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Abstract— Bicycles that share the road with intelligent ve-
hicles present particular challenges for automated perception
systems. Bicycle detection is important because bicycles share
the road with vehicles and can move at comparable speeds
in urban environments. From a computer vision standpoint,
bicycle detection is challenging as bicycle’s appearance can
change dramatically between viewpoints and a person riding
on the bicycle is a non-rigid object. In this paper, we present
a vision-based framework to detect and track bicycles that
takes into account these issues. A mixture model of multiple
viewpoints is defined and trained via a Support Vector Machine
(SVM) to detect bicycles under a variety of circumstances. Each
component of the model uses a part-based representation and
known geometric context is used to improve overall detection
efficiency. An extended Kalman filter (EKF) is used to estimate
the position and velocity of the bicycle in vehicle coordinates.
We demonstrate the effectiveness of this approach through a
series of experiments run on video data of moving bicycles
captured from a vehicle-mounted camera.

I. INTRODUCTION

The automotive industry is increasingly interested in
adding more intelligence to cars and trucks with the ultimate
goal of developing fully autonomous automobile traffic. To
this end one of the most important research areas to address
is that of automated perception systems that will allow the
vehicle to comprehend its immediate environment and make
decisions that enhance the safety of vehicle occupants [11]
as well as the safety of persons around it. This is especially
true for the class of objects called vulnerable road users
(VRUs) [8] which includes entities such as bicyclists, mo-
torcyclists, pedestrians, and operators of other small vehicles
as shown in Figure 1. A perception system that can, in real
time, gather enough information to do a complete scene
analysis is currently beyond the immediate scope of this
work. Rather, we focus on the problem of identifying and
extracting specific quantities of interest from the scene. In
particular, we are interested in focusing on the problem of
detecting and tracking bicyclists from an on-board vision
system. In general, bicyclists and pedestrians are the most
vulnerable of the class of VRUs due to the lack of any
real protection against collisions. However, bicyclists move at
speed equivalent to a slow moving vehicle and, by law, must
share the road with vehicles in most urban environments.
This puts them at particular risk for suffering life-threatening
accidents.
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Fig. 1. Of all the entities in the class of vulnerable road users (VRUs),
pedestrians and bicyclists are the most likely to suffer severe injuries and
death if they are involved in a collision with an automobile.

A number of researchers working on Intelligent Trans-
portation Systems have proposed a number of different
approaches for vehicle perception systems. Approaches using
sensors such as vision, LIDAR, and RADAR have all been
proposed as well as a number of systems which use the
fusion of two or more of these sensors in order to provide
more robust detection results [12] (see Section II for details
on more approaches). In this work, we examine the use
of video systems to detect and track bicyclists. Imagery
from video cameras contains a wealth of high resolution
information about the environment that can effectively be
used to solve a number of perception problems. One of the
most compelling arguments for using monocular cameras in
automotive applications is that they are very inexpensive
when compared to current LIDAR or RADAR systems.
However, one of the biggest challenges when using computer
vision systems to detect objects is handling the variations
in the object’s appearance, shape, and motion. Real-world
environments can be very complex so that separating fore-
ground from background is also a difficult problem. Finally,
the motion of the vehicle that carries the camera must also
be taken into account. Because pedestrians are ubiquitous,
most research has focused primarily on them [10], and there
is a comparative dearth of research in the detection and
tracking of bicycles. While the two problems are similar
in some ways, we believe that the bicycle problem is more
challenging. For instance, the appearance of bicycles to a
camera can change dramatically depending on the viewing
angles. Additionally, the speed of bicyclists is much higher
and their proximity to vehicles is typically much closer.

In this paper, we build a three-component bicycle model
usingFelzenszwalb’s deformable part-based model [7]. Then,



a bicyclist is tracked in subsequent video frames with an ex-
tended Kalman filter (EKF) based tracking algorithm which
uses a simple point model and perspective projection for
motion and measurement models, respectively.

