
2011 IEEE International Conference on Robotics and Automation.
May 9-13, 2011. Shanghai, China.

Fast and Accurate Computation of
Surface Normals from Range Images

H. Badino, D. Huber, Y. Park and T. Kanade

Abstract— The fast and accurate computation of surface
normals from a point cloud is a critical step for many 3D
robotics and automotive problems, including terrain estimation,
mapping, navigation, object segmentation, and object recogni-
tion. To obtain the tangent plane to the surface at a point,
the traditional approach applies total least squares to its small
neighborhood. However, least squares becomes computationally
very expensive when applied to the millions of measurements
per second that current range sensors can generate. We refor-
mulate the traditional least squares solution to allow the fast
computation of surface normals, and propose a new approach
that obtains the normals by calculating the derivatives of the
surface from a spherical range image. Furthermore, we show
that the traditional least squares problem is very sensitive to
range noise and must be normalized to obtain accurate results.
Experimental results with synthetic and real data demonstrate
that our proposed method is not only more efficient by up to
two orders of magnitude, but provides better accuracy than the
traditional least squares for practical neighborhood sizes.

I. INTRODUCTION

For most robotics and automotive problems, computational
power is a limited resource, which must be distributed wisely.
Surprisingly, the efficient computation of normals from a
point cloud is a topic that has had very little attention in
the literature considering that surface normals are used for
a large number of problems in the computer vision domain,
such as terrain estimation [4], mapping [24], navigation [25],
object segmentation [10], and object recognition [9].

In the robotics and automotive domain, the environment is
usually measured as the sensors move small displacements
between views, allowing the use of range images to store
and organize the data [10]. In this paper, we use Spherical
Range Images (SRI) to efficiently compute surface normals.
Figure 1 shows an example of the extracted surface normals
from noisy sparse data obtained from a 3D imager.

The most commonly used method for obtaining surface
normals from point clouds is total linear least squares [11]
(least squares, hereafter, for brevity), since it is relatively
cheap to compute and easy to implement. However, least
squares becomes computationally very expensive when ap-
plied to the millions of measurements per second that current
range sensors such as stereo or high-definition LIDAR can
generate.

In this paper, we make three main contributions towards
the efficient and accurate computation of surface normals.
First, we propose two new approaches for computing the

H. Badino, D Huber and T. Kanade are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, USA. Y. Park is with the
Agency for Defence Development, Daejeon, Korea.

Fig. 1. Normals obtained from noisy sparse 3D data. The data corresponds
to the marked region of the spherical range image shown in Figure 6c.

normals with linear least squares. For this purpose, the
traditional least squares loss function is reformulated in such
a way, that box-filtering techniques can be applied to mini-
mize the number of operations required. The new algorithms
present speed up factors of up to two orders of magnitude
over the traditional method. Second, we propose a novel
method for solving the normals by computing derivatives of
the surface defined by the spherical range image. The new
method is not only computationally very efficient, but also
more accurate than least squares for small window sizes.
Third, we show that without a proper normalization, the
traditional least squares fails to compute accurate normal
estimates. This problem is solved by applying a non-isotropic
scaling to the data matrix.

II. RELATED WORK

The computation of surface normals has been widely
addressed by surface reconstruction approaches, where the
3D points are usually unorganized. The surface can be
reconstructed up to the first order with the normal vectors at
the measured points. In [11], the computation of the tangent
plane at each point with least squares was first proposed. The
least squares solution was also addressed by [18], where the
authors evaluated the effects of neighborhood size, measure-
ment noise, and surface curvature when estimating planes
with least squares and derived error bounds for the estimated
normals. An alternative solution to the normal computation
is based on the construction of Voronoi diagrams [1]. In this
approach, the normals can be estimated from the center of
large polar balls. Since the initial approaches to the normal
estimation problem using polar balls assumed noise free data

tk
Text Box
International Conference on Robotics and Automation (ICRA)
Shanghai, China, May 9-13, 2011

smongell
Text Box
H. Badino, D. Huber, Y. Park and T. Kanade, "Fast and Accurate Computation of Surface Normals from Range Images," International Conference on Robotics and Automation (ICRA), Shanghai, China, May 2011.

