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Abstract

Maps are important for both human and robot navigation. Ga/eoute, driving-
assistance systems consult maps to guide human driversita#stinations. Simi-
larly, topological maps of a road network provide a robogbicle with information
about where it can drive and what driving behaviors it shauglel. By providing the
necessary information about the driving environment, nmeapgplify both manual
and autonomous driving.

The majority of existing cartographic databases are husithjg manual surveys
and operator interactions, to primarily assist human retiog. Hence, the reso-
lution of existing maps is insufficient for use in roboticspépations. Also, the
coverage of these maps fails to extend to places where oskegpplications require
detailed geometric information.

To augment the resolution and coverage of existing maysthbsis investigates
computer vision algorithms to automatically build lanedkdetailed maps of high-
ways and parking lots by analyzing publicly available cgréphic resources, such
as orthoimagery.

Our map-building methods recognize image patterns ancttsbjleat are tightly
coupled with the structure of the underlying road network pidentifying, without
human intervention, locally consistent image cues and®)rig them based on the
obtained local evidence and prior information about roadwv&Ve demonstrate the
accuracy of our bootstrapping approach in building lavelldetailed roadway maps
through experiments.

Due to expected abnormal events on highways such as roagdiergeometry
and traffic rules of highways that appear on maps can occabiochange. This
thesis also addresses the problem of updating the resultags with temporary
changes by analyzing perspective imagery acquired fronsiarvisensor installed
on a vehicle.

To robustly recognize highway work zones, our sign recagimiacuses on han-
dling variations of signs’ colors and shapes. Sign recoagmirrors, which are in-
evitable, can cause our system to misread temporary higkhayges. To handle
potential errors, our method utilizes the temporal redaogaf sign occurrences
and their corresponding classification decisions. We deitnate the effectiveness
and robustness of our approach highway workzone recogrittimugh testing with
video data recorded under various weather conditions.

Two major results of this thesis work are 1) algorithms thetlgze orthoimages
to produce lane-level detailed maps of highways and paikitsgand 2) on-vehicle
computer vision algorithms that are able to recognize teargachanges on high-
ways. Our maps can provide detailed information about arantadvance, to either
a human driver or a self-driving vehicle. While driving orghways, our roadway-
assessing algorithms enable the vehicle to update theirgsmiaps with temporary
changes to the route.
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Chapter 1

Introduction

Mundane and trivial, driving on roads is still an essentiadl @omplex task of modern life.
While driving, a person intentionally or subconsciouslyfpens various behaviors in parallel:
recognizing geometric shapes, perceiving the posted diildge roads, observing the driving of
other vehicles, steering the vehicle, preparing for thexpaeted, and so on.

We humans drive so effortlessly well because we have an ggo@pperception capability
that enables us to recognize road geometry, to understaffid tules by reading signs, and to
comprehend traffic situations based on what we perceive dad we have experienc@d]n
addition, we have our own model of driving that is customiedur behavior through count-
less repetition and which plays an important role in hamg§iomething unexpected. Given this
capacity, we can even drive flawlessly through entirelyitprderrain. Even so, cartographic
resources can aid us, facilitating our arrival at the destm. In particular, cartographic infor-
mation on hand-held devices can inform us of where we cam eiyy., take a left turn on Forbes
avenue) and of how we can drive (e.g., the speed limit is 3@sypkr hour). Such information
regarding roads is essential for driving, even in famili@cps; it enables us to focus our atten-
tion on the regions that require detailed analysis. For gt@nwhile driving downtown, where
pedestrians might jaywalk or heedlessly cross the road,ouEl@give our attention to such po-
tential hazards, instead of peering around for our destinabecause cartographic information
would keep us informed of the destination.

In a similar way, but even on a larger scale, cartographarmétion about road geometry and
traffic rules plays a critical role for a robotic vehicle pmrhing autonomous driving maneuvers.
The value of such information was demonstrated during thfg& ZDARPA Urban Challenﬁ.
Figure[1.1 shows a sample of the route map used during theeat@imp. As an example, the
road-map in Figure_1l1 enabled a robotic vehicle to antteip@coming intersections. In partic-
ular, it informed a vehicle that the speed limit of a certagraent of road was 30 miles per hour
and that the intersection (labeled “114135") was a yieltkfigection. As a result, vehicles should

1Our perception of the scene is based not only on the immesi@tsory readings, but on our long history of
visual experiences and interactions with the warld [Waaed Warren, 1968].

2The Urban Challenge (or the 2007 DARPA Urban Challenge) wabat car competition in which competitors
had to build vehicles capable of autonomously driving 6@mdmongst moving traffic in an urban environment. A
good overview of the Urban Challenge can be folind [Urmsoh €2@09]. Visit the following for more information
about the Urban Challenghttp://www.darpa.mil/grandchallenge/index.asp
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Intersection 14135,

- Type: Yield

- Entry waypoint: 131
- Exit waypoint: 83

Figure 1.1: A part of our route map shows the starting chutéhefUrban Challenge birds-
eye aerial image. The route map is an internal representafi@ robotic vehicle’s driving
environment. In its topological representation, theresaset of vertices (e.g., waypoints marked
by blue “x” and checkpoints marked by yellow “*”) and theirrmzections. An intersection is a
region that includes a subset of waypoints between entrgaibgdoints [Seo and Urmson, 2008].

have been prepared to execute a “yielding” behavior, waitim the road to clear before merg-
ing. Without this model, a vehicle would have difficulty umstanding if this was a controlled
intersection or a yield-type intersection.

Let us take another generic example of a self-driving vefgainaneuver to clearly under-
stand the role of cartographic information in robotic apglions. The control loop of Boss, the
winner of the Urban Challenge [Urmson et al., 2008, Urmsaal.eR009], can be abstracted into
three parts: First, behaviors are initialized based onava map data (e.ghandleintersection
or drive_.downlane). Second, on-board sensor outputs are analyzed to inteéhgeurround-
ings (e.g., estimating the current pose or perceivingcstaid dynamic obstacles in drivable
regions). Lastly, vehicle motions are executed to achievesat behavior goals (e.g., arriving at
a particular waypoint by driving on a road-lane). In thispgpooad-map information simplifies
autonomous driving in that it dictates when each drivingayedr should be implemented; allows
a robotic vehicle to focus its attention on drivable regitiveg require detailed analysis, neglect-
ing less important regions [Hebert, 1989],|]Seo and Urm&06A9a]; and provides guidelines on
the execution of micro-level motions to achieve intermtglgoals. Without prior knowledge of
road geometry and associated behaviors, achieving thiedigyerformance demonstrated during
the Urban Challenge would be even more difficult.

However, the level of detail and the coverage of existingocaaphic databases are far from
being useful for such robotic applications because theyanearily built for human consump-
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tions — for most of the cases, human drivers may not needléuetdetailed road-maps or park-
ing lot maps for their driving. In this thesis we describe approach to augment the contents
of existing cartographic databases. We increase existiad-maps’ level of detail by building
lane-level highway maps and extend the coverage of existnigpgraphic databases by build-
ing maps of parking lots. Instead of taking conventionalifigeout” map building approaches,
we analyze publicly available aerial-images to accompbishgoal of building lane-level detail
maps. In addition, we develop a bootstrapping image pratg$isat exploits the prior informa-
tion and analyzes readily-collectible image features tomatically harvest task-relevant and
task-specific information to accomplish our goals.

1.1 Motivation

In the robotics community, the most common way of building apms to drive through
the environment to collect sensor measurements and théeremanually or automati-
cally fit a model to the collected data [Hebert, 1989, Thotpad.e1991, Thrun et al., 2005,
[Montemerlo et al., 2008, Urmson et al., 2008]. Such a modedtinalescribes parts of the en-
vironment that are not moving and are traversable. Such maténal map simplifies au-
tonomous navigation by providing an a priori model of theviehg) environmentd [Hebert, 1989,
[Seo et al., 2009a].

An alternative way of building such maps is to use overheaagny. Building maps by
pre-driving is expensive while at the same time high-qualiterhead imagery is publicly avail-
abla the outdoor robot navigation community has begun takingngarest in building maps
using overhead imagery analysis. On the other side, the G&draphic Information Sys-
tem) researchers have long been working on building mapisyyrfar human consumption, by
analyzing overhead imagery. In the GIS community, the nitgjaf map-building techniques
demand human interactions and manual surveys of the regiadesr investigation. Thus build-
ing maps using overhead imagery analysis requires sukatafiort. In addition, because their
applications primarily target manual driving, they payslastention to certain details of resulting
maps and non-road drivable regions. For example, insteadpoésenting a road-segment as
a multiple of road-lanes, a polyline is considered to be ghdor guiding manual driving. A
point, instead of detailed geometry, is regarded as suititterepresent a parking lot.

In this thesis, we suggest that we should analyze publicylavle high-resolution orthoim-
agery to build maps of driving environments. Our first maintcidution is

Automatic Building of Lane-level Maps: We propose algorithms that automati-
cally generate lane-level maps of 1) inter-city highwayd ahparking lots by ana-
lyzing orthoimages.

Such lane-level detail highway maps with information imtthg traffic rules and accurate
coordinates can be prepared in advance to facilitate theerggof autonomous and manual high-
way driving. However, it is impossible to describe unexpdaiccurrences a priori, such as traffic

3Aerial imagery with approximately one foot resolution thghout the U.S. and its territories are publicly avail-
able from United States Geological Survey (USGHp://www.usgs.org
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accidents or road work. A self-driving vehicle must be ableffectively handle such events as
they can lead to temporary changes in driving conditiongiolild be disastrous if the vehicle’s
braking distance is longer than its sensing horizon wherrdhd lane a vehicle is driving on
shifts laterally due to a road work ahead, while the road-ldepicted on the map as following a
straight path. Similarly a human driver must be on alert e/diliving through such unexpected
events.

Hence our second main contribution is

Recognizing Temporary Changes in Driving Conditions on Higpways We pro-
pose algorithms that automatically recognize 1) the bousid&orkzones and 2)
temporary changes of driving conditions on highways by yziab perspective im-
ages.

1.2 Problem Statement

Most existing cartographic databases are primarily btiiflpugh manual surveys, to assist hu-
man navigation. The resolution of maps are insufficient fee tn robotics applications and
their coverage fails to reach any places where roboticscaijuins require detailed geometric
information. This thesis addresses the problem of aut@alftigenerating lane-level maps of
highways and parking lots by analyzing publicly availabithoimages.

Due to the expected aberrations that appear on highwayls,esumad-work, the geometry
and traffic rules of highways that appear on maps can occasiarthange. This thesis also ad-
dresses the problem of updating the resulting map with teamp@hanges of driving conditions
by analyzing perspective imagery acquired from a visiorsseimstalled on a ground vehicle.

1.3 Thesis Statement

This thesis demonstrates that:

Overheadandperspectivémagery can be combined to genersitd-meter accurate
cartographic information.

In particular, byoverheadmagery, we mean, publicly available orthoimage. An onthage
is an aerial image where terrain relief and camera tilt areoreed through a rectification process.
In this dissertation, the ground resolution of orthoimagelb centimeter per pixel.

By perspectivewe mean, an image that is acquired from a front-lookingovisensor in-
stalled on a ground vehicle. The scenes appearing on theeilma@gdistorted by perspective
transformation.

By sub-meter accurateve mean, the accuracy of the resulting maps’ geometry. dtigracy
will be defined and measured at a pixel-level that is readityverted into real-world distances
based on the ground resolution of an image. The accuracybeifurther analyzed by such
standard metrics as precision and recall.



1.4 Our Approach

To build maps by analyzing orthoimages, first we must be abfat photometric or geometric
patterns regarding the underlying true maps. Such patteaysinclude image intensity con-
trasts along road boundaries, color of road-markingsutexof road-surface image regions,
periodic rectangular shapes, and spatial relations ant@msgtpatterns. Being able to distinguish
the boundaries of road-lanes on highways may seem obvistiagut might for distinguishing
parking spots in parking lots. These seem obvious on acadfuhe background and its seem-
ingly typical and salient geometric patterns, such as fgrahe whitish lane-markings along
road-direction and rectangular road-markings grids. @itrconsidering the variations of their
salient appearances, it seems to be fairly straightforu@ektract the geometric structures of
road-lanes’ boundaries and parking lots first by detectwegée lane-markings and then by con-
necting them based on their regularity.

However, these assumptions are not always valid. Thesmssalnd regular patterns are not
always available for image processing; the actual valudar@-marking pixels vary based on
image acquisition conditions. The image acquisition ctods are determined by illumination
conditions, the intrinsic and extrinsic parameters of a@anand the line of the sight between
an acquisition-vehicle and the ground with respect to tlvation of the sun. Such variations
in object appearance are the most serious challenges iyear@lmagery to extract meaningful
patterns.

To effectively handle variation in an object’s photometsitd geometric appearance, one
could learn appearance models from data that consist ofamatches and their class assign-
ments. But how much data would be sufficient to produce outptlt accuracies which are
acceptable for a given task? The machine learning commbagybeen actively searching for a
generic answer to this question, the most commonly usedigolis the rule-of-thumb that the
desirable amount of data is determined by the complexithefdata and the problem. For our
cases, it would require a huge amount of data to train a laawing detector that produces a
reasonable performance on every image of the area of ihtdnekeed, the data should have at
least one sample for every possible appearance variatiamhwhhard to quantitatively measure.

In this thesis, instead of taking such a conventional way laiming patterns of interest
from input images, we exploit the prior information in a givenage to extract task-relevant
patterns. The prior information is the information that iikeady available when a problem is
formulated and is relevant in solving the problem. For exi@nwe utilize the regularities of
our target objects, such as the parallelism of road-lanadaries to extract road-width cues and
image sub-regions encompassed by evenly-spaced recamgad-markings to extract a set of
self-labeled parking spot examples. These task-relewatt#nns obtained locally from each test
image provide us with a sufficient amount of cues about tha lpeometry of the underlying true
highway road-lanes and true geometric structure of parkitsy Such local-specific patterns are
useful to our map building application. This thesis, afieraimarily concerns the extracting of
the true geometry of road-structures, which are partiddgeoved in a given image. Our approach
of harvesting task-relevant local patterns through beaygting will also reduce the frequency of
human intervention.

Our approach of exploiting prior information can be appliedhe task of workzone sign
detection as well. For the purpose of evaluating a sign tletecoutputs, it is necessary to
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annotate each video by drawing bounding boxes of true workaigns. By using such ground
truth annotations, we can define an image sub-region wittnichwworkzone signs are most
likely to appear by projecting all of the ground truth bourglboxes onto a Cartesian coordinate.
The prior knowledge of sign locations is used to facilitaszarch of sign candidate image blobs
and to filter out false positive sign detection outputs.

1.5 Document Outline

The rest of this document is organized as follows. ChdgtegRlights research work signifi-
cantly related to our thesis work, particularly in the areimap-building, aerial-imagery analy-
sis, and perspective image analysis. Chdgter 3 detailsppuoach to generate lane-level detail
maps from highway orthoimages. Chagdiér 4 explains our agbréo recognizing the bounds
of highway workzones and temporary changes to highwayspt€H& describes our approach
to produce maps of parking lots that specify the locationgasking spots and the geometry of
drivable regions. Finally, in Chaptelr 6, we conclude anduls future directions of work.



Chapter 2

Related Work

This thesis work focuses on developing computer visionrélyms for analyzing publicly avail-
able aerial images with application goal of building higlpwaaps and parking lot maps. There-
fore, it is useful to investigate available cartographmsogces and existing map building tech-
niques. Sectiof 21 investigates some of the work on bujldiad-map information used for
robotic vehicles to drive autonomously. Section| 2.2 susvieyr of the existing cartographic
resources in terms of the available data to populate rogulstnactures for robotic applications.
The robotics community has been developing map buildingtiegies for robot navigation while
the GIS community has primarily focused on maps for humarseoption. Sectioh 2.3 com-
pares our approach with existing raster and orthoimagesisah the GIS community. In section
[2.3.2, we investigate how overhead data such as orthoiypagdrdigital elevation maps are used
in the robotics community. While analyzing orthoimage, algrorithms employ techniques from
image processing, computer vision, and machine learniecti®(2.3.B investigates relevant re-
search works in computer vision and image processing. &mfi&st of the existing techniques in
computer vision and robotics community, this thesis wongleses a method that acquires task-
relevant patterns through bootstrapping to minimize humgervention. Sectioh 2.3.4 investi-
gates two machine learning approaches that minimize humatvement in machine learning
tasks.

To address temporary changes of driving conditions on thdtiaeg highway maps, a part of
this thesis work aims at developing algorithms for analgzerspective images with application
goal of recognizing temporary changes to a highway. Sefidmeviews computer vision and
machine learning techniques related to the task of recognizmporary changes of driving
conditions. In particular, sectién 2.4.1 surveys existaxhniques that detect and classify traffic
sign by analyzing perspective videos. Most of existing workhis field focuses primarily on
improving the accuracy of their sign recognitions whereas dvas error handling methods to
accurately infer the properties of temporary events. 8e@i4.2 reviews some of the object
recognition works that explicitly model how to handle reotigpn errors.
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2.1 Use of Cartographic Information for Robotic Applica-
tions

We are concerned with the usefulness of existing cartoggapblources for automatic roadmap
generation, thus we first review prior work in building roagtwiork information using onboard
sensor measurements and then investigate the usage oftinmeation by teams that participated
in the Urban Challenge.

2.1.1 Building Roadmaps for Robotic Applications

A common feature of these approaches is the use of onboarsorseneasurements,
which are collected by pre-driving a target area. In factldmg maps is practically its
own field: SLAM (simultaneous localization and mapping) @hiaddresses the problem
of building maps by analyzing sensor measurements while ksalizing robots’ poses
[Thrun et al., 2005],[Thrun and Montemerlo, 2005],[ Duftr&hyte and Bailey, 2006]. Be-
cause we are mainly investigating techniques for buildimganalyzing aerial images, maps
in urban environments, work related to SLAM and off-roadismwments will not be reviewed
here.

Hebert devises a roadmap building algorithm that analyaege measurements to generate
a roadmap [Hebert, 1989]. The algorithm estimates thessitatiof reflectance data around road
regions from manually labeled data; finds road regions ingesaby thresholding reflectance
values; and then fits two parallel lines onto the left andtregiges of the estimated road regions.
Road mapping is done by aligning two points in a sequencegexmitive images.

Thorpe and his colleagues [Thorpe et al., 1991] build a r@gafor their mail delivery ve-
hicle in a semi-automatic way. They drove a robotic vehiolannotate global coordinates of
landmarks in the robot’s operating environment by usingserdaange finder. The resulting
roadmap is primarily used for vehicle localization.

There are two similar work to ours in terms of building maps datonomous parking lot
driving. Dolgov and Thrun devise algorithms that build adaretwork graph of a parking lot
from sensor readings from their robotic vehidle [Dolgov dialun, 2009]. They first build a
grid map of static obstacles from range measurements andugeeMarkov Random Fields to
infer a topological graph that most likely fits the grid maphey define a series of potentials
to incorporate their prior on a road network. However, iadt®f directly minimizing these
potentials imposed on road segments, a generalized Vodiagiam is used as a subset of the
topological road network.

Kummerle and his colleagues build a multilevel (or multdegurface) map of a parking
building [Kummerle et al., 2009]. A multilevel-map is a 20dymap that each of cells maintains
a stack of patches. As individual patches in a cell corredpgordifferent height estimates, this
multilevel structure is used to represent drivable regam$vertical objects. To fill in individual
cells, they first formulate a mapping as a graph construgtimblem that a node represents
a vehicle pose and an edge represents a relative motion drefpases; and then find optimal
nodes based on constraints imposed on edges. A new nodetisumusly added to the graph
until a loop closure is found.




2.1.2 Use of Cartographic Information for the Urban Challenge

For the Urban Challenge, we also manually created modetsaafmetworks using a combination
of GPS survey and overhead imagery [Urmson et al., 2008foieing a GPS survey requires
manually driving a vehicle, which is capable of estimatitsgaose, through an environment that
an autonomous vehicle is intending to driving through. Téed surveyed GPS coordinates
should be aligned with the orthoimagery of the region to &ahnotating characteristics of the
route.

Manually built road networks were extensively utilized imet Urban Challenge
[Bacha et al., 2008, [ Bohrenetal., 2008, Miller et al., 2008 Montemerlo et al., 2008,
[Urmson et al., 2008]. Like many mobile robot navigation peofs, autonomous driving
in urban environments is in essence Way-;ﬂ)'rnnvigation from a starting location to a goal
location. Each waypoint in a road network is representedrasda with directed edges, coming
in and out from the node, connecting logically reachablepa@iyts. These edges are associated
with various navigation costs such as expected time to tsaydength and other information
related to autonomous driving [Ferguson et al., 2008a, Umes al., 2008]. Such a detailed
information about a road network was saved in a Route Net®efinition File (RNDF) format
defined by the DARPA for the Urban Challenge [DARPA, 2007].

Some example uses of road network information in the Urbaadl@fge include:

e Geometric Information about Drivable Regionkhis includes a representation of
the lane centers and widths and parking lot boundaries [®foatlo et al., 2008,
Urmson et al., 2008].

e Mission (Route) Planning The goal of mission (or route) planning is to choose
a globally optimal path between two geographic locationsigughe road network
[Bohren et al., 2008] Miller et al., 2008, Montemerlo et 2008, | Urmson et al., 2008].
The optimality of a path may be determined by considerinticsfa.g., speed limits) and
dynamic factors (e.g., temporary blockages).

e Macro-level Motion Planning (or behavioral systentbiven a path to a goal, a behav-
ioral system executes macro-level motions: lane-changiregedence-handling, on-road
driving, intersection-handling, yielding, and so on [Uonst al., 2008].

¢ Micro-level Motion Planning (or local motion plannerin on-road driving, the local mo-
tion planner generates a set of trajectories along the dimatef the road lane and choose

one of them that satisfies the optimality condition [Fergusbal., 2008b].

e Perception The road geometry provided from road network information uised
to localize vehicles’ locations with respect to road-bcanes [Leonard et al., 2008,
Urmson et al., 2008] and validate detected vehicles and otistacled [Bacha et al., 2008,

Miller et al., 2008 Urmson et al., 2008].

During the Urban Challenge, road network information wateesively used to provide
robotic vehicles with information about driving environme that is hard to acquire from on-
board sensor measurements. This information was cruciedlbtic vehicles to perform reliable
and intelligent maneuvers in an urban environment.

LA waypoint is a reference point that identifies a geograpidation.
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Following the successful demonstration of autonomousdrdgiin the Urban Challenge, re-
search efforts on the development of autonomous vehicleshayed. We review two such
studies as they relate to our thesis work. The relationsghip terms of augmenting a road-
vector database with additional information that can berlased for autonomous driving and of
utilizing the information of road networks.

Fairfield and Urmson develop a perception algorithm for ctétg traffic lights and mapping
their locations|[Fairfield and Urmson, 2011]. The work ainadbtaining precise geo-spatial
information about traffic lights to facilitate an autonorsalriving task of handling intersections
controlled by traffic lights. To obtain such informationethdrove a mapping vehicle, which is
capable of localizing its pose in sub-meter accuracy, ard ascamera to collect traffic light
images. Using the geometric information from a pair of Geaglaps and vehicle position in-
formation, and traffic sign image classification, they cleossme of the traffic light images to
estimate traffic light positions — more than two images assed with a traffic light are used to
estimate traffic light position through a linear triangidat This information is used to augment
a roadmap database with detailed information about tradficd, e.g., their positions and types.
This is then used to inform a self-driving vehicle of wheréoiok to infer precedence about when
to drive through traffic-light controlled intersections.

Frankel and his colleagues developed a system that aidsrhdrivars to safely change lanes
on highways|[Frankel et al., 2010]. To change lanes on a haghivis necessary to know pre-
cisely a vehicle’s position with respect to its road-landeif vehicle localized its pose with a
GPS-based Inertial Navigation System (INS) system thaogesally reports a sub-meter accu-
rate pose on average. But, this position estimate combirigdinaccurate RNDF would result
in the vehicle’s occasional crossing of the centerline. @oect this, they used local sensor
measurements that allowed them to identify boundariesad-tanes|[Montemerlo et al., 2008].
They also augmented the content of RNDF with other inforamatiecessary for performing
highway lane-changes, such as lane heading and the cuoitsgeometric relation to other
points of interest, e.g., the closest highway or waypoimthé same or other lanes. Additionally,
road network information was used to direct perception nexito pay attention to the region of
interest, e.g., clearance of lanes to merge and moving leshic interest to track.

These works differ from ours in that they need to manuallyala robot to collect range
measurements.

2.2 Existing Cartographic Resources

There are a number of cartographic resources publicly anthwrcially available. Although
they are developed and maintained primarily for human raiag, it is useful to review their
properties to contrast human navigation with autonomonéndy.

In this section, we review three publicly available resesrsuch as orthomaps (or orthopho-
tos) from the United States Geological Survey (USGS), thegBoMaps API, and the Topolog-
ically Integrated Geographic Encoding and Referencin@@R) from the U.S. Census Bureau.
We also review one commercially available resource: Naste@admap database.
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Figure 2.1: This orthoimage was obtained in 2006 and itsluésa is 10000x 10000 (1
feet/pixel), approximately covering 3,040 3,040 meters. The original size of this image is
286 Mega bytes.

2.2.1 USGS’ Orthomaps

U.S. Geological Survey (USGﬁ)is a US governmental organization that provides geological
services. Some of the commercial map service providers &®83J orthoimages or satellite
images. There is a significant amount of data publicly als&lguch as LIDAR (Light Detec-
tion And Ranging), digital raster graphic, non-rectifietkiie images, etc. Among these, this
section only reviews the orthophotos (aka orthomaps, ortagery).

An image without the effects of topography (or relief disigment) and camera tilt is called
an orthoimage (or orthophotE)and has a uniform scale. Since an orthophoto has a uniform
scale, it is possible to directly measure distance on itditeer maps. An orthophoto may also
serve as a base map onto which other map information can wioveWhen an orthomap is
combined with other digital products, such as digital nagtaphics (DRG) or digital elevation
models (DEM), the resulting image provides additional aisnformation for the extraction and
revision of base cartographic information. Figurg 2.1 shavnigh-resolution orthoimage of the
Carnegie Mellon University campus.

2.2.2 Google’s Maps API

Google Inc. provides registered users access, throughApelication Programming Interface
(API), to their cartographic databases. Since there is bigation about Google’s cartographic

4http://lwww.usgs.gov |
3This is because orthoimagery has orthographic prope#tisr those of the central perspective of the original
aerial photograph.
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(a) A part of the TIGER roadmap database. (b) A part of Navteq’'s roadmap database.

Figure 2.2: The “Waterfront” region near Pittsburgh is aégi by two roadmap databases.

database, it is not possible to review their structures taile

Google had been using roadmaps from a number of the map prayidcluding Tele AtIaE,
Europa technologi&USGSE NASA, GeoEy@, Sanbonﬂ DigitaIGIobeE etc, to provide users
with various interesting visualizations through their Mdn:’ls@ Since October 2009, Google
has switched to using their own maps. Tdbld 2.1 compares sbriee Google Maps API’'s
features with three other cartographic resources.

2.2.3 TIGER

The TIGER (Topologically Integrated Geographic Encodimgd aReferencing system or
TIGER/Line) is a cartographic database used by the U.S. SeBsareau to describe land at-
tributes such as roads, building, rivers, and |ddes.

TIGER data includes complete coverage of the United Stategaries and includes both
land attributes such as roads, buildings, rivers, and |akeswvell as areas such as counties,
census tracts, and census blocks.

Figure[2.2(d) shows a screen capture of a web-based mapeseravider that uses TIGER
as their basemap. As seen in this figure, TIGER has beenreadtifiz a base map that provides the
connectivity information about the region of interest.

Yhttp://www.teleatlas.com/index.htm

Shttp://www.europa.uk.com/

8http://Www.usgs.qov

“http://www.geoeye.com/CorpSite/

Ehttp://www.sanborn.com/

http://www.digitalglobe.com/

Chttp://code.google.com/apis/maps/documentation/refe rence.html

The TIGER is publicly available abttp://www.census.gov/geo/wwwitiger/ . For the technical
descriptions, refer to “TIGER/Line shapefiles: Technigatd@mentation.”
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2.2.4 Navteq’'s Roadmap Database

Navte@ is one of the major GIS data providers. Their roadmap databasms to be built based
on first hand observation of geographic features.

Due to a limited access to the latest version of Navteq'smaguldatabase, this section fo-
cuses a brief overview of Navteq's road map database staictu

In Navteq’'s roadmap database, there are three primarygragbic types: point, polygon,
and polyline. We describe these primary data types in datallreview their usages.

e Point Is used to represent points of interests (POIs) such asurestts, hotels, etc.

e Polygon Is used to represent a cartographic polygon, such as a takpark.

e Polyline Is used to represent a cartographic polyline, such as g vealilway, railroad,
etc.

1. Relative speed category: Specifies the relative speedaat
2. Number of lanes: Describes how many lanes this polylipeasents

3. Pavement: Describes the status of the pavement on a rgackse(e.g., paved, pri-
vate, frontage, bridge, etc.)

4. Accessibility: Describes the types of transportatidoveed on that segment (e.g.,
automobiles, buses, taxis, carpools, pedestrians, lesytlicks, through traffic, de-
liveries, emergency vehicles)

5. Driving direction: Explains the driving direction of aad segment.

Figure[2.2(l) shows screen captures of the “Waterfronforewhere the corresponding part
of the vectorized roadmap is depicted. This map shows the saea depicted in figufe 2.2(a),
but it contains more detailed information about the area.

