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Abstract
Maps are important for both human and robot navigation. Given a route, driving-

assistance systems consult maps to guide human drivers to their destinations. Simi-
larly, topological maps of a road network provide a robotic vehicle with information
about where it can drive and what driving behaviors it shoulduse. By providing the
necessary information about the driving environment, mapssimplify both manual
and autonomous driving.

The majority of existing cartographic databases are built,using manual surveys
and operator interactions, to primarily assist human navigation. Hence, the reso-
lution of existing maps is insufficient for use in robotics applications. Also, the
coverage of these maps fails to extend to places where robotics applications require
detailed geometric information.

To augment the resolution and coverage of existing maps, this thesis investigates
computer vision algorithms to automatically build lane-level detailed maps of high-
ways and parking lots by analyzing publicly available cartographic resources, such
as orthoimagery.

Our map-building methods recognize image patterns and objects that are tightly
coupled with the structure of the underlying road network by1) identifying, without
human intervention, locally consistent image cues and 2) linking them based on the
obtained local evidence and prior information about roadways. We demonstrate the
accuracy of our bootstrapping approach in building lane-level detailed roadway maps
through experiments.

Due to expected abnormal events on highways such as roadwork, the geometry
and traffic rules of highways that appear on maps can occasionally change. This
thesis also addresses the problem of updating the resultingmaps with temporary
changes by analyzing perspective imagery acquired from a vision sensor installed
on a vehicle.

To robustly recognize highway work zones, our sign recognizer focuses on han-
dling variations of signs’ colors and shapes. Sign recognition errors, which are in-
evitable, can cause our system to misread temporary highwaychanges. To handle
potential errors, our method utilizes the temporal redundancy of sign occurrences
and their corresponding classification decisions. We demonstrate the effectiveness
and robustness of our approach highway workzone recognition through testing with
video data recorded under various weather conditions.

Two major results of this thesis work are 1) algorithms that analyze orthoimages
to produce lane-level detailed maps of highways and parkinglots and 2) on-vehicle
computer vision algorithms that are able to recognize temporary changes on high-
ways. Our maps can provide detailed information about a route, in advance, to either
a human driver or a self-driving vehicle. While driving on highways, our roadway-
assessing algorithms enable the vehicle to update the resulting maps with temporary
changes to the route.
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Chapter 1

Introduction

Mundane and trivial, driving on roads is still an essential and complex task of modern life.
While driving, a person intentionally or subconsciously performs various behaviors in parallel:
recognizing geometric shapes, perceiving the posted rulesof the roads, observing the driving of
other vehicles, steering the vehicle, preparing for the unexpected, and so on.

We humans drive so effortlessly well because we have an exceptional perception capability
that enables us to recognize road geometry, to understand traffic rules by reading signs, and to
comprehend traffic situations based on what we perceive and what we have experienced.1 In
addition, we have our own model of driving that is customizedto our behavior through count-
less repetition and which plays an important role in handling something unexpected. Given this
capacity, we can even drive flawlessly through entirely foreign terrain. Even so, cartographic
resources can aid us, facilitating our arrival at the destination. In particular, cartographic infor-
mation on hand-held devices can inform us of where we can drive (e.g., take a left turn on Forbes
avenue) and of how we can drive (e.g., the speed limit is 30 miles per hour). Such information
regarding roads is essential for driving, even in familiar places; it enables us to focus our atten-
tion on the regions that require detailed analysis. For example, while driving downtown, where
pedestrians might jaywalk or heedlessly cross the road, we could give our attention to such po-
tential hazards, instead of peering around for our destination, because cartographic information
would keep us informed of the destination.

In a similar way, but even on a larger scale, cartographic information about road geometry and
traffic rules plays a critical role for a robotic vehicle performing autonomous driving maneuvers.
The value of such information was demonstrated during the 2007 DARPA Urban Challenge.2

Figure 1.1 shows a sample of the route map used during the competition. As an example, the
road-map in Figure 1.1 enabled a robotic vehicle to anticipate upcoming intersections. In partic-
ular, it informed a vehicle that the speed limit of a certain segment of road was 30 miles per hour
and that the intersection (labeled “I14135”) was a yield-intersection. As a result, vehicles should

1Our perception of the scene is based not only on the immediatesensory readings, but on our long history of
visual experiences and interactions with the world [Warrenand Warren, 1968].

2The Urban Challenge (or the 2007 DARPA Urban Challenge) was arobot car competition in which competitors
had to build vehicles capable of autonomously driving 60 miles amongst moving traffic in an urban environment. A
good overview of the Urban Challenge can be found [Urmson et al., 2009]. Visit the following for more information
about the Urban Challenge,http://www.darpa.mil/grandchallenge/index.asp
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Figure 1.1: A part of our route map shows the starting chute ofthe Urban Challenge birds-
eye aerial image. The route map is an internal representation of a robotic vehicle’s driving
environment. In its topological representation, there area set of vertices (e.g., waypoints marked
by blue “x” and checkpoints marked by yellow “*”) and their connections. An intersection is a
region that includes a subset of waypoints between entry andexit points [Seo and Urmson, 2008].

have been prepared to execute a “yielding” behavior, waiting for the road to clear before merg-
ing. Without this model, a vehicle would have difficulty understanding if this was a controlled
intersection or a yield-type intersection.

Let us take another generic example of a self-driving vehicle’s maneuver to clearly under-
stand the role of cartographic information in robotic applications. The control loop of Boss, the
winner of the Urban Challenge [Urmson et al., 2008, Urmson etal., 2009], can be abstracted into
three parts: First, behaviors are initialized based on available map data (e.g.,handleintersection
or drive down lane). Second, on-board sensor outputs are analyzed to interpret the surround-
ings (e.g., estimating the current pose or perceiving static and dynamic obstacles in drivable
regions). Lastly, vehicle motions are executed to achieve current behavior goals (e.g., arriving at
a particular waypoint by driving on a road-lane). In this loop, road-map information simplifies
autonomous driving in that it dictates when each driving behavior should be implemented; allows
a robotic vehicle to focus its attention on drivable regionsthat require detailed analysis, neglect-
ing less important regions [Hebert, 1989],[Seo and Urmson,2009a]; and provides guidelines on
the execution of micro-level motions to achieve intermediate goals. Without prior knowledge of
road geometry and associated behaviors, achieving the level of performance demonstrated during
the Urban Challenge would be even more difficult.

However, the level of detail and the coverage of existing cartographic databases are far from
being useful for such robotic applications because they areprimarily built for human consump-
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tions – for most of the cases, human drivers may not need lane-level detailed road-maps or park-
ing lot maps for their driving. In this thesis we describe ourapproach to augment the contents
of existing cartographic databases. We increase existing road-maps’ level of detail by building
lane-level highway maps and extend the coverage of existingcartographic databases by build-
ing maps of parking lots. Instead of taking conventional “going-out” map building approaches,
we analyze publicly available aerial-images to accomplishour goal of building lane-level detail
maps. In addition, we develop a bootstrapping image processing that exploits the prior informa-
tion and analyzes readily-collectible image features to automatically harvest task-relevant and
task-specific information to accomplish our goals.

1.1 Motivation

In the robotics community, the most common way of building a map is to drive through
the environment to collect sensor measurements and then either manually or automati-
cally fit a model to the collected data [Hebert, 1989, Thorpe et al., 1991, Thrun et al., 2005,
Montemerlo et al., 2008, Urmson et al., 2008]. Such a model mostly describes parts of the en-
vironment that are not moving and are traversable. Such a navigational map simplifies au-
tonomous navigation by providing an a priori model of the driving environments [Hebert, 1989,
Seo et al., 2009a].

An alternative way of building such maps is to use overhead imagery. Building maps by
pre-driving is expensive while at the same time high-quality overhead imagery is publicly avail-
able3, the outdoor robot navigation community has begun taking aninterest in building maps
using overhead imagery analysis. On the other side, the GIS (Geographic Information Sys-
tem) researchers have long been working on building maps, mainly for human consumption, by
analyzing overhead imagery. In the GIS community, the majority of map-building techniques
demand human interactions and manual surveys of the regionsunder investigation. Thus build-
ing maps using overhead imagery analysis requires substantial effort. In addition, because their
applications primarily target manual driving, they pay less attention to certain details of resulting
maps and non-road drivable regions. For example, instead ofrepresenting a road-segment as
a multiple of road-lanes, a polyline is considered to be enough for guiding manual driving. A
point, instead of detailed geometry, is regarded as sufficient to represent a parking lot.

In this thesis, we suggest that we should analyze publicly available high-resolution orthoim-
agery to build maps of driving environments. Our first main contribution is

Automatic Building of Lane-level Maps: We propose algorithms that automati-
cally generate lane-level maps of 1) inter-city highways and 2) parking lots by ana-
lyzing orthoimages.

Such lane-level detail highway maps with information including traffic rules and accurate
coordinates can be prepared in advance to facilitate the guiding of autonomous and manual high-
way driving. However, it is impossible to describe unexpected occurrences a priori, such as traffic

3Aerial imagery with approximately one foot resolution throughout the U.S. and its territories are publicly avail-
able from United States Geological Survey (USGS),http://www.usgs.org

3

http://www.usgs.org


accidents or road work. A self-driving vehicle must be able to effectively handle such events as
they can lead to temporary changes in driving conditions. Itwould be disastrous if the vehicle’s
braking distance is longer than its sensing horizon when theroad lane a vehicle is driving on
shifts laterally due to a road work ahead, while the road-lane depicted on the map as following a
straight path. Similarly a human driver must be on alert while driving through such unexpected
events.

Hence our second main contribution is

Recognizing Temporary Changes in Driving Conditions on Highways: We pro-
pose algorithms that automatically recognize 1) the boundsof workzones and 2)
temporary changes of driving conditions on highways by analyzing perspective im-
ages.

1.2 Problem Statement

Most existing cartographic databases are primarily built,through manual surveys, to assist hu-
man navigation. The resolution of maps are insufficient for use in robotics applications and
their coverage fails to reach any places where robotics applications require detailed geometric
information. This thesis addresses the problem of automatically generating lane-level maps of
highways and parking lots by analyzing publicly available orthoimages.

Due to the expected aberrations that appear on highways, such as road-work, the geometry
and traffic rules of highways that appear on maps can occasionally change. This thesis also ad-
dresses the problem of updating the resulting map with temporary changes of driving conditions
by analyzing perspective imagery acquired from a vision sensor installed on a ground vehicle.

1.3 Thesis Statement

This thesis demonstrates that:

Overheadandperspectiveimagery can be combined to generatesub-meter accurate
cartographic information.

In particular, byoverheadimagery, we mean, publicly available orthoimage. An orthoimage
is an aerial image where terrain relief and camera tilt are removed through a rectification process.
In this dissertation, the ground resolution of orthoimagesis 15 centimeter per pixel.

By perspective, we mean, an image that is acquired from a front-looking vision sensor in-
stalled on a ground vehicle. The scenes appearing on the image are distorted by perspective
transformation.

By sub-meter accurate, we mean, the accuracy of the resulting maps’ geometry. The accuracy
will be defined and measured at a pixel-level that is readily converted into real-world distances
based on the ground resolution of an image. The accuracy willbe further analyzed by such
standard metrics as precision and recall.
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1.4 Our Approach

To build maps by analyzing orthoimages, first we must be able to find photometric or geometric
patterns regarding the underlying true maps. Such patternsmay include image intensity con-
trasts along road boundaries, color of road-markings, texture of road-surface image regions,
periodic rectangular shapes, and spatial relations among these patterns. Being able to distinguish
the boundaries of road-lanes on highways may seem obvious just as it might for distinguishing
parking spots in parking lots. These seem obvious on accountof the background and its seem-
ingly typical and salient geometric patterns, such as parallel line whitish lane-markings along
road-direction and rectangular road-markings grids. Without considering the variations of their
salient appearances, it seems to be fairly straightforwardto extract the geometric structures of
road-lanes’ boundaries and parking lots first by detecting these lane-markings and then by con-
necting them based on their regularity.

However, these assumptions are not always valid. These salient and regular patterns are not
always available for image processing; the actual values oflane-marking pixels vary based on
image acquisition conditions. The image acquisition conditions are determined by illumination
conditions, the intrinsic and extrinsic parameters of a camera, and the line of the sight between
an acquisition-vehicle and the ground with respect to the location of the sun. Such variations
in object appearance are the most serious challenges in analyzing imagery to extract meaningful
patterns.

To effectively handle variation in an object’s photometricand geometric appearance, one
could learn appearance models from data that consist of image patches and their class assign-
ments. But how much data would be sufficient to produce outputwith accuracies which are
acceptable for a given task? The machine learning communityhas been actively searching for a
generic answer to this question, the most commonly used solution is the rule-of-thumb that the
desirable amount of data is determined by the complexity of the data and the problem. For our
cases, it would require a huge amount of data to train a lane-marking detector that produces a
reasonable performance on every image of the area of interest. Indeed, the data should have at
least one sample for every possible appearance variation which is hard to quantitatively measure.

In this thesis, instead of taking such a conventional way of obtaining patterns of interest
from input images, we exploit the prior information in a given image to extract task-relevant
patterns. The prior information is the information that is already available when a problem is
formulated and is relevant in solving the problem. For example, we utilize the regularities of
our target objects, such as the parallelism of road-lane boundaries to extract road-width cues and
image sub-regions encompassed by evenly-spaced rectangular road-markings to extract a set of
self-labeled parking spot examples. These task-relevant patterns obtained locally from each test
image provide us with a sufficient amount of cues about the local geometry of the underlying true
highway road-lanes and true geometric structure of parkinglots. Such local-specific patterns are
useful to our map building application. This thesis, after all, primarily concerns the extracting of
the true geometry of road-structures, which are partially observed in a given image. Our approach
of harvesting task-relevant local patterns through bootstrapping will also reduce the frequency of
human intervention.

Our approach of exploiting prior information can be appliedto the task of workzone sign
detection as well. For the purpose of evaluating a sign detector’s outputs, it is necessary to
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annotate each video by drawing bounding boxes of true workzone signs. By using such ground
truth annotations, we can define an image sub-region within which workzone signs are most
likely to appear by projecting all of the ground truth bounding boxes onto a Cartesian coordinate.
The prior knowledge of sign locations is used to facilitate asearch of sign candidate image blobs
and to filter out false positive sign detection outputs.

1.5 Document Outline

The rest of this document is organized as follows. Chapter 2 highlights research work signifi-
cantly related to our thesis work, particularly in the areasof map-building, aerial-imagery analy-
sis, and perspective image analysis. Chapter 3 details our approach to generate lane-level detail
maps from highway orthoimages. Chapter 4 explains our approach to recognizing the bounds
of highway workzones and temporary changes to highways. Chapter 5 describes our approach
to produce maps of parking lots that specify the locations ofparking spots and the geometry of
drivable regions. Finally, in Chapter 6, we conclude and discuss future directions of work.
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Chapter 2

Related Work

This thesis work focuses on developing computer vision algorithms for analyzing publicly avail-
able aerial images with application goal of building highway maps and parking lot maps. There-
fore, it is useful to investigate available cartographic resources and existing map building tech-
niques. Section 2.1 investigates some of the work on building road-map information used for
robotic vehicles to drive autonomously. Section 2.2 surveys four of the existing cartographic
resources in terms of the available data to populate road-map structures for robotic applications.
The robotics community has been developing map building techniques for robot navigation while
the GIS community has primarily focused on maps for human consumption. Section 2.3 com-
pares our approach with existing raster and orthoimage analysis in the GIS community. In section
2.3.2, we investigate how overhead data such as orthoimagery and digital elevation maps are used
in the robotics community. While analyzing orthoimage, ouralgorithms employ techniques from
image processing, computer vision, and machine learning. Section 2.3.3 investigates relevant re-
search works in computer vision and image processing. Unlike most of the existing techniques in
computer vision and robotics community, this thesis work explores a method that acquires task-
relevant patterns through bootstrapping to minimize humanintervention. Section 2.3.4 investi-
gates two machine learning approaches that minimize human involvement in machine learning
tasks.

To address temporary changes of driving conditions on the resulting highway maps, a part of
this thesis work aims at developing algorithms for analyzing perspective images with application
goal of recognizing temporary changes to a highway. Section2.4 reviews computer vision and
machine learning techniques related to the task of recognizing temporary changes of driving
conditions. In particular, section 2.4.1 surveys existingtechniques that detect and classify traffic
sign by analyzing perspective videos. Most of existing workin this field focuses primarily on
improving the accuracy of their sign recognitions whereas ours has error handling methods to
accurately infer the properties of temporary events. Section 2.4.2 reviews some of the object
recognition works that explicitly model how to handle recognition errors.
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2.1 Use of Cartographic Information for Robotic Applica-
tions

We are concerned with the usefulness of existing cartographic resources for automatic roadmap
generation, thus we first review prior work in building road network information using onboard
sensor measurements and then investigate the usage of this information by teams that participated
in the Urban Challenge.

2.1.1 Building Roadmaps for Robotic Applications

A common feature of these approaches is the use of onboard sensor measurements,
which are collected by pre-driving a target area. In fact building maps is practically its
own field: SLAM (simultaneous localization and mapping) which addresses the problem
of building maps by analyzing sensor measurements while also localizing robots’ poses
[Thrun et al., 2005],[Thrun and Montemerlo, 2005],[Durrant-Whyte and Bailey, 2006]. Be-
cause we are mainly investigating techniques for building,by analyzing aerial images, maps
in urban environments, work related to SLAM and off-road environments will not be reviewed
here.

Hebert devises a roadmap building algorithm that analyzes range measurements to generate
a roadmap [Hebert, 1989]. The algorithm estimates the statistics of reflectance data around road
regions from manually labeled data; finds road regions in images by thresholding reflectance
values; and then fits two parallel lines onto the left and right edges of the estimated road regions.
Road mapping is done by aligning two points in a sequence of consecutive images.

Thorpe and his colleagues [Thorpe et al., 1991] build a roadmap for their mail delivery ve-
hicle in a semi-automatic way. They drove a robotic vehicle to annotate global coordinates of
landmarks in the robot’s operating environment by using a laser range finder. The resulting
roadmap is primarily used for vehicle localization.

There are two similar work to ours in terms of building maps for autonomous parking lot
driving. Dolgov and Thrun devise algorithms that build a lane-network graph of a parking lot
from sensor readings from their robotic vehicle [Dolgov andThrun, 2009]. They first build a
grid map of static obstacles from range measurements and then use Markov Random Fields to
infer a topological graph that most likely fits the grid map. They define a series of potentials
to incorporate their prior on a road network. However, instead of directly minimizing these
potentials imposed on road segments, a generalized Voronoidiagram is used as a subset of the
topological road network.

Kummerle and his colleagues build a multilevel (or multilevel surface) map of a parking
building [Kummerle et al., 2009]. A multilevel-map is a 2D grid map that each of cells maintains
a stack of patches. As individual patches in a cell correspond to different height estimates, this
multilevel structure is used to represent drivable regionsand vertical objects. To fill in individual
cells, they first formulate a mapping as a graph constructionproblem that a node represents
a vehicle pose and an edge represents a relative motion between poses; and then find optimal
nodes based on constraints imposed on edges. A new node is continuously added to the graph
until a loop closure is found.
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2.1.2 Use of Cartographic Information for the Urban Challenge

For the Urban Challenge, we also manually created models of road networks using a combination
of GPS survey and overhead imagery [Urmson et al., 2008]. Performing a GPS survey requires
manually driving a vehicle, which is capable of estimating its pose, through an environment that
an autonomous vehicle is intending to driving through. The set of surveyed GPS coordinates
should be aligned with the orthoimagery of the region to enable annotating characteristics of the
route.

Manually built road networks were extensively utilized in the Urban Challenge
[Bacha et al., 2008, Bohren et al., 2008, Miller et al., 2008,Montemerlo et al., 2008,
Urmson et al., 2008]. Like many mobile robot navigation problems, autonomous driving
in urban environments is in essence way-point1 navigation from a starting location to a goal
location. Each waypoint in a road network is represented as anode with directed edges, coming
in and out from the node, connecting logically reachable waypoints. These edges are associated
with various navigation costs such as expected time to traverse, length and other information
related to autonomous driving [Ferguson et al., 2008a, Urmson et al., 2008]. Such a detailed
information about a road network was saved in a Route NetworkDefinition File (RNDF) format
defined by the DARPA for the Urban Challenge [DARPA, 2007].

Some example uses of road network information in the Urban Challenge include:

• Geometric Information about Drivable RegionsThis includes a representation of
the lane centers and widths and parking lot boundaries [Montemerlo et al., 2008,
Urmson et al., 2008].

• Mission (Route) Planning: The goal of mission (or route) planning is to choose
a globally optimal path between two geographic locations using the road network
[Bohren et al., 2008, Miller et al., 2008, Montemerlo et al.,2008, Urmson et al., 2008].
The optimality of a path may be determined by considering static (e.g., speed limits) and
dynamic factors (e.g., temporary blockages).

• Macro-level Motion Planning (or behavioral system): Given a path to a goal, a behav-
ioral system executes macro-level motions: lane-changing, precedence-handling, on-road
driving, intersection-handling, yielding, and so on [Urmson et al., 2008].

• Micro-level Motion Planning (or local motion planner): In on-road driving, the local mo-
tion planner generates a set of trajectories along the centerline of the road lane and choose
one of them that satisfies the optimality condition [Ferguson et al., 2008b].

• Perception The road geometry provided from road network information isused
to localize vehicles’ locations with respect to road-boundaries [Leonard et al., 2008,
Urmson et al., 2008] and validate detected vehicles and other obstacles [Bacha et al., 2008,
Miller et al., 2008, Urmson et al., 2008].

During the Urban Challenge, road network information was extensively used to provide
robotic vehicles with information about driving environments that is hard to acquire from on-
board sensor measurements. This information was crucial for robotic vehicles to perform reliable
and intelligent maneuvers in an urban environment.

1A waypoint is a reference point that identifies a geographic location.
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Following the successful demonstration of autonomous driving in the Urban Challenge, re-
search efforts on the development of autonomous vehicles has surged. We review two such
studies as they relate to our thesis work. The relationship is in terms of augmenting a road-
vector database with additional information that can be later used for autonomous driving and of
utilizing the information of road networks.

Fairfield and Urmson develop a perception algorithm for detecting traffic lights and mapping
their locations [Fairfield and Urmson, 2011]. The work aimedat obtaining precise geo-spatial
information about traffic lights to facilitate an autonomous driving task of handling intersections
controlled by traffic lights. To obtain such information, they drove a mapping vehicle, which is
capable of localizing its pose in sub-meter accuracy, and used a camera to collect traffic light
images. Using the geometric information from a pair of Google maps and vehicle position in-
formation, and traffic sign image classification, they choose some of the traffic light images to
estimate traffic light positions – more than two images associated with a traffic light are used to
estimate traffic light position through a linear triangulation. This information is used to augment
a roadmap database with detailed information about traffic lights, e.g., their positions and types.
This is then used to inform a self-driving vehicle of where tolook to infer precedence about when
to drive through traffic-light controlled intersections.

Frankel and his colleagues developed a system that aids human drivers to safely change lanes
on highways [Frankel et al., 2010]. To change lanes on a highway, it is necessary to know pre-
cisely a vehicle’s position with respect to its road-lane. Their vehicle localized its pose with a
GPS-based Inertial Navigation System (INS) system that periodically reports a sub-meter accu-
rate pose on average. But, this position estimate combined with inaccurate RNDF would result
in the vehicle’s occasional crossing of the centerline. To correct this, they used local sensor
measurements that allowed them to identify boundaries of road-lanes [Montemerlo et al., 2008].
They also augmented the content of RNDF with other information necessary for performing
highway lane-changes, such as lane heading and the current point’s geometric relation to other
points of interest, e.g., the closest highway or waypoints in the same or other lanes. Additionally,
road network information was used to direct perception modules to pay attention to the region of
interest, e.g., clearance of lanes to merge and moving vehicles of interest to track.

These works differ from ours in that they need to manually drive a robot to collect range
measurements.

2.2 Existing Cartographic Resources

There are a number of cartographic resources publicly and commercially available. Although
they are developed and maintained primarily for human navigation, it is useful to review their
properties to contrast human navigation with autonomous driving.

In this section, we review three publicly available resources such as orthomaps (or orthopho-
tos) from the United States Geological Survey (USGS), the Google Maps API, and the Topolog-
ically Integrated Geographic Encoding and Referencing (TIGER) from the U.S. Census Bureau.
We also review one commercially available resource: Navteq’s roadmap database.
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Figure 2.1: This orthoimage was obtained in 2006 and its resolution is 10000× 10000 (1
feet/pixel), approximately covering 3,040× 3,040 meters. The original size of this image is
286 Mega bytes.

2.2.1 USGS’ Orthomaps

U.S. Geological Survey (USGS)2 is a US governmental organization that provides geological
services. Some of the commercial map service providers use USGS’ orthoimages or satellite
images. There is a significant amount of data publicly available such as LIDAR (Light Detec-
tion And Ranging), digital raster graphic, non-rectified satellite images, etc. Among these, this
section only reviews the orthophotos (aka orthomaps, orthoimagery).

An image without the effects of topography (or relief displacement) and camera tilt is called
an orthoimage (or orthophoto)3 and has a uniform scale. Since an orthophoto has a uniform
scale, it is possible to directly measure distance on it likeother maps. An orthophoto may also
serve as a base map onto which other map information can be overlain. When an orthomap is
combined with other digital products, such as digital raster graphics (DRG) or digital elevation
models (DEM), the resulting image provides additional visual information for the extraction and
revision of base cartographic information. Figure 2.1 shows a high-resolution orthoimage of the
Carnegie Mellon University campus.

2.2.2 Google’s Maps API

Google Inc. provides registered users access, through their Application Programming Interface
(API), to their cartographic databases. Since there is no publication about Google’s cartographic

2http://www.usgs.gov
3This is because orthoimagery has orthographic properties rather those of the central perspective of the original

aerial photograph.
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(a) A part of the TIGER roadmap database. (b) A part of Navteq’s roadmap database.

Figure 2.2: The “Waterfront” region near Pittsburgh is depicted by two roadmap databases.

database, it is not possible to review their structures in detail.

Google had been using roadmaps from a number of the map providers, including Tele Atlas,4

Europa technologies,5 USGS,6 NASA, GeoEye,7, Sanborn,8 DigitalGlobe,9 etc, to provide users
with various interesting visualizations through their Maps APIs.10 Since October 2009, Google
has switched to using their own maps. Table 2.1 compares someof the Google Maps API’s
features with three other cartographic resources.

2.2.3 TIGER

The TIGER (Topologically Integrated Geographic Encoding and Referencing system or
TIGER/Line) is a cartographic database used by the U.S. Census Bureau to describe land at-
tributes such as roads, building, rivers, and lakes.11

TIGER data includes complete coverage of the United States territories and includes both
land attributes such as roads, buildings, rivers, and lakes, as well as areas such as counties,
census tracts, and census blocks.

Figure 2.2(a) shows a screen capture of a web-based map service provider that uses TIGER
as their basemap. As seen in this figure, TIGER has been utilized as a base map that provides the
connectivity information about the region of interest.

4http://www.teleatlas.com/index.htm
5http://www.europa.uk.com/
6http://www.usgs.gov
7http://www.geoeye.com/CorpSite/
8http://www.sanborn.com/
9http://www.digitalglobe.com/

10http://code.google.com/apis/maps/documentation/refe rence.html
11The TIGER is publicly available at,http://www.census.gov/geo/www/tiger/ . For the technical

descriptions, refer to “TIGER/Line shapefiles: Technical documentation.”
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2.2.4 Navteq’s Roadmap Database

Navteq12 is one of the major GIS data providers. Their roadmap database seems to be built based
on first hand observation of geographic features.

Due to a limited access to the latest version of Navteq’s roadmap database, this section fo-
cuses a brief overview of Navteq’s road map database structure.

In Navteq’s roadmap database, there are three primary cartographic types: point, polygon,
and polyline. We describe these primary data types in detailand review their usages.13

• Point: Is used to represent points of interests (POIs) such as restaurants, hotels, etc.

• Polygon: Is used to represent a cartographic polygon, such as a lake or a park.

• Polyline: Is used to represent a cartographic polyline, such as a road, walkway, railroad,
etc.

1. Relative speed category: Specifies the relative speed category

2. Number of lanes: Describes how many lanes this polyline represents

3. Pavement: Describes the status of the pavement on a road segment (e.g., paved, pri-
vate, frontage, bridge, etc.)

4. Accessibility: Describes the types of transportation allowed on that segment (e.g.,
automobiles, buses, taxis, carpools, pedestrians, bicycles, trucks, through traffic, de-
liveries, emergency vehicles)

5. Driving direction: Explains the driving direction of a road segment.

Figure 2.2(b) shows screen captures of the “Waterfront” region where the corresponding part
of the vectorized roadmap is depicted. This map shows the same area depicted in figure 2.2(a),
but it contains more detailed information about the area.

