Aligning Capabilities of Interactive Educational Tools

to Learner Goals

Tom Lauwers

CMU-RI-TR-10-09

Submitted in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Submitted in partial fulfillment of
the requirements of the Program for
Interdisciplinary Education Research (PIER)

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Thesis Committee:
Illah Nourbakhsh, Chair, Carnegie Mellon Robotics Institute
Sharon Carver, Carnegie Mellon Psychology Department
John Dolan, Carnegie Mellon Robotics Institute,
Fred Martin, University of Massachusetts Lowell Computer Science

© 2010, Tom Lauwers.

ABSTRACT

This thesis is about a design process for creating educationally relevant tools. 1
submit that the key to creating tools that are educationally relevant is to focus on
ensuring a high degree of alignment between the designed tool and the broader
educational context into which the tool will be integrated. The thesis presents
methods and processes for creating a tool that is both well aligned and relevant.

The design domain of the thesis is described by a set of tools I refer to as
“Configurable Embodied Interfaces”. Configurable embodied interfaces have a
number of key features, they:

e Can sense their local surroundings through the detection of such environ-
mental and physical parameters as light, sound, imagery, device acceleration,
etc.

e Act on their local environment by outputting sound, light, imagery, motion
of the device, etc.

e Are configurable in such a way as to link these inputs and outputs in a nearly
unlimited number of ways.

e Contain active ways for users to either directly create new programs linking
input and output, or to easily re-configure them by running different pro-
grams on them.

e Are user focused; they assume that a human being is manipulating them in
some way, through affecting input and observing output of the interface.

Spurred by the growth of cheap computation and sensing, a large number of ed-
ucational programs have been built around use of configurable embodied interfaces
in the last three decades. These programs exist in both formal and informal edu-
cational settings and are in use from early childhood through adult and community
education. Typically, configurable embodied interfaces are used as tools in three
major and sometimes overlapping areas: computer Science education, creative and
engineering design education, and traditional science and math education.

This work details three examples of collaborations between technologists and
educators that led to the creation of educationally successful tools; these three ex-
amples share a focus on creating a configurable embodied interface to tackle a
specific cognitive and affective set of learning goals, but differ completely in the
location of the learning environment, the age and interests of the learners, and the
nature of the learning goals. Through the exploration of the methods used, an anal-
ysis of the general and context-specific features of the design processes of the three

2

ABSTRACT

accounts, and a comparison of the process used in this thesis to a conventional engi-
neering design process, this work provides case studies and a set of guidelines that
can inform technologists interested in designing educationally relevant embodied
interfaces.

ACKNOWLEDGMENTS

I would first and foremost like to thank my thesis advisor, Dr. Illah Nourbakhsh. He
has been the ideal advisor for me. Illah is extremely helpful, especially at resolving
the inevitable roadblocks that occur during doctoral studies. He encourages his
students and staff to maintain a healthy work/life balance, something that as a new
father I greatly appreciate. He has been considerate and fully supportive of my
personal interests and pursuits (one of which resulted in a chapter in this thesis).
On top of all of this he has a moral compass that I try hard to emulate, and a sense
of humility that will cause him to reflexively dismiss this entire paragraph.

My thesis committee has contributed significantly and substantially to this the-
sis. I would like to thank Sharon Carver for exposing me to curricular design and
alignment through her class, Educational Goals, Instruction, and Assessment, and
for offering to meet me with me consistently throughout the thesis process. Fred
Martin’s detailed comments, both in writing and during extensive phone conver-
sations, have strengthened the concluding analysis significantly. Thanks as well
to John Dolan for a detailed read, catching numerous spelling and grammatical
errors, as well as for high-level comments on alignment in both the proposal and
thesis that have strengthened my treatment of that subject.

I enjoyed the good fortune to work with interdisciplinary teams of engineers,
designers, and educators in each of the projects described in the thesis. For the
Braille Tutor project, I would like to thank Nidhi Kalra, for initiating the dialogue
with teachers at the Mathru school for the blind, thinking of the idea, and, crucially
for me, asking me if I would like to help her design the hardware for the project.
The project’s growth and funding are attributable to TechBridgeWorld, especially
Bernardine Dias, whose management of the project and guidance in how to dis-
seminate it have provided me with useful examples to follow, and Sarah Belousov
and Ermine Teves, who quickly resolved any day-to-day problems that came up.
I’d also like to thank Tom Stepleton and Daniel Dewey, for their work advancing
the tutor software, and the many students in TechBridgeWorld internships that have
tested the tutor in numerous locales. Lastly and most importantly, I’d like to thank
the teachers and students at the Mathru School for the Blind.

For Robot Diaries, I would like to thank Emily Hamner and Debbie Bernstein,
without whom Robot Diaries would never have begun or been sustained. We have
worked together on the project for four years now, and I am glad to be blessed
with such good friends and colleagues. I would like to thank Carl DiSalvo for
his work in the early years of Robot Diaries and for being the only one of us
capable of employing an effective ‘parent’ voice during the workshops. Though
her participation in the project was brief, Kristen Stubbs made a permanent impact
by helping us formulate the learning goals and curricula for the second round of

4

ACKNOWLEDGMENTS

Robot Diaries. I thank Chris Bartley for his work on the TeRK software framework
and for his heroic efforts to keep the software one week ahead of the girls in the
fall 2006 pilot. I would like to thank the teachers who have worked with us during
the project, especially Dana Wettergreen and Kim Winbush at PALS, Barb Bianco
at Falk, Ann Shoplik and Pam Piskurich at C-MITES, and Christine Nguyen at
the Sarah Heinz House. Finally, a major thank you to the Heinz Endowments for
supporting the program financially.

The CSbots project would not have been possible without the involvement of
Don Smith of CCAC, who worked with me to design assignments, and piloted the
alpha and Finch robots in his courses for three semesters. Emily Hamner helped
with the initial evaluation of CS textbooks and with organizing the high school pi-
lot. It would have been very difficult to organize a two day, thirty teacher workshop
without her help. I would like to thank the teachers who participated in CSbots,
especially participants of our initial pilot year: Carolyn Stewart, Norm Messa, Di-
anne Meskauskas, Mari Hobkirk, and David Opfer. The CSbots project was funded
through the Heinz Endowments, the Arthur Vining Davis Foundation, and the Na-
tional Science Foundation’s CCLI program.

I enjoyed participating in two vibrant communities during my graduate studies
at CMU: PIER and the Robotics Institute. The PIER program influenced me in
a number of important ways. The courses and ed-bags exposed me to education
research that has shaped many of the ideas in this thesis. The program itself funded
half of my graduate studies, and by so doing, allowed me to move the scope of
my thesis somewhat outside the bounds of a traditional robotics Ph.D. Finally, I'd
like to thank members of the community for interesting and topical conversations;
Jamie, Ruth, Matt, David, Jack, and many others.

The Robotics Institute has been my intellectual home since before I entered the
doctoral program. I’d like to thank the many who have made this journey the most
enjoyable and stimulating time of my life: Brian, Rachel, Martin, Sanjeev, Marek,
Jonathan, Pras, Brad, Dean, Anna, Liz, Alex, Matt, Jean, Karen, Suzanne, Ralph,
George, and many others.

My parents I thank for providing me with an idyllic childhood and all of the
intellectual and moral resources needed to make my own way. I could not have
accomplished this without their love and support.

My wife Krissie I thank for her understanding, patience, and support, and es-
pecially, once again, her patience. No one should have had to listen to so many
complaints about writing, and few could have done so and responded in a sympa-
thetic way every time. My daughter Lena I thank for being the perfect antidote to
the thesis writing blues.

DEDICATION

For Lena, and all tomorrow’s students.

Contents

Contents

1

3

Introduction

1.1 Definitions of Educational Technology

1.2 Configurable Embodied Interfaces

1.3 Thesis Statement and Contributions
1.3.1 Statement
1.3.2 Contributions

1.4 Organizationofthe Work

Configurable Embodied Interfaces in Education

2.1 Computer Science Education
2.1.1 Manual Programming
2.1.2 Visual and Textual Programming

2.2 Creative and Engineering Design
22.1 Controllers
222 Programs

2.3 Science Education. oL

24 Summary e e e e e

Methods for the Design of Configurable Embodied Interfaces

3.1 Alignment in Instructional Design

3.2 Extending Alignment L oL

3.3 Participatory Design,

34 Design-BasedResearch

3.5 Implications of these Methods for the Design Process
3.5.1 A Common Design Process
3,52 Implementation

11

17
17
19
20
21
21
21

23
23
24
26
27
27
29
31
33

CONTENTS

4 The Braille Writing Tutor 47
4.1 WritingBraille 0o oL 47
4.2 Timeline of the Project 49

42.1 MyRoleontheProject 49

43 Ideation 50

4.3.1 Other Tutor Systems 51

4.4 Design, Pilot, and Evaluation of the First version of the Braille Tutor 51
4.4.1 Goals, Instruction, and Assessment of a Braille Writing

Curriculumo 52

442 DesignConstraints 54

443 E-slateDesign 56

444 The Tutor Software 57

4.45 Field Study and Evaluation 59

45 SecondDesignCycle 65

451 E-slateChanges. 65

4.5.2 Early Tutor Improvements 69

4.6 On-going Software and Curricular Improvements 70

4.6.1 Foreign Language Writing Support 71

4.6.2 Local Accents and Languages Audio Support 71

4.6.3 Motivational Games, 71

4.6.4 E-slate hardware modifications 72

4.6.5 Pilotsand Evaluation 73

47 Summary e e e e e e 74

5 Robot Diaries 75
5.1 Motivation and Program Goal 75
5.2 Timeline of the Project 76

5.2.1 My Roleinthe Project 77
5.3 Ideation 77
53.1 FocusGroup 78
5.4 Participatory Design Sequence 81
5.4.1 Curriculum Progression 82
5.4.2 Summer Workshop L. 83
543 One-Day Workshops 90
544 FallWorkshop 91
5.4.5 Validation of the Approach 101
5.5 Designing for Dissemination 101
5.5.1 LearningGoals 102
5.52 Curriculum o 104
5.5.3 Assessment Approach 112

CONTENTS

554 Tools e 113

5.5.5 Evaluation Strategy 115

5.5.6 Fluency Moments - an Analysis Methodology 117

5.577 PilotingtheDesign 118

5.5.8 Evaluation 119

5.6 NextSteps o it 122
5.6.1 Next Steps: Adapting Robot Diaries to Formal Educational

Settings 122

5.6.2 Improving Disseminability 122

57 Summary e 123

CSbots 125

6.1 Motivation and Program Goal 125

6.2 Timeline of the Project 126

6.2.1 My Roleinthe Project 127

6.3 Approach 127

6.3.1 Initial Evaluation 127

6.3.2 Iterative Design 127

6.3.3 Partnerships L. 128

6.3.4 Alignment 128

6.4 Ideation 128

6.5 [Initial Evaluation 129

6.5.1 Textbook Survey, 129

6.5.2 Surveyof Educators 132

6.5.3 Partners’ Prior Curricula 134

6.6 Initial Design, 135

6.6.1 LearningGoals 135

6.6.2 Curriculum 136

6.6.3 RobotPlatform 138

6.64 Software 139

6.7 Pilotsand Evaluation 141

6.7.1 CCAC Summer2007 142

6.7.2 Ohlone fall2007 143

6.7.3 CCACTall2007 144

6.7.4 High School Pilots 154

6.8 Redesign 158

6.8.1 Design Constraints 159

6.82 Robot 159

6.83 Software 163

6.8.4 Curriculum Lo 163

CONTENTS

6.9 Finch Pilots and Evaluation
6.9.1 CCACPilot
6.9.2 High School Pilots
6.10 NextSteps o
6.10.1 Charter Schools
6.10.2 Additional Language Support
6.10.3 Commercialization
6.11 Summary

7 Summary, Analysis, and Conclusions

7.1 Summary of the Design Process
7.1.1 Ideation
7.1.2 Imitial Evaluation,
7.1.3 Constraint-Finding Process
7.1.4 Systems AlignmentCycles
7.1.5 Measuring Alignment
7.1.6 Dissemination

7.2 Similar Design Processes
7.2.1 Learner-centered Design

7.3 The Domain of Alignment-Centered Design

7.4 Alignment-Centered Design and Engineering Design
741 Ideation
7.4.2 Initial Evaluation
743 Prototyping
744 Testing e
745 Analysis
7.4.6 Dissemination

7.5 Challenges and Limits of Alignment-Centered Design
7.5.1 Evaluation
7.5.2 HumanResources
7.5.3 Student Interests and Background
7.54 Constraintso
7.5.5 Conventional Engineering Design: The CMUCam

7.6 Conclusions: A Choice of Process

A Robot Diaries Curriculum
A.l1 Dispositional Goals

B Assignments for CCAC CIT-111 and CIT-130

10

183
183
185
185
186
190
193
194
196
197
198
198
200
200
200
201
202
202
202
202
204
205
206
206
208

209
309

311

CONTENTS

C Finch Documentation 341

Bibliography 364

11

CONTENTS

12

List of Figures

2.1
2.2
2.3

24
2.5

3.1
32

4.1

4.2
4.3
4.4

4.5
4.6

4.7

5.1
5.2
53
54
5.5
5.6
5.7
5.8

A Logo Floor Turtle (reprinted courtesy of Terrapin software) . . 24
A Robot made of Roblocks(reprinted courtesy of Modular Robotics) 25
The Basic STAMP (left) and Handy Board (right) (Handy Board

photo courtesy Fred Martin) 28
A panoramic view of the Pittsburgh 2008 FIRST regional competition 30
The Vernier Labquest (photo courtesy Vernier LLC) 32
Aligning goals, instruction, and assessment 36
Adding a tool the alignment process 38

A schematic of a Braille cell (left) and the letter ‘t” (center). The
black circles represent embossed dots while the light grey circles

represent un-embossed dots. A sample of Braille (right). 48
A Brailleslateand stylus. 48
Timeline of the Braille Tutor project 49
The prototype E-slate taken for field testing at the Mathru School

forthe Blind. 57
Students at Mathru use the Braille Writing Tutor. 62
The teachers use the Braille Writing Tutor at the tutor station we

setup in the computerlab. oL 63
Version 2 of the E-slate 66
Timeline of the Robot Diaries project 77
Robots made from craft materials 85
The Doodlechat interface 92
The chosen design and girls’ instantiations of the design 93
The Qwerk microcontroller 94
The RuR software program 95
The Express-O-Matic software program 96
The Roboticon Messenger software program 96

13

LIST OF FIGURES

59
5.10
5.11

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8

6.9

6.10
6.11
6.12

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24

6.25
6.26

7.1
7.2

The Hummingbird microcontroller 114
The Arts&Bots software environment 115
One girl’s final robot from the PALS workshop 119
Timeline of the CSbots project 126
Distribution of survey respondents 133
The first year robot platform 138
Initial skeleton file for software framework 140
Programs that make the robot say “hello world” (top) and print

“Hello World” to screen (bottom) 141
Students in the CCACrobotlab 144
Overall retention rates in the fall semester CS1 course at CCAC . 149
Week-by-week retention rates in the fall semester CS1 course at

CCAC . . . 149
Percent of students who listed the current assignment as their fa-

voritetodate Lo 150
Student estimates of their grade on each assignment 151
Student sources of frustration 152
Percent of students who linked assignment content to the external

world 153
Mean grades of passing students, 2003-2007 153
Sketches of Finch shell concepts 160
Finchshells 161
The Finch robot’s sensors and actuators 162
Percent of students rating the current assignment as their favorite . 171
Confidence of students in spring 2009 CIT-111 171
Confidence of students in fall 2009 CIT-111 172
Confidence of students in fall 2009 CIT-130 172
Sources of frustration for students in spring 2009 CIT-111 173
Sources of frustration for students in fall 2009 CIT-111 174
Sources of frustration for students in fall 2009 CIT-130 174
Retention of students in CIT-111 in pilot year compared to four

PriOT YEArS o v v o i e e e e e e e 176
Retention rates excluding students who dropped before exam 1 . . 177
Grades of passing students in CIT-111 compared to four prior years 178

Alignment-centered design processsteps 184
A simplified model of engineering design mapped to alignment-
centered design 199

14

List of Tables

4.1

5.1
52
53
54

6.1
6.2

6.3
6.4
6.5
6.6

6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15

6.16

Summary of E-slate changes between version 1 and2

Learning goals
Sequence of activities for first curricular module
Sequence of activities for parttwo
Sequence of activities for partthree

Summary of key textbook attributes L.
Topic orderings. The topics are variables (V), simple I/O (I), flow
control (F), arrays (D), exceptions and errors (E), and advanced I/O
(A). e
Schedule for a CS1 roboticscourse
Confidence and interest ratings for summer robotics assignments .
Listing of assignments used in CCACpilot.
Percentage of students who reported each category as their best-
known programming language
Student reasons for taking course
Student ratings of interest in and confidence with computing

Summary of teacher ratings of workshop
Schedule for CCAC’s 2009 CIT-111class
Schedule for CCAC’s 2009 CIT-130 course
Students in the course and responding to pre/post surveys
Average ages of enrolled and passing students
Percent of students in CIT-111 reporting each category as their
best-known programming language
Percent of students in CIT-111 reporting a given topic as their fa-
vorite subjectinschool,
Percent of students in CIT-130 reporting a given topic as their fa-
vorite subjectinschool oo Lo

LIST OF TABLES

6.17 Percent of students who prefer to program computers or robots . . 170

16

Chapter 1

Introduction

By Tom Lauwers

This thesis is about a design process for creating educationally relevant tools.
I submit that the key to creating tools that are educationally relevant is to focus
on ensuring a high degree of alignment between the designed tool and the broader
educational context into which the tool will be integrated. The thesis presents
methods and processes for creating a tool that is both well aligned and relevant.

We begin by describing some key definitions and underlying assumptions of the
thesis, as well as detailing the objective of the work and providing an organizational
overview of the thesis. As the thesis is about educational tools and technologies, a
good place to start the discussion is the definition of educational technology.

1.1 Definitions of Educational Technology

There are two competing definitions of educational technology in society. One
focuses on the tools and media used in education: blackboards, textbooks, docu-
mentaries, computer programs, Internet social media, and so on; this definition is
commonly used by technologists and media creators. The other, used by histori-
ans and social scientists, considers the definition of the word "technology’ more
deeply; technology, under this second definition, is not a product, but a kernel of
knowledge that allows the knowledge holder to act in a practical and systemic way.
Under this definition, educational technology has a long and rich history; the in-
troduction of the first professional teachers in the fifth century BC in Athens, the
creation of the first universities and the development of the scholastic method by
Pierre Abelard and St. Thomas Aquinas, and the development of the sequential
curriculum accompanied by a textbook are all developments of educational tech-

17

1. Introduction

nology (Saettler, 1990). Educational technology developments occurred in the 20th
and 21st centuries as well: The creation of Bloom’s taxonomy to organize the cog-
nitive (Bloom, 1956) and affective goals (Krathwohl et al., 1973) of a course of
learning. The development of cognitive models to aid the design of math curricula
and computer-based tutoring programs (Rittle-Johnson and Koedinger, 2001). All
of these examples share a commonality: None of them required the development
of new tools or media. Considering technology in this way, one can view educa-
tional technologies not as mere tools that exist on the periphery of educators’ and
students’ experiences, but as the core systems that educators use to organize the
learning of their pupils.

Ironically, technologists, the author included, have an inherent affinity for mak-
ing the next cool new tool, and thus rarely consider a more expansive view of edu-
cational technology. This perspective leads to a lack of understanding that in order
for new tools to be adopted, those tools need to be part of a broader instructional
and technological context. Despite the overly optimistic views of their creators and
supporters, tools are rarely adopted to the extent that seems possible to technolo-
gists when a tool is created. In 1913, one of the world’s best technologists, Thomas
Edison, made the following prediction:

“Books will soon be obsolete in the schools. Scholars will soon be
instructed through the eye. It is possible to teach every branch of hu-
man knowledge with the motion picture. Our school system will be
completely changed in ten years.”

- Thomas Edison, quoted in the New York Dramatic Mirror on July 9,
1913 (Saettler, 1990)

This woefully incorrect prediction illustrates that historically new educational
tools have come into use in schools at a much slower rate than technologists expect.
There are systemic reasons for this, including the time required to train teachers in
the use of the new tool, a conservative attitude to change that is inherent to most
large institutions, and in many cases, a lack of funding to support the new tool.
However, these reasons typically only apply once the tool has already cleared its
first major hurdle: educational relevance. The reason behind Edison’s and others’
wild optimism is that they conflate educational relevance and educational poten-
tial. Educational relevance requires that the tool has become sufficiently refined
for educators to use, and crucially, to create educational content with the tool; in
essence, it means that the primary advocates of the tool are no longer technolo-
gists, but content creators. To go back to the audiovisual movement of the early
20th century exemplified by Edison’s quote, movie making may have been techni-
cally possible in 1913 by well-trained experts, but it would still be several decades

18

1.2. Configurable Embodied Interfaces

before non-technologists were making educational documentaries and curriculum
designers understood movies well enough to properly align and integrate the new
tool with existing curricula (Saettler, 1990).

The process of creating educational relevance can be long and drawn out, but
there are methods for shortening it. In emerging technological domains that contain
educational potential, partnerships with educators and content creators at the very
beginning of the design process may lead to educational relevance more quickly.
In the next section I describe one emerging technological domain that is ready to
have its educational potential accelerated into educational relevance.

1.2 Configurable Embodied Interfaces

This thesis is concerned with the process for designing educational tools within a
technological domain I refer to as “Configurable Embodied Interfaces”. Config-
urable embodied interfaces have a number of key features, they:

e Can sense their local surroundings through the detection of such environ-
mental and physical parameters as light, sound, imagery, device acceleration,
etc.

e Act on their local environment by outputting sound, light, imagery, motion
of the device, etc.

e Are configurable in such a way as to link these inputs and outputs in a nearly
unlimited number of ways.

o Contain active ways for users to either directly create new programs linking
input and output, or to easily re-configure them by running different pro-
grams on them.

o Are user-focused; they assume that a human being is manipulating them in
some way, through affecting input and observing output of the interface.

Configurable embodied interfaces contain within their definition the classical
‘sense-think-act’ paradigm of robotics, and some robots certainly are embodied in-
terfaces. However, many robots are not user-focused and/or are not designed for
users to change their programs; an automated arm at a car factory (neither user fo-
cused nor user-programmable), robotic receptionists and museum guides (not user-
programmable), and a tele-operated bomb squad robot (not user-programmable)
are all examples of robots that do not fall within the embodied interface domain.

19

1. Introduction

On the other hand, the LEGO Mindstorms robotics construction kit and associ-
ated software (Lego, 2009), the discontinued Sony Aibo robot dog, and Roblocks
(Schweikardt and Gross, 2008), a kit of intelligent blocks that alter their behavior
based on the overall block configuration, are all examples of robots that are also
embodied interfaces.

Due to their emphasis on the user, embodied interfaces are also well repre-
sented in the consumer electronics sector. Many new smart phones are embodied
interfaces: these phones emphasize multimodal sensing and actuation, user config-
urability through the addition of new ’apps’ or programs, and certainly assume a
human being is interfacing with them. Though ten years ago few computers could
be categorized as embodied interfaces, newer computers, especially the netbook
strain that is oriented towards communication, contain webcams, microphones, and
even accelerometers. Many consumer electronics remain outside the realm of the
embodied interface; mp3 players, ordinary ’"dumb’ cell phones, and digital cameras
are not easily user modifiable.

Though not all embodied interfaces are marketed to educational activity, their
user focus, user configurability, and multimodal interactivity ideally suit them to
education. Learning occurs through interactions, be it a teacher lecturing to a class,
a student reading a textbook, or a user playing an educational computer game.
The interactions enabled by embodied interfaces are qualitatively different from
those available through other methods; notably, an embodied interface can impart
concepts by demonstrating them in the physical world while also interfacing with
a computer to perform experimental analysis.

As they become increasingly ubiquitous and powerful, embodied interfaces
are growing increasingly relevant in the world of education. While some educators
have adopted embodied interfaces for use in their classrooms, the design of em-
bodied interfaces still proceeds largely without the input of educators. This input
is crucial in determining all aspects of the interface design: which sensing and ac-
tuation modalities are necessary, how the tool should appear, and how it should be
programmed or configured by the user. As with other promising technologies for
education in the past, it is necessary to involve educators in design before embodied
interfaces can make their way into the classroom in a systemic way.

1.3 Thesis Statement and Contributions

The design features of a given embodied interface relate directly to the types of
concepts that are appropriately demonstrated with the interface - imagine attempt-
ing to teach about acceleration with an interface that is not capable of either mov-
ing or registering motion. It is the learning goals and student interests, then, that

20

1.4. Organization of the Work

should determine the features and interaction modalities of the embodied interface.
Unfortunately, technologists may not be wholly aware of these goals when creat-
ing a new embodied interface, while those who are aware of these crucial design
considerations, namely teachers and students, may not be aware of the potential
set of sensors and output mechanisms, and may not get much input until after the
interface has been designed and is ready for testing. Embodied interfaces can be
powerful educational tools, but as with previous technologies, it is necessary to
involve educators and students in the design process before their full potential is
realized.

1.3.1 Statement

This thesis is concerned with altering the design process dynamic by answering
a question of "how’; specifically, how does one design an embodied interface so
that it is aligned with the goals of the end users of the tool? This question leads
to a number of others: How do technologists discover the goals of the end users?
How do these goals translate into design constraints? What are the methods used in
order to achieve alignment? How does one determine when an embodied interface
is properly aligned?

1.3.2 Contributions

To answer these questions this work details three worked examples of collabora-
tions between technologists and educators that led to the creation of educationally
successful tools. These three examples share a focus on creating an embodied in-
terface to tackle a specific cognitive and affective set of learning goals, but differ
completely in the location of the learning environment, the age and interests of
the learners, and the nature of the learning goals. Through the exploration of the
methods used, an analysis of the general and context-specific features of the design
processes of the three accounts, and a comparison of the process used in this thesis
to a conventional engineering design process, this work provides case studies and a
generalizable design process that can inform technologists interested in designing
educationally relevant configurable embodied interfaces.

1.4 Organization of the Work

Chapter Two discusses related work in embodied interfaces, tracing the history of
the domain to date and pointing to current commercial and educational successes
within the field. Chapter Three details the principal methods used in the main body
of the work, specifically, alignment and instructional design and their extension to

21

1. Introduction

the design processes of the embodied interfaces covered in the work, design-based
research, and participatory design. Chapters Four through Six are case studies of
the design processes of embodied interfaces used in education. All three of these
case studies were interdisciplinary efforts involving teams of researchers; as such,
when writing about these efforts I use the first person plural to indicate the col-
lective nature of the efforts. In all three cases the projects are on-going and so
it is important to detail the period of time of the analysis resulting in this the-
sis: the design processes that I describe occurred in a period from 2006 to 2009.
Each chapter starts with a brief timeline of events for the project, and each chapter
has a section discussing the current direction of the project. Chapter Four cov-
ers the development of the Adaptive Braille Writing Tutor, a project to aid in the
teaching of Braille writing in developing countries. Chapter Five discusses Robot
Diaries, a program to create an embodied interface and associated curriculum that
motivate middle school girls to pursue further study in Science, Technology, Engi-
neering, and Mathematics (STEM) fields. Chapter Six presents CSbots, a program
to strengthen retention and achievement among students in introductory computer
science education through the integration of a custom-developed embodied inter-
face. Chapter Seven presents alignment-centered design, a model of the design
processes used in chapters Four to Six, abstractly describes the steps in the model
and ends by discussing similar design processes and how the process relates to a
model of engineering design. A summary reading of this thesis can be achieved by
reading this chapter, chapter Three, and chapter Seven.

22

Chapter 2

Configurable Embodied
Interfaces in Education

Configurable Embodied Interfaces have a number of characteristics that make them
well suited to education, especially in Science, Technology, Engineering, and Math-
ematics (STEM) fields. These characteristics include configurability or programma-
bility, the ability to sense, characterize, display, and act on local objects and am-
bient environmental cues, and the assumption that a human being is manipulating
and using the interface in some way. Spurred by the growth of cheap computation
and sensing, a large number of educational programs and devices have been cre-
ated in the last three decades. Programs using these tools exist in both formal and
informal educational settings and are in use from early childhood through adult
and community education. Typically, configurable embodied interfaces are used
as tools in three major and sometimes overlapping areas: computer Science educa-
tion, creative and engineering design education, and traditional science and math
education. A history of these tools and their uses is presented below, divided for
clarity into these three areas, though in many cases the tools are used to support
learning goals that encompass and occasionally transcend STEM education.

2.1 Computer Science Education

With an emphasis on configurability and programmability, Configurable Embodied
Interfaces can be very useful tools in the sphere of computer science education. In
fact, what may be the first Configurable Embodied Interface, the system comprised
of the Logo Turtle and associated programming environment (Papert, 1980), was
targeted precisely at helping children learn to program. Using Logo, children could
program a small floor robot, the ’turtle’ (Figure 2.1), to move a specified distance,

23

2. Configurable Embodied Interfaces in Education

turn, beep, and draw shapes on paper using a small pen placed under the turtle’s
body. Following in these footsteps, configurable embodied interfaces have been
created to support computer science education across all age ranges. I detail some
of these efforts, starting with manual programming wherein manipulations of a
physical object generate programs, and continuing through programs written using
visual/iconic and textual languages.

Figure 2.1: A Logo Floor Turtle (reprinted courtesy of Terrapin software)

2.1.1 Manual Programming

Curlybot (Frei et al., 2000) is an educational tool to allow young children to de-
velop notions of motion, computation, and geometry. The tool is composed of a
simple two-wheeled robot which moves on a flat surface; the robot can be manually
moved by a child and then plays back those motions, As curlybot mirrors not just
position but also acceleration and velocity, the tool allows children to explore in a
wide variety of ways with a very simple tool. Children as young as four can create
geometric patterns, can develop stories where the curlybot appears to respond at
the right moment, and can create routines that use motion to express intent and
emotion in these stories. Topobo (Raffle et al., 2004) follows the thread of manual
programming and lifts it off the two-dimensional surface using an architecture of
custom-designed snap-together parts that allow children to construct an unlimited
variety of shapes. With Topobo, once a shape has been snapped together children
can manipulate the shape and then press a button to have the shape play back those
manipulations; if, for example, the child created a four-legged creature and then
manipulated the legs to make it walk, Topobo would remember those manipula-

24

2.1. Computer Science Education

tions and walk on its own during playback.

Figure 2.2: A Robot made of Roblocks(reprinted courtesy of Modular Robotics)

Roblocks (Schweikardt and Gross, 2008) allows children as young as six to
construct robots using a kit of programmable 40mm cubes. The cubes consist of
three main varieties: Sensor cubes, capable of sensing light, sound, or distance to
an object, actuator cubes, capable of rotating attached blocks, translating over a
surface with tank treads, making noise or glowing, and finally blocks that perform
mathematical and logical operations on values coming in from other blocks. When
manually programming with this kit, the very construction of the robot affects the
way in which it operates - snap together a light sensing block with a tank tread
block, and the resulting robot will speed up when the light gets brighter. Snap a
light sensor to a logical compare block and a tank tread, and now the robot will turn
on full speed if the light sensor value reaches a threshold but will stop completely
if the light reading goes below the threshold. In effect, using this programming
methodology, the robot’s topology and morphology become the program. In addi-
tion to a manual programming interface, Roblocks also enables users to program
their creations using visual and textual interfaces (Schweikardt and Gross, 2006).
These additional levels of interface require the use of a computer and a special
block, called the ‘Comm’ block that interfaces between the robot and the com-
puter. The comm block transmits data to the computer regarding the topology of
the robot and which blocks are used in the robot. Using the visual programming
interfaces, students can modify the behavior of some of the blocks (causing, for ex-

25

2. Configurable Embodied Interfaces in Education

ample, a tank tread block to reverse direction) and drag a visual representation of
the robot to actuate the blocks. At the deeper textual level, students can change the
“firmware’ or basic software running on each individual block, changing the very
nature of the blocks (for example, an operator block, instead of being a simple
multiply, could become a complex equation). With three levels of programming
interface, Roblocks has the ability to interest students from first grade through col-
lege.

2.1.2 Visual and Textual Programming

Manual programming works well to introduce young children to programming and
computer science concepts, but as students become capable of abstract thought,
other ways of programming become more interesting and useful. LEGO Mind-
storms (Lego, 2009) is likely the most popular kit of parts to construct a config-
urable embodied interface. The kit consists of a large number of regular LEGO
pieces, as well as customized motor and sensor blocks. At its core sits a pro-
grammable brick with ports where sensors and motors can be attached. The kit
ships with a visual programming language that allows programming through a drag
and drop interface. The LEGO Mindstorms language is based on the programmable
bricks project (Resnick et al., 1996; Martin, 1988) at MIT’s media lab, which was
itself a refinement of the LEGO/LOGO system (Resnick and Ocko, 1991). In ad-
dition to the LEGO-provided language, which is appropriate for 6-12th graders, an
extensive community of hobbyists and educators have created support to program
LEGO Mindstorms with a number of textual languages including Java, C/C++,
NET, Python, and Processing. With added language support, the LEGO kit be-
comes useful in introductory (Fagin and Merkle, 2003) and intermediate (McNally,
2006) college courses as well.

Though the LEGO kit is heavily used, a number of other configurable embod-
ied interfaces exist that use textual programming. At Carnegie Mellon, a student-
taught course (Shamlian et al., 2006) in which programming robot behaviors and
creating robotic art are the main activities attracts nearly half its students from the
humanities, business, and art schools. In this course, robots are programmed in a
subset of the C programming language, and assignments including light tracking,
robot dances, and solving mazes.

A high school summer course (Nourbakhsh et al., 2003) in which students built
a robot from a kit and then learned to program it to exhibit progressively more
complex behaviors found increased student motivation to pursue further study in
science and technology; girls in the program did especially well, catching up to
boys on measures like confidence in science and technology.

A major study of the use of pre-constructed LEGO mindstorms robots as ed-

26

2.2. Creative and Engineering Design

ucational tools in introductory computer science education at the US Air Force
Academy (Fagin and Merkle, 2003) found that students using the robots did not
show improved learning or retention in computer science. The authors suggested
two reasons for this failure:

o LEGO Mindstorms robots are typically too expensive for student ownership,
and so students must work on robot programming assignments in labs with
limited hours.

e Debugging is complicated by the fact that it takes several minutes to test
a program as one needs to observe the behavior of the robot and ensure it
matches the desired behavior.

Taking the lessons of this study to heart, two recent initiatives are aiming to
develop a robot specifically tooled for computer science education. The Institute
for Personal Robots in Education has developed a Python-programmable robot that
employs a wireless bluetooth tether to allow programs to run primarily on the com-
puter (Blank et al., 2007). The CSbots project, detailed in Chapter Six, has de-
veloped a USB-tethered robot that is programmed in Java with programs that run
on the computer. In both initiatives, students borrow or purchase the robot for a
semester and so are capable of working on their assignments at any time.

2.2 Creative and Engineering Design

With a focus on sensing and acting upon the local environment, configurable em-
bodied interfaces lend themselves easily to design projects. Although there is some
overlap with configurable embodied interfaces to support computer science instruc-
tion, interfaces that support learning design tend to have an important additional
characteristic: the choice of sensors and actuators that are part of the configurable
embodied interface is open-ended. Generally the types of configurable embodied
interfaces that work well in the design world have at their core a controller capa-
ble of interfacing with a number of different sensors and actuators; the controller
provides inputs and outputs, but a large part of the design exercise is designing
and constructing the embodied interface, both physically and programmatically. I
present a number of these controllers, as well as programs that have been developed
using these controllers.

2.2.1 Controllers

The BASIC Stamp (Parallax, 2009) and the Handy Board (Martin, 2000) are two
of the earliest controllers to have been released in this space, in 1992 and 1993

27

2. Configurable Embodied Interfaces in Education

Figure 2.3: The Basic STAMP (left) and Handy Board (right) (Handy Board photo
courtesy Fred Martin)

respectively. These two controllers are archetypes of all subsequent controller de-
signs, representing two extremes along an axis of modularity. The BASIC Stamp
was designed to be extremely small and portable - its form factor was designed so
that it could be plugged into a breadboard or circuit board. This pluggability was
a strength for those capable of designing additional support electronics around the
Stamp, but a weakness for those who wanted to begin immediately to create and
program new devices. The Handy Board integrated everything necessary to serve
as a core controller; it even included a rechargeable battery. A fair amount of care
was taken to ensure that the connectors to sensors, motors, and servos were well
defined and logically placed such that anyone could create a device without creat-
ing support circuitry. Despite major differences, both of these controllers included
a custom programming interface designed to be easy to learn and use by students.

Though a number of controllers have entered the space since the early 90s, they
all fit on an axis between extreme modularity (as in the BASIC Stamp) or extreme
integration (as in the Handy Board); and all the successful ones are programmable
using easy to learn languages. Modern examples of controllers include the Brain-
stem (Acroname, 2009), which fits neatly between the Stamp and Handy Board on
the modularity-integration axis, the Qwerk (Nourbakhsh et al., 2007), which, with
on-board Wireless, USB host capability, and the ability to drive four motors, 8 dig-
ital I/O, and 16 servos, seems descended completely from the Handy Board, and
the Arduino (Banzi, 2008), the hardware for which is open source, thus allowing
anyone to create custom circuit boards including an Arduino unit and representing

28

2.2. Creative and Engineering Design

the modern-day extreme in modularity.

Modern-day controllers go beyond those specifically designed for design and
engineering. Palm devices, Game Boys, and iPhones have all been used as central
controllers for configurable embodied interfaces. The Palm pilot robot kit (Reshko
et al., 2002) is an omnidirectional robot that was controlled using a Palm Pilot. The
XBC (LeGrand et al., 2005) is a module that plugs into the Game Boy Advance,
providing the Game Boy with a number of ports to read sensors and control motors.
Finally, hobbyists have used iPhones to control humanoid and wheeled robots, and
it would not be surprising to see a commercial offering towards this end in the near
future.

2.2.2 Programs

Programs that use configurable embodied interfaces as a launching pad for teaching
engineering and creative design are numerous and consist of a wide variety of
approaches and target audiences; these can roughly be divided into competition-
and arts-based programs.

Competitions

The best-known application of embodied interfaces to support design skills is the
robotics competition. These competitions have grown explosively at middle and
high schools over the last decade, with current participation in the largest pro-
grams reaching 75,000 students. Although competitions vary in a number of ways,
most require students to use a standard controller and a kit of parts, so as to place
teams on the same footing regardless of financial strength. Although it is beyond
the scope of this review to describe every robot-based tournament, it is worthwhile
to consider the two largest such competitions: FIRST (FIRST, 2009a; Yim et al.,
2000; Melchior et al., 2005) and Botball (Botball, 2009; Miller and Stein, 2000).
The FIRST organization hosts three competitions, a high school league in which
students receive a kit of parts and controller developed by Innovation First (FIRST,
2009b), the FIRST LEGO League in which elementary and middle school stu-
dents build robots using the LEGO Mindstorms kit, and the FIRST Vex Challenge
which uses a robotic assembly kit developed by Innovation First. Botball uses an
advanced controller and LEGOs for construction material. In all cases, the compe-
tition rules are revised annually, and students are given no more than two months
from the announcement to design, build, and test their robots. Tournaments oc-
cur on a local and national scale, and tend to mimic sporting events complete with
mascots, cheering fans, and intense competition between teams.

29

2. Configurable Embodied Interfaces in Education

Figure 2.4: A panoramic view of the Pittsburgh 2008 FIRST regional competition

Art and Storytelling

Recently, recognition that robot competitions do not appeal equally to all students
has led to the development of a second approach to attracting students to STEM
through configurable embodied interfaces. Rusk et al. (2008) list four key charac-
teristics of this approach:

1. Focus on themes, not challenges. Themes should be broad enough to al-
low students to connect their personal interests to the design, while narrow
enough to foster the feeling of a shared experience.

2. Combine art and engineering. Most students have had experience build-
ing for art and are familiar with craft materials, by incorporating these the
technology becomes an addition to a process with which the students are
comfortable.

3. Encourage storytelling. Children’s play modes can be divided into two types:
patterners and dramatists. Patterners are already attracted to robot competi-
tions; so to capture a new audience it is important to appeal to dramatists.

4. Organize exhibitions. The public display of end-products is an appealing
feature of competitions, and should be retained by organizing public exhibi-
tions.

Several recent programs show how these characteristics can be implemented. In
Artbotics (Kim et al., 2007) high school students work together with undergrad-
uates and are tasked with creating interactive art exhibits; the exhibits are pub-
licly displayed at a local museum. Another such program, Robot 250 (Fitzpatrick,

30

2.3. Science Education

2008), was developed for Pittsburgh’s 250th anniversary celebration; community
workshops were held at a number of museums in the city, and in these workshops
adults and children created robotic and kinetic sculptures from crafts materials that
responded to light, temperature, sound, or air pollution.