We review four existing cartographic resources that aré pamarily for human consump-
tion. Because of their primary usage, these resources drdimatly applicable to use as
roadmaps for autonomous driving where precise informadioout road structures is required.
For example, to drive reliably and safely, a robotic vehideds to know the width, curvature,
and speed limit of a road segment that a human drive can edstdyn while driving on the road
segment. Reviewing their properties elucidates what kinciformation is necessary to build
roadmaps for autonomous driving; which of cartographioueses are useful as a complement
resource, and; how the proposed framework might be helpfblilding roadmaps for human
consumption. Table 2.1 compares the properties providedunycartographic resources in the
perspective of the information relevant to autonomousiaigiv

Phttp://www.navteg.com
3Refer to “NAVTECH SDAL version 1.7 Programmer’s Referent@’more information.
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Geocoding No Yes Yes Yes
Reverse geocoding No Yes Unknown| Unknown
Waypoints along path No Possible Yes Possible
Curvature No Possible Possible| Possible
Traffic rules encoding No No No Partial
Parking lot boundary| No No No No
Speed limit No No No Yes
Number of lanes No No No Partial
Pavement status No No No Yes
Road accessibility No No No Yes
Driving direction No Possible Unknown Yes
Availability Public | Public/Commercial Public | Commercial

Table 2.1: Comparison of properties provided by existingogaaphic databases. “Unknown”
means the feature is not known at the time of survey, “pameans “there is something under
the category, but not enough to implement the feature,” @odsible” means that “there is a way
to implement the idea.”

2.3 Overhead Data Analysis

2.3.1 Aerial Image Analysis in the GIS Community

The GIS community has a broad focus including building magshiuman consumption in
various applications and contexts; theoretical studiesoald network structure for devel-
oping faster algorithms for handling geospatial data [Egipsand Goodrich, 2008], extract-
ing connectivity of roads from raster mags [Chiang and Kook] 2008], localizing mov-
ing objects on known road networks [Wang and Zimmermann8R0&8nd many other top-
ics. Among these, research on raster map analysis shareadsiecommonality with our
approach in that it involves extracting interesting featufrom a raster images of maps
[Chen et al., 2006H, Chiang and Knoblock, 2008, Khotanzaidzank, 2003] and satellite im-
ages (e.g., IKONQOS, SPOT, et¢) [Geman and Jedynak, 19%6kfHamp, 2002]. Some of
this work use specialized aerial images, such as coloafiedr [Grote et al., 2007], panchro-
matic [Gruen and Li, 1995], multispectral imagés [Doucettal., 2004], [Zhang, 2006] to em-
phasize regions of interest by utilizing invisible partsetéctromagnetic radiation. Some also
make use of data in a different modality such as airborne tLizgtection and Ranging (LI-
DAR) measurements [Zhu and Mordohai, 2009, Qian et al., POd8urface elevation informa-
tion [Schpok, 20111] to analyze regions of interest fromedit point of views. Only some of
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these works will be reviewed here because their work is Bagmtly related to this thesis work
in terms of analyzing overhead data for extracting or updatoad network.

Aerial Imagery Analysis for Cartographic Databases Maintenance In
[Chiang and Knoblock, 2008], the authors present image ggsing algorithms that obtain
the location and orientation of road intersections frontarasnages and estimate the connectiv-
ity of the region under investigation. They utilize comtinas of morphology operators (e.g.,
thinning and thickening) and heuristics. The distincti@iviieen their raster image analysis
and ours lies in the characteristics of the images. Extrgatiata from rasterized maps has
different challenges than analyzing overhead aerial imafgg., aliasing and distorted color
vs. variations in illumination and appearance, occlusions

In orthophoto analysis, Chen and his colleagues proposenfiation algorithm that in-
tegrates two different geospatial data sets such as veetbrioad maps and orthoimages
[Chen et al., 2006a]. Their approach is similar to ours it thay use a classification algorithm
(a naive Bayes classifier) to estimate boundaries of roadg@nerate and filter out hypotheses
on interesting points for conflation. But their filtering igiged by information in vectorized road
maps whereas ours is based on learning distributions bifecin imagery.

A common problem is to extract geospatial features from aheimagery and use
them to refine and update records in geospatial databasdsdBials and Zhang, 2005,
fflavie Auclair Fortier et al., 2000]. Irj [flavie Auclair Foeti et al., 2000] the authors present an
aerial image processing algorithm that utilizes up-teedadrial images to modify the content
of road maps. Through multiple steps of image processingt afsline junction candidates
is identified. The database of vectorized roadmaps is thed tesfilter out line junctions for
which image coordinates are distant from those of actuarsections. The remaining line
junctions are used to match the closest intersections andsad to adjust the coordinates of
the matched intersections. Geman and Jedynak use a maehmép technique for tracking
roads in satellite images. A decision tree is used to testiohahl pixels’ image features, such
as the presence of arcs and local filter responses, to deemvfiether they belong to roads
[Geman and Jedynak, 1996]. Their algorithms are intenddxtta part of an interactive aerial
image analysis system where an operator provides the sysi#gnstarting points and direc-
tions for tracking road networks. Similarly, Hu and his ealfjues developed a heuristic-based
road tracking algorithm for extracting road networks appepon low-resolution aerial images
[Hu et al., 2007]. They first approximated the local geomefmpads centered at sampled points
by investigating intensity changes along line segmentsimgmut from the points. They con-
nected some of these local road polygons based on heurgstitsefined the resulting road
network based on statistics of ratios of areas to perimeters

Overhead Data AnalysisWe detect interesting road structures, such as intersesctiad
overpasses, for identifying potentially complex road getryn For example, knowing the bound-
ary of an overpass is useful in correctly extracting the llawes of road-lanes around it. We
approximate the geometry of the underlying road networkdiggia screenshot of a road-vector.
For depicting 3D structures in (birds-eye view) aerial ims,gSchpok proposed an overpass de-
tection method using road-vector databases with surfaseabn information|[Schpok, 20[L1].
They first searched for a list of potential overpass locatioy investigating the surface eleva-
tions of locations sampled along a road-vector. These agsrpandidate locations are grouped
together based on the similarity of their geometric prapsryti.e., road span. To define the
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boundaries of overpasses, they expanded outgoing edgestothister to include neighboring
road spans until terminating conditions were satisfied. ¥erpass is then finally reconstructed
using road spans and surface elevation information.

Some work in the GIS community use 3-dimensional laser seaasarements to detect road-
structures and to extract a road network. Qian and his @pliesused 3D point clouds to detect
the boundaries of an overpass [Qian et al., 2010]. Theyaelie3D lidar scans by driving on
highways and analyzed point clouds based on heuristic a€ddsidentifying and grouping
“lumps” to detect overpasses. We use road-vector sketabgistdd on map images to detect
overpasses and analyze extracted lines to identify the daovies of the detected overpasses.
This process is what distinguishes ours from these appesacsing 3D information.

Zhu and Mordohai proposed a road network extraction algaritrom aerial LIDAR range
measurements [Zhu and Mordohai, 2009]. Similar to our aggrdfor generating lane-level
detail highway maps, they formulated a road network exwacproblem using a min-cover
scheme. Individual range scans were grouped together loasttdlee-dimensional information
and some of the scan groups are classified as ground planed bashe groups’ geometric
shapes. All the scan points on the ground planes were pedjexito a 2D plane to produce
an image of LIDAR intensity values. They used responses t@#rjzed rectangular filters and
textures to extract features of the boundaries and intenbroads. These boundary and road
features were used to generate road hypotheses. The tikdblof these being true road regions
are computed based on convolution. In spite of the diffeogathead data to analyze and meth-
ods to generate hypotheses about true road regions, thd ofdteir road hypothesis bears a
strong resemblance to ours in that it is represented as &rmolg which each edge (or control
point) is associated with geometric properties such aswvedtl direction. They used a minimum
cover idea to search for a set of road hypotheses that mdyiowlers a likelihood map while
minimizing the cost of generating hypotheses. Similar toagproach, they found a greedy solu-
tion, which look for a locally optimal solution, to approxate the optimal solution of a NP-hard
minimum cover problem.

Significant research has been done extracting road netwrrdtisres from overhead aerial
imagery. However, to the best of our knowledge, our work eésftlst attempt to, by analyzing
publicly available aerial-images, build roadmaps suffitfer autonomous driving.

2.3.2 Overhead Data Analysis in Robotics

Overhead imagery data can be utilized to provide prior miation about environments for out-
door robot navigation. Despite being potentially out ofedaterial image analysis can provide an
important structural overview of operational environngetfitat can enable robots to plan glob-
ally to achieve their goals. In combination with other ontabgensors such as vision sensors and
range finders, overhead imagery offers an avenue for gemgetomplete view of an operating
environment.

Schematic Overview of Operating EnvironmentsSilver and his colleagues utilize over-
head data to produce cost maps for long-range traversalef i al., 2006]. They fuse multiple
overhead data sources to compute relative measures ofityoisi in regions of interest. Simi-
larly, Sofman and his colleagues use overhead aerial intaggnerate long-range traversability
maps [Sofman et al., 2006]. They use local range estimatierself-labeled examples to learn
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relations between the characteristics of local terrain@ncesponding regions in aerial images.
These learned relations are used to map aerial images taddmigg estimates of traversability
over areas that the robot may explore. Vandapel and hisagplis use aerial LIDAR survey
data to obtain a long-distance traversability map for anrenment [Vandapel et al., 2003]. A
manned helicopter is flown over regions of interest multtptees to collect high point density
data (4 to 10 points per square meters). Raw range measuseanerdivided into 1m1m cells
and then categorized into either ground or vegetation. Téasaclassified as ground are used to
populate a traversability map.

Persson and his colleagues use aerial images to disambilpeal sensor measurements
[Persson et al., 2008]. An occupancy grid-like map is bwihg range measurements. Edges
extracted from geo-referenced aerial images of a regionsed to determine the class of cells
(building or not). This matching process extends the raoiyopic local perception.

Global Localization Overhead orthoimages are also used to solve the globaidatiah
problem [Dogruer et al., 2008]. Dogruer and his colleaguep@se a localization algorithm that
utilizes Monte Carlo Localization to identify the locatioha mobile robot in an urban environ-
ment. This algorithm is essentially about matching featdrem local sensor measurements to
features extracted from overhead imagery (e.g., buildilegscted in laser scans and identified in
the overhead images). Overhead images are segmentedizefdri@to several regions: build-
ing, vegetation, ground, and (asphalt) road. Because ti# r®always driving on roads in their
experimental settings, if the world model is accurate,(ifédhe segmentation result accurately
depicts where roads are), the distribution of particlesuaitize robot location converges to the
correct location over time.

Similarly, Carle and Barfoot utilized overhead data for agaange localization of their
vehicle [Carle and Barfoot, 20110]. Local sensor measurésngare used to match features ap-
pearing on a 3D orbital elevation map through feature ctlastens. Particularly they used, for
the feature matching, multiple-steps of hypothesis refem@nand, for the pose refinement, a
combination of RANSAC (RANdom SAmple Consensus)[Fischled Bolles, 1981] and parts
of SLAM techniques.

Urban scenes appearing on aerial imagery have also beeedtib localize the position
of an unmanned aerial vehicle (UAVY) [Soleimani et al., 201Dhe authors claimed that a geo-
metric structure of a road network is useful for search-ggstue robotic applications because
road structures are disaster invariant. A geometric siraatf a road network was obtained by
detecting roads appearing on aerial images and then wassegyied as a grid map, in which the
value of each grid cell was a real value of being occupied bysaanging between 0 and 1. This
representation is used to match simulated local sensorureasnts of a UAV.

World Modeling Scrapper and his colleagues utilize aerial images to bwidrdd model
of a robot’s operating environment [Scrapper et al., 2008).provide prior information about
an operating environment, they manually annotate topducagata and features (e.g., woods,
rivers, roads) by aerial survey and manual driving of theotollJsing the current pose of the
robot (measured by a combination of GPS and IMU), the robatckes for the list of objects
possibly observed from its current location and interpiestdocal sensor (e.g., color camera,
an imaging ladar) measurements by its confidence about thsurements of its surroundings.
Such a world model database can simplify autonomous naoigat regions covered by the
database. The approach of building a world model is simdahat of [Urmson et al., 2008].
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In this work, the road world model is built by a combinationagfrial imagery and GPS survey.
The GPS survey is carried out by manually driving a roboticiele on the region of interest.
A set of the surveyed GPS coordinates is associated withlasrages of the corresponding
area. However, as we pointed out earlier, although such &wuwodel simplifies autonomous
navigation in regions covered by the database, manuallgibgithe model is labor-intensive
and error-prone.

Overhead imagery has been used as a complement to onboaat data to guide outdoor
robot navigation. Regions in an overhead image are labededdon corresponding measure-
ments from onboard sensors. To the best of our knowledgepnoiwoverhead imagery analysis
attempts to utilize patterns in images as training examigllesxtracting road structures in the
image. Because low-level image patterns share common igtagecteristics of local objects,
they are useful to detect road structures in the images.idnebard, this thesis work is the first
attempt to automatically build road maps by recovering istagtctures while minimizing the use
of manually-labeled data.

2.3.3 Overhead Imagery Analysis in Computer Vision

In this section, we will consider aerial image analysis fojeat boundary detection, image road
cue tracking and spatial structure recognition. We wilhtiresrestigate relevant object detection,
structure recovery, and optimization methods in computaon.

Object Boundary Detection Object boundary detection has been considered as one
of the most important problems in the computer vision comityufMartin et al., 2004,
Zheng et al., 2007]. This is because knowing the boundaresbfects appearing in im-
ages helps researchers meet the objectives of several termpsion tasks, such as ob-
ject recognition [[Dollar et al., 2006, Zheng et al., 2007H aegmentation [Malik et al., 2001,
[Martin et al., 2004], to name only two. A great deal of highalijty research work on this field
has been published. However, we review that which is sigmtig related to this thesis work.
Martin and his colleagues proposed a learning-based natoject boundary detection method
[Martin et al., 2004]. Using image data where object bouisgaare manually annotated, they
trained models of boundaries’ image characteristics, agahiscontinuities in brightness, as well
as the texture and color values of neighboring pixels. Instudy, the boundaries of road-lanes
are, at least by definition, clearly specified as lane-maskiBut the variations of their appear-
ances are high. We learned a classifier to tackle such \arg@atSimilar to the learning method in
[Martin et al., 2004], to learn contrast between lane-nraghixels and neighboring background
pixels, we use a set of features, such as Local Binary P4tt&fR) [Ojala et al., 2002] and some
other textural statistics. Their seminal work also proditlee computer vision community with
a bench-mark testbed. We used their probabilistic bounalaifyuts to compare the performance
of our road-lane boundary detection. Dollar and his collesgapproach to detect object bound-
aries is similar to ours and methods described in [Martid.eP@04] to identify objects’ bound-
aries, they trained a classifier, probabilistic boostimeg tfrom manually labeled image data to
identify objects’ boundaries$ [Dollar et al., 2006]. Whatsstheirs apart is how they represented
their features. They used a set of generic features, suclhaswhvelets and image gradients at
multiple scales, to represent a patch around a boundary; piseead of just using a pixel. Their
feature representations are in fact effective for idemdyobjects and for even picking up roads
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appearing on low-resolution aerial images. Similar to Boéind his colleagues, Mnih and Hin-
ton used a set of generic features to train a road-detediog Restricted Boltzmann Machines
(RBMs). This detector was to learn a binary model that colddsify whether a given image
patch was a part of the rogd [Mnih and Hinton, 2010]. To obthetraining data, they utilized
road-vector database to label aerial images. This ideabslars a resemblance to our method
of obtaining labeled superpixel images for road-regiomsagtation. Instead of just using a set
of local image patches as a training data, they compiled lagfa pixel and its neighboring
pixels and used them as a training example to model regiorege characteristics. To smooth
out classification outputs focused on local image patchey, epeatedly applied a local filter at
fixed intervals over the entire image region.

Tracking of Road Image CuesFor our methods of generating highway maps, we connect
hypotheses about true road-lanes based on photometricesmmaegric image cues. While link-
ing road-lane hypotheses, we develop a heuristic for treckead-boundary images cues. There
are two aerial imagery analysis works that employ a Bayefli@n to track road cues. Zhou
et al use two non-linear Bayesian filters, such as the exteHdéman filter and patrticle filter,
to track roads appearing on digital orthophotos and to eparts of the underlying road net-
work [Zhou et al., 2006]. Given initial locations by humaneogtors, the filters move forward
according to their motion models and choose the best paidbas the observation models,
which match intensity values of neighboring pixels aroumel turrent pixel location with the
next possible locations. Similarly, the authors use urnteceKalman filter for tracking roads
appearing on satellite images [Movaghati and Moghaddaj@@@8]. They employed different
filters based on their assumptions on the non-linearity atirboundaries. The idea of using
non-linear Bayesian filters to track roads is similar to ogopraach of tracking road-boundary
cues in that the tracking direction is adjusted by photoimetrad-cues. The main difference
between ours and these approaches is the ground resolfitiest anages. Variations of object
appearances in a low-resolution aerial imagery, i.e.,tgrdhan 1 meter per pixel, are not as
significant as those of high-resolution imagery (e.g., Iiioseter per pixel).

Perceptual Grouping To develop a function for linking road-lane hypotheses Hase
on geometric image constraints, we employ Gestalt laws ofiging image features in a
non-accidentalness, considering proximity, smooth cauiion, parallelism and compactness
[Palmer, 1999]. In particular, a possible linking betweero troad-lane hypotheses is as-
signed a higher value if its Euclidean distance is shorteitenthe linking angle is smaller.
Three other studies specifically implement such a percégtoaping of image features based
on Gestalt laws. These other studies used it as follows: I1Qotaplete object boundary
contours [[Estrada and Jepson, 2006], 2) to close contounajbgect boundary represented
by linear lines [[Elder and Zucker, 1996], and 3) to group adbgased on their symmetries
[Stahl and Wang, 2006]. These approaches resemble to otegsms of modeling Gestalt laws
for boundary completion, but differ in terms of implemeigtithe linking function. Particularly
we formulated a linking as a cost minimization in the min-eoframework.

Parking Lot Structure Analysis There are a similar work in the realm of spatial structure
recovery. Wang and Hansaon [Wang and Hanson, [1998] propoakgarnthm that uses multiple
aerial images to extract the structure of a parking lot forndation and visualization of parking
lot activities. Multiple images from different angles arsed to build a 2.5 dimensional ele-
vation map of the parking lot. This usage of multiple imageskes it difficult to generalize
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their method because it is not easy to obtain such imagesafaime geographic location from
publicly available imagery.

Most prior work in parking lot image analysis focuses priityawn detecting empty parking
spots in surveillance footage when the overall geometsiraktture of the parking lot is known
[Fabian, 2008, Huang et al., 2008, Wu et al., 2007]. Our warlparking lot geometry analysis
addresses an alternative problem: extracting the entrkeruglot structure from overhead satel-
lite imagery. Similarity between our work and these workseampty parking spot detection lies
in the fact that we utilize coherent structural patterng amamage region to infer the availability
of certain parking spots.

With a recent increase of web-based cartographic senaees| image analysis has attracted
increased attention from the computer vision communitys Tiesis proposes a combination of
detection and optimization for recovering relevant spatiaictures. This approach implicitly
assumes contextual associations among objects in aeagkim[Oliva and Torralba, 2007].

Exploitation of Spatial Coherence Three computer vision works that effectively exploit
contextual relations among spatial objects are [Porway,,2@08], [Heitz and Koller, 2008],
and [Kluckner et al., 2009]. Porway and his colleagues psepstatistical framework that hi-
erarchically interprets objects in a given aerial image{Ry et al., 2008]. A scene in an aerial
image is modeled by a coherent spatial relationship amorgy oaads, and parking lots. By
using a set of labeled aerial images, they first obtain ajppearmodels of relevant objects such
as trees, parking lots, roofs, and roads. False positivdsest object detections are filtered by
their “top-down” contextual models that are estimated iniaimax entropy framework. While
this work is similar to ours, they rely on manually labele@mples and do not attempt to gener-
ate fine-grained geometry for the detected spatial strestiiieitz and Koller present a graphical
model for detecting objects in aerial imagery [Heitz andl&Q2008]. Their models learn a con-
ditional distribution for the presence of an object givertipalar image features. In other words,
the presence of particular objects is inferred from imageres in which individual pixels share
similar image features such as color or texture. Klucknet lais colleagues present an aerial
image analysis algorithm that classifies a given aerial griatp one of the several predefined
classes such as “tree”, “streetlayer”, “waterbody”, “ftead “building” [Kluckner et al., 2009].
They use sigma-points to represent several generic featsweh as color in Lab, texture, height
information, and train a randomized forest [Breiman, 200b]smooth out classification outputs
to individual pixels, they use a conditional random fieldttimekes the assigned class labels of
neighboring pixels similar to one another. Geraud and Mqun@posed a bottom-up approach to
extract a road network appearing on low-resolution aenmegery [Geraud and Mouret, 2004].
As we collect low-level image features, they use the watgtsransform to produce a superpixel
image. Two intersection points between superpixel bouaedatefine a curve that potentially
represents a part of road. They built a curve adjacency gahplt the connectivity of these
curves. They formulate the task of extracting road networknfthe curve adjacency graph as
graph labeling problem and use a pairwise MRF to model opfim@ractions between curves.
A simulated annealing is used to find the most probable state@raph, equivalent to the most
probable road network given an input image.

Feature RepresentationFor supervised object recognition from images, the devetq of
techniques and theories has been largely focused on tw& pagthods that effectively represent
images as feature vectors and methods that assign imagesfeatith correct labels. Since it is
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very hard to develop a technique or theory at either extrenost work leverages both.

Feature representation refers to the projection of dataanbther space where the origi-
nal data is represented in a more compact form. One of the twagchieve this is to reduce the
original dimension with minimal loss of information. Turk@Pentland utilize principal compo-
nent analysis to effectively represent high-dimensionahan face images in a low-dimensional
space without significant loss of data [Turk and Pentlan8]11.9They choose thke most signifi-
cant eigenvalues of the covariance matrix of face imagesiaedhe corresponding eigenvectors
to form a new low-dimensional face space. They showed afggnt reduction in feature di-
mensions while maintaining the performance of the full deatspace for their face detection
task.

Another purpose of feature representation is to injectriam&e into the original images so
that features are less sensitive to variation of illummratnd appearance. As an example, the
Histogram of Oriented Gradients (HOG) feature is used tamlas local object appearance and
shape in an image by the distribution of intensity gradiémt&dge directions) and has been used
in pedestrian detection [Dalal and Triggs, 2005]. An imagdivided into either evenly-spaced
or connected region cells. For each cell, the HOG featueeslatained by counting occurrence
of gradient (discretized) orientations. These local lgstns can be illumination or shadow-
invariant by combining several of them into a bigger celllGzha block) and normalizing their
histograms.

Object RecognitionOnce we have a good representation, the next major step tectohe
objects inimagery is to learn the models of the target objeotn the data. A tremendous amount
of work has been done in this area. In general, there are tworrtteeoretical approaches:
discriminative and generative. A discriminative approsclves the object detection problem by
finding a decision boundary from labeled data whereas a gewerpproach solves the same
problem by first modeling the data generation process and tseéng an estimated model to
assign labels probabilistically [Duda et al., 2001].

Successful discriminative methods used in computer visimtude support vector ma-
chines |[Dalal and Triggs, 2005, Felzenszwalb et al., 20@8jJ ensemble machines such as
AdaBoost [Viola and Jones, 2004], composition boosting\Wg et al., 2008] or randomized
forests|[Breiman, 2001].

Probabilistic graphical models are canonical examplesakgative approach. Markov net-
works and their variants have been extensively studiednmpeder vision community under the
topic of modeling such spatial relationships. These tegpes include Markov Random Fields
[Freeman et al., 2000], [Li, 2000], [Singhal et al., 2003]tsrvariants such as Conditional Ran-
dom Fields|[[Carbonetto et al., 2004], [Weinman et al., 2@0%] Discriminative Random Fields
[Kumar and Hebert, 2005]. The fundamental idea of Markowwoeks is that the value of an
image pixel cannot be independent of its neighbors. To stppis idea, they offer numerous
ways of massaging the joint probability distribution of dam variables. In particular, these
techniques are flexible in modeling real worlds problemsabse they offer compatibility func-
tions, which are used to model interactions among variaiflegerest, and provide well-defined
techniques for solving learning and inference problemsnidinected graphical models. These
techniques have been mainly applied to computer visionlagidapplication areas which include
augmentation of range measurements by intensity imageb@Dand Thrun, 2005], generation
of the optimal navigable path [Nabbe et al., 2004], 3D retroiction of environments from a sin-
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gle image|[[Saxena et al., 2007], image segmentation [Freeina., 2000], and object recogni-
tion [Verbeek and Triggs, 2007], [Gallagher and Chen, 200W¢inman et al., 2004]. Although

application areas differ, the most frequent problem toes@van inference problem: to find the
most probable state of the world given an imége [Koller etZdl07].

In our parking lot structure recognition, we utilize a MRFfitod the most probable lay-
out of parking spots as a cue for the underlying parking Inicstire in a given aerial image.
Specifically, we hypothesize the locations of the true paylgpots by choosing a number of
image locations. In our MRF implementation, each of thegmliyeses is modeled as a random
variable and their joint probability distribution is faciped by undirected graph. We choose an
undirected graph to estimate the joint density becausehird to identify causal directionality
among random variables. Since it is also difficult to leamdptimal structure of an undirected
graph primarily due to absence of directionality among tagables, we assume that there is
a lattice structure of the undirected graph upon the dedquaeking spots. The given structure
allows only pairwise interactions among the variables. eGia particular structure and values
of random variables, one of the most interesting problemsotee is to know the most likely
parking lot structure. For solving this inference problé¢here are three different types of infer-
ence techniques: exact inference, sampling-based appatxiinference, and variational/belief
propagation approximate inference [Jordan, 2004], [Kdteal., 20077]. We choose loopy belief
propagation/[Freeman et al., 2000], [Yedidia et al., 2008fsblving the most likely labeling on
parking spot hypotheses for its simple implementation.

Road-marker detection is a very flexible method for autongsrdriving and aerial image
analysis. The detected road-markers may be used for dagsastance system and urban structure
analysis from overhead aerial images. A major problem iaatetg road-markers from images is
that the appearance of road-markings are not consisteatibe®f occlusions by other objects,
quality and age of markings, illumination differences. Mandling inconsistent appearance
in road-markers, researchers have used different colarespimstead of directly using RGB
values. Sun and his colleagues use the HSI (Hue-Saturitiensity) color space and devised
a heuristic to determine when saturation values of imagesldibe used [Sun et al., 2006]. Li
and his colleagues devise a heuristic that converts RGRBesahto another space where lane-
markings are more salieft[Li et al., 2003]. In particulaziustering algorithm is used to identify
the probable image regions, which contain road-markeosn fthe transformed image and a
connected-component algorithm is used to detect roadararkipski and his colleagues also
convert multiple road images in the HSI color space into agrlewad image and analyze local
histograms of color distribution$ [Lipski et al., 2008]. &hcombine these color distributions
with inputs from other sensors such as lidar and radar tdifgdane-markings.

Our road-marker detector is a classification method thagjassndividual pixels to binary
labels [Seo et al., 2009b]. Self-labeled parking spots aeslas the samples for learning the
color distribution of road-markers. The learned Gaussiatmidution is used to execute a pixel-
wise classification — assign each of pixels with a binarylladther “road-marker” or “non-road
marker.”

Addressing Variations in Objects’ AppearancesAn alternative way of handling the
inconsistent appearance problem is to use geometric pr@sitsuch as straight lines or
curves. The Hough transform and its variants have been useekttact straight lines
to detect road-marker$ [Saudi et al., 2008], [Voisin etZz05], [Yu and Jain, 1997]. Spline
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functions and their variants have also been used to deteat-markers and their shapes
[Wang et al., 2000], [Wang et al., 2004] by linearly connegtihe detected straight lines. Wang
and Hanson sample the image characteristics of road-nsatkemanually identifying road-
markers around parking spaces and use them to identify shefreoad-markers in a parking lot
[Wang and Hanson, 1998]. Lacoste and her colleagues [Leaebsil., 2005] utilize a set of lines
extracted along roads appearing on low-resolution aemages and use a stochastic process,
point processes, to link these lines, in order to extracttigerlying road network.