The remainder of this paper is organized as follows.
Section II reviews related work on detection and tracking of
pedestrians. Our primary technical contributions in detection
and tracking are described in Sections III and IV respec-
tively. We describe experimental results using the system in
Section V and conclude in Section VI.

II. RELATED WORK

There is a significant body of work on vision-based
approaches (using detectors primarily sensitive to visible
light) for pedestrian detection and tracking. Research using
computer vision for pedestrian detection and tracking extends
back a number of years. For a comprehensive survey of
classical work, please see [9] and [11] while more recent
work is surveyed in [8], [5], [4].

For the detection of pedestrians, there are roughly two
main approaches: single template and part-based. This clas-
sification is based on representation of a human body re-
gardless of features and classifiers used. Historically, a single
template based approach was studied first and showed better
performance compared to part-based models. Recently, how-
ever, some part-based models have shown more promising
performance while they have a flexible and rich model. In a
single template approach, the model captures a whole human
body pattern using a single detection window.Papageorgiou
et al. [15] uses Haar wavelet features in combination with
a polynomial Support Vector Machine (SVM).Viola et al.
[18] augment space-time information to their simple Haar-
like wavelet features for moving people detection.Dalal and
Trigg [3] show excellent performance for detecting human in
a static image using a dense HOG (Histogram of Oriented
Gradient) representation and a linear SVM. On the other
hand, in a part-based approach, it captures the pattern of
each part and then combines results to make a final decision
for pedestrian detection. Generally, part-based approaches
can handle with varying appearances of pedestrians due to
clothing, pose, and occlusion, and thus, provide a more
complex model for a pedestrian detection problem.Mohan
et al. [15] divide human body into four parts: head, legs,
left, and right arm. Each part detector is trained using a
polynomial SVM and outputs are fed into a final classifier
after checking geometric plausibility.Mikolajczyk et al. [14]
model humans as assemblies of parts that are represented by
the Scale Invariant Feature Transform (SIFT)-like orientation
features.Felzenszwalb et al [7] demonstrate that a part-based
model human detector can outperform many of existing cur-
rent single template based approaches. Based on a variation
of HOG features, they introduce a latent SVM formulation
for training a part-based model from overall bounding box
information without part location labelings.

For tracking of pedestrians, a number of mathematical
frameworks have been proposed. Statistical or probabilistic

Fig. 2. Visualization of a three-component bicycle model. Each row
corresponds to one specific view of a bicycle. Each column (from first to
third) represents root filter, part filter, and deformation model, respectively.

methods such as the (extended) Kalman filter and particle fil-
ter are often employed. For instance, one such approach [10]
uses anα−β filter to overcome gaps in detection where the
proposed tracker is a simplified Kalman filter with a constant
velocity model and predetermined steady-state gains. In
another example [17], particle filters have been used to track
a number of interacting people from a fixed camera. Other
density estimation methods such as mean-shift [2] as well as
structure from motion like optical-flow [16] have also been
proposed.

III. BICYCLE DETECTION WITH A DEFORMABLE
PART-BASED MODEL

Bicycle detection is challenging in that a bicycle presents
dramatic appearance changes according to camera viewpoints
and also has a intra-class variability (e.g., mountain bikes
vs. racing cycles). One of the common solutions to tackle
this problem is to establish part-based model for an object
of interest. Rather than trying to capture a global pattern
of an object with one template, part-based models focus on
parts of an object and, in consequence, provide more flexible
and robust representations. While part-based models have an
elegant formulation in theory, they have not shown a better
performance compared to a single template based approach.
Recently, however,Felzenszwalb et al. [7] demonstrate a
part-based model which outperformed the single template
model by using a latent SVM formulation in combination
with a variation of HOG features. In this paper, our work
for bicycle detection is largely based on this work. The
following subsections discuss some important details of the
Felzenszwalb et al. [7] model and how it was applied to the
algorithm in this research.

