allegheny dusk 7.95 2.32
Allegheny fall 10.04 5.42
Yough 4.12 4.36

4.97 4.19 4.19 3.48
12.51 8.48 7.93 3.71
2.64 7.51 10.33 4.14
6.24 2.59 4.62 3.44

3.3.1 Fully supervised river detection

As a point of comparison against our self supervised clas-
sifier, we evaluate the ability of a fully supervised classi-
fier to generalize to images from previously unseen envi-
ronments. The fully supervised classifier evaluated was a
linear SVM with identical input features to the self super-
vised algorithm. From each dataset, a third of the images
were picked at random as training examples and the remain-
ing images were used as test data. Each dataset was then
classified using six different supervised classifiers. The first
four were trained on the training data from each of the four
datasets. The fifth classifier (All but Self) was trained us-
ing the training images from the datasets other than the test
dataset and the sixth classifier (All) was trained on all the
training data across datasets. The error rates for these clas-
sifiers were averaged over 10 trials and are tabulated in Ta-
ble 1. The supervised approach works well when used on
datasets seen during training (the diagonal entries and the
‘all’ column in Table 1) but performance degrades when run
on new datasets that were not seen while training (off diag-
onal entries and the ‘All but Self” column in the table). This
suggests that a supervised approach does not generalize well
to new environments. Similar lack of generalizability to new
datasets has been observed in many vision tasks as reported
by Torralba and Efros (2011). It should be noted that when
one third of the images from a dataset are used for train-
ing, every test image from the same dataset has a number
of very similar images in the training data. This means that
the supervised classifier does not have to generalize much to
perform well when the training data contains images from
the same dataset as the test data.

We also investigated the effect of changing the fraction
of data used for training on the performance of the fully su-
pervised algorithm. We repeated the same experiment with
varying splits between the amount of data used for training
and testing. The change in classifier error rates when using
training data from the Allegheny Day sequence are shown
in Fig. 15. When as little as one tenth of the images are used
for training, the classifier performance saturates and adding
new training data has little effect on performance. These re-
sults suggest that in the feature space being used, it is dif-
ficult to find a single, static linear decision boundary that

T
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Fig. 15 Effect of Increasing Training Data: Varying amounts of data
from the Allegheny Day dataset were used to train a supervised river
segmentation. As the fraction of training data is increased, the perfor-
mance of the fully supervised algorithm saturates very quickly on all
the test datasets (Color figure online)

can separate river and non-river regions well across datasets
and generalize well to unseen data. A more complex, non
linear decision boundary learnt using a more complex algo-
rithm (such as a kernelized SVM) may be able to deliniate
the classes adequately but would be difficult to use in real
time. This motivated our decision to learn dynamic, linear
decision boundary that changes over time to adapt to varia-
tions in appearance of the river and its surroundings.

3.3.2 Self supervised river detection

The performance of the self supervised algorithm described
in Sect. 2.2 was evaluated on the four datasets. Error rates
are shown in Table 2. On all four datasets the self super-
vised algorithm outperformed a supervised classifier that did
not see images from the test sequence during training. Even
when the supervised classifier was trained on a subset of
images from the dataset it was tested on, it did not perform
significantly better than the self supervised algorithm. This
is significant considering how the self supervised algorithm
has no off-line training phase and does not depend on a set
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Table 2 Self supervised segmentation performance

Dataset Mean error rate
Allegheny day 2.75 %
Allegheny dusk 4.15 %
Allegheny fall 2.73 %
Youghiogheny 322 %

Table 3 The mean error rate of various modified versions of the self
supervised algorithm

Dataset Chow Liu Perfect Full

tree only training algorithm
Allegheny day 4.72 % 2.73 % 2.75 %
Allegheny dusk 8.14 % 4.09 % 4.15 %
Allegheny fall 3.82% 2.68 % 2.73 %
Youghiogheny 324 % 323 % 322 %

of images with manually annotated groundtruth. Our belief
for the performance improvement is due to the ability of
our self supervised system to react almost instantly to the
present point in the sequence, whereas the fully supervised
classifier tries to learn a single appearance model of the river
for the entire sequence.