We review four existing cartographic resources that are built primarily for human consump-
tion. Because of their primary usage, these resources are not directly applicable to use as
roadmaps for autonomous driving where precise informationabout road structures is required.
For example, to drive reliably and safely, a robotic vehicleneeds to know the width, curvature,
and speed limit of a road segment that a human drive can easilyobtain while driving on the road
segment. Reviewing their properties elucidates what kind of information is necessary to build
roadmaps for autonomous driving; which of cartographic resources are useful as a complement
resource, and; how the proposed framework might be helpful in building roadmaps for human
consumption. Table 2.1 compares the properties provided byfour cartographic resources in the
perspective of the information relevant to autonomous driving.

12http://www.navteq.com
13Refer to “NAVTECH SDAL version 1.7 Programmer’s Reference”for more information.
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Geocoding No Yes Yes Yes
Reverse geocoding No Yes Unknown Unknown
Waypoints along path No Possible Yes Possible
Curvature No Possible Possible Possible
Traffic rules encoding No No No Partial
Parking lot boundary No No No No
Speed limit No No No Yes
Number of lanes No No No Partial
Pavement status No No No Yes
Road accessibility No No No Yes
Driving direction No Possible Unknown Yes
Availability Public Public/Commercial Public Commercial

Table 2.1: Comparison of properties provided by existing cartographic databases. “Unknown”
means the feature is not known at the time of survey, “partial” means “there is something under
the category, but not enough to implement the feature,” and “possible” means that “there is a way
to implement the idea.”

2.3 Overhead Data Analysis

2.3.1 Aerial Image Analysis in the GIS Community

The GIS community has a broad focus including building maps for human consumption in
various applications and contexts; theoretical studies ofroad network structure for devel-
oping faster algorithms for handling geospatial data [Eppstein and Goodrich, 2008], extract-
ing connectivity of roads from raster maps [Chiang and Knoblock, 2008], localizing mov-
ing objects on known road networks [Wang and Zimmermann, 2008], and many other top-
ics. Among these, research on raster map analysis shares themost commonality with our
approach in that it involves extracting interesting features from a raster images of maps
[Chen et al., 2006b, Chiang and Knoblock, 2008, Khotanzad and Zink, 2003] and satellite im-
ages (e.g., IKONOS, SPOT, etc) [Geman and Jedynak, 1996],[Haverkamp, 2002]. Some of
this work use specialized aerial images, such as color-infrared [Grote et al., 2007], panchro-
matic [Gruen and Li, 1995], multispectral images [Doucetteet al., 2004], [Zhang, 2006] to em-
phasize regions of interest by utilizing invisible parts ofelectromagnetic radiation. Some also
make use of data in a different modality such as airborne Light Detection and Ranging (LI-
DAR) measurements [Zhu and Mordohai, 2009, Qian et al., 2010] or surface elevation informa-
tion [Schpok, 2011] to analyze regions of interest from different point of views. Only some of
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these works will be reviewed here because their work is significantly related to this thesis work
in terms of analyzing overhead data for extracting or updating road network.

Aerial Imagery Analysis for Cartographic Databases Maintenance In
[Chiang and Knoblock, 2008], the authors present image processing algorithms that obtain
the location and orientation of road intersections from raster images and estimate the connectiv-
ity of the region under investigation. They utilize combinations of morphology operators (e.g.,
thinning and thickening) and heuristics. The distinction between their raster image analysis
and ours lies in the characteristics of the images. Extracting data from rasterized maps has
different challenges than analyzing overhead aerial imagery (e.g., aliasing and distorted color
vs. variations in illumination and appearance, occlusions).

In orthophoto analysis, Chen and his colleagues propose a conflation algorithm that in-
tegrates two different geospatial data sets such as vectorized road maps and orthoimages
[Chen et al., 2006a]. Their approach is similar to ours in that they use a classification algorithm
(a naive Bayes classifier) to estimate boundaries of roads and generate and filter out hypotheses
on interesting points for conflation. But their filtering is guided by information in vectorized road
maps whereas ours is based on learning distributions directly from imagery.

A common problem is to extract geospatial features from aerial imagery and use
them to refine and update records in geospatial database [Baltsavias and Zhang, 2005,
flavie Auclair Fortier et al., 2000]. In [flavie Auclair Fortier et al., 2000] the authors present an
aerial image processing algorithm that utilizes up-to-date aerial images to modify the content
of road maps. Through multiple steps of image processing, a set of line junction candidates
is identified. The database of vectorized roadmaps is then used to filter out line junctions for
which image coordinates are distant from those of actual intersections. The remaining line
junctions are used to match the closest intersections and are used to adjust the coordinates of
the matched intersections. Geman and Jedynak use a machine learning technique for tracking
roads in satellite images. A decision tree is used to test individual pixels’ image features, such
as the presence of arcs and local filter responses, to determine whether they belong to roads
[Geman and Jedynak, 1996]. Their algorithms are intended tobe a part of an interactive aerial
image analysis system where an operator provides the systemwith starting points and direc-
tions for tracking road networks. Similarly, Hu and his colleagues developed a heuristic-based
road tracking algorithm for extracting road networks appearing on low-resolution aerial images
[Hu et al., 2007]. They first approximated the local geometryof roads centered at sampled points
by investigating intensity changes along line segments coming out from the points. They con-
nected some of these local road polygons based on heuristicsand refined the resulting road
network based on statistics of ratios of areas to perimeters.

Overhead Data AnalysisWe detect interesting road structures, such as intersections and
overpasses, for identifying potentially complex road geometry. For example, knowing the bound-
ary of an overpass is useful in correctly extracting the boundaries of road-lanes around it. We
approximate the geometry of the underlying road network by using a screenshot of a road-vector.
For depicting 3D structures in (birds-eye view) aerial images, Schpok proposed an overpass de-
tection method using road-vector databases with surface elevation information [Schpok, 2011].
They first searched for a list of potential overpass locations by investigating the surface eleva-
tions of locations sampled along a road-vector. These overpass candidate locations are grouped
together based on the similarity of their geometric properties, i.e., road span. To define the
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boundaries of overpasses, they expanded outgoing edges of each cluster to include neighboring
road spans until terminating conditions were satisfied. An overpass is then finally reconstructed
using road spans and surface elevation information.

Some work in the GIS community use 3-dimensional laser scan measurements to detect road-
structures and to extract a road network. Qian and his colleagues used 3D point clouds to detect
the boundaries of an overpass [Qian et al., 2010]. They collected 3D lidar scans by driving on
highways and analyzed point clouds based on heuristic of basically identifying and grouping
“jumps” to detect overpasses. We use road-vector sketches depicted on map images to detect
overpasses and analyze extracted lines to identify the boundaries of the detected overpasses.
This process is what distinguishes ours from these approaches using 3D information.

Zhu and Mordohai proposed a road network extraction algorithm from aerial LIDAR range
measurements [Zhu and Mordohai, 2009]. Similar to our approach for generating lane-level
detail highway maps, they formulated a road network extraction problem using a min-cover
scheme. Individual range scans were grouped together basedon three-dimensional information
and some of the scan groups are classified as ground planes based on the groups’ geometric
shapes. All the scan points on the ground planes were projected onto a 2D plane to produce
an image of LIDAR intensity values. They used responses of polarized rectangular filters and
textures to extract features of the boundaries and interiors of roads. These boundary and road
features were used to generate road hypotheses. The likelihoods of these being true road regions
are computed based on convolution. In spite of the differentoverhead data to analyze and meth-
ods to generate hypotheses about true road regions, the model of their road hypothesis bears a
strong resemblance to ours in that it is represented as a polyline in which each edge (or control
point) is associated with geometric properties such as width and direction. They used a minimum
cover idea to search for a set of road hypotheses that maximally covers a likelihood map while
minimizing the cost of generating hypotheses. Similar to our approach, they found a greedy solu-
tion, which look for a locally optimal solution, to approximate the optimal solution of a NP-hard
minimum cover problem.

Significant research has been done extracting road network structures from overhead aerial
imagery. However, to the best of our knowledge, our work is the first attempt to, by analyzing
publicly available aerial-images, build roadmaps sufficient for autonomous driving.

2.3.2 Overhead Data Analysis in Robotics

Overhead imagery data can be utilized to provide prior information about environments for out-
door robot navigation. Despite being potentially out of date, aerial image analysis can provide an
important structural overview of operational environments that can enable robots to plan glob-
ally to achieve their goals. In combination with other onboard sensors such as vision sensors and
range finders, overhead imagery offers an avenue for generating a complete view of an operating
environment.

Schematic Overview of Operating EnvironmentsSilver and his colleagues utilize over-
head data to produce cost maps for long-range traversals [Silver et al., 2006]. They fuse multiple
overhead data sources to compute relative measures of mobility risk in regions of interest. Simi-
larly, Sofman and his colleagues use overhead aerial imagesto generate long-range traversability
maps [Sofman et al., 2006]. They use local range estimationsas self-labeled examples to learn
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relations between the characteristics of local terrain andcorresponding regions in aerial images.
These learned relations are used to map aerial images to longrange estimates of traversability
over areas that the robot may explore. Vandapel and his colleagues use aerial LIDAR survey
data to obtain a long-distance traversability map for an environment [Vandapel et al., 2003]. A
manned helicopter is flown over regions of interest multipletimes to collect high point density
data (4 to 10 points per square meters). Raw range measurements are divided into 1m×1m cells
and then categorized into either ground or vegetation. The areas classified as ground are used to
populate a traversability map.

Persson and his colleagues use aerial images to disambiguate local sensor measurements
[Persson et al., 2008]. An occupancy grid-like map is built using range measurements. Edges
extracted from geo-referenced aerial images of a region areused to determine the class of cells
(building or not). This matching process extends the robot’s myopic local perception.

Global Localization Overhead orthoimages are also used to solve the global localization
problem [Dogruer et al., 2008]. Dogruer and his colleagues propose a localization algorithm that
utilizes Monte Carlo Localization to identify the locationof a mobile robot in an urban environ-
ment. This algorithm is essentially about matching features from local sensor measurements to
features extracted from overhead imagery (e.g., buildingsdetected in laser scans and identified in
the overhead images). Overhead images are segmented beforehand into several regions: build-
ing, vegetation, ground, and (asphalt) road. Because the robot is always driving on roads in their
experimental settings, if the world model is accurate (i.e., if the segmentation result accurately
depicts where roads are), the distribution of particles about the robot location converges to the
correct location over time.

Similarly, Carle and Barfoot utilized overhead data for a long-range localization of their
vehicle [Carle and Barfoot, 2010]. Local sensor measurements were used to match features ap-
pearing on a 3D orbital elevation map through feature constellations. Particularly they used, for
the feature matching, multiple-steps of hypothesis refinement and, for the pose refinement, a
combination of RANSAC (RANdom SAmple Consensus)[Fischlerand Bolles, 1981] and parts
of SLAM techniques.

Urban scenes appearing on aerial imagery have also been utilized to localize the position
of an unmanned aerial vehicle (UAV) [Soleimani et al., 2010]. The authors claimed that a geo-
metric structure of a road network is useful for search-and-rescue robotic applications because
road structures are disaster invariant. A geometric structure of a road network was obtained by
detecting roads appearing on aerial images and then was represented as a grid map, in which the
value of each grid cell was a real value of being occupied by roads ranging between 0 and 1. This
representation is used to match simulated local sensor measurements of a UAV.

World Modeling Scrapper and his colleagues utilize aerial images to build aworld model
of a robot’s operating environment [Scrapper et al., 2003].To provide prior information about
an operating environment, they manually annotate topographic data and features (e.g., woods,
rivers, roads) by aerial survey and manual driving of the robot. Using the current pose of the
robot (measured by a combination of GPS and IMU), the robot searches for the list of objects
possibly observed from its current location and interpretsits local sensor (e.g., color camera,
an imaging ladar) measurements by its confidence about the measurements of its surroundings.
Such a world model database can simplify autonomous navigation in regions covered by the
database. The approach of building a world model is similar to that of [Urmson et al., 2008].
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In this work, the road world model is built by a combination ofaerial imagery and GPS survey.
The GPS survey is carried out by manually driving a robotic vehicle on the region of interest.
A set of the surveyed GPS coordinates is associated with aerial images of the corresponding
area. However, as we pointed out earlier, although such a world model simplifies autonomous
navigation in regions covered by the database, manually building the model is labor-intensive
and error-prone.

Overhead imagery has been used as a complement to onboard sensor data to guide outdoor
robot navigation. Regions in an overhead image are labeled based on corresponding measure-
ments from onboard sensors. To the best of our knowledge, no work in overhead imagery analysis
attempts to utilize patterns in images as training examplesfor extracting road structures in the
image. Because low-level image patterns share common imagecharacteristics of local objects,
they are useful to detect road structures in the images. In this regard, this thesis work is the first
attempt to automatically build road maps by recovering roadstructures while minimizing the use
of manually-labeled data.

2.3.3 Overhead Imagery Analysis in Computer Vision

In this section, we will consider aerial image analysis for object boundary detection, image road
cue tracking and spatial structure recognition. We will then investigate relevant object detection,
structure recovery, and optimization methods in computer vision.

Object Boundary Detection Object boundary detection has been considered as one
of the most important problems in the computer vision community [Martin et al., 2004,
Zheng et al., 2007]. This is because knowing the boundaries of objects appearing in im-
ages helps researchers meet the objectives of several computer vision tasks, such as ob-
ject recognition [Dollar et al., 2006, Zheng et al., 2007] and segmentation [Malik et al., 2001,
Martin et al., 2004], to name only two. A great deal of high-quality research work on this field
has been published. However, we review that which is significantly related to this thesis work.
Martin and his colleagues proposed a learning-based natural object boundary detection method
[Martin et al., 2004]. Using image data where object boundaries are manually annotated, they
trained models of boundaries’ image characteristics, suchas discontinuities in brightness, as well
as the texture and color values of neighboring pixels. In ourstudy, the boundaries of road-lanes
are, at least by definition, clearly specified as lane-markings. But the variations of their appear-
ances are high. We learned a classifier to tackle such variations. Similar to the learning method in
[Martin et al., 2004], to learn contrast between lane-marking pixels and neighboring background
pixels, we use a set of features, such as Local Binary Pattern(LBP) [Ojala et al., 2002] and some
other textural statistics. Their seminal work also provided the computer vision community with
a bench-mark testbed. We used their probabilistic boundaryoutputs to compare the performance
of our road-lane boundary detection. Dollar and his colleagues’ approach to detect object bound-
aries is similar to ours and methods described in [Martin et al., 2004] to identify objects’ bound-
aries, they trained a classifier, probabilistic boosting tree, from manually labeled image data to
identify objects’ boundaries [Dollar et al., 2006]. What sets theirs apart is how they represented
their features. They used a set of generic features, such as Haar wavelets and image gradients at
multiple scales, to represent a patch around a boundary pixel, instead of just using a pixel. Their
feature representations are in fact effective for identifying objects and for even picking up roads
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appearing on low-resolution aerial images. Similar to Dollar and his colleagues, Mnih and Hin-
ton used a set of generic features to train a road-detector, using Restricted Boltzmann Machines
(RBMs). This detector was to learn a binary model that could classify whether a given image
patch was a part of the road [Mnih and Hinton, 2010]. To obtainthe training data, they utilized
road-vector database to label aerial images. This idea alsobears a resemblance to our method
of obtaining labeled superpixel images for road-region segmentation. Instead of just using a set
of local image patches as a training data, they compiled a pair of a pixel and its neighboring
pixels and used them as a training example to model regional image characteristics. To smooth
out classification outputs focused on local image patches, they repeatedly applied a local filter at
fixed intervals over the entire image region.

Tracking of Road Image CuesFor our methods of generating highway maps, we connect
hypotheses about true road-lanes based on photometric and geometric image cues. While link-
ing road-lane hypotheses, we develop a heuristic for tracking road-boundary images cues. There
are two aerial imagery analysis works that employ a Bayesianfilter to track road cues. Zhou
et al use two non-linear Bayesian filters, such as the extended Kalman filter and particle filter,
to track roads appearing on digital orthophotos and to extract parts of the underlying road net-
work [Zhou et al., 2006]. Given initial locations by human operators, the filters move forward
according to their motion models and choose the best path based on the observation models,
which match intensity values of neighboring pixels around the current pixel location with the
next possible locations. Similarly, the authors use unscented Kalman filter for tracking roads
appearing on satellite images [Movaghati and Moghaddamjoo, 2008]. They employed different
filters based on their assumptions on the non-linearity of road boundaries. The idea of using
non-linear Bayesian filters to track roads is similar to our approach of tracking road-boundary
cues in that the tracking direction is adjusted by photometric road-cues. The main difference
between ours and these approaches is the ground resolution of test images. Variations of object
appearances in a low-resolution aerial imagery, i.e., greater than 1 meter per pixel, are not as
significant as those of high-resolution imagery (e.g., 15 centimeter per pixel).

Perceptual Grouping To develop a function for linking road-lane hypotheses based
on geometric image constraints, we employ Gestalt laws of grouping image features in a
non-accidentalness, considering proximity, smooth continuation, parallelism and compactness
[Palmer, 1999]. In particular, a possible linking between two road-lane hypotheses is as-
signed a higher value if its Euclidean distance is shorter while the linking angle is smaller.
Three other studies specifically implement such a perceptual grouping of image features based
on Gestalt laws. These other studies used it as follows: 1) tocomplete object boundary
contours [Estrada and Jepson, 2006], 2) to close contour of an object boundary represented
by linear lines [Elder and Zucker, 1996], and 3) to group edges based on their symmetries
[Stahl and Wang, 2006]. These approaches resemble to ours interms of modeling Gestalt laws
for boundary completion, but differ in terms of implementing the linking function. Particularly
we formulated a linking as a cost minimization in the min-cover framework.

Parking Lot Structure Analysis There are a similar work in the realm of spatial structure
recovery. Wang and Hanson [Wang and Hanson, 1998] propose analgorithm that uses multiple
aerial images to extract the structure of a parking lot for simulation and visualization of parking
lot activities. Multiple images from different angles are used to build a 2.5 dimensional ele-
vation map of the parking lot. This usage of multiple images makes it difficult to generalize
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their method because it is not easy to obtain such images of the same geographic location from
publicly available imagery.

Most prior work in parking lot image analysis focuses primarily on detecting empty parking
spots in surveillance footage when the overall geometricalstructure of the parking lot is known
[Fabian, 2008, Huang et al., 2008, Wu et al., 2007]. Our work on parking lot geometry analysis
addresses an alternative problem: extracting the entire parking lot structure from overhead satel-
lite imagery. Similarity between our work and these works onempty parking spot detection lies
in the fact that we utilize coherent structural patterns over an image region to infer the availability
of certain parking spots.

With a recent increase of web-based cartographic services,aerial image analysis has attracted
increased attention from the computer vision community. This thesis proposes a combination of
detection and optimization for recovering relevant spatial structures. This approach implicitly
assumes contextual associations among objects in aerial imagery [Oliva and Torralba, 2007].

Exploitation of Spatial CoherenceThree computer vision works that effectively exploit
contextual relations among spatial objects are [Porway et al., 2008], [Heitz and Koller, 2008],
and [Kluckner et al., 2009]. Porway and his colleagues propose a statistical framework that hi-
erarchically interprets objects in a given aerial image [Porway et al., 2008]. A scene in an aerial
image is modeled by a coherent spatial relationship among cars, roads, and parking lots. By
using a set of labeled aerial images, they first obtain appearance models of relevant objects such
as trees, parking lots, roofs, and roads. False positives ofthese object detections are filtered by
their “top-down” contextual models that are estimated in a minimax entropy framework. While
this work is similar to ours, they rely on manually labeled examples and do not attempt to gener-
ate fine-grained geometry for the detected spatial structures. Heitz and Koller present a graphical
model for detecting objects in aerial imagery [Heitz and Koller, 2008]. Their models learn a con-
ditional distribution for the presence of an object given particular image features. In other words,
the presence of particular objects is inferred from image regions in which individual pixels share
similar image features such as color or texture. Kluckner and his colleagues present an aerial
image analysis algorithm that classifies a given aerial image into one of the several predefined
classes such as “tree”, “streetlayer”, “waterbody”, “tree,” and “building” [Kluckner et al., 2009].
They use sigma-points to represent several generic features, such as color in Lab, texture, height
information, and train a randomized forest [Breiman, 2001]. To smooth out classification outputs
to individual pixels, they use a conditional random field that makes the assigned class labels of
neighboring pixels similar to one another. Geraud and Mouret proposed a bottom-up approach to
extract a road network appearing on low-resolution aerial imagery [Geraud and Mouret, 2004].
As we collect low-level image features, they use the watershed transform to produce a superpixel
image. Two intersection points between superpixel boundaries define a curve that potentially
represents a part of road. They built a curve adjacency graphabout the connectivity of these
curves. They formulate the task of extracting road network from the curve adjacency graph as
graph labeling problem and use a pairwise MRF to model optimal interactions between curves.
A simulated annealing is used to find the most probable state of the graph, equivalent to the most
probable road network given an input image.

Feature RepresentationFor supervised object recognition from images, the development of
techniques and theories has been largely focused on two parts: methods that effectively represent
images as feature vectors and methods that assign image features with correct labels. Since it is
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very hard to develop a technique or theory at either extreme,most work leverages both.
Feature representation refers to the projection of data into another space where the origi-

nal data is represented in a more compact form. One of the waysto achieve this is to reduce the
original dimension with minimal loss of information. Turk and Pentland utilize principal compo-
nent analysis to effectively represent high-dimensional human face images in a low-dimensional
space without significant loss of data [Turk and Pentland, 1991]. They choose thek most signifi-
cant eigenvalues of the covariance matrix of face images anduse the corresponding eigenvectors
to form a new low-dimensional face space. They showed a significant reduction in feature di-
mensions while maintaining the performance of the full feature space for their face detection
task.

Another purpose of feature representation is to inject invariance into the original images so
that features are less sensitive to variation of illumination and appearance. As an example, the
Histogram of Oriented Gradients (HOG) feature is used to describe local object appearance and
shape in an image by the distribution of intensity gradients(or edge directions) and has been used
in pedestrian detection [Dalal and Triggs, 2005]. An image is divided into either evenly-spaced
or connected region cells. For each cell, the HOG features are obtained by counting occurrence
of gradient (discretized) orientations. These local histograms can be illumination or shadow-
invariant by combining several of them into a bigger cell (called a block) and normalizing their
histograms.

Object RecognitionOnce we have a good representation, the next major step for detecting
objects in imagery is to learn the models of the target objects from the data. A tremendous amount
of work has been done in this area. In general, there are two major theoretical approaches:
discriminative and generative. A discriminative approachsolves the object detection problem by
finding a decision boundary from labeled data whereas a generative approach solves the same
problem by first modeling the data generation process and then using an estimated model to
assign labels probabilistically [Duda et al., 2001].

Successful discriminative methods used in computer visioninclude support vector ma-
chines [Dalal and Triggs, 2005, Felzenszwalb et al., 2008],and ensemble machines such as
AdaBoost [Viola and Jones, 2004], composition boosting [Porway et al., 2008] or randomized
forests [Breiman, 2001].

Probabilistic graphical models are canonical examples of generative approach. Markov net-
works and their variants have been extensively studied in computer vision community under the
topic of modeling such spatial relationships. These techniques include Markov Random Fields
[Freeman et al., 2000], [Li, 2000], [Singhal et al., 2003] orits variants such as Conditional Ran-
dom Fields [Carbonetto et al., 2004], [Weinman et al., 2004]and Discriminative Random Fields
[Kumar and Hebert, 2005]. The fundamental idea of Markov networks is that the value of an
image pixel cannot be independent of its neighbors. To support this idea, they offer numerous
ways of massaging the joint probability distribution of random variables. In particular, these
techniques are flexible in modeling real worlds problems because they offer compatibility func-
tions, which are used to model interactions among variablesof interest, and provide well-defined
techniques for solving learning and inference problems in undirected graphical models. These
techniques have been mainly applied to computer vision and their application areas which include
augmentation of range measurements by intensity images [Diebel and Thrun, 2005], generation
of the optimal navigable path [Nabbe et al., 2004], 3D reconstruction of environments from a sin-
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gle image [Saxena et al., 2007], image segmentation [Freeman et al., 2000], and object recogni-
tion [Verbeek and Triggs, 2007], [Gallagher and Chen, 2007], [Weinman et al., 2004]. Although
application areas differ, the most frequent problem to solve is an inference problem: to find the
most probable state of the world given an image [Koller et al., 2007].

In our parking lot structure recognition, we utilize a MRF tofind the most probable lay-
out of parking spots as a cue for the underlying parking lot structure in a given aerial image.
Specifically, we hypothesize the locations of the true parking spots by choosing a number of
image locations. In our MRF implementation, each of these hypotheses is modeled as a random
variable and their joint probability distribution is factorized by undirected graph. We choose an
undirected graph to estimate the joint density because it ishard to identify causal directionality
among random variables. Since it is also difficult to learn the optimal structure of an undirected
graph primarily due to absence of directionality among the variables, we assume that there is
a lattice structure of the undirected graph upon the detected parking spots. The given structure
allows only pairwise interactions among the variables. Given a particular structure and values
of random variables, one of the most interesting problems tosolve is to know the most likely
parking lot structure. For solving this inference problem,there are three different types of infer-
ence techniques: exact inference, sampling-based approximate inference, and variational/belief
propagation approximate inference [Jordan, 2004], [Koller et al., 2007]. We choose loopy belief
propagation [Freeman et al., 2000], [Yedidia et al., 2003] for solving the most likely labeling on
parking spot hypotheses for its simple implementation.

Road-marker detection is a very flexible method for autonomous driving and aerial image
analysis. The detected road-markers may be used for driver-assistance system and urban structure
analysis from overhead aerial images. A major problem in detecting road-markers from images is
that the appearance of road-markings are not consistent because of occlusions by other objects,
quality and age of markings, illumination differences. Forhandling inconsistent appearance
in road-markers, researchers have used different color spaces instead of directly using RGB
values. Sun and his colleagues use the HSI (Hue-Saturation-Intensity) color space and devised
a heuristic to determine when saturation values of images should be used [Sun et al., 2006]. Li
and his colleagues devise a heuristic that converts RGB values into another space where lane-
markings are more salient [Li et al., 2003]. In particular, aclustering algorithm is used to identify
the probable image regions, which contain road-markers, from the transformed image and a
connected-component algorithm is used to detect road-markers. Lipski and his colleagues also
convert multiple road images in the HSI color space into an overhead image and analyze local
histograms of color distributions [Lipski et al., 2008]. They combine these color distributions
with inputs from other sensors such as lidar and radar to identify lane-markings.

Our road-marker detector is a classification method that assigns individual pixels to binary
labels [Seo et al., 2009b]. Self-labeled parking spots are used as the samples for learning the
color distribution of road-markers. The learned Gaussian distribution is used to execute a pixel-
wise classification – assign each of pixels with a binary label, either “road-marker” or “non-road
marker.”

Addressing Variations in Objects’ AppearancesAn alternative way of handling the
inconsistent appearance problem is to use geometric primitives such as straight lines or
curves. The Hough transform and its variants have been used to extract straight lines
to detect road-markers [Saudi et al., 2008], [Voisin et al.,2005], [Yu and Jain, 1997]. Spline
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functions and their variants have also been used to detect road-markers and their shapes
[Wang et al., 2000], [Wang et al., 2004] by linearly connecting the detected straight lines. Wang
and Hanson sample the image characteristics of road-markers by manually identifying road-
markers around parking spaces and use them to identify the rest of road-markers in a parking lot
[Wang and Hanson, 1998]. Lacoste and her colleagues [Lacoste et al., 2005] utilize a set of lines
extracted along roads appearing on low-resolution aerial images and use a stochastic process,
point processes, to link these lines, in order to extract theunderlying road network.

Part-based detection approaches [Felzenszwalb and Huttenlocher, 2005] have been exten-
sively studied. The underlying idea is conceptually appealing in that structures or complete
objects can be modeled by part-objects in a deformable configuration. This is similar to our
approach in that the detection of parts assists in the localization of road structures. This ap-
proach requires learning appearance models of part-objects and correlations between parts from
supervised examples. The estimated models are applied probabilistically or discriminatively to
search the probable image regions of part-objects or targetobjects. Felzenszwalb and his col-
leagues devise a hybrid approach for part-based object recognition that is called a latent SVM.
In their pedestrian detection application, a discrete SVM is used to detect part-objects (e.g.,
arms or legs) and a target object (e.g., pedestrians). A probabilistic method is used to infer the
configuration that optimally associates the detected part-objects with the detected target object
[Felzenszwalb et al., 2008]. Similarly, Saragih and his colleagues present a part-based face align-
ment where the same face in two different images is aligned byfirst building a response map of
face parts (e.g., eyes, nose) and then optimizing the difference between two faces in different
images [Saragih et al., 2009]. These methods implementing part-based object recognition are
different from ours in that it is not always obvious to define parts of the relevant road structures.
Although, in our parking lot structure recognition, it may be straightforward to define parking
spots as the parts of a parking lot structure, parts of a road segment vary based on the geometry
of the road segment.