A. HOG Features

Selecting the correct feature is important because overall
performance of the system depends on the discriminative
power of features used in detection algorithm. As discussed



in Section II, most successful features are the same regardless
of the type of approach (i.e., single template or part-based).
They are Haar wavelet, edgelet, and histogram based features
such as SIFT [13] and HOG. Among those, the HOG feature
has been considered as one of the strongest feature and
used as a basic ingredient of more sophisticated feature sets.
Basically, the HOG feature captures the shape information
of an object and this aspect is naturally revealed via a
visualization of HOG feature. Figure 2 illustrates HOG rep-
resentation of some viewpoints of a bicyclist. According to
the recent comprehensive evaluation studies [4] and [5], the
HOG feature still shows best performance as a single feature
relative to other existing feature sets. The deformable part-
based model ofFelzenszwalb et al. [7], which is our baseline
detector, also uses HOG features as a building block. In
fact, they use a PCA (Principal Component Analysis) version
of HOG features. They report that a new 13-dimensional
feature set obtained by performing PCA over an original
36-dimensional feature set can capture essentially the same
information. This dimensionality reduction of features not
only takes advantage of its highly discriminative power, but
also speeds up the detection and training processes.

B. Deformable Part-Based Model

The core ideas of the deformable part-based model of
Felzenszwalb et al. [7] can be summarized with three fac-
tors: a deformable part representation, an efficient matching
process, and a latent SVM training process.

First, they define a star-structured part-based model which
is composed of a root filter, n (usually six) part filters,
and associated deformation parameters. A root filter is for
capturing an overall shape of an object (shown in the first
column in Figure 2) and part filters are for capturing the
appearance of each part of an object (shown in the second
column). Finally, deformation parameters are for measuring
the deviation of the part from its ideal location (shown in
the third column). Thus, the score of the star model at a
particular position and scale is defined by the sum of root
filter score and part filter scores (from the best possible
placement of the parts) subtracted by a deformation cost.
The authors also introduce a mixture of this star model to
handle with significant changes in appearance according to
viewpoint variation. Second, an efficient matching process
based on dynamic programming and generalized distance
transforms [7] is proposed. With the mixture of star mod-
els, since a matching process itself is a huge optimization
problem, it is most important to incorporate a fast method
for a detection task. Finally, a latent SVM training processis
formulated to train a mixture of star models from bounding
box ground truth. As the ground truth does not include
part labeling information, part locations are treated as latent
variables during training and thus the whole problem boils
down to an optimization task with two sets of variables. In
practice, they solve this problem using a coordinate descent
algorithm by alternating between finding better latent values
and optimizing the latent SVM objective function. In a
detection process each examplex is scored by a function

Fig. 3. Bicycle tracking problem formulation

of the following form:

fβ(x) = max
z∈Z(x)

β · Φ(x, z). (1)

whereβ is a vector of model parameters,z are latent values,
and Φ(x, z) is a feature vector. In one star model,β is
the concatenation of the root filter, the part filters, and
deformation cost weights,z is a specification of the object
configuration, andΦ(x, z) is concatenation of subwindows
from a feature pyramid and part deformation features. We
refer the reader to [7] for more details.

IV. BICYCLE TRACKING WITH AN EKF
ALGORITHM

Once a bicycle detector is fired for the predefined number
of times, the next step is to track its location from frame to
frame. Because of the relatively high cost of the detector,
we are interested in incorporating an algorithm with a lower
complexity for tracking. For this reason, we chose to apply a
traditional EKF (extended Kalman filter) to our framework.
We assume that a bicycle has a simple point motion model
with a constant velocity. In addition, as a measurement
model, a nonlinear perspective projection equation is lin-
earized and fed into the EKF framework. Specifically, the
tracking is conducted via the following three steps:

• Step 1: Back-project a low midpoint in a bounding
box (from detector) from the image coordinates into
the vehicle coordinates.

