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Abstract— Safe robot navigation in tree fruit orchards re-
quires that the vehicle be capable of robustly navigating
between rows of trees and turning from one aisle to another;
that the vehicle be dynamically stable, especially when carrying
workers; and that the vehicle be able to detect obstacles on its
way and adjust its speed accordingly. In this paper we address
the latter, in particular the problem of detecting people and
apple bins in the aisles between rows. One of our requirements
is that the obstacle avoidance subsystem shouldn’t add to the
robot’s hardware cost, so as to keep the acquisition cost to
growers as low as possible. Therefore, we confine ourselves to
solutions that use only the sensor suite already installed on
the robot for navigation–in our case, a laser scanner, low–cost
inertial measurement unit, and steering and wheel encoders.
Our methodology is based on the classification and clustering
of registered 3D points as obstacles. In the current implemen-
tation, obstacle avoidance takes in 3D point clouds collected
in apple orchards and generates an off–line assessment of
obstacle position. Tests conducted at our experimental orchard–
like environment in Pittsburgh and an actual apple orchard in
Washington state indicate that the method is able to detect
people and bins located along the vehicle path. Stretch tests
indicate that it is also capable of dealing with objects as small
as 15 cm tall as long as they aren’t covered by grass, and to
detect people crossing the aisles at walking speed.

I. INTRODUCTION

Tree fruit production is a very labor–intensive business.
In the US, for example, labor account for over 50% of the
variable costs to produce apples. Additionally, the number of
workers required varies significantly throughout the year–in
the state of Washington, for example, it fluctuates between
5,000 workers in the winter time to 35,000 at the peak
of harvest. Clearly, there is an opportunity to introduce
automation solutions into tree fruit production to lower
labor costs, smooth out labor requirements, and increase
production efficiency. This opportunity is compounded by
the introduction of high–density planting architectures in the
past twenty years, where fruit grows along “walls” formed by
the branches of trees just four to six feet apart. Autonomous
vehicles driving down along these fruit walls can mow and
spray, as well as carry workers pruning, thinning, performing
tree maintenance, and harvesting.

For the past three years we have been developing a family
of such vehicles, which we call Autonomous Prime Movers,
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or APMs (Figure 1). The current APMs are capable of
autonomously driving between a row of trees, turning at the
end of the aisle and entering the next one. Row following
is conducted at the center of the aisle (e.g., for sensing or
mowing) or at a predefined distance from the trunk line
(e.g., for pruning, thinning, or spraying). To be affordable
to growers, the APMs do not carry a high–accuracy GPS–
assisted inertial navigation system (INS), as is usual in
agricultural automation. Rather, they navigate using only
one laser rangefinder, a low–cost inertial measurement unit
(IMU), and steering and wheel encoders.

Fig. 1. Two vehicles in the Autonomous Prime Mover family. (Left)
Orchard workers thinning green fruit from onboard an autonomous
platform. (Right) Workers using the autonomous vehicle as a “bin
dog” to increase harvest efficiency.

Between 2009 and 2011 the five vehicles in the APM
family drove a combined 330 km in research and commercial
orchards in several US states. Preliminary results indicate
that workers on an APM–mounted platform can conduct
some tasks on the top of the trees in half the time taken
by workers on ladders or on foot [7], [8].

While performance when driving between rows is satis-
factory, the current system does not include the capability
to detect obstacles in the aisle and adjust vehicle speed
accordingly. Clearly, this is a safety requirement that must
be addressed before APMs can become part of the tree fruit
grower toolbox. Additionally, any obstacle detection system
must not add to the hardware cost of the vehicle, lest cost
issues increase the adoption barrier. Finally, the system must
robustly detect the two major obstacles found in orchards:
people and bins.