To provide a deeper understanding of the self supervised
algorithm and which steps are the most crucial to its work-
ing, we evaluated the performance of a few modified ver-
sions of the algorithm. One interesting question is: how im-
portant is it to learn a discriminative SVM classifier on top
of the self supervised appearance modeling? The appearance
modeling uses Chow Liu trees to calculate the probability of
each image patch being a part of the river or the shore. In our
algorithm, these probabilities are used to select patches for
training a river/shore classifier. This SVM step can be omit-
ted and the appearance modeling output can be used directly
by labeling all pixels that have a P(R | X) value of more
than 0.5 as part of the river. The performance of the result-
ing classifier is shown in the ‘Chow Liu Tree Only’ column
of Table 3. It can be seen that for most of the datasets, a
steep reduction in performance occurs. This indicates that
using a discriminative classification step which can exploit
a richer feature descriptor and image position information is
important to getting good performance.

Another point of interest is investigating how mistakes
made at the self supervision step effect performance. Patches
with very high values of P(R | X) are marked as river train-
ing examples and patches with very low values are used as
shore class examples. But it is possible that some of these
automatically selected training samples will have incorrectly
inferred labels. If these labels inferred from P(R | X) are re-
placed with groundtruth labels and the rest of the algorithm
is unchanged, we observed that there is very little change
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in the overall performance (the ‘Perfect Training’ column in
Table 3). This indicates that there are few mislabeled patches
in the automatically selected training sets to begin with and
that the SVM is able to generalize over them. Table 3 repeats
the performance of the actual self supervised algorithm un-
der the ‘Full Algorithm’ column for comparison.

3.4 Obstacle mapping

We tested the obstacle mapping algorithms on the river
dataset described above. We assume the vehicle will be pri-
marily traveling horizontally, and therefore the grid and dis-
tance transform’s dimensions were 6 times the nominal ladar
range in the horizontal directions and 2 times in the vertical
direction. With a nominal sensor range of 30 meters and a
cell size of 0.5 meters this meant a 360 x 360 x 120 cell
grid that required significant grid scrolling over the length
of the dataset. Figure 16 shows a visualization of the occu-
pancy grid and distance transform. The occupancy grid dis-
play shows only cells with an occupancy likelihood above
50 %. The distance transform display is only a 2D slice of
the full 3D transform.

Table 4 shows the time taken to update the distance trans-
form with an expansion of 20 cells (10 meters) and update
frequency of 5 Hz, averaged over the length of the dataset.
The simple mask algorithm is shown to be relatively slow.
Our improvements show a small reduction in average update
time compared to the Lau algorithm with the bug removed
(see Sect. 2.3.1). This dataset had well registered laser data
and a static environment resulting in very few obstacle cell
removals, roughly 1 removal per update on average. As our
key improvements are for obstacle removal we expect that in
environments where more occupied cells must be removed
(for example obscurants or dynamic environments) our al-
gorithm would show further speed gains. Table 4 also shows
that our algorithm visits fewer cells, adds fewer cells to the
priority queue, and removes the need to modify the queue.
Table 5 shows the memory usage of the distance transform
algorithms. The Lau algorithm uses at minimum 10 bytes
per cell, 2 for distance and 8 for a pointer (an additional
queue index may also be required to allow for queue modi-
fications). Our algorithm uses only 4 bytes by replacing the
obstacle pointer and distance with an index into a lookup
table (no queue index is required). The use of scrolling sig-
nificantly reduces the memory required to cover the length
of the dataset.

The key parameter affecting the scrolling algorithm is «,
which determines how often the grid is scrolled. Figure 17
shows the average time required per scroll event and the total
time taken over the entire dataset doing scroll operations for
different values of «. An « value of 1 means that the scroll is
performed as late as possible and a value of 3, for this grid,
means scrolls are carried out at every cycle. As the scroll
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Fig. 16 Visualization of the evidence grid and distance transform. The
grid visualization (left) shows the test rig passing under a bridge and
only displays cells considered occupied. The green line in the back-
ground indicates the current edge of the scrolling grid map. The dis-
tance transform visualization (right) shows a 2D slice from a high
viewpoint. Green indicates an obstacle, distance is mapped from red

