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Abstract— Bicycles that share the road with intelligent ve-
hicles present particular challenges for automated percejon
systems. Bicycle detection is important because bicyclehase
the road with vehicles and can move at comparable speeds [
in urban environments. From a computer vision standpoint,
bicycle detection is challenging as bicycle’s appearancea
change dramatically between viewpoints and a person riding
on the bicycle is a non-rigid object. In this paper, we presen
a vision-based framework to detect and track bicycles that
takes into account these issues. A mixture model of multiple
viewpoints is defined and trained via a Support Vector Machire
(SVM) to detect bicycles under a variety of circumstances. &h
component of the model uses a part-based representation and
known geometric context is used to improve overall detectiv  Fig. 1. Of all the entities in the class of vulnerable roadrsig¥RUs),
efficiency. An extended Kalman filter (EKF) is used to estima¢  pedestrians and bicyclists are the most likely to suffeeseinjuries and
the position and velocity of the bicycle in vehicle coordintes. death if they are involved in a collision with an automobile.

We demonstrate the effectiveness of this approach through a
series of experiments run on video data of moving bicycles

captured from a vehicle-mounted camera.
A number of researchers working on Intelligent Trans-
. INTRODUCTION portation Systems have proposed a number of different
The automotive industry is increasingly interested imapproaches for vehicle perception systems. Approacheg usi
adding more intelligence to cars and trucks with the ultenatsensors such as vision, LIDAR, and RADAR have all been
goal of developing fully autonomous automobile traffic. Toproposed as well as a number of systems which use the
this end one of the most important research areas to addr@ssion of two or more of these sensors in order to provide
is that of automated perception systems that will allow thenore robust detection results [12] (see Section Il for detai
vehicle to comprehend its immediate environment and maksh more approaches). In this work, we examine the use
decisions that enhance the safety of vehicle occupants [1df video systems to detect and track bicyclists. Imagery
as well as the safety of persons around it. This is especialfjom video cameras contains a wealth of high resolution
true for the class of objects called vulnerable road useisformation about the environment that can effectively be
(VRUs) [8] which includes entities such as bicyclists, moused to solve a number of perception problems. One of the
torcyclists, pedestrians, and operators of other smaicle  most compelling arguments for using monocular cameras in
as shown in Figure 1. A perception system that can, in realtomotive applications is that they are very inexpensive
time, gather enough information to do a complete scenghen compared to current LIDAR or RADAR systems.
analysis is currently beyond the immediate scope of thigowever, one of the biggest challenges when using computer
work. Rather, we focus on the problem of identifying andsision systems to detect objects is handling the variations
extracting specific quantities of interest from the sceme. lin the object’s appearance, shape, and motion. Real-world
particular, we are interested in focusing on the problem afnvironments can be very complex so that separating fore-
detecting and tracking bicyclists from an on-board visioground from background is also a difficult problem. Finally,
system. In general, bicyclists and pedestrians are the malsé motion of the vehicle that carries the camera must also
vulnerable of the class of VRUs due to the lack of anpe taken into account. Because pedestrians are ubiquitous,
real protection against collisions. However, bicyclismy@at most research has focused primarily on them [10], and there
speed equivalent to a slow moving vehicle and, by law, mus a comparative dearth of research in the detection and
share the road with vehicles in most urban environmentgacking of bicycles. While the two problems are similar
This puts them at particular risk for suffering life-threaing  in some ways, we believe that the bicycle problem is more

accidents. challenging. For instance, the appearance of bicycles to a
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a bicyclist is tracked in subsequent video frames with an €; g
tended Kalman filter (EKF) based tracking algorithm whicl e
uses a simple point model and perspective projection fcj§
motion and measurement models, respectively.

The remainder of this paper is organized as follows
Section Il reviews related work on detection and tracking ¢
pedestrians. Our primary technical contributions in ditec
and tracking are described in Sections Ill and IV respec
tively. We describe experimental results using the system
Section V and conclude in Section VI.