In this paper we address obstacle detection for autonomous
orchard vehicles driving at working speeds of up to 1
m/s, using only the sensing suite already in place for row
following–namely, a laser scanner, IMU, and steering and
wheel encoders. Our methodology consists of four steps:

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1735-1/12/S31.00 ©2012 IEEE 3391



first, 3D range measurements are taken by the onboard
laser scanner; second, the measurements are registered to
the vehicle and inertial coordinate frames; third, the 3D
points are classified according to their belonging (or not)
to an obstacle; and fourth, the 3D points are clustered and
the obstacle position is estimated. Obstacle avoidance is
currently implemented as an off–line Matlab process. Tests
conducted at our experimental orchard–like environment and
an actual apple orchard in Washington state indicate that the
method is able to detect people and bins placed on vegetation
along the vehicle path. We also conducted “stretch” tests to
verify how far beyond the original requirements the system
can respond. The results indicate that it is capable of dealing
with objects as small as 15 cm tall as long as they aren’t
covered by grass, and to detect people crossing the aisles at
walking speed.

The paper is organized as follows. In Section II we
present a review of related work, with special focus on
obstacle detection for ground vehicles operating in orchard–
like agricultural environments. In Section III we present the
autonomous orchard vehicle used as a platform in which the
obstacle avoidance method was implemented and tested. In
Section IV we present the method per se, and in Section
V the results of extensive field experiments conducted in
orchards. We conclude the paper in Section VI indicating
avenues for future work.

II. LITERATURE REVIEW

Obstacle detection is a key capability for autonomous ve-
hicles, and a specially important one for vehicles navigating
in agricultural environments. In essence, obstacle avoidance
consists of determining whether the space ahead of the
vehicle is clear from obstructions for safe travel [15]. Its
goal is to detect all obstacles along the path in time for the
vehicle to react to them, while minimizing misclassifications.

Several obstacle detection approaches proposed and im-
plemented in real systems, e.g., [3], [9], [14], showed good
results for low speeds (under 3 m/s). Still, many difficulties
are associated with obstacle detection in natural terrain,
especially due to the presence of vegetation. On one hand,
tall grass can be erroneously classified as an obstacle; on the
other hand, an obstacle occluded by vegetation may not be
detected. Additionally, we look here for technologies that are
both practical (i.e., low–cost) and robust enough to augment
the well–established navigation and driving systems.

Stereo vision [13], [19], omnidirectional vision [4] and
color segmentation [2] have been used for obstacle detec-
tion and to determine the shape of the world around the
vehicle. The main advantage of these approaches is their
relatively low cost, as they rely essentially on commercial
cameras. Passive vision, however, suffers from lighting,
color constancy, and dynamic range effects that decrease the
performance of the obstacle detection system and cause both
false positive and false negative detections.

Many researchers have chosen to overcome these camera–
based limitations by adopting active sensors such as sonars,
radars [1], [10], and laser range finders. The laser is the

most recommended sensor for the application, due to critical
advantages in accuracy, compared to radar, and processing
speed, compared to vision systems [12].

Perhaps the most common solution for obstacle detec-
tion consists in installing the lasers on an active sweeping
mechanism, e.g., as in [3], [6], [17]. By commanding the
mechanism actuator, it is possible to change the orientation
of the laser to measure the terrain from multiple perspectives,
reducing effects of occlusion, mixed pixels and sunlight.
This configuration, however, is impractical for our purposes,
not only because it requires precise sweeping control–
since sweeping orientation errors heavily influence the range
measurements–but also because of its added cost, complexity,
and failure mode.

We propose a push–broom configuration where the laser is
installed in a fixed position on the vehicle, tilted to the hori-
zontal, such that the measurement plane intersects the ground
in a line at some distance ahead of the vehicle. As the vehicle
moves forward, the laser measures different lines on the
ground, allowing us to create point clouds representing the
terrain surface while dispensing with sweeping mechanisms.
As we show in the Results section, this simple and practical
configuration is robust enough to meet the requirements of
obstacle detection in orchard environments.