Marrying electronics and textiles, the Lilypad Arduino (Buechley and Eisen-
berg, 2007) allows teenagers to create programmable, wearable electronics using
conductive thread and flexible electronics.

Focusing on elementary school age children, PETS (personal electronic teller
of stories) (Druin, 1999) supports creativity and design skills through a combina-
tion of storytelling and construction. Using PETS, children snap together a robot
and then have the robot act out stories written by the child using the My PETS soft-
ware package. The PETS robot will emotionally express through physical motion
whenever it reaches an emotional keyword (happy, sad, angry, etc.) in a story.

Engineering and Design Education

Configurable embodied interfaces are routinely used in formal engineering edu-
cation at the university level. The FIRST competition’s roots trace back to two
courses at MIT; the first of these, 2.70 has been hosted in the mechanical engineer-
ing department since 1970. In 2.70, students spent the entire semester developing
mechanical contraptions to compete against each other in an end-of-year challenge.
The second of these, 6.270 (Martin, 1994), was developed partially to provide an
analogous course to electrical engineering and computer science, and featured sim-
ilar challenges appropriate to the backgrounds of those students.

2.3 Science Education

Though most configurable embodied interfaces are used in engineering and com-
puter science education, a few are used primarily as tools in science and math
instruction. Naturally, there is significant overlap between these skills - a good
engineering design program will include necessary concepts of physics like torque
and circuit fundamentals, but these concepts are learned incidentally. This sec-
tion details a few configurable embodied interfaces where the primary purpose is
learning science concepts.

Supporting scientific discovery and deduction skills, the SENSE project (Tal-
Iyn et al., 2004) focuses on introducing middle school-age students to environment
sensing applications. Students use pollution sensors connected to mobile comput-
ers to capture the data, and then create computer visualizations of the data.

Neighborhood Networks (DiSalvo, 2007) is a program open to both adults and

31

2. Configurable Embodied Interfaces in Education

children that encourages scientific exploration of environmental characteristics like
temperature, humidity, and air pollution. The program uses a device, the Canary,
that contains several built-in sensors as well as the capability to actuate servos. In
addition to scientific exploration, neighborhood networks includes many of the arts
and creative design activities previously mentioned; participants are encouraged to
use the Canary to both discover where environmental characteristics like sound
and air pollution are poor in their neighborhood, and to use the Canary’s ability
to actuate servos to create kinetic sculptures that represent these intangibles and
advocate for their reduction.

g
/\

Figure 2.5: The Vernier Labquest (photo courtesy Vernier LLC)

Commercially, the Vernier Labquest (Figure 2.5) (Vernier, 2009) is a config-
urable embodied interface that records, graphs, and analyzes data from up to six
sensor inputs. Accompanying the Labquest tool, Vernier has created upwards of
100 sensors that are capable of monitoring everything from temperature and light
to dissolved oxygen, EKGs, and radiation. The company has produced curricula
aligned to state standards associated with sensor packages for all major science
fields.

32

2.4. Summary

2.4 Summary

Configurable embodied interfaces have shown themselves to be of use in a number
of educational contexts to date. It is my opinion that as the underlying hardware
technologies (sensing, actuation, and processing) continue to improve, we will see
increasing use of these tools, both towards applications like science and engineer-
ing education where they have been used traditionally, and in new application areas
like math or the social sciences.

33

2. Configurable Embodied Interfaces in Education

34

Chapter 3

Methods for the Design of
Configurable Embodied
Interfaces

As identified in chapter one, a principal reason for the failure of many educational
tools is due to designers not accounting for the larger educational context. This
failure boils down to a single issue: a mis-alignment between the capabilities and
created content of the tool and the needs and goals of educators. The central goal
of the design process of educational tools, then, should be the ever closer align-
ment of the capabilities of the tool to the learning goals, instructional methods,
and assessment techniques of the curriculum for which the tool is designed. This
chapter presents methods used in the works presented in chapters 4, 5, and 6 to
create well-aligned educational tools. I discuss the origins of the concept of align-
ment in instructional design and the constraints alignment imposes on the design of
configurable embodied interfaces for education, as well as participatory design and
design-based research, two methods for discovering these constraints and creating
well-aligned designs.

3.1 Alignment in Instructional Design

Alignment is a well-known curriculum design principle; essentially it advises the
course designer to align the learning goals, instruction, and assessment, so that
each supports the other (Figure 3.1). An example of a poorly aligned class is one
in which a teacher has given an exam that assesses materials or concepts that were
not covered by prior lectures or exercises. Although in some cases classes may
be intuitively aligned by their designers, aligning a course is a process that can

35

3. Methods for the Design of Configurable Embodied Interfaces

Learning Goals

|

Align

Instruction Assessment

Figure 3.1: Aligning goals, instruction, and assessment

be performed in a premeditated, explicit way (Wiggins and McTighe, 2005). This
alignment is often done through a process known as backwards design, which be-
gins by detailing the learning goals for the students, as these goals will drive the
required types of assessment and instruction. Once learning goals are determined,
assessments are devised that can measure those outcomes. Finally, instructional
tactics, exercises, and activities are devised to allow students to meet the desired
outcomes. Although Figure 3.1 doesn’t explicitly represent it, student interests
and background are an important part of this model; they are considered when
formulating appropriate learning goals and especially when creating instructional
activities that will be compelling. At each step, it is necessary to reconsider the en-
tirety of the design - for example, when the instruction is designed the assessment
and goals are reconsidered to ensure that there will be no misalignment between
the three major categories.

The notion of aligning the objectives of a learning activity with the assess-
ment of that learning and the instructional techniques has likely been around as
a common-sense principle for as long as formal education has existed. Modern-
day alignment in instructional design was popularized in part by Alan Cohen, who
called it a ‘magic bullet’ (Cohen, 1987). He presented four studies (Koczor, 1984;
Tallarico, 1984; Fahey, 1986; Elia, 1986) in which instruction and assessment were
deeply aligned, and noted that in all of these studies educationally significant effect
sizes of one to three standard deviations were found. Each study also tested degree

36

3.2. Extending Alignment

of alignment by variously aligning or misaligning assessment and instruction, and
found that alignment benefited low-achieving students by a greater amount than
high-achievers, especially on more difficult portions of the assessment.

While the studies illustrated by Cohen had few subjects and involved instruc-
tional periods of less than two hours, recent studies of alignment have indicated
similar effects over much larger groups and longer time spans. A study of instruc-
tional alignment to the IOWA basic skills test in mathematics involving over 4000
third grade students found that one year after the curriculum was aligned to the
test there were statistically significant improvements in scores across all income,
gender, and ethnic lines (Mitchell, 1999).

A criticism of alignment, especially when applied to improving standardized
test scores, is that it simply proves that teaching to the test improves test scores.
These criticisms are generally misplaced; alignment of instruction to tests which
do not support stated learning goals would result in an overall misaligned design.
If standardized tests are the appropriate measure of certain learning goals, then it
follows that teaching to those tests will cause the largest number of students to
attain the learning goals specified. A caveat does exist if teachers know precisely
which items are on the test, and have their students learn those items by rote. In
such a case, students may pass an assessment having learned none of the underlying
learning goals.

3.2 Extending Alignment

Alignment through backwards design is a method that can be extended to the de-
sign of educational technology. The features of an interface provide a fourth de-
sign node, feeding back on and aligning with the three traditional nodes (Figure
3.2). Though it is tempting to classify new educational tools as part of instruc-
tion, an embodied interface can enable new assessments, and even new learning
goals; similarly, learning goals, instructional methods, and assessments all affect
the interface’s interactivity and design. In Chapter Four, I discuss the Braille Tutor,
which modified both the instruction and assessment portions of the curriculum into
which it was introduced. The Robot Diaries program, introduced in Chapter Five,
centered an entire new activity around a new tool - in some ways, the learning goals
themselves were defined by the capabilities of the tool. In Chapter Six, I discuss
CSbots, an example in which the curriculum was modified as little as possible and
the tool was designed in a highly constrained way to ensure that goals, assessment,
and some instruction could remain the same.

Considering the entire system leads to a design process that is qualitatively dif-
ferent from the engineering design process aimed at creating new tools. All design

37

3. Methods for the Design of Configurable Embodied Interfaces

()
v

Learning Goals Tool

Align

™
N

Instruction Assessment
" IR e S SN T o T

Figure 3.2: Adding a tool the alignment process

is characterized by constraints and trade-offs, and the difference between a tradi-
tional engineering design process and one that is guided by alignment is a differ-
ence of constraints. For example, there are many ways in which one might design a
configurable embodied interface with the goal in mind of using it in computer sci-
ence education; however, if the designer is unaware of the constraints imposed by
the goals, assessments, and instruction used in the course, he might make crucial
mistakes. The question for the designer, then, is how to discover those constraints.
The processes described in Chapters Four to Six include two major methods for
constraint discovery - participatory design and design-based research.

3.3 Participatory Design

Participatory Design (Schuler and Namioka, 1993; Cornwall and Jewkes, 1995) is
a method to replace the mutual incomprehension between designers and end-users
with mutual knowledge. The notion of involving end-users in product design came
first from Scandinavian studies of democratizing workplace products (Bjerknes
et al., 1987), but it has grown vastly in the past two decades and is now commonly
used in numerous different contexts. The key theme of participatory design re-
search is involvement and collaboration with end-users from the beginning of a

38

3.3. Participatory Design

design process; in a sense, the research team needs to recruit these collaborators
into a design co-op, in which the trajectory of the design is controlled by the entire
group, not just by the designers. It is important in participatory design to maintain
a democratic atmosphere, which can occasionally lead to design decisions made
by the group with which the designer does not fully agree.

The benefits of using participatory design methods to design configurable em-
bodied interfaces in educational settings are many. Configurable embodied inter-
faces are a relatively new class of tools whose capabilities and feature space are
mostly unexplored and not well known to educators. At the same time, the com-
plexity of educational settings and educational technology imposes constraints on
any educationally relevant design that are unknown to the designer. By forming
participatory design co-ops, the designer receives immediate and constant feed-
back from a sample of the very same people who will eventually be using the inter-
face and gains a greater understanding of their goals, while the involved end-users
feel a sense of authorship over a design that directly applies to them. Using these
methods, it may be possible to speed the process of turning an idea with educa-
tional potential into an educationally relevant tool, as design constraints that may
have gone unnoticed by the designer are incorporated earlier. It is also possible
that adoption of the tool will be accelerated, as educators who collaborated on the
design can advocate for it using the language of their field.

It is important to note that while participatory design methods always involve
researchers collaborating with end-users, the depth of this relationship varies sig-
nificantly and thus the definition of participatory design in the research literature
is not stable. Biggs (1989), working on a synthesis of farmers’ participation in re-
search in nine national programs, declares an observed continuum of participation:

e Contractual. People are contracted into the projects of researchers to take
part in their inquiries or experiments.

e Consultative. People are asked for their opinions and consulted by re-
searchers before interventions are made.

e Collaborative. Researchers and local people work together on projects de-
signed, initiated and managed by researchers.

e Collegiate. Researchers and local people work together as colleagues with
different skills to offer, in a process of mutual learning where local people
have control over the process.

The projects described in Chapters Four to Six all fall roughly in the collabo-
rative category of this continuum; each was initiated and managed by a research

39

3. Methods for the Design of Configurable Embodied Interfaces

group, but end users were involved from the beginning of the design process and
guided the design trajectory in significant ways.

In one case particularly appropriate to the research documented in Chapter
Five, (Druin, 1999) extends participatory design principles to enable children to
become effective designers and researchers in the process. She calls this extension
“cooperative inquiry”, and notes three major characteristics of the framework:

1. Itis a multidisciplinary partnership with children.

2. It involves field research that emphasizes understanding context, activities,
and artifacts.

3. It involves iterative low-tech and high-tech prototyping.

The third characteristic appears to be very important for involving children. By
prototyping with low-tech materials that require no prior experience to use (e.g.,
clay, paper, craft materials), children and adults are placed on the same experiential
footing. Druin also mentions three major techniques that comprise cooperative in-
quiry. During contextual inquiry both adults and children observe, take notes, and
interact with child users. This stage is mostly an observational and data-gathering
stage. In the participatory design stage, children and adults mock up and proto-
type with low-tech materials. Finally, in the technology immersion phase, children
are immersed in high technology to provide them with as much access to technol-
ogy as they desire; this stage aims to discover children’s patterns of use with the
technology, which can inform the high-technology designs of the low-technology
prototypes developed during participatory design. These techniques tend to flow in
chronological order, but Druin emphasizes that the nature of the process is such that
phases of work are not necessarily distinct and that techniques can be interspersed
with one another

In another study appropriate to Chapter Four, Brand and Schwittay (2006) ar-
gue for the use of participatory design techniques in the development of programs
for the developing world. They analyze the results of the LINCOS project, a project
to provide rural villages with Internet-connected kiosks, and argue that the reason
for the project’s eventual failure was due to an inattention to the needs and concerns
of the local people for whom the technology was ostensibly created.

3.4 Design-Based Research

A common critique of traditional laboratory research in the learning sciences and
psychology is that the results are not usable in educational practice; due to the
huge number of uncontrollable variables, a laboratory study of learning does not

40

3.4. Design-Based Research

easily translate to a classroom intervention that uses the study results to improve
learning. By tightly coupling research to educational context, Design-Based Re-
search aims to respond to this critique by providing researchers with the flexibility
to create contextually appropriate educational designs. The seminal papers in the
field (Brown, 1992; Collins, 1992) make the case for moving research into educa-
tion from the laboratory to the classroom, and introduce the concept of the design
experiment, an experiment in which the engineering of an innovative educational
environment is conducted contemporaneously with studies of those innovations.
Hoadley (2004) excellently contrasts design-based research and more traditional
forms of experimentation, pointing to four major differences between the two:

1. In design-based research, there is a strong blurring between the researcher
and the participant, as the researchers participate deeply in the experiment,
and the participants influence the experiment and possibly even the research
questions.

2. Results are shared with the community without the expectation that the re-
search is universally applicable.

3. Planned comparisons occur, but researchers follow revelations where ever
they may lead, tweaking intervention and measurement as necessary.

4. Enacted interventions are the outcome of the research, and documentation
of the design, rationale for it, and how understanding changed over time are
vital academic contributions to the educational literature.

Despite characteristics that violate tenets of traditional research design, Hoadley
argues that in some ways the results produced by design-based research are more
rigorous; specifically, they are more focused on context and better at connecting
interventions to outcomes through mechanisms. Hoadley also addresses the idea
of alignment between theory, treatment, and measurement (somewhat analogous to
learning goals, instruction, and assessment, respectively), claiming that the itera-
tive nature of design-based research leads to increasingly better alignment.

A potential threat to validity and rigor is the impact of the surrounding context
versus that of the educational innovation. Tabak (2004) explicitly defines these as
the endogenous and exogenous elements of the study. The endogenous consists of
all aspects of the activity that were not added or modified by the innovation, while
the exogenous consists of all that is specified by the design. There is a bias among
researchers to overly credit the exogenous aspects of the design. As innovations
in design-based research are typically underspecified, the details are filled in with
endogenous aspects, and so should be studied and documented as robustly as the
exogenous aspects.

41

3. Methods for the Design of Configurable Embodied Interfaces

Although design-based research involves the study of educational innovations,
it does not encompass studies of the effectiveness of educational programs that
were developed without theoretical backing. Sandoval (2004) lays out a path to
strengthen the theory-based aspect of design-based research by introducing the no-
tion of the embodied conjecture. An embodied conjecture is:

e derived from knowledge of learning in particular domains.

e specific enough to be rejected or refined empirically, unlike ’design princi-
ples’.

e such that the refinement of the conjecture can improve not just a learning
environment, but cause refinements in learning theory itself.

e multiply embodied in the aspects of the design; it’s in tools, materials, as-
signments, etc. in ways that embody its hypothesized role in supporting
learning. This implies that it is not possible to imply causality for one part
of the design.

It is the last of these characteristics that is difficult to do in practice. The conjecture
is “embodied” because it is built into every aspect of the design experiment with the
end goal being that success or failure of the experiment allows for the researcher
to reject or accept the conjecture. Since the conjecture is a theoretically-based
hypothesis, evidence to support or reject the conjecture provides for a possibility
to contribute to broader research literature. Class (2009), chapter 8 provides an
excellent example of how embodied conjectures were used in the construction of a
learning experiment.

Bielaczyc (2006) specifically addresses the design of curricula involving tech-
nological tools. Her Socially Interactive Framework seeks to identify the critical
variables of classroom social structure, which she lists as:

e Cultural beliefs such as how learning and knowledge are conceptualized,
how student and teacher social identity is understood, and how the purpose
of the tool is viewed.

e Practices such as the planned learning activities, associated participant struc-
tures of students and teachers, and the coordination of activities using and not
using the tool.

e Social-techno-spatial relations, such as the configuration of the space be-
tween students, teachers, the Internet, and the tool.

e Interactions with the outside world.

42

3.5. Implications of these Methods for the Design Process

She emphasizes that these variables have the ability to increase or decrease the
effect of the tool if not explicitly considered as part of the design. This proposal
is not dissimilar from the notion of alignment, especially aligning with learning
characteristics and interests.

As a relatively young field, design-based research’s very boundaries are still
in question. Bell’s analysis of the field found no fewer than four foci of research;
developmental psychology, cognitive science, cultural psychology, and cognitive
anthropology variants of design-based research (Bell, 2004). Sandoval and Bell
(2004) ask three still unanswered questions regarding design-based research:

e What exactly counts as design-based research?
e What kinds of knowledge can design-based research produce?

e What standards do, or should, exist to judge the quality of design-based re-
search?

3.5 Implications of these Methods for the Design Process

Participatory design, design-based research, and alignment are used in the follow-
ing three chapters to enable the designer to discover design constraints and goals
stemming from the educational context into which the design will be placed. Each
of these methods brings something different to this discovery process:

Participatory Design. Participatory design is used in the following chapters
primarily as a method for familiarizing the designer with the educational setting,
and for setting the initial design trajectory. It works very well to generate spe-
cific ideas (contributed by either the designer or the participants), and to rapidly
prototype design ideas. Once a design becomes more fully developed, and thus
more difficult to alter quickly, the participatory design method becomes less pow-
erful. In some cases, starting the design process with participatory design can also
lead to the creation of an enduring partnership between designer and participant(s)
such that even when participatory design is no longer a useful method, the original
participants still play an advisory role in the project.

Design-Based Research. design-based research (DBR) is concerned with nar-
rowing the design space of an intervention or tool through multiple iterations of a
cycle of design, pilot, and evaluation of interventions to achieve increasingly bet-
ter outcomes and alignment. It is this characteristic of the method that we rely on
most in the following three accounts. However, there is a significant difference
between design-based research and the type of work described in the next three
chapters - simply put, we had less control over our interventions than typical DBR

43

3. Methods for the Design of Configurable Embodied Interfaces

projects. In DBR, researchers create and often administer the entire intervention,
and attempt to account for all exogenous and endogenous variables. This approach
is not the case for some of the work I describe, especially the work in Chapter Six
in which the research team has no control over the goals or assessment methods of
the intervention.

The reason that DBR projects are usually more tightly controlled than the case
studies stems from somewhat differing goals between DBR and our work. Our goal
is the creation of educationally relevant tools that can be broadly disseminated at
the completion of the design process. There are two outcomes to DBR, the enacted
intervention, which does not need to be broadly disseminable, and an analysis of
the intervention and underlying embodied conjecture that ideally leads to broader
insights into learning and contributes to the learning sciences - information that is
broadly disseminated through research journals. Embodied conjectures in design-
based research, as defined above, are theoretical hypotheses around which the en-
tire intervention, including the goals, instruction, and assessment, are designed -
and while the intervention and the conjecture are refined through multiple cycles
of design, pilot, and evaluation, the idea is that the intervention eventually serves
to prove or disprove the conjecture. Fortunately, despite the fact that we were not
always able to define all aspects of the intervention, our use of backwards design to
align the goals, instruction, assessment, and features of the tool in the intervention
allows us to use the notion of embodied conjectures to make broader contributions
to the learning sciences.

Alignment and Backwards Design. The backwards design process guided the
design portion of the Design-Pilot-Evaluate cycle; we began each new design phase
by listing the learning goals and deriving from them assessments, instruction, and
tool features. This fairly hierarchical structure became more useful during the later
DPE cycles; in the first cycle, the wide-open design space and use of participatory
design meant that our design ideas were changing too rapidly for backwards design
to be effective.

3.5.1 A Common Design Process

Taken together, these three methods are used in a common design process that
applies to each of the three projects presented in the next chapters. Each project
begins with partnerships between designers and educators; in one case these part-
nerships are formed prior to the formation of idea for a tool(as in Chapter Four),
and other times the research team has a vague notion of a potential tool and en-
gages in participatory design to focus the idea (as in Chapters Five and Six). The
first of the cycles of design-pilot-evaluate (DPE) begin, though in this initial cycle,
design and pilot tend to be merged into one participatory design experiment. Eval-

44

3.5. Implications of these Methods for the Design Process

uation of this pilot points to areas in which the design can be improved and refined,
kicking off the next design cycle. The first cycle generally leads to the discovery
of a number of design constraints specific to the educational setting. These con-
straints allow us to start subsequent DPE cycles using the notion of alignment and
employing backwards design. Each project then iterates through one or more DPE
cycles, with the aim to achieve increasingly better alignment and learning gains.

3.5.2 Implementation

In the abstract, the methods and design process offer a tidy approach to solving the
problem of creating an educationally relevant tool. In the real world, many ques-
tions about implementation remain, and it is for the purpose of providing answers
to these questions that the case studies of chapters 4-6 and the in-depth summary
and analysis of chapter 7 exist. To open these chapters of real-world experience,
the author suggests some questions to consider:

e How different are the first and subsequent design cycles in each project?
e How does one define well-aligned?

e How does one know when to stop iterating through our design-pilot-evaluate
cycles and attempt to disseminate?

e What are the differences between this design process and a standard engi-
neering design process?

45

3. Methods for the Design of Configurable Embodied Interfaces

46

Chapter 4

The Braille Writing Tutor

The Braille Writing Tutor! is a configurable embodied interface developed to allow
visually impaired children in developing countries to learn to write Braille using a
slate and stylus with the benefits of a computerized tutor assessing and instructing
them (Kalra et al., 2007a,b). This chapter describes the design trajectory of the
Braille Tutor project, starting with ideation and proceeding to the current system.
Specifically, we discuss Braille and how it is written, the learning goals, instruction,
and assessment into which the tutor was introduced, how the idea originated, and
the design-pilot-evaluate cycles that have been completed.

4.1 Writing Braille

Braille, the primary method of reading and writing for the blind, is a tactile sys-
tem in which embossed dots representing letters, symbols, and numbers can be
read with the fingers. A Braille letter is formed by embossing some subset of six
dots arranged in a 3 x 2 cell. Figure 4.1 shows schematics of a Braille cell and
a photograph of a page of Braille. For the blind, literacy in Braille is often the
key to independence at home and work (Schroeder, 1989). Despite the advantages
that Braille literacy imparts, there are a number of barriers to learning Braille in
developing countries. According to the Mathru Educational Trust for the Blind in
Bangalore, the main barrier in India’s case is limited opportunities for education
because parents and families of blind children often do not realize the possibility or
value of educating their child. Even when the desire to educate is present, children
may not receive sufficient guidance at home or in traditional schools because very

"Much of the research reported in this chapter was originally published in a paper (Kalra et al.,
2007b) that was co-written with Nidhi Kalra, Tom Stepleton, Daniel Dewey, and M. Bernardine Dias.
As some sections are excerpted from the paper, their permission was received before reprinting here.

47

4. The Braille Writing Tutor

O @
2:@iDs Qs B
3006 3@ O g & 7

Figure 4.1: A schematic of a Braille cell (left) and the letter ‘t’ (center). The black

circles represent embossed dots while the light grey circles represent un-embossed
dots. A sample of Braille (right).

Figure 4.2: A Braille slate and stylus.

few people are trained to teach Braille. Unfortunately, poorer areas tend to have
both a disproportionately high number of blind people (World Health Organization,
2004) and fewer resources for educating them.

Furthermore, the traditional method of writing Braille itself creates formidable
challenges to literacy. In developed countries, Braille is usually embossed with a
six-key typewriter known as a Brailler; these devices are fast and easy to use but
also cost over US$600 each (Perkins, 2006). In developing countries, such devices
are prohibitively expensive and Braille is almost always written with a slate and
stylus as shown in Figure 4.22. Using these tools, Braille is written from right to
left so that the page can be read from left to right when it is removed from the slate
and turned over.

Reprinted with permission from LightHouse for the Blind and Visually Impaired.

48

4.2. Timeline of the Project

2005 2006 2007 2008 2009

Task Start End T T
QN D]‘F‘MAM]JASOND] FMAMJ|]ASO|NDJ‘F‘MAMJ]ASONDJ F|MAMJ‘JA‘S

Ideation conversations
with Mathru

First hardware design

10/1/2005 11/1/2005

1/1/2006 7/27/2006

First software design 5/1/2006 9/1/2006

First pilot study 8/1/2006 9/15/2006

Hardware revisions 15,1 5005 4/1/2007

Software revisions 41112007 9/1/2007

2008 summer pilots +
software additions

2009 Summer pilots + ,
software additions 6/1/2009 | 9/1/2009

6/1/2008 9/1/2008

Figure 4.3: Timeline of the Braille Tutor project

4.2 Timeline of the Project

The remainder of this chapter will roughly track the activities presented in Figure
4.3. The idea of the Braille Tutor came from discussions occuring in October and
November 2005. The first version of the Braille Tutor hardware was designed in
the first half of 2006, with the tutor software being written mostly during a pilot
study in summer of 2006. The pilot results were analyzed, yielding a number
of suggested improvements that were integrated into the hardware in the winter of
2006-2007 and into the software in the summer of 2007. Finally, we discuss results
of pilot studies that occured during the summers of 2008 and 2009.

4.2.1 My Role on the Project

As all three projects are composed of interdisciplinary teams, for the purposes of
clarifying the thesis contributions it is important to clarify my role in each project.
I have been a member of the Braille Tutor team since shortly after the idea was
originated. During the first design revision I was part of a two person design team,
with my focus being on creating the hardware interface to use in the pilot study.
The team involved with the second design revision grew, but I was again primarily
responsible with redesigning the hardware.

49

4. The Braille Writing Tutor

4.3 Ideation

The idea of the Braille Writing Tutor was conceived through extensive discussions
with teachers from the Mathru Education Trust for the Blind in Bangalore, India,
our first partner in a collaborative design process. The Mathru School is a resi-
dential and educational facility for approximately 50 children enrolled in grades
one through eight. In addition to providing the standard curriculum for the state
of Karnataka, Mathru teaches daily living skills such as mobility and food prepa-
ration, offers vocational training such as computer classes, provides medical care,
and encourages talent, personality development, and self-confidence. Six of the
eight teachers at Mathru are themselves blind or visually impaired. Additionally,
most Mathru students come from the very poorest of Karnatakas villages where
they may previously have had no access to running water or electricity, much less
computers and electronics.

The concept of the Braille Tutor originated from an in-depth, consultative di-
alogue with Mathru. We approached Mathru knowing that blindness can create
extreme life challenges for those in developing countries, but without a clear pic-
ture of the specifics. The teachers at Mathru were intimately familiar with those
challenges but were unaware of how technology could help. Therefore, we began
by asking Mathru for a laundry list of all the difficulties their students faced, from
education to personal care to food to transportation. Their list included being un-
able to determine whether water was clean or dirty, but, to our surprise, pointedly
did not include things like having difficulty playing team games such as cricket.
The list revealed that reading and writing were problematic for young children
and to investigate further we requested photos and videos of their students writing
Braille at different levels. From these videos we identified the writing difficulties
mentioned earlier in this chapter (many of which were never specifically articulated
by teachers or students) and realized that technology could play a role in mitigating
these challenges. We developed the Braille Tutor concept through dialogue with
researchers at Carnegie Mellon University, with blind adults in the Pittsburgh area,
and through continued discussions with Mathru. The participation of the teachers
in the ideation process was especially important, as clear needs and goals were
not specifically articulated by the end-users. In the case of the tutor, the Mathru
school did not have much exposure to technology and its potential uses and we
(the designers) did not have much exposure to the needs of the visually impaired
in developing regions. Thus, this iterative and conversational process helped us
to explore design concepts as we clarified our concept of the school’s needs, and
iterate on these ideas with the teachers in the school until we came to a common
understanding of what was possible and what was useful.

50

4.4. Design, Pilot, and Evaluation of the First version of the Braille Tutor

4.3.1 Other Tutor Systems

Before beginning work on the tutor, we collected information on other tutoring
systems. Intelligent tutors exist for a range of subjects and skills including math
(Koedinger et al., 1997), English reading (Mostow et al., 1994), speaking (Bunnell
et al., 2000), and computer programming (Weber and Brusilovsky, 2001). Encour-
agingly, many of these tutors have achieved success in the classroom. Nevertheless,
they have limited impact on our goals for a number of reasons. Firstly, of course,
they are not tailored to writing. Secondly, they require sight and use written instruc-
tion extensively in the tutoring process; in contrast, a tutoring system for the blind
usually depends heavily on audio feedback. Thirdly, this limitation means that
most existing automated tutoring systems for the blind are fairly simple (e.g. the
Talking Braille Tutor(®teaches only individual symbols (Peaco, 2004) and cannot
teach complex skills such as writing using a slate and stylus. A notable exception
is the Speech Assisted Learning (SAL) device that tutors reading and math using a
stand-alone refreshable Braille display (Chamot, 2006). Fourthly, like SAL (which
costs US $4600) and the Talking Braille Tutor (which costs US $300), most as-
sistive technology is prohibitively expensive because the number of blind people
who could potentially access it is very small. An exception is the low-cost Sparsha
system (Lahiri et al., 2005), which is a software package specifically designed for
the blind in India, supporting English and a dozen native Indian languages. With
Sparsha, a blind user can type on either a normal keyboard or a novel input device
that uses the six-key modality of writing Braille, and translate the Braille to text
in any of the supported languages. As such, the Sparsha system complements the
Braille Tutor nicely, with the former improving the experience of writing Braille
on a computer and the latter teaching manual Braille writing skills. We believe
that the Project LISTEN English reading tutor (Mostow et al., 1994), which listens
to children read aloud and provides audio feedback, has the most relevance to our
work as it uses an alternate medium of interaction (spoken words) and teaches a
basic literacy skill (reading). Nevertheless, the need remains for a writing tutor
specifically tailored to meet the needs of the blind in developing countries.

4.4 Design, Pilot, and Evaluation of the First version of
the Braille Tutor

The Braille Tutor as originally conceived consists of both a hardware and software
design component - the hardware would function as an input device for a computer
to detect Braille writing, while the software would run on that computer and pro-
vide feedback to the student. The hardware design portion began in January 2006,

51

4. The Braille Writing Tutor

while much of the software was intentionally written during the first pilot of the
Braille Tutor at Mathru in summer 2006. During the hardware design phase, we
were in frequent contact with Mathru and we were also able to test some of our
early designs with members of Pittsburgh’s blind community. During this period,
we developed an understanding of the design constraints on the hardware device,
dubbed the ’E-slate’, imposed by both the learning goals and curriculum used at
Mathru, and those imposed by the educational setting. We begin by describing
what we learned of the learning goals, instruction, and assessment at Mathru.

4.4.1 Goals, Instruction, and Assessment of a Braille Writing Cur-
riculum

Our early partnership with Mathru provided us with details of the goals, instruction,
and assessment of a Braille writing curriculum. Though some of the details of
the instruction and assessment may be specific to our initial partner school, we
believe that the overarching learning goals, challenges, and assessment methods
are fairly standard across schools for the blind in developing countries. Subsequent
experience with two additional schools, one in Zambia and another in Qatar, has
reinforced this assumption.

Goals

The ultimate learning goal of any Braille writing curriculum is for the student to
master writing Braille. This is typically accomplished over several years, and con-
sists of several chronologically ordered subgoals:

e Students must understand the concept of the six dot cell, and how specific
letters are encoded using patterns of dots. This skill is crucial for both read-
ing and writing.

e Students must then learn that writing involves embossing these dots, and that
once one letter has been embossed, it is important to move to the next cell to
write the next letter.

e Once students can switch cells, they must then learn to switch from the end
of one line to the beginning of the next.

e When students have mastered the alphabet, they can move on to Grade 2
Braille, which includes punctuation, patterns for numbers, and shorthand
abbreviations (for example, in English there is a single six dot pattern for the
word ‘and’).

52

4.4. Design, Pilot, and Evaluation of the First version of the Braille Tutor

Throughout this process students are continuously pushed to write faster, so that
students can write fast enough to take notes in other classes. Students who have
mastered Braille writing with slate and stylus can write at the same speed as sighted
people can write with pen and paper.

Assessment

Teachers use both formative and summative methods for assessing students in these
classes. As most of the teachers themselves are blind, formative assessments in-
volve teachers placing their hands on a student’s hands while the student is writing.
They will then attempt to correct the student if they don’t feel her moving from one
cell to another or switching lines properly. For summative assessments, teachers
rely on frequent quizzing - for example, one popular assessment is to ask students
to write out the alphabet; students are given one minute and must write as many
letters as they can, starting with A. The resultant paper is graded based on how
many letters were successfully completed. As students improve, assessment tasks
focus on sentence composition and punctuation; eventually entire essays are writ-
ten using the slate and stylus.

Instruction

Instruction proceeds in small classes of five or six students, with a teacher lectur-
ing briefly and then suggesting practice problems. Classes are divided roughly by
age and ability level. While students practice, the teacher will walk around the
room and give individual attention to students, providing formative assessment as
previously described. At Mathru, students in grades two to six who have not yet
mastered Braille are given one hour of instruction per day.

Challenges to Instruction

As we observed videos of the students being taught Braille writing and through
conversations with teachers, we identified three major challenges to learning to
write Braille using slate and stylus:

e Since the embossing method of writing Braille creates raised dots on the op-
posite side of the paper, Braille is read from left to right but must be written
from right to left. Therefore, children must learn mirror images of all letters,
doubling the alphabet and creating a disparity between the written and read
forms of each letter.

53

4. The Braille Writing Tutor

o Critical feedback is delayed until the paper is removed and then flipped over
and read. For young children, this delay can make Braille conceptually chal-
lenging since the act of writing has no discernible, immediate effect. It also
takes longer for both the student and the teacher to identify and correct mis-
takes and this slows learning.

e The paper used for embossing is expensive and in short supply.

These challenges sit at the intersection between instruction and assessment, and
stem from the specific dynamics of writing with a slate and stylus, and formed the
basis of some of the design constraints and goals.

4.4.2 Design Constraints

There were two sets of constraints and goals that defined our first hardware design
process; one relating to the educational value of the tutor, the other relating to
the project goals of creating a piece of hardware that was inexpensive and robust
enough to function in the educational setting.

Educational Constraints

The educational constraints were primarily garnered from our understanding of the
learning goals of the curriculum at Mathru, and the challenges to learning that we
identified.

o Transferable Learning. Students learning writing with the tutor must be able
to transfer this learning to a regular slate and stylus. Therefore the tutor
experience must be made as similar to using the slate and stylus as possible.

o Multiple Cells and Rows. Students need to learn to move from cell to cell
and row to row, therefore the new input device should have multiple cells
and rows.

o Immediate Feedback. The stylus position should be reported to the computer
at all times to enable immediate feedback.

e Mirror Mode. The tutor should have a mode where students write in the
same direction that they read.

e Lasily Understood. The tutor’s speech module must be understandable given
the age and background of the learner. Depending on the circumstances, it
may use local languages, local dialects, and age-appropriate voices.

54

4.4. Design, Pilot, and Evaluation of the First version of the Braille Tutor

It is important to note here that these constraints were not all well-defined at the
start of the design process - instead, they represent the constraints as we understood
them at the point of the last hardware iteration of the first version of the E-slate,
just prior to the pilot of the tutor at Mathru. For example, we were not aware of the
importance of having multiple rows on the input device until a communication with
Mathru three months into the design process, and this constraint caused a revision
of the E-slate.

Robustness and Cost Constraints

In addition to constraints relating to educational goals, the setting of the project
indicated a number of additional constraints.

Low-Cost Unlike other tutors, ours must be affordable to members of the
base of the economic pyramid who live on less than US$2 a day. We hope to
make it affordable to every village or rural school even if it cannot be afford-
able to individuals. Our target price was US$20 per unit for systems requir-
ing an external computer. This price would be achievable if large quantities
(> 1000) of tutors were purchased.

Low-Power In developing countries, electricity may be unreliable, in limited
supply, or simply unavailable. The tutor must maximize the resources avail-
able, be robust to unreliable power, and be able to be powered by alternative
sources. Our target power consumption is 300mW, or enough to operate for
about 50 hours on 4 AA batteries.

Robust The tutor’s hardware components must be rugged enough to be ex-
tensively used and abused by students for a long time.

Easily Operated The tutor must be easily and independently operated by a
blind person. This means that both the hardware and the software must be
accessible to someone with little or no computer literacy or experience with
electronics. It must also provide guidance that can be utilized without the
presence of a teacher.

Locally Maintainable The tutor must be designed with easily available com-
ponents so that if any of the electronic components fail, repairs can be made
on-site or nearby. This means using commonly available materials and man-
ufacturing techniques.

These constraints describe the guiding forces behind our design process, but much
of the detail is omitted - for this, we detail the resulting E-slate design in the next
section.

55

4. The Braille Writing Tutor

4.4.3 E-slate Design

We designed the first version of the E-slate over a six-month period at Carnegie
Mellon University; the design and assembly of a field-testable prototype consti-
tuted a V-Unit, an independent study course offered through the TechBridgeWorld
initiative (Dias, 2010). During this period, the E-slate circuit was refined and re-
designed four times; after each iteration we gathered feedback from local engi-
neering and human-computer interaction communities as well as from Mathru and
made improvements.

The most challenging aspect of the design of the E-slate was to match the user
experience as closely as possible to that of a regular slate and stylus while still
meeting our low-cost and low-power constraints. As shown in Figure 4.4, the input
area of the E-slate consists of two rows of 16 Braille cells each and is integrated
directly into the circuit board to maximize robustness and minimize cost. A cutout
from a normal plastic slate is placed over top of the two Braille rows to give stu-
dents the exact same feel as when writing on a standard slate. We used an extremely
low-cost and low-power microcontroller, the Atmel ATMEGAS88 (Atmel, 2006) in
conjunction with a custom resistor network decoding circuit to handle the sensing
of stylus location in the input area. If the stylus is in contact with any dot in the
input area, the Atmega88 senses which dot in which cell the stylus is contacting
and transmits the information to a computer over the serial port. The stylus is a
standard Braille stylus modified to connect it to the slate via a wire soldered to its
metal tip.

A small speaker and four buttons provide a basic interaction modality between
the student and the E-slate, even when it is not connected to a computer. The
speaker emits a tone whenever the stylus makes contact with a dot in a Braille
cell, with each dot being mapped to a different musical note. The four buttons
activate and deactivate several features. Button 1 toggles the heartbeat LED, which
was used by us as a visual indicator for debugging early versions of the E-slate’s
software. Button 2 mutes the speaker so that more advanced students can use the E-
slate without tonal feedback. Button 3 reverses the direction of the text, allowing
students to choose between writing right to left (as is typical when writing with
a standard slate and stylus) or left to right (which is the direction Braille is read
in)?. Button 4 was included to allow an unprogrammed hardware input to the tutor
software - it simply sends an acknowledgment to the computer when the button is
pressed. The stylus connection port also contains two additional inputs for buttons
located on the stylus. One button is placed on the stylus for students to indicate the
completion of a character or word.

During our field study, we found that writing from left to right did not support transfer of writing
skills to a regular slate and stylus and so disabled this feature.

56

4.4. Design, Pilot, and Evaluation of the First version of the Braille Tutor

Power Switch and Buttons

e

[: ,
Input Area

Figure 4.4: The prototype E-slate taken for field testing at the Mathru School for
the Blind.

We initially considered several off-grid methods of powering the E-slate: solar
cells, batteries powered by a solar charger, regular disposable batteries, and a hand
crank to charge batteries. Unfortunately, except for disposable batteries which have
a low but recurring cost, all of these options were more expensive than the E-slate
itself. We decided that since the current iteration of the E-slate requires a computer
powered by the electrical grid to be useful, expensive off-grid solutions should be
explored at a later time. The E-slate is powered by an inexpensive AC/DC wall
adapter which has an input range of 100 to 240 VAC at 50/60 Hz, and outputs up
to 300 mA at 6 VDC. This input range is globally compatible with all electrical
grid standards, and so the only adaptation that must be made to use it in different
countries is to purchase an appropriate plug adapter.