II. RELATED WORK

root filters partfilters deformation

There is a significant body of work on vision-basec
approaches (using detectors primarily sensitive to \asibl
light) for pedestrian detection and tracking. Researchgusi

computer vision for pedestrian detection and trackingredge Fig- 2.  Visualization of a three-component bicycle modefck row
cqrresponds to one specific view of a bicycle. Each columon{ffirst to

baCk_a number of years. For a Comprehe_nSive SUIVeY frd) represents root filter, part filter, and deformationdal, respectively.
classical work, please see [9] and [11] while more recent

work is surveyed in [8], [5], [4].

Fpr the detect|.on. of pedestrians, there are roughly tWr%ethods such as the (extended) Kalman filter and particle fil-
main approaches: single template and part-based. This cl

sification is based on representation of a human body re—r are often employed. For instance, one such approach [10]

o ST Uses arw — [ filter to overcome gaps in detection where the
gardless of features and classifiers used. Historicallygles s gap

template based approach was studied first and showed beﬁécr)po_sed tracker is a simplified Kalman filter with a constant
velocity model and predetermined steady-state gains. In

performance compared to part-based models. Recently, hqglvﬁother example [17], particle filters have been used tdtrac

ever, some part-based models have shown more PIOMISING,  mber of interacting people from a fixed camera. Other

p_erformance while they have a flexible and rich model. In %ensity estimation methods such as mean-shift [2] as well as
single template approach, the model captures a whole humgn

body pattern using a single detection winddspageorgiou &ucture from motion like optical-flow [16] have also been
et al. [15] uses Haar wavelet features in combination WitlgJr
a polynomial Support Vector Machine (SVIWiola et al. Ill. BICYCLE DETECTION WITH A DEFORMABLE
[18] augment space-time information to their simple Haar- PART-BASED MODEL

like wavelet features for moving people detectibmlal and Bicycle detection is challenging in that a bicycle presents

Trigg [3] show excellent performance for detecting human iyramatic appearance changes according to camera viewpoint
a static image using a dense HOG (Histogram of Orienteghq also has a intra-class variability (e.g., mountain ike
Gradient) representation and a linear SVM. On the oth§fs. racing cycles). One of the common solutions to tackle
hand, in a part-based approach, it captures the pattern fifs problem is to establish part-based model for an object
each part a_nd then co_mblnes results to make a final decisigp interest. Rather than trying to capture a global pattern
for pedestrian detection. Generally, part-based appemchyf an object with one template, part-based models focus on
can handle with varying appearances of pedestrians duedgrts of an object and, in consequence, provide more flexible
clothing, pose, and occlusion, and thus, provide a Morgn robust representations. While part-based models fmave a
complex model for a pedestrian detection probléfithan  g|egant formulation in theory, they have not shown a better
et al. [15] divide human body into four parts: head, legsperformance compared to a single template based approach.
left, and right arm. Each part detector is trained using Recently, howeverFelzenszwalb et al. [7] demonstrate a
polynomial SVM and outputs are fed into a final Classme‘bart-based model which outperformed the single template
after checking geometric plausibilitiikolajczyk et al. [14]  model by using a latent SVM formulation in combination
model humans as assemblies of parts that are representedpy, a variation of HOG features. In this paper, our work
the Scale Invariant Feature Transform (SIFT)-like oriéota 5, bicycle detection is largely based on this work. The
featuresFelzenszwalb et al [7] demonstrate that a part-basedy|iowing subsections discuss some important details ef th

model human detector can outperform many of existing CUgg zensawalb et al. [7] model and how it was applied to the
rent single template based approaches. Based on a variatiggorithm in this research.

of HOG features, they introduce a latent SVM formulation

for training a part-based model from overall bounding boA. HOG Features

information without part location labelings. Selecting the correct feature is important because overall
For tracking of pedestrians, a number of mathematicgerformance of the system depends on the discriminative

frameworks have been proposed. Statistical or probabilistpower of features used in detection algorithm. As discussed

coarse resolution finer resolution models

oposed.