III. AUTONOMOUS ORCHARD VEHICLE

The base vehicle used in this work is the APM “Laurel”
(Figure 2). It is based on the Toro MDE eWorkman electric
utility vehicle, retrofitted to function either in manual or
drive–by–wire mode. The base retrofitting process consisted
on installing a steering motor, brake motor, motor drivers
and steering and wheel encoders. Laurel is a research
vehicle, where we implement and test orchard navigation
technologies before they are ported to other vehicles in
the APM family. It is important to note that, while Laurel
is equipped with a high–accuracy Applanix POS 220 LV
INS/GPS system, we do not use it for the obstacle detection
described here–otherwise, it would be impossible to port the
software to the other APMs, since they do not have such a
system onboard. On the contrary, Applanix data is used for
the sole purpose of calculating sensor measurement errors
during the obstacle detection system development process.
Likewise, while Laurel is equipped with a variety of laser
scanners and cameras, here we only use one laser scanner.
The relevant sensors for this work are: steering and wheel
encoders with angular resolution of 0.38◦/tick and linear
resolution of 2.33 × 10−5 m/tick; a CHR-6dm inertial unit
from CH Robotics, one of the most inexpensive IMUs in the
market; and a Sick LMS 291 laser scanner. The scanner has
a 180◦ field–of–view with a 1◦ resolution, and a maximum
scanning range of 80 m. The range resolution for measuring
distances between 1-20 m is 10 mm, with 35 mm accuracy
and 10 mm standard deviation (1σ).

The main onboard processor is a rugged, waterproof,
industrial computer with an Intel Core 2 Duo 1.6 GHz CPU
with 4GB DDR2 DRAM from Small PC. The navigation
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Fig. 2. Laurel Autonomous Prime Mover. In this work we use only
the steering and wheel encoders, low–cost IMU (blue box on the
bottom right) and one laser scanner (green box on top right) for
obstacle detection.

software runs on Ubuntu Linux, with the message pass-
ing provided by Willow Garage’s Robot Operating System
(ROS).

The laser is installed in a push–broom configuration,
with the inclination with respect to the horizontal defined
according to a safety buffer that we wish to maintain ahead
of the vehicle. Laurel travels at a maximum speed of 2 m/s,
and has a stopping time of one to two seconds. Therefore we
choose to detect obstacles at least 4 m away to avoid abrupt
maneuvers. Since the maximum possible mounting height is
1.45 m above the ground, we installed the laser scanner at
an angle of −20◦ with respect to the horizontal.

To register the 3D measurements from the laser scanner
we define three coordinate systems as shown in Figure 3. In
the following, a superscript letter represents the frame with
respect to which a quantity is described. The laser frame OL

corresponds to the sensor measurement plane. The vehicle
frame OV is located at the vertical projection on the ground
of the center of the rear axle. The inertial frame OI coincides
with the vehicle’s initial pose.

Fig. 3. Laser scanner, vehicle, and inertial coordinate frames.

To find the coordinate transformation between OL and
OV , we follow the technique proposed in [18]. The idea con-
sists on calculating the translational and rotational offsets be-
tween the laser and the vehicle by taking measurements of an
environment of known geometry, in our case a single vertical
pole on flat ground covered in reflective tape (Figure 7). The
result obtained is a translation tVL = [2.61,−0.04,−1.45]T
m and an orientation expressed by roll, pitch and yaw angles
φVL = [0.05◦,−21.25◦,−0.56◦]T .

IV. OBSTACLE DETECTION METHODOLOGY

We propose a practical obstacle detection system for
autonomous orchard vehicles, i.e., one that does not add
hardware cost to the vehicle and does not depend on ex-
pensive, high–accuracy GPS–based localization. The system
takes as inputs the 3D laser scanner, IMU, and encoders
measurements and outputs a binary assessment of obstacles
on the vehicle’s path. Obstacle detection is performed in
four steps: sensing and sensor data filtering, registering the
3D laser scanner measurements with the vehicle and inertial
coordinate frames, classifying the registered 3D points as
candidate obstacles, and clustering candidate points as obsta-
cles. In its present form the system is implemented as an off–
line Matlab process that runs on actual field data collected in
apple orchards. In its final form it will run on–line to adjust
the vehicle speed in reaction to detected obstacles, and alert
the operator as to their presence.

A. Sensing and Sensor Data Filtering

The first step in obstacle detection consists of taking mea-
surements from the laser scanner, IMU, and encoders, and
appropriately filtering them to account for various sources of
errors.