4.4.4 The Tutor Software

The E-slate hardware and a basic software environment to allow recognition of the
stylus position by a host computer was completed in time for the summer field
study. This architecture was sufficient to allow rapid development of the host tu-
toring software during the first two weeks of the six-week field study; during this

57

4. The Braille Writing Tutor

period, the lead researcher worked in close coordination with the teachers at the
Mathru School for the Blind. The software was tailored to the needs of the stu-
dents throughout the course of the field study. Together, we outlined three main
stages of skill acquisition for the Braille student. The first step is to understand
the concept of Braille and to emboss the six dots in a cell. The second step is to
learn the unique combinations of dots that make up each letter and write the al-
phabet. The third step is to put letters together into words, put words together into
sentences, and learn math symbols and punctuation. We created three different
tutoring programs with emphasis on each of these skills and with capabilities to
transition to the next skill. These programs roughly mapped to the second, third,
and fourth standards (equivalant to US grade levels).

Although Braille forms exist for many languages including the students’ pri-
mary languages of Kannada and Tamil, they are taught Braille in English first be-
cause it is the standard approach and relatively simple (many Indic languages have
more than 64 (25) characters and a single character may require more than one
cell). Therefore the software tutor was limited to English Braille.

The software tutor receives input from the E-slate regarding the learner’s ac-
tions on the slate, where an “action” is either a contact between the stylus and the
slate or a press of one of the five buttons. The tutor interprets these actions using a
state machine and provides feedback tailored to the skill being learned.

Second Standard Braille Writing Tutor.

The second standard tutoring software meets the needs of the beginner student
learning the concept of the six-dot cell. Whenever the stylus is touched to the
slate, the tutor speaks the position of the dot that was touched. This helps the
student understand the cause and effect relationship between embossing on a slate
and creating letters. It also teaches the spatial relationships between the different
dots. The second standard tutor smoothly transitions to teaching and reinforcing
the alphabet once the six-dots concept is learned: when the student presses the
button on the stylus, the tutor will speak the letter written on the current cell. For
simplicity, none of the other buttons on the E-slate have any effect in this tutor.
For the second standard tutor, we used a Mathru teacher’s digitized voice for the
dot and letter feedback. Firstly, there is a finite number of letters and positions so
digitizing the feedback was feasible. Secondly and more importantly, we found that
younger children using the second standard tutor may not be familiar with foreign
accents and would feel more comfortable and learn faster if they heard their own
teacher’s voice.

58

4.4. Design, Pilot, and Evaluation of the First version of the Braille Tutor

Third Standard Braille Writing Tutor.

The third standard tutor partially meets the scaffolding needs of advanced students.
The third standard tutor retains the position and letter feedback for reinforcement
and spelling practice. It encourages speed by not requiring a student to press the
stylus button to register a letter; instead, a letter is registered whenever the stu-
dent transitions between cells. It additionally provides word feedback by keeping
a character history and uses text-to-speech (TTS) synthesis to speak the last word
written when a student “double-clicks” the button on the stylus. For the TTS en-
gine we use Cepstral’s ®female American-English Callie® voice which Cepstral
donated to the project. To augment the word feedback, we provide functionality
both to erase and then correct previously-written letters and to spell the letters in
the last word. This allows students to work on spelling as well as writing.

Fourth Standard Braille Writing Tutor.

The fourth standard tutor provides the remaining scaffolding for the advanced stu-
dent. Here, we remove the position feedback as the learner is presumably familiar
with the positions and finds such feedback cumbersome. This tutor additionally
provides feedback on the last sentence written using the same text-to-speech en-
gine. It also recognizes math symbols and punctuation which may require multiple
cells per symbol, which have two symbols mapped to the same letter, or both. The
tutor uses a decision tree to determine which symbol is intended.

4.4.5 Field Study and Evaluation

While at the Mathru school, we surveyed and observed students and teachers with
regards to learning with, acceptance of, and usability of the tutor. Our target group
was students in grades two and three as they had begun to learn Braille but had not
yet mastered it, and so we would expect them to receive the greatest benefit from
the Braille Tutor. This group consisted of six students in each grade for a total of
twelve students. Ordinarily they had Braille class in four one-hour periods each
week; for our study, they used the Braille Writing Tutor for forty minutes of the
one hour and used a regular slate and stylus during the remaining twenty minutes.
Although we focused our study on these twelve students, the tutors were constantly
operational and we allowed any interested student or teacher to use them. As our
goals for this pilot were to evaluate the feasibility and features of the Braille Tutor
and the number of students involved was not statistically powerful, we forwent
the opportunity to have a control group or crossover study in favor of allowing

3http://www.cepstral.com

59

4. The Braille Writing Tutor

students unlimited and unstructured access to the tutor to measure their interest
and responsiveness.

Learning Gains

We measured all twelve target students’ proficiency in Braille once at the begin-
ning of our one-month study and once at the end and evaluated their improvement
by assessing the skills learned; students were tested on a regular slate and stylus
to ensure that student learning with the tutor transferred to regular slate and sty-
lus despite the experiential differences between the two systems. Although it is
difficult to attribute improvements solely to the tutor, we can determine its impact
somewhat by understanding students’ prior abilities. We tested how many cells
the students could fill in with all six dots embossed (which we call the “six-dots
test””) and how many letters they could write (which we call the “alphabet test”) in a
fixed period of time; these are standard assessments the Mathru teachers use at this
grade level to measure Braille writing proficiency. We also evaluated the number
of mistakes made during the test; a mistake was defined as erroneously omitting or
adding a dot or failing to leave a space between letters.

We can categorize the students into three groups based on a qualitative analysis
of their pre- and post-trial test results. Four of the twelve students (referred to as
Group A) demonstrated complete understanding of the Braille concept and could
write the alphabet quickly and with few mistakes before we began the study. The
tutor mainly provided advanced practice for these students. The second group
(Group B) consisted of five students who lacked proficiency before the study but
attained demonstrable proficiency by the end. The third group consisted of three
students (Group C) who did not understand the concept of Braille and showed a
significant lack of proficiency both before and after the study. We are interested in
these last two groups to understand how the tutor may have helped those in Group
B and why it did not help those in Group C.

Two of the five students in Group B (the group showing improvement) under-
stood the concept of Braille before the study began but made frequent mistakes. At
the end, they wrote significantly faster and made far fewer mistakes. Specifically,
one student’s abilities jumped from writing seven letters with four mistakes to writ-
ing thirteen letters perfectly, and the other student’s abilities jumped from writing
23 letters with eight mistakes to writing 26 letters with one mistake. For these
students, we suspect that the improvement was probably just the natural result of
practice. Although the Braille Writing Tutor may have sped up their learning in
comparison to using a regular slate because it increased their interest in writing,
we cannot confidently make this claim without a control group.

The remaining three students in Group B made significant conceptual advances:

60

4.4. Design, Pilot, and Evaluation of the First version of the Braille Tutor

in the first proficiency test they showed a distinct lack of understanding of Braille
and were unable to emboss all six dots in a single cell. By the end of the study,
two of the three students each wrote five letters with no mistakes and the other stu-
dent completed the six-dots exercise in three cells. From our discussions with their
teachers, we believe this is probably a direct result of getting immediate feedback
from the tutor, as these students had not demonstrated any understanding of Braille
in the several months of instruction prior to the study. The case of one particu-
lar student highlights one way in which the tutor’s instant feedback can produce a
necessary conceptual advance. This student’s writing usually consisted of a single
cell with all the dots embossed, regardless of the assignment. It appeared that he
had no conceptual understanding of Braille though he had been in Braille class for
a few years. To the teachers’ delight, this student began writing Braille as soon as
he was asked to use the tutor. Apparently this student had always been writing ev-
ery letter in the same cell, thus creating the completely embossed single cell. This
was not evident to the student’s teacher because the teacher herself was blind and
could only feel the results of the writing on the paper; moreover, the student was
unable to communicate well and explain what he was writing. Because the second
standard Braille Writing Tutor interprets letters after the student presses the button
on the stylus, it did not matter that they were all in the same cell. Additionally, the
teachers were able to hear the result of this student’s writing immediately and soon
realized that there was a gap in the student’s understanding. In this way, the tutor
acted as an assessment tool: it highlighted the student’s unique difficulties and was
able to provide insight to the teachers.

Although it is not clear why Group C did not benefit from the tutor (or from
a month of Braille practice overall), our discussions with the teachers lead us to
believe that they may not yet be developmentally ready to learn Braille. That is,
we believe that members of Group C may have multiple learning disabilities or
may need to develop basic social and personal skills.

Tutor Acceptance

The teachers’ response to the tutor was very positive: they believe the tutor can help
students overcome difficulties in writing Braille. Moreover, the teachers were eager
to continue having the tutor in the classroom and have continued using versions of
the Braille Tutor to the present day. Their involvement in improving the software
also highlighted their belief in the value of the tutor and they are further interested
in bringing the tutor to other schools for the blind.

We evaluated the target students’ attitude towards the tutor through an interview
at the end of our six-week study. We asked them to agree or disagree with several
statements:

61

4. The Braille Writing Tutor

Figure 4.5: Students at Mathru use the Braille Writing Tutor.

1. Ifind the tutor useful.

2. I dislike using the tutor.

3. I prefer writing on a regular slate to writing on the E-slate.
4. 1 want to continue using the Braille Writing Tutor.

5. I think the tutor will help me in learning to write Braille.

To reduce the likelihood that the students would answer favorably simply out
of respect or an eagerness to please, we explained to them that honesty was very
important and had the teachers administer the survey when we were away from the
school. Nearly all of the students (10/12) found the tutor useful and believed it
would help them in writing Braille; the remaining two students were in the second
grade and had significant difficulty with the overall concept of Braille. However,
all students strongly disagreed with the statement “I dislike using the tutor” and
emphatically agreed with the statement “I want to continue using the tutor.” Fi-
nally, nearly all students (10/12) preferred writing on the E-slate to the regular
slate, primarily because they enjoyed the interaction and the voice; the ones that
did not were the youngest students who had difficulty finding the button on the
stylus. While this indicates a positive response to the tutor, there is concern that

62

4.4. Design, Pilot, and Evaluation of the First version of the Braille Tutor

Figure 4.6: The teachers use the Braille Writing Tutor at the tutor station we set up
in the computer lab.

students will adopt the E-slate completely because it is easier to use and more inter-
esting. We believe that this can be avoided in the school setting by having frequent
exercises on a regular slate and stylus.

We evaluated the students’ enthusiasm for writing Braille by observing which
students wrote Braille outside of the Braille class period and the frequency of this
use. We found that almost every student in the target group used the tutor outside
of class at least once a week — only three of the students used it only during class.
Interest varied from student to student: a few used the tutor on an almost daily basis
while others used it once or twice a week. We also frequently found older students
not in the study group and even teachers using the tutor in their spare time simply
out of interest (see Figure 4.6). Though highly proficient in Braille, they enjoyed
hearing the tutor speak their words and thoughts. However, students’ interest in
writing Braille extended only to using the tutor; it was rare to find students using
the slate and stylus outside the classroom both before the introduction of the tutor
and during the field trial.

Usability Observations

In addition to determining the learning gains and interest in the tutor, we observed
how easy or difficult it was to set up and use by both teachers and students, asking

63

4. The Braille Writing Tutor

ourselves the following questions:

e Hardware assembly. What are the minimum abilities required to assemble
the hardware? How long does it take to learn how to assemble it? How long
does it take to assemble?

e Software installation. What are the minimum abilities required to install and
then start the software? How long does software installation take?

o Tutor use. How long does it take to learn how to start the tutor? What are the
minimum abilities to start the tutor? How much and what type of instruction
is required to learn how to use all the functionalities of the tutor?

We evaluated these features by observing both the teachers’ and the students’
use of the tutor. Hardware assembly involves plugging one end of the power
adapter into a wall socket and inserting the other end into a socket on the E-slate,
connecting the serial cable between the E-slate and the PC, and connecting the
stylus to the E-slate. We found that the blind teachers and students could only
connect the power supply; connecting the serial cable and the stylus was impossi-
ble for them because the connectors are small and keyed. We trained a low-vision
teacher with prior computer experience to successfully connect the serial cable and
power in a single 30-minute training session but the stylus was simply too small to
manipulate. Ultimately, this teacher was able to connect the power supply in under
a minute but took 2-3 minutes to distinguish between the male and female ends of
the serial cable, find the serial port on the back of the computer, and connect them.
These difficulties highlighted that we needed to completely redesign the hardware
connection method to make assembly possible for our target group.

Software installation was also challenging as it involved a number of complex
steps that required familiarity with advanced features of the Windows operating
system. In the end, we installed all the software ourselves and successfully trained
sighted teachers with significant prior computer experience. This highlighted that
software installation also needed to be redesigned significantly to install all com-
ponents in a single step.

Nevertheless, once the components were installed and connected, the students
could find the switch and turn on the E-slate after only five minutes of training. We
noticed two issues with students using the tutor: the smaller children had difficulty
determining when the switch was set to the on position and when it was in the off
position, and both beginner and advanced students were initially afraid of receiving
an electric shock from the electrical wire leading from the stylus to the slate. The
older students (4" standard and higher) who had prior experience using a PC were

64

4.5. Second Design Cycle

able to start the Braille Writing Tutor software on their own with just minutes of
instruction; younger children needed a teacher to do it for them.

At the end of the field study we also conducted a survey of the target group
regarding usability. With the help of a teacher, we asked the children to agree or
disagree with the following statements.

1. I found the Braille Writing Tutor difficult to use.

2. It took a long time to learn how to use the tutor.

3. I cannot understand the voice used by the tutor.

4. Ifind it difficult to distinguish between the buttons on the E-slate.

Ten of the twelve students stated that it was easy to learn how to use the tutor
and all the students could understand the voice used by the tutor even though the
text-to-speech synthesizer used an adult female American voice. We suspect this
may be because the students are accustomed to the JAWS screen reading software*
which uses a male voice with an American English accent. Finally, roughly half
of the students (five of twelve) found it difficult to distinguish between the buttons
on the E-slate. We believe that labeling the buttons and giving them unique shapes
will alleviate this problem.

4.5 Second Design Cycle

Our experiences at Mathru confirmed the feasibility of the Braille Tutor; students
were able to use and learn from the tutor, and the tutors could be independently
maintained by the school. Simultaneously, the study highlighted shortcomings of
the current system and initiated a new design cycle, leading to refinements of both
the E-slate and software tutor. The redesign of the E-slate was completed in the
spring of 2007, and the modifications to the software tutor began in spring 2007
and are ongoing and driven by new field studies.

4.5.1 E-slate Changes

Several major changes were made to the E-slate based on realizations stemming
from our experiences with the 2006 field study. For the most part, these experiences
did not add new design constraints and goals to our lists, but led us to a better
understanding of ways to meet those goals. We detail the changes made and the
underlying reasons for those changes in the next few pages. Table 4.1 summarizes
these changes and Figure 4.7 pictures the second version E-slate.

“http://www.freedomscientific.com/fs_products/software_jaws.asp

65

4. The Braille Writing Tutor

Figure 4.7: Version 2 of the E-slate

Transitioning from Serial to USB

The first E-slate communicated with the computer through a serial port, and had
some standalone capability; without connecting to a computer, students could write
on the slate and it would beep different notes depending on which Braille dot was
sensed. After our experience at Mathru, we realized that a limited standalone mode
was unnecessary; students always used a computer with the slate, and computers
were generally more available than we had expected. Realizing that the E-slate
did not need to be independent from the computer, we changed the communication
method from serial to USB. This fairly simple change had a number of important
effects:

e USB allows connected devices to draw power from the computer, eliminat-
ing the need for a separate power supply and consequently reducing the cost
of the system.

o The slate no longer needed a power switch - once connected to the computer,
it was powered. This made the E-slate easier to use, especially for younger
children who had trouble finding the switch.

e The USB connector is friendlier to plug in than a serial cable, and a separate

66

4.5. Second Design Cycle

Feature Version 1 Version 2
Computer Communi- | Serial USB
cation
Button Configuration | Four equally spaced | 6 buttons in a Braille
buttons and 1 stylus | cell arrangement and
button a button on both the
left and right side of
the slate
Stylus wired Yes No
Power Source Grid Power Computer through
USB
Braille cell configu- | 32 cells in two rows | 32 cells in two rows
ration
Dust cover No Yes
Standalone capability | Rudimentary None

Table 4.1: Summary of E-slate changes between version 1 and 2

power cable no longer existed - therefore, the E-slate was easier for teachers
to install independently.

Eliminating the Stylus Wire

The first version of the E-slate used a stylus with a wire soldered to the tip and
connected to the E-slate through a keyed connector. This was necessary to allow
the E-slate to register the stylus position. The wired stylus also featured a button
on the stylus that was used by a student using the second level tutor to indicate that
a letter was complete. We were unaware that students at Mathru have been taught
to be very wary of electrical wires (for good reason!), and so the wired stylus
actually presented a major hurdle to student adoption of the tutor; it was only
through extensive conversation with the on-site researcher that students became
willing to use the stylus. Based on this experience we modified our sensing circuit
for the second E-slate to allow the use of a standard, unmodified stylus. Instead
of wiring a stylus, the input area of the E-slate actually has two circuit boards
that are electrically connected but separated by a small air gap. A metal-tipped
stylus pushes through holes in the first circuit board and contacts the second board,
creating a sense-able connection between the two. As with USB this simple change
had a number of important effects:

e Students were no longer initially afraid of using the E-slate.

67

4. The Braille Writing Tutor

e Removing the wire brought the experience of using the E-slate even closer
to using a traditional slate and stylus.

e The wired stylus was a custom-made, difficult to replace part - by allowing
the use of a standard stylus we eliminated the possibility that a stylus being
lost or broken would stop students from using the tutor.

Changing the button pattern

The version one E-slate had four buttons spaced evenly in a single line slightly
above the input area on the E-slate, as well as a button the Stylus. Students had
difficulty distinguishing these buttons from one another, and a few of the buttons
affected hardware changes to the E-slate that were written into the firmware of the
E-slate (as opposed to affecting the host software). This was done in case the E-
slate was being used without a computer, but in the field study these mode changes
in the operation of the E-slate were mostly annoying and distracting to the students.
Version two of the E-slate used the button pattern in a more educational way: Two
buttons were placed on either side of the slate to use as the ’enter’ key, replacing
the button that was previously placed on the stylus. Six buttons were placed in
a Braille-mimicking 2-by-3 pattern in the middle of the slate, just above the cell
input area. By placing the buttons in this configuration, we were able to turn the
difficulty that students had in identifying identically spaced and shaped buttons into
an educational exercise. These buttons can be used by very young students who do
not yet have the fine motor skills necessary to write Braille to practice the alphabet
patterns. Although these six buttons have no additional current uses, placing the
buttons in a familiar grid enables older students to more readily resolve individual
buttons should they be given functionality by future versions of the tutor.

Adding a Dust Cover

The first E-slate used a cutout from a regular slate and stylus glued to the input area
for use as a raised guide to allow students to feel where the stylus was. The second
version replaced this with two custom laser-cut pieces of plastic, to cover the circuit
board and prevent students from coming into direct contact with it. This was done
to make the E-slate easier to manufacture, and to make it more robust. Although
we did not observe this, it is possible for students touching the circuit board of the
E-slate to cause static discharges that render the circuit board inoperative.

68

4.5. Second Design Cycle

4.5.2 Early Tutor Improvements

The tutor software was improved during two distinct phases of the design cycle.
After the completion of the second E-slate, the software was updated to reflect the
hardware changes and to improve the software user experience. The tutor software
was also enhanced and improved during a number of pilots in different parts of the
world to maintain relevance to local educational settings.

Our early tutor improvements focused on three main areas, described in detail
in the following pages:

o Individualizing the tutor by having it adapt to student ability level.

e Developing a new installation program to address difficulties teachers had
setting up the software.

e Developing a software library to handle low-level communication between
the E-slate and computer. The development of this library was crucial to
enabling the customization of the software tutor to different educational set-
tings around the world.

Individualization

Chief among the educational difficulties faced by students in developing commu-
nities is the scarcity of Braille training and Braille teachers. Version two of the
Braille Tutor sought to further ameliorate this problem by minimizing the amount
of teacher attention required for learning. The software introduced a series of ex-
ercises forming a basic Braille writing curriculum; as before, the Tutor provided
feedback to the student by narrating the student’s actions. In addition, the tutor
uses an English-language ‘“Teacher voice’; this voice is distinct from the voice
used to narrate the student’s actions. The Teacher voice introduced exercises and
gave feedback on how the student performed in each exercise. It also took over
narration of miscellaneous events such as Tutor mode changes and software errors.
By introducing the Teacher voice, we allowed interaction between the student and
the Tutor to approximate interactions between the student and a personal teacher.
Students could begin practicing by selecting from six broad ability levels cho-
sen at the start of each session: learning dots, practicing dots, learning letters,
practicing letters, learning words, practicing words; these are analogous to the
three grade levels used in version one of the tutor. The Tutor gathered informa-
tion as the student attempts exercises in order to assign the most useful exercises
to the student. For example, while the student is learning letters, each letter is
monitored as an individual skill. If the student answered exercises involving the
letter ‘a’ incorrectly, the Tutor would assign more exercises to practice ‘a’. If the

69

4. The Braille Writing Tutor

estimated knowledge of the letter in question drops below a certain threshold, the
Teacher voice reminded the student of how to write that letter by speaking a se-
quence of dots. Within each level, students were provided with exercises tailored
to their unique needs.

Fast Installation

As help from sighted individuals was required for teachers to set up the Braille
Tutor software, we developed a Braille Tutor installer program. The program pro-
vides audio feedback to the user at every decision point, with directions on which
keyboard key to press to continue installation or cancel. The use of a mouse is
not required. The new program cut the installation time to under two minutes and
launched the tutor at the end of the installation.

Extensible Software Design

The second version of the Braille Tutor software suite featured a modular struc-
ture designed with future applications and development in mind. At its heart is a
flexible software library that handles all low-level communication with the Tutor
hardware and provides a variety of convenient interface facilities for the applica-
tion programmer. The library encodes the user’s interactions with the Tutor as a
series of events of varying semantic complexity, ranging from the immediate inser-
tion or removal of a stylus to the creation of an entire Braille character in one of
the cells. Applications may poll a queue of selected events or be notified of them
asynchronously through a callback interface.

The interface library tracks the state of the Braille Tutor hardware with an inter-
nal state machine model. By creating new state machine descriptions, the library
can be adapted to future versions of the Braille Tutor hardware in a straightfor-
ward way. To the extent that hardware versions present compatible feature sets, the
Braille Tutor library aims to provide a consistent software interface among them
all, allowing maximum compatibility for applications.

4.6 On-going Software and Curricular Improvements

Although no further hardware revisions were made, the creation of an extensible
software interface has allowed for the recent development of a number of innovate
software extensions>: these extensions were made in a similar way as the develop-
ment of the first tutor, namely on-location with partnering groups. More generally,

3The author did not contribute to the work presented in this section. It is reported here as part of
the case study to show the recent evolution of the program.

70

4.6. On-going Software and Curricular Improvements

this on-going work highlights an important characteristic of configurable embod-
ied interfaces: They are inherently flexible in terms of software and curriculum, so
long as the difficult-to-change hardware features are well aligned to the needs of
students and teachers. This characteristic has important implications for relevance
and disseminability, which we will discuss in depth in Chapter Seven.

In 2008 and 2009, the second version of the Braille Writing Tutor was piloted
in four locations - the Mathru school, the Al-Noor institute in Qatar, the Sefula
School for the visually impaired in Mongu, Zambia, and the Uhuru Mchanganyiko
Primary School in Dar es Salaam, Tanzania. These pilots (Abimbola et al., 2009;
Dias et al., 2009) validated some of the decisions made in creating both the second
version of the E-slate and in upgrading the tutor software. Among the improve-
ments stemming directly from these pilots were:

4.6.1 Foreign Language Writing Support

A number of foreign languages were added to the Braille Writing Tutor to broaden
the potential reach of the tutor. Support for French, Chinese, Arabic, and Swabhili
Braille were added. Adding new languages that have fewer than 64 characters (the
number of characters supportable by a single six-dot Braille cell) was made very
easy thanks to the extensible software design.

4.6.2 Local Accents and Languages Audio Support

The audio feedback of the tutor was modified to support local English accents
and local languages by asking local speakers to pronounce the letters, numbers,
and simple instructional phrases (for example, ‘well done’, ‘incorrect’) used for
providing feedback to the student. This is very important for two reasons: The
default American English accent is difficult to understand for young students, and
when the tutor sounds like a local speaker, it is no longer an alien object to the
students. The modular way in which the Braille Tutor software was written made
this process very easy - at one school it took as little as thirty minutes, and consisted
of simply creating new audio files for the letters and numbers and copying these
into a directory.

4.6.3 Motivational Games

A major problem identified in the Uhuru school was that once students mastered
Braille, their writing tended to regress because they stopped receiving instruction
in Braille. This is very problematic, as students are expected to take notes in Braille

71

4. The Braille Writing Tutor

in other classes, and if they make lots of transcription errors their notes become un-
intelligible. To motivate these students to continue practicing, several educational
games were created:

o The Animal Game. In the Animal game, students hear an audio file of an
animal making a noise and are asked to write that animal’s name.

e Hangman. In Hangman, the computer comes up with a word and tells the
students how many letters are in the word. Students must then write letters
of the alphabet that they think the word may contain. Students continue
guessing letters until they have either found all the letters in the word, or
have made ten incorrect guesses.

o Music Maker. The Music Maker game is designed to interest students in
using the stylus and finding dots through music. In Music Maker mode each
row of dots on the E-slate corresponds to different musical notes and each
column of dots represents a single time step or ‘beat’. By inserting the stylus
into a dot on the E-slate, the user can toggle on and off the musical note
corresponding to the row of the dot being played at the beat corresponding
to the column of the selected dot. The user can also use buttons on the E-slate
to control the tempo and to toggle all notes to the ‘off” position.

e Domino Game. After observing the popularity of dominoes among blind
students in Qatar and realizing the similarity in the six-dot structure of a
domino block to that of a Braille cell, a two-player competitive game was
devised around the notion of the dot patterns of letters and their similarities
to Dominoes.

4.6.4 E-slate hardware modifications

Two modifications were made to the E-slate during the pilots at two different sites.
In Qatar, teachers suggested that the slate’s buttons were too hard and that re-
peatedly pressing these buttons quickly became painful. Researchers solved this
problem by finding a readily available padded sticker that fit over each individual
button very well, thus providing a padded surface for the buttons.

At Mathru, teachers suggested that it would be good to create a ‘hard-copy’
of the stylus’ impressions on the E-slate. This was accomplished by placing a
hinged embossing surface beneath the hole pattern area on the E-slate, and placing
Brailling paper between this surface and the circuit board. This way, when students
pushed their stylus into the slate area, they could push through the circuit board and
onto the paper, creating a paper record of their impressions.

72

4.6. On-going Software and Curricular Improvements

4.6.5 Pilots and Evaluation

The four pilots were conducted over the summers of 2008 and 2009 through the
TechBridgeWorld program at Carnegie Mellon. In each cases, researchers (often
undergraduate students) visited the pilot locations and engaged in participatory
design to ensure that the Braille Writing Tutor would be locally useful. This par-
ticipatory design process led to the design and testing of the improvements listed
above. In addition to the on-site design of new capabilities for the Braille Writing
Tutor, these pilots led to several suggestions for further improvements to the tutor
and allowed us to evaluate the effectiveness of the current tutor. These evaluations
were not carried out in a unified way, and are still mostly based on observations
by the researchers and teachers, and surveys and assessments of small groups of
students.

Evaluation of Current Tutor

In terms of observations from teachers and researchers at all the sites, there was
common agreement that the enlarged Braille cell button pattern was very useful
because it allowed students who did not have the requisite motor skills to use slate
and stylus to learn the concept of the six-dot pattern. A second common comment
was that the feel of pushing a stylus into the slate portion of the E-slate was sig-
nificantly different than the feel of pushing a stylus into a regular slate, possibly
inhibiting transferability to regular slate and stylus.

A study was conducted at the Mathru school to ascertain the effectiveness of
the Braille Tutor in helping younger students to grasp the basic concept of the 6-
dot Braille cell. An experimental group of 9 children from grades 1 and 2 used the
Braille Writing Tutor for two hours three times per week for five weeks. A control
group with 9 children of the same age and beginning ability was similarly given
two hours of instruction three times per week, but were not exposed to the Braille
Writing Tutor. Each student was administered a pre-test to measure their knowl-
edge of Braille. After the completion of 5 weeks of field testing with the Braille
Tutor all of the students were administered a post-test that tested the same skills at
the same difficulty as the pre-test. Each of the 9 students in the test group showed
noticeable improvement and understood the 6-dot concept. In the control group,
only 4 students showed noticeable improvement. The Braille Writing Tutor also
aided the teachers in identifying conceptual problems students were having with
the six-dot concept. For example, one student was unable to identify all six dots
consistently. After the student used the Braille Writing Tutor, teachers discovered
that the problem was that the student didn’t know how to find dot 1, and so would
start at the first dot he found and then try to make the pattern from there.

73

4. The Braille Writing Tutor

Suggestions for Future Improvement

Several suggestions were made over the course of the studies for ways to improve
the next version of the E-slate (the tutor software was modified on the fly and so
any suggestions made were incorporated by the end of a field trial).

Teachers expressed interested in expanding the button cell pattern to allow for
two or more cells of buttons, so that students could begin learning about switching
cells and about longer characters (some characters require multiple cells to express,
like punctuation marks and arithmetic operators).

Teachers also suggested modifying the slate area to make it more reliable and
to make it feel more like a regular slate and stylus. At the moment, the stylus needs
to be inserted completely vertically into the E-slate in order to register a contact,
and as styluses don’t have a standard diameter, some styluses are much easier to use
with the E-slate than others. While these seem like minor details, this essentially
means that students write in subtly different ways on the E-slate than with slate and
stylus, thus transfer from one to the other is not seamless.

4.7 Summary

The Braille Tutor is an idea that was formed by bringing together two sets of deep
content knowledge inhabitating in the minds of people living half a world apart.
The Braille Tutor case study exemplifies best how collaboration can occur between
teachers and designers even when those people are physically distant, while high-
lighting the importance of occasional immersion by designers in the educational
context. It is my hope that the project will continue expanding in the way it has:
with designers travelling to sites to make modifications to the tutor that reflect the
interests and educational needs of students at those sites.

74

Chapter 5

Robot Diaries

Creative technology experiences currently available to middle school students (e.g.,
Botball, LEGO Mindstorms, and computer gaming) are designed primarily around
individuals, both boys and girls, who already have a strong interest in technology
and competition. In order to broaden the range of available technology experiences
and specifically increase girls’ engagement in the technology community, we cre-
ated the Robot Diaries program1 (Nourbakhsh et al., 2007; Hamner et al., 2008a,b).
Robot Diaries aims to provide a compelling technology experience that is designed
from the ground up to engage diverse students in creating an embodied robotic ar-
tifact that is responsive to an individual’s interests, emotions and activities. Of the
three programs detailed in this thesis, Robot Diaries is unique in that the design
space was completely open - we decided on the goals for the program, derived the
learning goals from this overarching goal, and designed the hardware, software,
curriculum, and training materials. This chapter begins by motivating the program
and stating the program goal, and then moves on to the origin of the idea, how the
idea was refined through a series of participatory design sessions, and how those
sessions led to a concurrent design of all of the elements of Robot Diaries.

5.1 Motivation and Program Goal

As technological interaction and electronics artifacts integrate ever more tightly in
our lives, it is disquieting to note that engineering enrollments continue to drop
throughout the United States (Vegso, 2006). Even more alarming is that women
participate in dismally low numbers in fields such as computer science and engi-

"Much of the research reported in this chapter is excerpted from papers (Hamner et al., 2008a,b,
2010) co-written with Emily Hamner, Debra Bernstein, Kristen Stubbs, and Carl DiSalvo. Their
permission was received before reprinting here.

75

5. Robot Diaries

neering, whereas virtually all science and business fields show significant improve-
ment in terms of female participation (Vegso, 2005).

One popular movement to stem the current tide evolves out of a recognition
that the pipeline is both the source of today’s trends and the strategic place for
leveraging real change: improve the technology literacy of students at the primary
and secondary level, and the statistics of the subsequent decade may finally turn
around (Adams, 2007; Arsenault et al., 2005; Cannon et al., 2007; Doerschuk et al.,
2007; Frost, 2007; Hylton and Otoupal, 2005; Morris and Lee, 2004).

Robotics has served as a popular vehicle for such pipeline-based technology
literacy programs because of its ability to attract and inspire the imagination of
students who are often unmotivated by conventional classroom curricula (Druin
and Hendler, 2000). National contests include US First, BEST and Botball, pro-
grams that have jointly engaged more than 75,000 students (Botball, 2009; FIRST,
2009a). There is no doubt that some of the students have found the contest-
driven problem-solving experience to be transformative. However, these existing
pipeline-focused technology literacy programs share a number of features that may
limit participant diversity: they are short-term, high-intensity, competition-driven
and technology-focused.

In response, we propose a complementary class of activities that we believe
can engage and retain the participation of secondary-level students who will not be
attracted to the currently available pipeline interventions (Buechley and Eisenberg,
2007; Rusk et al., 2008; Kim et al., 2007). A major aim of Robot Diaries is to
increase the technological fluency of participating students. By technological flu-
ency, we mean the ability to manipulate technology creatively and for one’s own
use. We believe that our focus on fluency-building activities, which encourage cre-
ativity and personal adaptation of technology, will engage a more diverse student
population with technology and engineering. We additionally hope to demonstrate
the characteristics of such a program that will allow it to be broadly disseminated.

The primary goal of the Robot Diaries program is to develop and disseminate
a technology education experience that attracts students who are not interested in
current technology education programs while still providing an experience which
results in students who are both more interested in and more competent with tech-
nology.

5.2 Timeline of the Project
The idea of robot diaries was formulated in November 2005 with additional conver-
sations during winter of 2005-2006 clarifying the initial concept. We held a focus

group to test some of our initial ideas, and after this focus group engaged in a num-

76

5.3. Ideation

[2005] 2008 2007 | 2008 2009
Task Start End
|u| B {3 ¢ s mala aa]s|ajn o ¢ fajls s nS’.'lNllllJ rlnnm 3lalsjomi rnlan.lu. slonp
Ideation + initial planning 11/1/2005 4/30/2006
Focus group 5/15/2006 5/15/2006
Waorkshop planning and

I 5/16/2006 6/28/2006
recruiting

Summer workshops /292006 8/10/2006

Pl't1 n mr_'g a [1[_1 .I'-Z_'(_'I'LJitI['U for fall 8/16/2006 10/31/2006
workshop series

First fall one-day workshop
Second fall one-day
Fall multi-week workshop
Evaluation analy
Concurrent design of
curriculum, tool

006
006
ooy

10/28/2006 10/2¢

vorkshop

10/2/2007 5/30/2008

Workshop recruiting and 6/1/2008 9/1/2008

planning

PALS Warkshop 9/11/2008 11/8/2008
SHH Workshop 1/6/2009 4/21/20
Evaluation of warkshops 4/22/2009 12/15/2009

Figure 5.1: Timeline of the Robot Diaries project

ber of participatory design workshops. We held a multi-week workshop in summer
2006, followed by two one-day workshops in fall 2006 that were essentially distil-
lations of the summer curriculum. We had another multi-week workshop in the fall
and winter of 2006. The analysis of this workshop was done in spring and summer
of 2007, after which we began a concurrent design of a new curriculum and mate-
rials. We began recruiting and training teachers in summer of 2008 and held two
pilots with the new curriculum and tool in the fall of 2008 and the winter/spring of
2008-2009. The analysis of these workshops was carried out in the summer, fall,
and winter of 2009.

5.2.1 My Role in the Project

I have been a member of the Robot Diaries team since the inception of the project. 1
was primarily responsible for creating and selecting the robotic elements of the kit
of parts, including designing a new robot controller for the program. In addition, I
played a major role in the design of the various curricula, in piloting the curriculum,
and to a lesser extent in formulating and carrying out the evaluations of the pilots.

5.3 Ideation

In late 2005 the Community Robotics, Education, and Technology Empowerment
(CREATE) lab was heavily involved in the development of a new robotic tech-
nology, the Tele-presence Robot Kit (or TeRK) (Nourbakhsh et al., 2007). TeRK

77

5. Robot Diaries

robots relied on a new and highly capable robot controller, the Qwerk, which was
partially developed in the lab. As the controller was completed it was apparent that
the potential applications were vast, and so we were faced with a challenge of find-
ing interesting applications. Two members of the research team initially came up
with the idea of an alternative to competition-centered robotics activities that would
nevertheless inspire and excite participants to continue studying STEM topics. The
two researchers, both women, came up with a description of an activity that was
generated mostly based on what they thought they would have enjoyed when they
were twelve years old. This description was included in the grant proposal that
launched Robot Diaries, and it is instructive to quote it here:

A Robot Diary is a customizable robot designed to serve as a means of expres-
sion for middle school girls. The robot itself will be responsive to the personal
diary entries of its user. Groups of middle school friends will create and use Robot
Diaries as a unique means of exploring, expressing, and sharing emotion. Girls
will keep daily private diaries about their lives with entries that can be interpreted
and expressed by the robots. Girls will be able to share their diary entries and
robot expressions with their friends through a web-based diary community. A girl
can see how her friend is feeling by playing the friend’s entry on her own robot.
The actual content of the diary remains secret, but the emotional gist is shared
publicly with the friend group.

In many ways, this description was a stab in the dark - it was our best guess
of a technology that would be appealing to middle school girls, but it was based
almost entirely on intuition. It would have been an enormous and fairly wasteful
effort had we used this description as the basis for an engineering design process
to create a robotic system or kit capable of expressing diary entries. Instead, we
began our process by arranging a focus group of middle school girls to determine
if the idea, in whole or in part, was appealing to girls in this age range.

5.3.1 Focus Group

The focus group consisted of seven girls, ages 11 to 14, and was conducted for
two hours on a Monday evening in May 2006. In selecting this group of girls,
the emphasis was to choose girls who were talkative and excited about science and
technology and who we could safely assume would be eager to participate in early-
project brainstorming. In this sense, the girls were not representative of the average
middle school girl but were already somewhat biased towards STEM activities.

We began by surveying the girls about computer use in their homes, finding
that:

o All of the girls had two or more computers in their homes

78

5.3. Ideation

o All of the girls had high-speed Internet access at home (4 had wireless ac-
cess)

e Five out of the seven girls said their family had a webpage

e Three out of the seven girls said they use MySpace or some type of “friends
site”

e None of the girls contributed to an online blog or journal, nor did they keep
paper-based diaries

We also engaged the girls in conversations about their communications and com-
puter use habits. These conversations led us to determine that girls prefer non-
disruptive to disruptive forms of communication; the girls disliked cell phones and
chat applications, generally preferring email because you can “say more things”,
because emails can be saved, and because email allows for photo and document
attachments. The general pattern of email use for these girls is to check their email
once or twice a day, soon after returning home or in the early evening after dinner.
Girls would use the telephone, but only in situations in which a message was urgent
and had to be received by a friend before the next school day.

A final portion of the focus group included reading three stories about sam-
ple prototypes of a robot diary. The prototypes were a clock, a turtle, or a flower
- each of which could be actuated to express diary entries. Girls guessed right
away that the stories were about some kind of robot or technology device. Even
so, the girls were able to voice some likes and dislikes about the robot diary stories.

Things they liked:

e They had questions about the practicality of some of the items, but made
some positive comments: “I like the clock... It’s nice to know what time it
is,” or “Is it wireless wherever you go? Cause then I would get it cause I like
to check my email.”

e Girls liked the animals, such as the turtle. They also liked the fact that it
could capture emotion and share it with others. “I liked how you can talk to
your friends and show your emotions a little bit.” Or “The fact that it can be
done through a little technological flower, like the whole concept is kind of
like neat.”

Things they disliked:

e The girls seemed to want useful or practical things. When asked what they
would call the item they had just read about, one girl responded “SPA -
stupid, pointless appliance.”

79

5. Robot Diaries

o Girls especially disliked the random spontaneity of the robot, such as the
jumping up and down, shaking, and shining a light on you when you least ex-
pected it, because they thought it would be very annoying: “My little brother
already does it.” This agrees with their general dislike of disruptive forms of
communication.

e The girls also thought this robot sounded expensive, and this reason, as well
as the lack of usefulness, deterred them from wanting to buy the robot. They
estimated that it would cost 5 cents to make, but would range from $50 to
$200 to buy.

Conducting the focus group made apparent that diaries, in the traditional sense
in which we had thought of them, are not the appropriate avenues to engage these
middle school girls. Nor do the girls seem to be that invested in real-time commu-
nication with one another when they are physically separate.