[20], the method was adapted to the case of noisy point
clouds [5], [7]. Both, the least squares and the polar balls
methods were compared in accuracy and computation time
in [6]. The experiments showed that the polar ball method is
more robust to noise but that least squares is more accurate
for low noise levels. It also showed that least squares is by
far the fastest method for the computation of the normals.

In the robotics and automotive domain, the points are
usually organized in graphs or range images, and the com-
putation of surface normals focuses almost exclusively on
least squares solutions [9], [10], [16], [21], [22], [24], [28].
Alternative methods for computing normals from organized
point clouds rely on averaging the normals of adjacent
triangles [2], [13], [19], [26], but the obtained normals are
sensitive to noise and to the proper construction of the graph.
Least squares and some of these averaging methods were
compared in quality and computation time in [13], [21], [27].
In all these experiments, least squares shows the best results
in terms of accuracy and speed.

III. DEFINITIONS

In this section, we define the variables, transformation
equations, and the range image that are used in the next
sections.
A. Spherical Coordinates

A coordinate vector in the spherical coordinate system
is defined as m = (r, θ, φ)T , where r is the range, θ
the azimuth, and φ the elevation component. The coor-
dinates are constrained so that r ≥ 0, −π < θ ≤ π, and
−π/2 < φ ≤ π/2.

A point in Cartesian coordinates is represented by
p = (x, y, z)T . The transformation from the spherical to the
Cartesian coordinate system is given by

p = rv (1)

where v is a unit direction vector defined as:

v =

 sin θ cosφ
sinφ

cos θ cosφ

 (2)

The transformation from Cartesian to spherical coordinate
system is given by

m =

 r
θ
φ

 =


√
x2 + y2 + z2

arctan (x/z)
arcsin (y/

√
x2 + y2 + z2)

 . (3)

Given a set of n measurements mi of a scene observed
from a single viewpoint, we seek to estimate the unit surface
normals ni at positions pi. The next sections are dedicated
to solving this problem.

B. Spherical Range Images

A Spherical Range Image (SRI) is a function s(θ, φ) in
which the domain (θ, φ) represents the azimuth and elevation
components, and the codomain s() is a real value that
represents a distance or range. The three components of the
image − azimuth (column), elevation (row) and range (image

value) − define the coordinate vector of a 3D point, i.e.,
(θ, φ, r)T with r = s(θ, φ). In the actual implementation
of the SRI, the domain is discretized and the codomain is
approximated by a floating point variable. In this way, an
SRI stores an image as observed from a single viewpoint,
providing a 2.5D representation of the scene.

Range images are widely used for data processing and vi-
sualization purposes [4], [9], [10], [19], [27]. Figure 3 shows
some examples of synthetic SRIs with their corresponding
3D model, and Figure 6c shows an example of a real SRI
obtained from a Velodyne LIDAR.

C. Procedure

As noted by [20], most methods for computing normals
follow three main steps: 1) identify neighbors, 2) estimate
the normal vector using the neighbors, and 3) define the
direction of the obtained normal. For the first step we use a
small rectangular window of size k = w×h around the point
to be estimated. The second step corresponds to the proper
estimation of the normals using the extracted neighbors
points. The next two sections deal with this step, and Section
VI compares the accuracies and computation times. The
third step is required to be able to identify the insides
and outsides of complex objects. When estimating normals
of surfaces observed from a single viewpoint, a globally
consistent normal orientation is obtained by constraining the
dot product pTn to be negative (i.e., if the obtained normal
is such that pTn > 0, then n is negated).

IV. LEAST SQUARES APPROACHES

This section presents three different least squares formu-
lations to the surface normal estimation problem.

A. Traditional Total Least Squares

In the simplest case, least squares is formulated to find
the plane parameters that optimally fit some small area of
the surface [11], [18]. A plane is defined by the equa-
tion nxx+ nyy + nzz − d = 0, where (x, y, z)T lies on the
plane and (nx, ny, nz, d) are the sought plane parameters.
Given a subset of k 3D points pi, i = 1, 2, ..., k of
the surface, least squares finds the optimal normal vector
n = (nx, ny, nz)T and scalar d that minimizes

e =
k∑
i=1

(
pTi n− d

)2
subject to |n| = 1. (4)

The closed form solution to Equation 4 for n is
given by finding the eigenvector corresponding to the
smallest eigenvalue of the sample covariance matrix
M = 1/k

∑k
i=1(pi − p̄)(pi − p̄)T with p̄ = 1/k

∑k
i=1 pi.