Part-based detection approaches [Felzenszwalb and den, 2005] have been exten-
sively studied. The underlying idea is conceptually appgain that structures or complete
objects can be modeled by part-objects in a deformable amatign. This is similar to our
approach in that the detection of parts assists in the katédin of road structures. This ap-
proach requires learning appearance models of part-atgect correlations between parts from
supervised examples. The estimated models are appliedlghskically or discriminatively to
search the probable image regions of part-objects or talgetts. Felzenszwalb and his col-
leagues devise a hybrid approach for part-based objecgméem that is called a latent SVM.
In their pedestrian detection application, a discrete S\éMised to detect part-objects (e.g.,
arms or legs) and a target object (e.qg., pedestrians). Aapibétic method is used to infer the
configuration that optimally associates the detected @gjgets with the detected target object
[Felzenszwalb et al., 2008]. Similarly, Saragih and hiseagues present a part-based face align-
ment where the same face in two different images is alignefitgtybuilding a response map of
face parts (e.g., eyes, nose) and then optimizing the diffex between two faces in different
images [[Saragih et al., 2009]. These methods implementnghased object recognition are
different from ours in that it is not always obvious to defiratp of the relevant road structures.
Although, in our parking lot structure recognition, it mag btraightforward to define parking
spots as the parts of a parking lot structure, parts of a regohent vary based on the geometry
of the road segment.

2.3.4 Machine Learning Methods for Reducing Human Interverions

As a part of an onboard system in an autonomous vehicle, éssable for automatic roadmap
building algorithms to have minimal human interventioncBese of this, self-supervised learn-
ing is attracting attention from the robot learning comntyigince it requires no (or substantially
less) human involvement for carrying out learning taskgs Tilamework is highly desirable for
robot learning because it is usually hard to collect largantjties of high-quality human-labeled
data from any real world robotic application domain. In tggtion we investigate two machine
learning frameworks: self-supervised learning and inewetal learning.

Self-supervised learning frameworks typically utilize tmost precise data source available
to label other data sources that are complementary, bubeleld. This approach has been used
to extend a mobile robot’s sensing coverage by combiningl lasnge measurements with other
measurements such as overhead imagery, inertial measuseraed camera imagery.

Stavens and Thrun utilize laser range measurements to cpréeirain roughness
[Stavens and Thrun, 2006]. They first analyze the assonmti@tween inertial data and laser
readings on the same terrain and use the learned rules tietgredsible high shock areas in up-
coming terrains. Similarly, Sofman and his colleagues asallrange estimates as self-labeled
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examples to learn relations between the characteristi¢scaf terrain and corresponding re-
gions in aerial images [Sofman et al., 2D006]. The learneatiogis are used to map aerial im-
ages to long range estimates of traversability over regibasa robot is exploring. Lieb et

al devised a self-supervised approach to road following &halyzes image characteristics of
previously traversed roads and extracts templates foctiegeboundaries of upcoming roads
[Lieb et al., 2005].

Local range measurements can also be used to label scemaagad. Vision sensors usu-
ally see wider and farther than range finders, but labelingges from vision sensors is diffi-
cult mainly due to variation in appearance and illuminatidm [Dahlkamp et al., 2006], local
range measurements less sensitive to those variationsedea identify local drivable regions
around a vehicle by analyzing the characteristics of imagésporresponding to those range
measurements. These learned features are then used tct pitber parts of images that are not
covered by range finders. Katz and his colleagues use vdahielges labeled by range mea-
surements to train a moving obstacle classifier [Katz eRAD8]. In related work, Brooks and
lagnemma use vibration data to train a classifier to idemti€/roughness of upcoming terrains
[Brooks and lagnemma, 2007]. During navigation on difféterrains, the vibration data is col-
lected by recoding power spectral density using a microptaitached to a front wheel. This
vibration data is aligned to video data that is taken fromravéwd-looking camera. Since the
vibration data has higher frequency when wheels are clijmbmrocks, image data captured at
the same time is used to train a terrain classifier that iiestrock-regions from images taken
by the forward-looking camera. Unlike other self-supezdisearning examples, they trained a
classifier for vibration data and then used the classifiegérerating inputs for a vision-based
terrain classifier. Kim and his colleagues utilize a mobileat’s previous experience navigating
to determine if the upcoming terrain is traversaple [KimlgtZz006]. While interacting with op-
erating environments, a mobile robot accumulates its éspes such as slippage and collisions
from its internal sensors and uses them as positive (or weyalata to label images taken at
time of the event. Nair and Clark exploit motion informationvideo to automatically collect
training examples [Nair and Clark, 2004] for the task of détey people from the video of an
office corridor scene. Their self-labeler is obtained bylengenting careful observations of the
task. They first manually obtain a background model by avegageveral consecutive frames
that do not contain any significant motions; then acquirentieelel of foreground by analyzing
the differences of pixels in two consecutive frames; andlfillect training examples of peo-
ple by grouping the connected foreground pixels. An exangpldassified as a person if the
dimension of a connected region satisfies a heuristicafipele threshold.

In our parking lot geometry analysis task, the self-labalelyzes the spatial arrangements
between extracted lines, which are aligned with road-nmgkin a parking lot, and produces a
set of nominal parking spot images that are used as trainagples for existing machine learn-
ing techniqueg [Seo et al., 2009a]. Furthermore thesdamited examples are used to guide a
random selection of negative examples; to provide a parkingoundary segmentation with a
cue of drivable regions’ image characteristics and a roadker classification with samples of
road-markers’ image characteristics [Seo et al., 2009b].

A self-supervised learning approach also works well in dosahere it is hard to define
what to learn in advance. For example, detecting geologittifes in images is challenging be-
cause their appearances are significantly affected by itlaion conditions. Unless replicating
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all of the possible illuminating conditions, it is not pdssi to clearly define the appearances of
interesting geologic features a priofi. [Thompson et 0.

Incremental learning is a machine learning approach wherertitial model of the target
function is estimated by using a small number of examplessodntinuously updated as new
examples arrive. In this framework, the learner needs tavkmialy what is actually necessary
for the specific task or data. This framework fits well our aarmage analysis work where only
a small number of pertinent examples are available at thebieg of the learning and need to
learn the local appearance model of road structure parts.

At the outset, our algorithms for parking spot detection exposed to a small number of
nominal parking spot examples and learn the initial modgdarking spot appearances. Later
the algorithms are given several aerial images containamgipg spots in unusual appearances
(e.g., trapezoidal geometric shapes or different illumaraconditions). The initial appearance
model should be generalized to accommodate the changestofdesalues.

Incremental learning is closely related to lifelong leami(or transfer learning). Thrun
and Mitchell address the lifelong robot learning problem terms of transfer learning
[Thrun and Mitchell, 1995], [Thrun, 1996]. They are intasbsin learning a collection of con-
trol policies for a robot with multiple tasks in both knowndannknown environments. These
environments are previously unknown to the robot. To thid, éheir algorithms first identify
invariants about a robot’s sensors, effectors and enviemsbetween tasks under both the same
environment and the different environments. The learnegriants are transferred to a new task
to expedite the learning process. For example, a explanrhsed neural network is used to fig-
ure out invariants of action models, which is transferreiject a bias to another policy learning
task.

Rosenberg and his colleagues proposed an object detectgoritam that incre-
mentally learns intra-class variation on human faces byizutg unlabeled images
[Rosenberg et al., 2005]. The unlabeled images are exgltwtainimize efforts of human label-
ing and to generalize the learned knowledge of human fangmrticular, the detector is initially
trained with labeled data and then assigns unlabeled d#teclaissification confidences. Unla-
beled data with high-confidence values are used as trairatey with the supervised ones to
expand the classifier's knowledge of varying appearanctset. They choose high-confidence
unlabeled data to increase the number of training data \&kerer incremental learning selects
the £ most uncertain unlabeled examples because uncertainal@tbbxamples are the ones to
learn in order to optimally move the decision boundary.

2.4 Perspective Image Analysis for Recognizing Highway
Workzones

2.4.1 Traffic Sign Detection and Classification

In this section, we compare our approach to highway workzeoegnition with previous work
in the area of traffic sign recognition. For any traffic sigoagnition method that focuses on vi-
sion sensors, an initial requirement is to locate potesigal image regions from an input image.
Some systems, including ours, use color information tolibeaigns. In addition, for any sign
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recognition system which utilizes color, it is necessaryirid an optimal range of target color

values because the actual values of the target color vasdb@s image acquisition processes.
These threshold values are often obtained empirically ipeatng manual surveys of pixel

color values from sample sign imagés [Eichner and Breck668Z2de la Escalera et al., 2004,
[Yuille et al., 1998]. Because of its simple implementatisach a manual process is attractive,
yet tends to be error-prone and expensive. By contrast, anoach automatically obtains the
limits of optimal color-values through binary pixel-cl#s= training.

Another dominant approach for traffic sign detection is te o sign shapes. Some re-
searchers use the geometric property of sign shapes, swejuasgularity, in order to locate
the centroids of traffic signs [Barnes et al., 2008, Loy anthBs, 2004]. This approach is in-
trinsically error-prone because it relies on a geometrapprty, which is not preserved under
perspective imaging, and also because it assumes highasbintimage intensity, which is hard
to acquire from real-world image acquisition. An altermat@pproach for utilizing the geometric
properties of signs is to locate parts (e.g., corners or®dugfea traffic sign and to combine the
results of these partial detections. For example, in orolédentify potential sign image loca-
tions, some researchers have used Haar-like featureEsehmlet al., 2010, Timofte et al., 2009,
Viola and Jones, 2004] and their variants, such as a set @hgalar features in particular color
channels[[Bahimann et al., 2005] and non-symmetric dissedidipoles|[Baro et al., 2009] or
a variant of the histograms of oriented gradients (HCOG) j@ttend Petersson, 2011]. This
learning approach demonstrated successful performargevbien a large number of manually
labeled data was available to train the detector on muispbdes for a long period of time.

2.4.2 Traffic Sign Recognition Error Handling

Some of the existing methods [Overett and Petersson| 20&10ftE et al., 2009] have demon-
strated very impressive recognition results in their expental setups, e.g., a detection rate of
more than 98.8%. However, in general, it is unrealistic tpeet perfect performance in sign
recognition. Most traffic sign recognition methods may naisgorkzone sign or may also incor-
rectly classify a sign image in a stream of perspective ima§each inevitable errors would cause
any sign recognition method to misunderstand the traffiesrahd road geometry. To cope with
such potential object recognition errors, Viola and Jomep@sed a hierarchical image process-
ing structure that trains classifiers at particular leveathiw a hierarchy until their performance,
e.g., false negative rates, reaches a desirable leveld¥indl Jones, 2004]. However, because
such an approach requires a large amount of manually lallele] it is inapplicable for our
case, as it is very hard to collect a large number of workzogre isnages. We instead utilize
our sign classification output, which is highly accurateipgge, in a twofold manner: first, we
propagate classification confidence values toward futuagder to reduce the impact of false
negatives; second, we investigate previous classificaldmmsions for the same sign in order to
reduce the number of false positives.To the best of our kedgé, we have not seen such meth-
ods, particularly in handling potential sign recognitioroes for recognizing temporary highway
changes, in the field of traffic sign classification.

We developed such methods for handling potential sign m@tog errors to minimize the
frequency of misreading traffic rules and road geometry tmamiy altered by highway road
works. In the Intelligent Transportation Systems (ITS) connity, there are three similar works
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to ours in terms of assessing roadway state. But their methoel different from ours be-
cause, instead of analyzing traffic sign images, they useidiee or transportation infrastructure-
generated data. For example, the vehicle-generated d¢atd@measurements of wheel-turning-
speed, lane-change, and location over time [Ma et al.,|20@®fibiazar and Basir, 20111]
whereas infrastructure-generated data include traffic, ftmgupancy, and vehicle counts over
unit time [Niu and Liu, 20111]. The collected data were usettdm a classifier to infer roadway
state. For example, Ma and his colleagues compiled vehiatend information from simulated
roadside units and used a SVM to classify the state of a rotwdhree different states: normal,
passed by incident site, and stopped in quéue [Ma et al.]2000 and Liu trained a neural
network to identify whether the traffic condition of a highwis normal [Niu and Liu, 2011];
Tabibiazar and Basir used a Gaussian mixture to model ctingesites based on GPS data
[Tabibiazar and Basir, 2011].

2.5 Summary

In this section we reviewed several research fields relat#uid work.

The maps of robots’ operating environments are primaridfict These models simplify
autonomous navigation by providing a strong prior on emvinents. Most of these maps are
created by analyzing sensor measurements obtained frowiripheg in target areas. Because
pre-driving based map building is expensive and high-tyalierhead imagery is publicly avail-
able, overhead imagery based map building has been ingysiudied.

The review of existing cartographic resources, which ar jamarily for human consump-
tion, clarifies the desirable properties of roadmaps foomoinous driving.

In the robotics community, overhead data has been utilized aomplement to onboard
sensor measurements. Low-level image patterns, whichsafelito detect local objects in the
images, have not been extensively utilized yet.

Most of the work in recovering relevant objects in overheadgery relies on manually la-
beled data to learn an object detector (or classifier). Becawanual labeling is expensive and
error-prone, there have been several efforts to minimiedrtguency of supervised examples
while maintaining good performance. Self-supervised ardisupervised learning in the ma-
chine learning community have been intensively studiedfgtie et al., 2006]. Particularly, the
self-supervised learning approach is attractive in thae&ds no (or substantially less) human
involvement. Despite its benefits, self-supervised lemyr@pproach or acquiring task-specific
patterns via bootstrapping has not been extensively studiaerial image analysis.

This thesis will provide use cases of recovering road stinestin orthoimagery through boot-
strapping. Our bootstrapping approach is unique in thatninmizes human involvement while
effectively recovering road structures. Several hewsstinalyze low-level image patterns, such
as spatial arrangements of lines, and collect a set of jgs&Hsgc examples based on analyzed
patterns. The task-specific mid-level image features ad tastrain conventional machine learn-
ing algorithms as part-detectors that identify the probabgjions of road structures and are used
to generate highly probably hypotheses about unknown trad-lanes. Our approach exploits
these self-obtained task-specific image features to se@atealsconfiguration that optimally
satisfies geometric and image constraints of part detectgunits.
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Chapter 3

Lane-Level Highway Map Generation

This chapter describes our approach to building a map of-laxaeks that appear on a given
highway image. In this thesis, a road-lane (or lane) refetise part of a road built for controlling
and guiding a single line of vehicles. The output of this gahare is cartographic information
about road-lanes in a set of pixel coordinates of road-lazegerlines and lateral road-widths,
and orientations at those pixel coordinates. Such land-tstailed highway maps with traffic
rules and accurate coordinates can be prepared in advaiacditate the guiding of autonomous
and manual highway driving.

To extract such lane-level detailed information from a giu@age, pixels along road-lane
boundaries must be visually and computationally accessifilo meet this requirement, we
choose orthoimages with 15-centimeter ground resolutionhich lane boundaries can be ob-
served by the naked eye and can be potentially processedjmimpallﬂ Highways appearing
in these images are inter-city (or arterial) highways Huittfacilitating transportation between
cities [U.S. Department of Transportation, 2000]. Anotlearson we choose this particular pair
of image data is that arterial highways on such high resmiusierial imagery pose sufficient
challenges for extracting road-lane boundaries. The ehgéls concern the variation of objects’
appearances and the complexity of the road geometry. Imasinthe road geometry of interstate
highway images would be too monotonic with only slight plmo&dric variation, and roads in a
city pose too many complexities unrelated to the task ofagetitng road boundary lines (e.g.,
occlusions by frequent appearance of cars, pedestridres, @wtban structures).

Since our target images are depicted in high-resolutiach snage objects as lane-markings
and road image-regions contain significant variations @rthppearances, such that an object
appears differently based on the condition of an image adon proces. This complicates
identifying boundaries of road-lanes. For example, evemgiven arterial highway image, road
surfaces may be covered with different materials, such pladtsor concrete. Such variation
in road surfaces cause an inconsistency in color and tegfuesme-markings and road-regions.

1Because the normal longitudinal pavement markings on hagisvare 4 - 12 inches wide (10 - 30.48 cen-
timeters) [U.S. Department of Transportation, 2009], ¢here at least two pixels for laterally delineating a part of
lane-markings.

°These factors include illumination conditions, the resiohy intrinsic and extrinsic parameters of the camera,
the spectral sensitivity [Tonjes and Growe, 1998], thelrggm of and the line of the sight between an acquisition-
vehicle and the ground with respect to the location of sun.
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Another example of appearance variation is occlusionsethbhy man-made structures such as
buildings, over-hanging traffic signs, as well as overpsissel their shadows. These structures
make parts of roads partially or completely unobservablescd@ntinued road-lane boundaries
make it hard to discern the true geometric shape of a roaal-l&he geometry of arterial high-
ways also makes it difficult to follow a lane’s boundary. Rampth circular paths have high cur-
vatures that require a boundary following process thakgaon-linear paths. Road-lane junc-
tions near an overpass require extra care due to the complér tirections. Road-boundary
tracking must also be carefully done at a bifurcation poittere one splits into two, because
one of the multiple tracking lanes might disappear.

To effectively tackle these challenges, we develop a hebreal approach to three tasks: to
gathering road boundary image cues, generating road-lgratreses, and linking the hypothe-
ses. Our approach builds a map of road-lanes by linking faae-hypotheses while satisfying
the constraints of the underlying roads imposed by the cig@lttimage cues and prior informa-
tion about the U.S. highways. To this end, first we scrutimizgven input image to harvest two
types of image cues about the underlying roads: road imegjesrs and geometry. Knowledge
of road image-regions are useful in specifying where to lfwwkoad-lane boundaries. To ob-
tain the information of road image-regions, we formulats tmage segmentation problem as a
binary classification. In this classification, our methoglexs a road-vector screenshot of the
given image to obtain weakly-labeled examples of roadereguperpixels and to train a proba-
bilistic road-region detector. The binary classificatianputs are then theoretically averaged out
through a Markovian framework to produce a globally-cohesegmentation result.

Another important image cue we collect is the geometry ofuth@erlying roads. To obtain
this information, we extract lines and analyze the screetristage of the road-vector to estimate
the legitimate driving direction and to identify relevaaad structures, such as overpasses. These
collected image cues about road surface and geometry wilighe strong evidences of the true
road-lanes. In particular, these cues facilitate a road-laypothesis generation and guide a
linking of these hypotheses to build a correct map of roada We call these collected image
cues mid-level, task-specific featlfdmcause they are directly used to simplify, in three ways,
our problem of building a map of road-lanes on a highway imdgehe identified image road-
regions are a good approximation of the unknown true roadda2) the hypotheses about true
road-lanes are generated only from the identified image-regidns; and finally; 3) these cues
are used to dictate how these hypotheses should be linketetarmther. Figure 3.1 illustrates
our approach of building up low-level image features to mhenkl, task-specific features. At the
lowest level, we analyze the inputs and prior informatioextract task-relevant image features,
such as lines and superpixels. And then we refine these hsV-features to produce task-
specific mid-level image features, including results o¥idig-direction estimation, results of
road-region segmentation, and results of interesting-sbadtture detection. These mid-level

SFrom the theoretical perspective of computer vision, ouw-level image features are a mixture
of canonical low-level features (or primal sketch) and reidel features (or2%-dimensi0nal sketch)
[Poggio, 1981][[Marr, 1982],[Palmer, 1999]. In this thesie divide into three categories any intermediate results
from image processing tasks: 1) low-level features: imagegssing results that contain task-relevant information
2) mid-level features: results of image processing thatainrask-specific information, and 3) high-level features
image processing results that contain information diyeetlated to a given task or can be directly used to achieve
the goal of a given computer vision task.
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features in turn are used to generate hypotheses aboutwnknee road-lanes and also guide
the task of linking these hypotheses to recover individoatiFlanes. For the problem of linking
road-lane hypotheses, we formulate it as the min-coverlenolpVazirani, 2004]. We look for
a set of hypotheses about the unknown true road-lanes tama#yicover the estimated road
image-regions with a minimum sum of costs.

Road- network
structural cues

4 | .
Image gradients AN
Input orthoimage Road-vectorscreenshot S~

Figure 3.1: This diagram illustrates information flow betndow-level and mid-level image
features.

In what follows, we detail the methods of harvesting lowdkfeatures, the methods of con-
verting these low-level features into meaningful mid-léeatures, and the methods of generat-
ing road-lane hypotheses and of linking them, so as to genareap of road-lanes in a given
image.



(a) The ground resolution of an input orthoim- (b) A screenshot of the road-vector of the in-

age is 15 centimeters per pixel. In such a high- put image. This image depicts the underlying
resolution highway image, pixels along road- road-network with other cartographicinforma-
lane boundaries are perceptually and compu- tion such as names of highways.

tationally accessible.

Figure 3.2: Our approach extracts image cues such thaftheiometric and geometric patterns
are local, but sufficient to build a map of highways from twpubhimages.

3.1 Harvesting Road-Boundary Image Cues via Bootstrap-
ping

This section explains how to analyze input images to exteacievel image features and how to
refine these features to produce mid-level image featueds#m be useful to execute other tasks.
Our algorithms take two images as the input: A highway orttegie and the input image’s road-
vector screenshot. Figure 3.2(a) shows an example of higlonthoimage and Figure 3.2(b)
shows an example of road-vector screenshot image. A roetdvecreenshot is a screencapture
image that, with distinctive colors, depicts the underymad-network of the highway scene.
When a road-vector image is overlaid with an orthoimagej#@gions in the orthoimage are la-
beled with real-world cartographic information. One migtibk that the road-vector screenshot
image would trivialize the extraction of boundaries of rédades appearing on an orthoimage.
Yet such is not the case. First, the sketches (or drawinggjaf-vectors are just parts of images,
meaning that they do not possess any information aboutveetbrs, which are directly acces-
sible in a computational form. To make these image sub-nsgiseful, they must be processed
extensively and properly. Secondly, the road-vector $iet@re not entirely overlapped with im-
ages of road-regions, resulting in cases where some rggahgeremain uncovered. From image
processing or pattern recognition perspectives, this isrg eonfusing signal. Some regions of
a true road-lane image are marked as “road,” while some atieege regions very next to those
regions labeled as “road” are indicated as “non-road.” ioisls for the opposite case as well —
indicating non-road regions as road regions, e.g., a reatby painting over trees or buildings.
Thus, when a screenshot of a road-vector is used, an exgakauld be taken.

3.1.1 Extraction of Low-Level Image Features

We first parse two input images, to extract low-level feaguseich as image gradients, lines, and
superpixels. For a line extraction, we first compute the ienggdients and use the quantized
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orientations of individual pixels to group them. For eachtd pixel groups, we compute the
eigen values and vectors about pixel coordinates in thepgrblis analysis provides us with two
useful pieces of information about the pixel group’s geaginshape: orientation and magnitude,
which are used to produce a line for the group. In partictierratio of the largest eigen vectors’
two components is used to approximate the orientatiénr; [0, 7]), of a line. The Euclidean
distance between the two farthest pixels in the group is aseitie length of the resulting line
[Kahn et al., 1990]. Figure 3.3(a) shows an example of eterhiines.
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(a) An image of lines. Each of the extracted lines is depiateal different color.
Notice that these lines are mostly extracted from road irteg®ns.

(b) A superpixel image is shown. The elongated green polgdgon blobs) are
fragments of a road-vector screenshot.

(c) An analysis of road-vector fragments is performed taawbtheir geometric
properties.

Figure 3.3: An intensive image analysis results in threk-takevant, low-level image features.
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To obtain a superpixel image, we first smooth the input imagmau bilateral filter
[Tomasi and Manduchi, 1998], compute gradient magnitudakefiltered images, and then ap-
ply the watershed segmentation algorithm to the image afignd magnitudes to obtain a coarse
segmentation. We then reiterate this process until the mioas of individual superpixels are
large enough[[Lalonde et al., 2010]. Particularly, we texate this iteration when the current
number of superpixels is smaller or equal to the predefinedgtion (e.g., 15%) of the initial
number of segments produced by the watershed algorithmréf®3(b) shows an example of a
superpixel image.

To extract the useful geometric information of the undedyroads from a road-vector
screenshot, we first identify image regions of road-vedtetches and produce a binary image.
This contains only these fragments of road-vector withawyt map-symbols. We then further
analyze each of the road-vector fragments, to obtain tiegngetric properties, such as extrem-
ity and bifurcation points. Because a road-vector fragnseatpolygon bounded by closed path,
the skeleton of a fragment is useful in acquiring these giefanformation. A skeleton of a
polygon is a series of linear lines linking ridge points whare local extrema sitting in the mid-
dle of a polygonal shape. We apply a distance transform tb e&the road-vector fragments
and identify these ridges points. Section| 5.3 details thiegss. Figurg 3.3(c) shows a result
of such analysis. Each (green) polygon represents roadvieagments where “+” indicates a
ridge point, “+” with a triangle is an extremity point, and™with a circle is a bifurcation point.

Since these low-level features contain only basic inforomedbout road-lanes appearing on
the input image, we need to refine these features into featoge relevant and useful in exe-
cuting our task of analyzing highway geometry analysis.tdslese new features, we call task-
specific mid-level image features, include an estimatiosoofie legitimate driving directions of
roads appearing on the input image, locations of intergstiad-structures, such as intersections
and overpasses; and segmentation of road image-regions.

3.1.2 Extraction of Mid-Level Image Features

Road-Region SegmentatiotKnowledge of road image regions would be very useful in tbahs
knowledge could specify where to look for road-lane bouigsarAcquiring such knowledge is
the task of image segmentation that divides an input imaigenore than one sub-regions. In
our case, it is to divide a highway image into two sub-regionad and non-road regions. We
tackle this problem as a binary classification problem thlee$ superpixels as input and assigns
each superpixel with one of two class labels: road or nod:-rblaa common classification task,
a person assigns class labels to superpixels and prepaesfaaperpixels and their class label
pairs, so as to train a classifier. The number of training gtasimay vary, but can be roughly
determined based on the dimensionality of data and the aotitypbf the problem.

In this thesis, we take a different approach to executingarliclassification. Instead of rely-
ing on numerous human-labeled examples, we utilize onerahputs, a road-vector screenshot
image, to prepare a self-labeled training data. In padicwbe treat a superpixel as a positive
example if its area is significantly overlapped (i.e., mdrat 90%) with road-vector paintings;
otherwise we treat it as a negative example. Notice thakidtelses (or drawings) of road-vectors
are not entirely overlapped with image road-regions, tagpin some of road-region superpixels
are missing. This means that some of superpixels, whichldhmutreated as parts of positive
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examples, are indicated as non road-regions. In additipisubh weak labellings, some non-
road regions to be regarded as positive examples due toigmsant between an orthoimage
and the underlying road network (e.g., road-vector pagntiver trees or buildings.)

Figure 3.4: Results of road image region segmentation. Tine fegions represent identified
road image-regions and the red regions represent non4noagerregions. Although some non-
road image-regions are labeled as road, most of the segtoentasults correctly depict road
image-regions.

To execute the superpixel classification, we first represaci of the superpixels as a feature
vector. A feature vector consists of color and texture imfation. We use a histogram to rep-
resent color values in a superpixel and a texton [Martin.e2804] to represent texture value.
To minimize the effect of superpixels’ incorrect class gsgients, we learn a probabilistic clas-
sifier, a Gaussian Mixture Model (GMM), and assign individsiaperpixels with class labels.
To smooth out the outputs of the GMM, we run pairwise Markoné&an Fields (MRF) and
infer the most probable segmentation of the input imagegusiopy belief propagation. Figure
[3.4 shows a result of image road-region segmentation. RBesthe road-region segmentation
define image regions of interest where all of the remainisggdor building lane-level highway
map have been executed.

Driving-Direction Estimation The goal of our task is to extract boundaries of individual
roadlanes in the given image. This requires tracking bognpixels of road-lanes that appear
on the given image. Notice that the directions of these taad-boundaries always align with
the driving directions of the road-lanes. Thus knowing theing direction at any given image
locations is very useful for tracking road-lanes boundarie

To approximate the driving direction from a given image, v8e line extraction results that
each of the extracted lines partially explain as the conbbuoads in a given image. It is unde-
sirable to approximate the driving direction at a pixel ldwecause of all the noise that must be
tackled. Instead we partition the input image into a numlbgria cells. For each grid cell, we
identify extracted lines which pass by it and use them to@yprate the driving direction of the
grid cell. Suppose there arenumber of lines identified as passing tttegrid cell,j € [1, n]. We
compute the direction of a grid cell,by using the vector sum methatl,= arctan(y, =), where
x =), cos(t) andy = . sin(6;), whered; is the orientation ofth line. The orientation of a
grid cell is mostly homogeneous to its neighboring cellstipalarly in road image regions. To
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enforce such a constraint, we run a MRF to infer the most foieldriving direction of the input
image as a whole. Our method of approximating driving dicgcts motivated by the method
proposed in[[Dolgov and Thrun, 2008] where the authors ekiii@es from laser-scan data and
run an MRF to infer the driving direction homogeneous to a&giparking lot image. They use
a combination of Canny edge detection and Hough transforexti@ct lines from a laser scan
image. We also tried this combination and found the extchlotes were too short to use. Figure
[3.3 shows a result of driving-direction estimation.

[ e
.ﬁxﬂ---

Figure 3.5: Results of driving direction estimation. Thaelines indicate the estimated driving
direction of a grid cell and the non-drivable regions areictep by red circles.

Lane-Marking Detection Lane-markings are one of the most important photometris cue
for extracting road-lane boundaries. In fact, a perfeceararking classification on a given
orthoimage would make it easier to accomplish our goal. éddéhe results of such classifica-
tion would provide us with crucial information about road boundaries such as their exact
locations in a given image.