2.3.4 Machine Learning Methods for Reducing Human Interventions

As a part of an onboard system in an autonomous vehicle, it is desirable for automatic roadmap
building algorithms to have minimal human intervention. Because of this, self-supervised learn-
ing is attracting attention from the robot learning community since it requires no (or substantially
less) human involvement for carrying out learning tasks. This framework is highly desirable for
robot learning because it is usually hard to collect large quantities of high-quality human-labeled
data from any real world robotic application domain. In thissection we investigate two machine
learning frameworks: self-supervised learning and incremental learning.

Self-supervised learning frameworks typically utilize the most precise data source available
to label other data sources that are complementary, but unlabeled. This approach has been used
to extend a mobile robot’s sensing coverage by combining local range measurements with other
measurements such as overhead imagery, inertial measurements, and camera imagery.

Stavens and Thrun utilize laser range measurements to predict terrain roughness
[Stavens and Thrun, 2006]. They first analyze the associations between inertial data and laser
readings on the same terrain and use the learned rules to predict possible high shock areas in up-
coming terrains. Similarly, Sofman and his colleagues use local range estimates as self-labeled
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examples to learn relations between the characteristics oflocal terrain and corresponding re-
gions in aerial images [Sofman et al., 2006]. The learned relations are used to map aerial im-
ages to long range estimates of traversability over regionsthat a robot is exploring. Lieb et
al devised a self-supervised approach to road following that analyzes image characteristics of
previously traversed roads and extracts templates for detecting boundaries of upcoming roads
[Lieb et al., 2005].

Local range measurements can also be used to label scenes in images. Vision sensors usu-
ally see wider and farther than range finders, but labeling images from vision sensors is diffi-
cult mainly due to variation in appearance and illumination. In [Dahlkamp et al., 2006], local
range measurements less sensitive to those variations are used to identify local drivable regions
around a vehicle by analyzing the characteristics of image parts corresponding to those range
measurements. These learned features are then used to predict other parts of images that are not
covered by range finders. Katz and his colleagues use vehicleimages labeled by range mea-
surements to train a moving obstacle classifier [Katz et al.,2008]. In related work, Brooks and
Iagnemma use vibration data to train a classifier to identifythe roughness of upcoming terrains
[Brooks and Iagnemma, 2007]. During navigation on different terrains, the vibration data is col-
lected by recoding power spectral density using a microphone attached to a front wheel. This
vibration data is aligned to video data that is taken from a forward-looking camera. Since the
vibration data has higher frequency when wheels are climbing on rocks, image data captured at
the same time is used to train a terrain classifier that identifies rock-regions from images taken
by the forward-looking camera. Unlike other self-supervised learning examples, they trained a
classifier for vibration data and then used the classifier forgenerating inputs for a vision-based
terrain classifier. Kim and his colleagues utilize a mobile robot’s previous experience navigating
to determine if the upcoming terrain is traversable [Kim et al., 2006]. While interacting with op-
erating environments, a mobile robot accumulates its experience such as slippage and collisions
from its internal sensors and uses them as positive (or negative) data to label images taken at
time of the event. Nair and Clark exploit motion informationin video to automatically collect
training examples [Nair and Clark, 2004] for the task of detecting people from the video of an
office corridor scene. Their self-labeler is obtained by implementing careful observations of the
task. They first manually obtain a background model by averaging several consecutive frames
that do not contain any significant motions; then acquire themodel of foreground by analyzing
the differences of pixels in two consecutive frames; and finally collect training examples of peo-
ple by grouping the connected foreground pixels. An exampleis classified as a person if the
dimension of a connected region satisfies a heuristically defined threshold.

In our parking lot geometry analysis task, the self-labeleranalyzes the spatial arrangements
between extracted lines, which are aligned with road-markings in a parking lot, and produces a
set of nominal parking spot images that are used as training examples for existing machine learn-
ing techniques [Seo et al., 2009a]. Furthermore these self-labeled examples are used to guide a
random selection of negative examples; to provide a parkinglot boundary segmentation with a
cue of drivable regions’ image characteristics and a road-marker classification with samples of
road-markers’ image characteristics [Seo et al., 2009b].

A self-supervised learning approach also works well in domains where it is hard to define
what to learn in advance. For example, detecting geologic features in images is challenging be-
cause their appearances are significantly affected by illumination conditions. Unless replicating
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all of the possible illuminating conditions, it is not possible to clearly define the appearances of
interesting geologic features a priori. [Thompson et al., 2005].

Incremental learning is a machine learning approach where the initial model of the target
function is estimated by using a small number of examples andis continuously updated as new
examples arrive. In this framework, the learner needs to know only what is actually necessary
for the specific task or data. This framework fits well our aerial image analysis work where only
a small number of pertinent examples are available at the beginning of the learning and need to
learn the local appearance model of road structure parts.

At the outset, our algorithms for parking spot detection areexposed to a small number of
nominal parking spot examples and learn the initial model ofparking spot appearances. Later
the algorithms are given several aerial images containing parking spots in unusual appearances
(e.g., trapezoidal geometric shapes or different illumination conditions). The initial appearance
model should be generalized to accommodate the changes of feature values.

Incremental learning is closely related to lifelong learning (or transfer learning). Thrun
and Mitchell address the lifelong robot learning problem interms of transfer learning
[Thrun and Mitchell, 1995], [Thrun, 1996]. They are interested in learning a collection of con-
trol policies for a robot with multiple tasks in both known and unknown environments. These
environments are previously unknown to the robot. To this end, their algorithms first identify
invariants about a robot’s sensors, effectors and environments between tasks under both the same
environment and the different environments. The learned invariants are transferred to a new task
to expedite the learning process. For example, a explanation-based neural network is used to fig-
ure out invariants of action models, which is transferred toinject a bias to another policy learning
task.

Rosenberg and his colleagues proposed an object detection algorithm that incre-
mentally learns intra-class variation on human faces by utilizing unlabeled images
[Rosenberg et al., 2005]. The unlabeled images are exploited to minimize efforts of human label-
ing and to generalize the learned knowledge of human faces. In particular, the detector is initially
trained with labeled data and then assigns unlabeled data with classification confidences. Unla-
beled data with high-confidence values are used as training data with the supervised ones to
expand the classifier’s knowledge of varying appearances offaces. They choose high-confidence
unlabeled data to increase the number of training data whereas our incremental learning selects
thek most uncertain unlabeled examples because uncertain unlabeled examples are the ones to
learn in order to optimally move the decision boundary.

2.4 Perspective Image Analysis for Recognizing Highway
Workzones

2.4.1 Traffic Sign Detection and Classification

In this section, we compare our approach to highway workzonerecognition with previous work
in the area of traffic sign recognition. For any traffic sign recognition method that focuses on vi-
sion sensors, an initial requirement is to locate potentialsign image regions from an input image.
Some systems, including ours, use color information to localize signs. In addition, for any sign

25



recognition system which utilizes color, it is necessary tofind an optimal range of target color
values because the actual values of the target color vary based on image acquisition processes.
These threshold values are often obtained empirically by repeating manual surveys of pixel
color values from sample sign images [Eichner and Breckon, 2008, de la Escalera et al., 2004,
Yuille et al., 1998]. Because of its simple implementation,such a manual process is attractive,
yet tends to be error-prone and expensive. By contrast, our approach automatically obtains the
limits of optimal color-values through binary pixel-classifier training.

Another dominant approach for traffic sign detection is to use of sign shapes. Some re-
searchers use the geometric property of sign shapes, such asequiangularity, in order to locate
the centroids of traffic signs [Barnes et al., 2008, Loy and Barnes, 2004]. This approach is in-
trinsically error-prone because it relies on a geometric property, which is not preserved under
perspective imaging, and also because it assumes high contrast in image intensity, which is hard
to acquire from real-world image acquisition. An alternative approach for utilizing the geometric
properties of signs is to locate parts (e.g., corners or edges) of a traffic sign and to combine the
results of these partial detections. For example, in order to identify potential sign image loca-
tions, some researchers have used Haar-like features [Schlosser et al., 2010, Timofte et al., 2009,
Viola and Jones, 2004] and their variants, such as a set of rectangular features in particular color
channels [Bahlmann et al., 2005] and non-symmetric dissociated dipoles [Baro et al., 2009] or
a variant of the histograms of oriented gradients (HOG) [Overett and Petersson, 2011]. This
learning approach demonstrated successful performance only when a large number of manually
labeled data was available to train the detector on multiple-scales for a long period of time.

2.4.2 Traffic Sign Recognition Error Handling

Some of the existing methods [Overett and Petersson, 2011, Timofte et al., 2009] have demon-
strated very impressive recognition results in their experimental setups, e.g., a detection rate of
more than 98.8%. However, in general, it is unrealistic to expect perfect performance in sign
recognition. Most traffic sign recognition methods may missa workzone sign or may also incor-
rectly classify a sign image in a stream of perspective images. Such inevitable errors would cause
any sign recognition method to misunderstand the traffic rules and road geometry. To cope with
such potential object recognition errors, Viola and Jones proposed a hierarchical image process-
ing structure that trains classifiers at particular levels within a hierarchy until their performance,
e.g., false negative rates, reaches a desirable level [Viola and Jones, 2004]. However, because
such an approach requires a large amount of manually labeleddata, it is inapplicable for our
case, as it is very hard to collect a large number of workzone sign images. We instead utilize
our sign classification output, which is highly accurate perimage, in a twofold manner: first, we
propagate classification confidence values toward future inorder to reduce the impact of false
negatives; second, we investigate previous classificationdecisions for the same sign in order to
reduce the number of false positives.To the best of our knowledge, we have not seen such meth-
ods, particularly in handling potential sign recognition errors for recognizing temporary highway
changes, in the field of traffic sign classification.

We developed such methods for handling potential sign recognition errors to minimize the
frequency of misreading traffic rules and road geometry temporarily altered by highway road
works. In the Intelligent Transportation Systems (ITS) community, there are three similar works
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to ours in terms of assessing roadway state. But their methods are different from ours be-
cause, instead of analyzing traffic sign images, they used vehicle- or transportation infrastructure-
generated data. For example, the vehicle-generated data include measurements of wheel-turning-
speed, lane-change, and location over time [Ma et al., 2009],[Tabibiazar and Basir, 2011]
whereas infrastructure-generated data include traffic flow, occupancy, and vehicle counts over
unit time [Niu and Liu, 2011]. The collected data were used totrain a classifier to infer roadway
state. For example, Ma and his colleagues compiled vehicle driving information from simulated
roadside units and used a SVM to classify the state of a route into three different states: normal,
passed by incident site, and stopped in queue [Ma et al., 2009]; Niu and Liu trained a neural
network to identify whether the traffic condition of a highway is normal [Niu and Liu, 2011];
Tabibiazar and Basir used a Gaussian mixture to model congestion sites based on GPS data
[Tabibiazar and Basir, 2011].

2.5 Summary

In this section we reviewed several research fields related to this work.
The maps of robots’ operating environments are primarily static. These models simplify

autonomous navigation by providing a strong prior on environments. Most of these maps are
created by analyzing sensor measurements obtained from pre-driving in target areas. Because
pre-driving based map building is expensive and high-quality overhead imagery is publicly avail-
able, overhead imagery based map building has been intensively studied.

The review of existing cartographic resources, which are built primarily for human consump-
tion, clarifies the desirable properties of roadmaps for autonomous driving.

In the robotics community, overhead data has been utilized as a complement to onboard
sensor measurements. Low-level image patterns, which are useful to detect local objects in the
images, have not been extensively utilized yet.

Most of the work in recovering relevant objects in overhead imagery relies on manually la-
beled data to learn an object detector (or classifier). Because manual labeling is expensive and
error-prone, there have been several efforts to minimize the frequency of supervised examples
while maintaining good performance. Self-supervised and semi-supervised learning in the ma-
chine learning community have been intensively studied [Chapelle et al., 2006]. Particularly, the
self-supervised learning approach is attractive in that itneeds no (or substantially less) human
involvement. Despite its benefits, self-supervised learning approach or acquiring task-specific
patterns via bootstrapping has not been extensively studied in aerial image analysis.

This thesis will provide use cases of recovering road structures in orthoimagery through boot-
strapping. Our bootstrapping approach is unique in that it minimizes human involvement while
effectively recovering road structures. Several heuristics analyze low-level image patterns, such
as spatial arrangements of lines, and collect a set of task-specific examples based on analyzed
patterns. The task-specific mid-level image features are used to train conventional machine learn-
ing algorithms as part-detectors that identify the probable regions of road structures and are used
to generate highly probably hypotheses about unknown true road-lanes. Our approach exploits
these self-obtained task-specific image features to seek a spatial configuration that optimally
satisfies geometric and image constraints of part detectionresults.
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Application Domains
[Hebert, 1989]

√
–
√

– – – – – – –

Robotic vehicle navigation
[Thorpe et al., 1991]

√
–
√ √

– – – – – –
[Sofman et al., 2006]

√
– – –

√
– – – – –

[Dolgov and Thrun, 2009]
√ √

–
√

– – – – – –
[Kummerle et al., 2009]

√ √
– – – –

√
– – –

[Nair and Clark, 2004] – – – –
√ √

– – – –
Pedestrian detection

[Felzenszwalb et al., 2008] – – – – – –
√ √

– –
[Rosenberg et al., 2005] – – – – –

√ √
– – –

Face alignment or detection
[Saragih et al., 2009] – – – – – –

√ √
– –

[Wang and Hanson, 1998]
√ √

– – – – – – – –
Aerial image analysis[Porway et al., 2008]

√
–
√

– – –
√

– – –
[Heitz and Koller, 2008]

√
– – – – – – – – –

[Timofte et al., 2009] – – – – – – – –
√

–
Traffic sign recognition

[Overett and Petersson, 2011]– – – – – – – –
√

–
[Ma et al., 2009] – – – – – – – – –

√
ITS

Goal of this thesis
√ √ √ √ √ √ √ √ √ √

All

Table 2.2: Comparison of related work. In the “application domain” column, ITS stands for
Intelligent Transportation Systems.

Table 2.2 summarizes the related work and the goal of this thesis.
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Chapter 3

Lane-Level Highway Map Generation

This chapter describes our approach to building a map of road-lanes that appear on a given
highway image. In this thesis, a road-lane (or lane) refers to the part of a road built for controlling
and guiding a single line of vehicles. The output of this procedure is cartographic information
about road-lanes in a set of pixel coordinates of road-lanes’ centerlines and lateral road-widths,
and orientations at those pixel coordinates. Such lane-level detailed highway maps with traffic
rules and accurate coordinates can be prepared in advance tofacilitate the guiding of autonomous
and manual highway driving.

To extract such lane-level detailed information from a given image, pixels along road-lane
boundaries must be visually and computationally accessible. To meet this requirement, we
choose orthoimages with 15-centimeter ground resolution in which lane boundaries can be ob-
served by the naked eye and can be potentially processed computationally.1 Highways appearing
in these images are inter-city (or arterial) highways builtfor facilitating transportation between
cities [U.S. Department of Transportation, 2000]. Anotherreason we choose this particular pair
of image data is that arterial highways on such high resolution aerial imagery pose sufficient
challenges for extracting road-lane boundaries. The challenges concern the variation of objects’
appearances and the complexity of the road geometry. In contrast, the road geometry of interstate
highway images would be too monotonic with only slight photometric variation, and roads in a
city pose too many complexities unrelated to the task of extracting road boundary lines (e.g.,
occlusions by frequent appearance of cars, pedestrians, other urban structures).

Since our target images are depicted in high-resolution, such image objects as lane-markings
and road image-regions contain significant variations in their appearances, such that an object
appears differently based on the condition of an image acquisition process.2 This complicates
identifying boundaries of road-lanes. For example, even ina given arterial highway image, road
surfaces may be covered with different materials, such as asphalt or concrete. Such variation
in road surfaces cause an inconsistency in color and textureof lane-markings and road-regions.

1Because the normal longitudinal pavement markings on highways are 4 - 12 inches wide (10 - 30.48 cen-
timeters) [U.S. Department of Transportation, 2009], there are at least two pixels for laterally delineating a part of
lane-markings.

2These factors include illumination conditions, the resolution, intrinsic and extrinsic parameters of the camera,
the spectral sensitivity [Tonjes and Growe, 1998], the resolution of and the line of the sight between an acquisition-
vehicle and the ground with respect to the location of sun.
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Another example of appearance variation is occlusions caused by man-made structures such as
buildings, over-hanging traffic signs, as well as overpasses and their shadows. These structures
make parts of roads partially or completely unobservable. Discontinued road-lane boundaries
make it hard to discern the true geometric shape of a road-lane. The geometry of arterial high-
ways also makes it difficult to follow a lane’s boundary. Ramps with circular paths have high cur-
vatures that require a boundary following process that tracks non-linear paths. Road-lane junc-
tions near an overpass require extra care due to the complex traffic directions. Road-boundary
tracking must also be carefully done at a bifurcation point,where one splits into two, because
one of the multiple tracking lanes might disappear.

To effectively tackle these challenges, we develop a hierarchical approach to three tasks: to
gathering road boundary image cues, generating road-lane hypotheses, and linking the hypothe-
ses. Our approach builds a map of road-lanes by linking road-lane hypotheses while satisfying
the constraints of the underlying roads imposed by the collected image cues and prior informa-
tion about the U.S. highways. To this end, first we scrutinizea given input image to harvest two
types of image cues about the underlying roads: road image-regions and geometry. Knowledge
of road image-regions are useful in specifying where to lookfor road-lane boundaries. To ob-
tain the information of road image-regions, we formulate this image segmentation problem as a
binary classification. In this classification, our method exploits a road-vector screenshot of the
given image to obtain weakly-labeled examples of road-region superpixels and to train a proba-
bilistic road-region detector. The binary classification outputs are then theoretically averaged out
through a Markovian framework to produce a globally-coherent segmentation result.

Another important image cue we collect is the geometry of theunderlying roads. To obtain
this information, we extract lines and analyze the screenshot image of the road-vector to estimate
the legitimate driving direction and to identify relevant road structures, such as overpasses. These
collected image cues about road surface and geometry will provide strong evidences of the true
road-lanes. In particular, these cues facilitate a road-lane hypothesis generation and guide a
linking of these hypotheses to build a correct map of road-lanes. We call these collected image
cues mid-level, task-specific features3 because they are directly used to simplify, in three ways,
our problem of building a map of road-lanes on a highway image: 1) the identified image road-
regions are a good approximation of the unknown true road-lanes; 2) the hypotheses about true
road-lanes are generated only from the identified image road-regions; and finally; 3) these cues
are used to dictate how these hypotheses should be linked to one another. Figure 3.1 illustrates
our approach of building up low-level image features to mid-level, task-specific features. At the
lowest level, we analyze the inputs and prior information toextract task-relevant image features,
such as lines and superpixels. And then we refine these low-level features to produce task-
specific mid-level image features, including results of driving-direction estimation, results of
road-region segmentation, and results of interesting road-structure detection. These mid-level

3From the theoretical perspective of computer vision, our low-level image features are a mixture
of canonical low-level features (or primal sketch) and mid-level features (or2 1

2
-dimensional sketch)

[Poggio, 1981],[Marr, 1982],[Palmer, 1999]. In this thesis, we divide into three categories any intermediate results
from image processing tasks: 1) low-level features: image processing results that contain task-relevant information,
2) mid-level features: results of image processing that contain task-specific information, and 3) high-level features:
image processing results that contain information directly related to a given task or can be directly used to achieve
the goal of a given computer vision task.
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features in turn are used to generate hypotheses about unknown true road-lanes and also guide
the task of linking these hypotheses to recover individual road-lanes. For the problem of linking
road-lane hypotheses, we formulate it as the min-cover problem [Vazirani, 2004]. We look for
a set of hypotheses about the unknown true road-lanes to maximally cover the estimated road
image-regions with a minimum sum of costs.

Figure 3.1: This diagram illustrates information flow between low-level and mid-level image
features.

In what follows, we detail the methods of harvesting low-level features, the methods of con-
verting these low-level features into meaningful mid-level features, and the methods of generat-
ing road-lane hypotheses and of linking them, so as to generate a map of road-lanes in a given
image.
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(a) The ground resolution of an input orthoim-
age is 15 centimeters per pixel. In such a high-
resolution highway image, pixels along road-
lane boundaries are perceptually and compu-
tationally accessible.

(b) A screenshot of the road-vector of the in-
put image. This image depicts the underlying
road-network with other cartographic informa-
tion such as names of highways.

Figure 3.2: Our approach extracts image cues such that theirphotometric and geometric patterns
are local, but sufficient to build a map of highways from two input images.

3.1 Harvesting Road-Boundary Image Cues via Bootstrap-
ping

This section explains how to analyze input images to extractlow-level image features and how to
refine these features to produce mid-level image features that can be useful to execute other tasks.
Our algorithms take two images as the input: A highway orthoimage and the input image’s road-
vector screenshot. Figure 3.2(a) shows an example of highway orthoimage and Figure 3.2(b)
shows an example of road-vector screenshot image. A road-vector screenshot is a screencapture
image that, with distinctive colors, depicts the underlying road-network of the highway scene.
When a road-vector image is overlaid with an orthoimage, road-regions in the orthoimage are la-
beled with real-world cartographic information. One mightthink that the road-vector screenshot
image would trivialize the extraction of boundaries of road-lanes appearing on an orthoimage.
Yet such is not the case. First, the sketches (or drawings) ofroad-vectors are just parts of images,
meaning that they do not possess any information about road-vectors, which are directly acces-
sible in a computational form. To make these image sub-regions useful, they must be processed
extensively and properly. Secondly, the road-vector sketches are not entirely overlapped with im-
ages of road-regions, resulting in cases where some road-regions remain uncovered. From image
processing or pattern recognition perspectives, this is a very confusing signal. Some regions of
a true road-lane image are marked as “road,” while some otherimage regions very next to those
regions labeled as “road” are indicated as “non-road.” Thisholds for the opposite case as well –
indicating non-road regions as road regions, e.g., a road-vector painting over trees or buildings.
Thus, when a screenshot of a road-vector is used, an extra care should be taken.

3.1.1 Extraction of Low-Level Image Features

We first parse two input images, to extract low-level features, such as image gradients, lines, and
superpixels. For a line extraction, we first compute the image gradients and use the quantized

32



orientations of individual pixels to group them. For each ofthe pixel groups, we compute the
eigen values and vectors about pixel coordinates in the group. This analysis provides us with two
useful pieces of information about the pixel group’s geometric shape: orientation and magnitude,
which are used to produce a line for the group. In particular,the ratio of the largest eigen vectors’
two components is used to approximate the orientation,(θ = [0, π]), of a line. The Euclidean
distance between the two farthest pixels in the group is usedas the length of the resulting line
[Kahn et al., 1990]. Figure 3.3(a) shows an example of extracted lines.
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(a) An image of lines. Each of the extracted lines is depictedin a different color.
Notice that these lines are mostly extracted from road image-regions.

(b) A superpixel image is shown. The elongated green polygons (or blobs) are
fragments of a road-vector screenshot.

(c) An analysis of road-vector fragments is performed to obtain their geometric
properties.

Figure 3.3: An intensive image analysis results in three task-relevant, low-level image features.
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To obtain a superpixel image, we first smooth the input image using bilateral filter
[Tomasi and Manduchi, 1998], compute gradient magnitudes on the filtered images, and then ap-
ply the watershed segmentation algorithm to the image of gradient magnitudes to obtain a coarse
segmentation. We then reiterate this process until the dimensions of individual superpixels are
large enough [Lalonde et al., 2010]. Particularly, we terminate this iteration when the current
number of superpixels is smaller or equal to the predefined proportion (e.g., 15%) of the initial
number of segments produced by the watershed algorithm. Figure 3.3(b) shows an example of a
superpixel image.

To extract the useful geometric information of the underlying roads from a road-vector
screenshot, we first identify image regions of road-vector sketches and produce a binary image.
This contains only these fragments of road-vector without any map-symbols. We then further
analyze each of the road-vector fragments, to obtain their geometric properties, such as extrem-
ity and bifurcation points. Because a road-vector fragmentis a polygon bounded by closed path,
the skeleton of a fragment is useful in acquiring these pieces of information. A skeleton of a
polygon is a series of linear lines linking ridge points which are local extrema sitting in the mid-
dle of a polygonal shape. We apply a distance transform to each of the road-vector fragments
and identify these ridges points. Section 5.3 details this process. Figure 3.3(c) shows a result
of such analysis. Each (green) polygon represents road-vector fragments where “+” indicates a
ridge point, “+” with a triangle is an extremity point, and “+” with a circle is a bifurcation point.

Since these low-level features contain only basic information about road-lanes appearing on
the input image, we need to refine these features into features more relevant and useful in exe-
cuting our task of analyzing highway geometry analysis task. These new features, we call task-
specific mid-level image features, include an estimation ofsome legitimate driving directions of
roads appearing on the input image, locations of interesting road-structures, such as intersections
and overpasses; and segmentation of road image-regions.

3.1.2 Extraction of Mid-Level Image Features

Road-Region SegmentationKnowledge of road image regions would be very useful in that such
knowledge could specify where to look for road-lane boundaries. Acquiring such knowledge is
the task of image segmentation that divides an input image into more than one sub-regions. In
our case, it is to divide a highway image into two sub-regions: road and non-road regions. We
tackle this problem as a binary classification problem that takes superpixels as input and assigns
each superpixel with one of two class labels: road or non-road. In a common classification task,
a person assigns class labels to superpixels and prepares a set of superpixels and their class label
pairs, so as to train a classifier. The number of training examples may vary, but can be roughly
determined based on the dimensionality of data and the complexity of the problem.

In this thesis, we take a different approach to executing a binary classification. Instead of rely-
ing on numerous human-labeled examples, we utilize one of our inputs, a road-vector screenshot
image, to prepare a self-labeled training data. In particular, we treat a superpixel as a positive
example if its area is significantly overlapped (i.e., more than 90%) with road-vector paintings;
otherwise we treat it as a negative example. Notice that the sketches (or drawings) of road-vectors
are not entirely overlapped with image road-regions, resulting in some of road-region superpixels
are missing. This means that some of superpixels, which should be treated as parts of positive
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examples, are indicated as non road-regions. In addition, by such weak labellings, some non-
road regions to be regarded as positive examples due to misalignment between an orthoimage
and the underlying road network (e.g., road-vector painting over trees or buildings.)

Figure 3.4: Results of road image region segmentation. The blue regions represent identified
road image-regions and the red regions represent non-road image-regions. Although some non-
road image-regions are labeled as road, most of the segmentation results correctly depict road
image-regions.

To execute the superpixel classification, we first representeach of the superpixels as a feature
vector. A feature vector consists of color and texture information. We use a histogram to rep-
resent color values in a superpixel and a texton [Martin et al., 2004] to represent texture value.
To minimize the effect of superpixels’ incorrect class assignments, we learn a probabilistic clas-
sifier, a Gaussian Mixture Model (GMM), and assign individual superpixels with class labels.
To smooth out the outputs of the GMM, we run pairwise Markov Random Fields (MRF) and
infer the most probable segmentation of the input image using loopy belief propagation. Figure
3.4 shows a result of image road-region segmentation. Results of the road-region segmentation
define image regions of interest where all of the remaining tasks for building lane-level highway
map have been executed.

Driving-Direction Estimation The goal of our task is to extract boundaries of individual
roadlanes in the given image. This requires tracking boundary pixels of road-lanes that appear
on the given image. Notice that the directions of these road-lane boundaries always align with
the driving directions of the road-lanes. Thus knowing the driving direction at any given image
locations is very useful for tracking road-lanes boundaries.

To approximate the driving direction from a given image, we use line extraction results that
each of the extracted lines partially explain as the contourof roads in a given image. It is unde-
sirable to approximate the driving direction at a pixel level because of all the noise that must be
tackled. Instead we partition the input image into a number of grid cells. For each grid cell, we
identify extracted lines which pass by it and use them to approximate the driving direction of the
grid cell. Suppose there aren number of lines identified as passing theith grid cell,j ∈ [1, n]. We
compute the direction of a grid cell,i, by using the vector sum method,θ̂i = arctan(y, x), where
x =

∑
j cos(θj) andy =

∑
j sin(θj), whereθj is the orientation ofjth line. The orientation of a

grid cell is mostly homogeneous to its neighboring cells, particularly in road image regions. To
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enforce such a constraint, we run a MRF to infer the most probable driving direction of the input
image as a whole. Our method of approximating driving direction is motivated by the method
proposed in [Dolgov and Thrun, 2008] where the authors extract lines from laser-scan data and
run an MRF to infer the driving direction homogeneous to a given parking lot image. They use
a combination of Canny edge detection and Hough transform toextract lines from a laser scan
image. We also tried this combination and found the extracted lines were too short to use. Figure
3.5 shows a result of driving-direction estimation.

Figure 3.5: Results of driving direction estimation. The blue lines indicate the estimated driving
direction of a grid cell and the non-drivable regions are depicted by red circles.