The component d is found as the normal distance to the
plane, i.e., d = p̄Tn. This is the most widely used method
in the literature [10], [11], [14], [16], [18], [21], [22], [23],
[24], [28].

The computational complexity of the implementation of
the above solution is linear in the number of neighbors
k. The main problem with the above algorithm is that
the computation of the matrix M , and its corresponding

eigen analysis, makes the algorithm extremely slow for
practical image sizes. Table Ia shows the minimum number
of operations required for this method, which we will call
“traditional least squares.”

B. Normalized Least Squares

The traditional least squares assumes independent iden-
tically distributed noise. Nevertheless, the noise is caused
mainly due to range measurement error, which propagates
linearly in the viewing direction v of the 3D vector p
(see Equation 1). In consequence, obtaining the eigenvectors
directly from M produces bad results. The solution to this
problem is to normalize the coordinates of the 3D points
so that the three principal moments of the M becomes all
equal to unity while ensuring a good conditioning of the
data matrix. This is analogous to the conditioning method
proposed by Hartley [8], but in a different domain. Before
computing the eigenvalues, the matrix M is normalized by

(a) TRADITIONAL LEAST SQUARES

Operation Mult. Add.
Calculation of pi 3 0
Calculation of M 5× k + 7 9× (k − 1) + 6

Eigen analysis 66 38

Total 5× k + 76 9× (k − 1) + 44

(b) NORMALIZED LEAST SQUARES

Operation Mult. Add.
Traditional LS 5× k + 76 9× k + 35

3x3 Cholesky Fact. 7 4
Inversion of K 11 1
Scaling 18× 4 18× 4

Total 5× k + 166 9× k + 112

(c) UNCONSTRAINED LEAST SQUARES

Operation Mult. Add.
Calculation of pi 3 0
Product pip

T
i 6 0

Box-filt. for fM 0 4× 6

Box-filt. for b̃ 0 4× 3

Inversion of fM 24 10
Equation 7 9 6

Total 42 52

(d) FAST LEAST SQUARES

Operation Mult. Add.
Box-filtering for b̂ 0 4× 3
Calculation of vi/ri 3 0
Equation 10 9 2× 3

Total 12 18

(e) SRI DERIVATIVE METHOD

Operation Mult. Add.
Prewitt k × k k − 2 k
Gauss 3× 3 9 8
Equation 13 11 6

Total 18 + k 14 + k

TABLE I
NUMBER OF MULTIPLICATIONS AND ADDITIONS REQUIRED FOR ONE NORMAL

COMPUTATION USING k NEIGHBOR POINTS.

Cholesky factorization, i.e.:

M ′ = K−1MK−T (5)

where K is a lower triangular matrix such that∑k
i=1 pip

T
i = KKT . The eigenvectors are then obtained

from the normalized matrix M ′. Table Ib shows the total
number of operations required for the normalized least
squares. As it can be seen, the Cholesky factorization does
not depend on the number of neighbors k, but it adds a
significant overhead to the traditional least squares.

C. Unconstrained Least Squares
We present now a computationally efficient solution that

does not require eigen-analysis and the corresponding fac-
torization. We first divide both parts of the loss function in
Equation 4 by d2 and eliminate the constraint on the normal
vector to obtain:

ẽ =
k∑
i=1

(
pTi ñ− 1

)2
(6)

where ñ is the sought normal vector, defined up to a scale
factor. Note that this formulation degenerates for planes
passing through the origin (for d = 0), but this situation
cannot happen for range images. We will show in the
experimental results that, although this formulation is not
theoretically optimal, it is more accurate than the traditional
least squares in practical real situations. The closed form
solution for ñ is given by

ñ = M̃
−1

b̃ (7)

where M̃ =
∑k
i=1 pip

T
i and b̃ =

∑k
i=1 pi. The final unit

normal is found by normalization, i.e., n = ñ/|ñ|.
The matrices M̃ and b̃ can be computed efficiently. First,

an image I that contains the outer products is built, i.e.,
I(l,m) = pl,mpTl,m, where pl,m is the 3D point correspond-
ing to image location (l,m). Then, box-filtering is applied
to obtain a new image with the sums of the outer products
within the window (Fig. 2). The same procedure is applied
to obtain an image of vectors for b̃. Box-filtering is a well-
known technique in computer vision [17]. This technique not
only minimizes the number of operations required, but is also
computationally independent of the window size.