For the laser scanner, the main error source is the so–
called “salt and pepper” noise [12], measurements that do
not belong to the local neighborhood and do not obey the
local surface geometry [16]. Sources of “salt and pepper”
noise include boundaries of occlusions, surface reflectance,
and multi–path reflection. We adopt here an outlier rejection
filtering technique similar to the one employed in [18]. Each
laser scanner array li containing the range rij of 181 points is
modeled as a continuous function with mean µ and standard
deviation σ. A point is identified as an outlier if it lies beyond
two standard deviations from the mean:

|rij − µ| > 2σ ⇒ rij is an outlier (1)

Outliers are then replaced by the arithmetic mean of its
neighboring points:

rij =
rij−1 + rij+1

2
(2)

This algorithm, of course, does not eliminate “swell–
behaved” outliers that “hide” within 2σ from the mean. It
is just employed to remove points that are clearly out of the
measured environment scope.

For the encoders, filtering is used to compute vehicle
speed and acceleration. We use a low–pass filter currently
implemented by the Matlab function:
filter(ones(1,windowSize)/windowSize, 1, inputData);

with a window size of 20 measurements. A typical result is
shown in Figure 4.

Finally, for the low–cost CHR-6dm IMU, the main source
of error is the assumption made by the IMU internal extended
Kalman filter (EKF) that the accelerometers only measure
the gravity vector. Because of that, the errors associated
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Fig. 4. Vehicle position, velocity and acceleration obtained with
encoder odometry and low–pass filtering.

with pitch angle measurement increase whenever the vehicle
accelerates. The maximum absolute error measured is about
5◦ (Figure 5). Noting that the pitch error curve in Figure 5
is similar to the vehicle acceleration obtained via encoder
odometry, it is possible to cancel the effect of vehicle
acceleration a in the measured pitch angle ϑIMU via:

ϑ = ϑIMU − 5.02a (3)

where the gain factor 5.02 was found via a linear fit of the
errors between the Applanix and CHR-6dm IMU obtained
during sixteen field tests. After the correction, the maximum
absolute value of the corrected pitch angle error ϑ is about
0.5◦.

B. Registering 3D Laser Scanner Measurements

The laser scans the terrain in front of the vehicle, providing
range to points in the sensor measurement plane. These
range measurements are registered with the vehicle’s and
the inertial coordinate frames for the purposes of informing
the vehicle of obstacles in its way. The registration process
consists of two coordinate transformations, from OL to OV

and then to OI .
The first transformation represents the measured points

with respect to the vehicle frame pVL . For that, we use the
laser pose (φVL ,tVL ) obtained with the calibration procedure.
The second transformation describes the vehicle coordinate
with respect to the inertial frame, located at the vehicle’s ini-
tial position. The vehicle orientation is obtained with respect
to vertical and horizontal planes, and the yaw angle (ψI

V )
is discarded. Roll and pitch angles (ϕI

V , ϑ
I
V ) are measured

by the CHR-6dm IMU, and the vehicle translation tIV is
obtained using encoder odometry. The 3D laser points with
respect to the inertial frame pIL are given by:

pIL = AI
V AV

L pL = AI
L pL (4)

Fig. 5. From top to bottom: vehicle pitch angle obtained with
the CHR-6dm in blue and with the high–accuracy Applanix in
red; pitch measurement error; acceleration obtained via encoder
odometry; pitch angle from the CHR-6dm corrected using the
measured acceleration; corrected pitch error.

where Ai
j is the homogeneous transformation from frame

Oj to frame Oi. Figure 6 shows a typical example of 3D
laser data when the vehicle approaches a wooden box placed
along its path.

Fig. 6. Three–dimensional laser data in the inertial frame when the
vehicle approaches a wooden box.

At this point of the work, we are not considering un-
certainties related to laser measurements. It has not been a
problem so far, considering the target obstacles dimension
and the sensor accuracy. Another simplification consists on
disregarding wheel encoders drifting errors. When integrated
to the vehicle’s driving software, the obstacle detector will
employ the pose (tIV ,ψI

V ) provided by the APM localization
system described in [11].

C. Point Clouds Classification

The next step is to analyze the registered 3D data and
classify them as belonging to terrain or obstacles. We employ
a gradient–based classification methodology similar to the
ones in [3], [5].
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The method essentially consists of searching for irreg-
ularities between adjacent points measured by the laser
scanner. Two neighboring points p1 = [x1, y1, z1]

T and
p2 = [x2, y2, z2]

T are classified as candidate obstacles if:

|z2 − z1|√
(x2 − x1)2 + (y2 − y1)2

> tanα (5)

or
|z2 − z1| > h (6)

where α is a reference angle and h is a reference height
employed for discontinuity detection. Figure 7 illustrates how
the height and angle are calculated.