Lane-Marking Detection Lane-markings are one of the most important photometric cues
for extracting road-lane boundaries. In fact, a perfect lane-marking classification on a given
orthoimage would make it easier to accomplish our goal. Indeed, the results of such classifica-
tion would provide us with crucial information about road-lane boundaries such as their exact
locations in a given image.

Lane-markings are a type of road-marking that depicts boundaries of roadlanes. On an or-
thoimage, we can, readily with the naked eye, distinguish lane-markings because they have
whitish colors, relatively higher intensity than their neighboring pixels, and occupy approxi-
mately known locations. However, these salient features are not always available for image
processing because the actual values of lane-marking pixels vary based on image acquisition
conditions.

To effectively meet the challenge of appearance variation of lane-marking pixels’, we for-
mulate the lane-marking detection task as a binary classification problem of discriminating non
lane-marking pixels from true lane-marking pixels. Such formulation enables us to utilize a
combination of well-established feature representation and classification method that effectively
handles the appearance variation. To this end, we first labelsome highway images, for mark-
ing positive and negative examples, convert these example pixels into features, and then learn a
binary classification model of lane-marking pixels’ photometric variations. Note that this is the
only place we use manually labeled data for training a part ofour system.

For the feature representation, we want to convert the original color intensity pixels,x ∈ Rp,
into something different,x ∈ Rq, p 6= q, in which we can better discern computationally the char-
acteristic of lane-marking pixels. To this end, instead of directly changing the intensity value, we
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look into the contrast of intensity values between a lane-marking pixel and its neighboring pix-
els. In fact, we use the local binary pattern (LBP) [Ojala et al., 2002] and four different statistics
about texture to generate a feature vector of the pixel.

The LBP is proposed to express a spatial pattern of a pixel’s neighboring pixel values as a
binary bit vector. It looks into the difference of pixel values (e.g., gray-scale or a color channel
value) and mark down the difference asI(gj−gc)2j, whereI(·) is an indicator function,gj is the
jth neighbor’s pixel value,j ∈ [1, k], andgc is the target pixel value. There are two parameters
that control the range of the neighbors (or the size of the local image patch): the number of
neighboring pixels,P , equally spaced on a circle of radiusR. For example, whenR = 1 and
P = 8, the neighbor of a pixel coordinate,(x, y), is equivalent to the second order Markovian,
starting from(x+1, y), (x+1, y−1), (x, y−1), ... to (x+1, y+1). The contrast value between
the target pixel and each of the neighboring pixels is saved to a binary bit vector where the least
significant bit is assigned to the contrast value of the rightneighbor,(x + 1, y). The LBP of a
lane-marking pixel is then computed by

LBPP,R =
P−1∑

p=0

I(gj − gc)2p

Because a single step rotation of the final binary bit vector could generate a completely different
pattern, a circular bit-wise (right) shift needs to be applied before finalizing the feature conver-
sion [Ojala et al., 2002]. In addition, we also compute four different statistics of the pixel and its
neighboring pixels, such as smoothness (t1), 1 − 1

1+σ2 , entropy (t2), −
∑L

l=1 P (zi) log2 P (zi),

uniformity (t3),
∑L−1

l=1 P
2(zi), and the variance (t4) of image gradients’ magnitudes on the

neighboring pixels whereσ is variance of pixel values,L is the maximum value,zi is the
ith value. For example,L will be 255 if we measure the intensity value,zi ∈ [0, 28 − 1].
Our feature representation converts a lane-marking color pixel, x ∈ R3 into a feature vector,
x̂ =< LBPP,R, t1, ..., t4 >∈ R6.

We tried several different combinations of these features and classification methods to find
a best one for our lane-marking detection task. We downloaded 20 orthoimages separated from
the images for generating lane-level highway map and collected 47,640 pixels. These consisted
of 15,204 lane-marking (positive) pixels and 32,436 non lane-marking (negative) pixels.

We set aside a portion (about 30%, 14,292) of the labeled pixel data as testing data and use
the rest of them to train a classifier. We tried six different classification setups and found that
the AdaBoost outperformed all others – AdaBoost with a feature representation without color
information produced 0.98 precision and 0.97 recall rates on average. Table 3.1 shows detailed
information about a performance comparison between different classification setups. We ran five
different tests that required random sampling of positive and negative training examples. Due to
this randomness, we averaged our results over five separate runs. Each cell in the table displays
the mean and standard deviation. Figure 3.6 shows a result oflane-marking detection.

Interesting Road-Structure DetectionTo completely determine a road-lane’s boundaries,
it is necessary to recognize road-structures that may indicate complex road geometries and may
also occlude boundary lines. These road-structures include overpasses, over-hanging traffic
signs, and trees. Because of their relative sizes in a given image, shadows of traffic signs and
trees cause little occlusion on roads. However, shadows of overpasses impose serious occlusions
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SVM w/o color 0.9769 (0.0020) 0.9733 (0.0033) 0.0702 (0.0966) 0.0116 (0.0010) 0.9833 (0.0014)
AdaBoost w/o color 0.9888 (0.0018) 0.9781 (0.0025) 0.0025 (0.0218) 0.0055 (0.0009) 0.9889 (0.0010)
AdaBoost w/ RGB 0.9786 (0.0309) 0.9850 (0.0155) 0.0149 (0.0155) 0.0123 (0.0164) 0.9867 (0.0098)
AdaBoost w/ HSV 0.9854 (0.0140) 0.9944 (0.0180) 0.0155 (0.0180) 0.0074 (0.00724) 0.9898 (0.0075)

AdaBoost w/ YCbCr 0.9661 (0.0343) 0.9942 (0.0039) 0.0057 (0.0039) 0.0180 (0.0186) 0.9868 (0.0118)
AdaBoost w/ Lab 0.9841 (0.0125) 0.9927 (0.0072) 0.0052 (0.0028) 0.0081 (0.0065) 0.9928 (0.0049)

Table 3.1: Performance comparison of different lane-marking classification methods. The num-
bers in bold faces are the best for the corresponding column.

Figure 3.6: Because the outputs of our lane-marking classification are probabilistic, the results
are shown in a heat-image where the color closest to red represents the highest probability.

over road-regions in that unobserved road-regions are not insignificant for completely delineating
road boundary contours. In addition, the appearance of overpasses also increases the complex-
ity of road geometry because multiple roads pass each other orthogonally in the same image
region. In this thesis, as overpass structures are frequently observed on arterial highways, we
want to detect them, so we can properly handle the geometry and occlusions around any detected
overpass.

The input of the overpass detection algorithm is the road-vector screenshot. As described
earlier, the road-vector screenshot image is analyzed and converted into a set of road-vector
fragments. Each of the road-vector fragments contains the geometric characteristic of parts of
the underlying roads. For each of the road-vector fragments, we extend each of the extremity
points in the direction of the fragment and identify any intersection with other fragments if their
intersection angle is greater than a given threshold (e.g.,π/3). Figure 3.7(a) shows a result of
overpass localization where a multiple of two (red) intersection lines indicate potential overpass
regions. The final process of detecting overpasses is to identify the boundary of a detected
overpass. To this end, we search for any of the closest extracted lines that intersect with any
of the two lines from the overpass localization and are greater than the same threshold used
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(a) Results of overpass localization. Each two intersectedred lines
indicates a potential location of an overpass. A blue line isa line
extended from a road-vector fragment.

(b) Results of overpass detection. A red trapezoidal polygon repre-
sents the boundary of the detected overpass, and two (blue and cyan)
lines inside the polygon depict two principal axes.

Figure 3.7: These figures show the sequence of overpass detection.

earlier. Figure 3.7(b) shows the final result of overpass detection. The bounding box of a detected
overpass lets other tasks of extracting lane-level highwayinformation know of the existence of
an overpass and that the road geometry around this bounding box has more than one direction.

We describe how we obtain four mid-level image features. Aside from the lane-marking de-
tection in which we used some human labeled data to train a lane-marking classifier, we obtain,
without human intervention, three other important cues – road-region segmentation, driving di-
rection estimation, and overpass detection. These are obtained by extensively analyzing what is
available on the input image. Although we obtained these cues from analysis of an image’s lo-
cal photometric characteristic, their properties are global and strong enough to coherently guide
the following high-level vision tasks such as generating ofhypotheses about true road-lanes and
connecting hypotheses in that:
• Results of road-region segmentation specify image sub-regions where the true road-lanes

most probably appear.

• Lane-marking detection results narrow down further the image sub-regions defined by
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road-region segmentation and enable the process of road-segment hypothesis generation
to pick up relevant image location more precisely.

• Results of driving direction estimation inform the hypothesis-linking process of how the
generated road-segment hypotheses should be linked. In contrast, the detected overpasses
define an image sub-region where individual hypotheses nearthis region should be care-
fully linked to one another.

In the next section we detail how these four mid-level features are used to generate road-
segment hypotheses and how to link them to build lane-level detail highway maps.

3.2 Generating Hypotheses about Road Lanes

From the previous steps of extracting low-level and mid-level image features, we now have a bet-
ter understanding of the input image. In particular, we knowwhich image sub-regions are most
probably road-regions, which pixels within the road-regions are likely parts of lane-markings,
how the roads are laid out, and where overpass structures occur. Based on this understanding, we
are generating road-lane hypotheses and linking them, in order to delineate road-lane boundaries.

3.2.1 Road-Width Hypotheses as Cues for Road-Lane Hypotheses

As mentioned earlier, a road-lane is modeled by a piecewise linear curve that comprises multi-
ple control points and their properties, such as lateral width and orientation. Thus, generating
a hypothesis about a true road-lane would be equivalent to identifying these (control) points’
locations. However, given that the boundary location of road-lanes are unknown, it is difficult
to localize the centerlines of road-lanes. Instead we investigate pixels of lane-marking detection
results (or lane-marking pixels). No lane-marking pixels along the true centerlines of road-lanes
are available, but one can interpolate the centerline locations from a set of regularly-spaced lane-
marking pixels.

As discussed earlier while describing lane-marking detection, a true lane-marking pixel has
many neighboring lane-marking pixels regularly-spaced longitudinally and laterally (or orthog-
onal to the longitudinal direction). Because two true lane-markings located laterally at each
other’s side can be used to accurately measure the width of the road at a location, we are looking
for lane-marking pixels that have strong supportive (or neighboring) patterns in longitudinal and
lateral directions of the roads. The likelihood of a lane-marking pixel being a good road-width
cue is measured by two scores capturing these neighboring supports. Figure 3.8(a) illustrates an
example of lateral and longitudinal supports for a lane-marking pixel.

While searching for lane-marking pixel candidates, we can also utilize our prior knowledge
of the actual road-width of a normal highway. For example, according to a governmental guide-
line [U.S. Department of Transportation, 2007], the minimum width of a highway lane is 12 feet
(3.7 meters). Because the ground resolution of our test image is known, we can remove any
pairs of lane-marking pixels that have lateral support (i.e., distance measured orthogonally to the
estimated driving direction) shorter than 24 pixels (24 pixels× 15 cm/pixel = 3.75 meters) or
longer than any maximum values. However, care must be taken before incorporating such prior
knowledge because road-widths vary – on arterial highway images, some of the road-lanes may
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(a) A lane-marking pixel has its
neighboring lane-marking pix-
els along the longitudinal direc-
tion and across the lateral direc-
tion.

(b) Resulting Road Width Cues. A dumbbell-like symbol is a
road-width cue where the two circles at the ends of a line in-
dicate lane-marking pixel locations with strong longitudinal
and lateral neighboring lane-markings.

Figure 3.8: These figures show the process of searching for road-width image cues.

have wider or shorter lateral lengths. For example some ramps have relatively shorter widths
where they merge and there they enter. We empirically found that 22 to 35 pixels worked best
for the variation in road-widths.

From road-region segmentation results and lane-marking detection results, we already have a
good sense of which image sub-regions are likely to be parts of roads and which part of estimated
road-regions are probably lane-markings. To make the search of these road-width cues efficient,
we begin with superpixels that belong to the segmented road-regions. For each superpixel, we
investigate whether each of the lane-marking pixels has a sufficient number of neighboring lane-
marking pixels in longitudinal and lateral directions on the roads. Any lane-markings with more
than the predefined threshold remain in the candidate list for generating road-lane hypotheses.
Figure 3.8(b) shows the results of a road-width cue search. Aroad-width hypothesis is repre-
sented by a pair of a numeral width value and two lane-markingpixels.

After we find a set of road-width cues, the next step is to generate a set of road-lane hy-
potheses. This process is executed in a similar manner to that of the road-width cue search.
For each road-width cue (or road-width hypothesis), we drawtwo lines from the center of the
two lane-marking locations in the longitudinal direction and group together any road-width cues
within extending line segments. This forms a road-lane hypothesis. The longitudinal direction
corresponds to the driving direction estimated earlier from extracted lines. Figure 3.9(a) shows
an example of a road-lane hypothesis. A green circle with a white dashed circle represents an
input road-width hypothesis and the green line defines the range of a road-lane hypothesis search.
This search results in grouping the neighboring road-widthcues, depicted by magenta and yel-
low circles, around the input road-width hypothesis. A bluerectangle depicts the boundary of a
road-lane hypothesis which is obtained by connecting two lane-marking pixels of all road-width
hypotheses. Figure 3.9(b) shows a set of resulting road-lane hypotheses.
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(a) A search around an input road-width hypothesis is executed to generate a road-lane hypothe-
sis. The resulting road-lane hypothesis covers a part of a true road-lane.

(b) The road-lane hypothesis generation process produces 99 hypotheses about the 10 true road-
lanes.

Figure 3.9: These figures show the results of the road-lane hypothesis generation process. Most
of the resulting hypotheses are found from true road-lanes.

3.2.2 Connecting Road Segments for Delineating Road Boundary

By searching for road-width image cues and linking the identified cues, we generate a set of
road-lane hypotheses. To extract boundary lines of true road-lanes, we need to link road-lane
hypotheses together. We formulate the problem of linking hypotheses as the min-cover problem
in which we search for a set of road-lane hypotheses to maximally cover the estimated road
regions with a minimum sum of costs.

Suppose that there isn number of the true road-lanes,R1, ..., Rn, in an input image. LetHr

denote a hypothesis about a true road-lane,r ∈ R. The hypothesis,Hr, is a noisy estimate, based
on collected image cues, of a part of a true road-lane in the input image.

A road-lane hypothesis,Hr, is represented as a piecewise linear curve (or a polyline) that
consists ofm number of vertices (or control points),V = (vr,1, ..., vr,m) and|E| = m− 1 edges
linking two adjacent vertices. Each of the vertices has three properties:vr,j =< lr,j, wr,j, θr,j >

T ,
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Figure 3.10: This figure illustrates a road-lane hypothesisthat consists of four vertices. The blue
rectangle represents the boundary of the hypothesis. In this example, to obtain the boundary of
a road-lane hypothesis, for each of four vertices, we first draw a line segment with a length of
the lateral width in an orthogonal direction to the driving direction of the road-lane; we then
collect two extremity points from individual line segments; we finally connect them either in a
clockwise (or counterclockwise) fashion.

wherelr,j = (xr,j , yr,j) is a 2-dimensional location (or pixel coordinates),wr,j is the (lateral)
width at the given location, andθr,j ∈ [0, π], is the orientation. In fact a vertex corresponds to
a road-width hypothesis described in the previous section.Figure 3.10 shows an example of a
road-lane hypothesis consisting of four vertices and threeedges. Figure 3.9(b) shows a set of the
generated road-lane hypotheses.

We are looking for a new set of road-lane hypotheses,X = {L1, ..., Lk}, which link the
generated road-lane hypotheses based on the previously obtained local evidences of the unknown
true road-lanes with a minimum sum of linking costs. While linking road-lane hypotheses, the
new set of road-lane hypotheses should maximally cover the estimated road image-regions.

X∗ = argmin
X

Cost(X)

Cost(X) =
∑

Li∈X

C(Li)

where C(Li) is a cost of linking between any two road-lane hypotheses,Hr and Hs.
Our formulation is motivated by two previous studies [Felzenszwalb and McAllester, 2006],
[Zhu and Mordohai, 2009]. For our cases, we generate a set of hypotheses about unknown true
road-lanes to cover approximated true road image regions, whereas, for their cases, they gen-
erate hypotheses to delineate object contours [Felzenszwalb and McAllester, 2006] and to cover
road regions in a LIDAR intensity image [Zhu and Mordohai, 2009]. Ours differs from their
approaches in that we search for potential links based on thecollected geometric cues and we
identify the most probable link between two hypotheses by tracking photometric image cues. In
contrast, they seek a series of sequential hypotheses.

To find approximate solutions to these cost functions, we devise two different linking func-
tions. While linking these hypotheses, we must be careful not to link any that are not on the same
true road-lane or if a potential link between two hypothesesfails to comply with any local ge-
ometric and photometric constraints. The first linking function considers a potential connection
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between any two hypotheses purely following geometric constraints. And the second function
investigates any photometric constraints of a potential link.

(a) The collected image cues and prior infor-
mation about arterial highways imposes geo-
metric constraints on finding a potential link-
ing of any two road-lane hypotheses.

(b) The obtained photometric image cues pro-
vide strong evidence of potential links among
the generated road-lane hypotheses. A track-
ing of photometric cues among any potential,
geometrically plausible, links is conducted be-
fore actual linkings occur. Red dots represent
lane-marking pixels and a blue rectangle rep-
resents a road-lane hypothesis.

Figure 3.11: These figures illustrate how two linking functions find the best potential links among
road-lane hypotheses.

While implementing the first linking function, we refer to the geometry of actual arterial
highways where the geometric shape of the road is highly correlated with highways’ speed lim-
its. In other words, it is easy to observe a low curvature road-shape on highways due to its higher
speed limits. Another piece of useful knowledge for linkinghypotheses based on geometric con-
straints is to observe driving direction between two road-lane hypotheses. It is highly unlikely
for any two hypotheses to be linked to each other when a path ofhomogeneous driving direction
is absent. Figure 3.11(a) illustrates an example of geometry-based hypotheses linking, where a
road-lane hypothesis,u, is searching for a good candidate hypothesis with which to link. Due
to the fact that our target roads are arterial highways, any hypotheses located behind an input
hypothesis should be discarded. We compute one-to-many dot-products between an input hy-
pothesis and all remaining hypotheses. We do this to filter out any hypotheses located behind the
input hypothesis. In the example shown in Figure 3.11(a), the hypothesis,vl, is removed from
the candidate list,v1 andvk, remain in the candidate list for further consideration. For each of
the hypotheses in the candidate list, we compute the value ofgeometric linking potential:

v∗ = argmin
v

G(u,v), where,

G(u,v) =

k∑

j=1

gj(u,v)
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wheregj(u,v) is a function computing thejth geometric property between the two hypotheses,
u andv. The geometric properties of a link are three: curvature,g1(u,v), intersection angle,
g2(u,v), and Euclidean distance,g3(u,v). The curvature at the intersection pointI can be
computed by using two linked points the vertexv2 of u1 andv1 of v1 are computed by

κI =

∣∣∣∣
v2 − I
v1 − v2

∣∣∣∣
|v2 − I||v1 − v2||v1 − I|

The second linking function investigates whether sufficient image cues are present (i.e., lane-
marking pixels) on a potential path linking any two hypotheses. A potential path can be thought
of as a piecewise linear curve along the centerline of a true road-lane just like our road-lane model
where each line segment of the curve meets another line segment at a control point (or a vertex
between edges). We assume that an optimal link always existsbetween two consecutive control
points that maximizes photometric constraints around the link. The second linking function thus
searches for the locally optimal link between two vertices along a potential path between two
road-lane hypotheses. A connection between all these locally optimal links would result in an
optimal approximation of a true road-lane. The incrementalexamination of consecutive links will
be terminated when the next potential move intersects with either another road-lane hypothesis
or one of the image bounds. While tracking the locally optimal path, the direction of tracking is
initially set to the direction of the hypothesis, but after the initial step, the direction is adjusted
by looking at the estimated driving direction.

Figure 3.11(b) illustrates such tracking of road-lane boundary cues. In this example, the
tracking is about to begin at the vertex (v2) of a road-lane hypothesis and search for a locally
optimal link for the next point. Currently, it examines one of the possible links to a point,p1,
within the yellow rectangle where lane-marking pixels on the left side of the tracking direction
are marked with magenta circles and lane-marking pixels on the right side are marked with blue
circles. We use two line segments to collect road boundary cues: a longitudinal line,l1 = p1−v2
and a lateral line,l2 = p2 − p3. We first project all lane-marking (magenta and blue) pixels
onto these two lines. Let us denotep(b) as a projected point of a lane-marking pixelp. The
projected pointp(b) on linel1, for example, can be expressed asp(b) = v2 + b(p1 − v2), where
b = (P−v2)T (p1−v2)

(p1−v2)T (p1−v2)
. p(b) is projected on the line segmentl1 if it satisfiesb ∈ [0, 1]. Using these

projected points, the second linking function evaluates the quality of a potential link to the next
control point (e.g., a line segment betweenv2 andp1).

Q(P ) = αq1(P ) + (1− α)q2(P ), {pi = (xi, yi) ∈ P}i=1,...,m

q1(P ) =

∑
i=1 I (pi ∈ Binj)

K
,Binj=1,...,K

q2(P ) = 1− |max(b)−min(b)|
roadwidth/2

whereP is a set of the projected points,α is a variable that controls the contributions of two qual-
ity function values, “Bin” is a quantized histogram between0 and 1 aboutb and “roadwidth” is
an estimated quantity that is initially set to the average oflateral lengths of vertices in a road-lane
hypothesis (e.g., the mean value of lateral lengths ofv1 andv2). The functionq1 measures how
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widely dispersed the points projected onto the longitudinal line l1 are. By contrast, the function
q2 measures how closely dispersed the points projected on lateral line l2 are. In general, the opti-
mal link has a wide spread projection on the longitudinal line and a narrow spread projection on
the lateral line. Figure 3.12(a) shows the result of a photometric road-lane boundary cue tracking
and Figure 3.12(b) shows two other results of tracking long paths among road-lane hypotheses.
This linking function based on tracking is similar to work that traces road image cues to extract
road-networks from low-resolution aerial images. In particular, Zhou et al. use for their road cue
tracking an extended Kalman filter [Zhou et al., 2006] and Movaghati and his colleagues utilize
an unscented Kalman filter [Movaghati and Moghaddamjoo, 2008]. The primary difference is
the ground resolution of testing images. Most of the variations in object appearances, imperative
to analyzing high-resolution orthoimages, fail to appear in low-resolution aerial images.

(a) The result of photometric cue tracking il-
lustrated in Figure 3.11(b). The road-lane hy-
pothesis labeled 82 was successfully, through
a high-curvature path, linked to another road-
lane hypothesis labeled 62 .

(b) The obtained photometric image cues pro-
vide strong evidence of potential links among
the generated road-lane hypotheses. A track-
ing of photometric cues among any potential,
geometrically plausible links is conducted be-
fore actual linkings occur. Red dots represent
lane-marking pixels and blue rectangles repre-
sent the generated road-lane hypotheses.

Figure 3.12: These figures show examples of photometric road-lane boundary cue tracking.
These figures also demonstrate that our tracker is able to follow a high-curvature paths and long
paths between two road-lane hypotheses.

In summary, the linking function based on local geometric constraints searches for
the potential links that maximally satisfy geometric cues.These geometric cues are ob-
tained from the mid-level image cues and prior information about the U.S. arterial high-
ways. The link function based on photometric constraints searches for a potential link
that maximally complies with the spatial patterns of the detected lane-marking pixels. The
best link between two road-lane hypotheses would be one thatlocally minimizes these
two constraint functions. Unlike previous work of the min-cover algorithm applications
[Felzenszwalb and McAllester, 2006],[Zhu and Mordohai, 2009], where their solutions are ex-
plicitly searching for a sequence of hypotheses, we look fora set of hypothesis pairs such that
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their potential, geometrically plausible, links are sequentially traced by photometric image cues
to cover road image-regions.

3.3 Experiments

This section details experiments conducted to investigatethe robustness of our approach to ex-
tracting a lane-level highway map and the accuracy of the resulting maps. In what follows, we
first explain the experimental setup and evaluation methods, then show experimental results, and
finally discuss the findings.

(a) Examples of “ramp,” “lanes merging,” “overpass,” “roadsurface material vari-
ation,” are shown.

(b) Examples of “image distortion,” “railroads,” “overhanging traffic signs” are
shown.

Figure 3.13: Examples of complexity factors for measuring test image characteristics.

48



3.3.1 Experimental Settings

From Google’s map service4, we collected 50 orthoimages that are sampled from the routebe-
tween the Squirrel Hill Tunnel to the Pittsburgh International Airport. We also saved road-vector
screenshots of the orthoimages and manually drew boundary lines of individual roadlanes in each
of the collected images for the ground truth.

The collected images are of arterial highway scenes. We believe this level of highway image
contains a sufficient level of difficulty, which we would haveto overcome if we increased the
number of test images. To validate our assumption about the complexity of our image collection,
we scrutinized each of our highway images. Figure 3.13 showscomplexity factors used for this
analysis. Table 3.2 summarizes the result of this analysis in terms of the geometric and photo-
metric characteristics of our test images. We surveyed our images considering eight factors, each
of which indicated the complexity of an orthoimage from the perspective of extracting bound-
ary lines of road-lanes. For example, the presence of a “ramp” and “overpass” may cause the
process of linking road-lane hypotheses to track a complex (or non-linear) road geometry. Note
that we are concerned with only ramps with high curvatures. On 18 out of 50 images 23 ramps
appear. In addition, when two lanes merge, one of the trackedlanes must, to produce a correct
road geometry, disappear. From 27 images, we observed 39 lane-mergings. Unusual photometric
variations on highway images would prevent our approach from extracting, at a desirable level
of quality, a sufficient amount of low- or mid-level image features, resulting in incomplete road
boundary lines. “Material variations” indicate a variation in road-surface materials (e.g., asphalt
with concrete patches). Such material variation was observed in more than half the test images.
“Urban Structures” refer to any man-made structures, such as over-hanging signs or railroads
crossing, orthogonal to the highway driving direction. “Image distortion” indicates whether an
orthoimage has any ortho-rectification errors by a map company, such as uncanny surface warp-
ing or unrealistic 3-dimensional surface reconstructions. From the statistics found in Table 3.2,
we can rest assured that our testing image collection poses sufficient difficulty to our highway
image analysis algorithms regarding photometric image variations and the complexity of road
geometry.

We have a list of methods that require optimal parameters forproducing desirable results.
While extracting lines, we remove any lines the lengths of which are greater than half of the in-
put image width (e.g., 600 pixels). We remove them because such long lines usually fail to align
with any highway contours, resulting in incorrect driving direction estimation. In executing road-
region segmentation, we apply a Leung-Malik filter bank [Leung and Malik, 2001], a multi-scale
and multi-orientation filter bank consisting of 48 filters, to hand-labeled highway images, which
are used for training a lane-marking classifier, and obtain 64 different textons to represent each
superpixel. We found our road-region segmentation method produced the best results whenβ is
set to 0.2.β is a parameter of the MRF that controls interactions betweenneighboring super-
pixels. For driving direction estimation, the size of each grid cell was determined by dividing
the input image width and height by the diagonal length (i.e., 23.3 pixels) of a normal vehicle
dimension (e.g., width× length =12×20 pixels) estimated from 15 centimeter per pixel ground
resolution. This allows a grid cell to contain a normal sizedvehicle, resulting in reasonable es-
timation of driving direction. For lane-marking detection, we use AdaBoost and found that 50

4http://maps.google.com
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Table 3.2: Summary of testing highway images’ characteristics.

decision stumps (i.e., weak learners) produced the best lane-marking detection results. We also
used a logistic regression to convert the discrete output ofAdaBoost into a probabilistic output.
For overpass detection, we set the angle threshold atπ/3 so as to detect greater intersection an-
gles between road-vector fragments. To execute the linkingfunction based on local geometric
constraints, we usedπ/8 as a cutoff that removed any potential link whose intersection angle
was greater than this.

3.3.2 Experimental Results

In this section we discuss the findings from testing our algorithms. To the best of our knowledge,
no prior work or image data is available on extracting road-lane boundaries that we could use for
comparison. Hence, we had to come up with reasonable ways of evaluating our results.

We evaluate resulting road-lane boundary delineation in two-folds: accuracy of matching
between output and ground truth pixels and counting the number of correctly recovered road-
lanes in the final outputs. Matching pixel-to-pixel aims at investigating the performance of our
approach at a micro-level; counting the number of road-lanes aims at revealing the accuracy
of the resulting geometries. To evaluate our results at a pixel-to-pixel level, we utilized the
method from evaluating performance of object boundary detection [Martin et al., 2004]. Simi-
lar to [Martin et al., 2004], we regard the extraction of road-lane boundaries as a classification
problem of identifying boundary pixels and of applying the precision-recall curves using man-
ually labeled road-lane boundaries as ground truth. Precision is manifested in the fraction of
outputs that are true positives; recall is the fraction of correct outputs over true positives. The
precision-recall depicts these two values together as the threshold varies, capturing the trade-off
between accuracy and noise. In a precision-recall curve, each of the output pixels is evaluated
by whether it detects true positive pixels. Once we obtain such correspondence between out-
put pixels and ground truth pixels, computing the precisionand recall is straightforward. While
resolving this correspondence problem, we must carefully consider a localization error that ac-
counts for the (Euclidean) distance between an output pixeland a ground truth pixel. Indeed,
localization errors are present even in the ground truth images as well. For resolving the corre-
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spondence between output pixels and ground truth pixels, weutilized the Berkeley Segmentation
Engine’s5 performance evaluation scripts. These scripts solve, using Goldberg’s CSA package,
the correspondence problem as a minimum cost bipartite assignment problem. We also used, as
a baseline method, BSE’s probabilistic boundary detectionoutputs. BSE was developed to detect
object boundaries, not road-lane boundaries. In addition,since training BSE with our image data
is impossible, it may fall short of being a fair comparison. But since anyone can think of such
probabilistic boundary outputs as a starting point of delineating road-lane boundary lines, we
compared it with our output.