Lane-markings are a type of road-marking that depicts baues of roadlanes. On an or-
thoimage, we can, readily with the naked eye, distinguisiedaarkings because they have
whitish colors, relatively higher intensity than their gleboring pixels, and occupy approxi-
mately known locations. However, these salient featuresnat always available for image
processing because the actual values of lane-markingspueely based on image acquisition
conditions.

To effectively meet the challenge of appearance variatidare-marking pixels’, we for-
mulate the lane-marking detection task as a binary claasgit problem of discriminating non
lane-marking pixels from true lane-marking pixels. Suchnfolation enables us to utilize a
combination of well-established feature representati@h@assification method that effectively
handles the appearance variation. To this end, we first Edrake highway images, for mark-
ing positive and negative examples, convert these exanmaéspnto features, and then learn a
binary classification model of lane-marking pixels’ pho&nc variations. Note that this is the
only place we use manually labeled data for training a paouofsystem.

For the feature representation, we want to convert theraigiolor intensity pixelsx € R?,
into something differentk € R?, p # ¢, in which we can better discern computationally the char-
acteristic of lane-marking pixels. To this end, insteadidatly changing the intensity value, we
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look into the contrast of intensity values between a laneking pixel and its neighboring pix-
els. In fact, we use the local binary pattern (LBP) [Ojalalet2z002] and four different statistics
about texture to generate a feature vector of the pixel.

The LBP is proposed to express a spatial pattern of a pixelghtoring pixel values as a
binary bit vector. It looks into the difference of pixel vaki(e.g., gray-scale or a color channel
value) and mark down the difference &g; — g.)2’, wherel(-) is an indicator functiony; is the
jth neighbor’s pixel valuej € [1, k], andg. is the target pixel value. There are two parameters
that control the range of the neighbors (or the size of thallonage patch): the number of
neighboring pixels P, equally spaced on a circle of radils For example, wher? = 1 and
P = 8, the neighbor of a pixel coordinatéz, y), is equivalent to the second order Markovian,
starting from(z +1,y), (x+1,y—1), (z,y—1),...to (x + 1,y + 1). The contrast value between
the target pixel and each of the neighboring pixels is saveddinary bit vector where the least
significant bit is assigned to the contrast value of the rigighbor,(z + 1,y). The LBP of a
lane-marking pixel is then computed by

P-1

LBPpr=> I(g;— gc)2"

p=0

Because a single step rotation of the final binary bit veaboitc generate a completely different
pattern, a circular bit-wise (right) shift needs to be agglbefore finalizing the feature conver-
sion [Ojala et al., 2002]. In addition, we also compute foiffiedent statistics of the pixel and its
neighboring pixels, such as smoothnes3, (1 — ﬁ entropy (2), — Ele P(z;)logy P(z),
uniformity (t3), Zfz‘ll P?(z;), and the variancet() of image gradients’ magnitudes on the
neighboring pixels where is variance of pixel valuesL is the maximum valuez; is the
ith value. For exampleL will be 255 if we measure the intensity valug, € [0,2% — 1].
Our feature representation converts a lane-marking col@l,px ¢ R? into a feature vector,
X =< LBPRR,tl, e by >€E RS,

We tried several different combinations of these features@assification methods to find
a best one for our lane-marking detection task. We downlkb&@eorthoimages separated from
the images for generating lane-level highway map and dekk47,640 pixels. These consisted
of 15,204 lane-marking (positive) pixels and 32,436 normtararking (negative) pixels.

We set aside a portion (about 30%, 14,292) of the labeled gata as testing data and use
the rest of them to train a classifier. We tried six differelaissification setups and found that
the AdaBoost outperformed all others — AdaBoost with a featepresentation without color
information produced 0.98 precision and 0.97 recall rateaverage. Table 3.1 shows detailed
information about a performance comparison between diffieslassification setups. We ran five
different tests that required random sampling of positive: eegative training examples. Due to
this randomness, we averaged our results over five separeeEach cell in the table displays
the mean and standard deviation. Fiduré 3.6 shows a redali@imarking detection.

Interesting Road-Structure DetectionTo completely determine a road-lane’s boundaries,
it is necessary to recognize road-structures that mayatelicomplex road geometries and may
also occlude boundary lines. These road-structures iactwerpasses, over-hanging traffic
signs, and trees. Because of their relative sizes in a givage, shadows of traffic signs and
trees cause little occlusion on roads. However, shadowgarpasses impose serious occlusions
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Precision

Recall

False Positive

False Negative

Accuracy

SVM w/o color

AdaBoost w/o color

AdaBoost w/ RGB
AdaBoost w/ HSV

AdaBoost w/ YCbCr

AdaBoost w/ Lab

0.9769 (0.0020
0.9888 (0.0018
0.9786 (0.0309
0.9854 (0.0140
0.9661 (0.0343
0.9841 (0.0125

0.9733 (0.0033
0.9781 (0.0025
0.9850 (0.0155
0.9944 (0.0180
0.9942 (0.0039
0.9927 (0.0072

0.0702 (0.0966
0.0025 (0.0218
0.0149 (0.0155
0.0155 (0.0180
0.0057 (0.0039
0.0052 (0.0028

0.0116 (0.0010)
0.0055 (0.0009)
0.0123 (0.0164)
0.0074 (0.00724
0.0180 (0.0186)
0.0081 (0.0065)

0.9833 (0.0014)
0.9889 (0.0010)
0.9867 (0.0098)
0.9898 (0.0075)
0.9868 (0.0118)
0.9928 (0.0049)

Table 3.1: Performance comparison of different lane-nmaykiassification methods. The num-
bers in bold faces are the best for the corresponding column.

Figure 3.6: Because the outputs of our lane-marking claasibin are probabilistic, the results
are shown in a heat-image where the color closest to redsemi®the highest probability.

over road-regions in that unobserved road-regions arensgnificant for completely delineating
road boundary contours. In addition, the appearance opagses also increases the complex-
ity of road geometry because multiple roads pass each ottiergmnally in the same image
region. In this thesis, as overpass structures are frelyueinserved on arterial highways, we
want to detect them, so we can properly handle the geomedrg@siusions around any detected
overpass.

The input of the overpass detection algorithm is the roaderescreenshot. As described
earlier, the road-vector screenshot image is analyzed andeded into a set of road-vector
fragments. Each of the road-vector fragments contains ¢oengtric characteristic of parts of
the underlying roads. For each of the road-vector fragmewvgsextend each of the extremity
points in the direction of the fragment and identify any regetion with other fragments if their
intersection angle is greater than a given threshold (e/3). Figure[3.7(g) shows a result of
overpass localization where a multiple of two (red) inteta lines indicate potential overpass
regions. The final process of detecting overpasses is tdifigehe boundary of a detected
overpass. To this end, we search for any of the closest ¢attdines that intersect with any
of the two lines from the overpass localization and are gretitan the same threshold used
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(a) Results of overpass localization. Each two interseddines
indicates a potential location of an overpass. A blue lina ime
extended from a road-vector fragment.

(b) Results of overpass detection. A red trapezoidal polygpre-
sents the boundary of the detected overpass, and two (biueyan)
lines inside the polygon depict two principal axes.

Figure 3.7: These figures show the sequence of overpasgidetec

earlier. Figuré¢ 3.7(b) shows the final result of overpassati&n. The bounding box of a detected
overpass lets other tasks of extracting lane-level highwiymation know of the existence of
an overpass and that the road geometry around this boundilgds more than one direction.

We describe how we obtain four mid-level image featuresd@$iom the lane-marking de-
tection in which we used some human labeled data to trainear@arking classifier, we obtain,
without human intervention, three other important cuesaéfegion segmentation, driving di-
rection estimation, and overpass detection. These areeldthy extensively analyzing what is
available on the input image. Although we obtained these fngen analysis of an image’s lo-
cal photometric characteristic, their properties are gl@nd strong enough to coherently guide
the following high-level vision tasks such as generatingygotheses about true road-lanes and
connecting hypotheses in that:

¢ Results of road-region segmentation specify image suinmegvhere the true road-lanes
most probably appear.

e Lane-marking detection results narrow down further thegenaub-regions defined by

40



road-region segmentation and enable the process of rggdese hypothesis generation
to pick up relevant image location more precisely.

e Results of driving direction estimation inform the hypdiselinking process of how the
generated road-segment hypotheses should be linked. trasgrthe detected overpasses
define an image sub-region where individual hypothesesthearegion should be care-
fully linked to one another.

In the next section we detail how these four mid-level fesguare used to generate road-

segment hypotheses and how to link them to build lane-lexaiichighway maps.

3.2 Generating Hypotheses about Road Lanes

From the previous steps of extracting low-level and micelémage features, we now have a bet-
ter understanding of the input image. In particular, we kndvich image sub-regions are most
probably road-regions, which pixels within the road-regi@re likely parts of lane-markings,

how the roads are laid out, and where overpass structures. &ased on this understanding, we
are generating road-lane hypotheses and linking themgligr ¢o delineate road-lane boundaries.

3.2.1 Road-Width Hypotheses as Cues for Road-Lane Hypothes

As mentioned earlier, a road-lane is modeled by a piecewisar curve that comprises multi-
ple control points and their properties, such as lateratiwahd orientation. Thus, generating
a hypothesis about a true road-lane would be equivalentetotifgling these (control) points’
locations. However, given that the boundary location ofirtames are unknown, it is difficult
to localize the centerlines of road-lanes. Instead we tiy&® pixels of lane-marking detection
results (or lane-marking pixels). No lane-marking pixétsg the true centerlines of road-lanes
are available, but one can interpolate the centerlineilmesifrom a set of regularly-spaced lane-
marking pixels.

As discussed earlier while describing lane-marking degact true lane-marking pixel has
many neighboring lane-marking pixels regularly-spacedjitudinally and laterally (or orthog-
onal to the longitudinal direction). Because two true |lamakings located laterally at each
other’s side can be used to accurately measure the widtle@dtd at a location, we are looking
for lane-marking pixels that have strong supportive (oghboring) patterns in longitudinal and
lateral directions of the roads. The likelihood of a lanerkiray pixel being a good road-width
cue is measured by two scores capturing these neighbonpmpss. Figurg¢ 3.8(R) illustrates an
example of lateral and longitudinal supports for a lanekimay pixel.

While searching for lane-marking pixel candidates, we daa atilize our prior knowledge
of the actual road-width of a normal highway. For examplepading to a governmental guide-
line [U.S. Department of Transportation, 2007], the minimwidth of a highway lane is 12 feet
(3.7 meters). Because the ground resolution of our testenmggnown, we can remove any
pairs of lane-marking pixels that have lateral support,(dstance measured orthogonally to the
estimated driving direction) shorter than 24 pixels (24efsx< 15 cm/pixel = 3.75 meters) or
longer than any maximum values. However, care must be taédmebincorporating such prior
knowledge because road-widths vary — on arterial highwages, some of the road-lanes may
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(a) A lane-marking pixel has its (b) Resulting Road Width Cues. A dumbbell-like symbolis a

neighboring lane-marking pix- road-width cue where the two circles at the ends of a line in-
els along the longitudinal direc- dicate lane-marking pixel locations with strong longituali
tion and across the lateral direc- and lateral neighboring lane-markings.

tion.

Figure 3.8: These figures show the process of searchingddrnaedth image cues.

have wider or shorter lateral lengths. For example some samape relatively shorter widths
where they merge and there they enter. We empirically fohat22 to 35 pixels worked best
for the variation in road-widths.

From road-region segmentation results and lane-markitegtien results, we already have a
good sense of which image sub-regions are likely to be partsads and which part of estimated
road-regions are probably lane-markings. To make the Bedithese road-width cues efficient,
we begin with superpixels that belong to the segmented regidns. For each superpixel, we
investigate whether each of the lane-marking pixels hasfizistt number of neighboring lane-
marking pixels in longitudinal and lateral directions oe tioads. Any lane-markings with more
than the predefined threshold remain in the candidate lisjéoerating road-lane hypotheses.
Figure[3.8(H) shows the results of a road-width cue searchoadl-width hypothesis is repre-
sented by a pair of a numeral width value and two lane-margixels.

After we find a set of road-width cues, the next step is to grea set of road-lane hy-
potheses. This process is executed in a similar manner tothhe road-width cue search.
For each road-width cue (or road-width hypothesis), we drawlines from the center of the
two lane-marking locations in the longitudinal directiardagroup together any road-width cues
within extending line segments. This forms a road-lane typsis. The longitudinal direction
corresponds to the driving direction estimated earliemfextracted lines. Figufe 3.9(a) shows
an example of a road-lane hypothesis. A green circle with iewdashed circle represents an
input road-width hypothesis and the green line defines thgeraf a road-lane hypothesis search.
This search results in grouping the neighboring road-widiss, depicted by magenta and yel-
low circles, around the input road-width hypothesis. A bleetangle depicts the boundary of a
road-lane hypothesis which is obtained by connecting twe-aarking pixels of all road-width
hypotheses. Figufe 3.9][b) shows a set of resulting roagligpotheses.
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(a) A search around an input road-width hypothesis is exeltat generate a road-lane hypothe-
sis. The resulting road-lane hypothesis covers a part afeartrad-lane.

(b) The road-lane hypothesis generation process prod@degbtheses about the 10 true road-
lanes.

Figure 3.9: These figures show the results of the road-lapethgsis generation process. Most
of the resulting hypotheses are found from true road-lanes.

3.2.2 Connecting Road Segments for Delineating Road Bounda

By searching for road-width image cues and linking the idiet cues, we generate a set of
road-lane hypotheses. To extract boundary lines of trud-la@es, we need to link road-lane
hypotheses together. We formulate the problem of linkingdtlyeses as the min-cover problem
in which we search for a set of road-lane hypotheses to malyinaver the estimated road
regions with a minimum sum of costs.

Suppose that there isnumber of the true road-laneg;, ..., R,, in an input image. Let{,
denote a hypothesis about a true road-lane,R. The hypothesis,, is a noisy estimate, based
on collected image cues, of a part of a true road-lane in hetiimage.

A road-lane hypothesid/,, is represented as a piecewise linear curve (or a polylieg) t
consists ofn number of vertices (or control pointd), = (v, 1, ..., v..,) and|E| = m — 1 edges
linking two adjacent vertices. Each of the vertices hastirepertiesv, ; =< I, ;, w, ;, 0, ; >,
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Figure 3.10: This figure illustrates a road-lane hypothiésisconsists of four vertices. The blue
rectangle represents the boundary of the hypothesis. sre@mple, to obtain the boundary of
a road-lane hypothesis, for each of four vertices, we firatvda line segment with a length of
the lateral width in an orthogonal direction to the drivinigedtion of the road-lane; we then
collect two extremity points from individual line segmentge finally connect them either in a
clockwise (or counterclockwise) fashion.

wherel, ; = (z,;,y,;) is a 2-dimensional location (or pixel coordinates),; is the (lateral)
width at the given location, angl.; € [0, 7], is the orientation. In fact a vertex corresponds to
a road-width hypothesis described in the previous sectiagure[3.10 shows an example of a
road-lane hypothesis consisting of four vertices and tadeges. Figurg 3.9(b) shows a set of the
generated road-lane hypotheses.

We are looking for a new set of road-lane hypothesés= {L.,..., Ly}, which link the
generated road-lane hypotheses based on the previoualpethtocal evidences of the unknown
true road-lanes with a minimum sum of linking costs. Whilking road-lane hypotheses, the
new set of road-lane hypotheses should maximally coverdtimated road image-regions.

X" = argng}nCost(X)
Cost(X) = Y C(Ly)

L;eX

where C(L;) is a cost of linking between any two road-lane hypothesHs, and H;.
Our formulation is motivated by two previous studiés [Fekavalb and McAllester, 2006],
[Zhu and Mordohai, 2009]. For our cases, we generate a ssgtpaftheses about unknown true
road-lanes to cover approximated true road image regiohsreas, for their cases, they gen-
erate hypotheses to delineate object contqurs [Felzelfisand McAllester, 2006] and to cover
road regions in a LIDAR intensity image [Zhu and MordohaiQgp Ours differs from their
approaches in that we search for potential links based ondlected geometric cues and we
identify the most probable link between two hypotheses &gking photometric image cues. In
contrast, they seek a series of sequential hypotheses.

To find approximate solutions to these cost functions, wesaewo different linking func-
tions. While linking these hypotheses, we must be carefulalink any that are not on the same
true road-lane or if a potential link between two hypothdaés to comply with any local ge-
ometric and photometric constraints. The first linking filme considers a potential connection
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between any two hypotheses purely following geometric taimds. And the second function
investigates any photometric constraints of a potentil li

T
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(a) The collected image cues and prior infor-
mation about arterial highways imposes geo-
metric constraints on finding a potential link-

(b) The obtained photometric image cues pro-
vide strong evidence of potential links among
the generated road-lane hypotheses. A track-

ing of any two road-lane hypotheses. ing of photometric cues among any potential,

geometrically plausible, links is conducted be-
fore actual linkings occur. Red dots represent
lane-marking pixels and a blue rectangle rep-
resents a road-lane hypothesis.

Figure 3.11: These figures illustrate how two linking fuonaos find the best potential links among
road-lane hypotheses.

While implementing the first linking function, we refer toetlyeometry of actual arterial
highways where the geometric shape of the road is highletaded with highways’ speed lim-
its. In other words, it is easy to observe a low curvature 1sl@abe on highways due to its higher
speed limits. Another piece of useful knowledge for linkimgpotheses based on geometric con-
straints is to observe driving direction between two raaakl hypotheses. It is highly unlikely
for any two hypotheses to be linked to each other when a patbrabgeneous driving direction
is absent. Figure 3.11{a) illustrates an example of gegntietsed hypotheses linking, where a
road-lane hypothesiss, is searching for a good candidate hypothesis with whiclinta IDue
to the fact that our target roads are arterial highways, amptheses located behind an input
hypothesis should be discarded. We compute one-to-mangrddticts between an input hy-
pothesis and all remaining hypotheses. We do this to filteaoy hypotheses located behind the
input hypothesis. In the example shown in Figure 3.11(&) hypothesisy,, is removed from
the candidate listy; andvy, remain in the candidate list for further considerationr €ach of
the hypotheses in the candidate list, we compute the valgeanhetric linking potential:

*

v* = argminG(u,v), where,
k
G(u,v) = Zgj(u,v)
j=1
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whereg;(u, v) is a function computing th¢th geometric property between the two hypotheses,
u andv. The geometric properties of a link are three: curvatyréu, v), intersection angle,
g2(u,v), and Euclidean distance;(u, v). The curvature at the intersection poihtcan be
computed by using two linked points the vertexof u; andv; of v; are computed by

UQ—I
U1 — U2

" Tog = IMJor — valJor — 1]

The second linking function investigates whether sufficiamage cues are present (i.e., lane-
marking pixels) on a potential path linking any two hypo#esA potential path can be thought
of as a piecewise linear curve along the centerline of a trad-tane just like our road-lane model
where each line segment of the curve meets another line sge@ha control point (or a vertex
between edges). We assume that an optimal link always dasigeen two consecutive control
points that maximizes photometric constraints aroundithke The second linking function thus
searches for the locally optimal link between two vertickemg a potential path between two
road-lane hypotheses. A connection between all theselyamalimal links would result in an
optimal approximation of a true road-lane. The incremestamination of consecutive links will
be terminated when the next potential move intersects witieleanother road-lane hypothesis
or one of the image bounds. While tracking the locally optipeth, the direction of tracking is
initially set to the direction of the hypothesis, but aftiee tnitial step, the direction is adjusted
by looking at the estimated driving direction.

Figure[3.11(0) illustrates such tracking of road-lane lutarg cues. In this example, the
tracking is about to begin at the vertex2] of a road-lane hypothesis and search for a locally
optimal link for the next point. Currently, it examines orfetioe possible links to a poingl,
within the yellow rectangle where lane-marking pixels oe k#ft side of the tracking direction
are marked with magenta circles and lane-marking pixelfiemight side are marked with blue
circles. We use two line segments to collect road boundaey:cailongitudinal linel; = p1 —v2
and a lateral linel, = p2 — p3. We first project all lane-marking (magenta and blue) pixels
onto these two lines. Let us denqi@) as a projected point of a lane-marking pixel The
projected poinp(b) on linel;, for example, can be expressedéls) = v2 + b(pl — v2), where

= m%. p(b) is projected on the line segmehtif it satisfiesb € [0, 1]. Using these
projected points, the second linking function evaluatesghality of a potential link to the next
control point (e.g., a line segment betweenandp1).

QP) = aq(P)+ (1 —a)e(P),{pi=(xi,v) € P}i_, .
> i1 I (pi € Biny)

Ch(P) = K 7Binj:1 ..... K
B | max(b) — min(b)|
eP) = 1= = fwidih/2

whereP is a set of the projected pointsjs a variable that controls the contributions of two qual-
ity function values, “Bin” is a quantized histogram betwekeand 1 aboub and “roadwidth” is
an estimated quantity that is initially set to the averagatefral lengths of vertices in a road-lane
hypothesis (e.g., the mean value of lateral lengthsladnd»2). The functiong; measures how
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widely dispersed the points projected onto the longituldine /; are. By contrast, the function
g2 measures how closely dispersed the points projected aalléites [, are. In general, the opti-
mal link has a wide spread projection on the longitudina lamd a narrow spread projection on
the lateral line. Figure 3.12(a) shows the result of a phetoimroad-lane boundary cue tracking
and Figuré 3.12(b) shows two other results of tracking loath among road-lane hypotheses.
This linking function based on tracking is similar to worlathraces road image cues to extract
road-networks from low-resolution aerial images. In matiar, Zhou et al. use for their road cue
tracking an extended Kalman filter [Zhou et al., 2006] and &ghati and his colleagues utilize
an unscented Kalman filter [Movaghati and Moghaddamjoo8R0Uhe primary difference is
the ground resolution of testing images. Most of the vasiatiin object appearances, imperative
to analyzing high-resolution orthoimages, fail to app@dow-resolution aerial images.

(a) The result of photometric cue tracking il- (b) The obtained photometric image cues pro-
lustrated in Figurg 3.11(p). The road-lane hy- vide strong evidence of potential links among
pothesis labeled 82 was successfully, through the generated road-lane hypotheses. A track-
a high-curvature path, linked to another road- ing of photometric cues among any potential,
lane hypothesis labeled 62 . geometrically plausible links is conducted be-

fore actual linkings occur. Red dots represent
lane-marking pixels and blue rectangles repre-
sent the generated road-lane hypotheses.

Figure 3.12: These figures show examples of photometric-lar@a boundary cue tracking.
These figures also demonstrate that our tracker is ableltwfal high-curvature paths and long
paths between two road-lane hypotheses.

In summary, the linking function based on local geometrimstmints searches for
the potential links that maximally satisfy geometric cueShese geometric cues are ob-
tained from the mid-level image cues and prior informatidiowt the U.S. arterial high-
ways. The link function based on photometric constraintargdees for a potential link
that maximally complies with the spatial patterns of theedttd lane-marking pixels. The
best link between two road-lane hypotheses would be one Ittatily minimizes these
two constraint functions. Unlike previous work of the miover algorithm applications
[Felzenszwalb and McAllester, 2006],[Zhu and Mordoha)@J) where their solutions are ex-
plicitly searching for a sequence of hypotheses, we loolafeet of hypothesis pairs such that
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their potential, geometrically plausible, links are sediadly traced by photometric image cues
to cover road image-regions.

3.3 Experiments

This section details experiments conducted to investiteg@obustness of our approach to ex-
tracting a lane-level highway map and the accuracy of theltieg maps. In what follows, we
first explain the experimental setup and evaluation methtbds show experimental results, and
finally discuss the findings.
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. Surface material variation
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(a) Examples of “ramp,” “lanes merging,” “overpass,” “rosutface material vari-

ation,” are shown.
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(b) Examples of “image distortion,” “railroads,” “overhginmg traffic signs” are

shown.

Figure 3.13: Examples of complexity factors for measuresg tmage characteristics.
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3.3.1 Experimental Settings

From Google’s map serviewe collected 50 orthoimages that are sampled from the toere
tween the Squirrel Hill Tunnel to the Pittsburgh InternatibAirport. We also saved road-vector
screenshots of the orthoimages and manually drew bounidasy/df individual roadlanes in each
of the collected images for the ground truth.

The collected images are of arterial highway scenes. We\zethis level of highway image
contains a sufficient level of difficulty, which we would hakgeovercome if we increased the
number of test images. To validate our assumption aboutmplexity of our image collection,
we scrutinized each of our highway images. Fidurel3.13 slomngplexity factors used for this
analysis. Tablé 312 summarizes the result of this analpsisrims of the geometric and photo-
metric characteristics of our test images. We surveyedmages considering eight factors, each
of which indicated the complexity of an orthoimage from tlergpective of extracting bound-
ary lines of road-lanes. For example, the presence of a “ramg “overpass” may cause the
process of linking road-lane hypotheses to track a complerdgn-linear) road geometry. Note
that we are concerned with only ramps with high curvaturas 18 out of 50 images 23 ramps
appear. In addition, when two lanes merge, one of the tralgdezs must, to produce a correct
road geometry, disappear. From 27 images, we observed 89rangings. Unusual photometric
variations on highway images would prevent our approacim featracting, at a desirable level
of quality, a sufficient amount of low- or mid-level image fieees, resulting in incomplete road
boundary lines. “Material variations” indicate a variatim road-surface materials (e.g., asphalt
with concrete patches). Such material variation was oleskirvmore than half the test images.
“Urban Structures” refer to any man-made structures, sscbvar-hanging signs or railroads
crossing, orthogonal to the highway driving direction. dge distortion” indicates whether an
orthoimage has any ortho-rectification errors by a map copmich as uncanny surface warp-
ing or unrealistic 3-dimensional surface reconstructidfrem the statistics found in Taklle B.2,
we can rest assured that our testing image collection pesgsient difficulty to our highway
image analysis algorithms regarding photometric imagetians and the complexity of road
geometry.

We have a list of methods that require optimal parametergifoducing desirable results.
While extracting lines, we remove any lines the lengths oiclare greater than half of the in-
put image width (e.g., 600 pixels). We remove them becaude lsmg lines usually fail to align
with any highway contours, resulting in incorrect drivingstttion estimation. In executing road-
region segmentation, we apply a Leung-Malik filter bank [hg@and Malik, 2001], a multi-scale
and multi-orientation filter bank consisting of 48 filters htand-labeled highway images, which
are used for training a lane-marking classifier, and obtdidiferent textons to represent each
superpixel. We found our road-region segmentation methmodyced the best results whgrs
set to 0.2.5 is a parameter of the MRF that controls interactions betwesghboring super-
pixels. For driving direction estimation, the size of eacld gell was determined by dividing
the input image width and height by the diagonal length,(R8.3 pixels) of a normal vehicle
dimension (e.g., widtlx length =12 x 20 pixels) estimated from 15 centimeter per pixel ground
resolution. This allows a grid cell to contain a normal sizedicle, resulting in reasonable es-
timation of driving direction. For lane-marking detectjome use AdaBoost and found that 50

4http://maps.google.com
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Geometric
Photometric

Overpass

Lane merging
Number of Lanes
Material variation
Lane occlusion
Urban Structures
Image distortion

Ramp

N
e}
N
N
oo

18(23) 18(33) 27(39) 43733

Table 3.2: Summary of testing highway images’ characiesst

decision stumps (i.e., weak learners) produced the bestrtaarking detection results. We also
used a logistic regression to convert the discrete outpAtl@aBoost into a probabilistic output.
For overpass detection, we set the angle threshatd@aso as to detect greater intersection an-
gles between road-vector fragments. To execute the linkingtion based on local geometric
constraints, we usefl/8 as a cutoff that removed any potential link whose intersectingle
was greater than this.

3.3.2 Experimental Results

In this section we discuss the findings from testing our allgors. To the best of our knowledge,
no prior work or image data is available on extracting raaaelboundaries that we could use for
comparison. Hence, we had to come up with reasonable wayshfaing our results.

We evaluate resulting road-lane boundary delineation im+fimids: accuracy of matching
between output and ground truth pixels and counting the murabcorrectly recovered road-
lanes in the final outputs. Matching pixel-to-pixel aimsratdstigating the performance of our
approach at a micro-level; counting the number of roaddamims at revealing the accuracy
of the resulting geometries. To evaluate our results at ael{popixel level, we utilized the
method from evaluating performance of object boundaryatiete [Martin et al., 2004]. Simi-
lar to [Martin et al., 2004], we regard the extraction of rdade boundaries as a classification
problem of identifying boundary pixels and of applying thregsion-recall curves using man-
ually labeled road-lane boundaries as ground truth. Rogcis manifested in the fraction of
outputs that are true positives; recall is the fraction afect outputs over true positives. The
precision-recall depicts these two values together astleshold varies, capturing the trade-off
between accuracy and noise. In a precision-recall cunah efthe output pixels is evaluated
by whether it detects true positive pixels. Once we obtachstorrespondence between out-
put pixels and ground truth pixels, computing the precisiod recall is straightforward. While
resolving this correspondence problem, we must carefahsitlier a localization error that ac-
counts for the (Euclidean) distance between an output pimela ground truth pixel. Indeed,
localization errors are present even in the ground trutlgesas well. For resolving the corre-
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spondence between output pixels and ground truth pixelsittized the Berkeley Segmentation
Engine’sﬁ performance evaluation scripts. These scripts solvegusmidberg’s CSA package,
the correspondence problem as a minimum cost bipartitgrassint problem. We also used, as
a baseline method, BSE'’s probabilistic boundary detectidputs. BSE was developed to detect
object boundaries, not road-lane boundaries. In addisimice training BSE with our image data
is impossible, it may fall short of being a fair comparisorut Bince anyone can think of such
probabilistic boundary outputs as a starting point of daedimg road-lane boundary lines, we
compared it with our output.