Fig. 7. Gradient method for classifying irregularities. Points are
deemed candidate obstacles if the height or angle between them
and adjacent points are greater than given thresholds h and α,
respectively.

The classification is executed in two directions: first we
look for lateral discontinuities along the laser measurement
plane; then for longitudinal discontinuities along the vehi-
cle’s direction of motion. The former depends only on the
laser’s current measurement vector; the latter depends on the
analysis of multiple vectors along a period of time, stored in
short–term memory.

The classification reference variables α, h indicate the lo-
cal geometry irregularity expected between the environment
and obstacle. Considering the target obstacles geometry and
dimensions, the values used for gradient classification are
αlat = 18◦ and hlat = 0.2 m in the lateral direction and
αlong = 35◦ and hlong = 0.15 m in the longitudinal direc-
tion. Figure 7 shows an example of lateral and longitudinal
discontinuities between ground and a wooden box of side 30
cm.

Once lateral and longitudinal discontinuities are identified,
3D points that belong to both categories are marked as ob-
stacle edges. This is useful because many obstacle avoidance
approaches operate based on finding edges of objects in the
vehicle path [15].

D. Clustering Obstacle Candidates

The last step in obstacle detection is to cluster the can-
didate obstacle points to eliminate false positives caused
by terrain irregularities and vegetation. The idea here is to
declare as an obstacle only those clusters consisting of a
minimum number of points.

The clustering procedure is divided in three stages. First
we cluster the obstacle edges. Second, we cluster the other

candidates points that correspond to the obstacle body.
Finally, we combine the clusters in order to estimate the
obstacle position.

Consider as an example the wooden box in Figure 8. The
edges are composed by two point sets forming red vertical
lines. We begin the clustering process combining the points
forming these vertical lines. All the points (pe) identified as
edges are clustered together if the distance between them is
smaller than a threshold de:

|pei − pei+1| < de ⇒ pei, pei+1 ∈ clusteri (7)

Here we use de = 0.1 m. The clusters with more elements
than a given number ce ∈ N represent the obstacles edges:

num(clusteri) > ce ⇒ clusteri = obstacleEdgei (8)

The specification of the value ce depends on the char-
acteristics of the environment. For terrains with low grass
and sparse vegetation, we found that ce = 4 provides good
results. If the terrain is covered by high grass and dense
vegetation, this value can reach up to ce = 20.

A similar procedure is executed for the other, non–edge
points classified as candidate obstacles. These discontinuities
correspond to obstacle body points (pb), that are clustered
together if the distance between them is smaller than a
threshold db:

|pbj − pbj+1| < db ⇒ pbj , pbj+1 ∈ clusterj (9)

Here we use db = 0.6 m. Additionally, a cluster represents
the obstacle body if the number of elements in it is larger
than a given number cb ∈ N:

num(clusterj) > cb ⇒ clusterj = obstacleBodyj (10)

where cb value ranges from 50 to 200.
The obstacle position is found by combining the clusters

representing the obstacle’s edges and body. The process is
executed by a sweeping algorithm using the obstacle body
clusters. The algorithm evaluates the distance from body
clusters to all edge clusters. If the distance is smaller than a
threshold do, it is assumed that the body and edge clusters
represent the same obstacle:

|obstacleBodyj − obstacleEdgei| < do ⇒
obstacleBodyj , obstacleEdgei ∈ obstaclej (11)

The threshold employed is do = 0.6 m.
Finally, the obstacle’s planar position corresponds to the

mean value of the associated edges:[
obstaclejx
obstaclejy

]
=

[
µ(obstacleEdgeix)
µ(obstacleEdgeiy )

]
, (12)

∀ obstacleEdgei ∈ obstaclej
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Note that the obstacle’s body clusters are used solely to
identify the obstacle, reducing the number of false positives,
and do not influence the estimation of its position. The
procedure is illustrated in Figure 8, with the detected obstacle
marked as a black star.