However, this also suggested an opportunity, first to re-think and re-pitch the
diary. If a cloth-bound notebook is not where and how girls are recording their
thoughts and plotting their actions, then where and how are they doing it? Sec-
ond, this suggested an opportunity to think about and create a different kind of
communication tool, one that is asynchronous and that does not need to support a
significant amount of content.

An interesting distinction emerged between the notion of “communication”
and “expression.” Expression, specifically personal expression, seems to be more
salient than communication for these girls. Expression and communication seem to
be bundled together in collaboration. When the girls work on expressive tasks to-
gether or when they work on them separately but then later share these expressions
(such as stories) with one another, they are collaborating.

It’s important to emphasize that because the sample size was small, and because
the girls were chosen precisely because they were extremely ambitious, they may
not have been representative and generalizations are not possible. But the focus
group was extremely successful and useful in providing initial insight into this
demographic and the specific challenges and opportunities of Robot Diaries.

In addition to challenging our initial assumptions about the communication
habits of middle-school girls, the focus group was effective in introducing the re-
search team to the experience of working with middle-school girls. Unanimously,
we were astonished by the girl’s high energy-levels and the effect this had on us as
researchers. We found working with the girls for two hours to be tremendously ex-
citing and also exhausting. In addition, we quickly came to realize how imperative
it was to keep the girls on-task; tangential comments and momentary digressions
quickly spiraled into consuming conversations. This realization had significant im-
pact on our planning of summer workshop sessions. To facilitate our design and

80

5.4. Participatory Design Sequence

learning objectives we realized we would need to provide a highly-directed (but
flexible) agenda and a low participant to researcher ratio.

To sum up, the focus group was critical to our design trajectory. Our initial
ideas revolved around robotic artifacts that would link to diary entries and that
would react to the emotional content of the entry, or of linked friends’ entries. The
girls shot down this specific idea but did so in a way that caused us to believe
that there was potential in the more general idea of a robotics activity built on
creating expressive robots. The focus group also reinforced for us the importance
of approaching the design problem through participatory design; our goals and
initial idea were very broad, and so we next embarked on a number of participatory
design workshops with the aim of narrowing the idea into a define-able educational
activity.

5.4 Participatory Design Sequence

In 2006, we conducted two major participatory design workshops, one over the
course of seven weeks in the summer, and the other over the course of ten weeks in
the fall and winter. Each workshop taught our team important lessons about work-
ing with middle school girls, markedly affected the evolution of our curriculum,
and brought us closer to a final technology and curricular design that was appeal-
ing to the girls. These workshops had a dual nature. They supported an iterative
design cycle in which we could test software, curricular exercises, and the attrac-
tiveness of our technology designs with girls. They also were meant to serve as
experiences which would both engender learning and motivate the girls to further
study in science, technology, engineering and math (STEM) fields. Specifically,
our program goals in conducting these workshops were:

Appropriate Exercises. Our program requires students to understand ad-
vanced technical concepts such as programming, prototyping, and connecting hard-
ware. We sought to develop exercises which introduced these concepts in a non-
threatening way, while providing the appropriate scaffolding to allow students to
quickly use the concepts creatively.

Attractive Technology Framework. Determining the kit of parts from which
students can build robots was crucial, as this kit defines the space of possible robot
designs. Through the workshops we hoped to gain an understanding of what to
place and what not to place in the kit, as well as an understanding of how much of
the initial robot design should be provided.

Software Development. As part of our program, we needed software inter-
faces to allow for iconic programming of robots, as well as a messaging client
which allows the sending of “roboticons”, or expressive sequences of robot mo-

81

5. Robot Diaries

tions.

Student Development. We wished to ensure that our student design partners
got as much or more out of these activities as we did, and so one of our goals was
to engender student growth through this experience. Specifically, we wanted stu-
dents to leave the workshop understanding new technical concepts, with improved
feelings of self-efficacy and confidence with regards to technology, and motivated
to continue studying STEM topics.

Evaluation Scheme. In order to measure student development, we needed
to develop a novel evaluation scheme to determine if students gain motivation,
confidence, and content knowledge through participation in the workshops.

As participatory design workshops, we were not creating a design with learning
goals, instruction, assessment, and tool all aligned prior to the workshop and then
testing this design in the workshop. Instead, we were using these workshops to
work with the girls to help us learn the background knowledge about the girls’
interests and capabilities to allow us to create an aligned design later in the program
(see section 5.5). As such, we had very loosely defined learning goals for these
workshops: we wished the girls to show improved confidence and motivation with
respect to further study in STEM subjects, and we wanted them to display improved
knowledge of the robot building elements and skill at building (and in the case of
the fall workshop, programming).

5.4.1 Curriculum Progression

We designed the Robot Diaries curriculum to follow an arc from simple to com-
plex, familiar to new. We followed this guideline for the introduction of individual
components, throughout the course of a workshop series, and for ourselves as we
progressed from one series of workshops to another. We introduced new robotic
components with a brief example followed by a free exploration time for the stu-
dents. We then presented the students with a small design challenge to use the
component in an expressive manner. Later the students combined the parts to cre-
ate whole robots that could express emotions and communicate.

We learned from the girls as well. In the summer workshop we focused exclu-
sively on mechanical design, with actuation performed by connecting motors and
lights to batteries through switches. We learned which design challenges worked as
effective learning experiences, and what materials worked well for ease of building,
expressive features, and fun robot designs. This workshop was heavily focused on
the goals of developing appropriate exercises and selecting materials. Then in the
more extensive fall workshop we were able to introduce more complex technology
and progress beyond mechanical design to introduce aspects of robot program-
ming. Thus the fall workshop was primarily focused on the goals of developing a

82

5.4. Participatory Design Sequence

software framework, creating an evaluation scheme, and evaluating student devel-
opment to ensure that our approach was valid.

5.4.2 Summer Workshop

The primary purpose of the summer workshop was to engage a small group of girls
in a series of participatory design activities that would lead toward the development
of a working prototype of a “Robot Diary” for use in a more structured fall study.
The summer workshop allowed the research team to work closely with a group of
middle school girls over an extended period of time in direct, “hands-on” coop-
erative exploration of robotic technology. This, in turn, provided four important
opportunities:

1. To experiment with a variety of participatory design activities and discover
which were most effective and compelling for middle-school girls.

2. To develop research themes and observational measures.
3. To progress the concept (both form and function) of a “Robot Diary”.

4. To test evaluation instruments and collect initial qualitative data from inter-
views, observations, and the participatory design activities.

The Summer workshops took place at a public library in the girls’ commu-
nity, one evening a week for two hours. In total there were six sessions over a
seven-week period, with a one-week break between sessions two and three due
to a holiday falling during that particular week. Participants were solicited via
directed recruiting and word-of-mouth. The workshop was titled “Creative Ex-
pression with Robots” and the advertising pitch stated that “Participating girls will
explore different types of technology and, working in groups of friends, will use
those technologies to create short performances like skits, dances, and musical con-
certs.” The girls were thus a self-selecting group who already expressed an interest
in technology.

While the attendance to the workshop was less than we hoped for, we were able
to gather a small but consistent group of girls to attend the sessions and developed
excellent rapport with them over the course of the workshops. A group of seven
girls signed up for the summer workshops. The girls were all between 11 and 12
years old and middle-class. Four girls were signed up by the time the first session
was held; two pairs of friends. One girl was ill so three girls attended the first
session. After this session, one of the girls’ mothers offered to recruit additional
friends who she believed would be interested. Seven girls attended session two.
One girl attended session three. Three girls attended the remaining sessions. The

83

5. Robot Diaries

same three girls attended regularly. The research team who interacted with the girls
consisted of four women and two men, four or five of whom attended any given
session.

Session Arc

Each session followed approximately the same general arc. Broken into stages, the
session arc was as follows (times are approximate):

1. review of previous week’s homework (10 minutes)

2. bridge from the previous week’s homework to this week’s topic (5 minutes)
3. acting-games exploring the week’s topic (20 minutes)

4. introduction to the week’s featured technology (10 minutes)

5. open exploration with the week’s technology (20 minutes)

6. directed design activities with the week’s technology (20 minutes)

7. discussion, brainstorming, and review (10 minutes)

8. assignment of homework (10 minutes)

Each week we would describe a new concept centered around a core technology
- for example, we would bring up light as made by LEDs, or motion as made by
electric motors. We would begin with an acting game wherein girls would attempt
to be expressive with a very constrained set of actions. We found acting games
early in the evening was a successful way to engage girls in topical discussions
and foster and promote collaboration among the girls. The games were physical
in nature, requiring the girls to perform, usually with props. The games were de-
signed to introduce the girls to general concepts without technology that would be
addressed in more detail later in the session through technology.

After the acting games, the girls were introduced to the featured technology
of the week. This usually took the form of two or more of the research team
demonstrating the use of a given technology, such as motors or LEDs. The staging
was an important aspect of this introduction. The girls would crowd around a
table along with the researchers, as the demo took place. The tables themselves
were usually strewn with wires, batteries, and various other technical supplies.
This extremely informal staging was intended to promote a playfulness with the
materials.

Immediately following the introduction to the technology, the girls were given
time to explore and play with the featured technology without any restrictions or

84

5.4. Participatory Design Sequence

expectations. Throughout this time, the researchers would work with the girls, an-
swering questions and facilitating their play, but also allowing the girls space to
truly experiment, to discover features and capabilities of the technology on their
own, and to even allow them to make mistakes (for example, wiring motors incor-
rectly) in order to foster in the girls a sense of play and confidence in their ability
to manipulate the technology.

After a break the girls would be presented with a directed design activity that
would marry the general concepts of the acting game with the featured technology
of the week. Like the free play, the researchers were present to support the girls
in their process of discovery, invention, and design. In addition to working with
the technology, during this time the girls were encouraged to work with the art
supplies. Again, staging becomes important, so we made every effort to make the
art materials ready at hand and compelling to use.

Figure 5.2: Robots made from craft materials

Materials

We used craft materials to construct the robot forms because these materials are
familiar and approachable; see Figure 5.2 for some examples of such robots. The
students used cardboard and foam board to build the structure of their robots. To
this structure they attached aesthetic components like markers, felt, beads, bells
and other items from a local craft store to transform the plain cardboard and give
the robots personality.

Beneath the craft materials we used a variety of technical components to move

85

5. Robot Diaries

the robots. In the summer workshop students constructed simple circuits from
alligator clips, AA battery packs, and switches to drive lights (LEDs) or motors.
They also used radio transmitters designed for model airplanes to operate servo
motors.

Evaluation Methods

We designed several evaluation instruments for the summer workshop: specifically,
pre- and post-interviews with the girls and brief surveys after each workshop ses-
sion. We also met immediately after each session to discuss the evening’s events
and record our insights from that session. Although we had too few regularly at-
tending students in the summer workshop to provide evaluation results, the work-
shop afforded us a first opportunity to test some of these instruments, and both the
evaluation instruments and post-session discussion aided us in formulating a set of
lessons learned.

Lessons Learned

Our experiences running the workshops pointed to a number of design issues rel-
evant to the overall project. These are described below, along with recommended
modifications that were made in the fall workshop.

Providing specific and directed tasks is imperative It was imperative to pro-
vide participants with specific and directed tasks. These can be preceded by open
play and exploration. But providing them with a specific and directed task was
required to have them produce something. For example, experimenting with mak-
ing sound is good, but then student should be directed to produce a specific kind
of sound, or a sound to illustrate something, or to integrate sound into something
else.

There is a tendency to work with what is “at-hand” The girls seemed to work
almost exclusively with whatever art and craft materials were directly at hand.
Never did one of the girls go randomly exploring through the arts and craft mate-
rials. Whatever materials were on top or in front of them were the materials they
worked with. The only times they sifted through the materials was when searching
for something specific.

If one of the goals is for the girls to use a diversity of arts and craft materials
for their projects, then tactics should be employed to make as many materials as
possible at-hand and to more vigorously promote their use. One obvious tactic
would be to lay out the materials so they are all visible. In addition to making all

86

5.4. Participatory Design Sequence

of the materials immediately visible, it would probably be helpful to introduce the
materials, to actually go over each and every one of them. When new materials are
brought in, (e.g. plastic balls for mounting lights) they too should be introduced.
When this happened, as in the case of the plastic ball, they were more likely to be
used.

Recommendations:

o Identify and describe the qualities of the different arts and craft materials.

o Create demonstrations that exhibit how different arts and craft materials can
be used in conjunction with the different technical components.

Prototyping is a difficult concept and task The girls seem to have difficulty
with the concept of prototyping. That is, they seem to have difficulty with pre-
senting something and asking us to imagine it as something else. They want to
build things as close as possible to how they want them to be, in both form and
function. They seem reluctant to say “it’s supposed to do this, but for now it just
does that.” This is a challenge because the design activities that we involve them
with are essentially prototyping and not production activities. But the assumption
that prototyping would come naturally to the participant was a flawed assumption
on our part. Prototyping is an activity of abstraction that requires some knowledge
of what the final system could be like - knowledge that the girls most likely did not
possess.

Prototyping was additionally complicated by physical and dimensional require-
ments. Motors required mounting, long wires became tangled, and the construction
of forms was difficult. The girls also had difficulty conceptualizing and construct-
ing mechanisms for motion and support. This is to be expected. Mechanical engi-
neering and industrial design are difficult. Recommendations:

e Introduce and develop the concept of prototyping through example.

e Structure the arc through the lessons so the girls witness the refinement of
their concepts from rough sketches to finished products.

o Create a set of basic working mechanisms for motion.

e Create a set of basic support structures.

There is a predisposition to anthropomorphic and zoomorphic forms The
girls seemed interested in developing fairly stereotypical robot forms: humanoids
and dogs. The most successful forms, in terms both of the girls’ enjoyment in

87

5. Robot Diaries

making them and functionally, were a dog’s head and a humanoid. This is not an
issue so much as it raises a set of interesting questions, specifically:

e Are anthropomorphic and zoomorphic forms necessary (or at least extremely
valuable) hooks for the girls to use and build on?

e Do these common forms limit their creativity?

Our concern with the predisposition to anthropomorphic and zoomorphic forms
is that by immediately turning towards these forms, do the girls limit their range
of possible exploration? That is, we struggle with the question of how creative
is it to imitate the common forms of robots from the media? However, we also
want to be honest and reflective and admit that it is our interest in more abstract
and ambient robotics that is the source of these questions. If anthropomorphic and
zoomorphic forms are those which are most compelling to the girls, they should be
wholly supported.

Recommendations:

e Provide examples from art and design of alternate forms as well as a broad
range of anthropomorphic and zoomorphic forms.

e Encourage the girls to personalize and thus differentiate their anthropomor-
phic and zoomorphic forms.

Not all materials are equally valuable As this was our first time working with
the girls, we did not know which materials would capture their interest and which
would not. We provided them with a large variety of arts and crafts materials, and
gave them lessons on using small and large motors, servos, ways to make physical
sound, and LEDs. We found that girls used some materials much more frequently
when creating their robots, specifically:

e Servo motors were conceptually easier to understand and physically easier
to use than continuous rotation motors. Small, fast DC motors were almost
useless, as they move too quickly and don’t have enough torque to move
significant masses. Larger continuous rotation motors did get used, but were
harder for the girls to install and use than servos.

e Vibration motors were a big hit, especially when combined with small bells
to make sounds.

e Larger bells and chimes were generally not used because it was difficult to
design a mechanism to cause them to emit sound.

88

5.4. Participatory Design Sequence

e LEDs were popular, and useful for expressing emotion (glowing eyes that
could be red for angry or green for happy). We provided some materials for
optical effects, such as wax, colored transparencies, and mirrored surfaces -
these were not used.

e The girls like hot glue so much that they began to use it even in situations
where other fasteners could be placed faster and work better. We strongly
recommend that hot glue be incorporated, but that action be taken if the girls
become overly dependent on it as a building material.

e Fake fur was the most popular “skin” for the robots, although this may be
due to the large number of zoomorphic projects.

The importance of community involvement School-based educators learned
long ago that family involvement was an important part of a child’s education, and
we believe the same to be true for informal learning experiences (Crowley and
Jacobs, 2002). Over the course of the summer, we observed numerous instances of
girls inviting friends and family into their Robot Diaries experience. This included
girls showing off their creations when their parents came to pick them up, or even
showing off our creations (one girl was very excited about showing her father the
TeRK robot we had brought in). In one instance, a girl’s friend was in the library
on the same day as our session, so she invited her friend in to see what she had
made.

We believe these instances of community involvement are important learning
moments, as they allow children both to learn from others and to share what they
have learned. This sharing of knowledge helps children to solidify their own posi-
tion as a knowledgeable individual in the community.

As creators of an informal learning experience, we should embrace any and
all opportunities for community involvement. Over the summer, we did this by
inviting the girls’ families to the last session, to give the girls a chance to show off
their creations. One child invited her parents and three siblings to attend, and then
proudly demonstrated both her robot and her knowledge of the technology she had
been using over the summer.

Recommendations:

e Involve family and friends in Robot Diaries activities.

e Provide girls with structured opportunities to involve members of their com-
munity (e.g., activities that require them to work with a family member).

89

5. Robot Diaries

Making room for ‘Girl Culture’ This lesson has to do with connecting our
activities to the cultural world that middle school girls inhabit. As a number of
our research team learned while running a previous, unrelated project with this age
group, middle school girls respond well to educational experiences that reflect their
cultural interests. This is why we sometimes asked girls to bring in pop-culture
products to use in session activities. For example, in order to introduce the girls to
LEDs, we set up an activity where they could choreograph the LEDs to music and
invited them to bring in their own music. One of the girls brought in a Madonna
CD, which we played while they were creating their light show. The girls enjoyed
listening to the music while working, and created a light show that was relatively
well synchronized to the familiar music. In the future, we should continue to make
room in our session activities for the things that interest girls.

5.4.3 One-Day Workshops

We distilled the activities developed during the summer for two one-day work-
shops in the early fall. We held these workshops in collaboration with C-MITES,
a university-affiliated organization that provides educational programming for aca-
demically talented elementary and secondary school students. Through C-MITES,
we obtained significantly higher attendance numbers than during the summer -
15 girls attended the beginner workshop and 12 attended the intermediate. These
workshops served as a chance to observe a larger audience of girls using craft ma-
terials to create communicative robots.

Beginner Workshop

The beginner workshop was a direct distillation of the summer curriculum. We
took the lessons learned from the summer, especially regarding which materials
and activities worked, and shrunk the workshop into a six-hour session focused
on the design of an expressive robot. We began by introducing the goal of the
workshop, and then quickly taught girls how to integrate motors, servos, and LEDs
into their robots. As in the summer we allowed some time for free exploration
with the materials, before turning most of the afternoon over to the directed design
activity.

Intermediate Workshop

In the intermediate workshop we sought to test some activities we were working
on to introduce programming in our ten-week fall workshop. For this session, we
introduced the same set of basic robotic components (LEDs, motors, servos), but

90

5.4. Participatory Design Sequence

also introduced a microcontroller and programming environment. We followed the
same basic structure as the beginner workshop (introducing components, allow-
ing for free play, and then ending with a directed design task). The intermediate
workshop drew girls from the beginner workshop as well as girls with other prior
robotics experience.

5.4.4 Fall Workshop

Our most extensive workshop was held from early November 2006 to mid-January
2007 with a group of 8 girls from a private, university-affiliated middle school.
Sessions were two hours long and held immediately after school. Referring back
to the five goals stated at the beginning of the Participatory Design section, the
fall workshop was focused on software development, adding programmability to
the technology framework, creating and testing an evaluation scheme, and using
this scheme to measure student development and ensure that our approach was
working.

Curriculum Progression

We began the workshop in much the same way as our summer workshops, grad-
ually introducing the students to important robotic technologies over the first four
sessions. A major difference was the early introduction of the Qwerk (Nourbakhsh
et al., 2007), a controller which allows the girls to create programs which actuate
motors, servos, and LEDs. In addition, we began to introduce the girls to “Doo-
dlechat” (see Figure 5.3), a combined chat and collaborative doodling program that
was designed by our group and later used to control the robots. Within Doodlechat
girls could discuss in real time from home as well as draw on a community win-
dow pane - thus they could collaboratively draw a robot idea. Doodlechat enabled
the students and researchers to communicate as part of a private, informal, online
community between workshop sessions.

Once students had the foundational robotics knowledge to make cogent design
decisions, we began a series of participatory design exercises which yielded a final
robot design in session six. This design was selected by the girls from a set of five
after a group discussion. The girls then each constructed a variant on the design
with the same underlying morphology but widely varying cosmetic touches (see
Figure 5.4). Once the final robots were constructed, the girls took their robots
home each week to experiment with programming the robots in a novel software
framework which was refined weekly based on the girls’ feedback.

91

5. Robot Diaries

£ DoodleChat [GE=)
DoodleChat Connect | o -

Figure 5.3: The Doodlechat interface

Materials and Software

Building materials were very similar to the summer workshop: cardboard and foam
board for constructing structures, a wide range of arts and crafts materials to create
aesthetic designs as well as sounds and motion of small components (like eye-
brows, noses, etc), and LEDs, motors, vibration motors, servos for movement.
Unlike the summer workshop, students were also introduced to the Qwerk (Figure
5.5) to allow them to program their robots.

The Qwerk was a commercially available product that was selected primarily
because it had a high upper limit of supported components and because the research
team had experience using and developing for it. It was also capable of being
wirelessly tethered to a computer - a mode in which programs execute on a host
computer, with commands being sent wirelessly to the Qwerk. We ran the Qwerk
in this mode, allowing us to build a software environment for the girls to program
their robots that existed entirely on a host computer. Doing so allowed us to develop
the software much more rapidly, which was important as we were adjusting the
software in real-time based on feedback from the girls.

The software itself consisted of three separate programs; the RuR (see Fig-
ure 5.6), the Express-O-Matic (see Figure 5.7), and the Roboticon Messenger (see
Figure 5.8). Together, these programs enabled programming of the robots in an
easy-to-learn format and sharing of finished programs. The RuR allowed direct
remote control of the robot through on-screen sliders and buttons (for example,
one could set the speed of a motor with a slider). It was also possible to save the
state of the sliders and buttons into an Expression. The Express-O-Matic allowed

92

5.4. Participatory Design Sequence

. LEDs: Digitad
LEDs: Digtal
Qut Ports S Dt Parts:

0 - rediorange
1 - blueigreen

2. redioninga ‘\ ¥
3 - bivaigreen/ /i . —. \
Sevo [AW Q/ Serve
Pot1 B = S o 0

\ i \
i\ i

S
e W=

L

Y =’
The Rainbow Fish Shoe

Professor Bobert Mr. Pengie

Figure 5.4: The chosen design and girls’ instantiations of the design

one to chain together expressions, with a customizable delay between expressions.
We referred to these chains of expressions as Sequences. A sequence, essentially,
is a script of motions for the robot to execute - thus it is possible to animate the
robots through a series of expressions. Finally, the Roboticon Messenger allowed
sharing of both expressions and sequences. Like Doodlechat, Roboticon Messen-
ger included a chat window. Additionally, girls were able to post sequences or
expressions to a public space, or send them to individual girls. We referred to pub-
licly posted sequences or expressions as Roboticons, a take-off on the emoticons
that symbolize mood in online chat conversations. Girls could play Roboticons, or
incorporate them into their own programs, thus mixing together elements of their
own programs with those of other’s.

The software was designed and written by the research team during the fall
workshop with feedback from the girls. We introduced each of the three programs
during the pedagogically appropriate week - so the girls used the RuR for a week to

93

5. Robot Diaries

Figure 5.5: The Qwerk microcontroller

allow them to move their robots. Then they learned to use Express-O-Matic so that
they could script sequences of motions, and finally they used the Roboticon Mes-
senger to share sequences. The girls spent a week with each program beta-testing
the program during the workshop and at home. They would then return the next
week and provide comments to us. In some cases we were able to take their com-
ments and revise the software program to provide them with an improved version
by the next week. In this way, we were able to quickly improve the programming
environment in a way that was driven by feedback from the girls.

94

5.4. Participatory Design Sequence

Emergency Stop

poen 57| oo |
=

255

Figure 5.6: The RuR software program

95

5. Robot Diaries

2 Express-O-Matic | Untitled

File Refresh
Logged in to Relay: No =
Sequence| Py | Connect | connectedto querks Mo Expressions
. . Angryexpression 1 et
Angryposition 1
A Sossion1 @ S
ngryexpression ngryposition
A i Ll jksafkasfhkadsj2
Possed1
Possed2
Possed3 =
Possesedd
Rachel, Sage, and Irina 1
Rachle, Sage and Irina 2
Ston Fronertos)00000000000¢
5 = SadfuleggofO0000000000C—
Expression: Angryposition 1
. . Tiredpengie3
Expression Speed: 1 1000)) I
Tir 2 hd
Wait Until: |50 | seconds [/] Loop back to beginning il] [1]
Delete Step_| Conditions
=]

Figure 5.7: The Express-O-Matic software program

= Roboticon Messenger @ = @

5 Logged in to Relay: Yes
Roboticon Messenger [iDisconneel] oot oo meerancar sarvan ves (0488557

Roboticons Message History Connected Users

“off_don.xml
all_off.xml

all_on.xml

blinking xml

LightOff xml
LightOff_MotorFaster.xml
LightOn.xml
LightOn_MotorSlow.xml
Servo100.xml
Servo200.xml
ServoS0.xml

Attached Roboticon

Drop a roboticon here to attach it to your message.

Figure 5.8: The Roboticon Messenger software program

96

5.4. Participatory Design Sequence

Evaluation Methods

Our research used methods drawn from the learning sciences and interaction de-
sign. Collected data included interviews with participants and their parents and
electronic activity logs.

Participants were interviewed individually at the beginning of the workshop
(pre), and again at the end of the workshop (post). Interviews included questions
about relevant declarative knowledge (e.g., identify and provide a definition for
relevant parts, such as sensors and motors) and designed systems (e.g., examine an
electronic toy and describe its components/how it works). Participants were also
asked to imagine how they might build a new system (an alarm) using a fixed set
of components (a battery pack, alligator clips, switch, LED, servo, and sensor).
Pre-interviews ranged in length from 16 to 32 minutes. Post-interviews ranged in
length from 21 to 45 minutes.

Parents were interviewed in their homes at the beginning of the workshop and
again after the workshop was completed. In the pre-interview, parents were asked
about their child’s previous experience with robotics and related technologies and
about the family’s activities related to science and technology. Post-interviews
mainly focused on parents’ impressions of the workshop and what their child
gained from participation.

Electronic activity logs were derived from girls’ contributions to the Doo-
dlechat and Roboticon Messenger online communities. From these logs we could
see how frequently girls were logging in, contributing through chat, and contribut-
ing through doodling or posting Roboticons.

Evaluation Results

Girl-Focused Parent interviews conducted at the start of the workshop revealed
that children in the workshop group were generally interested in using and/or ex-
ploring technology. A subset had attempted to participate in other technology
workshops, but these experiences were not always positive. One parent described
her daughter’s experience in the following way:

She has been fascinated by robotics for a long time every time we sign
up for one of those [technology] camps we’ll get there on the first day
and it’s all obnoxious little boys and she just goes, 'never mind’.

Another parent provided the following explanation for why she thought her
daughter would enjoy Robot Diaries:

The problem with some of those [technology workshops] was that

97

5. Robot Diaries

there were often more boys there than girls, and so she didn’t feel quite
as comfortable. So that’s why this [program] looked more interesting.

As comments from this small sample of parents suggest, existing resources
may not be fully serving the needs of middle school girls interested in technology
exploration. These parents point to the male-dominated culture of these activi-
ties as being particularly problematic for their daughters. One of the girls echoed
this sentiment when she commented that her school’s competition-oriented FIRST
LEGO League team, which she had joined briefly, was “more geared towards
boys.”

Engagement In Robot Diaries, we tried to engage participants using a ‘social
narrative’ approach, which enabled girls to engage with their robots in a narrative
way. A quick look at the robots created during the workshop suggests that this
occurred for most participants. Six out of the eight participants named their robots.
Nearly all of the participants personalized their robots through decoration, and a
few created additional narrative elements such as accessories for the robot (for
example, one student made an ‘iPod’ out of foam for her robot and another made a
guitar). Another participant created a back-story to explain her robot’s appearance:

Dear old elderly professor Bob suffered from a head injury when he
ran into an Eskimo so now he has a band-aid on his head. And he’s
a professor so he has to dress up. The tie. And he has certain vision
problems so he wears a ‘monocule’ [monocle].

An examination of the electronic activity logs showed that all eight students
participated to some degree in the Robot Diaries online community from home.
Each girl posted messages to the custom messaging program used during the work-
shop. Half of the students posted robot programs, or Roboticons, to share with the
Robot Diaries community. An example of one such Roboticon was a program ex-
pressing sadness. The robot’s eyes were lit by green LEDs as the robot’s arms rose
to cover the eyes and then slowly lowered. Network problems contributed to at
least some of the remaining girls’ inability to share Roboticons from home.

Lastly, informal observations of the girls’ behavior at the workshops showed
them to be engaged by the workshop content. Frequently one or more girls would
not leave when the workshop ended. On one occasion one of the girls stayed a full
hour after the two-hour session officially ended. It was not uncommon for girls to
stay 15-30 minutes after the session to continue working on their robots.

98

5.4. Participatory Design Sequence

Learning Learning was formally measured through analysis of pre- and post-
workshop interviews with participants. Analysis consisted of coding interview re-
sponses for correctness, comprehensiveness, and level of sophistication. In order
to determine the reliability of our coding scheme, two raters coded three of the 16
transcripts. Inter-rater reliability was calculated at over 83%. Coding disagree-
ments were resolved through discussion.

Two main types of knowledge were assessed: declarative knowledge and knowl-
edge of technical systems.

The majority of participants showed gains in declarative knowledge. On aver-
age, participants were able to identify and correctly label four (SD = 1.31) out of
six robotic components at pre-test and 5.9 (SD = 0.35) at post-test. A paired t-test
indicates this increase is statistically significant, t(7) = -4.26, p < 0.05. Addi-
tionally, there was a significant increase in the comprehensiveness and accuracy of
participants’ descriptions of a sensor and electric motor, as indicated by sign tests.
Six out of eight participants showed improvement in their descriptions of a sensor
at post-test (the other two participants were already knowledgeable at the start of
the workshop), p < 0.05. Seven out of eight participants showed improvement in
their descriptions of an electric motor, p < 0.05.

The American Association for the Advancement of Science (AAAS) recog-
nizes knowledge of technical systems as an important component of scientific lit-
eracy for children in grades 6 through 8. The following benchmark is included in
their Atlas of Scientific Literacy (AAAS, 2007), page 57:

“Analyze simple mechanical devices and describe what the various
parts are for; estimate what the effect of making a change in one part
of a device would have on the device as a whole.”

We believe that this type of knowledge may be critically useful for engagement
in the design process, and movement towards technological fluency. We assessed
knowledge of technical systems in two ways. First, we presented participants with
an electronic toy (a Furby, a Meowchi, or an iDog), and asked them to explain what
parts were inside the toy, and how it worked . At post-test, all seven children were
able to identify parts from the workshop (e.g., servos or LED’s) in the electronic
toys. Additionally, six out of seven children were able to provide more sophisti-
cated explanations of how the toy worked at post-test (one participant showed no
change). The increase in sophistication of explanation was significant, p < 0.05
by sign test.

Parent Viewpoints One of the most important reasons to work on technical lit-
eracy in informal contexts is that we have an opportunity to change how parents

99

5. Robot Diaries

see their children. This is crucial to long-term success of any technology enrich-
ment program. We know from prior work in museums that even the most edu-
cated parents often fall back on traditional stereotypes when they think about what
girls might be interested in learning about (Crowley et al. 2001). Because parents
play such a large role in orchestrating the educational enrichment experiences of
middle school students, effective programs should change how parents view their
children’s interests, competence, and potential for success in technology. Our pre-
liminary evidence suggests that we did just that.

In interviews conducted after the conclusion of the workshop, a number of
parents commented on changes they had observed in their daughters. Two parents
commented that the workshop led to gains in interest and engagement in robotics
and technology for their daughters. For example:

I think [she] learned a lot from and just got much more adept and fluent
at doing that kind of thing and I think she just sort of just enjoyed the -
the whole concept of doing it, and she got bitten by a bug, I mean she
wants - she wants to do more and so now we’re sort of trying to figure
out how you do that - what else there is besides LEGO Mindstorms.

Two parents commented that the workshop helped to broaden their daughter’s
perspective about technology. For example, when asked what he felt his daughter
gained from the workshop, one parent responded, “I think she probably got an
awareness that computers and technology are in more parts of her life than she
realized.”

Additionally, three parents commented that the workshop helped to increase
their daughters’ comfort and confidence with technology.

I would say there was a - a pulling together of things that she probably
already knew, but hadn’t really combined all the skills in the way that
she did, and - just a higher comfort level. In some of the skills that she
probably already had, I mean she’d downloaded things before, and
she’d - you know, interacted with websites and whatever before, but
she’s just much, much faster at it now, and less afraid when she hits a
glitch of her - that’s - the big thing is that when she hits a glitch, she’s
like not afraid to kinda, fix it as opposed to ‘eek!’

Finally, six parents commented that the workshop and associated activities led
to knowledge gains for their daughters.

Well I think she got a lot out of it. I know she really enjoyed it, and
I know she learned, I mean I know before this she had no idea about,

100

5.5. Designing for Dissemination

you know, all the things she would mention, words that I have no
idea about. You know, like how to built the robot, how to pr- control
it via the computer, how to enhance the robot. Like she was very
excited, when she’d come home with the little - the little white and
black [servo] boxes. And be like, I'm adding a new one to this, ’cause
I want it to do that.

In summary, parents commented on changes in their daughters’ knowledge,
confidence, interest, and perspectives on technology. Each of these areas of change
represents an important part of girls’ movement towards fluent use of technology.
As girls come to see technology as more relevant to their lives or think critically
about technology more often, they take an important first step towards technology
literacy and a deeper engagement with technology.

5.4.5 Validation of the Approach

Our evaluation and analysis of the 2006 pilots provided us with some preliminary
data to validate our curricular approach. Specifically, we were able to document
participants’ engagement in the program, their knowledge gains, and their parents’
viewpoints about how they had changed as a result of participating in the workshop.
We also found that some of our curricular activities were scalable, as demonstrated
by the fact that C-Mites has continued teaching one of our one-day workshops
without our support.

In summary, Robot Diaries appeared to have a positive impact on its partic-
ipants. The eight girls enrolled in the fall workshop were engaged by the social
narrative approach to robotics and actively participated in the community formed
by the workshop. Participants also gained valuable technical knowledge. This evi-
dence suggests that the Robot Diaries program is moving participants in a promis-
ing direction. However, given the pilot nature of the first phase of the program and
the small number of participants, the findings are incomplete. With the approach
validated by our participant results, we began a design process oriented ultimately
towards creating disseminable curriculum, materials, and software.

5.5 Designing for Dissemination

The goal of the Robot Diaries program is the creation of an activity that is a viable
alternative to robotics competitions. This goal requires that the activity can be led
by educators who are not members of the research team. At the beginning of the
second design phase of the Robot Diaries program we shifted our focus to creating
a program that could be taught by external educators. This goal suggested two

101

5. Robot Diaries

other requirements: a documented curriculum, and a set of supporting hardware
and software tools that did not require a highly technical background to use.

We approached the design problem of creating a new program through the
principle of alignment. As we were creating an entirely new educational activity,
we began by specifying the learning goals of the activity, and then derived a pro-
gram theme, assessments, and curriculum from those goals. While designing the
curriculum, we also created new hardware and software tools that aligned with the
goals and curriculum of the program. The rest of this chapter is concerned with this
design, pilot, and evaluation of the first revision of this curriculum and associated
tools.

5.5.1 Learning Goals

At the outset of our redesign of the curriculum and tools we identified the educa-
tional goals that we were aiming for in the Robot Diaries program. We created
a core learning goal that we felt would support our program goals. The ultimate
learning goal of Robot Diaries is to enable girls to engage with, change, customize
or otherwise become fluent with the technology in their lives. From this goal, we
derived a number of others - the full list of which can be seen in Table 5.1. We
began the process of identifying goals by deciding on a central theme for our cur-
riculum.

Curricular Theme

We thought it important to base our curriculum around a core theme to provide
consistency to the instructional sequence. We rooted our curriculum on the notion
of the engineering design process; the steps of planning, prototyping, testing &
evaluating, troubleshooting, and documenting. We also stressed the importance
of iterating through these steps multiple times. Based on our earlier workshops,
we felt that this process could best be explored by students through the design of
a robot focused on communication and expressiveness. The idea for the theme
came out of our experience with how girls engaged in design in the participatory
workshops. Girls engaged in what we labeled “organic design” - they would build,
often with little planning, and when a component of their creation did not work,
they added to their creation to try to work around this failure. We rarely saw a
girl remove a non-working part from their robot, and there seemed to be a general
resistance to “starting over”. Hence, robots would grow in an organic, almost
stream-of-consciousness way.

We discussed within the group whether or not the theme could align well with
our stated overarching learning goal. The design process is inherently about creat-

102

5.5. Designing for Dissemination

ing new technological artifacts, and our central goal is to enable girls to become ca-
pable of changing or customizing the technology in their lives. To us it seemed like
teaching design process aligned with this goal very well, as customizing technol-
ogy would rely on many of the same steps (prototyping, evaluating, troubleshoot-
ing) as design. Once the theme was selected, it became fairly easy to derive a
number of lower-level learning goals; we began this process of derivation by cre-
ating three categories into which goals could be placed.

lower-level Learning Goals

We used a categorization system from Understanding by Design (Wiggins and
McTighe, 2005), an instructional design textbook, to help us structure and dis-
cover learning goals. This system divides goals into dispositional, knowledge, and
skills:

e Dispositional goals. The dispositional goals of the program are to help girls
see technology as interesting and deeply relevant to their lives, to help moti-
vate their continued engagement and exploration of technology, and to pro-
vide them with confidence in their own ability to create with, modify, or
troubleshoot the technology in their lives.

o Skills goals. The central skills goals are focused on design and creation; al-
though some of these goals are specific to the Robot Diaries technological
context, many of them are in line with the ITEA Standards for Technological
Literacy (ITEA, 2000). With respect to design, girls will understand and be
able to engage in an iterative design process, including prototyping, evalu-
ating, troubleshooting, and documenting. They will understand the idea of
trade-offs and constraints and be able to identify them for specific designs
they create. In terms of creation, girls will receive a detailed understand-
ing of the robotic and structural kit components to allow them to properly
identify components which meet their needs. Girls will also learn to use a
number of tools to construct their designs, as well as a graphical program-
ming language to animate their creations.

e Knowledge goals. Our knowledge goals were derived mostly from our de-
sired skills - for example, we wished for girls to engage in the design process
(a skill), and so one of our goals is to teach the steps of the design process.
We also formulated knowledge goals around facts that are important for girls
to know in order to create with the specific media of the program (LEDs, mo-
tors, servos, a microcontroller).

103

5. Robot Diaries

We created a list of lower-level learning goals to align with specific curricular
activities and placed this list (see Table 5.1) at the beginning of each part of the
curriculum. In many cases, goals are only indirectly supporting this process. For
example, many of the Technical Knowledge Application goals are necessary for
girls to learn in order to work with the specific materials that are used in Robot
Diaries; it is important that they learn these skills, because without them they would
be unable to learn more directly supportive goals.

The final categorization system in Table 5.1 has been modified somewhat to be
more specific to the curriculum’s theme. Even so, these categories still categorize
goals by knowledge and skills: Technical Knowledge Application (indirect skills),
Design Process Knowledge (direct knowledge), and Design Process Application
(direct skills).

Dispositional Goals Dispositional goals are not present in able 5.1 because we
did not align specific curricular activities to these goals. Instead, we viewed dispo-
sitional goals as learning goals that should be attained through completion of the
entire program. The dispositional learning goals we identified were:

e Engagement and Motivation. The program will help girls see technology
as interesting and deeply relevant to their lives, and help motivate their con-
tinued engagement and exploration of technology.

e Confidence. The program will help girls to develop confidence in their own
ability to create with, modify, or troubleshoot the technology in their lives.

e Worldview. 1. Girls will have incorporated the idea that there is no one right
answer to solving many real-world problems. 2. Girls will see that there are
many ways to use technology (including in situations which do not appear
to be ‘technological’), and that some of these constitute creative ways to use
and think about technology.

5.5.2 Curriculum

We began a curriculum design once we had completed the first draft of our learning
goals. The curriculum, the entirety of which is in appendix A, was influenced by
the learning and program goals, as well as by a number of lessons learned from our
previous participatory design workshops and from speaking with potential partners.
We begin by discussing these initial considerations, and move on from there to
discuss the theme of the curriculum and its structure.

104

5.5. Designing for Dissemination

Technical knowledge application

Demonstrate the use of hand tools.