• Step 2:Run the EKF prediction step to predict its next
position using a simple point motion model.

• Step 3: Run the EKF update step to incorporate the
detection results in the next frame and forward-project
the point into the image coordinates again and update
its bounding box.

We discuss technical details of both a motion model and a
measurement model in the next subsections.

A. Bicycle Point Motion Model

Let’s consider a bicycle tracking problem illustrated in
Figure 3. Since a bicycle has its own unique kinematics, at



a first glance, it seems natural to use a bicycle’s kinematics
as a motion model. However, it is a completely different
situation once considering the measurement characteristics.
The measurement in our case is a rough bounding box in
the image space. From the sequence of these measurement,
estimating all state variables (e.g., yaw and yaw rate) of the
complicated model is a challenging task. We believe more
comprehensive experiments are needed for this. As a starting
point, we assume that a bicycle can be seen as a moving mass
and thus, we use a simple point motion model for tracking.
We use the midpoint of the bottom line of a bounding box
(displayed as a red dot in Figure 3) as a representative point.
Based on a flat ground assumption, the point can move freely
only in the X-Y plane in vehicle coordinates. Thus, the state
of this moving point on time stepk is expressed as a vector:

xk = [xk yk ẋk ẏk]T (2)

and the continuous-time state equation for this constant
velocity model [1] can be modeled as a linear, time-invariant
system:

dx(t)

dt
=









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









x(t) +









0 0
0 0
1 0
0 1









w(t) (3)

where w(t) is a continuous time white noise process. A
discrete model of this state-space equation is used for the
Kalman filter.

B. Bicycle Measurement Model

In our work, since only a monocular camera is used as a
sensor device, the measurements are bounding box positions
in the image space, which are results of the detection process.
In addition, the tracking process itself is executed in the state
space (i.e., in the vehicle coordinate). Thus, a measurement
model should be able to map the state variablex into its
measurement space (i.e., in the image coordinate) and this
is done by a perspective projection equation. The nonlinear
mapping of the state space into the measurement space of
the video camera is given by:

yk = h(xk, k) + vk (4)

wherevk is the measurement noise on the time stepk and the
nonlinear mapping functionh is obtained by the following
transformation:
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(5)

wheresx and sy are scale factors in x and y respectively,
and (uc, vc) is a camera optical center andf is the focal
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Fig. 4. PR curves for two detectors. The red plot shows the response for
the three-component model trained with PASCAL2009 and our dataset and
the blue plot and green plot show the response for two-component model
and one-component model, recpectively, trained with the same dataset.

length of a camera.R is a rotation matrix andt is a
translation vector for extrinsic parameters. The parameters
aij are the corresponding entries of the final perspective
projection matrix. Based on a flat ground assumption, the
vector functionh is expressed by:

h1 =
a11X + a13Z + a14

a31X + a33Z + a34
h2 =

a21X + a23Z + a24

a31X + a33Z + a34
(6)

V. EXPERIMENTAL RESULTS

We evaluated our detection and tracking framework using
various real world datasets. We first conducted bicyclist de-
tection experiments using the PASCAL VOC datasets [6] and
a private dataset we collected from our experimental vehicle.
With regard to bicycle tracking, we also collected video data
of various scenarios in terms of bicycle movement. As the
first set of data, six video sequences were recorded from a
stationary vehicle. Tracking experiments for each case using
the EKF algorithm are also conducted.

A. Performance Analysis of Detector

In bicycle detection experiments, we used 357 positive
training samples and 3300 negative samples. Based on
samples from the PASCAL VOC 2009 datasettrain 1,
we augmented the dataset with 160 positive samples from
our private bicyclist dataset. We trained a three-component
bicycle model which can capture three different viewpoints
of a bicycle (i.e., frontal,45◦, and side view). Figure 2 visu-
alizes this mixture model. For the test set, we used the same
PASCAL’s datasetval plus 100 test samples from ours. We

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/#devkit/,
accessed on Sep. 5 2009



Fig. 5. Examples of detection with our three-component bicycle model
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(a) The estimated path trajectory. The ellipses represent the 1, 2,
3-sigma confidence regions for the bicycle position.
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(b) Illustration of tracking accuracy in sequence “stationary case”:
the estimates of velocities of the bicycle inX andY coordinates are
plotted against frame numbers.