Most of the computational power required for the above
method is spent in the summation and inversion of matrices,
which, although independent of k, represents a considerable
computational burden (see Table Ic)1.

D. Fast Approximate Least Squares
In this section, we simplify the loss function to completely

avoid the computation of the matrix M̃ −1 every time. By
multiplying and dividing the right hand side of Equation 6
by r2i we obtain:

ẽ =
k∑
i=1

r2i
(
vTi ñ− r−1

i

)2
(8)

1Observe that Cholesky factorization could be use to solve Eq. 7, but
it would require more operations than the single matrix inversion of fM .

Fig. 2. Box-filtering technique. The box-filtering technique consists in three main steps. An initialization, where a vector of column sums is built and
the initial sum within the window is calculated. After initialization, 2 steps are performed iterating from top to bottom and from left to right. The first
step consists in updating the previous window sum by a subtraction and addition of vector sums. The second step consist in updating the vector sum that
is not longer required in the current row by an addition and subtraction of original image components. Observe that, independent of the window size,
two additions and two subtractions are required to compute the total sum within the window. There is an overhead in the initialization that is linearly
dependent on k, but it becomes negligible for large image size n and small window size k. Observe that the codomain of the image can be scalars, vectors
or matrices.

with vi as defined in Equation 2. Since all points pi are in a
small neighborhood, all ri are similar. Dropping the r2i from
the above equation leads us to the following approximate
formulation of the loss function:

ê =
k∑
i=1

(
vTi n̂− r−1

i

)2
(9)

whose solution for n̂ is given by

n̂ = M̂
−1

b̂ (10)

with M̂ =
∑k
i=1 viv

T
i and b̂ =

∑k
i=1 vi/ri. In this new,

approximate formulation, the matrix M̂ −1 is independent
of the ranges (i.e., the measurements), and depends only on
the image parameters, so that it can be precomputed. The
vector b̂ is obtained using the same box-filtering technique
described above. This simplification greatly reduces the com-
putational requirements and is independent of the window
size k (see Table Id). Observe that this method works directly
with spherical coordinates, not requiring the pre-computation
of 3D points in Cartesian coordinates as in the three previous
formulations. A similar formulation was presented in [9].

V. SRI DERIVATIVE APPROACH

We propose now a method, which obtains the normals
by performing calculations directly in the spherical space.
Instead of fitting a plane to obtain the normal vector, we
compute the normal directly from the surface defined by the
SRI.

A. Derivation of the del Operator

We will first demonstrate how transform the Cartesian del
operator to spherical coordinates. In the next section, we will
apply the resulting operator to the SRI to obtain the normal

vector. The del operator in the Cartesian coordinate system
is given by

∇ ≡ x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(11)

where x̂, ŷ, and ẑ are the unit vectors in the respective
coordinate directions. Applying the chain rule to the partial
derivatives in 11 gives

∂

∂x
=

∂

∂r

∂r

∂x
+

∂

∂θ

∂θ

∂x
+

∂

∂φ

∂φ

∂x
∂

∂y
=

∂

∂r

∂r

∂y
+

∂

∂θ

∂θ

∂y
+

∂

∂φ

∂φ

∂y
∂

∂z
=

∂

∂r

∂r

∂z
+

∂

∂θ

∂θ

∂z
+

∂

∂φ

∂φ

∂z
.

We apply first the above partial derivatives to Equation 3 and
substitute the results into 11 to obtain:

∇ ≡ x̂

(
∂

∂r
sin θ cosφ+

∂

∂θ

cos θ
r cosφ

− ∂

∂φ

sin θ sinφ
r

)
+

ŷ

(
∂

∂r
sinφ+

∂

∂φ

cosφ
r

)
+

ẑ

(
∂

∂r
cos θ cosφ− ∂

∂θ

sin θ
r cosφ

− ∂

∂φ

cos θ sinφ
r

)
The expressions in parentheses define a rotation of a vector

so that the previous equation can be expressed as

∇ ≡
[

ẑ x̂ ŷ
]
Rθ,φ

 ∂/∂r
1

r cosφ ∂/∂θ
1
r ∂/∂φ

 (12)

where

Rθ,φ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 .
Equation 12 expresses the Cartesian del operator as a func-
tion of variables and derivatives in spherical coordinates.