Attach servos, vibration motors, and LEDs to a controller.

Create short programs using a graphical programming language.
Design process knowledge

Describe all of the steps in the design process.

Explain why design is an important part of the creative process.

Explain why design is an iterative/experimental process.
Design process application

Planning

Create or modify a technological design to meet a need.

Formulate design goals.

Identify design constraints.

Identify available resources.

Identify the limitations of an available resource.

Draw a sketch or diagram of a technological design.

Create a design which utilizes mechanisms X, Y, and/or Z

Modify a design or implementation based on design constraints.

Prototyping
Assemble the resources needed in order to implement a design.

Construct a physical prototype of a technological design.
Evaluating designs

Assess how well a technological design meets a need.

Judge the benefits and drawbacks of a design modification

with respect to design constraints and goals.
Troubleshooting

Identify problems with a technological design.

Devise solutions to the problems with a technological design.
Documenting designs

Describe a technological design using writing or photography.

Table 5.1: Learning goals

Considerations

Teachable by Partners A major program goal for the new curriculum was that
it should be teachable by educators that we train and with whom we partner. The
curriculum we had developed for our earlier participatory design workshops were
designed to allow us and the participants to jointly explore and discover a com-

105

5. Robot Diaries

pelling robotics experience for middle school girls. This earlier curriculum focused
on answering questions such as “What type of robot do middle school girls want
to create?”, “What form should the robot take?”, and “What materials are the eas-
iest to use and result in the most compelling robots?” This participatory design,
discovery-based workshop curriculum was both labor- and materials-intensive, as
well as being very open-ended and flexible. Unfortunately, these characteristics
made the participatory design curriculum poorly suited to dissemination and train-
ing of external educators.

Materials It became apparent during our numerous participatory design sessions
that the materials provided can impact the students’ creativity. Both the specific
variety of materials made available and the layout and arrangement of materials
are very important. Students have a strong tendency to use the materials that are
‘at hand’. Student creativity can be increased by providing a variety of arts and
crafts materials and making the variety of materials readily apparent.

Pacing of Activities A number of our lessons learned concern the timing and
pacing of curriculum activities. For example, we learned that middle school stu-
dents require significantly more time than adults to perform manual skills and have
tried to pace our activities accordingly (e.g., attaching components to a microcon-
troller using a screwdriver took students roughly four times longer than adults).

Modularity Based on our conversations with several potential partner venues,
we learned that the amount of time dedicated to any given program varied from
site to site. Girl Scouts might spend roughly six hours working on a badge. Groups
such as the People Always Learning Something (PALS) home school group and
Sarah Heinz House Boys and Girls Club have ten- to twelve-week classes. In order
to make our curriculum applicable to as many groups as possible, we decided to
take a modular approach. We developed a core set of activities as well as optional
activities. In our curriculum we specify and study which learning goals are targeted
by each activity so that teachers can see which learning goals they can accomplish
given their own time requirements.

Instructional Sequence

We designed a three-part curriculum: the first part’s goals were to educate girls
how to use the materials of Robot Diaries (both robotic and craft) and the purpose
of the program (to build an expressive robot). The second part was an introduction
to the the design process, and a run-through of an initial, constrained design cycle.

106

5.5. Designing for Dissemination

The third part, which lasted longer than both previous parts combined, was a set
of iterative design cycles followed by use of the robots in communication-focused
group activities. We briefly run through the activities of each part here.

Activity Estimated Time
Session 1

Introduction to Arts & Bots 10 minutes
Survey 15 minutes
Group Activity: Expressive Charades 20 minutes
Introduction to Motors, LEDs, and Circuits | 10 minutes
Group Activity: Hypnotic Eyes 10 minutes
Introduction to Hummingbird and Software | 25 minutes
Group Activity: Make a noise 15 minutes
Session 2

Home Activity 1: Scavenger Hunt 5 minutes
Home Activity Follow-Up: Scavenger Hunt | 10 minutes
Introduction to Express-O-Matic 20 minutes
Group Activity: Foley Artist 40 minutes
Choose a User Name 15 minutes

Table 5.2: Sequence of activities for first curricular module

Part One: Introduction Table 5.2 shows the sequence of activities for the first
part of the curriculum. These tables have been taken directly from the curriculum
documents provided to educators. We broke up the activities into sessions lasting
roughly two hours. This was a somewhat arbitrary choice, as in our pilots sessions
were anywhere from 1 to 3 hours long. Session length has minimal effects on
the timing of the activities, with the exception of take-home activities, which were
most logically described at the end of a session.

We began the first session with an introduction to Arts & Bots, the name that
we gave this iteration of the Robot Diaries program. In the introduction we dis-
cussed the goal of the program from the student’s perspective - that is that Arts &
Bots is about designing robots to be expressive and communicative. We then allo-
cated some time for a research survey of the students to establish baseline interest,
motivation, and confidence. The next activity was a game of expressive charades,
in which girls pretended that they could only move in certain ways (to demon-
strate the difficulty of making a mechanical robot with limited movement into an
expressive device). This pattern of introducing a concept and then highlighting or
practicing the concept in an activity was heavily used in the curriculum.

107

5. Robot Diaries

After charades, we taught girls about basic circuitry, LEDs, and motors. They
were then given an activity in which they made “hypnotic eyes”, or spinning, pat-
terned discs mounted on motors. They directly hooked up switches, motors, and
LEDs to batteries to make these creations. We then introduced the Hummingbird,
a microcontroller created as part of the concurrent design, that they would use to
control their robots. We described how to hook up LEDs, motors, and servos to the
Hummingbird, and also showed a software environment, the RuR, for controlling
the Hummingbird. The RuR is a screen with sliders for each of the ports on the
Hummingbird, such that each port can be directly adjusted.

The previous activity provided a strong rhetorical reason for using the Hum-
mingbird: by directly creating circuits girls quickly became aware how little con-
trol they had over the motors and LEDs when all they could do is turn them on or
off with a switch. With the Hummingbird, we demonstrated that you could speed
up or slow down motors, rotate them backwards, and fade LEDs. We had another
group activity in which the girls were tasked to use the Hummingbird, software,
and attached motors or servos to make a noise (bells and other materials were pro-
vided). Girls were then given a scavenger hunt to complete at home, with the task to
find objects in their home that have one or more of the following: buttons/switches,
motors, LEDs, something programmable, and something robotic.

In session two, we began by discussing the results of girls’ scavenger hunts and
then immediately launched into the Express-O-Matic, a software environment we
created to allow chaining together of “expressions” or robot states. An expression
is a state of ports defined by the RuR. For example, if in the RuR two motors are
set to full forward and two LEDs are half on, this can be saved as one expression.
Another expression could be two motors turned off and two LEDs full on. The
Express-O-Matic would allow the chaining of one expression to the next, with a
customizable delay between them, so as to create a simple sequential program.
Any number of expressions can be chained together, and a loop can be made by
linking the last expression to the first. Once again we limited the time spent on
explanation and instead focused on providing girls with an activity to practice with
the Express-O-Matic. In this case they were tasked to create mechanical devices
that could do the job of a foley artist. Each girl was given a 20-second clip from
Harry Potter and was asked to re-imagine the sound effects by building a robot
capable of making noise. The use of the Express-O-Matic was in ensuring that
robot noises occurred at the correct time in the clip.

After this activity, girls were introduced to a website tailored to allow doc-
umentation of their experiences and of their robot designs. They were asked to
choose a user name for the website.

The first part of the curriculum does not yet involve the robot design that will
be the main theme of the rest of the curriculum. It does, however, provide girls

108

5.5. Designing for Dissemination

with experience working with the hardware and software of the program, and it
provides some initial experience designing and building small robots.

Activity Estimated Time
Session 3

The Design Process 5 minutes
Design / Plan 15 minutes
Build / Implement Designs 60 minutes
Group Activity: Robot Dance Party 30 minutes
Documenting Designs 10 minutes
Session 4

Documenting Designs: Sharing Your Design Journey | 30 minutes
Group Activity: Show and Tell 20 minutes
Group Activity: Improv 10 minutes
Group Activity: Charades 30 minutes
Introduction to Messenger 15 minutes
Individual Activity 2: Share a Story 5 minutes

Table 5.3: Sequence of activities for part two

Part Two: Design We began part two of the curriculum by explicitly explaining
the steps of the design process and provided some examples of how engineers do
design. We then gave girls fifteen minutes to design an expressive robot using the
materials they had learned about in the first two sessions. They were not allowed
to begin building during this planning phase. One important choice in shaping the
Robot Diaries experience was how to guide and constrain the initial robot design
task. How directed or open should the design task be in order to maximize student
creativity, learning, engagement, and enjoyment? We chose to make the task fairly
directed but allow room for flexibility. The following excerpt is from the initial
design task instructions:

“Today you are going to build an expressive robot that has a body, 2 servos,
and 2 LEDs. The servos can control arms, legs, ears, antennae, wings, fins, heads,
tails, and so on. The LEDs can be used in the eyes, ears, nose, antennae, or some
other part of your robot.”

Terms like body, arms, and eyes set the tone for the robot to be modeled after
living creatures. This choice is in line with the types of robots that the girls in our
participatory design programs found appealing. A living creature is also a good
model for making a robot that can express emotions and moods. We hope that
these instructions along with sample robot pictures will help students think outside

109

5. Robot Diaries

the often common robots-as-cars model.

Another advantage to this approach over a more open approach is that it gives
direction to the first design and building task by narrowing the scope of possibil-
ities. This decreases the amount of time necessary to settle on and implement a
design. By setting boundaries on the initial design task, we assert that students
can more quickly reach a functioning robot which can be programmed. Thus we
walk participants through the complete design cycle, including using and evaluat-
ing their designs, before having them iterate on the designs.

We allotted 60 minutes to building the initial robot, although we know from
experience that students could happily spend more time building and decorating
their robots. We made a conscious choice to limit the amount of personalization
students are able to do to their early robot designs. While we value the sense of
attachment students are able to gain from personalizing their robots, we do not
want students to view their first robot design as a final product. We then walk
students through a group activity (the Robot Dance Party) in which they are asked
to program their robots to music. This task, as well as the Show and Tell, robot
Improv, and Charades are designed to make girls program their robots and evaluate
the robots expressiveness. To spur reflection and critical evaluation, we also ask
students to document their designs extensively. Students were given ten minutes
to write a reflection at the end of each design session, and also began all design
sessions by explicitly planning and drawing their proposed designs.

In addition to the robot activities in session four, we also introduce messenger,
the third component of the Robot Diaries software environment. With messenger,
girls can chat with others and share the programs they write using Express-O-Matic
with some or all of the other girls. This sharing allows girls to run programs on one
another’s robots and to effectively collaborate in some of the future group activities.
At the end of session four students are ready to revise and expand their designs and
are given both a longer time to design and build as well as more freedom (in terms
of constraints on parts) in the design direction.

Part Three: Iteration Part three is designed to drive home the importance of
iteration, and so we begin with a story of the design process an engineer went
through to create a robotic, emotive, desk lamp. We then ask girls to reflect on how
to iterate on their robot, and also provide them with additional components (more
LEDs, motors, and servos). The next few sessions follow a familiar pattern: much
of the time is set aside for rebuilding and iterating on robots, followed by activities
that are designed to highlight the expressiveness of the robots. We also introduce
two new types of components into the mix: speakers and the ability of the robot
to speak and play audio files, and simple light and distance sensors, which can be

110

5.5. Designing for Dissemination

Activity Estimated Time
Session 5

Individual activity follow-up 10 minutes
Iteration Example: Robotic Desk Lamp 10 minutes
Design Reflection 5 minutes
Making Changes 1: Brainstorming and Building 60 minutes
Introduction to speakers 5 minutes
Group activity: Robot Mad Libs 25 minutes
Document designs + reflection 10 minutes
Individual activity 3: Robot meets world 5 minutes
Session 6

Individual activity follow-up 10 minutes
Making Changes 2: Design reflection and brainstorming | 15 minutes
Building (adding new components to robot) 50 minutes
Prepare for show and tell 15 minutes
Group show and tell and feedback 20 minutes
Document designs + reflection 10 minutes
Individual activity 4: Pull the Chain 5 minutes
Session 7

Individual activity follow-up 10 minutes
Introduction to sensors 20 minutes
Introduce idea of Play 5 minutes
Planning for Play 30 minutes
Design/re-design and building for play 50 minutes
Documenting designs + reflection 10 minutes
Individual activity 5: Silly messages 5 minutes
Session 8

Individual activity follow-up 10 minutes
Continue working on play 75 minutes
Group Activity: Robot makeover 30 minutes
Survey 15 minutes
Session 9

Group Activity: Play Presentation 30-60 minutes

Table 5.4: Sequence of activities for part three

111

5. Robot Diaries

used to affect program operation (for example, the robot can be programmed to
trigger a sequence when a bright light is shone on it).

Towards the end of the curriculum, the work becomes focused on the play, a
final project in which the robots are programmed to use their new range of emo-
tional and communicative expression as actors in a theatrical context. In sessions
seven and eight, girls are engaged in a multi-faceted design, working on both the
theatrical production and on building their robots to have the right capabilities for
this production. In some ways, the play is our answer to the experience of the
robotics competition: parents and friends are encouraged to attend, and it allows
for conversations to occur about robots between the girls and their parents/friends
on many different levels. Of course, there is a stark difference as well: the play is a
highly collaborative event, in which the play’s quality is dependent in many ways
on how well girls worked together.

Teacher Professional Development

We created a teacher training curriculum in addition to the curriculum designed
to aid the research team in training. This training curriculum was a crash course
version of parts 1 and 2 of the curriculum. In much the same way as the teachers
would teach the girls, we trained the teachers by holding a mini-workshop (roughly
six hours in length) where they learned about the building and robotics materials,
programming, and the design process. In addition to these learning-by-doing tasks,
we also went through the entire curriculum, describing each activity, emphasizing
the design process theme, and discussing the learning goals.

5.5.3 Assessment Approach

This version of the Robot Diaries curriculum was designed as an after-school ac-
tivity, and so our approach was to provide opportunities for guided self-assessment
instead of creating an environment in which participants would receive a summa-
tive grade or critical statement at the end of the course. Feedback was provided
through group activities after each design cycle that were designed to engage the
robots’ expressive abilities. These activities would allow the girls to test out their
current designs and determine for themselves how closely those designs met the
goal of an expressive, communicative robot. After each of these activities, girls
were asked to document their current design and reflect on its capabilities in writ-
ing, with specific probing questions prompting critical reflection. In addition to
self-assessment, we also included a couple of show-and-tell activities, in which
girls would describe their robots and receive critical feedback from the group.

112

5.5. Designing for Dissemination

5.5.4 Tools

Our experiences with Robot Diaries have made us thoughtful about the ways in
which technology can enable fluency experiences or serve as a barrier. After the
completion of the participatory design sequences, we set out to redesign the Robot
Diaries technology. The central goals of the redesign were to maintain functionality
and features useful to Robot Diaries, while drastically reducing cost and improving
user-friendliness. To the extent that the technology is transparent and easy-to-use,
it can greatly enhance a participant’s experience in the program; conversely, non-
functioning technology can frustrate students and lead to disengagement.

During the fall 2006 workshop, the girls used the Qwerk as their central robot
controller. A Qwerk is a powerful controller capable of controlling large robots,
communicating over wireless networks, and sending video over a webcam. Al-
though the Qwerk was expensive, we used it in our initial pilots because it had a
very large set of features, providing us with the flexibility to experiment with fea-
tures and determine if they were valuable to retain. In our pilot iteration of Robot
Diaries we relied on wireless networks in participants’ homes to control the robots.
While this approach worked well in some homes, others experienced connectivity
problems that led to decreased robot use.

The Qwerk’s poor user-friendliness (at least where middle schoolers are con-
cerned) and high cost suggested to us that it could not form the basis of a broadly
disseminable design. Furthermore, the Qwerk was far more capable than neces-
sary for our program’s needs - using it was akin to using a supercomputer to play
checkers: possible, but insulting to the computer. The Qwerk’s large feature set
was very useful in our participatory design sequence; it allowed us to experiment
with many types of robot components - sensors, sound, LEDs, servos, and many
types of motors.

This experimentation, as well as an analysis of the proposed curricular activ-
ities and learning goals, led us to determine a set of features for the new Robot
Diaries controller, dubbed “Hummingbird” (see Figure 5.9). We decided to retain
the ability to control servos, LEDs, motors, vibration motors, and a speaker, and
our device would need to be directly connected to a computer over USB to sim-
plify the setup process for home use. Furthermore, even though we had not found
a direct use for them at the time that we were specifying our feature set, we felt it
important to leave open the ability to use sensors; this was an easy design decision
to make from a technological point of view, as it required no engineering trade-
offs. Had it not been possible to do without sacrificing another feature, we would
not have done it.

Fortunately, none of the required features require the use of complex or expen-
sive technology, and so we were able to design a new controller with the necessary

113

5. Robot Diaries

Figure 5.9: The Hummingbird microcontroller

capabilities. Whereas the Qwerk is $349 retail, the Hummingbird could be sold for
less than $60.

Reducing cost was one goal of the redesign, but ensuring that the Humming-
bird was easy to use was paramount. Connecting the Hummingbird to the com-
puter over USB (and thus running the programs on the computer) eliminated the
wireless tethering issues students had in the participatory design workshops. The
Hummingbird was designed around the notion that it is better to have well-labeled
ports that support a single feature than multi-purpose ports that can support sensors
inputs, digital outputs, or motors. Multi-purpose ports are certainly desirable for
some users as they increase the flexibility of the controller, but they are not helpful
to novices. The Hummingbird has four ports for single-color LEDs, two ports for
multi-color LEDs, two ports for regular motors, two ports for vibration motors, a
speaker port, four servo ports, and two sensor ports. In most cases the port connec-
tors are a very easy to use type where a connection is made simply by depressing a
tab and sticking in a wire; there is no need to use screw drivers or other tools.

We also developed a software programming and sharing environment, pictured
in Figure 5.10. We made two major changes to the software compared to the 2006
software interfaces: First, we integrated the three interfaces used in 2006 (RuR,
Express-O-Matic, and Roboticon Messenger) into a single environment, thus elim-
inating a number of user interface issues that students in 2006 had. Second, we up-
dated the software to work with the Hummingbird, and customized the RuR so that
it reflected the ports available on the Hummingbird. Girls were very quick to pick
up programming in the 2006 pilots using the expressions to sequences program-
ming method, and so we did not change the way in which robots are programmed.

114

5.5. Designing for Dissemination

r|;|J!u*|:..'!.:&.:l—.

=1i=

Hummengbird |

Express-0-Hatic

Claar

HMessenger |

Refrash |

5

e

|| Personal ' Chared

.|Etpressrl:-ns

Servas m Cl i
1 2 yity ""f'"
Motors: Vib. Motors AllOn
Crazy
Down
HandsUp
OrsE0n
Orangedn
== 1 WhitaOn
?-| S expression as: e
ol
=l HandsDown{ W
= LED:= Qrbs
1 2 3 4 i 2
Hinwm .
o
[0

d on serial port

Figure 5.10: The Arts&Bots software environment

5.5.5 Evaluation Strategy

We developed an evaluation strategy prior to the program pilots to determine if the
new iteration of the robot diaries curriculum was successfully meeting the technol-
ogy fluency learning goal and to inform any future designs of the program. We
were planning to keep our pilots fairly small, with between five and fifteen partic-
ipants per pilot and only two or three pilots in total. Thus, we would be below the
number of participants required to achieve statistically reliable quantitative results.
Instead, we developed a strategy to capture as much information about the pilots
as possible. We employed a number of fairly standard methods, notably:

Pre/Post Interviews. Each girl was interviewed before the workshop began and
after it ended. Interviews directly asked girls about their interest in robotics, sci-
ence and technology, and attempted to detect change in our dispositional learning
goals. Interviews also included questions about relevant declarative knowledge
(e.g., identify and provide a definition for relevant parts, such as sensors and ser-
vos) and designed systems (e.g., examine an electronic toy and describe how it

115

5. Robot Diaries

works). We also asked participants to imagine how they might build a new system
(an alarm) using a fixed set of components (a battery pack, alligator clips, switch,
LED, servo, and sensor).

Research Observations. One or more researchers attended every workshop ses-
sion, logging girls’ reactions to new activities, documenting moments of frustration
or achievement, and determining how closely the teachers followed the curriculum.
The workshops were also video-recorded to allow the entire research team to view
moments of specific interest.

Teacher Interviews. We interviewed teachers to get their impressions on how
the girls proceeded through the program, as well as gather information about what
was difficult in implementing the curriculum.

Parent Interviews. We interviewed parents at the beginning and end of the work-
shop. Interviews focused on the child’s previous experience with robotics and re-
lated technologies, family activities related to science and technology, and parent
impressions of the workshop and what their child gained from participation.
These methods were sufficient to provide us with information relating to the
dispositional learning goals. We received data regarding girls’ dispositions towards
science and technology from the girls themselves, from our own observations, and
from the teachers and parents. They also provided some information related to the
knowledge and skills goals. However, we also wanted to assess girls’ change in
creativity and design skills as well as technical skills such as debugging. While the
teacher interviews and our own observations provided some subjective information
on this, we felt it necessary to create two new methods that explored change in these
learning goals in a less subjective and finer-grained way. These methods were:

Debugging Task. (Hamner et al., 2010) To assess whether girls were able to
work with and troubleshoot the hardware and software after the workshop con-
cluded, we gave them a robot made from the same materials and components that
was broken in five distinct ways and asked them to fix it.

Creative Design Exercise. To assess change in how girls thought about design-
ing and attempt to measure transfer of design ability, at least within the context
of expressive electronic devices, we asked them both before the workshop started
and after it concluded to sketch and model a design of a device that could solve a
problem.

116

5.5. Designing for Dissemination

5.5.6 Fluency Moments - an Analysis Methodology

All of our evaluation methods, and especially the debugging task and creative de-
sign exercise were designed to create data to allow us to understand the extent to
which participating in Robot Diaries provides girls with the knowledge, disposi-
tions, and other tools they need to move towards technological fluency.

One way to measure movement towards technological fluency is by examin-
ing participant experiences captured using the above evaluation methods for ex-
pressions of fluency, which we have called “fluency moments” (Bernstein, 2010).
These are moments in which participants’ knowledge, motivation, interest, and
confidence come together to support their exploration and development of new
technological solutions to problems they have identified. Our analysis of the data
from the fall 2006 participatory design workshop led us to one such fluency mo-
ment, as described below.

The following excerpt was captured on a Robot Diaries participant’s digital
video camera. In the excerpt, a participant named Rosemary [not her real name]
explains how, during her winter break, she used a servo from the workshop to
modify the robot she had created (a penguin):

During break, I decided to do something with the extra servo I got.
So, I added a servo to the nose. And it’s kind of being difficult now,
because I need a replacement nose. But, here, let me spin it (penguins
nose moves back and forth on its own she is controlling to from her
computer). It basically goes back and forth. And what I did is, I un-
screwed the inside part of the servo (she removes the cardboard nose,
and points to the motor shaft on the servo), and I broke a toothpick and
stuck it in [the motor shaft], and I stuck my beak then into it (demon-
strates with the beak), and it was able to move for some time. But then
as the hole got bigger it wouldn’t move so much, so once I get the
superglue, I’'m going to superglue it together, so I can just put it in and
out, and that will allow me to have maybe multiple beakswhich would
be pretty neat.

By analyzing these types of examples, we can begin to examine the character-
istics that move individuals and groups towards fluency. In this excerpt, Rosemary
identified a problem on her robot: the lack of a movable beak. She then applied
some of her knowledge of servos as well as other tools (toothpicks, superglue) to
develop a feasible solution on her own. This is an example of a self-generated
adaptation. Rosemary chose to add this component to her robot during her vaca-
tion, indicating a certain level of engagement with the technology. We might also

117

5. Robot Diaries

assume a certain level of confidence on Rosemary’s part, as she was able to un-
dertake and successfully carry out the desired modification on her robot. We can
speculate that Rosemary’s knowledge, engagement, motivation, and ability to carry
out the task outside of the workshop setting all set her up well to engage in future
fluency activities.

5.5.7 Piloting the Design

We began to look for community partners to pilot our new curriculum in the spring
of 2008. Our community partners provided a vital link between us and the students
we are trying to reach: they take on the responsibilities of recruiting children, pro-
vide computers and a place for groups to meet, and provide instructors to lead
the Robot Diaries sessions. In order to maintain the integrity of the program and
to work with community partners as effectively as possible, we developed a set
of suggested program guidelines. First, students in the workshop should be reg-
ular, committed participants in the program. We did not feel that casual, drop-in
participation would provide enough continuity to make the program effective. Re-
garding facilities and staffing, we recommended that workshop sites have at least
one Internet-connected computer per three participating students and one instructor
for roughly every six girls. Although we provide training in the curriculum, robot
hardware, and software, instructors were required to have basic computer literacy
skills, comfort using simple hand tools, and familiarity with fields such as art, de-
sign, or drama, to effectively lead the workshops. The creative building focus of
Robot Diaries means that students will require ample space to explore materials
and build their robots. Lastly, we were interested in pilots of our entire curriculum,
which required a time commitment of approximately 15 to 18 hours with students
to complete. After discussing the program with a number of groups, we decided to
work with two community groups, the People Always Learning Something (PALS)
home school group and the Sarah Heinz House. We describe our experiences with
each group next.

PALS

PALS offers classes to home school students on a wide variety of topics. Classes
are often taught by parent volunteers. Seven girls participated in the pilot, ranging
in age from 9 to 14. The girls came from middle to upper-middle class back-
grounds, and started with a fair amount of enthusiasm for science and engineer-
ing activities. Classes were taught by two parents, both of whom had a child in
the course. The classes were held on Saturday afternoons in one of the instruc-
tors’ basements. There were six classes held over seven weeks (one weekend was

118

5.5. Designing for Dissemination

skipped due to scheduling conflicts). Classes were three to four hours in length.

Figure 5.11: One girl’s final robot from the PALS workshop

Sarah Heinz House

The Sarah Heinz House offers after-school programs much like a boys and girls
club, however unlike most boys and girls clubs, students are required to attend
several sessions a week in order to maintain their club member status. Ten girls
participated in the pilot, ranging in age from 11 to 14. The girls came from all so-
cioeconomic strata and had none to extensive experience with science/technology
activities. The class was held at the House once per week for sixteen weeks by two
instructors; one instructor specialized in technology activities at the house, and the
other specialized in the arts. Classes were one hour in length.

5.5.8 Evaluation

The analysis of the evaluation data from the PALS and Sarah Heinz House pilots
has not been completed. Portions of the data from PALS have been analyzed and
are summarized here; a full analysis is available in Bernstein (2010). Specifically,
we have analyzed the data from pre-post surveys on measures of confidence and
interest with respect to robots, robot knowledge, and creativity.

119

5. Robot Diaries

Confidence and Interest

All seven workshop participants showed a greater degree of confidence in their
ability to work with robots at the post-interview. More generally, three of seven
girls showed greater confidence in working with computers, one showed less con-
fidence, and the other three stayed the same. On questions that sought to examine
confidence with everyday technology, there was no net change. This suggests that
the workshop improved confidence levels for working with robots and brought
these up to the levels exhibited for other technologies used by the girls. The group
of girls at PALS was self-selected, and reported fairly high confidence in using
everyday and computer technologies in the pre-interview.

Girls did not show a global change in interest with respect to any category of
technology (every-day, computers, or robots). However, unlike with confidence,
girls started the workshop with higher interest ratings in the robots category than
for computers or every-day technologies; two of the seven girls hit the measure’s
ceiling on interest in robots in both pre-and post-interviews.

Robot Knowledge

We measured each girl’s knowledge in five categories before and after the work-
shop: identifying robot parts, sensor operation, electric motor operation, systems
reasoning, and system components. As there were seven girls, there are 35 total
opportunities to witness change in a category. Of these 35, girls’ knowledge was
already at ceiling in the pre-workshop measures on sixteen of the opportunities.
Of the remaining 19, girls showed positive improvement in 14, no change in four,
and negative change in one. Positive knowledge change was most marked around
the theme of computation; girls generally had a better understanding at post of the
importance of a computational object like a microcontroller or computer to the op-
eration of robots. In sum, it would appear that girls’ overall knowledge, while high
to begin with, was positively affected by the workshop. Effects may have been
stronger if either girls had lower initial knowledge or if our measures had had a
higher ceiling.

Creativity

Creativity was measured primarily by the design exercise, an activity which was
given to girls both before and after the workshop. We attempted to measure diver-
gent thinking; that is, the number of potentially valid solutions to a problem that
girls could come up with in a given time frame. Unfortunately, we found no net
effect of the workshop on these measures, and so no evidence that the workshop
improved girls’ creativity in the robot design context.

120

5.5. Designing for Dissemination

Anecdotal Observations

In addition to the preliminary results, we have also collected a list of representative
quotes about various aspects of the program from girls involved in the PALS pilot.

Several children mentioned the ability to enact their own ideas on the robots as
a positive aspect of the program:

I really liked that we use a lot of robotics, we’re like really into it
instead of just having a robot and learning how to program it. We
actually get to make our own thing. [PALS participant, age 14]

Getting to build the robot. I think that was the coolest part I liked hav-
ing like all - like any supplies you wanted to. You could do anything
you wanted to. You could make it as big or as little as you wanted to.
You could do like anything basically. [PALS participant, age 14]

Some participants expressed pleasure at the complexity of their robotic cre-
ations, and at the general level of engagement the program enabled:

You can make it do so many different things with just vibration motors,
servos and LED’s and a speaker. Like when I made it be mad, I had
the vibration motors and then there was a siren and then red lights and
that was very funny. And it just, and you could just really tell that it
was mad. [PALS participant, age 11]

Well I didn’t think it would be so advanced. Like I didn’t think you
guys would actually have websites for all of us and have a Humming-
bird built for all of us. I thought it was going to be like kind of like the
robots you get in the kits that you buy at like science stores. [PALS
participant, age 14]

Additionally, participants’ comments indicate that Robot Diaries has the po-
tential to broaden children’s ideas about the accessibility of robotics:

If you had told me like maybe 6 months ago that I was going to be
building a robot that could move and sense its environment I would
like, I probably wouldn’t believe it. I can build that stuff? And then it
was like once you learned it was like really easy. [PALS participant,
age 10]

121

5. Robot Diaries

5.6 Next Steps

The program developed to date meets some of the criteria for disseminability - it
is capable of being taught by external educators who do not have a background
in engineering or robotics, and it produces qualitatively positive outcomes among
participants. Our efforts in the next few years will revolve around adapting the
program to different educational settings and creating a broadly disseminable pro-
gram.

5.6.1 Next Steps: Adapting Robot Diaries to Formal Educational Set-
tings

The Robot Diaries program is being expanded through a grant from the National
Science Foundation to formal educational settings. This three-year grant will be-
gin in 2010 with an effort to work with teachers at one local public school and one
magnet science and technology school to adapt the curricular approach, activities,
and materials created to date through robot diaries to the classroom. We will run
the curriculum with these partner teachers in fall 2010, revise it based on that expe-
rience in spring 2011, and run it again in fall 2011. After revising the curriculum in
spring of 2012, we will focus on disseminating the completed, adapted curriculum
to a network of local school teachers.

5.6.2 Improving Disseminability

Discussing dissemination with our partners at PALS and the Sarah Heinz House,
we determined that in order to disseminate the program we would need two things:

1. Remote Training. It will not be possible to have members of the research
team train individual educators who live outside the Pittsburgh region, and
while existing teachers can train new ones, this process will be too slow
for widespread dissemination. Thus, it will be necessary to create materials
which allow us to train interested educators remotely, potentially through
an online course or video of a training workshop supplemented by online
interaction with the research team or educators who have already run the
Robot Diaries workshop.

2. A Commercial Source for Materials. The distribution of Robot Diaries hard-
ware must be done commercially so that purchasing and repairs are handled
professionally. The CREATE Lab has a history of open-source releases com-
bined with commercialization of necessary hardware in cases such as the
CMUcam vision systems (CMUcam 2008) and the Telepresence Robot Kit

122

5.7. Summary

Qwerk processor (Qwerk 2008). In the case of Robot Diaries, the ideal com-
mercial partner is an educational technology or curriculum company that has
an established brand in the learning community.

5.7 Summary

The core theme of Robot Diaries is unchanged: We are developing a program to
provide an alternative robotics experience for students not well-served by compet-
itive robots. However, our approach has undergone several major modifications
driven by our experiences working with students. Though we always planned to
include a design element to the program, later incarnations of the program have
become steadily more focused on having students create their entire robot, and
on leveraging this creative process as a way of teaching engineering design. We
backed off from some of our initial ideas after the focus group, and focused in
on engineering design after seeing the girls in our participatory design workshops
engage in “organic design”. We believe that the curriculum and current tools cre-
ated are a well-aligned design for an after-school workshop. We look forward to
aligning the tools and activities to in-school environments.

123

5. Robot Diaries

124

Chapter 6

CSbots

6.1 Motivation and Program Goal

In the context of steeply declining enrollments in Computer Science (Vegso, 2005),
the CSbots program focused on developing curricular modules for introduction
to Computer Science (CS1) classes in which robots are used as educational tools
to motivate students about applications of Computing. Since 2000, enrollment
declines in computer science classes have led to a wide number of approaches to
motivate students to study computer science: Alice (Cooper et al., 2003), Scratch
(Maloney et al., 2008), and CS Unplugged (Bell and Fellows, 2010) are all efforts
resulting in part from this crisis.

Robots, too, have been used by a number of Computer Science educators, both
in introductory Computer Science courses (CS1) (Fagin and Merkle, 2003; Blank
et al., 2007), and higher level courses (McNally, 2006). The results to date have
been mixed, with a very large study using Lego Mindstorms robots in CS1 (Fagin
and Merkle, 2003) finding two critical weaknesses of using robots: Firstly, robots
are typically too expensive for student ownership, and so students must work on
robot programming assignments in labs with limited hours. Secondly, feedback is
delayed due to the need to observe a program running in the physical environment,
and so students must devote more time to tedious debugging, and less to developing
solutions. These weaknesses can be seen as failures of alignment of the tool to the
ecosystem of the introductory Computer Science course, a topic that we will be
expanded on later in this chapter.

The aim of CSbots, then, was to create a robot and accompanying curriculum
that had the advantages of robots seen in other educational contexts (namely im-
proved motivation and interest in studying STEM (Melchior et al., 2005)), while
eliminating the weaknesses found in previous work.

125

6. CSbots

2005 2006 2007 2008 2009 2010
Task Start End I T T 1 1
a [o [[efufafuafa s [als fos[o [[¢ [fafufs s [e[so s ofs [e fafa [s [a]s o slo s [psla[u[s]s [a[s[a[no] 5] ¢
1 | Il L 1 1 ||
Ideation + initial faculty 10/1/2005 | 3/1/2006
survey
Initial partner recruitment 3/1/2006 @ 9/1/2006
Pcswgn of first robot platform 3/1/2006 5/1/2007
and software
(;featuun of assignments for 1/1/2007 | 8/31/2007
first platform
CCAC summer test 7/12/2007 | 7/26/2007
Community college pilots 8/15/2007 12/14/2007
Initial high school pilots 9/15/2007 6/13/2008

Evaluation of community
college pilots
Design of curriculum, robot

12/16/2007 4/1/2008

4/1/2008 |12/30/2008

(the Finch)

\.-"J(')r‘kshc?p with high school 7/23/2008 7/24/2008
teachers

Finch lending program 2/1/2009 |2/26/2010
Community college Finch 2/1/2000 12/18/2009
pilots

Evaluation of community

T 1/1/2010 | 2/26/2010
college pilots

Figure 6.1: Timeline of the CSbots project

A program founded around the same time as CSbots, the Institute for Personal
Robots in Education (IPRE) (Blank et al., 2007) has taken much the same approach
as CSbots. This program created a software API and robot platform specifically
for introductory Computer Science courses, and like CSbots, emphasizes student
ownership of the robot.

6.2 Timeline of the Project

The idea for the project was articulate in fall 2005, after which we immediately set
out to survey teachers and textbooks. The survey and subsequent analysis was per-
formed in fall and winter 2005-2006. Once complete, we began recruiting partners
and developing an initial hardware platform. The software environment was writ-
ten in cooperation with our new partners, and we began writing up assignments in
early 2007. In the summer of 2007 we tested our platform and a few assignments
in the class of one of our partners. This mini-pilot provided us with sufficient con-
fidence to do larger scale tests at community colleges in the fall of 2007. At the
same time, in the summer of 2007 we created a second focus of the project by initi-
ating a program with high school teachers. We recruited five partners and working
with them to adapt our initial robot to high school courses during the 2007-2008
school year. We organized a workshop in summer 2008 to disseminate the robot
and curriculum to other high school teachers. At the same time, results from both
high school and community college pilots were informing a new robot design, de-

126

6.3. Approach

velopment of which began in spring of 2008. The new robot, dubbed Finch, was
used in pilots at a local community college in spring and fall of 2009, as well as by
a number of high school teachers. We also established a lending program to allow
educators to borrow Finches for short term exploration. The analysis of the 2009
community college and high school pilots concludes this chapter.

6.2.1 My Role in the Project

I led the CSbots design team. As part of my responsibilities, I recruited and was
the primary point of contact with partner educators. I participated in all of the
pilot studies described and created the evaluation scheme for these studies; I also
performed the analysis of the evaluation data. 1 did the majority of the design
work for the robots used in the pilots, and contributed to the design of the software
environment (especially to the high-level API that students use). I also designed a
number of the assignments used during the pilots.

6.3 Approach

Our approach to creating the CSbots program rests on four methods; an initial
evaluation of the field, feedback and evaluation driven iteration of design, deep
partnerships with educators working in the Computer Science field, and alignment
of the robot and curriculum with learning goals and audience of the CS1 class.

6.3.1 Initial Evaluation

As none of the members of the research team had taught a CS1 course, we felt
it necessary to do pre-design evaluations to determine the learning goals of the
course, the logistics and constraints of running such a course at different institu-
tions, and the receptiveness among educators to using robotics in their class.

6.3.2 Iterative Design

We engaged in an iterative design process with extensive participation from com-
puter science educators at two and four year schools. The process was composed
of the following steps:

Design. The design step involved the creation of a robotic platform and associated
software, and the development of assignments and course outline.

Pilot. The pilot step involved the test of the designed curriculum and technology
in a CS1 course.

127

6. CSbots

Evaluation. Learning, motivation, and retention were tracked with standard ex-
ams, weekly student surveys, and comparisons of drop-out rates. These data were
used to inform the next design step.

6.3.3 Partnerships

Given our own lack of experience in teaching Computer Science, we decided to
engage with educators of CS1. Our intention was to develop a partnership that
was more than simply advisory, with a two-way sharing of domain knowledge and
skill. Our partners would be involved from the start of the design process, allow-
ing them to test and comment on early versions of the robot and software, while
we would have access to their existing curricula and their crucial understanding
of what works with students in the CS1 class. While the details of the robot de-
sign were left up to us, we worked together to design the interface of the software
framework, and the curricular activities.

Given the length and nature of this program, we developed partnerships with
multiple educators, some of which were temporary and some of which are still
on-going. We began with a focus on community colleges, as student retention is
especially critical in these institutions. We partnered with three community col-
lege educators after the initial evaluation but prior to any design work. After an
initial robot was created, we also partnered with five high school teachers. These
partnerships have taken effort for both parties to develop and maintain.

6.3.4 Alignment

As previously mentioned in this thesis, alignment is a powerful concept that can
be extended to the design of educational technology. The features of a technolog-
ical system provide a fourth design node, feeding back on and aligning with the
three traditional nodes of learning goals, instructional methods, and assessments.
Among the three programs discussed in the thesis, CSbots exists in the most con-
strained design space. As we will see in later sections, the learning goals, many of
the assessments, and some of the instruction is unchangeable. As such, the major
design elements that can be adjusted to align with these unchangeable elements are
the robot’s feature sets, and the instructional elements that use the robot.

6.4 Ideation

Much like Robot Diaries, the initial idea came from a more general survey of ways
in which robotics technologies could be applied to education; we brainstormed a
number of topics where robots could be used as tools, and eventually looked more

128

6.5. Initial Evaluation

closely at Computer Science. Unlike Robot Diaries, we were guided by previous
work, especially the work by Fagin and others in using robots in Computer Science.
We felt that the basic idea (robots used as tools in computer science classes) was
sound but that the approach taken in past studies had caused disruptions to the way
Computer Science was naturally taught that caused the negative effects reported by
these studies.

6.5 Initial Evaluation

To ensure that our designs were grounded in the realities of Computer Science
education we engaged in extensive pre-design evaluations in fall 2005. These eval-
uations included a textbook survey that sought to discover unifying themes and
learning objectives and a survey of educators to characterize curricular design con-
straints at different institutions as well as receptiveness to using robotics in the CS1
class.

