
Self-Supervised Segmentation of River Scenes

Supreeth Achar, Bharath Sankaran, Stephen Nuske, Sebastian Scherer and Sanjiv Singh.

Abstract— Here we consider the problem of automatically
segmenting images taken from a boat or low-flying aircraft.
Such a capability is important for autonomous river following
and mapping. The need for accurate segmentation in a wide
variety of riverine environments challenges the state of the art
vision-based methods that have been used in more structured
environments such as roads and highways. Apart from the lack
of structure, the principal difficulty is the large spatial and tem-
poral variations in the appearance of water in the presence of
nearby vegetation and with reflections from the sky. We propose
a self-supervised method to segment images into ‘sky’, ‘river’
and ‘shore’ (vegetation + structures) regions. Our approach uses
assumptions about river scene structure to learn appearance
models based on features like color, texture and image location
which are used to segment the image. We validated our
algorithm by testing on four datasets captured under varying
conditions on different rivers. Our self-supervised algorithm
had higher accuracy rates than a supervised alternative, often
significantly more accurate, and does not need to be retrained
to work under different conditions.

I. INTRODUCTION

We are interested in a minimal sensor suite based on
passive vision and inertial sensing that could be used to
autonomously explore rivers, mapping their width as it pro-
ceeds. Given sensor pose and camera calibration segmented
images can be turned into river maps. In some cases, the
canopy can be so thick and high around a river so as to block
GPS signals and the problem becomes one of simultaneous
localization and mapping. In this paper, we focus on the key
subproblem of automatically segmenting images so that the
extents of the river can be found accurately. Since rivers
can look like roads, one idea is to use fairly well developed
methods that have been used to track roads and highways
with passive vision. Apart from the lack of structure such as
clearly defined road edges, the principal difficultly of vision-
based tracking of rivers has to do with large spatial and
temporal variations in appearance of water in the presence
of nearby vegetation and with reflections from the sky. See
for example, Fig. 1 and Fig. 2.

Such problems are often solved with supervised learning,
an approach where a system is trained based on represen-
tative data ahead of time. In our case, supervised learning
would require that we train our river detector with instances
of image regions that correspond to water in rivers and
then use the trained system online. Given the lack of a
representation that would render the appearance of rivers

S. Achar, S. Nuske, S. Scherer and S. Singh are with The Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA 15232, U.S.A.,
{supreeth,nuske,basti,ssingh}@cmu.edu

B. Sankaran is with the GRASP Laboratory, University of Pennsylvania,
Philadelphia, PA, 19104, U.S.A, bharath@seas.upenn.edu

Fig. 1. An example image illustrating the variation of river appearance
within a single image.

as a constant under varying conditions, we find that it
is necessary that any learning be self-supervised. That is,
the system must train itself, adapting to local appearance
as influenced by terrain, flora and lighting conditions. A
natural question arises in being able to develop such a self-
supervised method– whence the representation? There is a
common intuition that features of color, texture and vertical
location in an image might help. Still, at the outset it is not
clear how to encode/combine different features.

Here we propose a two step self-supervised method to
perform such segmentation. In the first step we use a simple
heuristic (knowledge of the horizon line) to automatically
determine the relative correlation between features (a grab
bag of color and texture based features). This allows us to
score each image patch on its likelihood of belonging to a
river. Patches with high confidence labels are used to train
a Support Vector Machine. In the second step, the output
of the SVM segments the image into distinct regions. The

Fig. 2. This image was taken from almost the same location as Fig. 1 at a
different time of day. The appearance of the river has changed dramatically.

sanjivsingh
Text Box
In Proceedings, ICRA 2011, May 2011



advantage of such an approach is that it assumes no prior to
determine segmentation other than simple geometric assump-
tions such as that the river lies below the horizon, and, that
river features are significantly different than other features
below the horizon. All other training happens automatically
as often as at every frame.

We have tested our algorithms with image sequences from
two different rivers, the image sequences have different envi-
ronmental conditions; sunny and dusk, summer and fall. We
show how supervised learning by training with hand labeled
instances of segmentation, provides a reasonable solution but
does not generalize well to novel environments. We show
how performance and adaptability to novel environments can
be improved with a self-supervised algorithm.

II. RELATED WORK

Work related to the river segmentation algorithm presented
in this paper falls into three main categories: techniques for
inferring geometry from appearance, road following methods
and water hazard detection systems for autonomous ground
vehicles.