Table 4 Average time, number of cells visited, and number of addi-
tions & modifications to the priority queue taken to update the distance
transform. Each update requires the addition or removal of a different

(low distance) to blue (high distance), cells with maximum distance
are not shown. The slice is taken just above water level, the two lines
of obstacles (green) are the river banks. Some areas are red with no
visible obstacle because the obstacle is out of plane, e.g. the two bars
of light red across the river at the fop of the image are bridges (Color
figure online)

number of occupied cells, the averages and standard deviation is cal-
culated per update. The max time reflects the time taken on the update
with the most work to be done, for this dataset

Algorithm Average Standard Max time (s) Average cell Average queue Average queue
time (s) deviation (s) visits additions modifications
Simple mask 0.2960 1.2349 13.2203 39516000 no queue no queue
Lau et al. (2010) 0.0213 0.0150 0.1333 303017 11693 772
Our algorithm 0.0200 0.0144 0.1319 283552 10928 0
Table 5 Approx. memory required to store the distance transform. Average and Total Scroll Time vs. Alpha
The memory requirement for the lookup table component of our algo- 3 j - ' 0.08
. c . . . —--Total Time
rithm is displayed in parentheses. The memory required without map Average Time
scrolling is calculated for a grid covering the entire mission area o )
Algorithm Memory (Mbytes) Memory, no scrolling 2 I // looe o
(Mbytes) § / 3
Simple mask 31 960 = / ®
™ /s
Lau et al. (2010) 156 4800 5 —/ >
1 A {oo2 2
Current algorithm 62+ (0.5) 1920 4 (0.5) T
frequency increases the per scroll time required decreases 0 , . . 0
1 1.5 2 25 3

linearly however the total work required starts to increase
rapidly.

3.5 Integrated mapping

Here we present a visual verification of the maps gener-
ated by our system against globally registered satellite im-
ages. Figure 18 shows examples of the 3D reconstruction
built from the back projected ladar as the vehicle moves
through the environment. Each laser scan is globally regis-
tered and placed into a world map by using the graph-based
state estimate system. Since the laser scans occur at a higher

Fig. 17 Time required to scroll the grid as «, a parameter controlling
how often the grid is scrolled, is varied. Average time is calculated per
scroll event, total time is measured over the entire dataset. An « value
of 1 means scrolls are performed as late as possible, a value of 3 means
they are performed every update cycle (Color figure online)

frequency than the state estimates, an intermediate state is
found by interpolating between neighboring state estimates.
The state estimate is locally smooth and accurate enough to
generate clean 3D reconstructions. The terrain mesh seen in
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Fig. 18 Examples of the 3D
point cloud maps. The images
on the left show the raw image
from the camera. On the right
one can see the reconstructed
point cloud generated from our
laser range scans registered by
our state estimate. The 3D point
cloud is rendered within a
visualization of an aerial image
overlaid on terrain elevation
data. The visualization is
rendered from a virtual camera
approximately at the location
where the raw image was
captured. The point cloud is
colored by height of the point,
ranging from red points that are
low to blue points that are high

the reconstruction is build from elevation data and orthoim-
agery provided by USGS.! The point cloud produces a mea-
surement of the river canopy height and a dense structure
of the shoreline. The complete point cloud map generated
from the 2 km traverse along the river channel can be seen
in Fig. 19(a) as a top-down view overlaid on a satellite im-
age.

The map in Fig. 19(b) is generated from the visual river
classification algorithm described in Sect. 2.2 and is a 2D
representation of the river course and width. The map is cre-
ated by integrating the classified images at 2 Hz into an evi-
dence grid in a global coordinate frame.

3.6 Discussion

Here we discuss some insights into our results and finish
with an overall assessment of our system in the context of
criteria necessary to enable autonomous river mapping.
Firstly when analyzing the state estimation system, an
ongoing issue that we are dealing with is a bias towards un-
derestimating distance-traveled in the visual odometry sys-
tem. This is observable in Figs. 14(a) and 14(b), where the
estimated trajectory clearly falls short at both ends of the
loop in the river. The underestimation bias is caused by the

Uhttp:/seamless.usgs.gov/.
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large distance to the features on the river rank detected in
the stereo camera; more details on this issue are presented
in Rehder et al. (2012). The impact of the underestimation
on the resulting maps can be seen in Fig. 19(a) where we
see errors introduced causing ghosting effect of the bridges.
The bridges are seen twice by the laser scanner, once on the
traverse upstream and once on the downstream traverse, due
to the underestimation problem in the visual odometry de-
scribed above.