(a) Sphere (b) Cylinder (c) Prism (d) Floor and Ceiling

Fig. 3. Synthetic Data sets. The top images show the modeled object of each data set. The grids have a size of 2x2 meters. The sensor is located at the
center of the objects and the color encodes the range. The bottom images show the Spherical Range Image for the corresponding top image.

B. Obtaining the Surface Normals

The SRI implies a functional dependence of the range on
the azimuth and elevation components, i.e., r = s(θ, φ). The
normal vectors of a surface can be obtained by computing
the derivatives of the function defining the surface. For this,
we apply the del operator of Equation 12 to the function s()
to obtain

n = ∇s(θ, φ) = R̂θ,φ

 1
1

r cosφ∂r/∂θ
1
r∂r/∂φ

 (13)

where R̂θ,φ =
[

ẑ x̂ ŷ
]
Rθ,φ. Observe that R̂θ,φ is

independent of the ranges and can be precomputed and stored
in a look-up table.

The partial derivatives are obtained by applying standard
image processing convolution kernels on the SRI, as is
usually done for edge extraction in images [3]: the image is
pre-filtered with a Gaussian 3× 3 mask, and then a Prewitt
operator is applied. The Prewitt computational complexity
depends linearly on the number of neighbors k (see Table Ie),
but it can be implemented very efficiently for practical
window sizes, as we demonstrate in the next section.

VI. EXPERIMENTAL RESULTS

We have conducted experiments with simulated and real
data in order to evaluate the accuracy of each method under
different types of objects and window sizes.

A. Synthetic Data

Figure 3 shows four synthetic SRIs with corresponding
3D models that were used for the evaluation. Four data sets
were generated:
• Sphere: a centered sphere with a radius of 10 m.
• Cylinder: an open cylinder with planar radius of 10 m

and height of 20 m.
• Prism: a uniform triangular open prism of 22 m maxi-

mal height.
• Floor and Ceiling: two parallel planes emulating a floor

and a ceiling, each at a normal distance of 2 m from
the sensor.

The Sphere data set covers the full field of view with an
angular resolution of approximately 0.5◦ for the azimuth
and elevation components forming a range image size of

750× 375. The last three data sets cover a field of view of
360◦ × 86◦ with the same angular resolution and an image
size of 750 × 175. The lower part of Figure 3 shows the
corresponding SRIs for each object. The parameter configu-
ration was chosen to simulate a typical LIDAR sensor. The
data sets are available online [12].

The traditional LS and the three new proposed meth-
ods were used to estimate the normals under different
levels of noise and window sizes. The evaluation was
performed obtaining the average angular error in the es-
timation of the normals. The angular error is defined as
ei = arccos(nTi n̄i) where ni is the estimated normal and
n̄i is the known truth normal to the surface at point pi. The
average error in degrees is then 180

πn

∑n
j=1 ei. Furthermore,

30 trials were averaged to obtain the final error.
In the experiments, Gaussian noise with σ up to 1.0

meter was added to the SRIs. The magnitude of the noise
might appear large for standard LIDAR sensors, but it is the
typical level for distant points measured with stereo systems.
Choosing a wide noise interval allows us to analyze the
accuracy of the estimation at all levels of noise.

Figures 4a to 4d show the results when window sizes
are varied from 3 × 3 to 9 × 9. The obtained results were
consistent between all data sets and window sizes. Because
of space limitations, only the most representative plot for
each data set and window size is shown. The results for
the normalized LS and the unconstrained LS were exactly
equivalent. For readability, only one curve is shown for both
approaches.