Figure 3.14(a) shows the ground truth image of the input image’s road-lane boundaries. Fig-
ure 3.14(b) shows the probabilistic output of boundary in which the color closest to red represents
the highest probability of being a boundary pixel. Figure 3.14(c) shows the binary output of our
algorithms. Qualitatively speaking, our results outperform those of BSE in that most of the road-
lane boundary lines are recovered. The BSE outputs, in contrast, produced a great deal of non-
road boundaries, such as those from vegetation or houses. Figure 3.15 quantitatively confirms
such qualitative differences between the two outputs in a quantitative way with a precision-recall
curve. Table 3.3 presents an averaged performance difference between the two outputs over fifty
test images.

F-measure Precision Recall

Ours 0.82 0.77 0.89
BSE’s 0.44 0.38 0.54

Table 3.3: An averaged precision-recall measure of micro-level performance between the two
outputs.

5The BSE and related information are available athttp://www.cs.berkeley.edu/ ˜ fowlkes/BSE/
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(a) Ground truth binary image.

(b) Probabilistic boundary output by BSE.

(c) Output binary image.

Figure 3.14: These figures show the ground truth binary imageand two output images.
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(a) This figure shows an averaged precision-recall curve. A curve with red triangles
shows BSE’s performance whereas a blue dot cluster shows ourperformance.

(b) This sub-figure magnifies our performance in the precision-recall curve.

Figure 3.15: A precision-recall curve about micro-level pixel-to-pixel matching is shown.
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The performance evaluation by a pixel-to-pixel matching for road-lane boundary extraction
outputs might be insufficient in terms of achieving our goal because the pixel-to-pixel measure
counted a match when an output boundary pixel is located to a true boundary pixel within a
predefined distance threshold (e.g., 100 pixels). Therefore a collection of boundary pixels does
not necessarily correspond to a road-lane boundary. To be useful, these detected boundary pixels
must be interpreted as parts of a road-lane. In other words, the desirable output for our purpose,
is one that treats a road-lane as a polygon, bounded by a closed path, where we can estimate
lateral road widths, curvature, and other interesting geometric properties along the centerline of
a road-lane polygon. Such an output would also present a clear difference between ours and
those of BSE’s probabilistic boundary output. To measure such macro-level performance, we
first visually inspected our outputs and the input image to resolve the correspondence between
the resulting road-lanes and true road-lanes appearing on the input image. We then counted the
number of correct and incorrect output road-lanes and missed true road-lanes. If the area of
overlap between a road-lane output and a true road-lane is roughly greater than 80%, then we
count it a correct match. This counting results in a two-contingency table for the performance
of each test image. Table 3.4 shows a macro-level performance that is obtained by merging
individual contingency tables over fifty test images. An averaged performance is then computed
by using this table, precision =0.792 = 337

337+88
, and recall =0.771 = 337

337+100
, meaning that 79%

of the resulting road-lanes are correct and 77% of true road-lanes appearing on the test images
are correctly recovered.

Ground Truth
Road-lane Not road-lane

Output
Road-lane 337 88

Not road-lane 100 ×

Table 3.4: A contingency table is used to measure the macro-level performance of our highway
map generation methods.

Examples of resulting maps are shown in Figures 3.16 through3.18. Appendix C includes
complete results of 50 test images.

Figure 3.16 shows some of the most accurate results with all of the true road-lanes appearing
on test images recovered correctly. While processing theseimages, our approach successfully
tracked high-curvature ramps, correctly connected road-lane boundaries around overpasses, ef-
fectively handled variations in road-surface materials and partial image distortions.

Figure 3.17 shows some reasonable results where most of the true road-lanes are recovered
correctly. However, not all the true road-lanes have been recovered and some of the geometry
of the resulting road-lanes is incorrect. Our approach was unable to correctly produce road-lane
maps from the testing images in Figure 3.17 because these images contain more challenging
image characteristics. For example, the overpass in the first row was successfully detected. But,
the underestimated boundary of the detected overpass resulted in inaccurate linkages of road-
lanes at the edge of the overpass. For the examples in the second row, there was a false positive
around the ramp. This happened because our method identifiedthe road-shoulder image-regions
as a road-lane. In the testing image in the third row, the shadow of the overpass covers most of
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road-lanes located at the left of the overpass. Even with a successful detection of the overpass,
due to a relatively high curvature, our approach failed to correctly identify the direction of road-
lanes. The railroad appearing in the testing image in the fourth row imposed an occlusion around
the lane-merging image-region, resulting in an incorrect linkage between the recovered road-
lanes. For the last example of Figure 3.17, the road image-regions on the overpass are distorted,
resulting in one of the three road-lanes being completely undiscovered.

Figure 3.18 shows near-failure cases where some of the true road-lanes are not recovered and
where some of the true road-lanes are incorrect. The test image shown in the first row posed
the most significant challenge in our test image collection.The road-lanes appearing on the
left of the image are significantly distorted and a cascade ofoverpasses makes it even harder to
analyze. Although our approach recovered some parts of the true road-lanes, most of them were
inaccurate and the linkages among them were incorrectly determined. In the second example, our
approach failed to link road-lane hypotheses due to the presence of the bridge’s suspension span
and was unable to complete the linkage of road-lanes near theoverpass at the bridge-entering
region. Testing images shown in the third and fourth rows showed complicated road geometries.
Image distortions appearing on overpasses made it even harder to track road-boundary image
cues. Our lane-marking detector failed to detect road-boundary cues from the road surface of the
overpass in the last example and was unable to correctly delineate road-lane boundaries, resulting
in incorrect linkages of road-lane hypotheses around the overpass.
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Figure 3.16: There are two sub-figures in each row. The figure on the left is a test image and the
figure on the right is our output, where each road-lane outputis depicted in a different color and
the background is depicted in blue.
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Figure 3.17: These figures show reasonable results where some of the true road-lanes are not
recovered or some of the recovered road-lanes have incorrect connections.
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Figure 3.18: These figures show some of near-failure cases where some of the true road-lanes
appearing on test images are completely missed: some of the recovered road-lanes do not match
to any of the true road-lanes: and finally some of the recovered road-lanes have incorrect con-
nections.
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3.4 Summary

This chapter described our approach to extracting lane-level highway maps from a given or-
thoimage. To make road-lane boundaries computationally accessible and impose reasonable
challenges on our task, we chose inter-city highway orthoimages with 15-centimeter ground res-
olution. Such high-resolution orthoimages pose significant challenges, such as variations in ob-
ject appearances and complex geometry, to the task of extracting road-lane boundaries. To effec-
tively address these challenges, we developed a hierarchical approach to three tasks: to collecting
road boundary image cues via bootstrapping, to generating hypotheses about the unknown true
road-lanes, and to linking hypotheses with respect to the photometric and geometric constraints
imposed by the collected image cues and prior information. In particular, through bootstrapping,
we collected low-level image features from extensive imageprocessing. We refined them to pro-
duce task-specific, mid-level image features, such as lane-marking detection, driving-direction
estimation, overpass detection, and road-region segmentation. Results of road-region segmenta-
tion defined the image sub-region of interest where lane-marking detection results were directly
used to generate road-lane hypotheses. We formulated the task of linking road-lane hypotheses
as a min-cover problem and found an approximate solution by implementing two linking func-
tions. The first function searched for potential links between two road-lane hypotheses based on
the gathered geometric cues. The second function verified these potential linkages by tracking
potential paths between two hypotheses. Such a tracking of road boundary image cues enabled us
to link two hypotheses along distant, high-curvature, and partially occluded paths. We tested our
algorithms with 50 challenging arterial highway images. The results were evaluated according to
two aspects: pixel-to-pixel matching and counting correctand incorrect outputs. Our approach
demonstrated promising results in that, overall, 79% of theresulting road-lanes were correct and
77% of true road-lanes appearing on the test images were correctly recovered.
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Chapter 4

Recognizing Temporary Changes to a
Highway

In the previous chapter, we demonstrated that we could generate a highway map of road-lanes
from an orthoimage. Such a lane-level detailed highway map with information of traffic rules and
real-world coordinates can be prepared in advance for guiding autonomous and assisting manual
highway driving. However, describing unexpected occurrences a priori, such as traffic accidents
or road work, is of course impossible. A self-driving vehicle must be able to effectively handle
such events, as they can lead to temporary changes in road conditions. For example, suppose
that the road-lane a vehicle is driving on is unexpectedly shifted laterally due to a road work,
whereas that lane is depicted on the map as following a straight path. What if the vehicle’s
braking distance is longer than its sensing horizon?

To effectively handle unexpected events on a highway, an autonomous vehicle should first be
able to recognize them. To provide a vehicle with such perception capability, this chapter presents
a collection of computer vision methods that identifies the bounds of a workzone, e.g., the be-
ginning/end of a workzone, and recognizes temporary changes to highway driving conditions,
e.g., a decrease in speed or blockage of a lane, through recognition of workzone traffic signs
in perspective images [Seo et al., 2011a, Seo et al., 2011b].Such detailed information about a
highway workzone would help a robotic vehicle properly respond to unexpected events on a
highway and in turn lead to safe and reliable autonomous highway driving. This functionality
would also help a human driver be on alert while driving by such unexpected events.

Regarding their location and appearance, workzone signs are highly constrained by govern-
mental regulations [U.S. Department of Transportation, 2009]. However, such constraints do not
make it easy to recognize signs in images because of the high variation in each sign’s image
appearance. Under perspective imaging, the projection of a3-dimensional traffic sign onto a 2-
dimensional image plane distorts most of the sign’s geometric properties, such as its angles, dis-
tance, and ratios of angles [Hartley and Zisserman, 2003]. As an example, consider a canonical
workzone warning sign in the U.S. [U.S. Department of Transportation, 2009]. It has a diamond
shape, orange color, equal corner angles, and equal-lengthedges. When such a sign is projected
onto an image, the sign’s equiangularity and equilaterality are not preserved. In addition, the line
of sight between a sign and a camera perceptually and computationally changes the color of a
workzone sign from that of the sign template. This leads to the problem of intra-class appearance
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variation. This type of variation occurs when the appearance of the same workzone sign varies
based on the conditions of the image acquisition process.

To cope with such challenges in recognizing workzone signs,our approach learns variations
in color in workzone sign images to perform a pixel-wise binary color classification, identifies
blobs to localize sign image regions, then represents a cropped image in a homogeneous feature
space to reduce the variation of geometric shapes for more accurate sign classification. Realisti-
cally, any sign recognition system is going to make errors – incorrectly classifying signs or even
missing some signs. To address these potential recognitionerrors, we devise two algorithms. The
first makes use of temporal redundancy of sign occurrences and their corresponding classifica-
tion decisions, in order to reduce false positives. The second estimates the likelihood of driving
in a workzone based on confidence values of the previous classifications, in order to avoid the
impact of false negatives.

4.1 Recognizing Highway Workzone Signs

A highway workzone is an exceptional event that briefly changes driving conditions in terms
of road geometry and traffic rules. Although a workzone plan is usually advertised in advance,
such warnings are not precise enough that a robotic vehicle would know the bounds and types of
work. Individual configurations of workzones vary, but, forsafe driving, a highway workzone in
the United States is required to consist of four sections (orareas): advance warning, transition,
activity, and termination [U.S. Department of Transportation, 2009]. Upon entering an advance
warning section, human drivers are informed of what to expect ahead. While driving through
a transition area, drivers may be forced to deviate from their normal paths. The activity area is
where the work actually takes place and the termination areais where the traffic resumes normal
activity.

Figure 4.1 shows 10 workzone signs that are typically observed while driving thru these four
different workzone sections. Specifically, the first image is observed in an advance warning area,
and the next three images appear in a transition area, indicating the bounds of the workzone. The
remaining signs are about temporary changes to the highway’s traffic rules and geometry.

Our task in this chapter is to reliably detect and accuratelyclassify relevant workzone signs
from a perspective video, in order to acquire detailed information about a highway workzone,
such as where a workzone begins/ends and how the work changesdriving conditions.

To this end, we develop computer vision methods capable of detecting and classifying a set
of relevant highway workzone signs as well as reducing potential sign recognition errors based
on the confidence values of previous sign classifications. Section 4.1.1 and section 4.1.2 detail
our approach for detection and for classification of workzone signs. Section 4.2 explains our
approach for dealing with possible sign recognition errors.

4.1.1 Workzone Sign Detection

Although it is obvious that the color of a workzone sign is orange, it is challenging to correctly
identify orange pixels in a given image because of possible variation of the color orange. To
effectively deal with such variation, we formulate the learning of the orange color variation as a
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Figure 4.1: A montage of ground truth annotation examples. The (cyan) rectangular lines out-
lining the signs represent the contours of the true signs, and the (green) boxes represent the
signs’ bounding boxes. In the top row, from the left, the images represent examples of W20-1,
R22-1, G20-2, W21-19, and R2-2-2. The bottom row includes examples of W1-4, W1-4L, W1-
4R, W4-2R, and W4-2L. We include these designations (or identifiers) of workzone signs for
completeness and also to later represent the sign target classes.

binary color classification using the Bayesian inference framework. [Bishop, 2006].

P (sign|X) = ηP (X|sign)P (sign)

whereX is an image comprised of|width×height| number ofm-dimensional pixels,xj ∈ X and
η is a normalizer for the posterior distribution. In particular,xj is a 2-dimensional color vector
of which components include hue and saturation values. The posterior probability,P (sign|X),
which assigns a value to the probability that individual pixels are part of workzone signs, is com-
puted by multiplying the likelihood function,P (X|sign), and the prior probability distribution,
P (sign), of traffic sign locations found in image frames. We obtain the prior probability den-
sity of workzone sign locations from our ground truth data, which is comprised of several hours
of highway workzone video footage and manual annotations. Figure 4.2 shows the density of
workzone traffic sign locations, which is obtained by projection all of the ground truth bounding
boxes onto an image, and is used as the prior for workzone signlocations.

We use AdaBoost [Freund and Schapire, 1996] to learn the likelihood function,P (X|sign),
of a given pixel as a part of a workzone sign. The training datais comprised of a set of workzone
images, some of which were downloaded from the web while the rest were obtained from our
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Figure 4.2: A heat-image (640×480) showing workzone sign locations where the color closest
to red represents the highest density. The (white) rectangular dashed-line defines the region of
interest (ROI) for our workzone sign detection.

workzone video images. Using this data, we train a set of weak-learners and their weights.

P (x|sign) = mode (∪jg(f(xj|sign)))
where,

f(xj|sign) =

H∑

i=1

αihi(xj)

whereH is the number of weak learners,hi represents a weak learner implemented by a decision
stump andαi is its weight. We use logistic regression to implement the function g to convert
the binary output of AdaBoost into a probabilistic output [Friedman et al., 2000],g(f(·)) =

exp(f(·))
exp(f(·))+exp(−f(·))

.
For a given image, our color classifier evaluates pixels within the ROI, as presented in the

Figure 4.2, and assigns a probability for whether individual pixels are part of an orange workzone
sign. Our sign detector runs a connected-component grouping algorithm to identify orange blobs
and generates up tok bounding boxes as candidates for a workzone sign. The detector then
removes any of bounding boxes with radii1 smaller or larger than the predefined thresholds and
uses non-maximal suppression to select the largest bounding box. The confidence value of the
selected bounding box is computed using the mode of the confidence values assigned to all

1The radius of a polygon is measured by computing the Euclidean distance between a point on a side (or edge)
of a polygon and the centroid of the polygon.
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pixels within the bounding box. To detect a regulatory workzone sign which includes two colors
(orange at the top and white at the bottom), we implement a heuristic for investigating the aspect
ratio of a bounding box, in order to extend the height of the bounding box.

To evaluate the performance of our sign detector, we use the performance metrics used for
PASCAL object detection challenges [Ponce et al., 2006]. Anoutput bounding box,oi, is con-
sidered a potential match to the ground truth bounding box,gi, in a given image frame,i, if their
area of overlap is greater than a predefined value,τ < Area(oi∩gi)

Area(oi∪gi)
. When a potential match is

found in a given image, sign detection performance can be further analyzed by measuring the
following performance metrics:precision=Area(oi∩gi)

Area(oi)
andrecall=Area(oi∩gi)

Area(gi)
.

Color-based Shaped-based [Barnes et al., 2008]
Warning Regulatory Warning Regulatory

Precision 0.951 0.954 0.487 0.535
Recall 0.928 0.903 0.497 0.662

Table 4.1: For this test, we used 103 workzone images, including 55 warning (or diamond-
shaped) signs and 41 regulatory (rectangular-shaped) workzone signs. We setτ 0.5 as the value
for a potential match.

Table 4.1 presents macro-averages of precision and recall where a macro-average is computed
by averaging individual measurements over testing images.We compared the performance of our
color-based sign detection approach to Loy and Barnes’ method (“Shaped-based” method in Ta-
ble 4.1) which utilizes geometric shapes of signs to achievesign detection [Barnes et al., 2008].
Loy and Barnes’ method did not perform well for our data because most of our testing sign im-
ages have low contrast in image intensity. Figure 4.3 shows some examples of the sign detection
output obtained by our method.

4.1.2 Workzone Sign Classification

An image sub-region localized as a potential workzone sign is given as input to our sign classi-
fication module. Our task in this thesis is to recognize the bounds of a workzone and temporary
changes to highways by classifying workzone signs. In this regard we chose 9 workzone signs as
reliable indicators of workzone bounds and driving condition changes and assigned all remaining
workzone signs to another class. Table 4.2 shows the number of sign image examples used for
each target class.
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65



Figure 4.3: Some sign detection output images are shown. Thethick (yellow) rectangles outlin-
ing the signs represent the overlap between the ground truthrectangle (green) and the detection
output (red).

It is challenging to correctly classify sign images becauseof the variation between each
sign’s appearance in an image. To reduce such variation, we use a log-polar transform, which
is a method used for transforming an image from Cartesian coordinates into an image in log-
polar coordinates [Belongie et al., 2002]. This transform is effective in reducing the variation of
sign shape and text because it densely samples image intensity values near the center of a sign
image where the difference between signs images is relatively small, and then sparsely collects
values from sign image boundaries, where the geometric distortions are large. The log-polar
transformation of a point in Cartesian coordinates,I(x, y) is mathematically defined as

T (I(x, y)) = [cx + ρ(x, y) cos(θ), cy + ρ(x, y) sin(θ)] ,

ρ(x, y) = log10

(√
(cx − x)2 + (cy − y)2

)

wherecx and cy are coordinates of a sign sub-image’s centroid. The coordinate-transformed
values are then quantized into predefined bins.

Figure 4.4 shows three different images of the same workzonesign and their log-polar im-
ages. The first image in the top row is the canonical template of a workzone sign while the
other two images are workzone sign images cropped from our video data. Although their actual
appearances are quite different, their log-polar images are similar to each other. The dimen-
sion of the canonical template image (32,000) is determinedby its width (200) and height (160)
whereas that of the log-polar image (1,024) is determined bythe combination of the number of
bins indicating the distance to the center,ρ, (32), and the number of bins indicating orientations
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in counterclockwise,θ, (32).

Figure 4.4: Examples of log-polar transformation. Three different images of the same workzone
sign compared in a Cartesian coordinate and a log-polar coordinate.

For a given image sub-region localized by our sign detector,our sign classifier first normalizes
the image to reduce intensity variation, then converts the cropped image into a log-polar image
based on the parameters,ρ andθ, and finally produces a column vector,|ρ× θ| × 1.

Even with such an effective feature representation method,any conventional supervised clas-
sifier might still fail to generalize the target function in ahigh-dimensionality space (e.g., 1024)
because of the small number of examples (e.g., less than a hundred) for each of the target sign
classes. To handle the curse of this dimensionality problem, we further reduce the original di-
mension of the log-polar image using principal component analysis (PCA). We then build an
eigen-space from the labeled training data and project a testing sign image in the log-polar coor-
dinate space onto this eigen-space. The eigen-space is comprised ofk eigen bases, all of which
represent more than 95% of the total variance in the log-polar image data matrix. Empirically
we found that 10 eigen bases achieved the best performance.

Table 4.3 shows the results of our workzone sign classification. The hyper-parameters of
these classification methods were chosen through cross-validation.2 Due to the random selection
of our training data, we averaged our results over 5 separateruns for each method. To mea-
sure the effectiveness of our sign image representation, wecompared the results with another
representation method, which scales raw-intensity sign images into an image of the same size
(e.g.,100×100), converts it into a multi-dimensional vector (e.g., 10000×1) and then reduces the

2For SVM, we used the LIBSVMhttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvm/ . We found that
a SVM with an RBF kernel (σ = 0.125) worked best and used an one-against-one scheme for multi-class classifica-
tion. LDA used the weight vector that best performed againstthe validation set for testing. OurkNN implementation
worked best when it used the top10 closest neighbors in terms of Euclidean distance in the eigenspace.
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dimensions using the precomputed eigen bases. The last two rows of Table 4.3 show the perfor-
mance of three classifiers that use a raw-intensity image representation. The table demonstrates
that log-polar sign image representation helps classifiersachieve better classification results. All
evaluation metrics indicate that SVM outperforms the othertwo methods.

SVM LDA kNN

Precision 0.965/0.012 0.856/0.035 0.285/0.027
Recall 0.957/0.016 0.854/0.040 0.387/0.007

Precision 0.896/0.035 0.756/0.030 0.252/0.015
Recall 0.841/0.028 0.742/0.030 0.377/0.015

Table 4.3: Performance of three different sign classification methods measured by standard met-
rics. Each cell in the table shows the mean and standard deviation.

4.2 Handling Workzone Sign Recognition Errors

Although the previous two sections demonstrated promisingresults for our sign detector and
sign classifier, it is realistic to conjecture that our approach makes mistakes in recognizing some
workzone signs. When either a miss or incorrect classification occurs, our methods might fail to
acquire detailed information about a highway workzone.

To handle such potential sign recognition errors, we devisetwo algorithms that utilize the
sequence of previous sign classifications. These methods rely on the accuracy of our sign recog-
nition method, which is able to accurately recognize the majority of the target class signs.

Our sign classifier produces a sign classification decision and its confidence value in cases
where the sign detector produces a bounding box as a potential sign image. These confidence
values represent the level of confidence in our approach’s representation in terms of determining
whether the cropped images are instances of target workzonesigns. We can thus use the mag-
nitude of the confidence value to infer whether our vehicle isdriving in a workzone. However,
a problem with using these values directly is that a sparsityof confidence values exists, as we
cannot obtain such evidence from workzone regions where no workzone signs are posted or from
true workzone signs that are misclassified as other objects.The underlying aim of our algorithm
is to propagate confidence values over time in order to hold non-zero values while driving in a
workzone, even when the system does not have direct observation of a workzone sign or misses
any workzone signs. While spreading these values, the effect of propagation should decay over
time, in order to prevent an over-estimation of the true state.

To implement our idea for driving region inference, we use Gaussian smoothing of the con-
fidence values over a specific time domain. Classification confidence at theith time step,δi, is
propagated to adjacent time periods as far as the value ofσ.

[δi ∗ wj]j=−σ,...,−1,1,..,σ , wj = exp

(
−i− j

2σ2

)

Assuming that the driving speed is 50 mph and the frame rate is15 per second, an image frame
in a video represents a distance of 1.4 meters of driving. In this case, if we setσ to 150 (or 150
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image frames), the confidence value will be propagated over 210 meters, both toward future and
past time steps. Note that, although it is unnecessary to propagate confidence values toward the
past, we propagated them in both directions for convenient implementation, without paying any
extra computational cost. The choice ofσ is critical for production of a smooth inference curve.
If σ is not optimal, either discontinuity or inflation will appear in the resulting curve. We define
the value ofσ based on the rough estimation of distance between workzone signs. The likeli-
hood function for driving in a workzone is then computed by adding the current classification
confidence value,δi, and the propagated confidence values accumulated at time step,i, obtained
from the neighboring time frames,scorei = δi + δ̂i, whereδ̂i represents the confidence values
propagated to the time step,i. For example, suppose that our sign recognizer misses a truesign at
time step,j, wherei < j ≤ i+ σ. Because time stepj is in the propagated confidence interval,
σi, our vehicle knows that it is driving on a highway workzone, even with a sign recognition
miss.

In a workzone video, a workzone sign appears multiple times before it disappears from the
camera’s field of view. Our approach utilizes such temporal redundancy of sign occurrences
to improve classification accuracy, particularly reducingthe rate of false positive. Specifically,
when the system makes a classification decision, it refers toprevious classification outputs.

yt(ot) = argmax
c

{
ht(ot, c) +

T∑

l=1

γlht−l(ot−l, c)

}

whereht(o, c) andht−l(o, c) represent the classification outputs for an image sub-region, o, at
time steps,t andt− l, for the class,c, andγ is a discounting factor that determines contributions
of previous decisions to the current classification decision. Note the sign detector applies non-
maximum suppression in order to ensure that image sub-regions,ot andot−l, represent the same
object in different scales. By investigating previous classification decisions on the same sign
in different scales, our approach offers the opportunity toalter its current classification decision,
which has1−0.965 chance of producing a false positive based on Table 4.3. Whena classification
decision is made, the system propagates its classification confidence over adjacent time frames
based onσ.

4.3 Experiments

This section details experiments conducted to investigatethe robustness of our sign detection and
classification method with images acquired under various illumination conditions. This section
also discusses the reliability of our potential sign recognition error handling method under the
use of a series of sign classification outputs.

4.3.1 Experimental Settings

We collected several hours of video footage of various highway driving experiences and prepared
5 videos out of these as testing data, where each of the five videos showed a vehicle’s perspective
when driving on a normal highway, passing a workzone, and driving on another normal highway.
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Figure 4.5 shows the setup for our video acquisition. Each ofthese videos was decompressed into
a set of images. The number of images in the videos varied fromseveral hundred to thousands.
Table 4.4 gives detailed information about the video data. For example, in the video data,A,
there are 447 out of 3,305 images containing workzone signs and 36 images containing other
traffic signs.

A B C D E

Sum of images 3,305 4,232 874 3,148 3,280
Workzone signs 447 603 234 451 477
Other traffic signs 36 89 21 68 62

Table 4.4: These video data were acquired under various weather conditions. The first two videos
(A&B) were recorded in winter with snow accumulation in the background, while the following
two videos, (C&D) were obtained in spring, under fairly gentle illumination conditions (i.e.,
sunny and clear skies), and the last was recorded on a rainy day in spring.

Figure 4.5: A setup of workzone video recording.

For each of the video data, a stream of images was given to our system, which was required to
localize signs, if any, and classify them, if necessary. Forthe sign detector and classifier, we used
the best-performing learners described in Section 4.1.1 and Section 4.1.2. We empirically found
that the temporal smoothing worked best whenγ was 0.9. We setσ to a value in the range of 350
(i.e., 500 meters) to 800 for Gaussian smoothing based on thescale of highways and the maxi-
mum inter-distance between signs, as described in [U.S. Department of Transportation, 2009].
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A B C D E

Sign Detection 0.782/0.474 0.314/0.796 0.825/0.426 0.721/0.548 0.928/0.471
Sign Localization 0.940/0.474 0.841/0.909 0.915/0.775 0.948/0.790 0.918/0.757
Sign Classification 0.823/0.678 0.696/0.539 0.598/0.579 0.719/0.704 0.580/0.608

Table 4.5: Results of performance tests for individual modules.

4.3.2 Experimental Results

Table 4.5 shows experimental results of workzone sign recognition tests. The first row shows the
performance of sign detection, which measured the number ofsigns detected in video data. This
is done on a per sign instance basis. The second row shows the accuracy of sign localization
in terms of overlap with true signs. The third row shows the accuracy of the output of our sign
classification with a given localized sign image. The two numbers in each cell correspond to
precision and recall. In comparison with individual unit tests described in two previous sections,
Section 4.1.1 and Section 4.1.2, the overall performances are slightly degraded, particularly, for
the recall rates of detection in the first row. This is the result of the dense manual labeling that
we used when annotating the bounding boxes, in which the labeling began when a true workzone
sign was about 20×20 pixels. By contrast, our sign detector was tuned to filter out any orange
regions with dimensions smaller than 40×40. Performances of sign localization showed that
most of the true sign image regions were recovered once they were detected. For example, for
video data,A, even though the sign detector detected only 47% of the ground truth signs, 94%
of the localized sign images were correct. These cropped images are then forwarded to the sign
classifier that produced highly accurate classifications, 82%. Some parts of the true signs are
cropped away, but the parts of the true signs that are important for classification were passed to
the sign classifier. This enabled our approach to perfectly identify the bounds of the workzone
and robustly detect most of the driving condition changes, as shown in Table 4.6.