Fig. 6. Performance analysis of the tracker : stationary case

run the detector (equipped with our three-component bicycle
model) over all images in the test set and draw a precision-
recall (PR) curve for evaluation. A PR-curve for our model
is compared with that of the two-component model of [7]
as well as that of the one-component model in Figure 4 and
some typical examples of detection are shown in Figure 5.
We used the same evaluation criterion of VOC PASCAL
competition for a detection task.

B. Performance Analysis of Tracker

Tracking experiments were conducted on the six videos
collected from our experimental vehicle. All videos of a
person riding a bicycle were recorded from the vehicles’
cameras while the vehicle was stationary. We evaluate our
EKF based tracking algorithm with a deformable part-
based detector over all video sequences2. Here, due to
the space limitation, we only analyze one specific scenario
(‘sequence4’) in detail.

In the ‘sequence 4’ case, a bicyclist comes across the road
in front of the vehicle and makes a turn toward the vehicle
so that the left side and frontal view of the bicycle are seen
and must be tracked. Table I illustrates the configuration of
the image sequence.

2The videos of tracking results over six sequences are available at
http://www.cs.cmu.edu/h̃yunggic/tracking.

TABLE I

DETAILS OF ‘ SEQUENCE4’ USED IN THE EVALUATION

Sequences Size Frame-number FPS Bicyclist-number
‘sequence 4’ 320 × 240 107 13 1

For the performance of tracking, as partially shown in
Figure 7, the EKF based tracking algorithm successfully
tracks the bicyclist except for the case in which the bicyclist
is shown beyond the effective(or working) distance of our
detector, which is around10m. More detailed analyses for
each case are investigated by plotting filtered state variables
of the tracker at each time step. In our case, these are
positions and velocities inX and Y coordinates of the
bicyclist. For instance, Figure 6(a) shows a bird-eye view
of the bicyclist’s position and Figure 6(b) shows the velocity
estimation in bothX and Y coordinates for the ‘sequence
4’ case (see Figure 6 for the details).

In terms of the speed of the detection and tracking, detec-
tion (approximately 0.3 s/frame on a P-IV 2GHz computer
with 2GB memory) is much more time consuming than track-
ing (0.1 s/frame). The reason we put more computational
complexity on the detector is that we believe good tracking



Fig. 7. Tracking results for bicyclist: stationary case (‘sequence 4’). The green bounding box means reliable detection and reliable tracking. The yellow
bounding box means unreliable detection and reliable tracking. Red bounding box means unreliable tracking.

performance can be achieved from good observations. Also,
this approach is a main stream of current research trend
which is called ‘Tracking-by-Detection’ or ‘Detection-based
Tracking’.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a bicycle detection and tracking frame-
work. To robustly detect bicycles, we appliedFelzenszwalb’s
deformable part-based detector [7] into our framework.
Using the method, we build up a more powerful three-
component bicycle model. We achieved a dramatic speed
improvement for the detection process by exploiting known
geometric constraints. Once the bicycle has been detected in
the image, the object is tracked in subsequent video frames
with an EKF based tracking algorithm which use simple
point model and perspective projection for a motion model
and a measurement model, respectively. This complementary
approach allows our system to effectively track a bicyclist
even when he/she changes orientations in the image. Several
experiments shows the effectiveness of each component of
the proposed framework. As part of our future work, we
intend to develop an Interacting Multiple Model (IMM)
based tracking algorithm which takes into account different
bicycle motion kinematics at different traffic contexts.
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