in Section I, most successful features are the same rezsard| Object State space vector :
of the type of approach (i.e., single template or part-bpsed space x=[X Y X Y]
They are Haar wavelet, edgelet, and histogram based feature s
such as SIFT [13] and HOG. Among those, the HOG feature
has been considered as one of the strongest feature and
used as a basic ingredient of more sophisticated featuse set
Basically, the HOG feature captures the shape information
of an object and this aspect is naturally revealed via a
visualization of HOG feature. Figure 2 illustrates HOG rep-
resentation of some viewpoints of a bicyclist. According to
the recent comprehensive evaluation studies [4] and [8], th
HOG feature still shows best performance as a single feature
relative to other existing feature sets. The deformablé-par
based model ofelzenszwalb et al. [7], which is our baseline
detector, also uses HOG features as a building block. In
fact, they use a PCA (Principal Component Analysis) version
of HOG features. They report that a new 13-dimensional
feature set obtained by performing PCA over an origing®f the following form:

36-dimensional feature set can capture essentially the sam

information. This dimensionality reduction of featurest no fa(z) = max §-®(z,2). 1)

only takes advantage of its highly discriminative powett, bu 2€Z(x)
also speeds up the detection and training processes.  \hereg is a vector of model parametetsare latent values,

B. Deformable Part-B Model and ®(x, z) is a feature vector. In one star modél, is
' the concatenation of the root filter, the part filters, and

The core ideas of the deformable part-based model gkformation cost weights; is a specification of the object
Felzenszwalb et al. [7] can be summarized with three fac-configuration, andb(z, z) is concatenation of subwindows

tors: a deformable part representation, an efficient matchi from a feature pyramid and part deformation features. We

Fig. 3. Bicycle tracking problem formulation

process, and a latent SVM training process. refer the reader to [7] for more details.
First, they define a star-structured part-based model which

is composed of a root filter, n (usually six) part filters, IV. BICYCLE TRACKING WITH AN EKF

and associated deformation parameters. A root filter is for ALGORITHM

capturing an overall shape of an object (shown in the first Once a bicycle detector is fired for the predefined number
column in Figure 2) and part filters are for capturing thef times, the next step is to track its location from frame to
appearance of each part of an object (shown in the secofrdme. Because of the relatively high cost of the detector,
column). Finally, deformation parameters are for meagurinwe are interested in incorporating an algorithm with a lower
the deviation of the part from its ideal location (shown incomplexity for tracking. For this reason, we chose to apply a
the third column). Thus, the score of the star model at taditional EKF (extended Kalman filter) to our framework.
particular position and scale is defined by the sum of rodle assume that a bicycle has a simple point motion model
filter score and part filter scores (from the best possiblwith a constant velocity. In addition, as a measurement
placement of the parts) subtracted by a deformation coshodel, a nonlinear perspective projection equation is lin-
The authors also introduce a mixture of this star model tearized and fed into the EKF framework. Specifically, the
handle with significant changes in appearance according tiacking is conducted via the following three steps:
viewpoint variation. Second, an efficient matching process . Step 1: Back-project a low midpoint in a bounding
based on dynamic programming and generalized distance box (from detector) from the image coordinates into
transforms [7] is proposed. With the mixture of star mod-  the vehicle coordinates.

els, since a matching process itself is a huge optimization, Step 2: Run the EKF prediction step to predict its next
problem, it is most important to incorporate a fast method  position using a simple point motion model.

for a detection task. Finally, a latent SVM training prociss . Step 3: Run the EKF update step to incorporate the
formulated to train a mixture of star models from bounding detection results in the next frame and forward-project
box ground truth. As the ground truth does not include the point into the image coordinates again and update
part labeling information, part locations are treated &snia its bounding box.

variables during training and thus the whole problem boilgye discuss technical details of both a motion model and a
down to an optimization task with two sets of variables. Inneasurement model in the next subsections.

practice, they solve this problem using a coordinate deéscen _ )

algorithm by alternating between finding better latent ealu A- Bicycle Point Motion Model

and optimizing the latent SVM objective function. In a Let's consider a bicycle tracking problem illustrated in
detection process each exampleis scored by a function Figure 3. Since a bicycle has its own unique kinematics, at



a first glance, it seems natural to use a bicycle’s kinematic PR curves for four detectors, class: bicycle
as a motion model. However, it is a completely differen ; ; ;
situation once considering the measurement charactsristi osf
The measurement in our case is a rough bounding box
the image space. From the sequence of these measurem
estimating all state variables (e.g., yaw and yaw rate) ef tt orr
complicated model is a challenging task. We believe mor ool
comprehensive experiments are needed for this. As a gfarti
point, we assume that a bicycle can be seen as a moving m.
and thus, we use a simple point motion model for tracking oaf
We use the midpoint of the bottom line of a bounding bos
(displayed as a red dot in Figure 3) as a representative.poi