Table 4.6 summarizes the experimental results in terms of recognition accuracy of temporary
changes in driving conditions. The first two rows show the accuracy of workzone bound recogni-
tion and the remaining five rows show that of driving condition change recognition. Our approach
demonstrated excellent performance in identification of workzone bounds. For example, for the
test video dataE, there are 3 images that contain “workzone-begin” signs (i.e., R22-1in Fig-
ure 4.3). Although the performance of workzone sign classification on these sign occurrences
was not impressive (i.e., 0.083 as precision and 0.333 as recall), our sign detector and classifier
successfully recognized one of the three signs with high confidence. The correct classification
in fact, happened at the middle of the three sign appearancesand the first and the last (or latest,
in terms of time elapse) classification decision on the same sign were incorrect. If our system
only considered the latest classification decision withoutlooking into previous classification de-
cisions, the system would miss an important workzone sign and eventually, at best, underestimate
the bounds of the workzone. But one of our recognition error handling methods utilized these
consecutive classification decisions as explained in equation 4.1, enabling the system to turn on
the flag to indicate whether our vehicle was driving in a workzone. Without these methods, we
might see inconsistent sign classification decisions on thesame sign in different time frames (or
scales) and miss some of the workzone signs which are important for determining the bounds of
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a workzone. Thus, while there were fluctuations in workzone sign classification performance,
the overall trend was similar to this example, resulting in our system’s recognition of all of the
highway workzone bounds in the test video.

Our methods did, however, make some mistakes in detecting temporary changes in highways
conditions. There were 14 occurrences of temporary changesto highway driving environments
in our test videos, and four of them were not recognized. Thiswas primarily a result of our sign
detector being unable to localize signs in the under- or over-exposed images of the test video
data. This resulted in zeroes of the sign classifier’s performance because our workzone sign
classifier did not receive potential sign images from the detector for classification and incorrectly
classified some of the potential sign images.

A B C D E

R22-1 ◦/9/0.727/0.889 ◦/8/0.5/0.875 ◦/1/0.5/1.0 ◦/5/0.625/1.000 ◦/3/0.083/0.333
G20-2 ◦/12/1.0/0.333 ◦/31/1.0/0.290 ◦/15/1.0/0.867 ◦/12/1.0/0.833 ◦/15/1.0/0.933
R2-2-2 N/A ◦/12/1.0/0.083 ◦/13/0.5/0.461 ◦/9/0.857/0.666 ×/7/0.0/0.0
W1-4 N/A N/A ◦/20/0.166/0.200 ◦/52/0.444/0.077 ◦/53/0.333/0.170
W1-4L N/A N/A ×/25/0.0/0.0 ◦/24/0.876/0.876 ◦/31/0.875/0.903
W1-4R N/A ◦/30/0.882/0.5 ◦/12/1.0/0.250 N/A ×/9/0.0/0.0
W4-2L N/A ×/22/0.0/0.0 N/A N/A N/A

Table 4.6: Results of performance tests on detection of driving condition changes. The
four symbols in each cell correspond to success (◦) or fail (×)/number of corresponding im-
ages/precision/recall respectively.

Figure 4.6 details one of the experimental results, i.e., video dataD, where thex-axis rep-
resents the number of image frames organized by time and they-axis represents the target class
labels. An instance of sign recognition was counted as correct whenever a (green) circle, repre-
senting a ground truth, overlapped with a (red) “x,” representing the output of the sign classifier.
Figure 4.6(b) magnifies the dashed rectangle in Figure 4.6(a) where the “end-of-workzone” signs
appeared 12 times before they disappeared from the camera’sfield of view. Two additional pieces
of information about the recall of sign detection are depicted (in red), which are not available to
our system during the testing phase, and the confidence values of sign classification (in blue).
The dimensions of a sign in an image enlarge as it approaches the bounds of a camera’s view-
point. Nevertheless, because of unavoidable recognition errors, the larger sign dimensions are
no guarantee of performance improvement. In our case, the values of detection recall and classi-
fication confidence increased as the sign grew in size. However the fluctuation of these numbers
were observed to be a result of recognition error. Two of the last five classification decisions
were incorrect. In spite of this, the discounted sum of the confidence values concluded that the
system recognized the “end-of-workzone” sign and turned the flag off, indicating that our vehi-
cle was leaving a highway workzone. The (orange) curve represents the estimated function value
of the likelihood of driving in a workzone. As shown, the values of this function are greater
than zero within a workzone. Although the estimated curve slightly overestimated the actual
workzone bounds, this function can be used to inform our vehicle of the likelihood of driving
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in a workzone, even when our approach misses signs that indicate the beginning or end of a
workzone.
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(a) A graph showing the summary of the test results of video data, D. For this test we setσ as 800
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Figure 4.6: Results of a highway workzone recognition test.
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4.4 Summary

This chapter presented a set of computer vision methods thatlocalize, detect, and classify work-
zone signs in video data. This is done to obtain detailed information about highway workzones,
such as the bounds of a workzone and temporary highway changes caused by road work. We
developed such a perception capability to bridge the gap between what appears on our lane-level
detail highway map and what is actually happening on the highway at the time a vehicle is driving
on it.

Through a bottom-up structure, our system hierarchically processes an image by first per-
forming a pixel-wise orange color classification step to filter image regions not containing work-
zone signs; second, by selecting a bounding-box as a potential sign image; and lastly, by classi-
fying the bounding box into one of the predefined target classes. It is, of course, unrealistic to
expect error-free sign recognition. Thus we devised a likelihood function to represent driving in
a workzone based on the confidence values of previous sign classifications.

We found that our approach is capable of identifying workzone bounds and of recognizing
most driving condition changes. We believe that a successful demonstration of our approach is
contingent on taking into account three factors. The first isthat instead of manually tuning the
optimal ranges of color values, we learned variations of orange color through a machine learning
technique to localize sign image regions. Some researchersin this field may be skeptical of using
color information for sign recognition. We showed, however, that a color-based sign recognizer
works successfully as long as the test data is composed of thesame color variations as those of
the training data. In fact, we believe that this approach is further useful in that it makes it easy for
one to produce a sign detector for localizing particular traffic signs (e.g., red stop signs or yellow
yield signs) if the relevant sign images are manually prepared. However, we expect cases where
in practice a color-based sign detector fails (e.g., a variation of color has not been seen during the
training phase). Thus, for future work, we would like to investigate an approach that fuses color
information with shape information. Returning to the threefactors on which the success of our
approach is based, the second one is that we used the log-polar transform to represent localized
sign images and PCA to reduce the dimensionality of sign image vectors. This approach was
effective in reducing variation of geometric distortion insign images. This was important in our
case where an insufficient amount of sign image data was available to learn individual target
sign classes. The last factor is that our methods for handling potential sign recognition errors
worked effectively. Without these methods we might have seen inconsistent sign classification
decisions on the same sign in different time frames. Such inconsistent decisions would have led
to our approach missing some of the workzone signs importantto determining the bounds of a
workzone.
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Chapter 5

Parking Lot Map Generation

In the previous two chapters, we demonstrated that we can provide self-driving vehicles, and
human drivers alike, with a lane-level detail highway map for assisting their highway driving.
To address possible transient changes in driving conditions on highways appearing on the re-
sulting map, we developed computer vision algorithms for recognizing temporary changes, and
demonstrated that the developed algorithms are capable of identifying workzone boundaries and
recognizing a functional majority of temporary changes on highways.

Suppose that a self-driving vehicle is about to arrive at a parking lot. It would be useful to
provide that vehicle with a map of the parking lot before it enters. In particular, information about
parking spots’ locations and the geometry of drivable regions would ease its parking maneuvers.
Without such information, autonomous parking would be quite challenging because it would
require simultaneously acquiring this geometric information with on-board sensors, using it to
plan and execute motions in real-time.

In looking for an appropriate parking lot model, one might consider drawing from existing
cartographic databases. However, as pointed out earlier, this would not be realistic at least for
a while, considering that existing road-maps do not containthe required information. At best, a
parking lot in a road-map database is depicted as a point in a two-dimensional map space. Alter-
natively, one can build the needed model of a particular parking lot by fitting a geometric model
to sensor measurements [Dolgov and Thrun, 2009, Kummerle etal., 2009]. This approach re-
quires an additional, labor-intensive step requiring thata robot be driven manually to collect
sensor measurements.

In this chapter we will instead analyze high-resolution aerial imagery to build our parking lot
map. The generated map will specify the location of parking spots and the geometry of drivable
regions. Our approach begins with parking spot detection because parking lot structure can be
easily determined if the image coordinates of the visible parking spots are identified. Section 5.1
describes how parking spots in a lot are detected using self-labeled examples.

Next, we explain our approach to recognizing drivable regions within a parking lot. These
regions can be determined by superimposing the detected parking spots on an estimated parking
lot boundary. Section 5.2 describes how the skeleton of drivable regions in a parking lot is
automatically extracted from an orthoimage.

In order to be useful, detected drivable regions must be represented in a concise form. Section
5.3 describes an algorithm that generates a graph structurerepresenting a parking lot’s drivable
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regions.
A parking spot detector might not be able to correctly classify a parking spot if it is of unusual

appearance. Unusual-looking parking spots are hard to obtain through our self-labeling process,
so they are obtained manually. The number of these manually-labeled examples is small, but their
differing appearance enables our parking spot classifier toimprove its performance, in terms of
false negative rate. Since manual labeling is expensive, the frequency of its usage must be kept at
a minimum. Section 5.4 explains how confidence classifiers incrementally utilize the manually-
labeled occurrences to handle intra-class variation, reducing the false negative rate. Uncertainty
sampling is exploited to minimize the use of manually-labeled data.

5.1 Parking Spot Detection

Figure 5.1 illustrates how we represent parking lots in thiswork. Our approach parameterizes
each individualparking spotby its height, width, orientation, and centroid in image coordinates.
We define aparking blockas a row of parking spots for which open-end directions are the same.
Each parking block is characterized by the distance betweenneighboring parking spots in the
block (i.e., “D1” in figure 5.1). Parking blocks are related to each other by two distance measures:
the distance between conjugate parking spots (i.e., “D2”) and the distance between blocks (i.e.,
“D3” in figure 5.1).

If the image coordinates of all visible parking spots are known, it would be trivial to estimate
parameters shown in the figure 5.1. However, in practice we must estimate these parameters
from an image. In this section, we detail our hierarchical approach to detecting parking spots.
We first presents the image processing steps involved in the low-level image analysis layer. This
layer accurately extracts a set of easily found parking spots from the image. We then explain
the high-level processing layer which extrapolates and interpolates the spots found by the low-
level analysis to hypothesize the locations of remaining parking spots. We then discuss our
self-supervised hypothesis filtering approach, which filters bad parking spot hypotheses.

5.1.1 Collecting Self-Labeled Parking Spot Examples

Geometrical and image characteristics differ between parking lots. Most overhead aerial parking
lot images contain a number of well-illuminated empty parking spots. Our low-level analysis
extracts these easy-to-find spots to be used by the high-level analysis as “seeds” for additional
hypothesis generation and by the final filtering stage as canonical self-labeled training exam-
ples to adapt the filter to this particular image. The low-level layer carries out multiple image
processing steps: line extraction, line clustering, and (parking) block prediction.

Straight lines are important to understanding the shape of aparking lot. We extract most
of the available straight lines using the approach proposedin [Kahn et al., 1990]. The approach
computes image derivatives to obtain intensity gradients at each pixel and quantizes the gradient
directions using predefined ranges. A connected component algorithm is then used to group
pixels assigned the same direction to form line supporting regions. The first principal eigenvector
of a line supporting region determines the direction of the line.
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Figure 5.1: A model of parking lot is illustrated.

Although a majority of the extracted lines may align with lane markings in the parking lot,
some of them come from other image regions such as road lanes or contours of adjacent build-
ings. Since we only need the lines aligned with the line-markings of the parking lot, it is nec-
essary to remove lines that do not belong to parking lot structure. To this end, we first group
the extracted lines into clusters based on their orientations and then remove lines that are either
too short or too long from each of the line clusters. The remaining lines are used for estimating
parameters of a parking block. A line cluster corresponds to(at least) one of the parking blocks.
1 We repeat this process (the removal of some of the extracted lines and estimation of parameters
of a parking block) with each line cluster.

For parameter estimation, we first estimate the nominal height of a parking spot by computing
the mode of lines in the selected cluster. We next build a Euclidean distance matrix across all
possible line pairs, quantize the distances and compute themode to obtain the nominal width of
parking spots within a lot. Finally, we quantize the orientation of lines and compute the mode
again to estimate the orientation of each parking spots’ open-end.

The completion of these image processing steps results in generating few, but highly accurate
initial estimates of the true parking spots. Figure 5.2 shows rectangular patches around the image
locations of detected parking spots. Although most of theseself-labeled parking spot templates
are in fact true parking spots, some of them are not since the line analysis algorithm is imperfect.
To filter out these incorrect self-supervised parking spot templates, we train a SVM with parking
spot examples, which are previously obtained, and conduct abinary classification.

To detect parking blocks, we project the centroids of all theinitial parking spots onto a
virtual line whose orientation is the mean of the initial parking spots’ orientation. This projection
returns the distances of centroids from the origin,ρi = ci,x cos(θi) + ci,y sin(θi), whereci,x and

1For most of the testing images used in this thesis, this is true because individual images have a large portion or
a whole part of a parking lot. However, when a non-parking lotimage is given, our parameter estimation based on
line detection might not work.
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Figure 5.2: An illustrative example image is shown. The low-level analysis produces a set of
self-labeled parking spots that are depicted by rectangular patches around their centroids. After
filtering out some of the patches (i.e., red patches), the remaining patches (i.e., green patches)
are used as positive example to train our hypothesis filters.

ci,y are image coordinates of a parking spot centroid andθi is the open-end orientation of the
ith initial parking spot. After projection, boundaries between parking blocks are clearly visible
and the distance between peer parking spots (i.e.D1 in the Figure 5.1) is used to determine
boundaries between parking blocks. We finish the parameter estimation process by computing
three distances between parking blocks (i.e.D1,D2, andD3 in the Figure 5.1).

5.1.2 High-Level Structure Analysis

The high-level layer is intended to detect all the visible parking spots in an image. It first hy-
pothesizes the parking spot locations based on the parameters estimated by the low-level layer. It
then filters these hypotheses by classifying the rectangular image patches around these hypothe-
ses using self-supervised classifiers.

Parking Spot Interpolation and Extrapolation

A parking spot hypothesis represents an image coordinate that indicates the centroid of a poten-
tial parking spot. A rectangular image patch around the hypothesis is evaluated to determine if
a local characteristic of the image is similar to that of a true parking spot. To cover the image
regions that possibly contain true parking spots, we use theimage coordinates of the centroids of
each self-supervised parking spot as the starting point foreach of the discovered parking blocks.
We then generate parking spot hypotheses by selecting imagelocations through three processes:
interpolation, extrapolation, and block prediction. The hypothesis generation step aims to intelli-
gently sample image regions, where the low-level did not findspots, The interpolation procedure
chooses image coordinates between two end parking spots in aparking block, whereas the extrap-
olation procedure extends hypotheses beyond the ends of a parking block. The estimated parking
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Figure 5.3: A set of the generated parking spot hypotheses isshown. Parking spot hypotheses
are rectangular image patches. Different rectangle colorsindicate results of different hypothesis
generation processes (red patches by the interpolation, cyan ones by extrapolation, and green
ones by the low-level analysis). In this example image, there are 114 true parking spots and 411
parking spot hypotheses.

spot width is used as the spatial interval between parking spot hypotheses. Block prediction aims
to discover any missing parking blocks.

Self-supervised Hypothesis Filtering

The hypothesis generation process producesn parking spot hypotheses represented by the corre-
sponding number of rectangular image patches,g1, ..., gn. Figure 5.3 shows a representative set
of generated parking spot hypotheses where individual parking spot hypotheses are represented
as rectangles. Each parking spot hypothesis is evaluated todetermine if it is a true parking spot.
We formulate this decision problem as binary classificationfor assigning a label,yi ∈ {−1,+1},
to a given patch vector,gi, wheregi is anm (= height × width)-dimensional column vector.
Because raw intensity values of a gray scale image patch might not be consistent even in the
same class, we use three different pieces of information to inject invariance into our parking spot
patch representation: intensity statistics (such as mean,variance, smoothness, skewness, unifor-
mity, and entropy), responses of the Radon transform, and local histograms of oriented gradients
(HOG) [Dalal and Triggs, 2005]. In the next section, we compare the performance of hypothesis
filters trained using these features versus using the raw pixel-intensity patched directly.

Our experiments compare four machine learning techniques as hypothesis filters for this bi-
nary classification task: Support Vector Machines (SVMs), Eigenspots, Markov Random Fields
(MRFs), and Bayesian Linear Regression (BLR).

Support Vector Machines SVMs are a common supervised learning algorithm for binary
classification. They seek to find the hyperplane that maximizes a notion of margin between each
class [Vapnik, 1995]. Linear SVMs are fast, have publicly available implementations, and handle
high-dimensional feature spaces well. This algorithm and its variants have been extensively used

81



asde factorobject detection algorithms.
EigenspotsSince processing high-dimensional image patches is computationally expensive,

we reduce the dimensionality of our vector space by using principal component analysis (PCA)
[Bishop, 2006] to find the principal subspace of the self-supervised parking spots obtained by the
low-level analysis; we retain the topk dimensions of the original vector space, wherek ≪ m. In
homage to Turk and Pentland [Turk and Pentland, 1991], we call the eigenvectors of the parking
spot space extracted by this method the “Eigenspots” of the space.

We use this new space in two ways. Our first technique simply measures the distance from a
candidate patch to the center of the space (i.e. the mean canonical parking spot,Ψ). Given a new
image patchg, we compute,T (g) = ‖D−1/2ET (g −Ψ)‖2 whereΨ = 1

number of positives

∑
i gi,

D is a diagonal matrix containing eigenvaluesλ1, ...λk, andE is a matrix whose columns are
the eigenvectors of the covariance matrix used in the PCA computation.T (g) is also known as
the Mahalanobis distance [Bishop, 2006] from the origin of the Eigenspot space. If this distance
is less than a threshold, we classify the new image patch as a parking spot. Our second usage
simply pushes the examples through the PCA transformation before training a SVM classifier
and learning a mixture of multivariate Gaussian distributions. Specifically, we transform each
example as̃g = D−1/2ET (g−Ψ).

Pairwise Markov Random Fields. Because SVMs and Eigenspots only consider the local
characteristics of an image patch to perform binary classification, their performances are limited
by the distribution of the training data. Thus it is useful toconsider neighboring image patches
around the patch of interest as well as looking at characteristics of the image patch. An image
patch is highly likely a parking spot when the majority of neighboring patches are parking spots,
even if the local characteristics of the patch would classify it otherwise.

To implement this idea, we use a pairwise Markov Random Fields (MRFs) [Li, 2000]. A
pairwise MRF,H, is an undirected graphical model that factorizes the underlying joint prob-
ability distributionP (Y,G) by a set of pairwise cliques.2 H is comprised of a set of nodes
and their edges where a node models a random variable and the edge between nodes represents
dependence between them.

In this work, there are two different types of nodes: observed and unobserved nodes. An
observed node corresponds to an image patch whereas an unobserved node is the true label of
the observed node. Although we observe the value of a node (Gk = gk), the true label of the
node (Yk = yk ∈ {−1,+1}) is not observed. The task is then to compute the most likely values
of Y (i.e. whether a hypothesis (gi) is a parking spot (yi = 1) or not) given the structure of the
undirected graph,H, and characteristics of image patches,G. The joint probability distribution
is factorized as

P (Y,G) =
1

Z

N∏

i=1

Φ(Gi, Yi)
∏

j∈N(i)

Ψ(Yi, Yj)

whereΦ(Gi, Yi) is a node potential,Ψ(Yi, Yj) is an edge potential,Z is the partition function
that ensures a probability density of this model,N(i) is the set of nodes in the neighborhood of
theith node. Our implementation of MRFs considers first-order neighbors.

2There may be bigger cliques in the graph, but the pairwise MRFonly consider pairwise cliques.
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Since we assume that candidate parking spots are generated from a mixture of multivariate
Gaussian distributions, we estimate the node potentials using a Gaussian Mixture model (GMM)
[Bishop, 2006]. Due to the possibility of two class labels, each node has two potentials: a po-
tential of being a parking spot,Φ(Gi, Yj=+1) and the potential of not being not a parking spot,
Φ(Gi, Yj=−1). The edge potential is computed by Potts model [Li, 2000].

Ψ(Yi, Yj) = ψ(Yi, Yj) = exp
{
−β(Yi − Yj)2

}

whereβ is a penalty factor for label disagreement between nodes. Inparticular, if β = 0,
edge potentials are identical regardless of the label disagreement and only node potentials are
used. On the contrary, ifβ = ∞, only the edge potentials are meaningful and the node po-
tentials are ignored. For inferencing the most likely labels of individual parking spot hypothe-
ses in a given aerial image, we use loopy belief propagation because it is easy to implement
[Yedidia et al., 2002].

Bayesian Linear RegressionOur self-supervised canonical parking spots are highly accu-
rate, but their number is often too few to generalize. To remedy this insufficient number of
positive examples, we use canonical parking spots previously obtained from other aerial images.
As will be shown in the experimental results, this approach helps our hypothesis filters improve
their performances. However, naively consuming all the available data might result in a solution
that is overfit. Thus to effectively utilize data, we employ Bayesian linear regression (BLR). BLR
provides a theoretical way of incorporating previously obtained parking spot templates as a prior
information for the optimal weight vector learning. The optimal weight vector,w∗, is obtained
by

p(w∗|G) ∝ argmax
w

p(G|w)p(w)

p(G|w) =

N∏

i=1

p((gi, yi)|w) ∝ exp

{
1

2σ2

∑

i

(yi −wTgi)
2

}

p(w) ∝ exp

{
−1
2
wΣ−1w + µTΣ−1w

}

wherep(G|w) is the likelihood function andp(w) is the prior distribution that is a zero-mean
Gaussian. The final form of BLR is a regularized linear regression where the parameters of the
resulting conditional Gaussian distribution ofw∗ given dataD is

Σw|D =
(
GGT + λI

)−1

µw|D =
(
GGT + (σ2λ)I

)−1
YG

whereλ is a regularizing term that controls contributions of the weight prior. We classify an
image patch as positive if the regression value is greater than the predefined threshold,

h(gi) = 2I [y(gi) ≥ δ]− 1, δ ∈ R.

wherey(gi) = gT
i w

∗ is the output of BLR andI [y(gi) ≥ δ] is an indicator function that returns
1 if y(gi) is greater thanδ, otherwise 0.
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Experimental Results

The knowledge of the image coordinates of parking spots facilitates estimation of parameters that
describe the structure of a parking lot. Thus the purpose of our experiments is to measure how
well our filtering methods perform in detecting all the visible parking spots in an aerial image.

We use twenty aerial images collected from theGoogle3 map service. There are on aver-
age 116 visible parking spots in each individual image in different shapes and under different
illumination conditions and a total of 2,324 parking spots across all aerial images.
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Self-supervised Parking Spots0.5512 0.0471 0.7008
Generated Hypotheses 0.3719 0.9382 0.2311

Table 5.1: Performance comparison of parking spot hypotheses generated by the low-level and
high-level analysis layers is measured by three different performance metrics such as “false neg-
ative,” “false positive,” and “accuracy.”

Table 5.1 shows the micro-averaged performance of the generated hypotheses by the low-
level and the high-level analysis. The accuracy is defined asa ratio of the number of correctly
classified parking spots to the total number of parking spotsused in evaluation. This micro-
averaged performance is computed by merging contingency tables across the twenty different
images and then using the merged table to compute performance measures. Since the self-
supervised examples are highly accurate (a low false positive rate (4.71%)), their parking spot
templates can be used as positive examples for training all filtering methods. An equal number
of negative examples are randomly generated.

In this work we are particularly concerned about false positives since, in the worst case, a
false positive output might make a robotic vehicle drive somewhere that the robot should not
drive. While generating few false positives, the self-supervised parking spot detector recover
only 43.55% of the true parking spots (1,012 out of 2,324 trueparking spots over 20 images.)
This high false negative rate4 may cause problems for autonomous driving: for example, an
autonomous robotic vehicle might not be able to park itself even if there are plenty of parking
spots available. By using information provided by the low-level analysis, the high-level hypoth-
esis generation analysis reduces the false negative rate from 55.12% to 37.19%. However, it
increases the false positive rate to 93.82% as well (i.e., itpredicts many spots which are not true
spots). The filtering stage then corrects this shift in falsepositive rate by removing erroneous
hypotheses. Importantly, as we will see in the results, thistechnique cannot recover from false
negatives in the hypothesis generation.

Table 5.2 compares the performance of self-trained filtering methods. The parking spot

3http://map.google.com
4A false negative is a parking-spot example that is classifiedas a non-parking-spot example.
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false negative false positive accuracy

SVMs 0.3880± 0.0012 (0.0188) 0.3136± 0.0106 (-0.0230) 0.6627± 0.0012 (0.0073)
Eigenspots 0.3074 (0.0090) 0.8004 (0.1085) 0.3013 (-0.0880)
SVMs w/ Eigenspots 0.3826± 0.0221 (-0.0116) 0.3227± 0.0201 (-0.0256) 0.6603± 0.0109 (0.0200)
MRFs w/ GMM 0.3929± 0.0301 (-0.0147) 0.3644± 0.0041 (-0.0098) 0.6280± 0.0074 (0.0101)
BLR 0.3270± 0.0009 (0.0184) 0.6611± 0.0129 (-0.1007) 0.4091± 0.0070 (0.1238)
SVMs 0.4271± 0.0350 (-0.0186) 0.0429± 0.0112 (-0.0086) 0.9189± 0.0012 (0.0095)
Eigenspots 0.2765 (0.0000) 0.3969 (0.0196) 0.6151 (-0.0176)
SVMs w/ Eigenspots 0.4320± 0.0111 (-0.1142) 0.0450± 0.0276 (-0.0143) 0.9165± 0.0012 (0.0242)
MRFs w/ GMM 0.3466± 0.0786 (-0.1846) 0.0798± 0.0145 (0.0110) 0.8937± 0.0243 (0.0085)
BLR 0.4136± 0.0313 (-0.0099) 0.2827± 0.0241 (0.0151) 0.7043± 0.0232 (-0.0121)
SVMs 0.3951± 0.0345 (0.0113) 0.0457± 0.0012 (-0.0105) 0.9213± 0.0111 (0.0085)
Eigenspots 0.2765 (0.0000) 0.3759 (0.0144) 0.6335 (-0.0130)
SVM w/ Eigenspots 0.3880± 0.0011 (-0.0567) 0.0486± 0.0012 (-0.0165) 0.9194± 0.0042 (0.0204)
MRFs w/ GMM 0.3342± 0.0188 (-0.1318) 0.0817± 0.0012 (0.0126) 0.8945± 0.0174 (0.0011)
BLR 0.3970± 0.0114 (-0.0105) 0.2712± 0.0005 (0.0098) 0.7169± 0.0011 (-0.0079)

Table 5.2: Results comparing different filtering methods. The numbers in parentheses indiciate
the performance difference between different parking spotpatch representations. Positive val-
ues in the accuracy indicate improvements of our feature representation over raw-pixel intensity
whereas negative values in false positive and negative columns indicate improvements. Overally,
the performance difference is negligible, but our feature representation method enables our fil-
tering algorithms to reduce the dimension (m) of parking spot patches’ from 240 to 93, resulting
in computationally more efficient solution (i.e., faster training with less memory).

hypotheses generated by the high-level layer were labeled by hand for evaluation. Hyper-
parameters of SVMs were determined by 10-fold cross validation.5 Eigenspots are computed
only using positive examples. For the MRF inference, we build a mesh from the estimated lay-
out of parking spot hypotheses where a node in the grid corresponds to an image patch. We use
positive and negative examples to obtain GMM and use the obtained GMM to estimate node
potentials. We observe the results by varyingβ in the range 0 to 10 with steps of size 2.6 We
empirically set 2 asβ for the MRFs, 5 asλ and .5 as a threshold for binary classification for the
BLR implementations.

In the table 5.2, there are three blocks of rows describing three different experimental scenar-
ios. In the first scenario, we trained the filtering methods using parking spot templates from the
image under analysis consisting of the self-supervised parking templates as positive examples
and randomly generated negative examples. In the second scenario, we trained these methods
using self-supervised examples from all other images not including the target image. Finally, in
the last scenario we trained the methods using self-supervised examples from all images. The
randomly generated negative examples were sampled while running each of these scenarios. Due
to this randomness in negative examples, we averaged our results over 5 separate runs for each
scenario. Each cell in the table displays the mean and standard deviation.