Make3D [1] and Photo Popup [2] infer information about
scene structure from appearance. These methods work well
on a wide variety of images but tend to have problems
dealing with reflections and shadows which are common
in riverine environments. Also, both these methods are
computationally intensive which precludes their use in time
sensitive applications.

Our work is similar in purpose to road following algo-
rithms. In [3] a self-supervised road segmentation algorithm
was proposed that used a laser scanner to find a small
region of road directly in front of the vehicle which was
used to build a road appearance model and classify the
rest of the image. The underlying assumption is that road
appearance is fairly uniform, but as is clear in Fig. 1 river
appearance is inhomogeneous so an appearance model learnt
on a small patch near the bottom of an image would not be
representative of appearance of the entire river region.

There has also been work in detecting water hazards for
autonomous ground vehicles. Approaches have been pro-
posed based on polarized imagery [4], [5] and hyperspectral
imaging [6]. For reasons of cost and weight restrictions we
consider a visible light camera solution.

In [7] and [8] water is detected in stereo imagery by
fusing color, brightness and stereo disparity cues with a rule
based classifier. Recently in [9], the same authors used a
physical model of water reflectance to detect water bodies
in monocular images. They make the observation that in their
application environment the color of a water body gradually
changes from the leading edge to the trailing edge (as a
function of incident angle), while other terrain types do not.
They use this observation to detect water bodies in wide-open
areas. Riverine environments are not wide open and variation
in river appearance is more dependent on the reflections of
the surrounding environment than on incident angle.

Rather than learn or derive a model offline of how the
river will appear, we take an online approach that assumes

a ground plane (river plane) and exploits the knowledge of
the horizon to create self-supervised training sets from the
current image.

III. FEATURE SELECTION

To enable effective river segmentation a discriminative
feature vector (X ∈ Rd) for describing local appearance is
required. Color is a useful feature for detecting water as
demonstrated in [7] & [8]. Texture is another useful cue,
for example, parts of an image containing the river tend to
be less textured than regions of foliage. Position in an image
provides a strong prior, the higher up in an image a region
is the less likely it is to be part of the river.

We selected features by empirically measuring the per-
formance of different feature vectors describing color and
texture in a supervised learning setup. Each candidate feature
vector was used to train a two class (river and shoreline)
linear support vector machine over a set of training images
and then tested by using the SVM to segment the river
in images from a small evaluation dataset. Performance
of a feature vector was quantified by the percentage of
correctly labeled pixels averaged over the evaluation dataset.
All features were calculated over 5 × 5 pixel patches.

To choose a color descriptor for the feature vector we
used the RGB, Lab and HSV color spaces individually and
in various combinations to train classifiers. The performance
of these classifiers on labeling river regions in the evaluation
dataset is show in Table I. A combination of RGB and Lab
colorspaces gave the best performance and was selected as
our color descriptor. Although both RGB and Lab encode
the same color information, combining them allows a linear
classifier to learn a more complex decision boundary.

We evaluated the performance of three texture descriptors
using a similar methodology. The first was the response to
a set of Laws’ masks [10]. We used 8 of the 9 3×3 Laws’
Masks leaving out the mask that performs low pass filtering.
Responses to each of these filters was calculated over 4
scales on the 3 channels of the Lab image, so the resulting
texture descriptor had length 4× 3× 8 = 96. The second
texture descriptor considered was the unnormalized DAISY
descriptor [11]. The third alternative was a bank of Gabor
filters with 4 scales and 6 orientations. For all the texture
descriptors, filter responses were normalized with respect
to intensity. All three filter sets performed almost equally
(Table I) so we chose the Laws’ masks because it was the
fastest to compute.

When combined, color and texture features perform better
than either cue alone. Image position, specifically the height
of a region in image coordinates, provides a strong contextual
cue for segmentation and is included in the feature vector.
The bottom of Table I shows the labeling error rate for
the combined color and texture descriptor and for our final
choice of feature descriptor with a fully supervised classifier
on the images in the evaluation dataset.