The most remarkable result obtained from the plots of
Figure 4 is that the traditional least squares performs badly
for all objects and window sizes. The normalized least
squares provides better results by just normalizing the data
matrix before the eigen-analysis, as addressed in Section IV-
B. The fast least squares shows a very similar estimation
error to the unconstrained LS, confirming that the elimination
of the ranges from Equation 8 is reasonable. Only a very
small difference can be observed between those two curves
at very large noise levels. As expected, the difference is
less marked on the Sphere data set, where the assumption
of constant ranges within the mask does actually hold.

The SRI derivative approach performs better than all LS
approaches for small window sizes. For large window sizes,

0

10

20

30

40

50

60

70

80

90

0.00 0.20 0.40 0.60 0.80 1.00

A
ng

ul
ar

 E
rr

or
 [d

eg
]

Noise Sandard Deviation [m]

SRI
Norm. and Unc. LS

Fast LS
Trad. LS

(a) Sphere 3× 3

0

10

20

30

40

50

60

70

80

90

0.00 0.20 0.40 0.60 0.80 1.00

A
ng

ul
ar

 E
rr

or
 [d

eg
]

Noise Sandard Deviation [m]

SRI
Norm. and Unc. LS

Fast LS
Trad. LS

(b) Cylinder 5× 5

0

10

20

30

40

50

60

70

80

90

0.00 0.20 0.40 0.60 0.80 1.00

A
ng

ul
ar

 E
rr

or
 [d

eg
]

Noise Sandard Deviation [m]

SRI
Norm. and Unc. LS

Fast LS
Trad. LS

(c) Prism 7× 7

0

10

20

30

40

50

60

70

80

90

0.00 0.20 0.40 0.60 0.80 1.00

A
ng

ul
ar

 E
rr

or
 [d

eg
]

Noise Sandard Deviation [m]

SRI
Norm. and Unc. LS

Fast LS
Trad. LS

(d) Floor and ceiling 9× 9

Fig. 4. Accuracy results with synthetic data for different window sizes.

the new proposed LS formulations perform better. The reason
for this is that the derivative is a local property of the surface
and will not be estimated with much greater accuracy as the
window size increases. This leads to a limited improvement
of the normal estimate when using larger window sizes.
Least squares, on the other hand, fully benefits from more
measurements, increasing the estimation accuracy.

Figure 5 shows the results for all methods, data sets and
window sizes for the noise level σ = 0.2 m. The four charts
show that the results for all five methods are consistent for
all objects and window sizes.

As a general guideline, we can conclude that SRI deriva-
tive method is the best for small window sizes. For large
window sizes the least squares methods produce better results
at the expense of a higher computation time.

B. Computation Times

Table II shows the obtained computation times for each
method. For the test, each algorithm was implemented in
C++ using OpenMP and executed 50 times with the Cylinder
data set on an Intel Core 2 Duo 2.66GHz CPU. The times
are shown in milliseconds and they correspond to the average
time for the whole range image. As predicted in Table I, the

M. Size Methods Time (ms) ± σ SUF

3× 3

Trad. LS 192.25± 5.92 1
Norm. LS 227.52± 4.04 0.85
Unc. LS 18.87± 0.18 10.19
Fast LS 7.02± 0.05 27.39
SRI 3.66± 0.01 52.53

5× 5

Trad. LS 195.00± 3.04 1
Norm. LS 237.2± 4.04 0.82
Unc. LS 19.14± 0.16 10.18
Fast LS 7.04± 0.03 27.70
SRI 3.71± < 0.01 52.56

7× 7

Trad. LS 436.12± 7.2 1
Norm. LS 483.5± 3.1 0.9
Unc. LS 19.14± 0.14 15.57
Fast LS 7.07± 0.03 42.14
SRI 4.33± 0.01 68.81

9× 9

Trad. LS 436.12± 2.58 1
Norm. LS 489.96± 4.8 0.89
Unc. LS 19.35± 0.16 22.54
Fast LS 7.18± 0.12 60.74
SRI 4.40± 0.01 99.12

TABLE II
ACTUAL COMPUTATION TIMES WITH SPEED UP FACTORS (SUF) OVER THE

TRADITIONAL LS.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Sphere Cylinder Prism F. and C.

A
ng

ul
ar

 E
rr

or
 [d

eg
]

SRI
Norm. And Unc. LS

Fast LS
Trad. LS

(a) 3× 3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Sphere Cylinder Prism F. and C.