precision
o
b

Based on a flat ground assumption, the point can move free 92 T ) comp with new VOC2009 (0.504)
only in the X-Y plane in vehicle coordinates. Thus, the stat o4l | —— 2comp with new VOC2009 (0.575)
of this moving point on time step is expressed as a vector: —— Scomp with new VOC2009 (0.577)
. 1T 00 0‘.1 0‘.2 0‘3 0‘4 O.‘S 0.‘6 0.‘7 0.‘8
X = [xk Yp Tk yk] (2) recall

and the continuous-time state equation for this constant

velocity model [1] can be modeled as a linear, time-invdriarf9- 4. PR curves for two detectors. The red plot shows thporese for
the three-component model trained with PASCAL2009 and etaskt and

system: the blue plot and green plot show the response for two-coetomodel
and one-component model, recpectively, trained with theesdataset.
0 0 1 0 0 0
dx(t) 00 0 1 00
— = x(t) + wit 3 . . . .
dt 0 0 0 O ®) 10 IS length of a cameraR is a rotation matrix andt is a
0 0 0O 0 1 translation vector for extrinsic parameters. The pararsete

where w(t) is a continuous time white noise process. A" are the corresponding entries of the final pers_pective
discrete model of this state-space equation is used for thojection ”.‘a"'x.- Based on a flat ground assumption, the
vector functionh is expressed by:

Kalman filter.

B. Bicycle Measurement Model ~anX +a13Z + au _anX +anZ +axn
In our work, since only a monocular camera is used as a e a3 X + as3Z + ass T a3 X +as3”Z + asy

sensor device, the measurements are bounding box positions (6)

in the image space, which are results of the detection psoces
In addition, the tracking process itself is executed in tiages ] ) )
space (i.e., in the vehicle coordinate). Thus, a measuremen e evaluated our detection and tracking framework using
model should be able to map the state variablato its various real world datasets. We first conducted bicyclist de
measurement space (i.e., in the image coordinate) and tif$tion experiments using the PASCAL VOC datasets [6] and

is done by a perspective projection equation. The nonline&rPrivate dataset we collected from our experimental vehicl
mapping of the state space into the measurement SpaceVWh regard to bicycle tracking, we also collected videoadat

V. EXPERIMENTAL RESULTS

the video camera is given by: of various scenarios in terms of bicycle movement. As the
first set of data, six video sequences were recorded from a
Vi = h(xg, k) + Vi (4) stationary vehicle. Tracking experiments for each casegusi

wherevy, is the measurement noise on the time gtegmd the the EKF algorithm are also conducted.

nonlinear mapping functiof is obtained by the following A Performance Analysis of Detector

transformation: In bicycle detection experiments, we used 357 positive

u [ f/5s 0w X training samples and 3300 negative samples. _Based on

v | = 0 f/sy v R | t Y samples from the PASCAL VOC 2009 datagetai n 1,

w 0 0 1 Z we augmented the dataset with 160 positive samples from
B 1 our private bicyclist dataset. We trained a three-compbnen
. X bicycle model which can capture three different viewpoints

R A Y of a bicycle (i.e., frontal45°, and side view). Figure 2 visu-
B I I Z ) alizes this mixture model. For the test set, we used the same

L @31 sz ds3 34 1 PASCAL's dataseval plus 100 test samples from ours. We

where s, anq sy are scale faptors in x and y reSpeCt'Vely' Ihttp://pascallin.ecs.soton.ac.uk/challenges/VOCZ008/#devkit/,
and (u.,v.) iIs a camera optical center arfdis the focal accessed on Sep. 52009



Fig. 5. Examples of detection with our three-component ddeynodel

Position estimation with the extended Kalman filter. . Ve‘locny e‘stlmatlo‘n with ti‘1e exten‘ded Kalman filter.

y — Filtered X velocity|
- - — Real trajectory 2k
— Filtered trajectory| s

; ; ; ; ; ; ; ; ;
5 10 15 20 25 30 35 40 45 50
time t

Velocity estimation with the extended Kalman filter.
T T T T T

—Filtered Y velocit

L L L L
30 35 20 45 50

L L L L
o 5 10 15 20

25
time t

(a) The estimated path trajectory. The ellipses repredemtl{ 2, (b) lllustration of tracking accuracy in sequence “stadigncase”:
3-sigma confidence regions for the bicycle position. the estimates of velocities of the bicycle ¥ andY coordinates are
plotted against frame numbers.