IV. SELF-SUPERVISED RIVER SEGMENTATION

Riverine environments vary widely in appearance which
makes building a single classifier that works well in different



TABLE I
PERFORMANCE OF DIFFERENT FEATURE VECTORS FOR SEGMENTATION

INTO TWO CLASSES

Feature Dimensionality Error Rate

Color

RGB 3 47.05%
Lab 3 35.61%
HSV 3 46.62%
RGB+HSV 6 44.43%
RGB+Lab 6 32.90%
RGB+Lab+HSV 9 37.60%

Texture
Laws’ Masks 96 26.81%
DAISY 200 26.76%
Gabor 24 27.19%

Combined Color+Texture 102 19.73%
Color+Texture+Height 103 4.61%

conditions difficult. Such a classifier would require labeled
training images captured in many environments under differ-
ent conditions. Its performance in an environment dissimilar
to those seen earlier would not be assured. Instead of attempt-
ing to learn offline a universal model of river appearance, we
automatically learn a new appearance model online for each
new input image.

To do this we utilize knowledge about the position of the
horizon in each image and assume that anything appearing
above the horizon line is not part of the river. The assumption
that the river can not be above the horizon is valid except
for situations in which the river has a significant upward
slope (these are unusual scenarios in which we do not expect
to operate like upstream on a rapid or at a waterfall). In
our application domain, the inertial measurement unit on
the vehicle would be used to estimate the horizon. Another

assumption we make is that the appearance of the above
horizon regions is fairly representative of the appearance of
the entire shore area in that image.

As a preprocessing step, we first segment out the sky and
ignore it during all further computations. To build an online
appearance model for discriminating between river and shore
regions, we extract two types of patches from the image,
those that are part of the shore region and those that are likely
to be part of the river. Generating shore patches is trivial,
we just sample patches lying above the horizon. We find
the patches below the horizon line that are most dissimilar
in appearance to those above the horizon and use them as
candidate river patches. We then use these patches to train
a linear SVM which is then used to classify all parts of the
image. Details of each step in the algorithm are given below.

A. Feature Extraction

As described in the Section III, the image is divided into
square patches and a feature vector (X ∈Rn) is computed for
each patch which describes its color, texture and position.

B. Sky Detection

A linear support vector machine trained over a set of
labeled images is used to detect the sky in each image. The
sky is relatively easy to segment out with a globally trained
classifier as its appearance is not as variable as that of the
river. Discarding the sky before further processing reduces
computation and prevents confusion with shiny, mirror like
parts of the water’s surface which often appear similar to
the sky. Fig. 3(d) shows an example of sky detection. The
remainder of the image needs to be classified as either being
part of the river or part of the shore.

(a) Input Image (b) Chow Liu tree for Above Horizon Region (c) Chow Liu tree for Below Horizon Region

(d) P(¬R | X) (e) Training Examples (f) Final Result

Fig. 3. Steps in the Self-Supervised River Segmentation Algorithm: (a) Image input to the algorithm. (b) and (c) Chow Liu trees built for the above and
below horizon parts of the image. In each tree the R, G and B nodes correspond to RGB color features; L, a and b are Lab color feature nodes and T is
the texture feature node (norm of the texture descriptor). Edges connect well correlated features, for example above the horizon because of vegetation, the
algorithm links greenness of a region (G) to how textured it is (T). (d) P(¬R | X): warm colors are used for values closer to 1 (probably shore region).
The detected sky region is marked in black (e) Training examples: The algorithm finds shore regions (shaded green) and candidate river regions (shaded
red) for training a classifier. (f) Final result: The classifier is run on the entire image to classify each patch. The detected extent of the river is in red.



C. Appearance Modeling

The goal of the appearance modeler is to assign to each
patch a probability of being part of the river (R) or being
part of the shore (¬R) on the basis of the feature vector (X)
that describes it. By Bayes’ Rule we have

P(¬R | X) =
P(X | ¬R)P(¬R)

P(X)
(1)

Since the labels (R and ¬R) are what we are trying to
determine, P(X | ¬R) can not be calculated directly. We
define a boolean variable H which is true for regions below
the horizon and false for regions above. The value of H at
each point in the image is known because the horizon is
known. We assume that the appearance of the shore region
above the horizon is representative of the entire shore region
in the image or P(X | ¬R)≈ P(X | ¬H) which gives

P(¬R | X) ≈ P(X | ¬H)P(¬R)
P(X)

(2)

=
P(X | ¬H)P(¬R)

P(X | ¬H)P(¬H)+P(X | H)P(H)
(3)

P(¬H) and P(H) are determined from the relative sizes
of the above and below horizon regions in the image. P(¬R)
which we arbitrarily set to 0.5 is the prior probability of
a patch being part of the shore region. The appearance
distributions P(X | ¬H) and P(X | H) are modeled using
Chow Liu trees [12]. A Chow Liu tree is a method for
approximating the joint probability distribution of a set of
discrete random variables by factorizing it into a product of
second order distributions. A Chow Liu tree is optimal in the
sense that it is the distribution of its class that minimizes the
KL divergence to the real distribution.