6.5.1 Textbook Survey

In spring of 2006 we performed an analysis of ten major CS1 textbooks to help us
develop a conception of the standard CS1 curriculum and discover the major learn-
ing objectives of the class. This analysis sought to answer a number of fundamental
curricular questions:

e Does the textbook assume a specific Integrated Development Environment
(IDE)?

e Does the textbook focus on the science of computing or is it a trade book
focused on teaching students how to program?

e Are the problem sets cumulative or modular?
e Does the textbook require the use of additional hardware or software?
e What is the order and list of topics covered?

We used three sources to determine popular introductory CS texts. The first
was a survey of web sites of CS1 courses at four-year universities across the United
States. From a group of about 60 CS1 instructors, about 30 had accessible course
web sites. The next measure of popularity was to look at the textbooks used at
top universities such as MIT, Stanford, Harvard, etc. Lastly we emailed the CS1
instructors and the assistant dean of undergraduate education in the CS department
at Carnegie Mellon University (CMU) to ask them which textbooks they thought

129

6. CSbots

were the most popular and widely used. Table 6.1 presents the top ten textbooks

identified using these methods.

Textbook IDE Problem Additional
Sets Resources

Head First Java, (Sierra and Bates, | none mostly no

2005) modular

Java How To Program, (Deitel and | none modular no

Deitel, 2005)

Big Java, (Horstmann, 2006) BlueJ sug- | mostly internet
gested modular connection

Objects First with Java, (Barnes | BlueJ cumulative | no

and Kolling, 2005) required

Java Concepts, (Horstmann, 2005) | BlueJ sug- | mostly internet
gested modular connection

C++ Programming, (Malik, 2004) | none mostly no

modular

Java Software Solutions, (Lewis | none modular no

and Loftus, 2005)

Computer Science, (Forouzan and | none modular no

Gilberg, 2001)

The Art and Science of C, (Roberts, | none modular additional

1995) libraries

Absolute Java, (Savitch, 2006) TextPad modular no
suggested

Table 6.1: Summary of key textbook attributes

Results. From Table 6.1, only one book assumed that students were using a spe-
cific IDE, although several others suggested and even came with IDEs. All of
the books were centered on teaching the skill of programming in a specific lan-
guage, not on high-level computing concepts, and so they were all classified as
trade books. Nine of the ten books had problem sets that were mostly modular;
exercises from one chapter were not based on code written in a previous chapter.
Most textbooks required no additional hardware or software, although two books
assumed an internet connection was available, and one came with non-standard
software libraries for use in some of the book assignments.

We analyzed the order of six topics that were covered in most of the textbooks
and that have potential for self-contained robotics modules. Those six topics are:

130

6.5. Initial Evaluation

V: Variables

I: Simple input/output (I/O) (screen I/O with characters or strings)
F: Flow (conditionals, loops, relational operators)

D: Arrays

E: Exceptions and errors

A: Advanced I/0O (file I/O)

The most common ordering of these topics was: variables, simple 1/O, flow con-
trol, arrays, exceptions, and advanced I/O. The topics were found in this order in
four of the ten books. Variables and simple I/O were introduced first in all books
but one, with simple I/O coming before variables in only three cases. Flow control
was the third topic in all but two books. The fourth topic was arrays in six of the
books. In the other four books, arrays was the fifth topic. Exceptions came after
arrays in all but two cases (once it was directly before arrays, and once exceptions
was missing entirely). Advanced I/O was the last topic in seven of the books. (See
Table 6.2)

Number of Books | Topic Order | Programming Languages

4 VIFDEA Java, Java, Java, Java

1 IVFDEA Java

1 VIFEDA C

1 IVFADE Java

1 VIFAD- C

1 VIAFDE C++

1 IFVDEA Java

Table 6.2: Topic orderings. The topics are variables (V), simple I/O (I), flow con-
trol (F), arrays (D), exceptions and errors (E), and advanced I/0 (A).

Implications and Conclusions.

All of the books focused on programming skills and not computing concepts, and
most presented a modular approach. This analysis implies that a broadly applicable
curriculum should be composed of unrelated modules covering specific program-
ming concepts. These modules could be picked up by educators and placed into
their curriculum, regardless of their course schedule or textbook used. Based on
our textbook analysis, modules with the following topic dependencies would fit
into many CS1 courses:

131

6. CSbots

Module 1: VI - Variables and simple /O

Module 2: VI F - Flow control (with variables and simple I/O as prerequisites)
Module 3: VIF D - Arrays (with variables, simple I/O, and flow control as prereq-
uisites)

Module 4: VIF E - Exceptions and error handling (with variables, simple I/O, and
flow control as prerequisites)

6.5.2 Survey of Educators

We embarked on an extensive survey of educators at two- and four-year institutions
(Lauwers and Nourbakhsh, 2007) during the 2005-2006 school year. We were in-
spired by the Taulbee survey (Zweben, 2005) and the McCauley and Manaris (Mc-
Cauley and Manaris, 2002) studies, but our aims differed from these; instead of a
broad-based, largely quantitative analysis of the state of Computer Science educa-
tion, we were interested in analyzing the attitudes, opinions, and challenges faced
specifically by CS1 educators. Our study sought to answer questions that were
best asked in the context of a personal interview, and best analyzed through con-
ceptual code-based qualitative metrics. The foundational questions that we sought
to answer included:

e How do CS1 instructors feel about the effectiveness of their curricula, both
in teaching students and in motivating them?

e To what degree are instructors able to make curricular changes?
e What are the typical dynamics and logistics of a CS1 course?

e What tools and programming languages do instructors currently use and
what is their relative popularity?

e Are instructors interested in using robotics as a teaching tool?

e How do the classroom realities exposed by the previous questions inform
methods for introducing new educational tools?

120 educators were identified as currently teaching CS1 at four year institu-
tions within the United States. Of these 120, 33 responded to an email request to
participate in the survey and were interviewed. In addition, we interviewed four
educators at community colleges across the United States. The geographic distri-
bution of all respondents is mapped in Figure 6.2. The educators came from a wide
range of public and private, small and large institutions and were themselves di-
verse with respect to age, gender, and professional standing. Our results provided

132

6.5. Initial Evaluation

Figure 6.2: Distribution of survey respondents

tentative answers to the foundational questions and feed into an answer to our pri-
mary question: What methods and strategies should we employ in our attempt to
introduce a new educational tool into the CS1 curriculum? Our conclusions can be
split into those general to introducing a new educational tool and those specific to
introducing robots.

Conclusions Applicable to any New CS1 Program

e A major curricular change is difficult to implement, requiring buy-in from
the department faculty, and sometimes from other departments. Tools should
therefore be introduced with a curriculum that is similar to that already in
use.

e Tools should not be tied to a new or relatively rare programming language;
not only does this require a major curricular change but few instructors are
planning to change the programming language they use. Support for either
Java or C++ is required for widespread adoption.

e Any new educational tool must integrate into the class such that it does not
significantly increase student workloads.

e Given that most educators use textbooks as guides when embarking on a

133

6. CSbots

significantly different curriculum, it may be useful to either develop or adopt
an accompanying textbook and lab manual for the educational tool.

Conclusions Specific to Using Robots in CS1

e Students must be able to work on their out-of-class assignments at home.
This is not an impossible goal for a robotic tool. This challenge can be met
with a number of methods: the use of a simulator, remote or tele-present
access to physical robots, or by providing each student with a very low cost
robot.

e Developing for Java provides access to the largest and most enthusiastic base
of potential robotics adopters. Educators using C/C++ were less interested
in adopting robotics.

e Materials cost to students is widely perceived as more important than depart-
mental costs. We do not believe that a robotics class should require students
to purchase a robot unless it is in lieu of a similarly priced textbook.

The purpose of the educator survey was both to discover the realities of the group
for whom we were developing the technology, and to ensure that members of this
group were interested in our proposed technology. In these senses, the survey was
successful at identifying key logistical difficulties of introducing robots in CS1, as
well as establishing that a significant fraction of educators were willing and able to
try such an intervention.

6.5.3 Partners’ Prior Curricula

In addition to the formal textbook and educator surveys, we also worked with our
partner educators to detail the learning objectives, instructional activities, and as-
sessments in their specific courses. This was important not just as a pre-design
evaluation method, but also because it was our intention to pilot the revised course
with our partners in such a way as to not change the learning goals. In one case, our
intentions were realized; we went through every exam, assignment, and prepared
lecture used by our partner in the previous year. It was our goal to create a curricu-
Ium that would mirror this class at both the macro and micro levels: the learning
goals of the class were to remain the same, as would the complexity and learn-
ing goals of the individual weekly assignments. Similarly, the assessments would
cover the same material at the same point in the course schedule. By keeping con-
stant much else of the class, it was easier to measure the effect of the robotics
activities on the students. It also simplified the alignment process, as it meant that

134

6.6. Initial Design

we could not modify the learning goals or assessments. All that was necessary was
to ensure that the instructional activities aligned with these two.

6.6 Initial Design

We used the results of our initial evaluation and analysis to simultaneously de-
sign a curriculum, robot platform, and software for the CS1 classes of our partner
educators. Design occurred in 2006 and early 2007.

6.6.1 Learning Goals

The typical CS1 course is about programming, specifically, becoming literate in a
programming language so as to be capable of writing programs of moderate com-
plexity in that language. There is some controversy about whether this should
be the goal of CS1; many in the computer science education community call for
other approaches. Some computer scientists desire a more fundamental introduc-
tion into computing, beginning with the high level theorems of computer science
and computational mathematics (Dijkstra, 1988). Others desire a broader introduc-
tory course that merges the history of computer science, current fields of interest
like graphics, computational science, and robotics, and introduces programming as
one of several tools used in this field.

Despite the potential advantages of these other approaches, the results of our
survey strongly suggested to us that broad acceptance of our curriculum would only
be possible if we mirrored the learning goals of the current CS1 course. The learn-
ing goals of the CS1 course were identified primarily to us through the textbook
survey and our conversations with our partners. In a rough chronological order,
these goals are:

e Compile a simple program that outputs text to the screen in the Integrated
Development Environment (IDE) used in the class.

e Understand simple variable types, and how to assign values to variables.
e [earn how to use pre-defined objects and methods.

e [earn about conditional statements.

e Read in user input to the program.

e [earn about looping.

e Create methods (functions in C) outside of the main method.

135

6. CSbots

Create classes that are independent of the main program.

Learn about arrays of simple variables and of objects.

Learn to use one of the graphics packages to make graphical representations.

Read data in from files and write out to files.

Create classes that inherit characteristics from other classes.

Learn to handle exceptions and create methods that throw exceptions.

6.6.2 Curriculum

Curriculum design was guided by several conclusions from our survey. Educators
teaching Java were most enthusiastic about using robots, most educators wanted a
new curriculum to be linked to a textbook, and robots could be introduced into a
class with minimal administrative paperwork so long as the programming language
did not change and the course schedule was minimally affected. We focused on
Java and chose a specific textbook, “A Guide to Programming in Java” (Brown,
2007), to link to our curriculum. We took care to ensure that each assignment
developed was focused on teaching CS concepts; we used the prior assignments
from our design partners as a baseline and analyzed these to ensure our assignments
were similar conceptually. Table 6.3 contains the tentative schedule for a semester-
long CS1 course with robot-based assignments.

Prior to testing our assignments in a pilot, we ensured that they were at an ap-
propriate level for our intended audience. To do this, we had a high school student
with one semester of Java experience complete solutions for each assignment. Al-
though most assignments were found to be appropriate to the level of our intended
learners, this early testing did result in several changes made to the later assign-
ments to reduce tangential complexity and focus more heavily on core concepts.

136

6.6. Initial Design

Week

Goals

Assignment

Learn how to compile/debug
programs and use variables.

Write a program that causes the
robot to speak.

2 Use simple arithmetic/boolean | Debug a provided program.
operators and print variables.
Use documentation.

3 Learn about classes by using two | Make robot weather forecasters
exemplars; the String class and | that say the forecast and move
the Robot class. based on weather conditions.

4 Continue classes. Move in a regular polygon.

5 Learn to allow input from screen | Move and turn from user input.
and review of Boolean/logical
expressions.

6 Use conditional statements like | Have the robot react to a weather
if and switch. forecast based on a randomly

generated mood.

7 Use looping statements like for, | Wander around the room and
while, and do-while. avoid obstacles.

8 Write non-main methods. Create a story-generator com-

posed of random sentences.

9 Write custom classes. Write a simple simulator.

10 Create graphical programs and | Create a tele-op interface.
handle button events.

11 Learn to read text/string inputs | Improve the tele-op interface
from a graphical interface. with a text input box.

12 Use arrays of primitive data | Script motion by reading bumper
types. presses and then play a se-

quence of motions based on
those presses.

13 Use arrays of objects. Write a color-tracking program.

14 Introduce exceptions and excep- | Combine the wandering pro-
tion handling. gram with the tele-op program

so that the robot throws an ex-
ception when it hits an obstacle
and moves to tele-op control.

15 Review. No assignment.

Table 6.3: Schedule for a CS1 robotics course

137

6. CSbots

Figure 6.3: The first year robot platform

6.6.3 Robot Platform

The end goal of our technology development process was to create a robot platform
and accompanying software that had the correct sensing and actuating interactions
for the introduction to computer science class while simultaneously being suffi-
ciently low cost to be used in such classes. In line with these goals, during our
first design cycle we focused on maximizing the number of testable sensing and
actuation interactions included on the platform while keeping the cost per platform
below $1000 so as to allow sizable initial pilots. This strategy allowed us to test
individual features during our pilots and determine an optimal feature set to guide
our second robot design.

The platform that we used in the first design cycle is an iRobot Create! com-
bined with a Qwerk controller? (Figure 6.3). The iRobot Create is a robotic plat-

"http://www.irobot.com/sp.cfm?pageid=305
“http://www.charmedlabs.com/index.php?option=com_content&task=view&id=29

138

6.6. Initial Design

form based on the popular Roomba line of robotic vacuum cleaners. The Qwerk,
developed by Charmed Labs and the CREATE lab, contains circuitry for low level
robot control, as well as firmware allowing instant tele-operation over a wifi net-
work with the addition of a USB wireless device and USB webcam. The Qwerk
was accompanied by the TeRK software environment’, an extensive open-source
software base for developers. Although not the lowest cost solution, the combined
platform, dubbed the “alpha design” had the advantage of using off-the-shelf tech-
nology and maximizing feature richness. The combined platform had the following
capabilities:

o A wireless tether, allowing programs to reside on a student’s computer

e Bumpers for simple obstacle detection

e Encoders to track distance traveled and maintain equivalent wheel speeds
e Vision via a USB webcam

e Audio, including the playing of audio wav files and the generation of speech
from text

o An LED array as well as a color and intensity variable LED

e Access to real-time RSS feeds, enabling programs to respond to internet
events

6.6.4 Software

The software environment we created was heavily influenced by the feedback we
received from our partners as we were designing the environment and the con-
straints imposed by using the TeRK software environment. Unlike standard small
Java programs which require little or no additional software libraries to run, our
student-written Java programs would rest on top of several layers of increasingly
advanced code; this code was necessary for connecting over the wireless network
to the computer, for sending appropriately ‘phrased’ commands to the robot, and
for supporting the graphical interface which was part of the software package.
One of the major themes in our conversations with our partner educators was to
simplify as much as possible the student-visible level of computer code. Our first
attempt to create a top-level file that students could edit is shown in Figure 6.4; our
partners objected to this file on the grounds that it was much too complicated and
had too many unexplainable sections for beginning CS students. Several months

3http://www.terk.ri.cmu.edu/software/index.php

139

6. CSbots

import javax.swing.SwingUtilities;
inport edu.cma.ri.mrpl.TeRE,.client.conponents,easyclient.EasyClientBase;

pubklic class EasyClient extends EasyClientEase

{
/**% The application name (appears in the title bar) */
private static final String APPLICATICN NAME "Easy Client";

/** Properties file use to setup Ice for this application */
private static final String ICE_PROPERTIES FILE "/EasyClient.ice.propercies”;

public static woid main(final S5tring[] args)
{
/ Schedule a2 job to show the GUI
SwingUtilities.invokelater(
new Runnable ()
{
public woid runf{)
{
new EasyClient():

i

private EasyClient) ()
{
super (APPLICATICON NAME, ICE PROPERTIES FILE);

public void ExecuteUponStarci() {
clearMessagelrea() s
appendMessage ("Hello World!™):;

Figure 6.4: Initial skeleton file for software framework

of refinement followed, eventually producing the starter file in Figure 6.5. Figure
6.5 shows a comparison between a program which causes the robot to say "Hello
World’ and the standard *Hello World’ print program, and highlights the additional
code required to run our version. The software libraries required were packaged
into a single .jar file which could be used by a program with a single ’import’
statement. The four lines of extra code in the program are fairly easy to explain
to a novice user. One specifies the IP address of the robot to connect to (a num-
ber which is written on the robot’s bumper in large bold print), one specifies the
name of the program, one instantiates the robot object, and the last initializes the
robot. Although students are required to use object oriented programming meth-
ods to call robot based methods before objects are theoretically explained, this did
not prove to be a source of confusion, as myRobot.saySomething(“Hello”); and
System.out.printin(“Hello”); are equivalently complex and mysterious to the be-
ginning programmer.

As we were developing the software environment, special attention was di-

140

6.7. Pilots and Evaluation

import RobotClient.CreateClient;

puklic class SimpleSpeech
i
public static void main(5tring[] args)
{
f Sets the name of the application

String applicationMName "Speechifiying™;
/ Set the IP address to connect to
String iplddress "192.168.0.10";

'/ Instantiate the robot and GUI

CreateClient myRobot new CreateClient (applicationMName, ipaddress):;
S/ Inmitialize the robot before other commands can be sent to it
myRobot.initialize ()

f/ Bay something friendly

myRobot . zaySomething ("Hello World™):

public class HelloWorld
{
pukblic static wvoid main (String[] args)
{
System.out.println ("Hello world"™);

Figure 6.5: Programs that make the robot say “hello world” (top) and print “Hello
World” to screen (bottom)

rected at ensuring that all method calls to the robot were relatively clear, such that
reading the name of the method gives a proper indication of what that method
will do. Students were provided with both a full Javadoc style listing of all robot
class methods, as well as with a quick reference that covered the most important
methods.

6.7 Pilots and Evaluation

Pilots were conducted at community colleges (Lauwers et al., 2009) and high
schools (Lauwers et al., 2010) in the 2007-2008 school year. The community col-
lege pilots were intended to be trial runs of our robot and accompanying curricu-
lum, with a formal evaluation system in place. The high school pilots were closer
to a participatory design exercise, to determine if the system developed for the
community colleges could be adapted to the high school environment. Combining
the results of both of these pilots, we were able to execute a broadly applicable
redesign during our next design phase.

141

6. CSbots

6.7.1 CCAC Summer 2007

We conducted a brief week-long pilot during the regular Community College of Al-
legheny County (CCAC) Introduction to Computer Science course taught by our
partner. During this period, two of the newly designed weekly assignments were
tested with the students; specifically we gave the students assignments 7 and 12
from Table 6.3. Assignment 7 deals with looping and conditionals, a topic which
the summer class had already covered, but which our partner suggested might be
useful to repeat. Assignment 12 covers arrays, the topic that the class was in the
process of covering during our trial. Roughly ten students completed each assign-
ment.

Evaluation Methods

The goals of our evaluation of the summer pilot were to determine if the assign-
ments we provided to the students were compelling, as well as to ensure that our
survey materials were capturing the information we desired.

We surveyed students at the beginning of the course (pre-survey) to determine
their age, grade point average, prior programming knowledge, reasons for taking
the class, and interest in using robots in the course. We also surveyed students
at the completion of each robotics assignment to determine how interesting they
thought the assignments were compared to other assignments, how confident they
felt with the subject material covered by the assignment, and how easy they felt
the assignment was. Lastly, we offered a very small amount of extra credit on
assignment 12 for a reasonably difficult extension to the assignment to determine
if students were interested enough in using the robot to do extra work with minimal
grade-related motivation.

Evaluation Results

Our pre-survey had 16 respondents, while the surveys regarding the assignments
had 9 and 12 respondents each; this disparity mostly reflects students dropping the
course before our pilot began. The start survey provided validation of our questions
regarding confidence with computing, prior programming knowledge, and reasons
for taking the course. There was one notable and unexpected result: 75% of stu-
dents thought programming a robot would be more interesting than programming
a computer.

The results from our assignment surveys showed our approach to be promis-
ing and worth testing in a larger pilot in the fall. For both surveys, students were
asked to rate on a 1-5 scale how confident they were with the concepts, how inter-
ested they were in the assignment, whether this was their favorite assignment of the

142

6.7. Pilots and Evaluation

class, and how easy or difficult the assignment was. Table 6.4 shows the averages
for these results for assignments 7 and 12. As you can see from the table, both

Assignment | Topic | Confidence | Interest | Difficulty | Favorite
7 Loops 4.22 4.22 2.67 7 yes, 0 no
12 Arrays 3.58 4.08 4.08 7 yes, 3 no

Table 6.4: Confidence and interest ratings for summer robotics assignments

assignments got high marks for being interesting, and were considered the favorite
assignments in the class by most students. Assignment 7 was listed as relatively
easy, likely because it was considered a review assignment to repeat some earlier
course material. Assignment 12 shows that even with new subject matter, the stu-
dents enjoyed the assignment. Ten of the twelve students in the class completed
assignment 12 successfully; of the other two, one was unable to complete the as-
signment due to a medical emergency. Furthermore, six of the ten students who
successfully completed assignment 12 finished the extra credit portion of the as-
signment. Given these favorable results, we prepared to fully pilot the curriculum
at two community colleges in the fall: CCAC and Ohlone Community College.

6.7.2 Ohlone fall 2007

The Ohlone pilot was conducted from early September through mid-December
2007. Fifteen students signed up for the class, but only four stayed in the class
with a passing grade; although low, this is not an unusual retention rate for many
computer science classes at both Ohlone and CCAC. The pilot was not framed as
an introduction to computer science course, but as a robotics and Al course; even
s0, it provided us with an opportunity to test several of our activities, as well as
our software framework and hardware platform. The class was held on Friday
evenings for four hours, and so most of the students had day-time work and were
interested in professional advancement. Students were only able to work with the
robots during this limited class time.

Although we attempted to run a number of assignments in the course, technical
problems prevented the robots from working reliably. After most of the semester
had run its course, we discovered the source of the problem; the on-campus wire-
less network was occasionally and at random intervals throttling the wireless sig-
nals from our robots. This was an extremely difficult problem to diagnose, as the
problem would come and go without warning, and so the robots would work for
some time and then stop working. After a few weeks of these difficulties, our
partner at Ohlone decided to de-emphasize the robotics portion of the class.

143

6. CSbots

A number of valuable lessons were learned through the experience of the Ohlone
pilot. Firstly, our technology was vulnerable to issues beyond our immediate con-
trol; the Ohlone college wireless network was not configurable by our partner, and
so it was difficult for him to experiment to discover the cause of the problem. Sec-
ondly, physically distance from the research team caused support to be much more
limited in comparison to the support provided to CCAC. It is now clear that dur-
ing the initial pilot the amount of support required was greater than our ability to
provide that support.

6.7.3 CCAC fall 2007

Figure 6.6: Students in the CCAC robot lab

The CCAC pilot was held from late August through early December 2007. 72
students in four sections began the class; 25 students completed the course with a
grade, and 23 of those passed. Three of the sections occurred during the day, and
consisted of bi-weekly lectures of two hours each. The fourth section was held in
the evening for four hours once per week. The evening course attracted a different
audience than the daytime sections; these students were more likely to be working
and using the course for professional development, while students in the daytime
sections were more likely to use the class for fulfilling degree requirements.

In addition to lecture times, students were able to access the robots for test-
ing and demonstrating assignments. Figure 6.6 shows some of the students in the
robotics space. These open labs were staffed by the researcher, and were open from

144

6.7. Pilots and Evaluation

noon to six on Wednesdays and Thursdays. These times were arranged with the
students beforehand and represented the optimal amount of available time for all
students. As many of the evening section students were unavailable to work during
the day time, the first hour of their scheduled lecture time was assigned to testing
with the robots.

Subject

Description

1. First program

Print a short statement to screen. This assignment did
not use a robot.

2. Formatting out-
put

Print a formatted block of text. This assignment did not
use a robot.

3. Talking, dancing
robots

Make the robot talk and make at minimum three distinct
motions.

4. Conditional
control structure

Have the robot sense bumper hits and condition based on
those hits.

5. Looping control
structure

Make the robot draw a polygon of 3-10 equal sides; the
user inputs the number of sides.

6. Methods

The robot draws a shape, but each shape is a different
method in the program.

7. Classes - Robot
Tango

The program instantiates two robot objects representing
different robots, and has to choreograph a dance between
the two.

8. Classes - Story
Teller

Students are provided with a main program which calls
a class that they need to write. The class has to provide
story snippets that the main program assembles into sto-
ries the robot tells/acts out.

9. Arrays - Record
a Dance

Students create a program that uses bumper hits to store
a sequence of directions. Playback of the sequence is
also programmed by the students.

10. Applets

Students create a simple applet with graphics that appro-
priately resize as the applet window is stretched. This
assignment did not use the robot.

11. GUIs

Students develop a simple interface to drive the robot
around remotely.

Table 6.5: Listing of assignments used in CCAC pilot

Students were shown the robot during the first couple of class sessions, but
because of the logistics involved in arranging a lab space and finding a time to hold
the lab, the first assignment which used the robot platform was the third week’s

145

6. CSbots

assignment. It was also felt by the partner educator at the time that it might help
the students to do a couple of traditional assignments before starting on the robot
to reinforce some of the details of compiling programs and syntax.

About a week before each assignment was distributed, the principal researcher
and partner educator would meet to discuss the upcoming assignment. We would
use a previously developed assignment as a starting point and decide whether it
was appropriate given our experience with the students to that point. In this way,
we responded to our conceptions of students’ abilities and aligned our upcoming
assignments with those conceptions. Table 6.5 presents brief descriptions of the
assignments that students were given; most of these assignments were entirely or
heavily based on the previously developed curriculum; the assignments that were
newly developed are designated with bold text.

Evaluation methods

The CCAC pilot was formally evaluated along a number of metrics to inform our
second-stage design. We were especially interested in student motivation and re-
tention, but we also assessed learning. We tracked retention of students after every
assignment and compared it to the retention of students in courses offered by the
same educator from fall 2003 to fall 2006. The retention data are rich. They show
exactly which week in the class individual students stopped completing assign-
ments, and so we can compare the piloted course to older courses not just on a gross
scale, but on a fine-grained time-scale. Additionally, we tracked student interest in
our assignments with short surveys that were completed after each assignment, and
we also compared interest in CS as measured by pre and post surveys. To assess
learning, we compared performance on traditional CS exams of the students in the
pilot course to performance by the students in four previous fall semesters; these
exams are changed superficially year over year to prevent cheating, but cover the
same content. As the conceptual progression of the curriculum is the same as in
the previous non-pilot courses, the exams are well-aligned with what students have
learned.

Evaluation Results

We now present the results from the evaluation and analysis of the pre/post surveys,
post-assignment surveys, and comparisons between pilot and prior year retention
rates and grade performance.

Pre-Post survey results We asked students to complete surveys at the beginning
and end of the course to gauge student prior experience, their reasons for taking

146

6.7. Pilots and Evaluation

the class, and their interest in and confidence with computers and programming.

To gauge prior experience, we asked students to state which programming lan-
guage they knew best, and if they had one, to rate their experience level with that
language on a 1-5 scale (from novice to expert). Table 6.6 presents the results for
pre and post surveys. Although 40 students took the pre survey and 20 the post sur-
vey, only 10 students took both; therefore we present comparisons between both
the larger set, which includes data in the pre survey from students who dropped
the class, as well as comparisons between the ten students who took both surveys.
Not surprisingly, many students became more familiar with Java and no students
answered 'none’ for the post survey. Experience ratings did not increase because
many students with no experience (and thus no rating) became beginners after tak-
ing the class.

Language All Pre | All Post | Matched Pre | Matched Post
(n=41) | (n=20) (n=10) (n=10)
Java 17.07% | 55.00% 20.00% 70.00%
C/C++ 14.63% | 15.00% 20.00% 20.00%
Other 17.07% | 25.00% 20.00% 10.00%
None 51.22% | 0.00% 40.00% 0.00%
Experience Rating 2.35 2.58 2.17 2.1

Table 6.6: Percentage of students who reported each category as their best-known
programming language

We asked students to choose from a list of reasons why they were taking the
CS1 class. Students could select multiple reasons: required for degree, plan to
transfer credit to a 4 year school, want to program as a career, professional ad-
vancement, interested in programming and other. Table 6.7 presents the reasons
students gave for taking the class; there was no statistically significant difference
between pre and post surveys, but these data provides some insight into the diver-
sity of needs the incoming students of a community college CS1 class have. It is
interesting that the reasons changed somewhat among the matched set - this may
represent a shifting focus over the course of the semester to more degree based and
academic goals.

We gave students a number of statements intended to measure their interest
in and confidence with computers and programming. Students were asked to rate
the statements on a scale from 1 to 5 with 1 being strongly disagree, and 5 being
strongly agree. Table 6.8 presents the results of these surveys. In both the matched
and unmatched sets some of the measures of confidence and interest increased,
although not by statistically significant amounts.

147

6. CSbots

Reason All Pre | All Post | Matched Pre | Matched Post
n=41) | (n=20) (n=10) (n=10)
Degree 41.46% | 40.00% 30.00% 50.00%
Transfer 34.15% | 40.00% 20.00% 50.00%
Career 31.71% | 25.00% 50.00% 20.00%
Advancement | 21.95% | 40.00% 30.00% 30.00%
Interest 48.78% | 50.00% 50.00% 50.00%
Other 12.20% | 25.00% 10.00% 20.00%

Table 6.7: Student reasons for taking course

Statement All Pre All Post | Matched | Matched

Pre Post
(n=41) (n=20) (n=10) (n=10)

I am familiar with comput- | 4.67 4.47 4.90 4.80

ers.

I am familiar with com- | 3.00 3.73 3.44 3.50

puter programming.

I am confident I could | 2.95 3.21 2.60 3.10

program a computer if I

needed to.

Programming is easy for | 3.08 3.37 3.22 3.10

me.

I like computer program- | 3.68 4.21 3.80 4.10

ming.

I would like to study com- | 3.20 3.72 3.33 3.80

puter programming as my

major.

I would like to program | 3.37 3.74 3.56 3.80

computers as a career.

Table 6.8: Student ratings of interest in and confidence with computing

Retention Rates We compared the retention rates of the fall 2007 course to
courses taught by our partner in fall semester 2003-2006. We compared the overall
retention rate, and found no significant difference between our pilot and prior years
(Figure 6.7). We also examined the retention rate at the week-by-week level (Fig-
ure 6.8), by determining when a student last completed an assignment for non-zero
credit. Note that this is different than when a student officially drops a course, but
in some ways is more accurate, as it represents when the student stopped trying in

148

6.7. Pilots and Evaluation

Students Passing with a C or Better

45.00%
40.00%
35.00%
30.00%] —
25.00% —
20.00% -+ —
15.00% +— —
10.00% —
5.00% —

0.000/0 T T T T T

2003 2004 2005 2006 2007 Average
Year

Figure 6.7: Overall retention rates in the fall semester CS1 course at CCAC

Assignment Retention

50.00%
45.00%

40.00% —
35.00% | | @2003
30.00% = 2004
25.00% Il 02005
20.00% - 02006
15.00% - m 2007
10.00% - ?

5.00% - m W =

0.00% JNE N e ﬁ nin el Al Wil

o 1 2 3 4 5 6 7 8 9 10 11 12
Assignment Number

Figure 6.8: Week-by-week retention rates in the fall semester CS1 course at CCAC

the class. At the more detailed level, we also saw no real differences in the pattern
of drops between the pilot and prior years. However, two important patterns are
visible in the detailed data: First, on average about one-third of all students drop
out before assignment 3, that is, before any robotics assignments had been handed

149

6. CSbots

out in the pilot. Second, there is usually a small spike in drops in the middle of the
course (between assignments 4 and 7); this spike is caused by students dropping
after receiving poor results on their first exam.

Percent of Students Rating Current Assignment
as Favorite so Far

90% -
80%

70% /
60% —A A

o LT N\ /”
ron NN/
30% \/
20%
10%
0% : : : : : : .

3 4 5 6 7 8 9 11
Assignment number (robot assignments only)

Figure 6.9: Percent of students who listed the current assignment as their favorite
to date

Interest We measured student interest in the robot assignments by comparing
their assignment completion rates to prior years and by directly asking them in
post-assignment surveys. Student reports of the assignments via these surveys
were generally favorable. Figure 6.9 shows the percentage of students who, af-
ter completing an assignment, rated that assignment as their favorite assignment to
that point in the class. One would expect that the trend line in this figure would
drop over time, as students have more assignments to choose from. Instead we see
a flat to marginally increasing trend line, indicating that students who did not drop
the course stayed engaged throughout. Although this response can be explained
partially by recency effects, in the post survey a number of students wrote that as-
signments grew increasingly interesting, and that each new assignment surpassed
the last in interest.

Confidence We measured student confidence in their performance on the robotics
assignments by asking them what grade they thought they would receive on the

150

6.7. Pilots and Evaluation

assignment they had just completed. Figure 6.10 shows the results on an assign-
ment by assignment basis. Generally student confidence improved slightly over
time; this may be due to stronger students staying in the course while weaker ones
dropped out. There was a strong dip in confidence for assignment six. Assignment
six was widely seen as a difficult assignment and marked the introduction of the
programming concept of non-main methods.

Student Estimates of Grades
100%
90% -
80% A ~
70% / \ / \’/ ——A
— N\ /
60% \/ -=-B
50% ¥ G
40% —D
30% — —& —-F
20% +——%=— =~ ‘\ A==
10% — —)‘: Dt
0% miE s SIS L b
3 4 5 6 7 8 9 11
Assignment Number

Figure 6.10: Student estimates of their grade on each assignment

Frustration We attempted to deduce potential ‘sticking points’ that would make
the pilot assignments less engaging or more difficult by asking students to tell us
the most difficult part of the just-completed assignment. We coded these responses
into six categories. The percentage of expression of each is shown in Figure 6.11.
The codes were:

e conceptual - Responses that gave a programming or CS concept as the an-
swer.

o compile+syntax+IDE - Responses where students had trouble with syntax,
using the IDE, or figuring out compiler error messages.

e aesthetic - Responses where the students responded that it was difficult
thinking of non-programming creative elements; how the robot should dance,
what it should say, etc.

151

6. CSbots

o lab times+testing - Responses dealing with the logistics of the lab setup -
generally that it was difficult getting to the lab during the open hours, and
that there weren’t that many hours for testing.

e framework - Responses dealing with bugs or usability issues in the robot
software framework created for the pilot.

¢ nothing difficult - Responses stating that nothing was difficult about the
assignment.

Student Reports of Frustrating or Difficult tems

60%

50% T *
¥ /\ /‘—’ —+—conceptual
40% —% 2 —u- Jab times-+testing
v / \ \ J —+ nothing difficult

30% ¥ i)
\\//’; | - = - compiletsyntax+IDE
20% /}* 7 ‘.‘ D = | |* ~software framework
10% L A \'_}-\, = ,:\)fﬁ:/.‘-;;\,‘- A ‘)‘A/,’z‘ —= - aesthetic
i P
0% A T ——

3 4 5 6 7 8 9 11
Assignment Number (robot assignments only)

Figure 6.11: Student sources of frustration

Viewing Figure 6.11, it becomes apparent that conceptual issues were often
the most difficult part of an assignment. From a pedagogical point of view, we
feel this is the desired result; students should spend the majority of their time in a
computing class struggling with computing concepts. We were also sensitive to any
negative impacts of the robot on the student’s ability to complete their assignments.
Both the lab times+testing and framework codes represent difficulties that would
not occur in a non-robot CS1 class. Fortunately, these responses were expressed
fairly rarely, and combined make up less than 20% of reported difficulties. Also
encouraging was the lack of responses indicating a problem with robot hardware;
reflecting the fairly robust and failure-free operation of our robot platform.

Relevance We asked students if they saw any relationships or links between the
program written for the assignment and the operation of software, computers, or
computational devices. We were aiming to create assignments that would be rel-
evant to students’ lives so as to be engaging and motivating. Figure 6.12 shows

152

6.7. Pilots and Evaluation

the percentage of students who linked the assignment content to an item in the real
world. Students increasingly saw relationships between their assignments and the
real world; this may be due to the increasing complexity of later assignments.

100%
80%
60%
40%
20%

0%

Percent of Students linking Assighment Content
to Everyday Objects

-~

.

3 4 5 ¥ 7 8 9 11

Assignments Number (robot assignments only)

Figure 6.12: Percent of students who linked assignment content to the external

world

3.45
34
3.35
3.3
3.25
32
3.15
31
3.05

Mean Grade
3.4
2 270
3.20/1 ~ETY
— 316 74
2003 2004 2005 2006 2007

Figure 6.13: Mean grades of passing students, 2003-2007

Grades We compared the grades of students in our pilot to prior years to ensure
that our students’ learning was not hindered by the robotics assignments. The

153

6. CSbots

grade structure of the class was such that 75% of the grade consisted of exam
grades. Exams were modified only superficially (to prevent cheating) between
our year and prior years. As such, we consider the performance on these exams
and subsequent performance in the class as an adequate measure of comparative
student learning. Figure 6.13 details the average grades in the 2007 pilot and four
prior years. Passing students in the pilot performed at the same level as the previous
years.

6.7.4 High School Pilots

While our initial focus was on introductory computer science courses in commu-
nity colleges, in 2007 we expanded the program to high schools. Though high
school was a somewhat different educational context, the program goal remained
the same: to gather information for a redesign of the robot and curriculum that
would be well-aligned to the CS1 course. Though the goal was the same, our
approach to these pilots was significantly different from the community college pi-
lots. In the case of the community colleges, educators had already provided much
input into the initial design of the robot, software, and curriculum; thus the pilots
were about collecting information about the impact of using the robot on students.
In the high school pilots we decided to focus on working with the teachers to adapt
the curriculum, and where possible, the robot hardware (the initial robot had free
I/0 ports and empty mechanical mount points, and so could be modified). In some
ways, our work with high school teachers was similar to our initial engagement
with community college partners - we were working with them to create a tool
aligned to their curricula. The difference was that to a much greater extent, the
initial robot and software API were already designed.

Recruitment

Our goal was to recruit five teachers to actively participate during the 2007-2008
school year. We recruited teachers to work with us by offering a short, one and
a half hour session at Carnegie Mellon’s CS4HS summer workshop (Blum et al.,
2008) for high school teachers. During the workshop, we trained teachers how to
use our alpha robot platform and associated software and announced that we were
looking to partner with several teachers to develop curricula and inform hardware
and software changes to the platform. Of the 35 teachers at the CS4HS session, 22
signed up for additional information about the partner program. We emailed these
22 several weeks later and asked them to complete a survey to help us determine
their initial ability to work on the project; eight of the teachers responded to the
survey and seven were able to partner with us. We sent robots to all seven, but two

154

6.7. Pilots and Evaluation

of the seven teachers dropped out of the program after several months due to lack
of time, leaving us with exactly the number of partners we initially sought.

Communication and Support

At the beginning of the project we realized that frequent communication between
the partner teachers and project team would be necessary. As our partners were
distributed over the continental US, face-to-face meetings could not occur. We
began the year by mailing each teacher a robot and instructions on how to set up
the robot at their school. Four teachers had no problems with setup, while the
fifth had technical difficulties due to restrictive school policies on installing new
software. These problems were resolved by calling the school’s technical support.

Once teachers had received their robots, we kept to a schedule of monthly
individual phone calls to get an idea of how each teacher was using the robot and
to deal with any problems that might have arisen. These phone calls were crucial
in maintaining the relationships between us and the teachers, as they created a
series of monthly goals that drove both our group and the teachers to work on the
curricula and software API.

In addition to phone calls, we also kept in touch using a wiki. Teachers used
the wiki to provide information about their schools, upload pictures of themselves
and their students, and later to share activities and assignments they had developed
for the robot.

Structure of the Project Year

Teachers were sent robots at the end of September and most began using the robots
as soon as they arrived. In addition to the robots, we also sent the assignments
developed in Table 6.3. Our goals for the fall semester were to have the teachers set
up the robot and attempt the assignments in order to become familiar programming
with the alpha robot. Most teachers went beyond this, inviting their students to try
some of the assignments and providing feedback regarding the activities, software
API, and robot hardware.