A
ng

ul
ar

 E
rr

or
 [d

eg
]

SRI
Norm. And Unc. LS

Fast LS
Trad. LS

(b) 5× 5

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Sphere Cylinder Prism F. and C.

A
ng

ul
ar

 E
rr

or
 [d

eg
]

SRI
Norm. And Unc. LS

Fast LS
Trad. LS

(c) 7× 7

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Sphere Cylinder Prism F. and C.

A
ng

ul
ar

 E
rr

or
 [d

eg
]

SRI
Norm. And Unc. LS

Fast LS
Trad. LS

(d) 9× 9

Fig. 5. Estimation errors with the synthetic data sets for σ = 0.2m.

Method Angular Difference
SRI & Unc. LS 3.71◦ ± 1.51◦

SRI & Fast LS 3.75◦ ± 1.51◦

Unc. & Fast LS 0.39◦ ± 0.11◦

TABLE III
AVERAGE ANGULAR DIFFERENCES FOR THE REAL DATA SEQUENCE.

computation time for the fast and unconstrained LS does
not increase with the window size. Observe that according
to Table I, the fast LS method should be faster than the
SRI derivative method. However, Table I shows theoretical
values of an optimal implementation and does not count for
overhead in the form of indexing operations and memory
accesses. The SRI derivative method is the fastest to compute
and provides a speed up factor of up to two orders of
magnitude with respect to the traditional least squares.

C. Results with Real Data

We have also conducted experiments with real data ob-
tained from a Velodyne HDL-64E High Definition LIDAR
scanner [15] mounted on the top of a vehicle. An SRI
is defined with the sensor specifications, and the sensor
measurements are registered in the range image as they are

acquired. The registration of the sensor measurements in the
SRI leads to a sparse image, since not every image position
is occupied with a measurement. A linear interpolation step
is used to fill those holes. To avoid interpolating image
locations at depth discontinuities, an empty image position
is only filled if the ranges to be interpolated are proportional
up to a scale. An example of the resulting SRI for a real
scenario is shown in Figure 6c.

All methods were tested with 6 sequences of data acquired
on different scenarios. Figure 1 shows a snapshot of the nor-
mals obtained with the SRI derivative method on one of the
sequences containing more than 23 million measurements.
The sequence was acquired as the vehicle was traveling
in rough terrain containing some human-made structures.
Table III shows the average angular differences between the
proposed methods for the whole sequence, from where it
can be seen that all three methods provide consistent normal
estimates.

VII. CONCLUSIONS

Based on the experiments performed in this paper we
can draw the following conclusions when computing sur-
face normals with range images. First, the traditional least

(a) Visual snapshot (b) Bird’s eye view. red: vertical, green: horizontal.

(c) Spherical range image: the color encodes the range. The size of the image is 3300×100 covering a field of view of 360◦×30◦ with angular
resolution of 0.11× 0.2 deg/px. The rectangle corresponds to the snapshot of Figure (a) and the normal estimates of Figure 1.

Fig. 6. Experiment results with real data

squares is very sensitive to noise and does not perform
accurately without a proper normalization. This problem is
easily solved by an appropriate scaling of the data matrix.
Most remarkably, the literature on normal estimation usually
does not specify if such a normalization step is performed,
even though this is a critical step for the accurate estimation
of surface normals. Second, the proposed unconstrained least
squares and the fast approximate least squares show the same
accuracy level as the normalized version, while being up
to 17 times faster. Third and last, the new proposed SRI
derivative approach is the fastest and more accurate method
for small window sizes. It is also clearly the best option
for large window sizes when time constraints prevail over
accuracy requirements.

REFERENCES

[1] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering.
Discrete and Computational Geometry, 22:481–504, 1999.

[2] M. Bosse and R. Zlot. Map matching and data association for large-
scale two-dimensional laser scan-based SLAM. International Journal
of Robotics Research, 27(6):667–691, 2008.

[3] J. Canny. A computational approach to edge detection. Transactions
on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[4] C. Castejón, B. L. Boada, D. Blanco, and L. Moreno. Traversable
region modeling for outdoor navigation. Journal of Intelligent and
Robotic Systems, 43(2-4):175–216, 2005.