Figure 19(b) shows the 2D river map, which was gen-
erated by integrating classified images with limited effective
range. The effective range depends on the height of the cam-
era above the water surface, which determines the angle of
the projection of the images onto the evidence grid. Here the
data was collected approximately 2.5 m from the water sur-
face and the current reliable maximum range for integrating
the classification results into the map is about 30 m. Both
river banks are not within range at the same time, which
requires a traverse along one bank and return traverse along
the other bank. The effective range will improve as our flight
altitude increases from the current 2 m to about 6—-8 m. At
this height the projection of the image into the map will be
at a less oblique angle and more reliable at a longer range.

Now we describe and discuss our criteria of success in
two ways; first is the ability of our sensing and perception
algorithms to automatically navigate the river and second is
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(a) 3D map of the river generated from laser scanner.

Fig. 19 River maps generated from a 2 km traverse. Left, the 3D point
cloud rendered on top of a satellite image of the river. The point cloud
is colored by height of the point, ranging from red points that are low,
to high points that are colored magenta. Right, the 2D map of the river

the capability to generate a map of the river course, width,
and canopy height.

To autonomously navigate we need the following: an ac-
curate state estimation for vehicle control, a heading to fol-
low the river, and a reliable method to sense obstacles. We
have a demonstrated a real-time system for state estimation,
which is locally consistent and globally accurate. The out-
put of the river detection system gives a direction to travel
in to follow the river course. Finally, we have demonstrated
real-time algorithms adequate in both execution time and
in memory required to generate an obstacle cost map from
laser scanner. Considering all of the above we regard our
system design as suitable for autonomous navigation of a
river.

Now we analyze our design for ability to generate ap-
propriate river maps. The 3D river map seen in Fig. 19(a)
illustrates that despite sparse GPS data, it is still possible
to create a globally registered 3D map of the environment

(b) 2D map generated from self-supervised visual river classifica-
tion.

course and width generated from the self-supervised river classification
algorithm Sect. 2.2. The classification algorithm generates an evidence
grid in world coordinates colored as high probability of river (blue) and
low probability of river (red) (Color figure online)

and in particular the canopy height as seen in Fig. 18. Look-
ing at the 2D river map presented in Fig. 19(b), we see fur-
ther proof for the success of the river classification algorithm
and, importantly, that it is able to generate a map of the river
course and width.

4 Conclusions

We have described a lightweight perception system for au-
tonomously navigating and mapping a river from a low-
flying rotorcraft.

The system incorporates a global state estimation sys-
tem that is both locally consistent—necessary for vehicle
control—and globally referenced—a requirement for the re-
sulting river maps. The state estimation combines visual
odometry, inertial measurement, and sparse GPS readings
in a graph-optimization algorithm.
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A self-supervised visual river classification algorithm is
developed to determine the direction to travel along the river
and also for mapping river course and width (2D map).

A unique, lightweight, off-axis, spinning laser scanner is
used for sensing obstacles and mapping the river bank struc-
ture and canopy height. The laser scans are efficiently pro-
cessed to compute the obstacle map and distance transform
necessary to avoid obstacles in real-time. An analysis is pre-
sented of the laser scanner to compute the maximum safe
velocities for the rotorcraft to guarantee obstacle avoidance.

The experimental results over a 2 km traverse along a
river show that mapping the river course, width, and canopy
height are all feasible from lightweight sensors that are
available on a micro aerial vehicle.

In future work, we will evaluate our system on differ-
ent rivers, with even more degraded GPS coverage, and over
longer distances on the order of 10 km. We seek to im-
prove the state estimation accuracy and latency, to demon-
strate high performance vehicle control and completely au-
tonomous flight for sustained periods, and finally to demon-
strate aggressive maneuvers around complex obstacles such
as tree vines. We also want to investigate the possibility of
perceiving the river flow rate from the rotorcraft.
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