December marked the end of the training phase of the program, as by this time
everyone had tried a majority of the assignments and were familiar with robot pro-
gramming. The relationship between the teachers and us became less prescriptive
and more cooperative. Teachers began creating additional activities and assign-
ments for the robot. As their comfort with the robot grew, all the teachers involved
their students to a great extent. Despite having only a single robot, they were able
to integrate robot activities into their spring curricula, and were able to use the
robot extensively in out-of-class settings. As part of the purpose of our study was

155

6. CSbots

to discover which hardware features were most useful to teachers and students, we
sent supplementary Kits of sensors and actuators and asked the teachers to try using
them; these kits included light sensors, a distance sensor, and servos with which
teachers could build robot arms. The teachers used these supplementary kits, and
they, or in some cases their students, upgraded the robot hardware with them.

Summer 2008 Workshop

We held a workshop at the end of the 2007-2008 school year to train new teachers
to use the initial robot, software, and curricula developed by us and the teachers
who had worked with us over the past year. Although it may seem somewhat
counterintuitive to hold a workshop around a robot platform that we acknowledge
as an incomplete design, doing so has broadened and deepened our contacts with
the high school teacher community, and the comments of these new teachers in the
2008-2009 school year have provided us with further feedback into the redesign of
the robot.

The successes that our pilot teachers had with a single robot per classroom sup-
ported a belief that the program could be scaled, and we decided that a workshop
after the initial project year was the best way to do so. We had support to host a
summer 2008 workshop with up to twenty five teachers; as well as to subsidize the
cost of robots for all attendees. The workshop was centered on training teachers on
the robot used in the first year and on the curricular materials that were generated
by the partner teachers and project team during that year.

Recruiting Participants We recruited participants by emailing the SIGCSE and
the Collegeboard’s AP Computer Science teacher mailing lists. We also worked
with the CS4HS organizers to email their list of attending teachers. We co-located
with CS4HS and held the workshop directly before CS4HS. This was essential to
recruiting an adequate number of participants to a new and unknown workshop; as
nearly all of our participants also attended CS4HS.

Twenty-four new teachers attended the workshop, and four of our existing part-
ner teachers attended to share their experiences. Collectively, these teachers teach
at least 1500 students per year. We were pleasantly surprised at the wide reach of
the workshop which attracted teachers from 12 states and one foreign country (a
teacher attended from the American Embassy School in India).

Workshop Composition The workshop took place over one full and one half day
near the end of July and was composed of a number of lectures, panel discussions,
and directed and open ended robot activities.

156

6.7. Pilots and Evaluation

Two one-hour lectures were given during the first day. The first lecture was
given at the start of the workshop and described the robot’s hardware, explained the
wireless network configuration, and detailed the software API necessary to write
programs. The second lecture concerned the curricular activities and assignments
already created, and explained how certain high level CS1 concepts mapped well
onto certain features of the robot’s hardware (for example, looping works well with
reading in sensors).

Two 45 minute panel discussions were held on the first day. The panels con-
sisted of the four teachers who took part in the pilot, allowing peer to peer dis-
cussion of common concerns related to teaching CS1 in high schools. The panel
topics included:

e How the robot is used effectively at different schools.

Challenges to setting up the robot in different contexts.

Involving students out of class.

How to maximize the limited resource of a single robot
e How the robot was used for community outreach.

Teachers worked on two directed robot activities during the workshop. These
activities were relatively brief at 30 minutes each and allowed teachers to become
familiar working with the hardware during the morning and early afternoon of the
first day. The activities were based on some of the assignments created by our
partner teachers during the pilot year.

The last hour and a half of the first day and the entire second day were devoted
to allowing teachers to work in small groups to develop robot assignments and
activities (and to write solutions to these with the robots present). This time was
structured only in so much that a goal was presented to the participants: create one
or more potential assignments that involve the robot. These activities produced a
long term beneficial result for the community, as all the participants shared their
assignments with the group at the end of the workshop. The open-ended structure
also allowed groups to focus on areas of personal interest (for example sensing
or text-to-speech), to work at their own pace, and to receive individual assistance
from us and the experienced teachers on an as-needed basis.

Workshop Evaluation We evaluated the workshop through a post-workshop sur-
vey of participants. The goal of the post-workshop survey was to anonymously
allow teachers to provide feedback about the workshop. The survey was conducted
online, and 16 out of 24 teachers responded to our request to complete it. Our

157

6. CSbots

conclusion from the survey feedback was that the workshop effectively trained the
teachers in use of the robot and accompanying materials. Twenty one out of 24
attendees purchased a robot for 200 USD at the end of the workshop, further con-
firming the workshop’s effectiveness.

We asked teachers to rate a number of aspects of the workshop on a scale from
1 (Poor) to 5 (Excellent). Table 6.9 summarizes the mean ratings for each aspect.
Overall, teachers were very positive about the workshop in their ratings, and were
fairly consistent as well - almost all teachers rated every aspect of the workshop as
either ‘good’ (a rating of 4) or ‘excellent’ (a rating of 5).

Workshop Aspect Mean Rating
Technical lectures on robot, software, and curricula 4.6
Discussion panels 4.1
Guided hands-on activities 4.8
Open-ended activities/brainstorming 4.4
Overall workshop experience 4.8

Table 6.9: Summary of teacher ratings of workshop

We also asked teachers about our effectiveness at teaching them how to use
the robot and curriculum developed for the workshop. Specifically we asked them
to agree or disagree with the following statement: “The CSbots workshop gave
me the appropriate information to effectively use the Create robot and associated
curriculum at my school.” On a scale from strongly disagree to strongly agree, all
teachers marked ‘agree’ or ‘strongly agree’.

6.8 Redesign

The evidence at the end of the initial design phase provided support for the notion
that robots could be effective educational tools in Computer Science education.
Our initial design was lacking in important ways: problems at Ohlone college
emphasized the fragility of the hardware setup, the high student:robot ratio and
resulting requirement for students to work on assignments on campus is poorly
aligned to the CS1 course, and the feature set of the robot had not been optimized
for computer science education.

Given these problems, we engaged in a redesign of the robot, software, and
curriculum to align with CS1 goals. In this section we discuss the principles behind
the new design and details of the design.

158

6.8. Redesign

6.8.1 Design Constraints

We had many sources of information to consider in our redesign: our initial evalua-
tion and literature review, our experiences with high school teachers testing differ-
ent peripherals, our CCAC and Ohlone college studies, and much feedback on the
initial robot from students and teachers. From these varying pieces of information,
we formulated a set of evidence-based design constraints:

e The robot should be sufficiently low cost for individual use. This was borne
out both from the original literature, from our own experience running a sep-
arate lab in the CCAC study, and from feedback from high schools teachers
who were constrained to working with a single robot.

e It should be possible to complete assignments with the robot at home. This
suggests three design constraints: Firstly, the robot hardware must be suffi-
ciently robust to survive students’ home environments and transport between
home and school. Secondly, the robot must be small enough to be carried
back and forth easily. Lastly, the robot software must work on the diverse
computer and OS platforms students have available at home.

e The robot should be aesthetically appealing. At CCAC, researchers often
observed students personalizing robots and giving them anthropomorphic
agency when their programs were running on them. We thought this sense
of agency important to motivating the students, and felt an aesthetically in-
teresting design would support it.

e The robot should be capable of interesting interaction with students and with
the environment. There was no one feature that we had to include based on
our earlier experiences with the initial design; instead, a broad suite of inputs
and outputs is most important.

6.8.2 Robot

Much of the project time in 2008 was spent formulating the above design con-
straints and deriving from them an appropriate robot hardware design. At the end
of this time we had developed a small, inexpensive, highly interactive robot, which
we dubbed the “Finch”. The Finch design is unusual for a mobile robot: it must be
tethered to a computer at all times. Deciding to tether the Finch provided a number
of marked advantages to the design:

e The Finch derives power from the tether, thus there are no batteries to charge
and robot behavior can not be affected by on-board power levels.

159

6. CSbots

e The Finch has very little need for on-board processing. Instead, a low cost
microcontroller sends and receives commands over USB to the computer.
Programs created by the student run entirely on the computer. In this way,
the Finch is more of a computer peripheral than an autonomous agent.

e As a USB device, it is relatively easy to create support for the Finch in dif-
ferent programming languages.

e Setting up the Finch is simple. One need only install a USB driver (avail-
able for all major operating systems) and use our cross-platform software
package.

e Tethering reduces the need for complexity in the Finch, which in turn sig-
nificantly reduces the cost. We estimate that the Finch can be sold for under
$100 commercially.

Due to its tether, the Finch is not a very capable mobile robot. This is not a re-
flection of a flaw in the design but of the design constraints themselves - capability
as a mobile robot is simply not that important. Tethering provided a simple solu-
tion to meeting several of the design constraints simultaneously, but two important
constraints are not addressed by the tether: aesthetics and interactivity.

Our group decided to work with an industrial design consultant to create a
molded plastic shell for the Finch to both protect the robot electronics and to appeal
aesthetically to students. The consultant drew up three shell concepts (see Figure
6.14) and we distributed these to the high school teachers involved in the project.
They and their students voted on which they preferred and provided comments,
leading to a final concept that borrowed elements from each of the sketches.

0 ¢

v

Figure 6.14: Sketches of Finch shell concepts

The final shell pictured in Figure 6.15 intentionally expresses zoomorphic traits,
with a beak, two eyes, a nose with two openings, and ear holes. Naming the robot
“Finch” is a further effort to carry on this zoomorphic theme. The shell is designed
to be easily grasped by students, with the curvature of the shell suggesting that it

160

6.8. Redesign

can be held with both hands with thumbs resting near the ear holes. Additionally,
the rear part of the shell offers a tripod support to allow the Finch to be placed
vertically on a flat surface. This is very useful when debugging a program in which
the Finch’s wheels are moving.

Figure 6.15: Finch shells

As the shell supports the notion of physically interacting with the Finch, the
robot’s hardware is similarly oriented around interactivity. From our initial pilots
we realized that it was not so much a single sensor or actuator that was critical to
successful interactions between students and the robot, but the combination of a
number of features engaging students through multiple sensory paths. The robot
could talk, flash lights, sense bumps, and move about. Successful assignments
were those in which students needed to utilize most of these features in a way
that also involved their interacting with the robot in some way (for example by
bumping the bump sensor, listening to the robot speak and responding, or mov-
ing the robot through a GUI designed by the student). As such, we sought to turn
the Finch into a highly multi-modal device, one that can interact with students
by engaging a combination of students’ visual, auditory, and kinesthetic senses.
The Finch can express motion through a differential drive system, light through a
color-programmable LED, and sound through a beeper. Similarly, it can sense light
levels through two photoresistors, temperature through a thermistor, distance trav-
eled through two wheel encoders, obstacles placed in front of it, and its orientation
in three dimensional space through an accelerometer (see Figure 6.16 for place-
ment of the Finch’s actuators and sensors). In addition to these hardware-based
capabilities, the accompanying software allows students to easily have the Finch
speak or play songs over computer speakers, read real-time data from internet RSS

161

6. CSbots

feeds, and react to video from computer webcams.

Roboticists tend to think of mobile robots as creatures of their environment:
they move within a space and react to stimuli in that space. Though the Finch
is capable of behaving in this manner, the Finch’s capabilities provide two other
frequently used modes of operation. Firstly, there are programs that use the Finch
as an input device to the computer; for example, the accelerometer data can be
used to move a cursor on the screen. Secondly, the Finch can be used as a way
to convey information from the computer to the user in the physical world; for
example, by shivering if it is cold outside or setting an alarm when an earthquake
has struck somewhere in the world. Using these three loosely defined and over-
lapping modes, the Finch expands on the ability of a computer to sense and act
in the world. It should be seen as a tool for enhancing a computer’s capabilities,
providing students with a wider range of programs to write and problems to solve,
and ultimately leading, as we have tentatively begun to see, to more interesting and
relevant assignments and more engaged students.

WHEEL ENCODERS

OBSTACLE
DETECTION
SYSTEM

MICROCONTROLLER

USB CABLE
& PLUG

LED

TEMPERATURE
SENSOR

LIGHT SENSORS ACCELEROMETER BUZZER

Figure 6.16: The Finch robot’s sensors and actuators

162

6.8. Redesign

6.8.3 Software

Significant changes were made to the software package, however, very little was
changed in terms of how the software API was presented to students or how stu-
dents used the API. Students still had a list of methods called from a single instance
of arobot class. As we found that students in the initial pilots had few problems us-
ing our software API, many of the method names were the same as those used in the
initial pilot. Changes to the software fell in one of two categories: new method calls
to support entirely new capabilities of the Finch, and back-end changes to support
the different style of tether (wireless vs. USB). The second of these was entirely
invisible to students and our partner educators. The first category of changes was
made in consultation with educators to name method calls for things like reading
light sensors, determining spatial orientation, or setting beak color. Documentation
for the software API was included with the software download students received,
and as before, presented every method call in javadoc style in addition to the quick
reference primer detailing the most important methods.

6.8.4 Curriculum

Unlike our initial design, specific assignments were not created outside the context
of a specific course. At CCAC, the Finch was used throughout 2009 in two courses,
CIT-111 (a CS1 course) and CIT-130 (a CS2 course); both of these were taught in
Java. The Finch was used by students for most of the assignments in each course;
however, learning goals did not change compared to prior years. We present the
resulting curriculum from each of these courses in tables 6.10 and 6.11.

The Finch was introduced in the fourth week of instruction in CIT-111. The
delay was deemed necessary by our partner to allow students to pick up basic Java
syntax before beginning with the Finch. In CIT-130, no delay was deemed nec-
essary and the Finch was introduced in week two. In both classes, the first Finch
assignment was made somewhat easier to allow students extra time to set up the
Finch at home and learn how to create small programs with the Finch. Furthermore,
one lecture was dedicated to the Finch software API and how to call methods us-
ing the APIL. These were fairly minor disturbances to the overall curriculum and
both courses did cover as much material as prior, non-Finch courses taught by our
partner.

163

6. CSbots

Assign- | Goals Assignment Description

ment

1 Compiling a program; printing | Write a program that prints to
to screen. screen.

2 Variable types; simple arith- | Calculate and print miles per
metic operators and Boolean | gallon given miles and gallons
expressions; printing vari- | used.
ables.

3 Reading in user provided data. | Read in name and age and print

remaining life expectancy.

4 Selection structures. Read the Finch’s orientation
(flat, beak up, or beak down) and
say what it is.

5 Looping Move around the room and
avoid obstacles. Apologize if
there was a near collision.

6 Student-written methods. Students create a note player
method that plays notes read in
from user input.

7 Student-written classes. Write a class that tracks the in-
ternal ’emotional’ state of the
Finch and expresses it when the
playEmotion method is called.

8 Arrays. Move the Finch through five
points and collect light sensor
data at each point; store sensor
data in an array and get the aver-
age, max, and min.

9 Begin graphics and events. Create a tele-op interface.

10 Continue graphics. Create a slider based tele-op in-
terface to control LED.

Table 6.10: Schedule for CCAC’s 2009 CIT-111 class

164

6.8. Redesign

Assign-
ment

Goals

Assignment Description

Review variables, operations,
user input and screen output

Write a simple calculator pro-
gram that asks for two inte-
gers and performs user-specified
arithmetic operations on them.

Review using classes in con-
text of Finch

Write a weather forecaster that
takes user specified city, and
then has the Finch interpret the
current weather in that location.

Student written methods and
looping

Students create a note player
method that plays notes read in
from user input.

Creating, catching, and han-
dling exceptions

Create methods to have the
Finch sing and dance to MIDI
files; catch/handle exceptions if
a specified file is not MIDI-
format or doesn’t exist at all.

Learn about arrays of objects

Create a game of Simon using
the Finch - Finch says a position
to move the robot to, and then
the user must repeat.

Class Inheritance

Create a class that inherits the
Finch class. This new class
is called MoodyFinch and adds
emotional state to the Finch.

Abstract and interface classes.

Use a provided interface class
(the “Robot” class) and create
an interface for the Finch with
this class.

Graphics

Create a user interface for the
Finch with movement com-
mands, as well as buttons for
several of the internet RSS
feeds.

Continue Graphics.

Open ended user interface de-
sign with the Finch.

Table 6.11: Schedule for CCAC’s 2009 CIT-130 course

165

6. CSbots

6.9 Finch Pilots and Evaluation

In January 2009 we built 100 Finch robots and began a lending program with inter-
ested educators. To date, Finches have been evaluated by educators and students in
high schools, after school activities, community colleges, and four year colleges.
Reviews have generally been favorable. In two cases, we have collected formal
evaluation data from these pilots; one was a full test at CCAC in which every stu-
dent was given a robot, the other was a loaning program with nine high school
teachers.

6.9.1 CCAC Pilot

Finches were used in the spring and fall 2009 semesters in the CIT-111 and CIT-
130 classes (CS1 and CS2) taught at the Community College of Allegheny County
by one of our partners. In the spring, three sections of CIT-111 and one section of
CIT-130 used the Finch, and in the fall two sections of CIT-111 and one section
of CIT-130 used the Finch. Every student in each section was loaned a Finch and
could take the robot home with them.

Evaluation Methods

Students were asked to complete a pre survey, a post survey, and a brief survey
after every assignment. Pre/post surveys sought to determine characteristics of
students who successfully passed the course, as well as interest in using the Finch.
Assignment surveys were designed to track student interest and frustration on an
assignment by assignment basis.

In addition to these surveys, we also compared the spring and fall 2009 CIT-
111 class to previous courses taught by our partner; we compared the average grade
of passing students, as well as the retention rate in the class. The fall comparison
included our earlier pilot with the alpha robot platform. We did not do a similar
comparison for the CIT-130 classes because the low number of participants and
intermittent teaching of the course did not provide enough participants to make
comparisons statistically valid.

Survey Results

Survey results are provided for the spring and fall CIT-111 course and CIT-130
courses. Students were surveyed at the beginning and end of the course, and were
given surveys after every assignment, with two exceptions: students in the spring
CIT-130 were not given assignment surveys and insufficient students in the fall

166

6.9. Finch Pilots and Evaluation

CIT-111 course filled out our post survey, so their responses are not included. Sur-
vey completion was a challenge, especially on post surveys and on surveys given
after every assignment. Due to IRB restrictions, we could not provide students
with any incentive or requirement to complete surveys, and so survey completion
rates were lower than desired.

Pre and post surveys sought to capture characteristics of the students in the
course: GPA, age, favorite subjects, career interests, and interest in using robots.
Assignment surveys sought to capture interest, confidence, and difficulties in com-
pleting the weekly assignments.

Participant Characteristics Table 6.12 presents the number of students enrolled
in and taking the pre and post surveys in each of the four classes. From this table
it is clear that response rates were above 75% for all surveys except for the post
survey in fall CIT-111. This survey was supposed to be handed out immediately
prior to the final exam, but it seems that students skipped the survey to work on the
exam instead.

Class Students En- | Pre Survey | Students Post Survey
rolled Responses Passing responses

spring 59 47 13 12

CIT-111

fall CIT- | 40 33 17 2

111

spring 21 20 11 10

CIT-130

fall CIT- | 14 10 9 7

130

Table 6.12: Students in the course and responding to pre/post surveys

We asked students their age and observed that in all three courses with pre
and post surveys, the average age of students taking post surveys was three to four
years older than that of students taking pre surveys. Table 6.13 presents these
results, which seem to imply that older students are more likely to pass the course,
either due to past experience programming or to a greater degree of responsibility.

To gauge whether prior experience with a language was important to success in
the class, we asked students in CIT-111 to state which programming language they
knew best. Table 6.14 presents the percentage of all students who selected a given
language at pre and post, and the results of a matched cohort who answered this
question at both pre and post. From this table, prior experience with programming

167

6. CSbots

Class Average age at pre | Average age at post
spring CIT-111 24.43 28.00
spring CIT-130 28.95 32.67
fall CIT-130 23.50 27.00

Table 6.13: Average ages of enrolled and passing students

was not a determinant in success in the class.

Language | All Pre | All Post | Matched Pre | Matched
(n=47) (n=10) (n=10) Post (n=10)

Java 9% 70% 0% 70%

C/C++ 4% 10% 0% 10%

Other 13% 20% 40% 20%

None 74% 0% 60% 0%

Experience | 2.35 2.58 2.17 2.1

Rating

Table 6.14: Percent of students in CIT-111 reporting each category as their best-
known programming language

Reasons for Taking the Class We asked students two questions related to why
they chose to take the course. To get at their motivation for selecting a Computer
Science course, we asked them to list their favorite school subjects. To get at what
they needed the course to provide them, we asked them their reasons for taking the
course.

Subject Pre (n=80) | Post (n=14)
Computer Science 50% 64%
Engineering 9% 14%
Other Science 25% 14%
Social Science 13% 8%
Health Care 4% 0%
Other 10% 0%

Table 6.15: Percent of students in CIT-111 reporting a given topic as their favorite
subject in school

Results from the question regarding students’ favorite subject are shown in
tables 6.15 and 6.16. The answers to the questions have been split by course but

168

6.9. Finch Pilots and Evaluation

Subject Pre (n=30) | Post (n=17)
Computer Science 57% 82%
Engineering 7% 0%
Other Science 18% 12%
Social Science 18% 6%
Health Care 0% 0%
Other 0% 0%

Table 6.16: Percent of students in CIT-130 reporting a given topic as their favorite
subject in school

not by semester. While the question was open-ended, answers were coded into
one of six categories; computer science, engineering, other science, social science,
health care, and other. Some students responded with two or more subjects - in
these cases we counted all responses; thus some columns in the table add up to
over 100%. In general, students answering the post survey were more likely to
be interested in Computer Science and students in the CIT-130 class showed more
interest in Computer Science; these differences were not statistically significant.
We also tracked changes in responses from students completing both pre to post
surveys. Across both classes four students changed their answers from pre to post
- all four moved from another category to Computer Science.

Interest in the Finch We sought to determine interest students had in the Finch
through three questions. We asked incoming students if they would prefer pro-
gramming a computer or robot, and asked outgoing students if they had shown the
Finch to anyone, and if they had worked on programs for the Finch that were not
assigned.

We coded the answers to the programming preference question into three broad
categories - robot better, computer better, and not sure. Table 6.17 summarizes
the answers to these questions split by class. Generally, roughly 2/3 of incom-
ing students believed they would prefer programming a robot to programming a
computer, with the third split between being undecided and believing they would
prefer programming a computer. Students were asked to give reasons for their an-
swer; popular reasons for answering computer better were that learning to program
a robot was too specialized and might not apply to future classes or careers, or that
computers are more useful. Students answering not sure almost always indicated
that they had no experience with robots and so could not judge whether program-
ming robots would be more or less interesting. Students answering robot better
gave three main reasons: robots are cutting edge or novel, robots provide the stu-

169

6. CSbots

dent with the ability to have their programs physically act in the world, and robots
are fun. There were no significant differences between the semesters or between
students in CIT-111 and CIT-130, although there were more students in CIT-130
who believed programming a computer would be preferable. These students al-
most always cited a worry that programming for the robot would not be useful in
later classes or in their career.

Class | Robot Better | Not sure | Computer Better
CIT-111 68% 18% 14%
CIT-130 66% 10% 24%

Table 6.17: Percent of students who prefer to program computers or robots

At the end of the course students were asked two questions about the Finch
- whether they had shown it anyone, and whether they had written programs for
the Finch that were not assigned. Every student who answered the post survey
indicated they had shown the Finch to someone - typically friends and family.
Most went on to describe the reactions of the people who saw the Finch; of these
reactions, all but one was positive.

Students were less likely to have written programs for the Finch for fun, of
twenty eight post survey responses, eight indicated that they had done so. Most
of these students wrote small programs for their friends and family; four students
gave an estimate of the amount of time they spent out of class on the Finch. Three
students spent 3-5 hours on the Finch, and one indicated that she spent 30-40 hours
out of class using the Finch.

Interest Interest in the assignments was tracked through surveys after each as-
signment using the same question as in the 2007 pilot. Students were asked to rate
their favorite assignment to date, and we then charted the percentage of students
rating the just completed assignment as their favorite. Graph 6.17 shows the trend
lines for each of the three courses with assignment surveys (Spring CIT-111, fall
CIT-111, and fall CIT-130). The latter half of the spring 2009 semester appears to
have been less than compelling to students; and so we retooled our assignments for
the fall with positive results. The fall CIT-130 similarly benefited from our experi-
ence with the spring course. In all cases, a final assignment mixing graphical user
interfaces with the Finch was very popular among students (just as it was in our
earlier 2007 pilot).

Confidence Confidence in the assignments was tracked by getting estimates of
the grade students expected. Charts 6.18, 6.19, and 6.20 show the general trends

170

6.9. Finch Pilots and Evaluation

Percent of Students Who Rate Current Assignment as
Their Favorite

100% S

90%
80% }'
70% = =% ,
sosv: /azf\/ \\ Il'
o N T ~ I e Spring CIT-111
30% \ v Do
20; \ Fav \ i Fall CIT-130
b
10% \\// \\\' /

0%

2 3 4 5 6 7 8 9 10

Assignment Number

Figure 6.17: Percent of students rating the current assignment as their favorite

Confidencein Spring CIT-111
100%
90% \
80% S
60% \ / \ /
50% \ / ~
40% \ / A
30% /A TN — s
20% / -7 -~ —)
10% A
0% — - - -- - —
1 2 3 4 5 6 7 8 9
Assignment Number

Figure 6.18: Confidence of students in spring 2009 CIT-111

in student reports of their own grades. Student estimates of their grades did not
change markedly during the semester, though some assignments appear to have
been more difficult, and students in the CIT-130 class estimated lower generally
lower grades, possibly because the subject matter of the second level class is more
difficult.

171

6. CSbots

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Confidencein Fall CIT-111

/\ —
/ N\
/ N\ N\
N/ N\
V Y
/J‘
N\ S~
~ £
N o7 / S

Assignment Number

Figure 6.19: Confidence of students in fall 2009 CIT-111

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Confidencein Fall CIT-130

Assignment Number

A
[\
[\
N\ / \
~ / \
N/
- ==, NN
\f /\, _-\(y
F~—7" ~— v 7
7 N/
3 4 5 6 7 a8 9

Frustration Students were asked to summarize the most difficult or frustrating
problem they encountered for each assignment. We coded these sources of frustra-

Figure 6.20: Confidence of students in fall 2009 CIT-130

tion into several categories:

e Conceptual - Students mention not fully understanding concepts of pro-

gramming like looping, arrays, etc.

172

6.9. Finch Pilots and Evaluation

Syntax - Students report problems getting the program to compile because
of syntax errors or program structure.

Finch API - Students have trouble getting the Finch methods documented
in the API to work properly.

Finch Hardware - The Finch hardware prevents the written program from
being properly executed.

Assignment - Students had trouble understanding what the assignment was
asking for.

None - Students reported that nothing was difficult in the assignment.

Ideally, students would have struggle only with conceptual problems or have no
problems at all. Struggling with the Finch API is not necessarily negative; many
students who had problems with the API actually had problems with the concept
of using external custom classes. We sought to minimize problems stemming from
the Finch hardware, from the assignment description, and from problems with the
API specifically related to confusing documentation or bugs in the Finch software.

We charted the frequency with which each of these sources of possible prob-
lems were reported by the students. Figures 6.21, 6.22, and 6.23 display the results.

Sources of Frustration in 5'09 CIT-111
100%
90% Ih\“"--//
80% l
0% 1
60% \ / \ I Concepts
50% - / \] = =Finch Hardware
40% \\ 'J"_ = = Finch API
30% ’\1 \ A = : None
(+] ri il R ‘
20% n‘d \b\ ~, u = - Syntax
v LA N TP _
10% — _ _}3); \ - /\'\ \A = =« Aszignment
0% e) N
1 2 3 4 5 6 7 8 9
Assignment Number

Figure 6.21: Sources of frustration for students in spring 2009 CIT-111

173

6. CSbots

Sources of Frustrationin F'09 CIT-111

100%
90%
80% //
70% ,“\ /
60% : N / Concepts
50% LY / \\ = =Finch Hardware
40% --..\,,_\\-{ - l/ = == Finch API
30% - ‘\ — « None
20% - \—\ / - Syntax
AN\ Pl L
10% 0 Y ~. \ b Assignment
0% N Z -

3 4 5 6 7 8 9 10

Assignment Number

Figure 6.22: Sources of frustration for students in fall 2009 CIT-111

Sources of Frustration in F'09 CIT-130

100%
90%
80% A—r7- /
ol A A W :

A . -' N If‘ ..
60% ¥ ¢ s Concepts
50% - ;, \ 7 / \, L \ A .I === =Finch :ardware
40% ‘ “ \/ \ A- - / \ = = Finch API
30% .l" J‘ﬁ\ II\ . '.Y’ ,\ —— -« None
20% ! 4) \ f h . \ === Syntax
10% /‘u ! \‘(\' \ // ~ \ = = Assignment

N 2 AENTNT N

0%

o]

3 4 5 6 7 8 9

Assignment Number

Figure 6.23: Sources of frustration for students in fall 2009 CIT-130

Most students primarily reported conceptual problems throughout the course.
However, there is a spike of Finch API problems at the time when the Finch is first
introduced, representing problems students have when initially learning to use the
Finch. Fortunately, students rarely report Finch API or hardware problems after us-
ing the robot for one or two assignments. Finch hardware problems were uniformly

174

6.9. Finch Pilots and Evaluation

related to the poor drive mechanism of the prototype Finches; this was more a prob-
lem of properly setting student expectations than of the hardware. Understanding
the assignment description was typically not a problem, with the exception of as-
signment 7 in CIT-130; this highlights the utility of this question in finding areas
of improvement for the course.

Finch Robustness We tracked failures of the Finch hardware over the course of
the year. There were very few failures of any type, out of 60 Finches loaned out
for the entire year:

e One Finch beak LED did not light up correctly due to poor soldering during
assembly.

e On three Finches, screws came loose in the drive mechanism, preventing a
wheel from turning.

e One Finch’s USB cord was destroyed by a small dog.
e Three Finches were not returned by students.

Of these errors, only the LED failure is irreparable by students, and this was a
manufacturing defect and not a result of use. As such, the Finch robot held up very
well, meeting our goal of creating a hardware platform that does not introduce
hardware problems into a Computer Science class.

Comparison to Prior Courses

We compared the mean grade of passing students and the retention rate in the
course to previous years of the CIT-111 class. The CIT-130 class was too small
and offered too intermittently to make comparisons to prior classes statistically
meaningful. We compared the full year of sections to prior years and also compared
the spring and fall sections separately. This is done because our experience in the
spring course allowed us to improve the software API and assignments provided to
students in the fall course substantially. As such, we believe that the fall course is
a better-aligned course generally, and makes better use of the Finch’s capability as
a tool in this context.

Retention Retention in the spring and fall pilots was compared to four prior years
of data from our partner; this also includes our earlier pilot in fall 2007. Figure 6.24
shows the retention rate, defined as the percentage of total enrolled students who
passed the course with a C. The three bars for each year represent the spring, fall,

175

6. CSbots

and total retention rate for that year; blue bars are years without any intervention,
the green bar is the earlier pilot, and the red bar represents data from the Finch pilot
year. An average retention rate for all non-pilot years is also included. Total reten-
tion across all five years was remarkably stable - hovering between 31 and 34%.
Overall retention was not significantly different for the fall or spring pilot com-
pared to previous fall or spring courses, nor was the entire pilot year significantly
different from any previous year or the average of previous years.

Overall Retention

45.00%

40.00%

35.00%

30.00%
B 5pring
25.00%
o Fall
20.00% '
(& ar
15.00%

10.00%
2005 2006 2007 2008 2009- Average
pilat

Figure 6.24: Retention of students in CIT-111 in pilot year compared to four prior
years

In addition to comparing overall retention, we also investigated the retention
rate among students who stayed in the course through the first exam. We did this
for two reasons: Firstly, many students who begin the CCAC course drop out in the
first few weeks because they had a poor understanding of the goals of the course;
many students believe the course is about computer skills. Secondly, the Finch was
not introduced until assignment 4, roughly at the same time as the first exam, and
so it likely had no impact on retention before the first exam. Comparing the pilot
year in this way we see that the spring pilot slightly underperformed compared to
the prior four years; the retention rate of 52% was lower than the rate seen in three
of the four prior years and was slightly below the four year average of 56%; even
so, none of these differences was statistically significant and it should be noted that
the retention rate improved compared to the year immediately prior.

The fall course showed a marked improve in retention compared to all other
years and the average. The 80% retention rate was significantly better than 2006
and the earlier pilot year of 2007 (p < 0.01 for both). Though not statistically

176

6.9. Finch Pilots and Evaluation

significant, the rate was above the four year average of 57% and above 2005 and
2008 as well. When comparing between the study year and the prior four years,
we see no significant differences in the retention rate, although the rate for 2009 is
higher than for all other years (65% compared to an average of 56%).

It should be noted that achieving statistically significant results in this study
was fairly difficult due to the low number of participants. Fall retention rates
needed to be at least 25% higher than prior years to show significance. As such, the
fall pilot results are extremely promising and suggest that future studies with more
students should be carried out to more clearly quantify retention improvements
stemming from Finch use.

Retention Excluding Early Drops
90.00%
20.00%
70.00%
50.00% BSpring
£0.00% 1 H Fal

Year

10.00%
30.00%

2005 2006 2007 2008 2009- Average

|:-|Iot

Figure 6.25: Retention rates excluding students who dropped before exam 1

Grades We compared the average grades of passing students in the pilots to prior
years. We converted the letter grades assigned to students to numbers using the
standard way in which GPA is calculated (i.e., a C is 2.0, a B is 3.0, and an A
is 4.0). CCAC does not provide +’s, -’s or percentage grades. As the minimum
grade required to pass was defined as a C, the average could fall anywhere between
2.0 and 4.0. The average grade in the class was not significantly different from
any previous year, nor were the individual spring or fall semesters different from
any previous spring or fall semester. However, the spring semester average grade
was lower (though not significantly so) than all prior years. We suspect this may
have been due to our inexperience using the Finch. The fall average grade was
within the normal range of grades even with a higher overall retention rate, so we
suspect that our experience with the spring course and subsequent modifications to

177

6. CSbots

the assignments resulted in a qualitative improvement to the course.

Average Grade of Passing Students

3.800

3.600
3400

3.200
3.000
2.800
2.600
2400

2005 2006 2007 2008 2009- Average
pilot

HSpring

= Fall

Year

Figure 6.26: Grades of passing students in CIT-111 compared to four prior years

Summary

The 2009 CCAC pilots suggest that our revised design met some of our objec-
tives: retention improved markedly in the fall course as compared to prior years,
students continued to struggle primarily with computer science concepts as op-
posed to robot hardware/software, the Finch robots had very few hardware failures
despite extensive use by students at home, and students passing the course demon-
strated excitement in the class by showing the Finch to friends and family and by
working on programs recreationally. At the same time, the relatively poorer perfor-
mance of the spring course demonstrates the importance both of properly aligning
assignments and activities to make use of the configurable embodied interface, and
of past experience teaching with a new tool like the Finch.

6.9.2 High School Pilots

Teachers who completed our workshop in summer of 2008 and had received an
alpha robot were given an opportunity to borrow a single Finch robot from us at the
start of 2009. Ten teachers responded affirmatively and received Finches, providing
us with a way to compare our initial robot design and the Finch in the hands of the
same teachers. We asked participating teachers (both with and without a Finch) to
complete a survey in June 2009 about how they used their robots to support their
curriculum and program.

178

6.10. Next Steps

Fifteen teachers participated in the survey who had alpha robots. We also asked
teachers who had been provided with a Finch to complete a separate survey; 8
teachers responded. As before, most teachers used the robot as a recruitment tool.
11 of the 15 teachers mentioned this as a use. Nine of the 15 teachers had students
actively using the robots; in a few cases, these students were given full control of
the robot for a few weeks or a month to do an extended project. It seems that gifted
and advanced students were the main users of the robot. Teachers with a Finch also
reported use primarily for recruitment and with small groups of students.

The total number of students using the alpha robot was 37, with most teachers
who used the robot with students reporting groups of four to six using the robot.
Among teachers who had also received a Finch, a total of 56 students used the
Finch, with an average of roughly 10 students per teacher using the Finch in spring
2009. It appears that the Finch, perhaps because it is more portable, was used by a
larger number of students for smaller, shorter projects.

Technical problems were somewhat rare and were typically resolved by the
teacher. Problems were fairly idiosyncratic, with no teacher reporting the same
problem as someone else. The problems reported for the alpha robot were: poor
battery life, failed charger (a replacement was sent), setting up the software envi-
ronment, compatibility problems with Mac OS, struggling to set up the hardware
properly, bumpers that didn’t respond when hit, and getting wireless networking
working. These problems, in all but one case were temporary and resolved by
the teacher. Teachers who had a Finch generally reported fewer problems, and
no hardware-related problems at all. Three of the eight responding teachers indi-
cated some level of technical difficulty. One had trouble setting up the USB driver
on their Mac, and two had trouble using software IDEs with the Finch. All three
teachers resolved these problems on their own without contacting us.

To summarize, these preliminary results from teachers compare the Finch fa-
vorably to the alpha design. The Finch is one-tenth the price, has fewer points of
failure, and was used by a larger number of students in each class.

6.10 Next Steps

Three efforts are underway in 2010 to expand and sustain the CSbots program:
new work with Pittsburgh-area charter schools, support for additional program-
ming languages, and commercialization of the Finch.

179

6. CSbots

6.10.1 Charter Schools

We are working with local charter and public schools to adapt the robot, soft-
ware, and activities to the CS curriculum at each school. Participating teachers
will be trained in how to program the Finch, and we will then work with them for
a semester to create curricula and software appropriate to their schools. After this
training period, each school will receive a classroom set of Finches that will be
used during the 2010-2011 school year. As such, this will be the first large scale
deployment of Finches at the high school level.

Not all of these schools have traditional CS1 courses, and so for the first time in
the CSbots program, we will have the ability to design our software and activities
towards learning goals that are somewhat flexible. Additionally, as each teacher
will choose how to introduce the Finch, we hope that the range of activities and
curricula developed will be fairly broad, reflecting the diversity of the different
schools in the program.

6.10.2 Additional Language Support

As the Finch is a tethered computer peripheral, supporting additional programming
languages is a fairly easy task. Our eventual goal is to provide support for the Finch
in four types of programming languages:

e Drag and Drop. Languages like Scratch and Alice provide a graphical inter-
face to allow students to drag and drop elements into a program. Children as
young as eight can use these languages to successfully create programs, and
they are used in formal education from elementary school through college.

e Engineering Flowchart. Engineering flowchart languages like Labview
or Matlab Simulink allow representation of a program as an engineering
flowchart. This a popular way to program in engineering schools, and for
those who have visual learning styles. The Finch has preliminary support in
Robolab.

e Scripting. Scripting languages like Perl or Python are in some ways as pow-
erful and flexible as many modern traditional languages but are syntactically
lighter and have a generally faster learning curve. They are becoming more
popular in introductory Computer Science courses.

e Traditional. Traditional languages like Java or C are the most powerful of
the languages we aim to support, and are still dominant in high school and
college education. The Finch supports Java, and can easily support C.

180

6.11. Summary

In addition to these languages, we plan to create a program that will allow very
young children to use the Finch. This program will allow programming of the
Finch through gesture. The program would have two modes: record and play. In
record mode, the child could pick up the Finch and tilt it in different directions to
“program” different motions. In play mode, the Finch would then move through
those motions. We have informally tested this program with kindergarten students
and they understood the program operation in less than a minute and greatly en-
joyed the program.

If we succeed in providing support for all these language types, we will have
provided Finch language support for learners of any age, and for every type of
programming method currently used.

6.10.3 Commercialization

In order to grow the program further and establish a sustainable source for the
Finch robot, we are creating a company to sell the Finch. As the educational activ-
ities and software offerings available increase the potential market and sale-ability
of the Finch, this company will have a vested financial interest in both dissem-
inating the created educational activities, fostering a community of educators to
create additional activities, and continuously updating and supporting associated
software.

6.11 Summary

The CSbots program started with a fairly simple idea: use robots as targets for
programming activities in introductory Computer Science education. Thousands of
implementations of this idea were possible early on in the design process. We could
have focused on producing costly, cutting edge robots that students could only
program in closed labs. We could have decided to alter the learning goals of the
introductory class to align better with our notions of good pedagogy in Computer
Science. We could have decided to have programs run autonomously on the robot,
necessitating the use of a customized programming language. All three of these
potential facets of the implementation were discussed and decided against because
of things that we learned during the initial evaluation and first pilot of the design.
Thus, these decisions were made not because of technical constraints but because
of educational constraints that were discovered during the design process. In the
next chapter I expand on this topic and offer a general way for designers to discover
these crucially important educational constraints.