Figure[3.14(3) shows the ground truth image of the input efsagad-lane boundaries. Fig-
ure[3.14(H) shows the probabilistic output of boundary inchithe color closest to red represents
the highest probability of being a boundary pixel. Fiqurd48c) shows the binary output of our
algorithms. Qualitatively speaking, our results outperfehose of BSE in that most of the road-
lane boundary lines are recovered. The BSE outputs, in@smiroduced a great deal of non-
road boundaries, such as those from vegetation or housgsreE3.1b quantitatively confirms
such qualitative differences between the two outputs inantjtative way with a precision-recall
curve. Tablé 313 presents an averaged performance difetetween the two outputs over fifty
test images.

\F-measure Precision Recall

Ours 0.82 0.77 0.89
BSE's 0.44 0.38 0.54

Table 3.3: An averaged precision-recall measure of mievell performance between the two
outputs.

5The BSE and related information are availablaté://www.cs.berkeley.edu/ ~fowlkes/BSE/
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(c) Output binary image.

Figure 3.14: These figures show the ground truth binary inaagetwo output images.
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(a) This figure shows an averaged precision-recall curvairewith red triangles
shows BSE's performance whereas a blue dot cluster showseofarmance.
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(b) This sub-figure magnifies our performance in the preoisexall curve.

Figure 3.15: A precision-recall curve about micro-levelghito-pixel matching is shown.
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The performance evaluation by a pixel-to-pixel matchingrad-lane boundary extraction
outputs might be insufficient in terms of achieving our goatduse the pixel-to-pixel measure
counted a match when an output boundary pixel is located taealtoundary pixel within a
predefined distance threshold (e.g., 100 pixels). Thesedazollection of boundary pixels does
not necessarily correspond to a road-lane boundary. Todfaluthese detected boundary pixels
must be interpreted as parts of a road-lane. In other wdndgjesirable output for our purpose,
is one that treats a road-lane as a polygon, bounded by adcpzth, where we can estimate
lateral road widths, curvature, and other interesting geamproperties along the centerline of
a road-lane polygon. Such an output would also present a difarence between ours and
those of BSE’s probabilistic boundary output. To measuh suacro-level performance, we
first visually inspected our outputs and the input image soike the correspondence between
the resulting road-lanes and true road-lanes appearingeomput image. We then counted the
number of correct and incorrect output road-lanes and mhisse road-lanes. If the area of
overlap between a road-lane output and a true road-lanaighhp greater than 80%, then we
count it a correct match. This counting results in a two-c@#ncy table for the performance
of each test image. Table B.4 shows a macro-level perforentirat is obtained by merging
individual contingency tables over fifty test images. Anraged performance is then computed
by using this table, precision:792 = ", and recall =0.771 = 2, meaning that 79%
of the resulting road-lanes are correct and 77% of true faaes appearing on the test images
are correctly recovered.

Ground Truth
Road-lane Not road-lane
Road-lane 337 88
Not road-lane 100 X

Output

Table 3.4: A contingency table is used to measure the mawed-performance of our highway
map generation methods.

Examples of resulting maps are shown in Figlres]3.16 thriBug®. Appendix_C includes
complete results of 50 test images.

Figure[3.16 shows some of the most accurate results witti tiledrue road-lanes appearing
on test images recovered correctly. While processing theages, our approach successfully
tracked high-curvature ramps, correctly connected raad-boundaries around overpasses, ef-
fectively handled variations in road-surface materials partial image distortions.

Figure[3.1¥ shows some reasonable results where most atitheoad-lanes are recovered
correctly. However, not all the true road-lanes have beeavered and some of the geometry
of the resulting road-lanes is incorrect. Our approach vable to correctly produce road-lane
maps from the testing images in Figlre 3.17 because theggesm@ontain more challenging
image characteristics. For example, the overpass in thediwswas successfully detected. But,
the underestimated boundary of the detected overpassa@snlinaccurate linkages of road-
lanes at the edge of the overpass. For the examples in thedsemw, there was a false positive
around the ramp. This happened because our method idemti@edad-shoulder image-regions
as a road-lane. In the testing image in the third row, the @aaf the overpass covers most of
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road-lanes located at the left of the overpass. Even wittceessful detection of the overpass,
due to a relatively high curvature, our approach failed twexily identify the direction of road-
lanes. The railroad appearing in the testing image in thelicow imposed an occlusion around
the lane-merging image-region, resulting in an incorredtdge between the recovered road-
lanes. For the last example of Figlire 3.17, the road imagjems on the overpass are distorted,
resulting in one of the three road-lanes being completetiiaaovered.

Figure[3.18 shows near-failure cases where some of thedaaklanes are not recovered and
where some of the true road-lanes are incorrect. The tegidraaown in the first row posed
the most significant challenge in our test image collectidine road-lanes appearing on the
left of the image are significantly distorted and a cascade/efpasses makes it even harder to
analyze. Although our approach recovered some parts ofukgdad-lanes, most of them were
inaccurate and the linkages among them were incorrectiriohted. In the second example, our
approach failed to link road-lane hypotheses due to theepoesof the bridge’s suspension span
and was unable to complete the linkage of road-lanes neasvitipass at the bridge-entering
region. Testing images shown in the third and fourth rowsxgtbcomplicated road geometries.
Image distortions appearing on overpasses made it eveerm@ardrack road-boundary image
cues. Our lane-marking detector failed to detect road-danncues from the road surface of the
overpass in the last example and was unable to correctlyadgt road-lane boundaries, resulting
in incorrect linkages of road-lane hypotheses around tleepass.
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Figure 3.16: There are two sub-figures in each row. The figarhe left is a test image and the
figure on the right is our output, where each road-lane ougpdepicted in a different color and
the background is depicted in blue.
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Figure 3.17: These figures show reasonable results where ebthe true road-lanes are not
recovered or some of the recovered road-lanes have intooeoections.
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Figure 3.18: These figures show some of near-failure casesevdome of the true road-lanes
appearing on test images are completely missed: some aétbgered road-lanes do not match
to any of the true road-lanes: and finally some of the recavevad-lanes have incorrect con-

nections.
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3.4 Summary

This chapter described our approach to extracting lang-leighway maps from a given or-
thoimage. To make road-lane boundaries computationattgssible and impose reasonable
challenges on our task, we chose inter-city highway ortlagies with 15-centimeter ground res-
olution. Such high-resolution orthoimages pose significhallenges, such as variations in ob-
ject appearances and complex geometry, to the task of érggaoad-lane boundaries. To effec-
tively address these challenges, we developed a hierat@gproach to three tasks: to collecting
road boundary image cues via bootstrapping, to generatipgtheses about the unknown true
road-lanes, and to linking hypotheses with respect to tloégphetric and geometric constraints
imposed by the collected image cues and prior informatiompalrticular, through bootstrapping,
we collected low-level image features from extensive ima@eessing. We refined them to pro-
duce task-specific, mid-level image features, such asnaaring detection, driving-direction
estimation, overpass detection, and road-region segtmant&esults of road-region segmenta-
tion defined the image sub-region of interest where landdamgudetection results were directly
used to generate road-lane hypotheses. We formulatedskeftéinking road-lane hypotheses
as a min-cover problem and found an approximate solutiomptamenting two linking func-
tions. The first function searched for potential links beswéwvo road-lane hypotheses based on
the gathered geometric cues. The second function verifegsktpotential linkages by tracking
potential paths between two hypotheses. Such a trackirgadfisoundary image cues enabled us
to link two hypotheses along distant, high-curvature, aawdiglly occluded paths. We tested our
algorithms with 50 challenging arterial highway imagese Tésults were evaluated according to
two aspects: pixel-to-pixel matching and counting corged incorrect outputs. Our approach
demonstrated promising results in that, overall, 79% ofésealting road-lanes were correct and
77% of true road-lanes appearing on the test images werectiygrrecovered.
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Chapter 4

Recognizing Temporary Changes to a
Highway

In the previous chapter, we demonstrated that we could genarhighway map of road-lanes
from an orthoimage. Such a lane-level detailed highway mi#pinformation of traffic rules and
real-world coordinates can be prepared in advance for ggiigitonomous and assisting manual
highway driving. However, describing unexpected occuresma priori, such as traffic accidents
or road work, is of course impossible. A self-driving vekiohust be able to effectively handle
such events, as they can lead to temporary changes in roaltioos. For example, suppose
that the road-lane a vehicle is driving on is unexpectedifteshlaterally due to a road work,
whereas that lane is depicted on the map as following a btrpgth. What if the vehicle’s
braking distance is longer than its sensing horizon?

To effectively handle unexpected events on a highway, amamious vehicle should first be
able to recognize them. To provide a vehicle with such pdiraepapability, this chapter presents
a collection of computer vision methods that identifies tharus of a workzone, e.g., the be-
ginning/end of a workzone, and recognizes temporary chatgaighway driving conditions,
e.g., a decrease in speed or blockage of a lane, throughniéoogof workzone traffic signs
in perspective images$ [Seo et al., 2011a, Seo et al., 20}h detailed information about a
highway workzone would help a robotic vehicle properly msp to unexpected events on a
highway and in turn lead to safe and reliable autonomouswaghdriving. This functionality
would also help a human driver be on alert while driving bytsunexpected events.

Regarding their location and appearance, workzone signkighly constrained by govern-
mental regulations [U.S. Department of Transportatio®20However, such constraints do not
make it easy to recognize signs in images because of the ligdtion in each sign’s image
appearance. Under perspective imaging, the projectiorBedlianensional traffic sign onto a 2-
dimensional image plane distorts most of the sign’s geametoperties, such as its angles, dis-
tance, and ratios of angles [Hartley and Zisserman, [2008Jarhexample, consider a canonical
workzone warning sign in the U.$. [U.S. Department of Tramtgiion, 2009]. It has a diamond
shape, orange color, equal corner angles, and equal-ledgt#s. When such a sign is projected
onto an image, the sign’s equiangularity and equilatgralié not preserved. In addition, the line
of sight between a sign and a camera perceptually and cotignatly changes the color of a
workzone sign from that of the sign template. This leadségtioblem of intra-class appearance
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variation. This type of variation occurs when the appeaasfdhe same workzone sign varies
based on the conditions of the image acquisition process.

To cope with such challenges in recognizing workzone sigasapproach learns variations
in color in workzone sign images to perform a pixel-wise Ijneolor classification, identifies
blobs to localize sign image regions, then represents gerpnage in a homogeneous feature
space to reduce the variation of geometric shapes for moreate sign classification. Realisti-
cally, any sign recognition system is going to make errorscetirectly classifying signs or even
missing some signs. To address these potential recogaitiors, we devise two algorithms. The
first makes use of temporal redundancy of sign occurrencagsheir corresponding classifica-
tion decisions, in order to reduce false positives. Thesg@estimates the likelihood of driving
in a workzone based on confidence values of the previousifatasens, in order to avoid the
impact of false negatives.

4.1 Recognizing Highway Workzone Signs

A highway workzone is an exceptional event that briefly clesndriving conditions in terms
of road geometry and traffic rules. Although a workzone ptaansually advertised in advance,
such warnings are not precise enough that a robotic vehmlgdknow the bounds and types of
work. Individual configurations of workzones vary, but, &&fe driving, a highway workzone in
the United States is required to consist of four sectiongfeas): advance warning, transition,
activity, and termination [U.S. Department of Transpooiat2009]. Upon entering an advance
warning section, human drivers are informed of what to ekpbead. While driving through
a transition area, drivers may be forced to deviate fronr th@imal paths. The activity area is
where the work actually takes place and the terminationiareere the traffic resumes normal
activity.

Figurel4.1 shows 10 workzone signs that are typically olesewhile driving thru these four
different workzone sections. Specifically, the first imagebserved in an advance warning area,
and the next three images appear in a transition area, thidae bounds of the workzone. The
remaining signs are about temporary changes to the higbwaffic rules and geometry.

Our task in this chapter is to reliably detect and accuratklgsify relevant workzone signs
from a perspective video, in order to acquire detailed imfmion about a highway workzone,
such as where a workzone begins/ends and how the work chdrigeg conditions.

To this end, we develop computer vision methods capabletetteg and classifying a set
of relevant highway workzone signs as well as reducing piatiesign recognition errors based
on the confidence values of previous sign classificationsti®@g4.1.1 and sectidn 4.1.2 detail
our approach for detection and for classification of worlkezsigns. Sectioh 4.2 explains our
approach for dealing with possible sign recognition etrors

4.1.1 Workzone Sign Detection

Although it is obvious that the color of a workzone sign israge, it is challenging to correctly
identify orange pixels in a given image because of possiateation of the color orange. To
effectively deal with such variation, we formulate the l@ag of the orange color variation as a
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Figure 4.1: A montage of ground truth annotation examplds (Eyan) rectangular lines out-
lining the signs represent the contours of the true signd,tha (green) boxes represent the
signs’ bounding boxes. In the top row, from the left, the iesgepresent examples of W20-1,
R22-1, G20-2, W21-19, and R2-2-2. The bottom row includesygles of W1-4, W1-4L, W1-
4R, W4-2R, and W4-2L. We include these designations (ortiflers) of workzone signs for
completeness and also to later represent the sign targstesla

binary color classification using the Bayesian inferenaenwork. [Bishop, 2006].
P(sign|X) = nP(X|sign) P(sign)

whereX is an image comprised ¢&idth x height | number ofin-dimensional pixelsx; € X and
n is a normalizer for the posterior distribution. In part@ylk; is a 2-dimensional color vector
of which components include hue and saturation values. dlseegor probability,P(sign|X),
which assigns a value to the probability that individualgieare part of workzone signs, is com-
puted by multiplying the likelihood function?(X|sign), and the prior probability distribution,
P(sign), of traffic sign locations found in image frames. We obtaie gior probability den-
sity of workzone sign locations from our ground truth datajck is comprised of several hours
of highway workzone video footage and manual annotationgure[4.2 shows the density of
workzone traffic sign locations, which is obtained by pramcall of the ground truth bounding
boxes onto an image, and is used as the prior for workzond®igtions.

We use AdaBoost [Freund and Schapire, 1996] to learn théhded function, P(X|sign),

of a given pixel as a part of a workzone sign. The training datamprised of a set of workzone
images, some of which were downloaded from the web while ¢sewere obtained from our
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Figure 4.2: A heat-image (643180) showing workzone sign locations where the color closes
to red represents the highest density. The (white) rectangashed-line defines the region of
interest (ROI) for our workzone sign detection.

workzone video images. Using this data, we train a set of viealners and their weights.

P(x[sign) = mode (U;g(f(x;|sign)))
where,
H

Fxjlsign) = > aihi(x;))

i=1

whereH is the number of weak learners, represents a weak learner implemented by a decision
stump andy; is its weight. We use logistic regression to implement thecfion g to convert

the binary output of AdaBoost into a probabilistic outputi@@man et al., 2000]g(f(-)) =

exp(f(-))
exp(f(-))+exp(=f(-))’ .. _ . )
For a given image, our color classifier evaluates pixelsiwithe ROI, as presented in the

Figurd4.2, and assigns a probability for whether indivighireels are part of an orange workzone
sign. Our sign detector runs a connected-component groapgorithm to identify orange blobs
and generates up tb bounding boxes as candidates for a workzone sign. The detxn
removes any of bounding boxes with rddsmaller or larger than the predefined thresholds and
uses non-maximal suppression to select the largest bogibdixu. The confidence value of the
selected bounding box is computed using the mode of the @nded values assigned to all

1The radius of a polygon is measured by computing the Eudlidéstance between a point on a side (or edge)
of a polygon and the centroid of the polygon.
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pixels within the bounding box. To detect a regulatory worke sign which includes two colors
(orange at the top and white at the bottom), we implement agteufor investigating the aspect
ratio of a bounding box, in order to extend the height of thertabng box.

To evaluate the performance of our sign detector, we usedffermance metrics used for
PASCAL object detection challenges [Ponce et al., 2006].0Atput bounding boxg;, is con-
sidered a potential match to the ground truth bounding bgxn a given image frame, if their
area of overlap is greater than a predefined vatue, % When a potential match is
found in a given image, sign detection performance can Zktééuanalyzed by measuring the

. . - Area(o;Ng;) _ Area(0;Ngi)
following performance metricgrecisions—; - andrecall—m.

Color-based Shaped-based [Barnes et al., 2008]
Warning Regulatory Warning Regulatory
Precision| 0.951 0.954 0.487 0.535
Recall 0.928 0.903 0.497 0.662

Table 4.1: For this test, we used 103 workzone images, in@ud5 warning (or diamond-
shaped) signs and 41 regulatory (rectangular-shaped)}zaneksigns. We set 0.5 as the value
for a potential match.

Table4.1 presents macro-averages of precision and relcatera macro-average is computed
by averaging individual measurements over testing imagescompared the performance of our
color-based sign detection approach to Loy and Barnes’ adgtiShaped-based” method in Ta-
ble[4.1) which utilizes geometric shapes of signs to achsgye detection [Barnes et al., 2008].
Loy and Barnes’ method did not perform well for our data bseamost of our testing sign im-
ages have low contrast in image intensity. Figuré 4.3 showesxamples of the sign detection
output obtained by our method.

4.1.2 Workzone Sign Classification

An image sub-region localized as a potential workzone sgyivien as input to our sign classi-
fication module. Our task in this thesis is to recognize thenoks of a workzone and temporary
changes to highways by classifying workzone signs. In ggsird we chose 9 workzone signs as
reliable indicators of workzone bounds and driving comditthanges and assigned all remaining
workzone signs to another class. Tabld 4.2 shows the nunfilsggroimage examples used for
each target class.

W20-1
R22-1
G20-2
R2-2-2
W1-4
W1-4L
W1-4R
WA4-2L
W20-5L
all other

86 55 35 75 36 26 43 19 17 92

Table 4.2: The number of sign images for each target class.alllother class represents one
that includes all other workzone signs.
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Figure 4.3: Some sign detection output images are shownthi¢le(yellow) rectangles outlin-
ing the signs represent the overlap between the groundreatangle (green) and the detection
output (red).

It is challenging to correctly classify sign images becaok¢he variation between each
sign’s appearance in an image. To reduce such variation se&Uog-polar transform, which
is a method used for transforming an image from Cartesiandawates into an image in log-
polar coordinates [Belongie et al., 2002]. This transfosmaffective in reducing the variation of
sign shape and text because it densely samples image tptealsies near the center of a sign
image where the difference between signs images is relasveall, and then sparsely collects
values from sign image boundaries, where the geometriortisis are large. The log-polar
transformation of a point in Cartesian coordinatés;, y) is mathematically defined as

T(I(@.9) = [+ pl(o.y) cos(0).cy + pla. ) sin(0)].
plocs) = tog (yles =0+ (e~ 7?)

wherec, andc, are coordinates of a sign sub-image’s centroid. The coateitransformed
values are then quantized into predefined bins.

Figure[4.4 shows three different images of the same works@reand their log-polar im-
ages. The first image in the top row is the canonical template workzone sign while the
other two images are workzone sign images cropped from al@ouvilata. Although their actual
appearances are quite different, their log-polar imagessamilar to each other. The dimen-
sion of the canonical template image (32,000) is determinyeits width (200) and height (160)
whereas that of the log-polar image (1,024) is determinethbycombination of the number of
bins indicating the distance to the cenigr(32), and the number of bins indicating orientations
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in counterclockwiseq, (32).

WORK ZONE |

STATE LAW

TURN ON
HEADLIGHTS

' @
Figure 4.4: Examples of log-polar transformation. Thrd&edent images of the same workzone
sign compared in a Cartesian coordinate and a log-poladowe.

For a givenimage sub-region localized by our sign deteotorsign classifier first normalizes
the image to reduce intensity variation, then converts tbpped image into a log-polar image
based on the parametersandd, and finally produces a column vectgr,x 6| x 1.

Even with such an effective feature representation metaglconventional supervised clas-
sifier might still fail to generalize the target function ifegh-dimensionality space (e.g., 1024)
because of the small number of examples (e.g., less thandrdd)rfor each of the target sign
classes. To handle the curse of this dimensionality propleenfurther reduce the original di-
mension of the log-polar image using principal componeryais (PCA). We then build an
eigen-space from the labeled training data and projectiagesign image in the log-polar coor-
dinate space onto this eigen-space. The eigen-space igisethpfk eigen bases, all of which
represent more than 95% of the total variance in the logrpolage data matrix. Empirically
we found that 10 eigen bases achieved the best performance.

Table[4.8 shows the results of our workzone sign classifinatiThe hyper-parameters of
these classification methods were chosen through croitatiahd Due to the random selection
of our training data, we averaged our results over 5 sepauate for each method. To mea-
sure the effectiveness of our sign image representatiorcongared the results with another
representation method, which scales raw-intensity sigages into an image of the same size
(e.g.,100<100), converts it into a multi-dimensional vector (e.g.0Q0x 1) and then reduces the

2For SVM, we used the LIBSVNhttp://www.csie.ntu.edu.tw/ ~¢jlin/libsvm/ . We found that
a SVM with an RBF kerneld{ = 0.125) worked best and used an one-against-one scheme for rfags-classifica-
tion. LDA used the weight vector that best performed agairesvalidation set for testing. O&NN implementation
worked best when it used the tap closest neighbors in terms of Euclidean distance in thensjggce.
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dimensions using the precomputed eigen bases. The lasbwgoaf Tabld 4.8 show the perfor-
mance of three classifiers that use a raw-intensity imageseptation. The table demonstrates
that log-polar sign image representation helps class#iengeve better classification results. All
evaluation metrics indicate that SVM outperforms the ottwer methods.

‘ SVM LDA KNN

Precision| 0.965/0.012 0.856/0.035 0.285/0.027
Recall | 0.957/0.016 0.854/0.040 0.387/0.007
Precision| 0.896/0.035 0.756/0.030 0.252/0.015
Recall | 0.841/0.028 0.742/0.030 0.377/0.015

Table 4.3: Performance of three different sign classificathethods measured by standard met-
rics. Each cell in the table shows the mean and standardtaevia

4.2 Handling Workzone Sign Recognition Errors

Although the previous two sections demonstrated promis&sglts for our sign detector and
sign classifier, it is realistic to conjecture that our agmtomakes mistakes in recognizing some
workzone signs. When either a miss or incorrect classifoatccurs, our methods might fail to
acquire detailed information about a highway workzone.

To handle such potential sign recognition errors, we detisealgorithms that utilize the
sequence of previous sign classifications. These methbdsmréhe accuracy of our sign recog-
nition method, which is able to accurately recognize theonmiig]of the target class signs.

Our sign classifier produces a sign classification decisi@his confidence value in cases
where the sign detector produces a bounding box as a pdtsigtieimage. These confidence
values represent the level of confidence in our approacpiesentation in terms of determining
whether the cropped images are instances of target worksigns. We can thus use the mag-
nitude of the confidence value to infer whether our vehiclgriging in a workzone. However,
a problem with using these values directly is that a spadfityonfidence values exists, as we
cannot obtain such evidence from workzone regions whereankaene signs are posted or from
true workzone signs that are misclassified as other objébesunderlying aim of our algorithm
is to propagate confidence values over time in order to holdzgwo values while driving in a
workzone, even when the system does not have direct obseredita workzone sign or misses
any workzone signs. While spreading these values, theteffgaropagation should decay over
time, in order to prevent an over-estimation of the trueestat

To implement our idea for driving region inference, we us@i§3@gan smoothing of the con-
fidence values over a specific time domain. Classificatioridence at theth time stepy;, is
propagated to adjacent time periods as far as the valae of

(!
[0 % wyl,_ , 11 .0 wj=exp <_ 202 )

Assuming that the driving speed is 50 mph and the frame rétB [gr second, an image frame
in a video represents a distance of 1.4 meters of drivinghidase, if we set to 150 (or 150
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image frames), the confidence value will be propagated di@mn2eters, both toward future and
past time steps. Note that, although it is unnecessary fmagete confidence values toward the
past, we propagated them in both directions for convenmeptementation, without paying any
extra computational cost. The choicecofs critical for production of a smooth inference curve.
If o is not optimal, either discontinuity or inflation will appea the resulting curve. We define
the value ofo based on the rough estimation of distance between workagns.sThe likeli-
hood function for driving in a workzone is then computed byliad the current classification
confidence valuej;, and the propagated confidence values accumulated at &me,sibtained
from the neighboring time framesgore; = §; + 5;, whered, represents the confidence values
propagated to the time step For example, suppose that our sign recognizer misses sitjuat
time step,j, wherei < j < i+ 0. Because time stepis in the propagated confidence interval,
o;, our vehicle knows that it is driving on a highway workzoneem® with a sign recognition
Mmiss.

In a workzone video, a workzone sign appears multiple tinegerk it disappears from the
camera’s field of view. Our approach utilizes such tempogdundancy of sign occurrences
to improve classification accuracy, particularly redudihg rate of false positive. Specifically,
when the system makes a classification decision, it refguseidious classification outputs.

T
y,(0y) = arg max {ht(ot, c)+ Z Y hi_i(0s_1, c)}

=1

whereh,; (o, c) andh,_;(o, c) represent the classification outputs for an image sub-negioat
time stepst andt — [, for the classg, and-y is a discounting factor that determines contributions
of previous decisions to the current classification denisidote the sign detector applies non-
maximum suppression in order to ensure that image subfregipando,_;, represent the same
object in different scales. By investigating previous sifisation decisions on the same sign
in different scales, our approach offers the opportunitgiter its current classification decision,
which hasl —0.965 chance of producing a false positive based on Table 4.3. \Wkssification
decision is made, the system propagates its classificatiofidence over adjacent time frames
based omw.

4.3 Experiments

This section details experiments conducted to investitateobustness of our sign detection and
classification method with images acquired under varidusihation conditions. This section
also discusses the reliability of our potential sign recgm error handling method under the
use of a series of sign classification outputs.

4.3.1 Experimental Settings

We collected several hours of video footage of various hahdriving experiences and prepared
5 videos out of these as testing data, where each of the fieesishowed a vehicle’s perspective
when driving on a normal highway, passing a workzone, andrdyion another normal highway.
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Figurel4.5 shows the setup for our video acquisition. Eathexfe videos was decompressed into
a set of images. The number of images in the videos varied $®raral hundred to thousands.
Table[4.4 gives detailed information about the video datar éxample, in the video datal,

there are 447 out of 3,305 images containing workzone sigds3& images containing other
traffic signs.

| A B C D E

Sum ofimages | 3,305 4,232 874 3,148 3,280
Workzone signs | 447 603 234 451 477
Other traffic signg 36 89 21 68 62

Table 4.4: These video data were acquired under variousweeednditions. The first two videos
(A&B) were recorded in winter with snow accumulation in treeckground, while the following
two videos, (C&D) were obtained in spring, under fairly dentlumination conditions (i.e.,
sunny and clear skies), and the last was recorded on a rayny daring.

——

A vision sensor

Non-reflective cloth

Figure 4.5: A setup of workzone video recording.

For each of the video data, a stream of images was given tgstars, which was required to
localize signs, if any, and classify them, if necessary.tRersign detector and classifier, we used
the best-performing learners described in Sed¢tion . 1d1Samtiod 4.1]2. We empirically found
that the temporal smoothing worked best whemas 0.9. We set to a value in the range of 350
(i.e., 500 meters) to 800 for Gaussian smoothing based osctide of highways and the maxi-
mum inter-distance between signs, as described in [U.Saibepnt of Transportation, 2009].
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| A B C D E
Sign Detection | 0.782/0.474 0.314/0.796 0.825/0.426 0.721/0.548 0.92BI0
Sign Localization | 0.940/0.474 0.841/0.909 0.915/0.775 0.948/0.790 0.91870
Sign Classificatior] 0.823/0.678 0.696/0.539 0.598/0.579 0.719/0.704 0.58080

Table 4.5: Results of performance tests for individual meslu

4.3.2 Experimental Results

Table[4.5 shows experimental results of workzone sign neitiog tests. The first row shows the
performance of sign detection, which measured the numbs&gos$ detected in video data. This
is done on a per sign instance basis. The second row showsdtheaay of sign localization
in terms of overlap with true signs. The third row shows theuaacy of the output of our sign
classification with a given localized sign image. The two bens in each cell correspond to
precision and recall. In comparison with individual ungteedescribed in two previous sections,
Sectior 4.1.11 and Sectidn 4.11.2, the overall performaneeslahtly degraded, particularly, for
the recall rates of detection in the first row. This is the ltesithe dense manual labeling that
we used when annotating the bounding boxes, in which thditegjdeegan when a true workzone
sign was about 2020 pixels. By contrast, our sign detector was tuned to filtéramy orange
regions with dimensions smaller than>440. Performances of sign localization showed that
most of the true sign image regions were recovered once teey detected. For example, for
video data,A, even though the sign detector detected only 47% of the girturth signs, 94%
of the localized sign images were correct. These croppedemsare then forwarded to the sign
classifier that produced highly accurate classificatio29p.8 Some parts of the true signs are
cropped away, but the parts of the true signs that are impioita classification were passed to
the sign classifier. This enabled our approach to perfedéntify the bounds of the workzone
and robustly detect most of the driving condition changsshown in Table 416.