Fig. 8. Three dimensional points representing the terrain profile
and obstacle. The black star marks the detected obstacle, found
from a combination of edges (magenta starts) and body clusters
(cyan starts). The lateral irregularities are plotted in yellow and the
longitudinal irregularities are plotted in blue. The obstacle edges
are plotted in red.

V. EXPERIMENTAL VALIDATION

To assess the feasibility of the obstacle detection method-
ology presented in Section IV, we collected field data from
an experimental orchard–like nursery and an actual apple
orchard. The former is a half–acre ornamental tree nursery
planting at Robot City, a robotics experimentation site in
Pittsburgh, PA. The latter is Washington State University’s
Sunrise Orchard in Rock Island, WA. At both locations
we manually drove the vehicle as it approached a person
and a commercial apple bin, and recorded the registered
3D laser scanner, encoder, and IMU data. In Pittsburgh we
collected additional data while a person walked in front of the
vehicle; and at Sunrise we collected 3D data as the vehicle
drove toward a set of wooden boxes of sizes 30 cm, 25
cm, 20 cm, and 15 cm, both in short and tall grass. The
objective with these additional datasets was to stress–test the
system and assess how well it can perform beyond the stated
requirements of detecting stationary people and bins.

The data collected was processed by the obstacle detection
methodology in Matlab. It takes as input the log files and out-
puts a three dimensional representation of the environment,
a binary assessment of the presence of obstacles, and the
obstacle’s location with respect to the inertial frame OI .

A. Detecting People and Apple Bins

To conduct this experiment we used a commercial apple
bin with dimensions 124× 116× 77 cm and a person 1.72
m tall weighing 63 kg. The cluster parameters employed to
identify the bin and the person edges and body are ce =
20 and cb = 200, respectively. In the results figures that
follow, front view represents the actual image seen by the
laser scanner; top view represents the x−y projection of the
3D laser point cloud; and isometric view represents the 3D

representation of the point cloud with elevation = 35◦ and
azimuth = −50◦.

Figure 9 presents an example of bin detection. Due
to its large dimensions, the bin is recognized as several
“obstacles”. This is irrelevant in our operation because the
vehicle will react to the closest obstacle presented to it by
the detection system. The system correctly detected the bin
in all of six experiments conducted.

Figure 10 presents an example of the system detecting a
person standing in between the rows of trees. Here again
the person was correctly detected in all of ten experiments
conducted.

B. Pushing the Performance

Once the requirements to detect people and bins in or-
chards were met, we turned out attention to studying the
obstacle detection system’s operational limits. In particular,
we were interested in finding out what’s the smallest identi-
fiable obstacle, and what’s the system’s response to moving
obstacles.

1) Dealing with Small Obstacles:
To test the system’s response to obstacles smaller than an

apple bin, we built wooden boxes with sides 30, 25, 20, and
15 cm. They were placed in two blocks along the aisles of
the Sunrise Orchard. In the first block the grass was 5 cm
tall and, in the second, 17.5 cm tall. In the first block the
clustering parameters used are ce = 4 and cb = 50. Figure 11
shows a typical result, with the system capable of correctly
separating the five obstacles.

Fig. 11. To push the performance limits of the obstacle detection
system we ran it on 3D data collected with five wooden boxes in
between the rows of trees at Sunrise Orchard. The boxes measure
30, 25, 20, and 15 cm on the side. The obstacles are correctly
detected, as shown by the black stars on the top view graph on the
right.

In the tall grass block, as expected, the results are not
as accurate. In this case the standard cluster parameters are
ce = 10 and cb = 150. The obstacle detection system is able
to correctly identify the 30 and 25 cm cubes (Figure 12).

The smaller cubes with 20 and 15 cm sides are partially
occluded by the tall grass, and the detection system is not
able to distinguish them from the vegetation. If we decrease
the cluster parameters ce and cb to increase the system’s
sensitivity, the algorithm starts presenting false positives
before detecting the boxes. Figure 13 presents a typical result
obtained with the 20 cm box, where one can see the three
false obstacles marked by black stars.
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Fig. 9. Apple bin detection at Robot City. The detection system finds five “obstacles”, marked by black stars on the isometric view graph
on the right.

Fig. 10. Person detection at Robot City. The detection system marks the perceived obstacle by a black star on the isometric view graph
on the right.