Fig. 6. Performance analysis of the tracker : stationarg cas

TABLE |

run the detector (equipped with our three-component bécycl ‘ i
DETAILS OF ‘SEQUENCE4’ USED IN THE EVALUATION

model) over all images in the test set and draw a precision-
recall (PR) curve for evaluation. A PR-curve for our model
is compared with that of the two-component model of [7}sgguences Size Frame-number] FPS | Bicyclistnumber
as well as that of the one-component model in Figure 4 amdsequence 4| 320 x 240 107 13 1

some typical examples of detection are shown in Figure 5.
We used the same evaluation criterion of VOC PASCAL
competition for a detection task.

For the performance of tracking, as partially shown in
Figure 7, the EKF based tracking algorithm successfully
Tracking experiments were conducted on the six videqgacks the bicyclist except for the case in which the bistcli
collected from our experimental vehicle. All videos of a.is shown beyond the effective(or Working) distance of our

person riding a bicycle were recorded from the vehiclesjetector, which is around0m. More detailed analyses for
cameras while the vehicle was stationary. We evaluate Odpch case are investigated by plotting filtered state viasab
EKF based tracking algorithm with a deformable partof the tracker at each time step. In our case, these are
based detector over all video sequedcedere, due t0 positions and velocities in¥ and Y coordinates of the
the space limitation, we only analyze one specific scenariqcyclist. For instance, Figure 6(a) shows a bird-eye view
(‘sequence4’) in detail. of the bicyclist’s position and Figure 6(b) shows the vetpci

~ Inthe ‘sequence 4’ case, a bicyclist comes across the roggtimation in bothX and Y coordinates for the ‘sequence
in front of the vehicle and makes a turn toward the vehiclg' case (see Figure 6 for the details).

so that the left side and frontal view of the bicycle are seen

. . . In terms of the speed of the detection and tracking, detec-
and must be tracked. Table | illustrates the configuration cffon (approximately 0.3 s/frame on a P-IV 2GHz computer
the image sequence. :

with 2GB memory) is much more time consuming than track-
2The videos of tracking results over six sequences are alailat Ing (O.l_s/frame). The reas_on we put m_ore ComDUtat'qnal
http://www.cs.cmu.edfyunggic/tracking. complexity on the detector is that we believe good tracking

B. Performance Analysis of Tracker



Detection: O, Tracking: O

Detection : X, Tracking: O

D Tracking : X

(e)Frame #30 (HFrame #38

(g)Frame 244 (h)Frame #48

Fig. 7. Tracking results for bicyclist: stationary caseefsence 4’). The green bounding box means reliable deteatiol reliable tracking. The yellow
bounding box means unreliable detection and reliable imgckRed bounding box means unreliable tracking.

performance can be achieved from good observations. Alsg3]
this approach is a main stream of current research trend

which is called ‘Tracking-by-Detection’ or ‘Detection-ted
Tracking'.

VI. CONCLUSIONS AND FUTURE WORK

(4

(5]

This paper presents a bicycle detection and tracking frame[é]

work. To robustly detect bicycles, we appliedzenszwalb’s

deformable part-based detector [7] into our framework.
Using the method, we build up a more powerful three- ]
component bicycle model. We achieved a dramatic speeg
improvement for the detection process by exploiting known
geometric constraints. Once the bicycle has been detetted |
the image, the object is tracked in subsequent video frames
with an EKF based tracking algorithm which use simple

point model and perspective projection for a motion model

El

and a measurement model, respectively. This complementafy;
approach allows our system to effectively track a bicyclist

even when he/she changes orientations in the image. Sev
experiments shows the effectiveness of each component

b

the proposed framework. As part of our future work, we
intend to develop an Interacting Multiple Model (IMM) [12]
based tracking algorithm which takes into account differen;

bicycle motion kinematics at different traffic contexts.
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