The feature vector X contains color, texture and image
position information and has high dimensionality as it con-
tains many texture filter responses. It is computationally
intractable to use the full length feature vector at this
point because of the way Chow Liu modeling scales with
dimensionality. Therefore, we use an abridged feature vector
X̂ ∈Rd in which the texture descriptor subvector is replaced
by its L2 norm. Furthermore, we do not include the image
position in X̂ because we do not want to model the effect of
image position on appearance at this stage.

The features in feature vector X̂ are continuous valued
while Chow Liu trees work over discrete valued random
variables. To solve this problem, each X̂ ∈ Rd is converted
into a discretized feature vector X̃ ∈ Sd . Each feature in X̃ is
assigned to 1 of 16 levels (S= {0,1,2, . . . ,15}) using equally
sized bins that span the range of values taken by that feature.

Two Chow Liu trees are built, one using the feature vectors
of patches above the horizon (X̃ /∈H) to model P(X | ¬ H)
and another using the feature vectors of below horizon
patches (X̃ ∈ H) to model P(X | H). We use subscripts to
denote individual features in a feature vector so X̃i is the ith

feature in feature vector X̃ . A Chow Liu tree is a maximal
spanning tree of the mutual information graph. The mutual

information graph has one node for each feature (X̃i) and
an edge between every pair of nodes (X̃i and X̃ j) which is
weighted by their mutual information I(X̃i; X̃ j).

I(X̃i; X̃ j) =
|S|−1

∑
xi=0

|S|−1

∑
x j=0

p(xi,x j) log
(

p(xi,x j)

p(xi)p(x j)

)
(4)

Where p(xi) is P(X̃i = xi), the probability that the ith

feature in X̃ takes on the value xi and p(xi,x j) is the
joint probability distribution P(X̃i = xi, X̃ j = x j). These dis-
tributions are estimated directly from X̃ /∈ H and X̃ ∈ H
by counting feature value occurrences and co-occurrences.
Edges are pruned from the mutual information graph to
form a maximal spanning tree T = 〈V ,E 〉. The resulting
tree encodes the approximate distribution as a product of
pairwise conditionals. Figures 3(b) and 3(c) show the Chow
Liu trees built for the appearance of above and below horizon
regions for a given input image. Each graph contains seven
nodes, three each for the RGB and Lab color encodings
and one for texturedness. We can calculate P(X̃ = x̃), the
probability of occurrence of a particular feature vector x̃ ∈
Sd = {x̃1, x̃2, x̃3, . . . , x̃d} as follows

P(X̃ = x̃)≈ ∏
(i, j)∈E

p(xi,x j)

p(xi)p(x j)
∏
j∈V

p(x j) (5)

The Chow Liu trees for P(X | ¬H) and P(X |H) are used
in (2) to calculate P(¬R | X) for each patch in an image. An
example is shown in Fig. 3(d).

D. Classifier Training

For each patch, the probability of being part of the shore
region P(¬R | X) is calculated using (2). The patches that are
least likely to be on the shore (P(¬R | X) < θ ) are used as
candidate river patches. Using a low value for θ reduces the
chance that shore patches are accidentally used as candidate
river patches, but if θ is set too low then the selected region
will be too small to provide a good representation of the river
region. In our experiments, θ was set to 0.01. The shore
patches above the horizon and the candidate river patches
with P(¬R | X)< θ are used to train a two class (river/shore)
linear support vector machine.

The SVM uses the unabridged, continuous valued feature
vectors X , including image position and the complete texture
descriptor. Since we are learning a new classifier for each
new frame, while the appearance of the river is likely to
remain fairly constant over short periods of time, we initialize
the SVM training using the SVM learnt on the previous
frame to reduce training time. Fig. 3(e) shows the river and
shore training examples selected in an image.