5For SVM implementation, we use libsvm which is publicly available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

6We fit our Gaussian Mixture model using the publicly available GMMBayes from
http://www.it.lut.fi/project/gmmbayes/
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In addition, we wanted to measure the usefulness of our feature representation over raw-
intensity parking spot patches. We re-ran the above experiments using the same parking patches
in raw-intensity values. The numbers in parentheses indicates the performance difference be-
tween different parking spot patch representations. Positive values in the accuracy indicate im-
provements of our feature representation over raw-intensity whereas negative values in false pos-
itive and false negative columns indicate improvements. Overall, the performance difference is
negligible, but our feature representation method enablesour algorithms to reduce the dimension
(m) of parking spot patches’ from 240 to 93, resulting in computationally more efficient solution
(i.e., faster training with less memory).

Ideally, the method with the lowest false positive and negative rates would be the best, but
in practice it is hard to achieve both of them simultaneously. For our autonomous driving ap-
plication, we prefer the method with the lowest false positive to one with lowest false negative
because a false positive is more risky than a false negative.In general, the performances of hy-
pothesis filters are improved as the amount of training data is increased. Linear SVMs performed
surprisingly well, particularly in terms of false positives and accuracy. Additionally, training an
SVM using the subspace generated by the Eigenspots analysisperforms only marginally better
than simply using the Eigenspot distance measure computation. This performance difference can
potentially be decreased by statistically fitting the threshold value used during distance measure
classification. As discussed earlier, MRFs utilize higher-level interactions to improve prediction
accuracy. However, estimating the GMM requires a substantial amount of data; the performance
degradation in the first row of the table indicates that the canonical parking spots extracted by
the low-level analysis alone were too few to accurately fit this model.

5.2 Recognizing Parking Lot Drivable Region

In this thesis,skeletonizationrefers to a process of extracting the skeleton of drivable regions
in a parking lot image. To accurately build a skeleton, we need to know the structure of a
parking lot. This is done by estimating boundaries of parking blocks that are obtained from
parking spot detection. In parallel, we segment a given aerial image into two regions: “parking
lot” and “non-parking lot” regions. Then the drivable regions in a parking lot are recovered
by superimposing the constructed structure over the segmented parking lot image. In this step,
we use self-supervised examples to find cues for parking lot for the boundary segmentation and
road-marking classification.

The following sections detail how self-supervised examples are used in segmenting the park-
ing lot boundary and in detecting road-markings.

5.2.1 Parking Lot Boundary Segmentation

The flood-fill algorithm is a technique to fill connected regions within an image with a constant
value. We assume that the magnitude of image gradient in drivable regions is similar to those of
parking spots. After computing magnitudes of the image gradient, we randomly select some of
the self-supervised parking spots and use them to obtain a threshold value. The centroids of those
selected parking spots are used as starting points. Despiteits simplicity, our modified flood-fill
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algorithm works reasonably well in that it detects all the visible parking lot regions in our test
images. Figure 5.4(a) shows a binary image of the segmented drivable region that is indicated in
white.

5.2.2 Road-Markings Detection

Road-markings are important parts of drivable regions and differentiated from other drivable
regions by their intensity and color histograms. To detect road-markings in a parking lot image,
we train a binary road-marking classifier that assigns a pixel as either a road-marking (+1) or
non-road-marking (−1). To obtain a training set, we utilize road-markings that are parts of the
self-supervised parking spot templates. A set of the randomly selected road-markings are used
to learn characteristics of road-marking in a particular parking lot. We use Bresenham’s line
algorithm to select pixels along the selected lines and learn a multivariate Gaussian distribution
of two different color spaces: Hue-Saturation-Intensity (HSI) and RGB, in which individual
pixels are represented by six-dimensional vectors,xi ∈ R6. 7

p(xi|Ck) =
1

(2π)d/2
1

|Σ|1/2 exp
{
−1
2
(xi − µk)

TΣ−1
k (xi − µk)

}

wherep(xi|Ck) is a conditional probability ofx givenCk, k ∈ {−1, 1}, d is the dimension of a
pixel vector,Σ = d× d is kth class’ covariance matrix, andµ = d× 1 is kth class’ mean vector.
We learn another Gaussian distribution for non-road-marking class. The road-marking detection
is done by investigating the likelihood ratio between two classes:

y(xi) =

{
1 if log

(
p(xi|C1)
p(xi|C−1)

)
> 0

−1 otherwise

A result of the road-marking classification is shown in Figure 5.4(b). Note that there are
a number of false positives along road lanes outside of the parking lot. These errors occur
because the magnitudes of road lane are similar to those of parking spots. However, since the
detection result is used in conjunction with other results (i.e., parking lot boundary segmentation
and parking spot detection) to build the skeleton of drivable regions, it is acceptable to include
some of the non-parking lot regions.

5.2.3 Drivable Region Identification

There are three inputs for identifying drivable regions: results of parking spot detection, results
of road-marking detection, and results of parking lot boundary segmentation. Although none of
these inputs is perfect, a combination of these imperfect inputs works reasonably because they
are complementary to each other. For example, our road-marking detection method produces
a number of false positives on road lanes (See Figure 5.4(a)), but during the drivable region
identification phase, these high false-positive regions are disregarded because they are located

7We utilized other color spaces such as Lab and YCbCr and foundthat a combination of HSI and RGB works
best.
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(a) The detected boundary of a parking lot. (b) The results of the road-marking detection.

(c) The structure of a parking lot is superim-
posed over parking lot boundary segmentation.
The red rectangles represents boundaries of
parking blocks whereas the green triangles are
detected parking spots.

(d) The final results of skeletonization. Safety
of traversability is color-scaled for visualiza-
tion purpose. Red corresponds to highest
safety of traversability whereas blue is lowest
safety of traversability.

Figure 5.4: The figure at bottom right shows the final result ofthe skeletonization and all other
figures are inputs for the skeletonization process.

outside of the parking lot based on the result of parking lot boundary segmentation result (See
Figure 5.4(b)).

Based on the best result of parking spot detection, the structure of parking lot is uncovered by
computing boundaries of parking blocks. This structure canroughly tell us what the geometric
shape of a parking lot looks like, but cannot tell where exactly an autonomous vehicle should
drive. To define drivable regions of a parking lot, the parking lot structure is superimposed
over the segmented parking block boundaries. Then drivableregions of a parking lot become
clearly visible to the vehicle. However, the binary image ofdrivable regions shown in 5.4(a)
still has some errors. Although these black speckles do not look significant in the image, they
may cause serious problems when used for autonomous drivingas they may be regarded as
obstacles. To remove these errors, we apply a morphologicaloperation (“close”) to smooth
the segmentation binary image. Since the smoothing can onlyremove small-size speckles, we
implement heuristics to remove islands in the drivable regions. These islands are in fact road-
markings (e.g., stop-lines, driving direction marking) onthe drivable region in the original image.
While these features represent important contextual information, we want to remove them from
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the description of the drivable regions. To remove these islands, we utilize the results of road-
marking detection. That is, for each of the islands in drivable regions, it can be removed if an
island does not belong to road-markings that are parts of parking blocks. Figure 5.4(c) shows the
binary image of drivable regions after removing speckles and islands. Finally to accurately depict
boundaries of drivable regions, we apply a modified “brushfire” algorithm that incrementally
propagates distance values from non-drivable regions (e.g., parking blocks). Figure 5.4(d) shows
the result of the skeletonization that depicts drivable regions in a parking lot image.

5.3 Lane-Graphs for Parking Lot Map Generation

This section details an algorithm that produces a lane-graph of drivable regions by analyzing a
single parking lot image. From the previous section, drivable regions in a parking lot are deter-
mined by a combination of results of parking spot detection and results of parking lot boundary
segmentation. A distance transform is used to reveal the skeleton of drivable regions’ geom-
etry. Our lane-graph generation algorithm iteratively searches for a lane-graph in the distance
transform map that concisely represents drivable regions.

5.3.1 Topological Map of Drivable Regions in Parking lot

In this thesis, a lane-graph of a parking lot refers to a topological representation of drivable re-
gions. Our lane-graph generation algorithm requires a map of non-drivable (or an obstacle map)
as an input. We built this map by using two aerial image analysis results from the previous sec-
tions. In particular, we developed several different orthoimage analysis algorithms to detect all
of the visible parking spots in a parking lot orthoimage. Ourself-labeling method analyzes the
spatial layout of extracted lines and automatically obtains some of the easy-to-detect true parking
spots. These self-labeled parking spot image patches are used for several purposes. First, the ge-
ometric properties of self-labeled examples, such as average length, width and distance between
them, are used to generate hypotheses that are predictions of the true parking spot locations.
Second, these self-labeled parking spot images are used to train a binary classifier to filter out
incorrect hypotheses. Lastly, the image characteristics of self-labeled examples are used to learn
a road-marking classifier and a parking lot boundary segmentor[Seo et al., 2009b]. The image
regions of the estimated parking lot boundary are overlapped with the detected parking spots to
produce the map of non-drivable regions in a parking lot orthoimage.

5.3.2 Connecting Maximal Circles for Discovering Topologyof Lane-
Graph

Algorithm 1 describes the procedure of our lane-graph generation in detail.
The algorithm requires an obstacle map of a parking lot image. This map of non-drivable

regions,Inon−drivable, is obtained by combining parking spot detection results and parking lot
boundary segmentation results. Figure 5.5(a) shows examples of parking spot detection results
and parking lot boundary segmentation results.
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Algorithm 1 Lane-graph generation algorithm.
Require: - I, a parking lot orthoimage,

- Inon−drivable, a binary image of non-drivable regions
Ensure: - G, a lane-graph that maximally covers drivable regions in theparking lot

1: G = {V,E},V = {φ},E = {φ}
2: Idt = generatedistancemap(Inon−drivable)
3: M = find local maxima(Idt), M = {m1, ..., m|M|}
4: M1 = prune local maxima(M), |M1| ≪ |M|
5: M1 = sort(M1),m1 > m2 >, ..., > m|M1|

6: M2 = definerendezvouspoint(M1), |M2| ≪ |M1|
7: repeat
8: mci = find maximalcircle(mi), mi ∈M1

9: Remove all of the local maxima within the circle,mci
10: Create a vertex,v ← mi,
11: V = {V ∪ v}
12: until all of the rendezvous points,M2, are visited
13: for all vi ∈ V do
14: Identify neighboring vertices,N(i), of vi
15: Create an edge,eij , if the jth neighboring vertex,vj ∈ N(i), (i 6= j), is visible from the

ithe vertex,vi.
16: E = {E ∪ e}
17: end for
18: Return G = {V,E}

A distance transform is often applied to a robot’s operational environment for identifying
obstacle-free regions. In our case, the function,generatedistancemap(Inon−drivable), imple-
ments the brush-fire algorithm to propagate distance valuesfrom non-drivable regions. Figure
5.5(b) depicts the resulting distance map where farthest points from local obstacles have high-
est values. Ridge points on the distance map, which are localmaxima of the map, are good
candidates for building a lane-graph because they are skeleton points of drivable regions.

To locate these local maxima, we use the discrete analog of derivative because the second
derivative of a distance map function is zero when the magnitude of the derivative is extremal.
To implement this idea, our search is carried out by investigating individual columns and rows in
the distance map,Idt. The distance map,Idt, is am-by-n real-valued matrix whereIdt(i, j) is the
distance transform value of theith row and thejth column. The function,find local maxima(Idt),
computes numerical derivatives of individual columns (androws) in the distance map using the
forward difference,dxi(k) = Idt(i, k + 1) − Idt(i, k), (dyj(k) = Idt(k + 1, j)− Idt(k, j)),
wherek = 1, ..., n− 1 8. This is the first derivative of the distance map that locatesthe changes
of distance values in a column (or a row). We then compute the second derivative: Compute
the forward difference again only for elements which all of the dxi(k) are greater than zero.
The value of the second derivative is zero when the distance value is a local extremum. A local

8For example, computing the changes of distance values at theith row,dxi(2) = Idt(i, 2)− Idt(i, 1), dxi(3) =
Idt(i, 3)− Idt(i, 2), ..., dxi(n− 1) = Idt(i, n)− Idt(i, n− 1)
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extremum is a maximum if the slope of the second derivatives at its neighbor points is changed
from negative to positive.9 These points correspond to peaks in a column (or row) of the distance
map. A cross-check of these points with other rows and diagonal elements in the matrix results in
local maxima. Because of the discrete nature of an image, this method does not always guarantee
to find all of the true extrema, but provide a sufficient numberof local maxima for our lane-graph
generation.

A simple connection of all of the detected local maxima mightproduce a lane-graph that has
an unnecessarily detailed structure due to an imperfect obstacle map. For example, there is a
small creek in the upper left corner of the figure 5.5(b) that depicts cracks of the obstacle map
and causes the distance transform to produce a lot of small-valued local maxima. Therefore we
should handpick some of the local maxima for constructing the topology of a lane-graph.

To facilitate the lane-graph building process, there are three initialization steps: elimination
of irrelevant local maxima; sorting of the selected maxima;and generation of rendezvous points.
The function,prune local maxima(M), remove any local maxima that the radius of its maximal
circle is smaller than the average width of the detected parking spots because their surrounding
regions are not wide enough for the navigation of a common-size vehicle. To define the maximal
circle of a local maximum, the initial radius of an inscribedcircle is set to the average width of
the detected parking spots. The radius is increased until the circle touches any of neighboring
obstacles. An inscribed circle is maximal if no other inscribed circle, without touching neigh-
boring obstacles, contains it properly. The idea of maximalcircle has been studied for shape
recognition and abstraction [Kimmel et al., 2003]. Figure 5.5(c) depicts a set of the selected lo-
cal maxima. A sorting of the selected local maxima in descending order of their distance map
values is necessary because the surrounding region of a local maximum with higher value con-
tains more important geometric structure in a parking lot and it should be considered before any
other local maxima with smaller values. Lastly we need a criterion to determine when to stop
our topology building step. One might think this iteration can be stopped when it connects all
of the selected local maxima. However because of incompleteboundary segmentation result, a
connection of all of the selected local maxima will result ina lane-graph that is inconsistent to the
actual shape of drivable regions. To properly stop the iteration while ensuring the consistency of
a resulting graph, we utilize the locations of some local maxima. We call them rendezvous points
because their locations must be visited for building a consistent lane-graph. A rendezvous point
is a local maximum point that represents more than one detected parking spot. Given the fact that
our parking spot detection algorithm recovers the open-endorientation of a parking spot, in the
function,definerendezvouspoint(M1), for each of the detected parking spots, we find the local
maximum point that is orthogonally closest to that parking spot. These local maxima points are
orthogonal projections of the detected parking spots onto the center-line of drivable regions.

Although the collection of rendezvous points does not always cover all of the area of the
drivable regions, the ordering of the selected local maximabased on their values ensures that the
topology visiting all of the rendezvous points completely aligns with the area of drivable regions.
Thus the topology of a lane-graph is consistent to the shape of drivable regions if it includes all

9One can also find a local minimum by looking at the point where its second derivative is zero and the slope
is changed from positive to negative. In practice, this extrema search can easily be done by convolving individual
columns (or rows) with a Laplacian operator,[1,−4, 1]T and then looking for the changes of slopes.
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of the rendezvous points. Figure 5.5(c) depicts the identified rendezvous points.
Once these initialization steps are completed, our algorithm examines each of the selected

local maxima by investigating its surrounding region. In particular, for each of local maxima,
the function,find maximalcircle(mi), defines a maximal circle centered at the local maxima
under investigation. Any local maxima within the maximal circle can be removed from further
consideration. These steps are repeated until all of the rendezvous points are visited. Figure
5.5(d) depicts the selected local maxima. In this example, there are 402 local maxima initially
identified and 55 of them are selected as vertices for possible lane-graphs.

The last step of our algorithm is to connect each of the identified vertices to neighboring
vertices if the vertex is visible from its neighbors. The visibility test checks whether a line
segment between two vertices passes through any obstacles and any neighboring vertices. In
particular, we use the Bresenham algorithm to examine imagecoordinates along the line linking
two vertices whether they are overlapped with any non-drivable regions.

5.3.3 Results of Lane-Graph Generation

Figure 5.6 shows some results of our lane-graph generation algorithm. Testing orthoimages are
downloaded from theGooglemap service.10

For each of the testing images, we first execute our parking spot detection and parking lot
boundary segmentation algorithms to produce the map of non-drivable regions in the image, and
then run our lane-graph generation algorithm.

For most test images, our algorithm works well in that the topologies of resulting lane-graphs
concisely represent drivable regions in parking lot images: edges align with the center lines of
road segments and vertices at intersection points connect merging road segments. Results shown
in figure 5.5(f), 5.6(a), 5.6(b), 5.6(c), and 5.6(d) are example images of successful cases. These
successful results rely on the map of non-drivable regions:highly accurate results of parking
spot detection and parking lot boundary segmentation. Any false positive result by either of
these tasks overestimates the true area of drivable regionsin a parking lot image. For example,
in the figure 5.6(a), the shadows of trees are segmented as non-drivable regions and the resulting
edge passing through that region is bended to avoid false non-drivable regions. A drivable region
with different visual appearances such as shadows and occlusions is one of the common causes
for erroneous segmentation and parking spot detection results. Because we developed a very
accurate parking spot detector that produces a very small false positive errors (less than 0.06%),
most of the overestimated drivable region is caused by parking lot boundary segmentation.

Figure 5.7 shows an example that our algorithm did not work well. The segmentation result
in the figure 5.7(a) produces the overestimated boundary, resulting in a lane-graph inconsistent to
the actual drivable regions. Owing to the relatively accurate parking spot detector, the right side
of drivable regions in the figure 5.7(b) is partially coveredby the resulting lane-graph. The lane-
graph is inconsistently generated primarily due to the simplicity of our segmentation algorithm
in that it connects two neighboring pixels if their image characteristics (i.e., magnitudes of image
gradients and color) are similar. Thus it fails to correctlysegment regions when the appearance
of pixels greatly vary.

10http://map.google.com
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By contrast, a false negative one underestimates the true area of drivable regions in a parking
lot image. For example, in the figure 5.6(c), the edge of the intersection at the bottom left
is passing through a part of the non-drivable regions because the parking block is completely
missed by our parking spot detection algorithm.
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(a) Two inputs for lane-graph generation:
Parking block polygons depicted in (red) rect-
angles and parking lot boundary segmentation
depicted as a binary image. Individual park-
ing spots are depicted (green) triangles at their
centroids. A blue line is a convex hull of all of
the detected parking spots.

(b) A distance map is computed from the ob-
stacle map of a parking lot. Red regions are
farthest ones from local obstacles depicted in
blue. Red “x” marks represent local maxima
in the distance map.

(c) Some of the local maxima are selected
as rendezvous points that are used to deter-
mine when the search of a lane-graph topology
stops. Green “*” marks rendezvous points.

(d) The radius of a circle centered on a local
maximum is increased to find its maximal cir-
cle. Any local maxima within the maximal cir-
cle will be considered redundant and removed.

(e) Connection of visible neighboring vertices
reveals the topology of a lane-graph.

(f) The output of our lane-graph generation al-
gorithm. A vertex is represented as an inter-
section if its edges are more than 2.

Figure 5.5: These figures show the sequence of our lane-graphgeneration algorithm.
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(a) The parking lot area is underestimated due
to the shadows of trees. As a result, some
edges of the resulting lane-graph do not align
with the center-lines of drivable regions. There
are only 37 (depicted as blue circle) out of 472
local maxima used as the vertices of the result-
ing lane-graph.

(b) Inaccurate segmentation results in extend-
ing the resulting lane-graph to the outside of
the parking lot. There are 31 out of 430 local
maxima used as vertices.

(c) Some of the parking spots at the bottom left
are missed by the parking spot detection. This
cause our algorithm to overestimate the actual
parking lot area. There are 43 out of 428 local
maxima used as vertices.

(d) There is an isolated vertex at the top left
because of inaccurate segmentation. There are
35 out of 298 local maxima used.

Figure 5.6: Four additional examples of lane-graph generation.
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(a) A fail case. An overestimated parking lot
area.

(b) Due to the inaccurately estimated parking
lot boundary, the resulting lane-graph fails to
capture the topology consistent to drivable re-
gions.

Figure 5.7: The topology of the resulting graph is sensitiveto the accuracy of non-drivable map.
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(a) Examples of parking spots with canonical
appearances.

(b) Examples of parking spot images with un-
usual appearances.
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canonical parking spot images
random negative images
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Centroid of canonical parking spot images

Centroid of self−labeled images

Centroid of unusual parking spot images

Centroid of random negative images

(c) A scatter plot of (canonical and unusual) parking spot images and randomly generated
negative images’ 2-dimensional representation. All (blue) squares represent a canonical
parking spots, (green) triangles represent negative images, and (red) circles represent un-
usual parking spots. There are 532 canonical parking spots,532 negative examples, and
365 unusual parking spots.

Figure 5.8: A two-dimensional representation of parking spots with varying appearances.

97



5.4 Incremental Learning for Handling Intra-Class Variati on

In automatically building a roadmap for autonomous drivingfrom orthoimagery, it is impor-
tant to reliably detect relevant objects in imagery becauseknowledge of objects’ (e.g., parking
spots) image coordinates facilitates the recognition of underlying structures (e.g., the geometric
structure of a parking lot). Learning a reliable object detector is challenging because appearance
of objects in aerial imagery varies primarily due to the illumination conditions and the object
properties.

There are two ways to deal with this intra-class variation problem. One is to collect a tremen-
dous amount of human-labeled orthoimage data that is assumed to cover all (or at least a large
portion of) of the possible appearances; train a detector byusing this data; and use the learned
detector as needed. However it is very difficult and expensive (maybe even impossible) to pre-
pare such data in advance. Another way to handle this appearance inconsistency problem is to
collect orthoimage data around target areas, learn a detector by using this small, but targeted
data and apply a detector on the fly. This is more practical andtractable. When a robotic vehi-
cle needs to build a roadmap for a route, it collects orthoimages along the route and use them
to learn an object detector. Although these local orthoimages might not be helpful to learn a
generic object detector, these images might be useful to learn a detector that works efficiently on
the target region because these images share common image characteristics with the target image
regions. However, this approach introduces another problem that requires a human operator to
continuously assign labels to newly collected images.

We have developed a self-supervised learning approach thatautomatically collects a small set
of training examples from the orthoimagery about the targetregion and learns the object model by
using these self-labeled examples. Figure 5.8 shows parking spot image examples with varying
appearances and their projections on a two-dimensional appearance space. Figure 5.8(a) shows
some of the canonical parking spot images that are represented as (blue) rectangles in the figure
5.8(c). To projectm-dimensional parking spot image into two-dimension, we first compute
the eigenvectors of an affinity matrix about parking spots and then use thek most significant
eigenvectors to represent the high-dimensional parking spot images in ak-dimensional space
[Weiss, 1999]. The affinity matrix,W, is computed by

Wi,j = exp

{
−d(gi − gj)

2σ2

}

whered(gi−gj) is a function that measures Euclidean distance between two parking spot images,
gi andgj ; andσ is the width of a kernel that controls the range of neighbors.

Suppose that a Cartesian coordinates in the figure 5.8(c) represents the appearance space,
which our parking spot detector needs to estimate for reliable parking spot detection. Because of
our imperfect self-labeler, the only available training data are parking spot images with canon-
ical appearances shown in 5.8(a) and parking spot images with unusual appearances shown in
5.8(b) are initially not obtained. Any learning algorithm might produce the solution for park-
ing spot classification around the centroid of the self-labeled examples in the figure 5.8(c) if it
is learned by using only canonical parking spots. This solution might be the optimal in that it
minimizes the error of canonical parking spot classification. However, this solution, which is
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biased to the centroid of canonical parking spots, might notbe the optimal when the whole ap-
pearance space is considered, resulting in a high error rateon unusual parking spot classification
[Seo et al., 2009a]. To remedy this problem, it is necessary to uniformly sample parking spots
from the appearance space. This uniform sampling can be doneby either manually or auto-
matically. Manual sampling requires human involvement whereas automatic sampling needs an
improvement of our self-labeler’s capability.

In this section, we describe our approach that manually samples some of the unusual parking
spots and use them to improve the performance of our parking spot detector. Since manual
labeling is expensive, we use an uncertainty sampling to minimize the use of the manually labeled
data. Additionally, we convert our discrete classifiers into probabilistic ones so that classifiers
can represent their confidences on classification decisions.

5.4.1 Uncertainty Sampling for Minimizing the Use of Manually Labeled
Data

To reliably detect parking spots with varying appearance, it would be best to prepare a set of
all possible parking spot images in advance and then learn anappearance model. Unfortunately,
it is impractical to collect training data with all of the possible appearances a priori. In our
case, because we are concerned with an analysis of orthoimagery along a specific route, it might
be unnecessary to learn a generic appearance model. Rather,it may be adequate to collect local
image data around the target region to learn a local appearance model. Although it is a reasonable
approach for our task, it is undesirable to ask a human operator to assign labels to image data
collected from the target region.

To minimize human intervention in automatic road map building, we developed a self-
labeling method that analyzes extracted straight lines andcollects small but high-quality training
parking spots. An analysis of the spatial relationships between the collected parking spots re-
sults in localizing undiscovered parking spots. Several machine learning methods are then trained
with the self-labeled examples to filter out erroneous parking spot hypotheses. The results are
promising in that there are negligible performance differences relative to a detector trained on
human-labeled examples [Seo et al., 2009a, Seo and Urmson, 2009b]. Our self-supervised ap-
proach fits well with autonomous vehicle applications whereit is necessary to generate a road
map for drivers on demand. However our self-labeling methodis not perfect. It works based
on a combination of computationally inexpensive low-levelimage procedures. We observed that
the limited types and amount of self-collected parking spotdata results in parking spot detectors
producing around 17% false negative rate, meaning that detectors missed 17% of parking spots
with abnormal appearances on average.

For example, the parking spot detector trained on self-labeled images (shown in the Figure
5.9(a) and images shown in the first row in the figure 5.10) fails to detect fishbone-shape parking
spots under shade in the Figure 5.9(b) (images at the third row in the Figure 5.10) and in faded
lane-markings in the Figure 5.9(c) (images at the last row inthe Figure 5.10).

Figure 5.10 shows examples of parking spots with usual and with unusual appearances. Re-
gardless of observation counts in aerial imagery, we consider the appearance of a parking spot as
unusualif
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(a) A parking lot image used for self-labeling.
Each of the (green) rectangles is a self-labeled
training parking spot example.

(b) A parking lot image where road-markings
are obsolete.

(c) A parking lot image contains parking spots
with unusual appearances: parking spots under
shade and parking spots with fish-bone shapes.

Figure 5.9: Three examples of the aerial parking lot images used in our study are shown. The
image at the left is one of the images that is used for self-labeling and the remaining two images
contain parking spots with abnormal appearances.

• Its geometric shape is not rectangular (e.g., fishbones and trapezoidal) or its dimensions
are larger than nominal (e.g., spots for the handicap and special-purpose vehicles such as
trailer). 11 (See the second row in the Figure 5.10)

• Its intensity is distorted by aerial image acquisition process or under different illumination
conditions (e.g., spots under shade or color aberration) (See the third row in the Figure
5.10)

• Its road-markings (or lane-markings) are faded. (See the last row in the Figure 5.10)
To improve classification performance sensitive to appearance variation, we consider two

different approaches: classification decisions with confidence and sampling to optimally use

11The magnitude of a parking spot is regarded nominal if it afford a normal size vehicle that its dimensions are
roughly assumed to be 3× 5 meters. When a nominal parking spot is projected on a publicly available orthoimage,
it occupies a subimage in 10× 17 pixels. The finest resolution of publicly available orthoimage is 1 feet per pixel.
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Figure 5.10: Parking spot image patches in different appearances are shown. Parking spots
shown above the (red) dashed line are canonical parking spots and all the remaining ones are
parking spots in unusual appearances. Particularly, unusual parking spots on the second row are
ones in unusual shapes such as in fishbone, for the handicapped, in trapezoidal. Ones at the third
row are in varying illumination conditions. Ones at the lastrow are with obsolete lane-markings.

human-labeled data. Instead of producing binary decisions, a confidence classifier produce pro-
duces a probability of a testing image being a parking spot. Sampling helps reduce human-
labeled data usage by selecting a small set of the most informative samples for re-training.

When dealing with unusual parking spots, a purely binary classification is undesirable be-
cause it does not fit well into common detection framework where there is always insufficient
data to estimate the true model. For example, when classifying a fishbone-shaped parking spot
with a class label, it is more reasonable for a classifier to assign a low-confidence than rejecting
as non-parking spot. The confidence represents a degree of discriminative ability based on a
detector’s current understanding about the appearance of parking spots. In other words, a low-
confidence assigned to a fish-bone shape parking spot is interpreted as lack of experience with
such type but the image has common features such as geometry (or maybe color histogram).
To implement parking spot classification with confidence, weconsider two methods: Ada.Boost
[Freund and Shapire, 1997] and probabilistic support vector machines (SVMs) [Platt, 2000].