Table[4.6 summarizes the experimental results in termscofyr@tion accuracy of temporary
changes in driving conditions. The first two rows show theuaacy of workzone bound recogni-
tion and the remaining five rows show that of driving conditathange recognition. Our approach
demonstrated excellent performance in identification ofk@one bounds. For example, for the
test video data, there are 3 images that contain “workzone-begin” sigrs, R22-1in Fig-
ure[4.3). Although the performance of workzone sign classtifin on these sign occurrences
was not impressive (i.e., 0.083 as precision and 0.333 adl);emur sign detector and classifier
successfully recognized one of the three signs with highidence. The correct classification
in fact, happened at the middle of the three sign appearamzkthe first and the last (or latest,
in terms of time elapse) classification decision on the sagrewsere incorrect. If our system
only considered the latest classification decision withooking into previous classification de-
cisions, the system would miss an important workzone sigresentually, at best, underestimate
the bounds of the workzone. But one of our recognition ereording methods utilized these
consecutive classification decisions as explained in @qnidtl, enabling the system to turn on
the flag to indicate whether our vehicle was driving in a worke. Without these methods, we
might see inconsistent sign classification decisions os&nee sign in different time frames (or
scales) and miss some of the workzone signs which are imgdaiadetermining the bounds of
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a workzone. Thus, while there were fluctuations in workzadga slassification performance,
the overall trend was similar to this example, resulting um system’s recognition of all of the
highway workzone bounds in the test video.

Our methods did, however, make some mistakes in detectimgdeary changes in highways
conditions. There were 14 occurrences of temporary chatogaighway driving environments
in our test videos, and four of them were not recognized. Wais primarily a result of our sign
detector being unable to localize signs in the under- or-exposed images of the test video
data. This resulted in zeroes of the sign classifier's perémrce because our workzone sign
classifier did not receive potential sign images from theder for classification and incorrectly
classified some of the potential sign images.

| A B C D E
R22-1 | 0/9/0.727/0.889 o/8/0.5/0.875  o/1/0.5/1.0  o/5/0.625/1.000 o/3/0.083/0.333
G20-2 | 0/12/1.0/0.333 0/31/1.0/0.290 o/15/1.0/0.867  0/12/1.0/0.833  0/15/1.0/0.933
R2-2-2 N/A o/12/1.0/0.083 o/13/0.5/0.461 0/9/0.857/0.666  x/7/0.0/0.0
W1-4 N/A N/A 0/20/0.166/0.200 0/52/0.444/0.077 0/53/0.333/0.170
W1-4L N/A N/A x/25/0.0/0.0  0/24/0.876/0.876 /31/0.875/0.903
W1-4R N/A 0/30/0.882/0.5 ©/12/1.0/0.250 N/A x19/0.0/0.0
W4-2L N/A x122/0.0/0.0 N/A N/A N/A

Table 4.6: Results of performance tests on detection ofirdyicondition changes. The
four symbols in each cell correspond to succegsof fail (x)/number of corresponding im-
ages/precision/recall respectively.

Figure[4.6 details one of the experimental results, i.ele@idataD, where ther-axis rep-
resents the number of image frames organized by time angt&xés represents the target class
labels. An instance of sign recognition was counted as cowhenever a (green) circle, repre-
senting a ground truth, overlapped with a (red) “x,” represg) the output of the sign classifier.
Figurd 4.6(H) magnifies the dashed rectangle in Figure }ivd{are the “end-of-workzone” signs
appeared 12 times before they disappeared from the carfield’sf view. Two additional pieces
of information about the recall of sign detection are degadin red), which are not available to
our system during the testing phase, and the confidencesvafugign classification (in blue).
The dimensions of a sign in an image enlarge as it approabkdsounds of a camera’s view-
point. Nevertheless, because of unavoidable recognitimts the larger sign dimensions are
no guarantee of performance improvement. In our case, tbewvaf detection recall and classi-
fication confidence increased as the sign grew in size. Hawkedluctuation of these numbers
were observed to be a result of recognition error. Two of #st five classification decisions
were incorrect. In spite of this, the discounted sum of th&fidence values concluded that the
system recognized the “end-of-workzone” sign and turnedity off, indicating that our vehi-
cle was leaving a highway workzone. The (orange) curve sgmis the estimated function value
of the likelihood of driving in a workzone. As shown, the vauof this function are greater
than zero within a workzone. Although the estimated curighlly overestimated the actual
workzone bounds, this function can be used to inform ouratelof the likelihood of driving

72



in a workzone, even when our approach misses signs thatatedibe beginning or end of a
workzone.
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tional pieces of information.

Figure 4.6: Results of a highway workzone recognition test.
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4.4 Summary

This chapter presented a set of computer vision method$tealize, detect, and classify work-
zone signs in video data. This is done to obtain detailedinéion about highway workzones,
such as the bounds of a workzone and temporary highway charagsed by road work. We
developed such a perception capability to bridge the gapd®et what appears on our lane-level
detail highway map and what is actually happening on thevggtat the time a vehicle is driving
onit.

Through a bottom-up structure, our system hierarchicalbcesses an image by first per-
forming a pixel-wise orange color classification step tefilmage regions not containing work-
zone signs; second, by selecting a bounding-box as a paitsigh image; and lastly, by classi-
fying the bounding box into one of the predefined target easit is, of course, unrealistic to
expect error-free sign recognition. Thus we devised ailibeld function to represent driving in
a workzone based on the confidence values of previous sigsifitations.

We found that our approach is capable of identifying workezbounds and of recognizing
most driving condition changes. We believe that a succkdsfuonstration of our approach is
contingent on taking into account three factors. The firshad instead of manually tuning the
optimal ranges of color values, we learned variations ofigescolor through a machine learning
technique to localize sign image regions. Some researghtrs field may be skeptical of using
color information for sign recognition. We showed, howeveat a color-based sign recognizer
works successfully as long as the test data is composed shthe color variations as those of
the training data. In fact, we believe that this approachither useful in that it makes it easy for
one to produce a sign detector for localizing particuldfitraigns (e.g., red stop signs or yellow
yield signs) if the relevant sign images are manually pregpaHowever, we expect cases where
in practice a color-based sign detector fails (e.g., a tianiaf color has not been seen during the
training phase). Thus, for future work, we would like to istigate an approach that fuses color
information with shape information. Returning to the thfaetors on which the success of our
approach is based, the second one is that we used the lagtoisform to represent localized
sign images and PCA to reduce the dimensionality of sign enaggtors. This approach was
effective in reducing variation of geometric distortionsign images. This was important in our
case where an insufficient amount of sign image data wasad@ito learn individual target
sign classes. The last factor is that our methods for haggiotential sign recognition errors
worked effectively. Without these methods we might havenseeonsistent sign classification
decisions on the same sign in different time frames. Suabnisistent decisions would have led
to our approach missing some of the workzone signs impottadétermining the bounds of a
workzone.
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Chapter 5

Parking Lot Map Generation

In the previous two chapters, we demonstrated that we canderaelf-driving vehicles, and
human drivers alike, with a lane-level detail highway mapdssisting their highway driving.
To address possible transient changes in driving conditmnhighways appearing on the re-
sulting map, we developed computer vision algorithms fopgmizing temporary changes, and
demonstrated that the developed algorithms are capabdientiiying workzone boundaries and
recognizing a functional majority of temporary changes igmnvays.

Suppose that a self-driving vehicle is about to arrive atr&ipg lot. It would be useful to
provide that vehicle with a map of the parking lot before tiegs. In particular, information about
parking spots’ locations and the geometry of drivable negiwould ease its parking maneuvers.
Without such information, autonomous parking would be guitallenging because it would
require simultaneously acquiring this geometric inforim@twith on-board sensors, using it to
plan and execute motions in real-time.

In looking for an appropriate parking lot model, one mighhsider drawing from existing
cartographic databases. However, as pointed out eaHisrwbuld not be realistic at least for
a while, considering that existing road-maps do not corttaérequired information. At best, a
parking lot in a road-map database is depicted as a pointmo-alimensional map space. Alter-
natively, one can build the needed model of a particularipgriot by fitting a geometric model
to sensor measurements [Dolgov and Thrun, 2009, Kummedle, @009]. This approach re-
guires an additional, labor-intensive step requiring ghaitbbot be driven manually to collect
sensor measurements.

In this chapter we will instead analyze high-resolutioriaémagery to build our parking lot
map. The generated map will specify the location of parkpas and the geometry of drivable
regions. Our approach begins with parking spot detecti@aulse parking lot structure can be
easily determined if the image coordinates of the visibl&ipg spots are identified. Sectibn b.1
describes how parking spots in a lot are detected usindadsdted examples.

Next, we explain our approach to recognizing drivable regiwithin a parking lot. These
regions can be determined by superimposing the detect&ohpgapots on an estimated parking
lot boundary. Sectioh 5.2 describes how the skeleton ofalitésregions in a parking lot is
automatically extracted from an orthoimage.

In order to be useful, detected drivable regions must beesgmted in a concise form. Section
describes an algorithm that generates a graph strugfpresenting a parking lot’s drivable
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regions.

A parking spot detector might not be able to correctly clgssparking spotifit is of unusual
appearance. Unusual-looking parking spots are hard tanotht@ugh our self-labeling process,
so they are obtained manually. The number of these manladilbled examples is small, but their
differing appearance enables our parking spot classifisnpoove its performance, in terms of
false negative rate. Since manual labeling is expensiedréiguency of its usage must be kept at
a minimum. Sectioh 514 explains how confidence classifienementally utilize the manually-
labeled occurrences to handle intra-class variation,aieduhe false negative rate. Uncertainty
sampling is exploited to minimize the use of manually-ladedata.

5.1 Parking Spot Detection

Figure[5.1 illustrates how we represent parking lots in #isk. Our approach parameterizes
each individuaparking spotby its height, width, orientation, and centroid in image rchioates.
We define garking blockas a row of parking spots for which open-end directions azestime.
Each parking block is characterized by the distance betwegarhboring parking spots in the
block (i.e., “D1”in figur€5.1). Parking blocks are relatedsach other by two distance measures:
the distance between conjugate parking spots (i.e., “Dad)the distance between blocks (i.e.,
“D3” in figure B.1).

If the image coordinates of all visible parking spots arevingit would be trivial to estimate
parameters shown in the figure 5.1. However, in practice wstmstimate these parameters
from an image. In this section, we detail our hierarchicgdrapch to detecting parking spots.
We first presents the image processing steps involved irotirddvel image analysis layer. This
layer accurately extracts a set of easily found parkingssfroim the image. We then explain
the high-level processing layer which extrapolates anerjpiates the spots found by the low-
level analysis to hypothesize the locations of remaininkipg spots. We then discuss our
self-supervised hypothesis filtering approach, whichrBltead parking spot hypotheses.

5.1.1 Collecting Self-Labeled Parking Spot Examples

Geometrical and image characteristics differ betweenipgibts. Most overhead aerial parking
lot images contain a number of well-illuminated empty pagkspots. Our low-level analysis
extracts these easy-to-find spots to be used by the highdeadysis as “seeds” for additional
hypothesis generation and by the final filtering stage asriaaloself-labeled training exam-
ples to adapt the filter to this particular image. The loweldayer carries out multiple image
processing steps: line extraction, line clustering, amaking) block prediction.

Straight lines are important to understanding the shapepzrking lot. We extract most
of the available straight lines using the approach propaséidahn et al., 1990]. The approach
computes image derivatives to obtain intensity gradiengmeh pixel and quantizes the gradient
directions using predefined ranges. A connected componhgotitam is then used to group
pixels assigned the same direction to form line supportggons. The first principal eigenvector
of a line supporting region determines the direction of the.l
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Figure 5.1: A model of parking lot is illustrated.

Although a majority of the extracted lines may align withéamarkings in the parking lot,
some of them come from other image regions such as road lamesturs of adjacent build-
ings. Since we only need the lines aligned with the line-nmayk of the parking lot, it is nec-
essary to remove lines that do not belong to parking lot sirec To this end, we first group
the extracted lines into clusters based on their orientatamd then remove lines that are either
too short or too long from each of the line clusters. The ramagilines are used for estimating

arameters of a parking block. A line cluster correspondattteast) one of the parking blocks.
We repeat this process (the removal of some of the extraictkesldnd estimation of parameters
of a parking block) with each line cluster.

For parameter estimation, we first estimate the nominahteiga parking spot by computing
the mode of lines in the selected cluster. We next build aileiah distance matrix across all
possible line pairs, quantize the distances and comput@ditle to obtain the nominal width of
parking spots within a lot. Finally, we quantize the orieiata of lines and compute the mode
again to estimate the orientation of each parking spotshapel.

The completion of these image processing steps resultsgrgeng few, but highly accurate
initial estimates of the true parking spots. Figuré 5.2 shmetangular patches around the image
locations of detected parking spots. Although most of tlsedelabeled parking spot templates
are in fact true parking spots, some of them are not sincertb@halysis algorithm is imperfect.
To filter out these incorrect self-supervised parking spotplates, we train a SVM with parking
spot examples, which are previously obtained, and condbictaay classification.

To detect parking blocks, we project the centroids of all ithigal parking spots onto a
virtual line whose orientation is the mean of the initialkiag spots’ orientation. This projection
returns the distances of centroids from the origin= c¢; , cos(6;) + ¢;, sin(6;), wherec; ,, and

1For most of the testing images used in this thesis, this shiecause individual images have a large portion or
a whole part of a parking lot. However, when a non-parkingrt@ge is given, our parameter estimation based on
line detection might not work.
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Figure 5.2: An illustrative example image is shown. The lewel analysis produces a set of
self-labeled parking spots that are depicted by rectangaliches around their centroids. After
filtering out some of the patches (i.e., red patches), their@ng patches (i.e., green patches)
are used as positive example to train our hypothesis filters.

¢, are image coordinates of a parking spot centroid @nd the open-end orientation of the
ith initial parking spot. After projection, boundaries beem parking blocks are clearly visible
and the distance between peer parking spots (2é.in the Figurd 5.1) is used to determine
boundaries between parking blocks. We finish the paramstenation process by computing
three distances between parking blocks (D&, D2, andD3 in the Figurd 5.11).

5.1.2 High-Level Structure Analysis

The high-level layer is intended to detect all the visiblekpag spots in an image. It first hy-
pothesizes the parking spot locations based on the parenestémated by the low-level layer. It
then filters these hypotheses by classifying the rectangukge patches around these hypothe-
ses using self-supervised classifiers.

Parking Spot Interpolation and Extrapolation

A parking spot hypothesis represents an image coordinatérttlicates the centroid of a poten-
tial parking spot. A rectangular image patch around the thgsis is evaluated to determine if
a local characteristic of the image is similar to that of atparking spot. To cover the image
regions that possibly contain true parking spots, we usarnhge coordinates of the centroids of
each self-supervised parking spot as the starting poirgdoh of the discovered parking blocks.
We then generate parking spot hypotheses by selecting iloegions through three processes:
interpolation, extrapolation, and block prediction. Tlypbthesis generation step aims to intelli-
gently sample image regions, where the low-level did not$jmoks, The interpolation procedure
chooses image coordinates between two end parking spopankiag block, whereas the extrap-
olation procedure extends hypotheses beyond the ends dtiagphlock. The estimated parking
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Figure 5.3: A set of the generated parking spot hypothesglsaan. Parking spot hypotheses
are rectangular image patches. Different rectangle catdisate results of different hypothesis
generation processes (red patches by the interpolati@m ocges by extrapolation, and green
ones by the low-level analysis). In this example image gfaee 114 true parking spots and 411
parking spot hypotheses.

spot width is used as the spatial interval between parkinglsgpotheses. Block prediction aims
to discover any missing parking blocks.

Self-supervised Hypothesis Filtering

The hypothesis generation process producgarking spot hypotheses represented by the corre-
sponding number of rectangular image patclgs..., g,. Figure[5.B shows a representative set
of generated parking spot hypotheses where individualipgupot hypotheses are represented
as rectangles. Each parking spot hypothesis is evaluatbetéomine if it is a true parking spot.
We formulate this decision problem as binary classificafiwrassigning a label; € {—1,+1},

to a given patch vectog;, whereg; is anm (= height x width)-dimensional column vector.
Because raw intensity values of a gray scale image patchtmighbe consistent even in the
same class, we use three different pieces of informatiaméat invariance into our parking spot
patch representation: intensity statistics (such as meaiance, smoothness, skewness, unifor-
mity, and entropy), responses of the Radon transform, azad kastograms of oriented gradients
(HOG) [Dalal and Triggs, 2005]. In the next section, we corefithe performance of hypothesis
filters trained using these features versus using the ragl-pitensity patched directly.

Our experiments compare four machine learning technigsiéypothesis filters for this bi-
nary classification task: Support Vector Machines (SVM&)eBspots, Markov Random Fields
(MRFs), and Bayesian Linear Regression (BLR).

Support Vector Machines SVMs are a common supervised learning algorithm for binary
classification. They seek to find the hyperplane that maxama&notion of margin between each
class|[Vapnik, 1995]. Linear SVMs are fast, have publiclgiable implementations, and handle
high-dimensional feature spaces well. This algorithm @sdariants have been extensively used
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asde factorobject detection algorithms.

EigenspotsSince processing high-dimensional image patches is catipoally expensive,
we reduce the dimensionality of our vector space by usimcppal component analysis (PCA)
[Bishop, 2006] to find the principal subspace of the selfesuiged parking spots obtained by the
low-level analysis; we retain the tégpdimensions of the original vector space, where m. In
homage to Turk and Pentland [Turk and Pentland, 1991], wehmkigenvectors of the parking
spot space extracted by this method the “Eigenspots” offinees

We use this new space in two ways. Our first technique simphlsoes the distance from a
candidate patch to the center of the space (i.e. the meanicahparking spot¥). Given a new
image patchg, we computel'(g) = [D™'?E” (g — ¥)||* where® = ——ree 37 g,

D is a diagonal matrix containing eigenvalugs ...\, andE is a matrix whose columns are
the eigenvectors of the covariance matrix used in the PCApcation.7’(g) is also known as
the Mahalanobis distande [Bishop, 2006] from the origirhef Eigenspot space. If this distance
is less than a threshold, we classify the new image patch asking spot. Our second usage
simply pushes the examples through the PCA transformagdor® training a SVM classifier
and learning a mixture of multivariate Gaussian distrimasi. Specifically, we transform each
example ag = D~/?2E” (g — W).

Pairwise Markov Random Fields. Because SVMs and Eigenspots only consider the local
characteristics of an image patch to perform binary clasdibn, their performances are limited
by the distribution of the training data. Thus it is usefuttmsider neighboring image patches
around the patch of interest as well as looking at charatiesiof the image patch. An image
patch is highly likely a parking spot when the majority ofgt#boring patches are parking spots,
even if the local characteristics of the patch would clgssibtherwise.

To implement this idea, we use a pairwise Markov Random BiéldRFs) [Li, 2000]. A
pairwise MRF, 7, is an undirected graphical model that factorizes the uyiter joint prob-
ability distribution P(Y, G) by a set of pairwise cquues@ ‘H is comprised of a set of nodes
and their edges where a node models a random variable anddkeébetween nodes represents
dependence between them.

In this work, there are two different types of nodes: obseéraed unobserved nodes. An
observed node corresponds to an image patch whereas arewebsode is the true label of
the observed node. Although we observe the value of a nGge( g;), the true label of the
node . = yx € {—1,+1}) is not observed. The task is then to compute the most likelyes
of Y (i.e. whether a hypothesig, is a parking spoty; = 1) or not) given the structure of the
undirected graph#, and characteristics of image patch@s,The joint probability distribution
is factorized as

P(Y,G):%H(I)(Gny;) IT v, vy

JEN(3)

where®(G;,Y;) is a node potentialy (Y;,Y;) is an edge potential/ is the partition function
that ensures a probability density of this modgl;) is the set of nodes in the neighborhood of
theith node. Our implementation of MRFs considers first-ordégmeors.

2There may be bigger cliques in the graph, but the pairwise MR# consider pairwise cliques.
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Since we assume that candidate parking spots are generatec fmixture of multivariate
Gaussian distributions, we estimate the node potentialg asGaussian Mixture model (GMM)
[Bishop, 2006]. Due to the possibility of two class labelacte node has two potentials: a po-
tential of being a parking spo®(G;, Y;—+1) and the potential of not being not a parking spot,
®(G;,Y;=_1). The edge potential is computed by Potts model [Li, 2000].

U(Y;,Y)) = (Y3, Y)) = exp {—B(Y; = Y;)?}

where 5 is a penalty factor for label disagreement between nodespaiticular, if 3 = 0,
edge potentials are identical regardless of the label tkemgent and only node potentials are
used. On the contrary, if = oo, only the edge potentials are meaningful and the node po-
tentials are ignored. For inferencing the most likely labafl individual parking spot hypothe-
ses in a given aerial image, we use loopy belief propagatematuse it is easy to implement
[Yedidia et al., 2002].

Bayesian Linear RegressiorOur self-supervised canonical parking spots are highly-acc
rate, but their number is often too few to generalize. To @ymghis insufficient number of
positive examples, we use canonical parking spots prelyiols$ained from other aerial images.
As will be shown in the experimental results, this approagipsiour hypothesis filters improve
their performances. However, naively consuming all thelalvke data might result in a solution
that is overfit. Thus to effectively utilize data, we emplagysian linear regression (BLR). BLR
provides a theoretical way of incorporating previouslyanhéd parking spot templates as a prior
information for the optimal weight vector learning. The iopl weight vectorw*, is obtained

by

p(w'|G) oc argmaxp(G|w)p(w)

p(Glw) = Hp((gi,yi)\W)mexp{#Z(yi—WTgiY}

i=1

2

1
p(w) o< exp {—§W2_1W + ,uTE_lw}

wherep(G|w) is the likelihood function ang(w) is the prior distribution that is a zero-mean
Gaussian. The final form of BLR is a regularized linear regi@mswhere the parameters of the
resulting conditional Gaussian distributionwf given dataD is

Swp = (GGT+A)
pwp = (GGT + (>)I1) ' YG

where )\ is a regularizing term that controls contributions of theighe prior. We classify an
image patch as positive if the regression value is greater tthe predefined threshold,

h(gi) =21 [y(gi) =] — 1,0 € R.

wherey(g;) = g/ w* is the output of BLR and [y(g;) > 4] is an indicator function that returns
1if y(g;) is greater tham, otherwise 0.
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Experimental Results

The knowledge of the image coordinates of parking spotsteis estimation of parameters that
describe the structure of a parking lot. Thus the purposaipokgperiments is to measure how
well our filtering methods perform in detecting all the visilparking spots in an aerial image.

We use twenty aerial images collected from eogleii map service. There are on aver-
age 116 visible parking spots in each individual image ifedéint shapes and under different
illumination conditions and a total of 2,324 parking spateoas all aerial images.

false negative
false positive
accuracy

Self-supervised Parking Spot€.5512 0.0471 0.7008
Generated Hypotheses | 0.3719 0.9382 0.2311

Table 5.1: Performance comparison of parking spot hypethgsnerated by the low-level and
high-level analysis layers is measured by three differerfigpmance metrics such as “false neg-
ative,” “false positive,” and “accuracy.”

Table[5.1 shows the micro-averaged performance of the gmtkhypotheses by the low-
level and the high-level analysis. The accuracy is definea r@io of the number of correctly
classified parking spots to the total number of parking spstd in evaluation. This micro-
averaged performance is computed by merging contingetdgsacross the twenty different
images and then using the merged table to compute perfoeraeasures. Since the self-
supervised examples are highly accurate (a low false pesitite (4.71%)), their parking spot
templates can be used as positive examples for trainindtelirig methods. An equal number
of negative examples are randomly generated.

In this work we are particularly concerned about false peestsince, in the worst case, a
false positive output might make a robotic vehicle drive samere that the robot should not
drive. While generating few false positives, the self-sui@ed parking spot detector recover
only 43.55% of the true parking spots (1,012 out of 2,324 paking spots over 20 images.)
This high false negative ratemay cause problems for autonomous driving: for example, an
autonomous robotic vehicle might not be able to park itsednef there are plenty of parking
spots available. By using information provided by the l@wvdl analysis, the high-level hypoth-
esis generation analysis reduces the false negative @ate36.12% to 37.19%. However, it
increases the false positive rate to 93.82% as well (i.pretlicts many spots which are not true
spots). The filtering stage then corrects this shift in fgdesitive rate by removing erroneous
hypotheses. Importantly, as we will see in the results,tdghnique cannot recover from false
negatives in the hypothesis generation.

Table[5.2 compares the performance of self-trained filgermethods. The parking spot

Shttp://map.google.com
4A false negative is a parking-spot example that is classifged non-parking-spot example.
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false negative

false positive

accuracy

SVMs 0.3880+ 0.0012 (0.0188)  0.3136 0.0106 (-0.0230)  0.662F 0.0012 (0.0073)
Eigenspots 0.3074 (0.0090) 0.8004 (0.1085) 0.3013 (-0.0880)
SVMs w/ Eigenspotg 0.3826+ 0.0221 (-0.0116)  0.322F 0.0201 (-0.0256)  0.6603 0.0109 (0.0200)
MRFs w/ GMM 0.3929+ 0.0301 (-0.0147) 0.3644 0.0041 (-0.0098) 0.628& 0.0074 (0.0101)
BLR 0.3270+ 0.0009 (0.0184)  0.661% 0.0129 (-0.1007)  0.409% 0.0070 (0.1238)
SVMs 0.4271+ 0.0350 (-0.0186) 0.0429+ 0.0112 (-0.0086) 0.9189+ 0.0012 (0.0095)
Eigenspots 0.2765 (0.0000) 0.3969 (0.0196) 0.6151 (-0.0176)
SVMs w/ Eigenspotg 0.4320+ 0.0111 (-0.1142) 0.045@ 0.0276 (-0.0143)  0.9165 0.0012 (0.0242)
MRFs w/ GMM 0.3466+ 0.0786 (-0.1846)  0.079& 0.0145 (0.0110)  0.893F 0.0243 (0.0085)
BLR 0.4136+ 0.0313 (-0.0099)  0.282F 0.0241 (0.0151) 0.7043 0.0232 (-0.0121)
SVMs 0.3951+ 0.0345 (0.0113)  0.045F 0.0012 (-0.0105) 0.9213+ 0.0111 (0.0085)
Eigenspots 0.2765 (0.0000) 0.3759 (0.0144) 0.6335 (-0.0130)
SVM w/ Eigenspots | 0.3880+ 0.0011 (-0.0567) 0.0486 0.0012 (-0.0165) 0.9194 0.0042 (0.0204)
MRFs w/ GMM 0.3342+ 0.0188 (-0.1318)  0.081F 0.0012 (0.0126)  0.8945% 0.0174 (0.0011)
BLR 0.3970+ 0.0114 (-0.0105)  0.2712 0.0005 (0.0098)  0.716@ 0.0011 (-0.0079)

Table 5.2: Results comparing different filtering methodse iumbers in parentheses indiciate
the performance difference between different parking patdth representations. Positive val-
ues in the accuracy indicate improvements of our featunesgmtation over raw-pixel intensity
whereas negative values in false positive and negativeramdundicate improvements. Overally,
the performance difference is negligible, but our feate@esentation method enables our fil-
tering algorithms to reduce the dimension)(of parking spot patches’ from 240 to 93, resulting
in computationally more efficient solution (i.e., fastexifing with less memory).

hypotheses generated by the high-level layer were labegjedabd for evaluation. Hyper-
parameters of SVMs were determined by 10-fold cross vatid 8t Eigenspots are computed
only using positive examples. For the MRF inference, wedoaimesh from the estimated lay-
out of parking spot hypotheses where a node in the grid quorets to an image patch. We use
positive and negative examples to obtain GMM and use ther@mtaGMM to estimate node
potentials. We observe the results by varyihgn the range 0 to 10 with steps of sizé 2ve
empirically set 2 ag for the MRFs, 5 as\ and .5 as a threshold for binary classification for the
BLR implementations.

In the tablé 5.2, there are three blocks of rows describirggtHifferent experimental scenar-
ios. In the first scenario, we trained the filtering methodagiparking spot templates from the
image under analysis consisting of the self-supervisekipgitemplates as positive examples
and randomly generated negative examples. In the secondrgzewe trained these methods
using self-supervised examples from all other images rebtiching the target image. Finally, in
the last scenario we trained the methods using self-sugehexamples from all images. The
randomly generated negative examples were sampled whihémg each of these scenarios. Due
to this randomness in negative examples, we averaged autsreser 5 separate runs for each
scenario. Each cell in the table displays the mean and shdeésiation.

SFor SVM implementation, we use libsvm  which is publicly  dsble at
http://www.csie.ntu.edu.tw/cjlin/libsvm/
SWe fit our Gaussian Mixture model using the publicly avaidablGMMBayes from

http://www.it.lut.fi/project/gmmbayes/
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In addition, we wanted to measure the usefulness of our reagpresentation over raw-
intensity parking spot patches. We re-ran the above exgatisrusing the same parking patches
in raw-intensity values. The numbers in parentheses itekcne performance difference be-
tween different parking spot patch representations. Resialues in the accuracy indicate im-
provements of our feature representation over raw-intgngiereas negative values in false pos-
itive and false negative columns indicate improvementser@l; the performance difference is
negligible, but our feature representation method enatlealgorithms to reduce the dimension
(m) of parking spot patches’ from 240 to 93, resulting in conagiohally more efficient solution
(i.e., faster training with less memory).