E. Detecting Water

The trained SVM is used to classify all the patches in the
image. As a post processing step, small holes in the labeling
are filled using morphological operators. An example final
segmentation result is shown in Fig 3(f)



V. RESULTS

A. Datasets and Groundtruth

Four datasets were used for evaluating our algorithm.
The data collection setup was a tripod mounted camera
(a SANYO VPC-CG102BK or Canon SX200IS) placed
onboard a small motorboat. The cameras captured 1280×720
images which were downsampled to 640×360. Three of the
datasets were collected on the Allegheny river at Wash-
ington’s Landing in Pittsburgh, PA, U.S.A, the fourth was
collected on the Youghiogheny at Perryopolis, PA, U.S.A.
The first Allegheny dataset (Allegheny Day) was collected
on a summer afternoon, the second (Allegheny Dusk) was
collected in the evening and the third (Allegheny Fall) was
collected in the afternoon during autumn. The Youghiogheny
dataset was collected around noon. Each dataset contains
between 120 and 150 images spaced roughly 2 meters apart
that were manually segmented for groundtruth information
into river, shore (vegetation, structures etc.) and sky regions.
An example ground truth labeling is shown in Fig. 4. Also
a groundtruth horizon line was marked out on each image.

(a) (b)

Fig. 4. (a) image from the Allegheny Day dataset (b) groundtruth labeling
with the river colored red, shore in green and the sky in blue.

The performance metric used is the percentage of pixels
misclassified by an algorithm when compared against ground
truth. Since the classifiers generate only two output labels
and we are not interested in differentiating between the shore
and sky we treat them both as a single class (non-river)
during performance evaluation. It should be noted that a
naı̈ve classifier that marked everything below the horizon as
river and everything above the horizon as non-river would
have an error rate of around 10% on these datasets.

B. Supervised Segmentation Results

We investigated how well a supervised classifier would be
able to generalize to previously unseen environments. From
each dataset, 2 images and their groundtruth labelings were
picked at random as training examples. Each dataset was
classified using two supervised classifiers. The first classifier
was trained on the 2 images from the same dataset (‘Self’ in
Table II), the second was a classifier trained on the 6 images
from the other 3 datasets(‘Leave One Out’ in Table II).
These classifiers were then tested on all the images in the
dataset. This process of picking images, training classifiers
and testing on all the images was repeated 16 times for each
dataset. Table II reports error rates averaged over these 16
trials. It can be seen that the supervised approach worked
well when used on datasets it had been trained on but

performance often degraded when run on new datasets that
were not seen during training. This suggests that a supervised
approach does not generalize well to new environments.

TABLE II
PERFORMANCE OF SUPERVISED AND SELF-SUPERVISED

SEGMENTATION METHODS: MEAN ERROR(STD DEV)

Dataset Supervised Our Method
Self LOO

Allegheny Day 3.80% (0.64%) 3.81% (0.63%) 2.75%
Allegheny Dusk 3.10% (0.46%) 9.59% (1.53%) 4.15%
Allegheny Fall 3.05% (0.51%) 10.57% (1.67%) 2.73%
Youghiogheny 3.50% (0.34%) 4.47% (0.41%) 3.22%

C. Self-supervised Segmentation Results

The self-supervised segmentation algorithm described in
Section IV was evaluated on the four datasets. Error rates
are shown in Table II. Because there is no training step
for the self-supervised algorithm, standard deviations are
not included with the results. On all four datasets, the self-
supervised algorithm outperformed a supervised classifier
that was tested on previously unseen datasets. Even when
the supervised algorithm was trained on a subset of images
from the same dataset it was tested on, it only outperformed
the self-supervised method on Allegheny Dusk. This is
significant considering how the self-supervised method uses
no manually labeled input.

Fig. 5 shows examples of the detected extent of the river
along with some intermediate steps of the algorithm. Some
failure cases of our algorithm are explained in Fig. 6.

Since the river segmentation is for vehicle guidance, it is
important that the algorithm be able to run at around 1 frame
per second or faster. Table III shows a profile of the execution
time for processing a 640 × 360 image split into 5 × 5 pixel
patches with our current MATLAB implementation on an
Intel Core2 Q9550 based desktop computer. The execution
time indicates that with an optimized C/C++ implementation
it should be possible to perform segmentation at 1fps for
vehicle guidance.