Ada.BoostOur implementation of Ada.Boost is motivated by Viola and Jones’ approach for
face detection [Viola and Jones, 2004] where decision stumps of individual features are linearly
combined with their learned confidences to predict the classmembership of a test image. In our
case, a weak learner is a decision stump of one of the six partsin our feature representation. A
decision stump is a single-layer decision tree that computes the similarity between a parking spot
and the centroid of each of two classes (parking-spot and non-parking-spot) and assigns the label
of the closest centroid to the spot. For the similarity calculation, we use the histogram intersec-
tion [Swain and Ballard, 1991]. Given two histograms,hi andhj , the histogram intersection is
computed by

HI(hi,hj) =

∑K
k=1min(hi,k,hj,k)∑K

k=1 hj,k

wherehi is one of the six part in our feature representation (e.g., color histogram) andhj is the
centroid of thej class.

At the boosting iterationt, decision stumps, which are restricted to use only one part of
our feature vector, are trained. The decision stump with thelowest error is selected as thetth
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classifier,ht. Its confidenceαt is computed based on its error,ǫt.

αt =
1

2
ln

(
1− ǫt
ǫt

)

ǫt =
1

n

n∑

i=1

I(yi 6= ht(xi))

wheren is the number of test examples andI(·) is an indicator function that returns 1 if the
condition is satisfied. When classifying a new image, the Ada.Boost linearly combines theT
classifiers with respect to their confidences

H(x) = sign

(
T∑

t=1

αtht(x)

)

Probabilistic SVM The idea of converting a SVM’s discrete outputs into probabilistic ones
is to fit a logistic sigmoid to the outputs of a previously trained SVM [Platt, 2000].

p(yi = 1|xi) = σ(Ah(xi) +B)

wherexi is the ith image patch,h(xi) is the SVM’s output onxi, A andB are parameters of
fitting a logistic function.

Uncertainty Sampling Manual labeling can be very informative but expensive and thus the
amount needs to be minimized. Uncertainty sampling is a pool-based active learning framework
that helps a learner choose a set of informative samples for manual labeling, avoiding a request
of complete labeling of data in a pool [Lewis and Catlett, 1994]. In our case we have a pool
of human collected parking spot images of which appearancesare not similar to those of self-
labeled images. Uncertainty sampling is utilized to minimize the usage of these human-labeled
data. Since confidences associated with classification decisions reveal the classifier’s current
understanding of parking spot appearances, incorrect classified examples with low-confidence
are likely near at the decision boundary and very informative for relocating the current decision
boundary. In other words, because the classifier is uncertain about the class membership of
low-confident examples, performance can be improved if the classifier is retrained with those
examples.

5.4.2 Experimental Results

Several experiments were performed to understand how the performance of our parking spot
classifiers changes as human-labeled examples are incrementally added to the training data.

There are 1,429 images used in our experiments. Our self-labeler analyzes 8 different parking
lot orthoimages and automatically collects 532 parking spot images that 42 contain vehicles
and 32 are not actual parking spots. The same number of negative images are also collected
by randomly generating image patches around actual parkingspot patches. We also manually
collect 365 unusual parking spot images. Figure 5.10 shows example parking spot images with
normal (or canonical) and unusual appearances. Although parking spot images used in this thesis
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Figure 5.11: Experimental results of incremental retraining.

are scale- and rotation-free, their appearances vary greatly in intensity, geometric shape, color,
texture, and quality of road-markings.

We test the performance of two machine learning algorithms with different sampling meth-
ods in an incremental re-training setting. They are initially trained with a set of self-labeled
(canonical) parking spot images and their classification accuracies are measured with respect to
two different types of parking spots. During several retraining processes after the initial train-
ing, a small amount of human-labeled parking spot data is added to the training data. Since the
amount of the training data is fixed, the increase of unusual data in the training data decreases
the amount of normal data. The classifiers are then re-trained with a composite of normal and
unusual parking spot images.

This incremental re-training scenario is not uncommon in automatic building of road maps
for autonomous driving in that a classifier is initially trained with a small amount of the training
data (i.e., for our case, a small number of the self-labeled examples) and is retrained again when
the performance drops below the desired level due to examples with different appearances.

Figure 5.11 shows experimental results. Thex-axis represents the percentage of unusual
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parking spot images as a part of the training data and they-axis is classification accuracy that is
defined as a ratio of the number of correctly classified test examples to the total number of test
examples. There are two numbers at eachx: numbers of unusual parking spots in the training
data and the percentage of unusual parking spots used as a part of the training data. For example,
the values at the end of thex-axis (265 (73%)) represents that 73% of the unusual data (i.e.,
265 images) are used for the training data. Since we fix the total amount of training data at
851 images (80% of the self-labeled examples), the number ofcanonical images is 586 in this
iteration. The vertical (red) dashed line in the figure divides graphs into two parts: results of
incremental learning and results of batch learning. In a batch learning setting, all of the available
parking spot images are split into two different sets: training and test and a general learning
process is conducted.

There are two different classification methods to compare. Each of the classification methods
is combined with two different sampling methods and individual combinations are tested with re-
spect to two different parking spot image types, such as canonical and unusual, resulting in eight
different settings to compare. We repeated each experimentfive times to account for randomness
in the data-split and sampling process.

Although the initial performance of Ada.Boost is slightly better than that of SVM, their per-
formances are not acceptable. As the amount of unusual data is increased, their performances
increases drastically whereas the performance on canonical spot remains relatively stable. In
particular, the probabilistic SVM produces a consistent accuracy of over 90%. It is interesting
to observe that the changes in training data composite do notaffect performance on canonical
parking spot classification. When 28% of the training data (239 out of 851) are unusual parking
spots, SVM with uncertainty sampling outperforms all of theother approaches. Random sam-
pling did well on improving the performance up to the settingwhere 50% of unusual parking
spots are sampled.

We conducted another experiment that trained two classifiers with all of the available parking
spot images and compared their performances with those of incremental learning settings. The
performance of these batch learning approaches are depicted on the right side of the vertical
dashed line at the end of thex-axis. Table 5.3 shows experimental results around the vertical
dashed line in figure 5.11 and details a comparison of accuracies between incremental learning
and batch learning. The results shows clearly that uncertainty sampling helped improve the
performance of the probabilistic SVM with less data. For example, a combination of uncertainty
sampling and a probabilistic SVM produced 97.33% accuracy by using 65% of the manually
labeled data whereas the probabilistic SVM trained using 80% of the manually labeled data
produced 96.02% accuracy. Particularly when the probabilistic SVM with uncertainty sampling
utilized 58% of the manually labeled data (212), it used 82 fewer manually labeled examples to
achieve 6% (95.33% vs. 96.02%) less accurate result than that of the batch learner trained by
using 80% (294) of the manually labeled data.

In this section, we present a new method to handle intra-class variation that is caused by vary-
ing appearances of parking spots. Because our self-labeleris only able to automatically collect
easy-to-detect examples, a parking spot detector trained by using self-labeled examples is inca-
pable of correctly classifying parking spots with unusual appearances. To improve performance,
we manually collected unusual parking spots and use them as apart of training data. We use un-
certainty sampling to minimize the use of the manually labeled data because human labeling is
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expensive. Experimental results show that uncertainty sampling helps improve the performance
of a probabilistic SVM with less data than that of a batch learning approach.
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186 (50%) 212 (58%) 239 (65%) 265 (73%) 265 (73%) 294 (80%)

UncertaintyCanonical .9290 (±.0128) .9380 (±.0133) .9241 (±.0046) .9282 (±.0123) .9376 (±.0046) .9299 (±.0212)
Unusual .9333 (±.0058) .9533 (±.0115) .9733 (±.0153) .9867(±.0058) .9379 (±.0047) .9602 (±.0260)

RandomCanonical .9164 (±.0147) .9216 (±.0212) .9137 (±.0231) .9149 (±.0119) – –
Unusual .9400 (±.0200) .9400 (±.0200) .9500 (±.0100) .9567 (±.0058) – –

UncertaintyCanonical .8810 (±.0114) .8838 (±.0182) .8609 (±.0166) .8668 (±.0105) .8526 (±.0307) .8667 (±.0203)
Unusual .7253 (±.0637) .7596 (±.0070) .8061 (±.0182) .7940 (±.0160) .8044 (±.0078) .8034 (±.0345)

RandomCanonical .8989 (±.0087) .8856 (±.0082) .8575 (±.0051) .8692 (±.0106) – –
Unusual .7131 (±.0311) .6950 (±.0350) .7636 (±.0338) .7353 (±.0305) – –

Table 5.3: Comparison of accuracy between incremental learnings and batch learnings.
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5.5 Summary

This chapter details orthoimage analysis methods that automatically build parking-lot maps. In
a hierarchical scheme, our algorithms analyze structures and build skeletons representing driv-
able regions of a parking lot from orthoimage. For parking spot detection, a low-level analysis
layer extracts a set of easily-detected canonical parking spots and estimates parking blocks using
line detection and clustering techniques. A high-level analysis then extends those spots using
geometrical characteristics of typical parking lot structures to interpolate and extrapolate new
hypotheses and uses self-supervised machine learning techniques to filter out false positives in
the proposed hypotheses. Experiments show that training the classifiers using a self-supervised
set of canonical parking spots extracted by low-level analysis successfully adapts the filter stage
to the particular characteristics of the image under analysis. Self-supervised examples are also
effectively utilized to train a road-marking detector and aparking lot boundary segment. A com-
posite of this information is then used to estimate the structure of the parking lot.

A lane-graph is used to concisely represent the obtained information. Our lane-graph gener-
ation algorithm first produces a distance transform map fromthe boundaries of drivable regions
and the locations of parking spots, to reveal the skeletal ofdrivable regions; second, it identifies
the locations of peaks in the distance transform map; and finally it connects some of these peaks
to produce a lane-graph consistent with drivable regions.

Since our approach to building a parking lot map begins with parking spot detection, it is
important for the parking spot detector to robustly identify parking spots in a given image. Since
our detector is trained using self-labeled canonical parking spot images, it often fails to detect
parking spots of unusual appearance. To cope with such appearance variations in parking spot
images, we devised an uncertainty sampling method that incrementally improves our detector’s
capability of handling parking spot images with unusual appearances by using a small number of
manually labeled parking spot images. Empirically we foundthat an incremental update of the
parking spot model through uncertainty sampling increasedthe performance of our parking spot
detector.
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Chapter 6

Conclusions

In this thesis we demonstrated that we could provide lane-level detailed maps of highways and
parking lots by analyzing publicly available orthoimages.Instead of relying on human labeled
data, our algorithms acquire, through bootstrapping, task-relevant image features by extensively
exploiting prior information and readily-collectible low-level image features. For generating
highway maps, our algorithm, without human intervention, is capable of identifying image road
sub-regions; of detecting overpass boundaries; and of estimating legitimate driving directions,
by extensively analyzing what is already available such as lines and screenshot images of road-
vectors. These mid-level image features are used to generate hypotheses about true road-lanes
and guide the process of linking those hypotheses to extractthe boundaries of highway road-
lanes. For generating parking lot maps, our algorithm is able to acquire a set of parking spot
image examples in canonical appearances by analyzing linesderived from image intensity gra-
dient analysis. These self-obtained parking spot image examples are used to train a model of
parking spot appearance, which is in turn utilized to detectall of the visible parking spots ap-
pearing in the input images.

While we demonstrated the capability of our perspective image analysis algorithm, we also
utilized the scheme of extensively using prior information. Prior information about traffic sign
location was obtained from ground truth data and was used to improve the performance of our
sign detector – removing any false positive and negative sign detections.

Through testing our algorithms with real-world data, highway and parking lot orthoimages
and highway workzone videos, we showed a promising result. Our orthoimage analysis algo-
rithms produce lane-level detailed maps of highways and parking lots. Our perspective-image
analysis algorithm recognizes the bounds of workzones and most of the temporary changes.

6.1 Contributions

6.1.1 Orthoimage Analysis for Building Lane-level Roadmaps

Our first main contribution is to demonstrate the usefulnessof bootstrapping to achieve the goal
of a given computer vision task. We demonstrated that we can collect task-relevant and task-
specific information only from a given image by extensively utilizing prior information and inten-
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sively analyzing readily collectible low-level image features. For example, to generate highway
maps, our algorithms obtain task-specific mid-level image cues, such as results of road-region
segmentation, results of driving direction identification, and results of overpass detection, to
guide the process of linking hypotheses about true road-lanes. This enables us to extract the
boundaries of highway road-lanes. Similarly, to generate parking lot maps, our algorithms ac-
quire task-specific information, e.g., a set of parking spotimages, by analyzing extracted lines
and their spatial dependencies. These self-labeled examples are used to train a model of parking
spot appearances. This model is in turn used to detect all of the visible parking spots in a given
image. Knowledge of parking spot locations makes it easier for our algorithm to extract the
geometric structures of parking lots.

A System for Producing Lane-level Detail Highway Maps: We developed a computer vi-
sion system that can produce a lane-level detail highway mapby analyzing a given orthoimage.
For collecting task-specific image patterns, we developed algorithms that extensively analyze
prior information and readily collectible low-level imagefeatures and produce three task-specific
pieces of information: road-region segmentation, driving-direction estimation, and overpass de-
tection. We developed a hypothesis-linking function that connects hypotheses about true road-
lanes based on the geometric and photometric constraints.

A System for Producing Parking Lot Maps: We developed a computer vision system that
can produce a map of a parking lot by analyzing a given orthoimage without human interven-
tion. The resulting map contains locations of parking spotsand the geometry of drivable regions.
For detecting parking spots appearing on a given image, we developed an algorithm that auto-
matically acquires easily collectible parking spot imagesin canonical appearance and uses these
examples to learn a model of parking spot appearance. We developed a segmentation algorithm
that is capable of distinguishing parking lot image regionsfrom the background. We developed
an algorithm that extracts a lane-graph of a parking lot by analyzing a polygonal shape about the
spatial relations between detected parking spots and identified drivable regions.

Demonstration of Usefulness of Bootstrapping Image Processing: This thesis provides
a good use case of bootstrapping image processing that exploits the salient characteristic of a
given problem; it extensively analyzes a given image to obtain task-relevant and task-specific
information while minimizing human intervention.

6.1.2 Perspective Imagery Analysis for Assessing Roadway State

Our second main contribution is to demonstrate that our system can recognize 1) the bounds of
workzones and 2) temporary changes in driving conditions onhighways by analyzing perspective
images. In addition, to address potential sign recognitionerrors, we developed two algorithms.
The first, in minimizing the impact of false negative sign detections, propagates sign classifica-
tion confidences over time. The second, to reduce the number of false positive detections, utilizes
temporarily redundant appearances of the same signs.

A System for Workzone Sign Detection and Classification: We developed a computer vi-
sion system that analyzes perspective videos to detect workzone signs based on pixel-wise color
classification. The system then classifies the detected signimage regions into one of the pre-
defined workzone sign classes. We demonstrated a promising result through testing this system
with five real-world workzone videos.
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Development of Sign Recognition Error Handling Methods: We developed algorithms
that handle potential workzone sign recognition errors. Toaddress false negative detections, we
devised a confidence propagation algorithm that forwards sign classification confidences over
time to sustain, for a while, our belief in driving on a highway workzone. To minimize the
number of false positive detections, we developed an algorithm that makes use of temporal re-
dundancy of sign occurrences and their corresponding classification confidences, to augment the
current sign classification.

6.2 Future Work

In this thesis, we proposed a set of methods to produce maps ofhighways and parking lots and
update potential temporary changes on the resulting highway maps. We hope that others will
build on our ideas and other related work in the community to advance the study of the related
fields. We now propose several ideas for future work that would extend our findings.

Better Understanding of Hierarchical Approaches for Executing Computer Vision
Tasks We explicitly or implicitly employed a hierarchical bottom-up approach for analyzing
images. Such a hierarchical approach is prevalent in the computer vision community. However,
we have not yet investigated when and how such a system fails to accomplish a given task.

Annotating Global Coordinates to Resulting MapsThe resulting maps of highways and
parking lots are coordinate-free. To be useful, it is necessary to assign global coordinates, such
as Universal Transverse Mercator, to pixel coordinates. One possible way is to utilize pairs of
latitude and longitude from an Internet map service, such Google maps, to sparsely assign global
coordinates and later interpolate these sparse coordinates while driving in the regions appearing
on the map.

Parsing Images about In-City Roads to Complete a Route MapOur initial goal was to
generate a route map between two locations, e.g., a route from a person’s garage to a shopping
mall. To completely generate a map of such a route, it is necessary to parse images about in-city
roads, from ones house to a highway. We excluded this part from the thesis work because we
believe analyzing in-city images involves too much work of handling objects, such as vehicles,
pedestrians, occlusions by urban structures. The high frequency of these objects’ occurrences
may be irrelevant to the task of map generation but importantto detecting them properly for
other vision tasks.

Making Color-Based Sign Detection RobustAlthough we demonstrate the effectiveness of
utilizing color in detecting signs in perspective images, acolor-based sign detector may, in prac-
tice, occasionally fail (e.g., where a variation of the target color has not been observed during
the training phase). For future work, it would be useful to investigate an approach that com-
bines color information with shape information. Our color-based sign detector failed to detect
some workzone signs when their images were under- and over-exposed. In order to handle such
images, we would like to investigate a method that estimatesthe illumination response function
of our vision sensor. In addition, our tests that evaluated the acquisition of highway workzone
information may not be exhaustive. In this regard, in futurework, we would like to collect more
video data to include other events and to extensively evaluate our approach’s workzone recogni-
tion capability.
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Improving Performance of Part-Detectors In the course of this thesis work we developed
a couple of detectors that identify parts of objects of interest. These could include such things
as a lane-marking detector for identifying image cues of highway road-lanes, a parking spot de-
tector for parking lot structure analysis, and a workzone sign detector for recognizing workzone
bounds. The performance of each part-detector affects thatof the final output. For example, a
high false positive rate of lane-marking detector for highway map generation may be acceptable
in terms of adding noise to the image cues we need to handle. However, it might cause a serious
problem when our detector misses a majority of true lane-markings.

Incremental Learning for Handling Variations in Object App earancesIn general, vari-
ations in object appearances are one of the most challengingfactors in executing any computer
vision tasks. In our cases, we have observed variations in color and texture of highway sur-
face materials and lane-markings, parking spots’ geometric and image appearances, and color of
workzone signs. We have developed a learning method that utilizes a small number of manu-
ally labeled examples to incrementally update the appearance models of parking spots. It would
be useful if a generic learning method could handle such variations as new data about unusual
appearances arrive.
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Appendix A

Examples of Hand-Labeled Data

In Chapter 3, we use two types of hand-labeled data: ground truth annotations of test highway
orthoimages and highway orthoimages with lane-marking annotations.

The ground truth annotations of test highway orthoimages are created to evaluate the ac-
curacies of the resulting lane-level detailed highway maps. Figure A.1 shows a ground truth
annotation of an orthoimage. For each test orthoimage, we saved a screenshot of the geographic
region appearing on the Google maps service. We then manually delineated, with a distinctive
color, the boundaries of road-lanes appearing on each image. The width of the ground truth an-
notation is one pixel. The evaluation procesure is detailedin Section 3.3. The next section details
how to access these ground truth annotations.

Figure A.1: A ground truth annotation of a highway orthoimage. The blue lines are manually
drawn to indicate the boundaries of the road-lanes appearing on the image.

The other hand-labeled data are highway orthoimages with manual annotations of lane-
markings. Figure A.2 shows five examples of orthoimages withlane-marking annotations. We
have 22 such images and used them to train a lane-marking detector. The geographic regions
appearing on these images are inter-state highways near Pittsburgh. For marking some pixel
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locations, we drew blue lines for some of the true lane-marking image regions and red lines
for non lane-marking regions. For training a lane-marking detector, we investigated each of the
marked pixels to identify its image characteristics and to produce a feature vector. These features
were used to train a road-marking detector. The procedure oftraining a lane-marking detector is
detailed in Section 3.1.2.
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Figure A.2: Examples of highway orthoimages with lane-marking annotations. Some of the
lane-markings are manually marked to indicate positive (blue) and negative (red) examples of
lane-marking pixels.
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Appendix B

Test Orthoimages for Highway Map
Generation

We, as a reference, attach all 50 orthoimages used for testing our highway map generation algo-
rithms and provide the information about how to access to theground truth annotations.

Table B.1 and Table B.2 show lists of the GPS coordinates. Thecoordinates at each row de-
fine two corners of the rectangular viewpoint of a test image.Each of the ground truth annotation
is available as a Portable Network Graphic (PNG) image from the following:

http://www.frc.ri.cmu.edu/∼ywseo/projects/highway-map-
generation/groundtruth/route-376-?-20m-groundtruth.png

where the symbol ? at the end of the address should be replaced with the
image number, 1-50, to browse a ground truth image. For example, the
url,http://www.frc.ri.cmu.edu/∼ywseo/projects/highway-map-generation/groundtruth/route-
376-1-20m-groundtruth.png, will let you browse the ground truth annotation of the first test
image.
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Image Number Top Left Bottom Right Link to Ground truth

1 40.428891, -79.92953140.427861, -79.926311 link1

2 40.435677,-79.968965 40.434654,-79.965719 link2

3 40.429607, -79.93347440.428586,-79.930290 link3

4 40.429103,-79.938079 40.428023,-79.934909 link4

5 40.436802,-79.973425 40.435765,-79.970169 link5

6 40.436679,-79.977355 40.435632,-79.974107 link6

7 40.435085,-79.989229 40.434084,-79.986332 link7

8 40.434876,-79.992611 40.433694,-79.989213 link8

9 40.434899,-79.996892 40.433805,-79.993445 link9

10 40.435765,-79.999990 40.434672,-79.997136 link10

11 40.437228,-80.002645 40.436097,-79.999311 link11

12 40.439543,-80.008959 40.438525,-80.005775 link12

13 40.439986,-80.011507 40.438996,-80.008291 link13

14 40.438521,-80.015160 40.437555,-80.011982 link14

15 40.431534,-80.027043 40.430463,-80.024382 link15

16 40.430575,-80.029188 40.429550,-80.026031 link16

17 40.429107,-80.031176 40.428041,-80.028183 link17

18 40.427061,-80.032241 40.426020,-80.028899 link18

19 40.425491,-80.031970 40.424382,-80.028711 link19

20 40.423655,-80.031374 40.422600,-80.028185 link20

21 40.420954,-80.034207 40.419918,-80.030951 link21

22 40.420649,-80.037069 40.419643,-80.033751 link22

23 40.421117,-80.040548 40.420008,-80.037039 link23

24 40.421652,-80.045979 40.420641,-80.042822 link24

25 40.420529,-80.052226 40.419539,-80.049029 link25

Table B.1: This table lists two pairs of GPS coordinates of the first 25 test images numbered 1 to
25. These images are sampled on December, 2011.
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Image Number Top Left Bottom Right Link to Ground truth

26 40.419194, -80.05491640.418175, -80.051738 link26

27 40.411246,-80.072232 40.410251,-80.069030 link27

28 40.412271, -80.07799440.411258,-80.074751 link28

29 40.413139,-80.080499 40.412146,-80.077417 link29

30 40.413312,-80.086207 40.415265,-80.083117 link30

31 40.418834,-80.089889 40.417795,-80.086523 link31

32 40.421803,-80.096745 40.420770,-80.093446 link32

33 40.422840,-80.102000 40.421781,-80.098497 link33

34 40.423923,-80.108094 40.422873,-80.104827 link34

35 40.424758,-80.112661 40.423712,-80.109432 link35

36 40.425487,-80.121207 40.424413,-80.118037 link36

37 40.429977,-80.134417 40.428909,-80.131279 link37

38 40.430722,-80.137247 40.429685,-80.133964 link38

39 40.438521,-80.015160 40.437555,-80.011982 link39

40 40.445045,-80.165040 40.444089,-80.161856 link40

41 40.451644,-80.170388 40.450644,-80.167210 link41

42 40.449776,-80.169264 40.448792,-80.165917 link42

43 40.454828,-80.183230 40.453787,-80.179937 link43

44 40.460046,-80.191824 40.459056,-80.188517 link44

45 40.451903,-80.171362 40.450878,-80.168274 link45

46 40.453117,-80.177563 40.452101,-80.174392 link46

47 40.455470,-80.184979 40.454515,-80.181750 link47

48 40.466152,-80.197218 40.465178,-80.194007 link48

49 40.469366,-80.200233 40.468288,-80.196781 link49

50 40.465193,-80.196456 40.464056,-80.193109 link50

Table B.2: This table enumerates two pairs of GPS coordinates of the remaining 25 test images
numbered 26 to 50.
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(a) Test image 1.

(b) Test image 2.

(c) Test image 3.

(d) Test image 4.

Figure B.1: Test highway orthoimages 1-4.
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(a) Test image 5.

(b) Test image 6.

(c) Test image 7.

(d) Test image 8.

Figure B.2: Test highway orthoimages 5-8.
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(a) Test image 9.

(b) Test image 10.

(c) Test image 11.

(d) Test image 12.

Figure B.3: Test highway orthoimages 9-12.
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(a) Test image 13.

(b) Test image 14.

(c) Test image 15.

(d) Test image 16.

Figure B.4: Test highway orthoimages 13-16.
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(a) Test image 17.

(b) Test image 18.

(c) Test image 19.

(d) Test image 20.

Figure B.5: Test highway orthoimages 17-20.
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(a) Test image 21.

(b) Test image 22.

(c) Test image 23.

(d) Test image 24.

Figure B.6: Test highway orthoimages 21-24.
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(a) Test image 25.

(b) Test image 26.

(c) Test image 27.

(d) Test image 28.

Figure B.7: Test highway orthoimages 25-28.
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(a) Test image 29.

(b) Test image 30.

(c) Test image 31.

(d) Test image 32.

Figure B.8: Test highway orthoimages 29-32.
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(a) Test image 33.

(b) Test image 34.

(c) Test image 35.

(d) Test image 36.

Figure B.9: Test highway orthoimages 33-36.
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(a) Test image 37.

(b) Test image 38.

(c) Test image 39.

(d) Test image 40.

Figure B.10: Test highway orthoimages 37-40.
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(a) Test image 41.

(b) Test image 42.

(c) Test image 43.

(d) Test image 44.

Figure B.11: Test highway orthoimages 41-44.
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(a) Test image 45.

(b) Test image 46.

(c) Test image 47.

(d) Test image 48.

Figure B.12: Test highway orthoimages 45-48.

131



(a) Test image 49.

(b) Test image 50.

Figure B.13: Test highway orthoimages 49-50.
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Appendix C

Some Additional Results of Highway Map
Generation

In the previous chapter, we showed all 50 test images used forevaluating the accuracies of the
resulting highway maps. For each of the test images, we ran several algorithms to produce
intermediate results and refined these results to produce a lane-level detailed highway map. This
chapter shows some important results of our highway map generation. These results include three
outputs from mid-level bootstrapping tasks such as overpass detection results, driving-direction
estimation results, image road-region segmentation results, and the resulting lane-level highway
map.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.1: Test highway orthoimage 1.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.2: Test highway orthoimage 2.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.3: Test highway orthoimage 3.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.4: Test highway orthoimage 4.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.5: Test highway orthoimage 5.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.6: Test highway orthoimage 6.

139



(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.7: Test highway orthoimage 7.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.8: Test highway orthoimage 8.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.9: Test highway orthoimage 9.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.10: Test highway orthoimage 10.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.11: Test highway orthoimage 11.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.12: Test highway orthoimage 12.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.13: Test highway orthoimage 13.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.14: Test highway orthoimage 14.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.15: Test highway orthoimage 15.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.16: Test highway orthoimage 16.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.17: Test highway orthoimage 17.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.18: Test highway orthoimage 18.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.19: Test highway orthoimage 19.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.20: Test highway orthoimage 20.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.21: Test highway orthoimage 21.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.22: Test highway orthoimage 22.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.23: Test highway orthoimage 23.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.24: Test highway orthoimage 24.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.25: Test highway orthoimage 25.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.26: Test highway orthoimage 26.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.27: Test highway orthoimage 27.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.28: Test highway orthoimage 28.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.29: Test highway orthoimage 29.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.30: Test highway orthoimage 30.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.31: Test highway orthoimage 31.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.32: Test highway orthoimage 32.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.33: Test highway orthoimage 33.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.34: Test highway orthoimage 34.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.35: Test highway orthoimage 35.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.36: Test highway orthoimage 36.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.37: Test highway orthoimage 37.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.38: Test highway orthoimage 38.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.39: Test highway orthoimage 39.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.40: Test highway orthoimage 40.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.41: Test highway orthoimage 41.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.42: Test highway orthoimage 42.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.43: Test highway orthoimage 43.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.44: Test highway orthoimage 44.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.45: Test highway orthoimage 45.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.46: Test highway orthoimage 46.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.47: Test highway orthoimage 47.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.48: Test highway orthoimage 48.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.49: Test highway orthoimage 49.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

Figure C.50: Test highway orthoimage 50.
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