Ideally, the method with the lowest false positive and negatates would be the best, but
in practice it is hard to achieve both of them simultaneauBlgr our autonomous driving ap-
plication, we prefer the method with the lowest false pusito one with lowest false negative
because a false positive is more risky than a false negdtivgeneral, the performances of hy-
pothesis filters are improved as the amount of training datecreased. Linear SVMs performed
surprisingly well, particularly in terms of false positsrand accuracy. Additionally, training an
SVM using the subspace generated by the Eigenspots anpgréssms only marginally better
than simply using the Eigenspot distance measure comepntathis performance difference can
potentially be decreased by statistically fitting the thdd value used during distance measure
classification. As discussed earlier, MRFs utilize higleeel interactions to improve prediction
accuracy. However, estimating the GMM requires a substiantnount of data; the performance
degradation in the first row of the table indicates that theoo&al parking spots extracted by
the low-level analysis alone were too few to accurately fg thodel.

5.2 Recognizing Parking Lot Drivable Region

In this thesisskeletonizatiomefers to a process of extracting the skeleton of drivaligore
in a parking lot image. To accurately build a skeleton, wedneknow the structure of a
parking lot. This is done by estimating boundaries of pagkiocks that are obtained from
parking spot detection. In parallel, we segment a giverahgmnage into two regions: “parking
lot” and “non-parking lot” regions. Then the drivable reg#in a parking lot are recovered
by superimposing the constructed structure over the segugmarking lot image. In this step,
we use self-supervised examples to find cues for parkingptahe boundary segmentation and
road-marking classification.

The following sections detail how self-supervised exammpie used in segmenting the park-
ing lot boundary and in detecting road-markings.

5.2.1 Parking Lot Boundary Segmentation

The flood-fill algorithm is a technique to fill connected reggawithin an image with a constant
value. We assume that the magnitude of image gradient ialdevegions is similar to those of
parking spots. After computing magnitudes of the imageigradwe randomly select some of
the self-supervised parking spots and use them to obtanesttbld value. The centroids of those
selected parking spots are used as starting points. Detspdienplicity, our modified flood-fill
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algorithm works reasonably well in that it detects all thsiblie parking lot regions in our test
images. Figurg 5.4(a) shows a binary image of the segmenitexbté region that is indicated in
white.

5.2.2 Road-Markings Detection

Road-markings are important parts of drivable regions affdrdntiated from other drivable
regions by their intensity and color histograms. To deteatirmarkings in a parking lot image,
we train a binary road-marking classifier that assigns al @igeeither a road-markingHl) or
non-road-marking-1). To obtain a training set, we utilize road-markings that parts of the
self-supervised parking spot templates. A set of the ramglgsiected road-markings are used
to learn characteristics of road-marking in a particularkjmey lot. We use Bresenham'’s line
algorithm to select pixels along the selected lines andhlaanultivariate Gaussian distribution
of two different color spaces: Hue-Saturation-Intensi#s[) and RGB, in which individual
pixels are represented by six-dimensional vectoys; RS.

1 1 1 _
p(xi|Ck) = WW exp {—§(Xz - Mk)TEk Hxi — Mk)}

wherep(x;|Cy) is a conditional probability ok givenCy, k € {—1,1}, d is the dimension of a
pixel vector,X = d x d is kth class’ covariance matrix, and= d x 1 is kth class’ mean vector.
We learn another Gaussian distribution for non-road-nmaykiass. The road-marking detection
is done by investigating the likelihood ratio between twassles:

: p(xi|C1)
y(xi) = { 1 if log (p(xi|CL1)> >0

—1 otherwise

A result of the road-marking classification is shown in Fegj@r4(b). Note that there are
a number of false positives along road lanes outside of thkingalot. These errors occur
because the magnitudes of road lane are similar to thoserkihgasspots. However, since the
detection result is used in conjunction with other restulées,(parking lot boundary segmentation
and parking spot detection) to build the skeleton of drigakelgions, it is acceptable to include
some of the non-parking lot regions.

5.2.3 Drivable Region Identification

There are three inputs for identifying drivable regionsulés of parking spot detection, results
of road-marking detection, and results of parking lot bamdgegmentation. Although none of
these inputs is perfect, a combination of these imperfguit;iworks reasonably because they
are complementary to each other. For example, our roadingadetection method produces
a number of false positives on road lanes (See Figure b,4¢a))during the drivable region
identification phase, these high false-positive regioesdsregarded because they are located

"We utilized other color spaces such as Lab and YCbCr and fthatch combination of HSI and RGB works
best.
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(b) The results of the road-marking detection.

.

(c) The structure of a parking lot is superim- (d) The final results of skeletonization. Safety
posed over parking lot boundary segmentation. of traversability is color-scaled for visualiza-
The red rectangles represents boundaries of tion purpose. Red corresponds to highest
parking blocks whereas the green triangles are safety of traversability whereas blue is lowest
detected parking spots. safety of traversability.

Figure 5.4: The figure at bottom right shows the final resuthefskeletonization and all other
figures are inputs for the skeletonization process.

outside of the parking lot based on the result of parking mirzlary segmentation result (See
Figure{5.4(H)).

Based on the best result of parking spot detection, thetstiof parking lot is uncovered by
computing boundaries of parking blocks. This structurercamghly tell us what the geometric
shape of a parking lot looks like, but cannot tell where dyaah autonomous vehicle should
drive. To define drivable regions of a parking lot, the pagklat structure is superimposed
over the segmented parking block boundaries. Then drivagiens of a parking lot become
clearly visible to the vehicle. However, the binary imagedafable regions shown in 5.4{a)
still has some errors. Although these black speckles doauit $ignificant in the image, they
may cause serious problems when used for autonomous digrtgey may be regarded as
obstacles. To remove these errors, we apply a morphologpalation (“close”) to smooth
the segmentation binary image. Since the smoothing canrenipve small-size speckles, we
implement heuristics to remove islands in the drivableaegi These islands are in fact road-
markings (e.g., stop-lines, driving direction marking)tba drivable region in the original image.
While these features represent important contextual imébion, we want to remove them from
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the description of the drivable regions. To remove thesmdd, we utilize the results of road-
marking detection. That is, for each of the islands in drgakgions, it can be removed if an
island does not belong to road-markings that are parts &frgablocks. Figur¢ 5.4(f) shows the
binary image of drivable regions after removing specklakisiands. Finally to accurately depict
boundaries of drivable regions, we apply a modified “brushfalgorithm that incrementally
propagates distance values from non-drivable regions (agking blocks). Figurie 5.4(d) shows
the result of the skeletonization that depicts drivablexegin a parking lot image.

5.3 Lane-Graphs for Parking Lot Map Generation

This section details an algorithm that produces a lanekgadglrivable regions by analyzing a
single parking lot image. From the previous section, diwabgions in a parking lot are deter-
mined by a combination of results of parking spot detectimh r@sults of parking lot boundary
segmentation. A distance transform is used to reveal thietskeof drivable regions’ geom-
etry. Our lane-graph generation algorithm iterativelyrebas for a lane-graph in the distance
transform map that concisely represents drivable regions.

5.3.1 Topological Map of Drivable Regions in Parking lot

In this thesis, a lane-graph of a parking lot refers to a togichl representation of drivable re-
gions. Our lane-graph generation algorithm requires a maprm-drivable (or an obstacle map)
as an input. We built this map by using two aerial image amahgsults from the previous sec-
tions. In particular, we developed several different oirtiege analysis algorithms to detect all
of the visible parking spots in a parking lot orthoimage. Geif-labeling method analyzes the
spatial layout of extracted lines and automatically olst@iome of the easy-to-detect true parking
spots. These self-labeled parking spot image patches adgfasseveral purposes. First, the ge-
ometric properties of self-labeled examples, such as gedemgth, width and distance between
them, are used to generate hypotheses that are predicfidhe true parking spot locations.
Second, these self-labeled parking spot images are usedrcatbinary classifier to filter out
incorrect hypotheses. Lastly, the image characterisfisglt-labeled examples are used to learn
a road-marking classifier and a parking lot boundary segonf3eo et al., 2009b]. The image
regions of the estimated parking lot boundary are overldpygth the detected parking spots to
produce the map of non-drivable regions in a parking lotarttage.

5.3.2 Connecting Maximal Circles for Discovering Topologyof Lane-
Graph

Algorithm[1 describes the procedure of our lane-graph geiter in detail.

The algorithm requires an obstacle map of a parking lot imaggs map of non-drivable
regions, 1,,,,_arivabie, 1S Obtained by combining parking spot detection result$ parking lot
boundary segmentation results. Figure 5]5(a) shows exangblparking spot detection results
and parking lot boundary segmentation results.
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Algorithm 1 Lane-graph generation algorithm.
Require: - I, a parking lot orthoimage,
- Luon—drivabie, @ binary image of non-drivable regions

Ensure: - G, a lane-graph that maximally covers drivable regions inpeking lot

1: G ={V.E},V={¢},E={¢}
15 = generatedistancema/,,on—drivable)
M = find_local_-maximd/;), M = {m, ..., m}

= prunelocal_.maximdM), |M; | < [M]

M, =sort(M,), my > my >, ..., > mpy
M2 =
repeat

me; = find-maximalcircle(m;), m; € M,

Remove all of the local maxima within the circleg;
Create a vertex < m;,

V ={VUu}
- until all of the rendezvous pointb/],, are visited
: forall v; € V.do
Identify neighboring verticesy (i), of v;
Create an edgey;, if the jth neighboring vertex; € N(i), (i # j), is visible from the
ithe vertexy;.
16: E={EUe}
17: end for
18: Return G = {V,E}

| << M|

e e el =
aRsR®NR O

A distance transform is often applied to a robot’s operati@nvironment for identifying
obstacle-free regions. In our case, the functiganeratedistancemap/,.on—drivabie), iMple-
ments the brush-fire algorithm to propagate distance vdfoes non-drivable regions. Figure
[5.5(b) depicts the resulting distance map where farthestpé&om local obstacles have high-
est values. Ridge points on the distance map, which are lnealma of the map, are good
candidates for building a lane-graph because they aretekgbeints of drivable regions.

To locate these local maxima, we use the discrete analogrivatiee because the second
derivative of a distance map function is zero when the mageibf the derivative is extremal.
To implement this idea, our search is carried out by invesiig individual columns and rows in
the distance magdy,. The distance magy, is am-by-n real-valued matrix wheréy (i, 7) is the
distance transform value of thigh row and theith column. The functiorfind_local_maximg1,,),
computes numerical derivatives of individual columns (amals) in the distance map using the
forward differencedz; (k) = lu(i,k + 1) — Lu(i k), (dyj(k) = La(k+1,7) — La(k, 7)),
wherek = 1,...,n — 1@ ThIS IS the first derivative of the distance map that loc#tteschanges
of distance values in a column (or a row). We then compute ¢loersd derivative: Compute
the forward difference again only for elements which all ko tix;(k) are greater than zero.
The value of the second derivative is zero when the distaakeevs a local extremum. A local

8For example, computing the changes of distance values dhthew, dz;(2) = 14 (i,2) — I4(i,1), dz;(3) =
Idt(i, 3) — Idt(i, 2), ceey dIl(TL — 1) = Idt(i, TL) — Idt(i, n — 1)
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extremum is a maximum if the slope of the second derivativés aeighbor points is changed
from negative to positivE.These points correspond to peaks in a column (or row) of ttanice
map. A cross-check of these points with other rows and dialgglaments in the matrix results in
local maxima. Because of the discrete nature of an imagertathod does not always guarantee
to find all of the true extrema, but provide a sufficient nundifdocal maxima for our lane-graph
generation.

A simple connection of all of the detected local maxima migiuiduce a lane-graph that has
an unnecessarily detailed structure due to an imperfectclesmap. For example, there is a
small creek in the upper left corner of the figlire 5.5(b) theidts cracks of the obstacle map
and causes the distance transform to produce a lot of sralaiésd local maxima. Therefore we
should handpick some of the local maxima for constructimgttipology of a lane-graph.

To facilitate the lane-graph building process, there aredlinitialization steps: elimination
of irrelevant local maxima; sorting of the selected maxiarad generation of rendezvous points.
The function prunelocal_maximgM), remove any local maxima that the radius of its maximal
circle is smaller than the average width of the detectedipgrépots because their surrounding
regions are not wide enough for the navigation of a commpe-ghicle. To define the maximal
circle of a local maximum, the initial radius of an inscrib@ttle is set to the average width of
the detected parking spots. The radius is increased usetititicle touches any of neighboring
obstacles. An inscribed circle is maximal if no other inlsed circle, without touching neigh-
boring obstacles, contains it properly. The idea of maxionale has been studied for shape
recognition and abstraction [Kimmel et al., 2003]. Figurg(E) depicts a set of the selected lo-
cal maxima. A sorting of the selected local maxima in descwndrder of their distance map
values is necessary because the surrounding region of lanh@camum with higher value con-
tains more important geometric structure in a parking lat iishould be considered before any
other local maxima with smaller values. Lastly we need adoh to determine when to stop
our topology building step. One might think this iteraticancbe stopped when it connects all
of the selected local maxima. However because of incomplet@dary segmentation result, a
connection of all of the selected local maxima will resulailane-graph that is inconsistent to the
actual shape of drivable regions. To properly stop thetitamavhile ensuring the consistency of
aresulting graph, we utilize the locations of some local imax \We call them rendezvous points
because their locations must be visited for building a ciast lane-graph. A rendezvous point
is a local maximum point that represents more than one aet@etrking spot. Given the fact that
our parking spot detection algorithm recovers the openegiahtation of a parking spot, in the
function,definerendezvougpointM,), for each of the detected parking spots, we find the local
maximum point that is orthogonally closest to that parkipgts These local maxima points are
orthogonal projections of the detected parking spots dréa@éenter-line of drivable regions.

Although the collection of rendezvous points does not abvayver all of the area of the
drivable regions, the ordering of the selected local mabased on their values ensures that the
topology visiting all of the rendezvous points completdigras with the area of drivable regions.
Thus the topology of a lane-graph is consistent to the shagevable regions if it includes all

%0One can also find a local minimum by looking at the point whéseseécond derivative is zero and the slope
is changed from positive to negative. In practice, thisesxia search can easily be done by convolving individual
columns (or rows) with a Laplacian operatfr,—4, 1]7 and then looking for the changes of slopes.
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of the rendezvous points. Figdre 5.5(c) depicts the idedtifendezvous points.

Once these initialization steps are completed, our algoriéxamines each of the selected
local maxima by investigating its surrounding region. Imtgalar, for each of local maxima,
the function,find.-maximalcircle(m;), defines a maximal circle centered at the local maxima
under investigation. Any local maxima within the maximaicte can be removed from further
consideration. These steps are repeated until all of th@emmus points are visited. Figure
[5.5(d) depicts the selected local maxima. In this exampleretare 402 local maxima initially
identified and 55 of them are selected as vertices for paskibe-graphs.

The last step of our algorithm is to connect each of the ifiedtivertices to neighboring
vertices if the vertex is visible from its neighbors. Theimiity test checks whether a line
segment between two vertices passes through any obstaclesng neighboring vertices. In
particular, we use the Bresenham algorithm to examine immagedinates along the line linking
two vertices whether they are overlapped with any non-iezeegions.

5.3.3 Results of Lane-Graph Generation

Figure[5.6 shows some results of our lane-graph generdtonithm. Testing orthoimages are
downloaded from th&ooglemap servic

For each of the testing images, we first execute our parkiog dgtection and parking lot
boundary segmentation algorithms to produce the map ofinwable regions in the image, and
then run our lane-graph generation algorithm.

For most test images, our algorithm works well in that thedtogies of resulting lane-graphs
concisely represent drivable regions in parking lot imageges align with the center lines of
road segments and vertices at intersection points conrexgiimg road segments. Results shown
in figure[5.5(f) [ 5.6(a), 5.6(b), 5.6(c), ahd 5.6(d) are eglmimages of successful cases. These
successful results rely on the map of non-drivable regidmghly accurate results of parking
spot detection and parking lot boundary segmentation. Atgefpositive result by either of
these tasks overestimates the true area of drivable regiaparking lot image. For example,
in the figurd 5.6(a), the shadows of trees are segmented adrivaible regions and the resulting
edge passing through that region is bended to avoid falselneable regions. A drivable region
with different visual appearances such as shadows andsiookiis one of the common causes
for erroneous segmentation and parking spot detectioritsesBecause we developed a very
accurate parking spot detector that produces a very snisdl fesitive errors (less than 0.06%),
most of the overestimated drivable region is caused by pgikit boundary segmentation.

Figure[5.¥ shows an example that our algorithm did not work Wiéne segmentation result
in the figurd 5.7(a) produces the overestimated boundaitieg in a lane-graph inconsistent to
the actual drivable regions. Owing to the relatively acteigarking spot detector, the right side
of drivable regions in the figufe 5.7{b) is partially covelsdthe resulting lane-graph. The lane-
graph is inconsistently generated primarily due to the oty of our segmentation algorithm
in that it connects two neighboring pixels if their image idweristics (i.e., magnitudes of image
gradients and color) are similar. Thus it fails to correstigment regions when the appearance
of pixels greatly vary.

©Ohttp://map.google.com
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By contrast, a false negative one underestimates the teascéudrivable regions in a parking
lot image. For example, in the figufe 5.6(c), the edge of thersection at the bottom left
is passing through a part of the non-drivable regions becthes parking block is completely
missed by our parking spot detection algorithm.
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(&) Two inputs for lane-graph generation:
Parking block polygons depicted in (red) rect-
angles and parking lot boundary segmentation
depicted as a binary image. Individual park-
ing spots are depicted (green) triangles at their
centroids. A blue line is a convex hull of all of
the detected parking spots.

(b) A distance map is computed from the ob-
stacle map of a parking lot. Red regions are
farthest ones from local obstacles depicted in
blue. Red “x” marks represent local maxima
in the distance map.

(c) Some of the local maxima are selected

as rendezvous points that are used to deter-
mine when the search of a lane-graph topology
stops. Green “*” marks rendezvous points.

(d) The radius of a circle centered on a local
maximum is increased to find its maximal cir-
cle. Any local maxima within the maximal cir-
cle will be considered redundant and removed.

(e) Connection of visible neighboring vertices
reveals the topology of a lane-graph.

(f) The output of our lane-graph generation al-
gorithm. A vertex is represented as an inter-
section if its edges are more than 2.

Figure 5.5: These figures show the sequence of our lane-gexpdration algorithm.
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(a) The parking lot area is underestimated due (b) Inaccurate segmentation results in extend-

to the shadows of trees. As a result, some ing the resulting lane-graph to the outside of
edges of the resulting lane-graph do not align the parking lot. There are 31 out of 430 local
with the center-lines of drivable regions. There maxima used as vertices.

are only 37 (depicted as blue circle) out of 472
local maxima used as the vertices of the result-
ing lane-graph.

(c) Some of the parking spots at the bottom left (d) There is an isolated vertex at the top left
are missed by the parking spot detection. This because of inaccurate segmentation. There are
cause our algorithm to overestimate the actual 35 out of 298 local maxima used.

parking lot area. There are 43 out of 428 local
maxima used as vertices.

Figure 5.6: Four additional examples of lane-graph geitarat
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(a) A fail case. An overestimated parking lot (b) Due to the inaccurately estimated parking
area. lot boundary, the resulting lane-graph fails to
capture the topology consistent to drivable re-
gions.

Figure 5.7: The topology of the resulting graph is senstibvéihe accuracy of non-drivable map.
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(a) Examples of parking spots with canonical (b) Examples of parking spot images with un-
appearances. usual appearances.
[ O canonical parking spot imageg
Centroid of canonical parking spot images o B £ random negative images

O unusual parking spot images

i Centroid of self-labeled images

Celntroid of random negative images

Second Principal Eigenvector

First Principal Eigenvector

(c) A scatter plot of (canonical and unusual) parking sp@gdes and randomly generated
negative images’ 2-dimensional representation. All (pkguares represent a canonical
parking spots, (green) triangles represent negative is)agel (red) circles represent un-
usual parking spots. There are 532 canonical parking sp8&snegative examples, and
365 unusual parking spots.

Figure 5.8: A two-dimensional representation of parkingtspvith varying appearances.
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5.4 Incremental Learning for Handling Intra-Class Variati on

In automatically building a roadmap for autonomous drivirgm orthoimagery, it is impor-
tant to reliably detect relevant objects in imagery becam®mviedge of objects’ (e.g., parking
spots) image coordinates facilitates the recognition afeulying structures (e.g., the geometric
structure of a parking lot). Learning a reliable object d&ieis challenging because appearance
of objects in aerial imagery varies primarily due to thentimation conditions and the object
properties.

There are two ways to deal with this intra-class variatiavbpgm. One is to collect a tremen-
dous amount of human-labeled orthoimage data that is asstorever all (or at least a large
portion of) of the possible appearances; train a detectarsinyg this data; and use the learned
detector as needed. However it is very difficult and expengivaybe even impossible) to pre-
pare such data in advance. Another way to handle this appsamaconsistency problem is to
collect orthoimage data around target areas, learn a detiegtusing this small, but targeted
data and apply a detector on the fly. This is more practicalteaudable. When a robotic vehi-
cle needs to build a roadmap for a route, it collects orthgesaalong the route and use them
to learn an object detector. Although these local orthoesagight not be helpful to learn a
generic object detector, these images might be useful to kedetector that works efficiently on
the target region because these images share common inegetehistics with the target image
regions. However, this approach introduces another prolhat requires a human operator to
continuously assign labels to newly collected images.

We have developed a self-supervised learning approachub@natically collects a small set
of training examples from the orthoimagery about the targgion and learns the object model by
using these self-labeled examples. Fiduré 5.8 shows gasggkat image examples with varying
appearances and their projections on a two-dimension&eappce space. Figyre 5.8(a) shows
some of the canonical parking spot images that are repexsast(blue) rectangles in the figure
[5.8(c). To projectn-dimensional parking spot image into two-dimension, wet fa@ampute
the eigenvectors of an affinity matrix about parking spotd #ren use thé most significant
eigenvectors to represent the high-dimensional parkimg spages in a-dimensional space

[Weiss, 1990]. The affinity matrixyV, is computed by
d(gi — g;) }

Wi,j = exXp {— 902
whered(g;—g;) is a function that measures Euclidean distance betweenavking spotimages,
g; andg;; ando is the width of a kernel that controls the range of neighbors.

Suppose that a Cartesian coordinates in the figure b.8(03gepts the appearance space,
which our parking spot detector needs to estimate for rigliphrking spot detection. Because of
our imperfect self-labeler, the only available trainingadare parking spot images with canon-
ical appearances shown[in 5.8(a) and parking spot imagésuniisual appearances shown in
[5.8(b) are initially not obtained. Any learning algorithmight produce the solution for park-
ing spot classification around the centroid of the selfethexamples in the figufe 5.8|c) if it
is learned by using only canonical parking spots. This smumight be the optimal in that it
minimizes the error of canonical parking spot classifiaatitlowever, this solution, which is
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biased to the centroid of canonical parking spots, mightoeathe optimal when the whole ap-
pearance space is considered, resulting in a high erroonat@usual parking spot classification
[Seo et al., 2009a]. To remedy this problem, it is necessanntformly sample parking spots
from the appearance space. This uniform sampling can be lpmither manually or auto-
matically. Manual sampling requires human involvementrghs automatic sampling needs an
improvement of our self-labeler’s capability.

In this section, we describe our approach that manually tssgome of the unusual parking
spots and use them to improve the performance of our parking detector. Since manual
labeling is expensive, we use an uncertainty sampling tanize the use of the manually labeled
data. Additionally, we convert our discrete classifier® iptobabilistic ones so that classifiers
can represent their confidences on classification decisions

5.4.1 Uncertainty Sampling for Minimizing the Use of Manualy Labeled
Data

To reliably detect parking spots with varying appearancejould be best to prepare a set of
all possible parking spot images in advance and then leaapp@arance model. Unfortunately,
it is impractical to collect training data with all of the ®ilsle appearances a priori. In our
case, because we are concerned with an analysis of orthergnalgng a specific route, it might
be unnecessary to learn a generic appearance model. Rathay, be adequate to collect local
image data around the target region to learn a local appearaadel. Although it is a reasonable
approach for our task, it is undesirable to ask a human apet@atassign labels to image data
collected from the target region.

To minimize human intervention in automatic road map buddiwe developed a self-
labeling method that analyzes extracted straight lineafidcts small but high-quality training
parking spots. An analysis of the spatial relationshipsvben the collected parking spots re-
sultsin localizing undiscovered parking spots. Severalhire learning methods are then trained
with the self-labeled examples to filter out erroneous peyldpot hypotheses. The results are
promising in that there are negligible performance diffees relative to a detector trained on
human-labeled examples [Seo et al., 2009a, Seo and UrmB08kR Our self-supervised ap-
proach fits well with autonomous vehicle applications wheig necessary to generate a road
map for drivers on demand. However our self-labeling metisaabt perfect. It works based
on a combination of computationally inexpensive low-lewghge procedures. We observed that
the limited types and amount of self-collected parking sfad& results in parking spot detectors
producing around 17% false negative rate, meaning thatetsemissed 17% of parking spots
with abnormal appearances on average.

For example, the parking spot detector trained on selfiégbienages (shown in the Figure
and images shown in the first row in the figure’5.103 faildetect fishbone-shape parking
spots under shade in the Figlire 5.9(b) (images at the thivdrréhe Figurd 5.10) and in faded
lane-markings in the Figufe 5.9(c) (images at the last rothénFigurd 5.70).

Figure[5.10 shows examples of parking spots with usual atfduviusual appearances. Re-
gardless of observation counts in aerial imagery, we censige appearance of a parking spot as
unusualif
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(a) A parking lot image used for self-labeling. (b) A parking lot image where road-markings
Each of the (green) rectangles is a self-labeled are obsolete.
training parking spot example.

(c) A parking lot image contains parking spots
with unusual appearances: parking spots under
shade and parking spots with fish-bone shapes.

Figure 5.9: Three examples of the aerial parking lot imagesiun our study are shown. The
image at the left is one of the images that is used for seliah and the remaining two images
contain parking spots with abnormal appearances.

e |ts geometric shape is not rectangular (e.g., fishbonesrapézoidal) or its dimensions
are larger than nominal (e.g., spots for the handicap andagsurpose vehicles such as
trailer).[*y (See the second row in the Figlire 5.10)

e |ts intensity is distorted by aerial image acquisition @egor under different illumination
conditions (e.g., spots under shade or color aberratiogg (Be third row in the Figure
5.10)

e Its road-markings (or lane-markings) are faded. (See gtadav in the Figur€5.10)
To improve classification performance sensitive to appesa/ariation, we consider two
different approaches: classification decisions with camfecg and sampling to optimally use

1The magnitude of a parking spot is regarded nominal if itraff@ normal size vehicle that its dimensions are
roughly assumed to be:3 5 meters. When a nominal parking spot is projected on a pylali@ilable orthoimage,
it occupies a subimage in 20 17 pixels. The finest resolution of publicly available oiithage is 1 feet per pixel.
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Figure 5.10: Parking spot image patches in different agreas are shown. Parking spots
shown above the (red) dashed line are canonical parking spat all the remaining ones are
parking spots in unusual appearances. Particularly, whpswking spots on the second row are
ones in unusual shapes such as in fishbone, for the handappepezoidal. Ones at the third
row are in varying illumination conditions. Ones at the last are with obsolete lane-markings.

human-labeled data. Instead of producing binary decis@esnfidence classifier produce pro-
duces a probability of a testing image being a parking sp@m@ing helps reduce human-
labeled data usage by selecting a small set of the most iatorexsamples for re-training.

When dealing with unusual parking spots, a purely binargsifecation is undesirable be-
cause it does not fit well into common detection framework ngttaere is always insufficient
data to estimate the true model. For example, when clasgifyifishbone-shaped parking spot
with a class label, it is more reasonable for a classifier stgasa low-confidence than rejecting
as non-parking spot. The confidence represents a degresainginative ability based on a
detector’s current understanding about the appearancarkihg spots. In other words, a low-
confidence assigned to a fish-bone shape parking spot ipiieted as lack of experience with
such type but the image has common features such as georoetnaybe color histogram).
To implement parking spot classification with confidence caesider two methods: Ada.Boost
[Freund and Shapire, 1997] and probabilistic support veotchines (SVMs) [Platt, 2000].

Ada.BoostOur implementation of Ada.Boost is motivated by Viola andelsi approach for
face detection [Viola and Jones, 2004] where decision ssushpndividual features are linearly
combined with their learned confidences to predict the alamsmbership of a test image. In our
case, a weak learner is a decision stump of one of the six ipaoig feature representation. A
decision stump is a single-layer decision tree that congahi similarity between a parking spot
and the centroid of each of two classes (parking-spot anepaoking-spot) and assigns the label
of the closest centroid to the spot. For the similarity citian, we use the histogram intersec-
tion [Swain and Ballard, 1991]. Given two histograrhs,andh;, the histogram intersection is
computed by

K .
H](hz’ hj) — Zk:l mll{n(hi,k7 h]7k>
k=1 h;

whereh; is one of the six part in our feature representation (e.dordostogram) and; is the
centroid of thej class.