TABLE III
ALGORITHM RUNNING TIME (MATLAB)

Step Time taken

Feature Extraction (color) 0.49s
Feature Extraction (texture) 1.08s
Appearance Modeling 0.41s
Classifier Training 0.20s
Final Detection 0.14s
Total 2.32s

VI. CONCLUSIONS AND FUTURE WORK

We presented a method for using monocular vision to
estimate the extent of a river in an image. We demonstrated
that a supervised technique is unlikely to generalize well to
different environments. We formulated and evaluated a self-
supervised alternative that automatically generates a model of



(a) Allegheny Day (b) Allegheny Day (c) Allegheny Dusk

(d) Allegheny Fall (e) Youghiogheny (f) Youghiogheny

Fig. 5. Examples on which the self-supervised method performed well. In each example the top left quadrant is the input, the top right is a heatmap
showing the probability of a patch being part of the shore based on its appearance (the detected sky is marked black), the bottom left quadrant shows the
automatically detected river and shore regions for training a classifier and the bottom right is the extent of the river as determined by the algorithm.

(a) Allegheny Day (b) Youghiogheny

Fig. 6. Some images on which the self-supervised algorithm failed. In (a) the novel objects below the horizon (pier and boat) were misclassified. In (b)
the grass on the bank is marked as part of the river because a few patches on the bank were picked as river training examples.

river appearance when presented with an image by leveraging
assumptions that can be made about the structure of the
environment and the horizon.

Our method is completely memoryless and builds a new
model for each input image. Using history of previous
river appearance to build an adaptive model would provide
robustness against failure. The most serious failure mode of
our algorithm is when novel objects (like the boats and piers
in Fig. 6(a)) appear below the horizon and are misclassified.
Our algorithm is unable to handle this because it does not
maintain a model of river appearance and because it assumes
that the appearance of the above horizon region adequately
models all non-river objects. Extending our approach to learn
an appearance model from previous images would enable the
detection of novel objects below the horizon.

We would also like to investigate the use of priors on likely
river shapes and performing inference over multiple frames
in a video sequence to increase accuracy.

REFERENCES

[1] A. Saxena, M. Sun, and A. Ng, “Learning 3-d scene structure from a
single still image,” IEEE Intl. Conf. on Computer Vision. ICCV, 2007.

[2] D. Hoiem, A. A. Efros, and M. Hebert, “Automatic photo pop-up,”
Proceedings of ACM SIGGRAPH 2005, 2005.

[3] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski, “Self-
supervised monocular road detection in desert terrain,” in Robotics
Science and Systems Conference (RSS’06), 2006.

[4] B. Xie, Z. Xiang, H.Pan, and J.Liu, “Polarization-based water hazard
detection for autonomous off-road navigation,” in IEEE Intl. Conf. on
Intelligent Robots and Systems (IROS’07), 2007.

[5] A. Sarwal, J. Nett, and D. Simon, “Detection of small water bodies,”
in PrecepTek Robotics Technical Report (ADA433004’04), 2004.

[6] H. Kwon, D. Rosario, N. Gupta, M. Thielke, D. Smith, P. Rauss,
P. Gillespie, and N. Nasrabadi, “Hyperspectral imaging and obstacle
detection for robotics navigation,” U.S Army Research Laboratory
Technical Report, Tech. Rep. (ARL-TR-3639’05), Sept. 2005.

[7] A. Rankin, L. Matthies, and A. Huertas, “Daytime water detection
by fusing multiple cues for autonomous off-road navigation,” in 24th
Army Science Conference (ASC’04), Nov. 2004.

[8] A. Rankin and L. Matthies, “Daytime water detection and localization
for unmanned ground vehicle autonomous navigation,” in 25th Army
Science Conference (ASC’06), Nov. 2006.

[9] ——, “Daytime water detection based on color variation,” in IEEE
Intl. Conf. on Intelligent Robots and Systems (IROS’10), 2010.

[10] K. Laws, “Rapid texture identification,” SPIE, pp. 376–380, 1980.
[11] E. Tola, V. Lepetit, and P. Fua, “A fast local descriptor for dense

matching,” in Conf. on Computer Vision and Pattern Recognition,
2008.

[12] C. Chow and C. Liu, “Approximating discrete probability distributions
with dependence trees,” Information Theory, IEEE Transactions on,
vol. 14, no. 3, pp. 462 – 467, may. 1968.