Fig. 12. Detecting a 25-cm wooden box in tall grass. This experi-
ment is at the limit of the obstacle detection system’s capability to
find the obstacle.

Fig. 13. The obstacle detection is not capable of uniquely iden-
tifying a 20 cm box in tall (17.5 cm) grass. In this example, the
system found the box and three other false positives.

2) Dealing with Moving Obstacles:
The obstacle detection system, with its push–broom con-

figuration, was designed for low–cost, stationary obstacle
detection. In practice, however, we can always expect people
moving in front of the vehicle. Therefore, it is important to
check the system’s capacity to detect dynamic obstacles. To

that end we had a person perpendicularly crossing the path
of the vehicle at walking speed. The result is presented in
Figure 14. The detection system identifies several obstacle
edges, according to the person’s motion. Due to the cluster
distance do, the edges are grouped in one obstacle, marked
by a black star in the graph.

Fig. 14. A person crossing in from of the vehicle creates a dynamic
point cloud from which the system extracts obstacle detection
information. Here the system detects several object edges according
to the worker’s motion; the edges are clustered together as one
obstacle marked by a black star on the top view graph on the right.

VI. CONCLUSION AND FUTURE WORK

The obstacle detection system performed satisfactorily
when using actual field data. At Robot City in Pittsburgh,
both the bin and the person were scanned in 16 experiments
from different orientations with no false positives. At Sunrise
Orchard the system, designed to detect large bins, was able
to detect boxes as small 15 cm tall on 5 cm grass, and 25
cm tall on 17.5 cm grass. Finally, back at Robot City the
system was able to detect a person moving perpendicular to
the vehicle’s path at walking speed. Of course, we do not
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claim that this means the system can deal with any type
of dynamic obstacle, but the result obtained is certainly a
positive one.

By varying the cluster parameters ce and cb, it is possible
to adjust the system’s response. Decreasing the parameters
will increase the system sensibility, allowing it to detect
smaller obstacles, but also introducing a larger number of
false positives. This undesirable effect is aggravated when
dealing with irregular vegetation.

The obstacle detection system described in this paper is
part of the larger goal of demonstrating an APM’s feasibility
to operate year–round in a commercial production envi-
ronment. The methodology was tested and validated using
real–world data from our experimental orchard–like nursery
and a commercial orchard. Currently, the data processing is
executed off–line in Matlab. There are several steps we need
to follow before the system can be integrated into the APM’s
navigation system.

First and foremost, the obstacle detection method was
developed and tested with data from a dedicated laser scanner
mounted to meet the method’s requirements. In an actual
field deployment, that one laser scanner would have to
provide data to both the navigation and the obstacle detection
modules. The navigation module, however, currently uses a
horizontally–mounted scanner about a meter off the ground.
Therefore, we need to refactor it so it can operate with
the laser mounted at a higher location in the push–broom
configuration required for obstacle detection.

The second step is to integrate the obstacle detection
system with the vehicle’s driving system. The detection
system will be implemented within the Robotics Operating
System framework, to enable online obstacle detection and
collision avoidance. Whenever an obstacle is detected in
front of the vehicle, a message indicating the position of
the object with respect to the vehicle must be generated.
The autonomous driving system then uses this information
to take appropriate action, including if necessary stopping
the vehicle and alerting the operator. In the case of multiple
obstacles, the detection system informs the position of the
closest one to the vehicle. Once the operator removes the
obstacle, the system resumes driving.

The integrated obstacle detector will present different
characteristics from the ones presented here, caused by
the new laser configuration and vehicle’s pose provided by
the APM localization system, among others. One important
future requirement consists on obtaining the final sensor
setup error covariance and consider uncertainty during 3D
laser scanner measurements registration.

For the types of operations necessary in tree fruit pro-
duction, the vehicle is usually navigating in between rows
at low speeds (< 2 m/s). Because safety is a top priority
in agricultural robotics, the obstacle detection system im-
plementation must run sufficiently fast to process all data,
identify the obstacles and stop the vehicle before a collision
occurs. New field tests should be accomplished to validate
that, emulating challenging conditions such as dealing with
several obstacles moving in different directions.
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