At the boosting iteratiort, decision stumps, which are restricted to use only one gdart o
our feature vector, are trained. The decision stump withHdiest error is selected as thih
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classifier,h;. Its confidencey; is computed based on its errey,

11 1—€t
Qy = —1n
! 2 €¢

o= # )

wheren is the number of test examples ahd) is an indicator function that returns 1 if the
condition is satisfied. When classifying a new image, the.Bdast linearly combines th&
classifiers with respect to their confidences

H(x) = sign (Z atht(x)>

Probabilistic SVM The idea of converting a SVM’s discrete outputs into prolstic ones
is to fit a logistic sigmoid to the outputs of a previously tred SVM [Platt, 2000].

p(y; = 1x;) = o(Ah(x;) + B)

wherex; is theith image patchh(x;) is the SVM’s output orx;, A and B are parameters of
fitting a logistic function.

Uncertainty Sampling Manual labeling can be very informative but expensive ang the
amount needs to be minimized. Uncertainty sampling is a-paskd active learning framework
that helps a learner choose a set of informative samplesdowal labeling, avoiding a request
of complete labeling of data in a pool [Lewis and Catlett,4]99In our case we have a pool
of human collected parking spot images of which appearaacesot similar to those of self-
labeled images. Uncertainty sampling is utilized to mirmenihe usage of these human-labeled
data. Since confidences associated with classificatiorsidesi reveal the classifier's current
understanding of parking spot appearances, incorrecsifitas examples with low-confidence
are likely near at the decision boundary and very infornegfor relocating the current decision
boundary. In other words, because the classifier is unceafaout the class membership of
low-confident examples, performance can be improved if thssdier is retrained with those
examples.

5.4.2 Experimental Results

Several experiments were performed to understand how tHerpwnce of our parking spot
classifiers changes as human-labeled examples are indaipanded to the training data.
There are 1,429 images used in our experiments. Our safdaénalyzes 8 different parking

lot orthoimages and automatically collects 532 parkingt spages that 42 contain vehicles
and 32 are not actual parking spots. The same number of negatages are also collected
by randomly generating image patches around actual pagpogpatches. We also manually
collect 365 unusual parking spot images. Fidure]5.10 shaamsple parking spot images with
normal (or canonical) and unusual appearances. Althouddngespot images used in this thesis
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Figure 5.11: Experimental results of incremental retragni

are scale- and rotation-free, their appearances varylgiaantensity, geometric shape, color,
texture, and quality of road-markings.

We test the performance of two machine learning algorithntis different sampling meth-
ods in an incremental re-training setting. They are iditiddained with a set of self-labeled
(canonical) parking spot images and their classificati@uescies are measured with respect to
two different types of parking spots. During several retirag processes after the initial train-
ing, a small amount of human-labeled parking spot data is@dal the training data. Since the
amount of the training data is fixed, the increase of unusata oh the training data decreases
the amount of normal data. The classifiers are then re-ttaiith a composite of normal and
unusual parking spot images.

This incremental re-training scenario is not uncommon iruatic building of road maps
for autonomous driving in that a classifier is initially tnaid with a small amount of the training
data (i.e., for our case, a small number of the self-labetedples) and is retrained again when
the performance drops below the desired level due to exampta different appearances.

Figure[5.11 shows experimental results. Thaxis represents the percentage of unusual
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parking spot images as a part of the training data ang-#ves is classification accuracy that is
defined as a ratio of the number of correctly classified testmptes to the total number of test
examples. There are two numbers at eacimumbers of unusual parking spots in the training
data and the percentage of unusual parking spots used aod {hertraining data. For example,
the values at the end of theaxis (265 (73%)) represents that 73% of the unusual daa (i.
265 images) are used for the training data. Since we fix thed &whount of training data at
851 images (80% of the self-labeled examples), the numbeamdnical images is 586 in this
iteration. The vertical (red) dashed line in the figure dégdyraphs into two parts: results of
incremental learning and results of batch learning. In atbkgarning setting, all of the available
parking spot images are split into two different sets: iragnand test and a general learning
process is conducted.

There are two different classification methods to compaaehiof the classification methods
is combined with two different sampling methods and indidbcombinations are tested with re-
spect to two different parking spot image types, such asmiaaband unusual, resulting in eight
different settings to compare. We repeated each experifiwerniimes to account for randomness
in the data-split and sampling process.

Although the initial performance of Ada.Boost is slightlgtter than that of SVM, their per-
formances are not acceptable. As the amount of unusual slatareased, their performances
increases drastically whereas the performance on carn@poaremains relatively stable. In
particular, the probabilistic SVM produces a consistegugacy of over 90%. It is interesting
to observe that the changes in training data composite daffestt performance on canonical
parking spot classification. When 28% of the training dag&9(@ut of 851) are unusual parking
spots, SVM with uncertainty sampling outperforms all of ttker approaches. Random sam-
pling did well on improving the performance up to the settgere 50% of unusual parking
spots are sampled.

We conducted another experiment that trained two classifieh all of the available parking
spot images and compared their performances with thosemdnmental learning settings. The
performance of these batch learning approaches are demot¢he right side of the vertical
dashed line at the end of theaxis. Tabld 5.3 shows experimental results around thécaért
dashed line in figure 5.11 and details a comparison of acesg&etween incremental learning
and batch learning. The results shows clearly that uncgytaiampling helped improve the
performance of the probabilistic SVM with less data. Fomegke, a combination of uncertainty
sampling and a probabilistic SVM produced 97.33% accuracyding 65% of the manually
labeled data whereas the probabilistic SVM trained using & the manually labeled data
produced 96.02% accuracy. Particularly when the prolstigilsVM with uncertainty sampling
utilized 58% of the manually labeled data (212), it used 82sfemanually labeled examples to
achieve 6% (95.33% vs. 96.02%) less accurate result thamtiiae batch learner trained by
using 80% (294) of the manually labeled data.

In this section, we present a new method to handle intrasef@sation that is caused by vary-
ing appearances of parking spots. Because our self-laisedely able to automatically collect
easy-to-detect examples, a parking spot detector traipesing self-labeled examples is inca-
pable of correctly classifying parking spots with unusuysdearances. To improve performance,
we manually collected unusual parking spots and use thenpad af training data. We use un-
certainty sampling to minimize the use of the manually letielata because human labeling is
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expensive. Experimental results show that uncertaintypiamhelps improve the performance
of a probabilistic SVM with less data than that of a batchnéay approach.
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\ 186 (50%) \ 212 (58%) \ 239 (65%) \ 265 (73%) H 265 (73%) \ 294 (80%) \
Uncertgi@gnonical| .9290 ¢.0128)| .9380 (.0133)| .9241 (¢.0046) | .9282 (-.0123) | .9376 (-.0046)| .9299 (.0212)
Unusual | .9333 (¢-.0058)| .9533 (£.0115)| .9733 (.0153)| .9867(4+.0058) || .9379 (.0047)| .9602 (-.0260)
RandomCanonical| .9164 ¢-.0147)| .9216 ¢.0212)| .9137 (.0231)| .9149 (.0119) - -
Unusual | .9400 ¢.0200)| .9400 (.0200)| .9500 (.0100)| .9567 (.0058) - -
Uncertgi@gnonical| .8810 (-.0114)| .8838 (-.0182)| .8609 (+.0166)| .8668 (-.0105) || .8526 (.0307)| .8667 (.0203)
Unusual | .7253 ¢.0637)| .7596 (.0070)| .8061 (.0182)| .7940 (-.0160) || .8044 ¢.0078)| .8034 (+-.0345)
RandomCanonical| .8989 (.0087)| .8856 (-.0082)| .8575 (.0051)| .8692 (+.0106) - -
Unusual | .7131 ¢-.0311)| .6950 ¢.0350)| .7636 (.0338)| .7353 (.0305) - -

Table 5.3: Comparison of accuracy between incrementatilegs and batch learnings.
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5.5 Summary

This chapter details orthoimage analysis methods that@atioally build parking-lot maps. In
a hierarchical scheme, our algorithms analyze structurd<oaild skeletons representing driv-
able regions of a parking lot from orthoimage. For parkingtgfetection, a low-level analysis
layer extracts a set of easily-detected canonical parlpotssand estimates parking blocks using
line detection and clustering techniques. A high-levellgsia then extends those spots using
geometrical characteristics of typical parking lot stues to interpolate and extrapolate new
hypotheses and uses self-supervised machine learningidees to filter out false positives in
the proposed hypotheses. Experiments show that trainengléissifiers using a self-supervised
set of canonical parking spots extracted by low-level asialguccessfully adapts the filter stage
to the particular characteristics of the image under amal\&elf-supervised examples are also
effectively utilized to train a road-marking detector angiaking lot boundary segment. A com-
posite of this information is then used to estimate the stinecof the parking lot.

A lane-graph is used to concisely represent the obtainednrgtion. Our lane-graph gener-
ation algorithm first produces a distance transform map fileerboundaries of drivable regions
and the locations of parking spots, to reveal the skeletdtiglble regions; second, it identifies
the locations of peaks in the distance transform map; anthfihaonnects some of these peaks
to produce a lane-graph consistent with drivable regions.

Since our approach to building a parking lot map begins watkimg spot detection, it is
important for the parking spot detector to robustly idgngi&rking spots in a given image. Since
our detector is trained using self-labeled canonical paylspot images, it often fails to detect
parking spots of unusual appearance. To cope with such egppeavariations in parking spot
images, we devised an uncertainty sampling method thatnmentally improves our detector’s
capability of handling parking spot images with unusualesgppnces by using a small number of
manually labeled parking spot images. Empirically we fotimat an incremental update of the
parking spot model through uncertainty sampling incredlsegberformance of our parking spot
detector.
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Chapter 6

Conclusions

In this thesis we demonstrated that we could provide lanetlgetailed maps of highways and
parking lots by analyzing publicly available orthoimagésstead of relying on human labeled
data, our algorithms acquire, through bootstrapping -takdvant image features by extensively
exploiting prior information and readily-collectible lelgvel image features. For generating
highway maps, our algorithm, without human interventigm;apable of identifying image road
sub-regions; of detecting overpass boundaries; and ohastig legitimate driving directions,
by extensively analyzing what is already available suchresland screenshot images of road-
vectors. These mid-level image features are used to geneypbtheses about true road-lanes
and guide the process of linking those hypotheses to extiacboundaries of highway road-
lanes. For generating parking lot maps, our algorithm ig ablacquire a set of parking spot
image examples in canonical appearances by analyzingderdged from image intensity gra-
dient analysis. These self-obtained parking spot imagenples are used to train a model of
parking spot appearance, which is in turn utilized to deddlodvf the visible parking spots ap-
pearing in the input images.

While we demonstrated the capability of our perspectivegenanalysis algorithm, we also
utilized the scheme of extensively using prior informatidrior information about traffic sign
location was obtained from ground truth data and was useahpoave the performance of our
sign detector — removing any false positive and negative daections.

Through testing our algorithms with real-world data, higiywand parking lot orthoimages
and highway workzone videos, we showed a promising resuli. dthoimage analysis algo-
rithms produce lane-level detailed maps of highways anipgiots. Our perspective-image
analysis algorithm recognizes the bounds of workzones avsd af the temporary changes.

6.1 Contributions

6.1.1 Orthoimage Analysis for Building Lane-level Roadmap

Our first main contribution is to demonstrate the usefulmégmotstrapping to achieve the goal
of a given computer vision task. We demonstrated that we oHdact task-relevant and task-
specific information only from a given image by extensivellizing prior information and inten-
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sively analyzing readily collectible low-level image faegs. For example, to generate highway
maps, our algorithms obtain task-specific mid-level images¢ such as results of road-region
segmentation, results of driving direction identificati@md results of overpass detection, to
guide the process of linking hypotheses about true roagslahis enables us to extract the
boundaries of highway road-lanes. Similarly, to generaté&ipg lot maps, our algorithms ac-
quire task-specific information, e.g., a set of parking spw@ges, by analyzing extracted lines
and their spatial dependencies. These self-labeled erarapt used to train a model of parking
spot appearances. This model is in turn used to detect dieofisible parking spots in a given
image. Knowledge of parking spot locations makes it easieotir algorithm to extract the
geometric structures of parking lots.

A System for Producing Lane-level Detail Highway Maps We developed a computer vi-
sion system that can produce a lane-level detail highway bwagmalyzing a given orthoimage.
For collecting task-specific image patterns, we developgdrigdhms that extensively analyze
prior information and readily collectible low-level imafgatures and produce three task-specific
pieces of information: road-region segmentation, driviligection estimation, and overpass de-
tection. We developed a hypothesis-linking function thatreects hypotheses about true road-
lanes based on the geometric and photometric constraints.

A System for Producing Parking Lot Maps: We developed a computer vision system that
can produce a map of a parking lot by analyzing a given ortagenwithout human interven-
tion. The resulting map contains locations of parking spotsthe geometry of drivable regions.
For detecting parking spots appearing on a given image, welalged an algorithm that auto-
matically acquires easily collectible parking spot imamesanonical appearance and uses these
examples to learn a model of parking spot appearance. Wéogeeka segmentation algorithm
that is capable of distinguishing parking lot image regifsos the background. We developed
an algorithm that extracts a lane-graph of a parking lot ahyaing a polygonal shape about the
spatial relations between detected parking spots andifigeindrivable regions.

Demonstration of Usefulness of Bootstrapping Image Procesg: This thesis provides
a good use case of bootstrapping image processing thatitsxifle salient characteristic of a
given problem; it extensively analyzes a given image to iakt@sk-relevant and task-specific
information while minimizing human intervention.

6.1.2 Perspective Imagery Analysis for Assessing Roadwayage

Our second main contribution is to demonstrate that ouesystan recognize 1) the bounds of
workzones and 2) temporary changes in driving conditionsighways by analyzing perspective
images. In addition, to address potential sign recognigiwars, we developed two algorithms.
The first, in minimizing the impact of false negative signedtitons, propagates sign classifica-
tion confidences over time. The second, to reduce the nunifese positive detections, utilizes

temporarily redundant appearances of the same signs.

A System for Workzone Sign Detection and ClassificationWe developed a computer vi-
sion system that analyzes perspective videos to detectzamneksigns based on pixel-wise color
classification. The system then classifies the detectedisigge regions into one of the pre-
defined workzone sign classes. We demonstrated a promessadf through testing this system
with five real-world workzone videos.
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Development of Sign Recognition Error Handling Methods We developed algorithms
that handle potential workzone sign recognition errorsaddress false negative detections, we
devised a confidence propagation algorithm that forwargls slassification confidences over
time to sustain, for a while, our belief in driving on a highywaorkzone. To minimize the
number of false positive detections, we developed an dlgarthat makes use of temporal re-
dundancy of sign occurrences and their correspondingifitag®n confidences, to augment the
current sign classification.

6.2 Future Work

In this thesis, we proposed a set of methods to produce mdpuglofvays and parking lots and
update potential temporary changes on the resulting highmaps. We hope that others will
build on our ideas and other related work in the communitydwaace the study of the related
fields. We now propose several ideas for future work that diextend our findings.

Better Understanding of Hierarchical Approaches for Execuing Computer Vision
Tasks We explicitly or implicitly employed a hierarchical botteap approach for analyzing
images. Such a hierarchical approach is prevalent in thepatenvision community. However,
we have not yet investigated when and how such a systemdaakscomplish a given task.

Annotating Global Coordinates to Resulting MapsThe resulting maps of highways and
parking lots are coordinate-free. To be useful, it is neamgs® assign global coordinates, such
as Universal Transverse Mercator, to pixel coordinatese fossible way is to utilize pairs of
latitude and longitude from an Internet map service, suchgBomaps, to sparsely assign global
coordinates and later interpolate these sparse coordindiiée driving in the regions appearing
on the map.

Parsing Images about In-City Roads to Complete a Route Maur initial goal was to
generate a route map between two locations, e.g., a routedrperson’s garage to a shopping
mall. To completely generate a map of such a route, it is rsacgso parse images about in-city
roads, from ones house to a highway. We excluded this part the thesis work because we
believe analyzing in-city images involves too much work ahtlling objects, such as vehicles,
pedestrians, occlusions by urban structures. The higluémcy of these objects’ occurrences
may be irrelevant to the task of map generation but impott@amtetecting them properly for
other vision tasks.

Making Color-Based Sign Detection RobusAlthough we demonstrate the effectiveness of
utilizing color in detecting signs in perspective imagespkr-based sign detector may, in prac-
tice, occasionally fail (e.g., where a variation of the &rgolor has not been observed during
the training phase). For future work, it would be useful teeistigate an approach that com-
bines color information with shape information. Our cob@sed sign detector failed to detect
some workzone signs when their images were under- and apeised. In order to handle such
images, we would like to investigate a method that estiméedlumination response function
of our vision sensor. In addition, our tests that evaluakedacquisition of highway workzone
information may not be exhaustive. In this regard, in futiozk, we would like to collect more
video data to include other events and to extensively etalma approach’s workzone recogni-
tion capability.
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Improving Performance of Part-DetectorsIn the course of this thesis work we developed
a couple of detectors that identify parts of objects of ieser These could include such things
as a lane-marking detector for identifying image cues oty road-lanes, a parking spot de-
tector for parking lot structure analysis, and a workzoge sietector for recognizing workzone
bounds. The performance of each part-detector affectoftthe final output. For example, a
high false positive rate of lane-marking detector for higwnap generation may be acceptable
in terms of adding noise to the image cues we need to handigevés, it might cause a serious
problem when our detector misses a majority of true lanekings.

Incremental Learning for Handling Variations in Object App earancesin general, vari-
ations in object appearances are one of the most challefagtays in executing any computer
vision tasks. In our cases, we have observed variationslor emd texture of highway sur-
face materials and lane-markings, parking spots’ geomaitril image appearances, and color of
workzone signs. We have developed a learning method tHetestia small number of manu-
ally labeled examples to incrementally update the appeararodels of parking spots. It would
be useful if a generic learning method could handle suctatraris as new data about unusual
appearances arrive.
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Appendix A

Examples of Hand-Labeled Data

In ChaptefB, we use two types of hand-labeled data: growrth émnotations of test highway
orthoimages and highway orthoimages with lane-markingtations.

The ground truth annotations of test highway orthoimagescaeated to evaluate the ac-
curacies of the resulting lane-level detailed highway maigiure[A.1 shows a ground truth
annotation of an orthoimage. For each test orthoimage, welsascreenshot of the geographic
region appearing on the Google maps service. We then mgrdeliheated, with a distinctive
color, the boundaries of road-lanes appearing on each imfdgewidth of the ground truth an-
notation is one pixel. The evaluation procesure is detail&kctiori 3.B. The next section details
how to access these ground truth annotations.

Figure A.1: A ground truth annotation of a highway orthoiread he blue lines are manually
drawn to indicate the boundaries of the road-lanes appggaririhe image.

The other hand-labeled data are highway orthoimages withualaannotations of lane-
markings. FiguréAl2 shows five examples of orthoimages imitle-marking annotations. We
have 22 such images and used them to train a lane-markingtoletd he geographic regions
appearing on these images are inter-state highways neéabui?gh. For marking some pixel
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locations, we drew blue lines for some of the true lane-nmgrkmage regions and red lines
for non lane-marking regions. For training a lane-markiegedtor, we investigated each of the
marked pixels to identify its image characteristics andrtmlpce a feature vector. These features
were used to train a road-marking detector. The procedur@ioing a lane-marking detector is
detailed in Section 3.1.2.

114



Figure A.2: Examples of highway orthoimages with lane-nragkannotations. Some of the
lane-markings are manually marked to indicate positivagpbbnd negative (red) examples of
lane-marking pixels.
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Appendix B

Test Orthoimages for Highway Map
Generation

We, as a reference, attach all 50 orthoimages used for¢estinhighway map generation algo-
rithms and provide the information about how to access tgthand truth annotations.
Table[B.1 and Table Bl2 show lists of the GPS coordinates.cbbedinates at each row de-
fine two corners of the rectangular viewpoint of a test imd&tgeeh of the ground truth annotation
is available as a Portable Network Graphic (PNG) image froefollowing:
http://www.frc.ri.cmu.edufywseo/projects/highway-map-
generation/groundtruth/route-376-?-20m-groundtrptig
where the symbol? at the end of the address should be replaced with the
image number, 1-50, to browse a ground truth image. For ebamphe
url,http://www.frc.ri.cmu.edutywseo/projects/highway-map-generation/groundtrathtie-
376-1-20m-groundtruth.pngwill let you browse the ground truth annotation of the firsstt
image.
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Image Numbet

Top Left |

Bottom Right

| Link to Ground truth

O oo ~NOOTS, WNPE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

40.428891, -79.92953
40.435677,-79.96896
40.429607, -79.93347
40.4291083,-79.93807
40.436802,-79.97342
40.436679,-79.97735
40.435085,-79.98922
40.434876,-79.99261
40.434899,-79.99689
40.435765,-79.99999
40.437228,-80.00264
40.439543,-80.00895
40.439986,-80.01150
40.438521,-80.01516
40.431534,-80.02704
40.430575,-80.02918
40.429107,-80.03117
40.427061,-80.03224
40.425491,-80.03197
40.423655,-80.03137
40.420954,-80.03420
40.420649,-80.03706
40.421117,-80.04054
40.421652,-80.04597

140.427861, -79.92631
b 40.434654,-79.96571
A440.428586,-79.93029
D 40.428023,-79.93490
b 40.435765,-79.97016
b 40.435632,-79.97410
D 40.434084,-79.98633
1 40.433694,-79.98921
? 40.433805,-79.99344
D 40.434672,-79.99713
b 40.436097,-79.99931
D 40.438525,-80.00577
/ 40.438996,-80.00829
D 40.437555,-80.01198
3 40.430463,-80.02438
3 40.429550,-80.02603
b 40.428041,-80.02818
1 40.426020,-80.02889
D 40.424382,-80.02871
140.422600,-80.02818
¥ 40.419918,-80.03095
D 40.419643,-80.03375
3 40.420008,-80.03703
D 40.420641,-80.04282

40.420529,-80.05222

5 40.419539,-80.04902

WiV O U O W FEFIVvIVFE U O 0Ty N O OO U R

link?
link?2
link3
link?
link®
link®
link”
link®
link®
link1°
link!
link2
link2
link4
link®
link1®
link’
link18
link®
link2°
link2!
link22
link22
link24
link®

Table B.1: This table lists two pairs of GPS coordinates effitst 25 test images numbered 1 to

25. These images are sampled on December, 2011.
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Image Numbet

Top Left |

Bottom Right

| Link to Ground truth

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

40.419194, -80.05491
40.411246,-80.07223
40.412271, -80.07799
40.413139,-80.08049
40.413312,-80.08620
40.418834,-80.08988
40.421803,-80.09674
40.422840,-80.10200
40.423923,-80.108091
40.424758,-80.11266
40.425487,-80.12120
40.429977,-80.13441
40.430722,-80.13724
40.438521,-80.01516
40.445045,-80.16504
40.451644,-80.17038
40.449776,-80.169261
40.454828,-80.18323
40.460046,-80.19182
40.451903,-80.17136
40.453117,-80.17756
40.455470,-80.18497
40.466152,-80.19721
40.469366,-80.20023

640.418175, -80.05173
? 40.410251,-80.06903
A440.411258,-80.07475
D 40.412146,-80.07741
¥ 40.415265,-80.08311
D 40.417795,-80.08652
b 40.420770,-80.09344
D 40.421781,-80.09849
140.422873,-80.10482
1 40.423712,-80.10943
¥ 40.424413,-80.11803
¥ 40.428909,-80.13127
/ 40.429685,-80.133961
D 40.437555,-80.01198
D 40.444089,-80.16185
3 40.450644,-80.16721
140.448792,-80.16591
D 40.453787,-80.17993
1 40.459056,-80.18851
? 40.450878,-80.16827;
340.452101,-80.17439
D 40.454515,-80.18175
3 40.465178,-80.19400
3 40.468288,-80.19678
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40.465193,-80.19645

b 40.464056,-80.19310

link2®
link2’
link2®
link2®
link3°
link3!
link32
link33
link34
link3
link3®
link3’
link38
link3°
link4°
link4!
link42
link#2
link44
link4°
link2®
link#’
link8
link4®
link>°

Table B.2: This table enumerates two pairs of GPS coordir@ftéhe remaining 25 test images

numbered 26 to 50.
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(d) Test image 4.
120

Figure B.1: Test highway orthoimages 1-4.



(d) Test image 8.
121

Figure B.2: Test highway orthoimages 5-8.



(d) Testimage 12.
122

Figure B.3: Test highway orthoimages 9-12.



(d) Testimage 16.
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Figure B.4: Test highway orthoimages 13-16.



(d) Test image 20.
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Figure B.5: Test highway orthoimages 17-20.



(d) Test image 24.
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Figure B.6: Test highway orthoimages 21-24.



(d) Test image 28.
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Figure B.7: Test highway orthoimages 25-28.



(d) Test image 32.
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Figure B.8: Test highway orthoimages 29-32.



(a) Test image 33.

(d) Test image 36.
128

Figure B.9: Test highway orthoimages 33-36.



(d) Test image 40.
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Figure B.10: Test highway orthoimages 37-40.



(c) Testimage 43.

(d) Test image 44.
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Figure B.11: Test highway orthoimages 41-44.



(d) Test image 48.
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Figure B.12: Test highway orthoimages 45-48.



(b) Test image 50.

Figure B.13: Test highway orthoimages 49-50.
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Appendix C

Some Additional Results of Highway Map
Generation

In the previous chapter, we showed all 50 test images useglv&uating the accuracies of the
resulting highway maps. For each of the test images, we regralealgorithms to produce

intermediate results and refined these results to produareealével detailed highway map. This
chapter shows some important results of our highway maprggoe. These results include three
outputs from mid-level bootstrapping tasks such as overgatection results, driving-direction
estimation results, image road-region segmentationtesnd the resulting lane-level highway
map.
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(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

134
Figure C.1: Test highway orthoimage 1.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
135

Figure C.2: Test highway orthoimage 2.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

136
Figure C.3: Test highway orthoimage 3.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
137

Figure C.4: Test highway orthoimage 4.



(a) Results of overpass detection.
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(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

138
Figure C.5: Test highway orthoimage 5.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
139

Figure C.6: Test highway orthoimage 6.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

140
Figure C.7: Test highway orthoimage 7.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.
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(d) Results of highway map generation.

141
Figure C.8: Test highway orthoimage 8.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

142
Figure C.9: Test highway orthoimage 9.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.10: Test highway orthoimage 10.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of hi%-hway map generation.
44

Figure C.11: Test highway orthoimage 11.



(a) Results of overpass detection.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

145
Figure C.12: Test highway orthoimage 12.



(a) Results of overpass detection.
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(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.
146

Figure C.13: Test highway orthoimage 13.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.14: Test highway orthoimage 14.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
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Figure C.15: Test highway orthoimage 15.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

149
Figure C.16: Test highway orthoimage 16.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

150
Figure C.17: Test highway orthoimage 17.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.18: Test highway orthoimage 18.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
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Figure C.19: Test highway orthoimage 19.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
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Figure C.20: Test highway orthoimage 20.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
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Figure C.21: Test highway orthoimage 21.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
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Figure C.22: Test highway orthoimage 22.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.23: Test highway orthoimage 23.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
157

Figure C.24: Test highway orthoimage 24.



(a) Results of overpass detection.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

158
Figure C.25: Test highway orthoimage 25.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.26: Test highway orthoimage 26.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
160

Figure C.27: Test highway orthoimage 27.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

161
Figure C.28: Test highway orthoimage 28.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

162
Figure C.29: Test highway orthoimage 29.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

163
Figure C.30: Test highway orthoimage 30.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
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Figure C.31: Test highway orthoimage 31.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

165
Figure C.32: Test highway orthoimage 32.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

166
Figure C.33: Test highway orthoimage 33.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

167
Figure C.34: Test highway orthoimage 34.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.35: Test highway orthoimage 35.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
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Figure C.36: Test highway orthoimage 36.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.37: Test highway orthoimage 37.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

171
Figure C.38: Test highway orthoimage 38.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

172
Figure C.39: Test highway orthoimage 39.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

173
Figure C.40: Test highway orthoimage 40.



(a) Results of overpass detection.
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(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.
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Figure C.41: Test highway orthoimage 41.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.42: Test highway orthoimage 42.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.43: Test highway orthoimage 43.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.44: Test highway orthoimage 44.



(a) Results of overpass detection.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

178
Figure C.45: Test highway orthoimage 45.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
179

Figure C.46: Test highway orthoimage 46.



(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
1

Figure C.47: Test highway orthoimage 47.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.
181

Figure C.48: Test highway orthoimage 48.



(a) Results of overpass detection.
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(b) Results of driving direction estimation.

(c) Results of road-region segmentation.

(d) Results of highway map generation.

182
Figure C.49: Test highway orthoimage 49.



(a) Results of overpass detection.

(b) Results of driving direction estimation.

-region segmentation.

(c) Results of road

(d) Results of highway map generation.

183
Figure C.50: Test highway orthoimage 50.
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