[5] T. K. Dey and S. Goswami. Provable surface reconstruction from
noisy samples. Computational Geometry: Theory and Applications,
35(1):124–141, 2006.

[6] T. K. Dey, G. Li, and J. Sun. Normal estimation for point clouds:
a comparison study for a Voronoi based method. In Point-Based
Graphics, Eurographics/IEEE VGTC Symposium, pages 39–46, 2005.

[7] T. K. Dey and J. Sun. Normal and feature approximations from noisy
point clouds. In Foundations of Software Technology and Theoretical
Computer Science, pages 21–32, 2006.

[8] R. I. Hartley. In defense of the 8-point algorithm. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19:580–593, 1997.

[9] M. Hebert and T. Kanade. Outdoor scene analysis using range data. In
International Conference on Robotics and Automation, pages 1426–
1432, 1986.

[10] R. Hoffman and A. K. Jain. Segmentation and classification of
range images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9:608–620, September 1987.

[11] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. SIGGRAPH Comput.
Graph., 26:71–78, July 1992.

[12] http://www.cs.cmu.edu/vmr/datasets/normals, 2011.
[13] K. Klasing, D. Althoff, D. Wollherr, and M. Buss. Comparison of

surface normal estimation methods for range sensing applications. In
Conference on Robotics and Automation, pages 1977–1982, 2009.

[14] L. Kobbelt and M. Botsch. A survey of point-based techniques in
computer graphics. Journal of Computer and Graphics, 28(6):801–
814, 2004.

[15] http://www.velodyne.com/lidar/products/manual/hdl-64e, 2011.
[16] Z. C. Marton, . B. Rusu, and M. Beetz. On fast surface reconstruction

methods for large and noisy point clouds. In International Conference
on Robotics and Automation, pages 2829–2834, 2009.

[17] M. J. McDonnell. Box-filtering techniques. Computer Graphics and
Image Processing, 17(1):65–70, September 1981.

[18] N. J. Mitra, A. Nguyen, and L. Guibas. Estimating surface normals
in noisy point cloud data. International Journal of Computational
Geometry & Applications, 14(4 & 5):261–276, 2004.

[19] F. Moosmann, O. Pink, and C. Stiller. Segmentation of 3D lidar data
in non-flat urban environments using a local convexity criterion. In
Intelligent Vehicles Symposium, June 2009.

[20] D. OuYang and H. Y. Feng. On the normal vector estimation for point
cloud data from smooth surfaces. Computed Aided Design, pages
1071–1079, 2005.

[21] K. Pathak, N. Vaskevicius, and A. Birk. Uncertainty analysis for
optimum plane extraction from noisy 3D range-sensor point-clouds.
Intelligent Service Robotics, 3(1):37–48, 2009.

[22] R. B. Rusu, N. Blodow, Z. C. M., and M. Beetz. Aligning point cloud
views using persistent feature histograms. In International Conference
on Intelligent Robots and Systems, 2008.

[23] O. Schall, A. Belyaev, and H.-P. Seidel. Robust filtering of
noisy scattered point data. In M. Pauly and M. Zwicker, editors,
IEEE/Eurographics Symposium on Point-Based Graphics, pages 71–
77, Stony Brook, New York, USA, 2005.

[24] A. Segal, D. Haehnel, and S. Thrun. Generalized ICP. In Robotics:
Science and Systems, Seattle, USA, June 2009.

[25] H. Sekkati and S. Negahdaripour. 3-D motion estimation for position-
ing from 2-d acoustic video imagery. In Iberian conference on Pattern
Recognition and Image Analysis, pages 80–88, 2007.

[26] L. Spinello, R. Triebel, and R. Siegwart. Multimodal detection and
tracking of pedestrians in urban environments with explicit ground
plane extraction. In International Conference on Intelligent Robots
and Systems, pages 1823–1829, 2008.

[27] C. Wang, H. Tanahashi, H. Hirayu, Y. Niwa, and K. Yamamoto.
Comparison of local plane fitting methods for range data. Conference
on Computer Vision and Pattern Recognition, 1:663–669, 2001.

[28] J. W. Weingarten, G. Gruener, and A. Dorf. Probabilistic plane
fitting in 3D and an application to robotic mapping. In International
Conference on Robotics and Automation, pages 927–932, 2004.