181

6. CSbots

182

Chapter 7

Summary, Analysis, and
Conclusions

The three projects presented in chapters four, five, and six differ greatly in audi-
ence, setting, and learning goals. For all these differences, they share an alignment-
centered design process concerned with creating a configurable embodied inter-
face, software, and curricula, that are well aligned with a set of learning goals. This
section details this design process in the abstract, decomposing it into conceptu-
ally different steps. I then describe several efforts that have used design processes
similar to alignment-centered design, leading to a discussion of how alignment-
centered design modifies a core engineering design process. I conclude by dis-
cussing some of the challenges and limitations of alignment-centered design, and
provide guidance to future designers.

7.1 Summary of the Design Process

Figure 7.1 details the phases of the alignment-centered design process employed
in each of the three previous chapters. I begin with ideation, followed by an ini-
tial evaluation, a constraints-finding process, and then one or more iterations of
systems alignment cycles consisting of design, pilot, and evaluation steps. At the
end of each alignment cycle one decides to either begin a new cycle or disseminate
the design. The following subsections describe each of these steps in detail and
summarize how each phase was experienced in the case studies.

183

7. Summary, Analysis, and Conclusions

l Ideation I

[Initial Evaluation]

Constraint Finding Process

Figure 7.1: Alignment-centered design process steps

184

7.1. Summary of the Design Process

7.1.1 Ideation

Ideas spring from numerous sources; they often strike in moments of idle reflection,
but generally require an informational trigger to have occurred at some prior time -
perhaps a conversation with an educator about the needs of students or the sudden
realization that a new technology has enabled a previously infeasible idea.

In the case of the Braille Tutor, the idea originated from a back-and-forth con-
versation between a designer (Nidhi Kalra) and teachers at the Mathru School for
the blind. The conversation took place over email and focused on the challenges
that students at the school have; the topic of learning to write eventually came up
and Nidhi proposed the idea of a writing tutor. It is important to note that both
participants in this conversation contributed to the generation of this idea - Nidhi
did not understand the way in which students learned to write Braille, and teachers
at Mathru did not know about automated tutors.

In the case of Robot Diaries, the idea was triggered by a conversation between
two of the team’s members about what kind of robotics activity they would have
enjoyed when they were middle schoolers, and the realization that such an activity
did not exist.

The idea behind CSbots was less novel - we were aware of other efforts to use
robots in Introductory Computer Science. However, we planned to approach the
problem in a way that we did not believe had been tried in earlier work - designing a
robot from the ground up for the course instead of adapting commercially available
platforms. In this case the idea came from external drivers - many resources were
being poured into improving Introductory Computer Science due to the retention
and enrollment problems of CS education.

7.1.2 Initial Evaluation

Irrespective of source, the first step in each of our projects was to evaluate the idea,
typically by discussing it with educators and/or students. There are a number of
ways to do this - each of the three projects used a different approach.

The Braille Tutor idea came directly from a conversation between a designer
and educator, and so the initial evaluation of the idea was part of the ideation pro-
cess. As soon as it was proposed, the educator was able to provide feedback to the
designer regarding how it may be implemented and whether or not they could see
it working in their context.

To evaluate Robot Diaries we assembled a focus group of students and pre-
sented our initial ideas to them. Our experience with the focus group led to signif-
icant revisions in both our planned activities for the summer and our approach in
working with our intended audience.

185

7. Summary, Analysis, and Conclusions

We conducted a fairly extensive initial evaluation of the CSbots program - inter-
viewing more than thirty CS1 educators around the U.S. and using those interviews
to determine the logistics of the course, as well as interest in using robots. This sur-
vey led to a number of conclusions that strongly influenced our initial design.

7.1.3 Constraint-Finding Process

Design is, in a broad sense, the collapsing through design choices and found con-
straints, the design space or set of possibilities until an option that meets all the
design constraints in a satisfactory manner can be created. The initial evaluation is
the first step in the process of finding constraints to guide the direction of the de-
sign. The primary goal of the constraint-finding process, then, is to find additional
constraints inherent to the educational context and users; these can be learning
goals, required hardware features, instructional activities, or interactions between
the hardware or software and the student. The constraint-finding process is com-
posed of three overlapping phases: Participatory design, participatory pilot(s), and
requirements evaluation. Though the three phases are not always well delimited in
practice (for example, it is possible to still be adjusting elements of a design during
a pilot, or evaluating a pilot before it is over), they are separated here to provide an
idea of the kind of work done in each phase.

Participatory Design

The interface and supporting curriculum can be designed contemporaneously, as
they are components of a unified design. Depending on the context, the interface
may be enabling a novel curriculum or augmenting an existing one. In both cases,
a participatory design partnership with students and/or teachers in the relevant ed-
ucational setting is crucial. If creating a new curriculum, it is important to have
ready access to partners who can generate ideas, test activities, exercises, or com-
ponents of the design. For the initial technological design, it may be best to include
every feature that appears as though it could reasonably be of use in the curriculum,
with the intent that the pilot and evaluation will determine which features correlate
well with educational outcomes.

In the context of the Braille Tutor, the initial hardware design was completed
prior to the pilot. Portions of the software were completed ahead of the pilot,
but the three tutor programs were written by a member of the design team at the
beginning of the pilot in India. Educational activities for the Braille Tutor were
designed concurrently with the tutor by partner educators.

In the case of Robot Diaries, we held extensive participatory design workshops
with students. In Robot Diaries the pilot and design phases of the cycle were nearly

186

7.1. Summary of the Design Process

concurrent. The goals of our workshops were to discover how best to present the
technical content and themes we wished the Robot Diaries activity to involve. We
prepared for the workshops by designing kits of technical and building materials,
a software environment for programming robots, and a number of activities. Some
of the activities were created to test ways of introducing technical content, while
others were specifically made to elicit feedback from the girls and allow for their
participation in the design process.

For CSbots, the robot hardware, software, and curriculum were mostly de-
signed concurrently, with feedback from partner educators and from a small pilot
study with students at CCAC (see section 6.7.1). Our philosophy with the robot
hardware was to develop a maximally instrumented platform coupled with assign-
ments that took advantage of all of these features to allow us to determine what
robot capabilities worked in the assignments and which did not. In addition to de-
sign work done prior to the pilot, we also revised or rewrote some of our planned
assignments during the CCAC pilot to dynamically adjust to student interests and
needs. Compared to Robot Diaries or the Braille Tutor, these in-pilot design refine-
ments were very minor; the phases of the CSbots design cycle overlapped much
less than the other two.

It is important to note that with Robot Diaries and CSbots, there were elements
of the design that existed specifically to allow us to find additional constraints; the
activities in the Robot Diaries curriculum to elicit feedback and the overbuilding
of robot capabilities in CSbots were integrated into the designed whole with the
expectation that a final design would not include these elements.

Participatory Pilot(s)

Pilots were typically held in cooperation with partner educators (though as a brand-
new program this was not possible in the case of Robot Diaries). Though partner
educators led the educational efforts behind the pilot, members of the design team
held critical roles in each pilot, and in all cases directly interacted with students for
extended periods of time. As the pilots were oriented towards discovering further
design constraints and not to building a definitive case for an intervention’s effec-
tiveness, there was no intent to involve enough students to reach statistical power,
or to look for control groups to compare the pilot results against. As such, pilots
involved no more than twenty five students.

The Braille Tutor pilot occurred over six weeks at a school for the blind in
India. A member of the design team traveled to India to help conduct the pilot.
The designer worked with teachers to create software for the tutor and then trained
the teachers in how to use the tutor. The teachers then used the tutor actively in
their second and third grade classes, replacing some of the time allocated to Braille

187

7. Summary, Analysis, and Conclusions

writing practice with practice on the tutor. In all, twelve students participated in this
pilot. At the same time, many other students at the school used the tutor informally.

There were two major pilots of the Robot Diaries project. We developed a sum-
mer participatory design workshop lasting six weeks and a fall workshop lasting
nine weeks; in both cases sessions were two hours one day per week. Attendance at
the summer workshop sessions ranged from one to seven, while eight girls partici-
pated in the fall sessions. The summer workshop was focused mostly on evaluating
activities and materials for use in a future curriculum. The fall workshop built on
lessons learned from the summer workshop to more quickly introduce materials.
We also developed a software environment during the fall workshop to allow girls
to program created robots.

The CSbots project had one major pilot, at a community college in Pittsburgh.
The pilot involved four sections of our partner educator’s CIT-111 (Introduction to
Computer Science in Java) course. Students were introduced to the robot platform
and software API for their third assignment, and completed assignments using the
robot through the rest of the course. As the robots could not be taken home, stu-
dents completed their assignments during lab times staffed by a member of the
design team.

Requirements Evaluation

In each case, the evaluation of our pilots was focused on the effectiveness of the
curricular approach and of the configurable embodied interface. As the primary
goal of our analysis was to link the student outcomes to specific aspects of the
design so as to produce recommendations, lessons learned, and additional design
constraints for the next design cycle, an analysis of student learning and outcomes
was required. In addition, analysis of student outcomes provided us with both
important validation of the overall idea as well as pointing to specific areas of im-
provement. Given the small number of participants and high number of interacting
variables, an analysis of student outcomes that attempts to link these outcomes to
features of the design (either hardware or curricular) is open to intuition and sub-
jective judgment. I accept that none of the evaluations provided us with the ability
to make strong claims of causation but submit that this does not invalidate the no-
tion of using formal evaluation techniques in small, experimental studies. To the
contrary, I strongly believe that careful, planned evaluations of the pilots allowed us
to discover constraints and determine efficacy of the programs in ways that ad-hoc
observations of the pilots would not have.

In the Braille Tutor program, our evaluation instruments included a log of ob-
servations kept by the member of the design team while she was participating in
the pilot, and surveys and assessments given to the students in the pilot. The sur-

188

7.1. Summary of the Design Process

veys and assessments sought to determine if the tutor improved learning of Braille
Writing for a small cohort of students, as well as assessing their interest in using
the tutor and their estimation of how difficult it was to use the tutor. These assess-
ments suggested that the tutor’s immediate feedback was providing a net benefit to
the students. The observations focused mostly on how students and teachers inter-
acted with the Braille Tutor: the difficulties they encountered starting and using the
hardware and software, how frequently the tutor was used outside of regular class
hours, and which individuals benefited most from tutor use and why.

Collected data for Robot Diaries included interviews with participants and their
parents, and electronic activity logs. Participants were interviewed individually at
the beginning and end of the workshop. Interviews included questions about rel-
evant declarative knowledge (e.g., identify and provide a definition for relevant
parts, such as sensors and motors) and designed systems (e.g., examine an elec-
tronic toy and describe its components/how it works). Participants were also asked
to imagine how they might build a new system (an alarm) using a fixed set of com-
ponents (a battery pack, alligator clips, switch, LED, servo, and sensor). Parents
were interviewed in their homes at the beginning of the workshop and again af-
ter the workshop was completed. In the pre-interview, parents were asked about
their child’s previous experience with robotics and related technologies and about
the family’s activities related to science and technology. Post-interviews mainly
focused on parents’ impressions of the workshop and what their child gained from
participation. Electronic activity logs were derived from girls’ contributions to
the Doodlechat and Roboticon Messenger online communities. From these logs
we could see how frequently girls were logging in, contributing through chat, and
contributing through doodling or posting Roboticons; as such, these logs provided
us with a measure of interest in the software.

As more students were involved in the first evaluation of the CSbots program,
the evaluation instruments were less geared towards discovering potential causal-
ities at the student level. Instead, we relied extensively on surveys, comparisons
to previous classes, and the observations of partner educators and members of the
design team involved with the pilot. Survey data sought to characterize the typical
interests and past experience of entering and passing students, as well as to track
confidence and interest in assignments throughout the semester. These surveys al-
lowed us to discover that assignments that were more interactive were highly-rated
by students, leading directly to the decision to make the Finch richly interactive.
Comparisons to past classes sought to examine the effectiveness of the pilot at
the course level - comparing average grades, retention rates, and assignment com-
pletion rates to previous instantiations of traditional courses taught by the same
educator. Finally, observations primarily focused on student points of frustration
or confusion with respect to the software API.

189

7. Summary, Analysis, and Conclusions

7.1.4 Systems Alignment Cycles

System alignment cycles of design, pilot, and evaluation have a different primary
goal from the constraint-finding process. These cycles are about using the con-
straints found by the initial evaluation and participatory design studies to create
a fundamentally new design, and to improve the alignment of the various com-
ponents of the design (curriculum, learning goals, assessments, and tool) through
iteration. This difference in emphasis leads to the employment of qualitatively
different methods and procedures.

Engineering and Curriculum Design

Systems alignment cycles tend to follow a more standard engineering design pro-
cess than is the case with the constraint-finding process. Creating an incomplete
or overly instrumented design and working with teachers and students in partic-
ipatory design sessions is no longer necessary, as previous sessions have yielded
design constraints based in the educational context. This does not mean that con-
sultation with teachers or students is no longer important - as the design comprises
hardware, software, and curriculum, there are likely to be many areas in which
teachers or students can take either primary roles as designers, or offer feedback.

Even within the systems alignment cycles there are differences between the
first design step and subsequent steps. The aim of the first engineering and curricu-
lum design phase is to create a design that meets the constraints found during the
initial evaluation and constraints-finding process. The aim of subsequent design
steps is to use lessons learned from earlier systems evaluations to incrementally
improve the design through the addressing of misalignments between design com-
ponents, bugs in the hardware or software, or points of confusion or frustration in
the curriculum.

In the Braille Tutor project, the first systems alignment design step resulted
in major changes to the hardware and software of the tutor. The hardware was
modified to make the tutor easier to set up and easier to use. The software was
modified so as to create a more adaptive tutor (capable of reacting to individual
student needs), and to make it easier to create additional programs for the Braille
Tutor. Subsequent cycles have not resulted in changes to the hardware, but in
additional software that expands the tutor’s capabilities and thus its applicability to
different ages and educational activities.

The first and only (to date) systems alignment cycle of the Robot Diaries
project began with the identification of an overarching theme (the design process)
which we felt would support our primary learning goals. From this theme and
these goals, we concurrently designed a curriculum for an after-school multi-week

190

7.1. Summary of the Design Process

workshop, a kit of technical and craft materials, a controller (the Hummingbird) to
control the LEDs, servos, and motors in the kit, and a software environment based
on the environment created in the constraint-finding process to allow programming
of the created robots. It was our intention to create a design that was sufficiently
detailed and complete that it could be taught to educators who typically run after-
school activities.

The major effort of the first systems alignment cycle of the CSbots project was
the creation of a new robot, the Finch, with features aligned to the needs of the
introductory Computer Science curriculum. Our principal design criteria for the
new robot were that it should be highly interactive, robust, low-cost enough for in-
dividual student ownership, and have hardware that did not distract students from
learning CS concepts. We updated our software API to reflect the different capabil-
ities of the Finch, but kept much of the way in which students use the API similar
to our prior design. Assignments for the Finch were designed in cooperation with
our partner educators during the pilots.

Systems alignment cycles are marked by an effort to improve the alignment
between the features of the configurable embodied interface, the software, and the
learning goals, assessments, and instruction of the educational activity. Projects
can vary greatly in the amount of flexibility they provide to the designers - in Robot
Diaries, we were entirely free to choose and modify all of the elements of the over-
all design. With Braille Tutor, the learning goals were fixed, but other elements
could be modified (including the assessments). In CSbots, we were able to modify
only the hardware features, software API, and the assignments (a portion of the
instruction of the course). In essence, differing amounts of flexibility yield differ-
ing design constraints - in CSbots, the learning goals and instruction of the course
created design constraints for the hardware. In Robot Diaries, technological con-
straints in the hardware created constraints in the instruction and in some of the
lower-level learning goals.

Systems alignment cycles may also strike out in new directions for the config-
urable embodied interface and may occur unguided by the original design team.
Just as it is possible to create an aligned design without being able to modify learn-
ing goals or assessments (as in CSbots), so it is possible to create an aligned design
without modifying the hardware feature set. This is precisely what is happening in
the Braille Tutor project, with new work modifying the software to create practice
games. We are planning a similar extension in CSbots, by creating support for pro-
gramming languages that are appropriate for different age groups, so as to allow
the Finch robot to be used by younger students. Finally, in many cases teachers
and curriculum designers with no ability to change the hardware or software of the
tool may still create their own systems alignment cycles by creating and revising
curricula that are aligned to configurable embodied interface features.

191

7. Summary, Analysis, and Conclusions

Teacher-run Pilots

There are two major differences between the participatory pilots of the constraints-
finding process and the teacher-run pilots of the systems alignment cycles: Firstly,
teacher-run pilots were executed with significantly less involvement from the de-
sign team; in these pilots, designers served solely to offer technical assistance and
when necessary, train teachers in executing the curriculum. Secondly, pilots were
scaled up - they generally involved more students, occurred at multiple sites, or
both. These two transitions, having educators lead the pilots and involving more
students, are important steps to creating a design that can be disseminated to teach-
ers and that fits into a broad educational context.

Pilots of the second Braille Tutor design continued at the site of our original
partner, and also expanded to three locations in other developing countries. Al-
though each pilot involved roughly the same number of students as our original
pilot, the expansion to different sites provided strong evidence for the ability of the
Braille Tutor to be integrated into the educational context of a school for the blind.

The redesigned Robot Diaries curriculum and controller were piloted with two
groups - one was a group of home schoolers, and the other was a group at an
after-school community center. Groups consisted of roughly ten girls, and so each
was similar in size to the original pilot workshops. Teachers at both locations were
trained by the design team on the curriculum, and executed this curriculum on their
own. A member of the design team observed each workshop session to see if the
curriculum was implemented as we expected.

The main CSbots pilot was done at the same location as our main 2007 pilot.
We had students using the Finch robots for two semesters in both the introduc-
tory and intermediate Computer Science courses of our partner. In all, roughly
twice as many students were involved with this pilot as in the first design cycle
pilot. Designers were more hands-off with this pilot - we helped design some of
the assignments with our partner, but our partner was fully responsible for grad-
ing students’ Finch programs and explaining the Finch software and hardware to
students.

Systems Evaluation

The evaluation philosophy behind the new pilots remained much the same: we
were still focused primarily on evaluating the effectiveness of our design. However,
given that the design was more explicit in terms of which learning goals should
be met, student outcomes became a more important part of this overall evaluation.
Other measures of effectiveness were the impressions of partner educators carrying
out the program, as well as robustness of the tool and how closely the tool came to

192

7.1. Summary of the Design Process

the desired technical capabilities.

With the Braille Tutor, we used similar methods as in the participatory pilot
- we ran small studies of student performance, collected observations of on-site
members of the design team and teachers, and surveyed students. The strength of
the second round of pilots was the general finding that the Braille Tutor was useful
in additional locations.

The Robot Diaries second round of evaluations was heavily based on interviews
of teachers, parents, and participants. We also observed all workshop sessions.
Finally, we developed two evaluation activities - the debugging task (Hamner et al.,
2010) and the creative design exercise. These activities were designed as an attempt
to measure progress towards some of the higher level learning goals - goals that
were difficult to measure using standard assessments.

The CSbots evaluation proceeded in much the same way as our initial pilot -
we relied heavily on surveys, both pre/post and short post-assignment surveys. We
also compared retention rates, assignment completion rates, and grades to prior
years in the class.

It is important to note that in none of the three cases did we do the kind of
evaluation that could provide strong evidence of improved learning; none of the
studies involved a randomized control trial (RCT) with a control group. Instead,
these evaluations were still oriented more towards determining which elements of
the design to improve, and to determine in a preliminary way if our approach was
succeeding. The evaluation methods do attempt to yield preliminary evidence of
improved student outcomes, but I accept that none of the evaluation results could
be used to make strong claims about the effectiveness of these programs on stu-
dents. Instead, I suggest an evaluation trajectory that constantly involves more
participants in a broader set of locations. I believe that a place for RCTs exists in
evaluating the effectiveness of tools created with this process, but that such a study
would not be particularly enlightening until a tool has been broadly disseminated
and is in use at a number of locations by teachers who are totally independent of
the research team.

7.1.5 Measuring Alignment

A systems evaluation should also attempt to determine whether the design was
well-aligned. Though other measures (such as student outcomes) may hint at the
alignment of the design, alignment can be measured explicitly both formatively and
summatively. In all three cases, we were explicitly measuring how well-aligned the
design elements were while engaged in the engineering and curriculum design cy-
cle. The best example of how this was done is from the Robot Diaries project.
Appendix A presents the full curriculum created for Robot Diaries, and this cur-

193

7. Summary, Analysis, and Conclusions

riculum shows how the activities were matched to learning goals, in part as a check
to ensure that all learning goals were being addressed. Though not clear from the
written documents, we also made sure that the activities could be performed with
the tools we created. Measuring alignment in a summative fashion can be as simple
as asking students questions related to alignment. In CSbots, we asked students the
following open-ended question:

Please tell us how much you agree or disagree with this statement
and why: “The assignments, lectures, in-class activities, and exams
all focused on the same material and were all useful to learning the
subject of the class.”

The responses demonstrated that some students did notice misalignments in the
class, though fortunately these were minor in our case.

7.1.6 Dissemination

There are two types of dissemination for projects such as these: dissemination of
ideas and dissemination of tool. The dissemination of ideas occurs through well-
worn paths: publication of academic papers and presentations at conferences. This
is relatively easy and occurs throughout the design process, but to be impactful
of educational practice, it must be accompanied by dissemination efforts outside
the academic realm. Dissemination of tool has the potential to impact educational
practice, but is significantly more difficult. As such, the rest of this section is
devoted to discussing dissemination of tool.

Unlike the other steps in this design process, there are few examples in our case
studies to highlight effective dissemination strategies. The closest experience in the
case studies was the dissemination of the alpha and Finch robot platforms in the
CSbots study (see section 6.7.4). As such, the ideas presented here are grounded
more in the future plans of these programs than in past experience and should be
considered as future work.

When to Disseminate

A difficult problem for a design team is choosing when to end the iterative process
- in other words, when is the design sufficiently well-aligned and ready for dissemi-
nation? There is always a tension between the potential for more improvement and
the desire to provide the educator community access to a potentially useful new
tool. As such, the decision is typically an exercise in ‘satisficing’ (Simon, 1957)
- that is, choosing to disseminate when the design is good enough and acknowl-
edging that perfection or potential further improvements do not justify the effort.

194

7.1. Summary of the Design Process

I offer a number of guidelines that have been used in our decisions about when to
disseminate a tool:

e Does the tool’s feature set support the curriculum’s high-level learning goals,
and not just tested assignments/activities?

e Do the evaluations suggest positive effects for students in the program? Are
there any sub-groups that show especially large positive or negative effects?

e Does the projected commercial cost reach required cost constraints for ac-
ceptance?

e Are the curriculum, documentation, and interface sufficiently complete to
allow educators to integrate and use the tool independently? Are there in-
stances of educators borrowing the tool and using it with minimal hands-on
guidance?

e Are involved educators requesting commercially available copies of the tool?

Of these, the first is likely to be the most difficult to evaluate. Unlike the other
guidelines, which can be evaluated concretely, the first guideline draws from the
design team’s evaluation of the degree of alignment between all aspects of the
design. As such, this guideline needs to be evaluated through discussion within the
design team, with evidence drawn from thought experiments about potential other
assignments or instructional techniques that are not in the current curriculum.

What to Disseminate

Throughout this section I have emphasized that the design consists of a hardware
tool, software for the tool, and a curriculum with a set of learning goals that has
been aligned with the features of the tool. A dissemination effort must include all
three of these elements, such that:

e There is a commercial source for the hardware used in the design.
o The software is either freely or commercially available.

e Documentation for running the hardware and software is sufficient to allow
a teacher or student in the target audience to be capable of setting up and
running the embodied interface independently.

e If a new curriculum was created as part of the design, this curriculum is
readily available, well-documented, and has explicit learning goals.

195

7. Summary, Analysis, and Conclusions

o If the interface is to be used in an existing curriculum, there are extensive
examples showing how the tool can be integrated into the curriculum, where
it is most useful, and case studies of how partner educators have integrated
the interface in the past. Ideally, these case studies would demonstrate not
just the assignments and activities modified by the tool, but also describe
the specific learning goals of the class and the assessment strategies used,
including those assessments which were not modified by the tool.

In addition to these, efforts should be made to foster a method of allowing
educators using the tool to share experiences with one another and help one another.
Online forums and/or shared wiki sites may be appropriate ways to achieve this.

The end goal of the dissemination package should be to provide sufficient in-
formation to allow teachers to design with the tool. Although there are broad simi-
larities, every classroom and set of students is different. Teaching is about making
design decisions to optimize student outcomes - not broadly, but in the context of a
single class with a single set of students; in fact, teachers may change their strategy
from one year to the next simply because the set of students changed. The dissem-
ination package must allow teachers the flexibility to adapt and align the provided
materials to their individual context, while being specific enough to provide exam-
ples of how to do such alignment.

How to Disseminate

Once such a dissemination package is available, there are a number of routes for
spreading adoption of the design: one can ask the educators who have participated
on the project to act as evangelists, spreading the program by contacting their net-
works of colleagues, one can arrange workshops to train educators in the design, or
one could publish in journals typically read by educators or school administrators
in a specific field.

At the point where a number of teachers have adopted the tool, it may be worth-
while to do a randomized controlled trial for the purposes of dissemination as well
as to examine the effectiveness of the tool. Positive results from an RCT is in many
cases necessary to allow the design to jump from being adopted by a few interested
educators to being considered by school administrations and policymakers.

7.2 Similar Design Processes

I am aware of two external projects within the domain of Configurable Embodied
Interfaces that have used an alignment-centered design process to create Config-
urable Embodied Interfaces. An important lesson from this related work is that

196

7.2. Similar Design Processes

designers can do alignment-centered design without making explicit use of the
alignment framework or terminology presented in this chapter. Rather, the origi-
nal contribution of this thesis is making the model explicit so as to allow others to
pre-emptively organize the planning of a design process.

The first of these projects is the Handy Board, briefly mentioned in chapter two,
which was originally created for the MIT robot design course 6.270. The design
of the Handy Board, the process of which is described in detail in Martin (1994),
was iterated upon concurrently with iterations to the curriculum of 6.270, with
important design features of the tool (like the use of an on-board microcontroller,
or the development of an easy-to-use programming language) stemming directly
from observations by the designer/teacher of student needs in the course.

The second project is the creation of the Fluke controller and Myro program-
ming environment by the Institute for Personal Robots in Education (Blank et al.,
2007). This project, much like CSbots, aims to develop an appropriate robot to use
in Computer Science education. The Fluke is a small robot controller that inter-
faces with and adds capability to the Scribbler!, a low cost robot platform made
by Parallax, Inc. The capabilities of the Fluke, specifically a wireless tether and a
camera, and the Myro environment and software API were created with the specific
learning goals and context-derived constraints (like cost) of Introductory Computer
Science education.

7.2.1 Learner-centered Design

In the field of human computer interaction, a similar approach to alignment-centered
design has been espoused by Soloway et al. (1994). This approach, labeled learner-
centered design by the authors, builds on top of user-centered design (Norman and
Draper, 1986) and identifies three key requirements of educationally-focused soft-
ware that are not relevant to software for experts or professionals: allowing growth
in a student’s understanding, reflecting the diversity of learners, and ensuring that
learners remain motivated throughout the learning process. It also discusses how
each of these three learner needs are addressed in the four components of a learning
environment: The educational context, the tasks required of the students, the tools
available to students to complete those tasks, and the interface between the student
and the tool. The resulting design process, as exemplified by several case studies
(Soloway et al., 1996), is not so different from the design process described in this
work.

Thus, there exist both projects that made implicit use of alignment-centered
design, and approaches that use similar techniques in other domains. That being

"http://www.parallax.com/tabid/455/Default.aspx

197

7. Summary, Analysis, and Conclusions

said, there does appear to be a universal theme in all of this work: Design trajecto-
ries succeed in creating educational relevant tools when they incorporate feedback
from students and teachers frequently and at all stages of the design process.

7.3 The Domain of Alignment-Centered Design

Until this point in the thesis, we have discussed alignment-centered design within
a specific design domain, that of Configurable Embodied Interfaces. The obser-
vation at the conclusion of the last section is very general, and calls into question
whether alignment-centered design as a process couldn’t be applied more broadly,
perhaps to software-only projects, or to the design of devices that are not educa-
tional but that still require contextual immersion by designers. The answer to this
question is that there are no bright lines delineating the types of situations for which
alignment-centered design is appropriate. Instead, I imagine that as the situation
becomes further removed from educational contexts, and from tangible devices,
the specific methods and case studies used in the thesis will become less applica-
ble. For example, a designer applying alignment-centered design to the creation of
a device for water purification in developing countries would not be able to use the
method of instructional alignment, though participatory design and design-based
research methods may still apply. Similarly, the creator of a software-based tu-
tor for writing could follow alignment-centered design but modifications should
be made to the process to reflect the design advantages of software-only systems
(specifically the speed with which changes can be made to the design). Reflecting
on the bounds of alignment-centered design, one realizes that as the specific meth-
ods and context are stripped away, the underlying structure begins to approach a
more generic model of design.

7.4 Alignment-Centered Design and Engineering Design

In addition to the focus on feedback from students and teachers, similar work in
configurable embodied interfaces shares a second commonality with alignment-
centered design; all of the design processes derive from and add to a simple iterative
model of engineering design pictured in Figure 7.2. It is worth describing the
engineering design process in more detail, and explaining how alignment-centered
design modifies this process.

The steps and description of the engineering design process are derived from
two sources: personal conversations between the author and inventors of popular
Configurable Embodied Interfaces, and a reflection on the author’s own process
in projects prior to the work described in this thesis. It should be noted that for

198

7.4. Alignment-Centered Design and Engineering Design

Simplified Engineering Alignment-Centered
Design Model Design Process

Ideation f@
Initial Evaluation Initial Evaluation

Participatory Design

Prototyping
— Constraint Finding Process

Participatory Pilot

\ (Requirements EvaluaﬁonJ
N

\
S 1
- ™

Engineering Design Cycles

Alignment Cycles

Figure 7.2: A simplified model of engineering design mapped to alignment-
centered design

the purposes of this discussion, the diagram of the process and number of steps
have been greatly simplified; many explanations of engineering design are avail-
able (and at times contradictory) (Simon, 1996; Schon, 1984); the model presented
here represents a core process that is generally agreed upon as taking place.

199

7. Summary, Analysis, and Conclusions

7.4.1 Ideation

Universally, engineering design ideas spring in response to a perceived need or de-
sire coupled with a unique knowledge or muse on the part of the ideator. Ideas
are formed through the interactions of the ideator(s) with objects, people, or situa-
tions that cause perception of problems to solve. In alignment-centered design, it
is likely that ideas spring from interactions between the ideator and teachers, edu-
cational environments, or students. It is fascinating that ideas may come years or
decades after the sparking interaction; witness the case of Robot Diaries, the spark-
ing interaction of which came from the ideator’s experience as a seventh grade girl.

7.4.2 Initial Evaluation

Initial evaluations seek to retire some risks that the idea, if implemented, would
fail. Typically in engineering design, there are two important risks to investigate:
technological and resource-use. The first investigation seeks to answer the ques-
tion of technical feasibility - essentially, is the idea possible with today’s technol-
ogy and does the design team have the necessary expertise to execute on the idea?
The second risk is related to the use of resources that the problem’s solution would
impose on society or individuals - can the proposed solution be made so that ben-
efits outweigh the costs of not solving the problem? This second question weighs
heavily on user-acceptance, as users are unlikely to accept a solution with minimal
perceived benefits.

The initial evaluations of the three case studies all devoted far more time to
answering the second of these two questions. While technical feasibility was cur-
sorily evaluated in all three cases, none presented a difficult engineering problem.
However, in the case of Robot Diaries and CSbots, there was extensive risk to the
potential solution from the educational context; simply put, we did not know if our
proposed solutions were of interest to the students and teachers who would use the
solution.

Provided that the initial evaluation suggests that the idea may succeed, the
process next moves into an iterative cycle of prototyping, testing, and analyzing
tests to determine if the solution meets all the desired constraints.

7.4.3 Prototyping

Hard and broad constraints are brought to the start of the prototyping phase by the
problem that the idea is meant to address, and by the initial evaluation; it is these
constraints that delimit the design space. The prototyping process is an exploration
of this space through experimentation and reflection. Schon (1984) describes this

200

7.4. Alignment-Centered Design and Engineering Design

process as a conversation with available materials, and it is through this conver-
sation that additional constraints and solutions are found, and a testable design
eventually created. It is important to note that there is testing in the prototyping
process, but it is qualitatively different from the type found later in the engineer-
ing design cycle. Early tests may be made of incomplete portions of the solution,
as experiments to inform the prototyping process and make additional changes or
additions to the design.

Prototyping shows up in two ways in the alignment-centered design process.
The constraints-finding process is an extended prototyping phase seeking to dis-
cover educationally relevant constraints. This is why the process is participatory
in nature, and why the design in this early stage is highly fluid; it allows the de-
sign team to conduct mini-experiments, both technical and social, to determine the
low-level constraints and capabilities required in the design to meet the high-level
design goals.

Prototyping also shows up in a more traditional engineering fashion during the
engineering and curriculum design portion of the systems alignment cycles. There
we are taking the constraints found in the previous cycle and using these to create
prototype designs consisting of hardware, software, and curricula.

7.4.4 Testing

The conclusion of the prototyping process is marked by the creation of a design
that is testable with respect to the goals set forth by the initial idea. The test itself
is a reflection of the attributes of the design that cause the design to meet these
goals. In the alignment-centered design process, our principal tests were carried in
the format of teacher-run pilots. It is within such pilots that we were able to test
several important attributes of our designs:

e The ability of the design to cause movement towards specified learner goals.

e The usability of the design by students.

e The effectiveness of the training portion of the design on teachers.
Our tests were fairly skewed towards the relevance and effectiveness of the design
within the educational context; other projects could easily skew in different direc-
tions. For example, projects that focus heavily on creating new capabilities might
focus on robustness and cost; an example of this might be the development of an

electric car. Other projects (for example, the iPod) may focus heavily on usability.

201

7. Summary, Analysis, and Conclusions

7.4.5 Analysis

The analysis methods required simply reflect the tested attributes. Typically, the
analysis has two broad goals: to determine how the prototype design performed
on the test, and to determine whether this performance is sufficient to consider the
design for dissemination, and, if not, to describe ways in which the design should
be improved during the next prototyping phase. The systems evaluation within the
alignment-centered design process maps to the analysis phase. In the case studies,
we used a variety of evaluation methods to perform this analysis. Reflecting the
nature of our testing process, these methods were focused on student outcomes as
well as observations to determine if the tool could be used by trained teachers.

7.4.6 Dissemination

The engineering design process eventually leads to a disseminable design; this is
the end-goal, as a solution to a problem that is beneficial can only be so if it is used
by society. In the case studies, dissemination will likely occur through networks
of teachers developed over the course of the research, and through continued ef-
forts on the part of the design teams to publicize the work by organizing training
workshops, visiting teacher conferences, and seeking funding for outreach activi-
ties. More generally, commercial dissemination pathways often involve marketing
and advertising, while other projects may be able to immediately disseminate by
government fiat (as is the case with military engineering research).

7.5 Challenges and Limits of Alignment-Centered Design

In my experiences with the three cases described in this thesis, I have found two
significant challenges to and two major limitations of the alignment-centered de-
sign process as presently formulated. The first challenge relates to the evaluation of
the tool in educational settings. The second challenge is a matter of the human re-
sources required to navigate the process. The limitations relate to the incorporation
of student interests and background, and to the constraints that the educational con-
text places upon the design. I offer advice for meeting the challenges and dealing
with the limitation of alignment-centered design below.

7.5.1 Evaluation

A major challenge of alignment-centered design is the proper and careful eval-
uation of the educational pilots, both during constraint-finding and systems align-
ment. Evaluation is typically made more difficult by a number of factors, including:

202

7.5. Challenges and Limits of Alignment-Centered Design

o A small number of participants are typically desired as untried interventions
require a heavier teaching presence to catch problems as they appear.

o If the intervention targets learning goals that aren’t typically addressed, a
control group can not be established that spends an equal amount of time on
a ’similar’ educational activity.

e Some learning goals are much more difficult to measure than others. If the
new intervention targets difficult to measure goals, this adds further com-
plexity to the evaluation problem.

Essentially, these characteristics prevent the use of a number of standard eval-
uation techniques. The small number of participants and lack of a control ensure
that there will not be enough statistical power to show significance. The learning
goals themselves may be difficult to measure using traditional methods like ex-
ams. We are left, then, with a number of methods that have worked in our cases.
Robot Diaries is by far the best example of the three cases in maximizing informa-
tion sources from a small number of participants. Participants were interviewed,
surveyed, their parents were interviewed, researchers either led or observed all
workshop sessions, logs were kept of online activity, workbooks were scanned and
analyzed, and novel evaluation techniques were created to assess post-workshop
capability. The Robot Diaries case is an excellent example of a workable evalua-
tion strategy when faced with the factors described above and when creating a new
program; Bernstein (2010) is a doctoral thesis devoted entirely to the Robot Diaries
evaluation methods and results.

CSbots provides an interesting case study in how to compare a course modified
by a new tool but where the learning goals and assessments are essentially the same
as for previous years. In this case, we had data from our partner about his students’
retention rates and grades going back six years. Based on this data, we were able
to compare our pilot years with non-pilot years and were able to build a case that
our intervention was improving retention and doing no harm to learning. This was
a valuable result, but it is important to note that it is not considered strong evidence
- comparisons to previous years have problems with validity (it is possible that
external factors, like a recession, changed the makeup of incoming students from
year to year). Even so, such a comparison was relatively easy to do because the
data was readily available. Another lesson of the CSbots case study is the difficulty
of using survey data; though our surveys provided us with valuable data, they were
required to be voluntary, and as such, we frequently had very low completion rates.
If our completion rates had been near 100%, the survey data would have provided
much stronger evidence.

203

7. Summary, Analysis, and Conclusions

Developing an evaluation strategy is itself a design process. The case studies
of this thesis described a large number of possible methods to use: likely not all are
required for any given project, instead, methods should be chosen based on their
ability to provide the team with useful qualitative or quantitative data.

7.5.2 Human Resources

Closely linked to the evaluation challenge of alignment-centered design processes
are the human resources required to navigate through the process. Each of the three
case studies was made up of a core design team, and for good reason: Alignment-
centered design processes in the space of configurable embodied interfaces require
a number of different skills that are rarely found in a single individual: software in-
terface design, electrical and mechanical engineering, teaching, curriculum design,
and educational evaluation are all necessary. I believe that it is this reason, more
than any other, that would prevent designers from pursuing an alignment-centered
process. That being said, I believe that it is possible in a number of settings to
assemble the required team of people: a partner teacher, someone who is knowl-
edgeable of educational evaluation, and engineers who can do both hardware and
software design. Of these, I assume that the designer is capable of or can easily
recruit people who can do the requisite engineering design; after all, such people
are required for any engineering design process. In my personal experience, part-
ner teachers who are enthusiastic about projects or ideas are fairly easy to find; it
is a tribute to the teaching profession that many teachers are generally selfless and
constantly searching for ways to improve the experience for their students. Thus,
finding a teacher to work with is simply an exercise in contacting a sufficient num-
ber of teachers in the relevant subject area. I refer the reader to the recruitment
of high school teachers in CSbots described in section 6.7.4 as an example of a
way to do this. I suspect that finding a person capable of performing educational
evaluation is regarded by many as the true human resource hurdle. Before advising
how this challenge can be met, I share some personal circumstances to illustrate
my advice.

Two personal circumstances greatly improved my ability to think about and
carry out alignment-centered designs. The first of these is my involvement in the
Program for Interdisciplinary Education Research (PIER)?, a pre-doctoral program
designed to provide students in a wide number of home departments with training
in the learning sciences. This training included courses in curriculum design (the
ideas from which led to the central theme of this thesis), research methods, and
a literature review of education research and policy issues. It also provided me

2http://www.cmu.edu/pier/

204

7.5. Challenges and Limits of Alignment-Centered Design

access to a community of people personally knowledgeable with carrying out edu-
cational evaluations in real-world settings. The second of these circumstances was
a close collaboration with a Ph.D student at the Learning Research and Develop-
ment Center. This student directed the evaluation of the Robot Diaries program,
and through my experience helping her to carry out the evaluation, I learned a fair
amount about evaluation as well.

Based on my personal experience, my advice to any designers interested in
pursuing educational evaluations of their projects is to:

o Identify a physically nearby academic community that is interested educa-
tional evaluation. As designers are searching for someone to aid in evalua-
tion, so many evaluators are searching for designs to evaluate.

e Develop a close collaboration with someone familiar with the research meth-
ods required for educational evaluation.

e If possible, take a course in research methods to develop familiarity with the
topic.

o Work closely with the evaluator to help develop the evaluation instruments.
This provides valuable experience to the designer, and ensures that context-
or design-specific elements are included in the evaluation. If the evaluator
is not aided by the rest of the design team, it is possible that the evaluation
instruments will miss important details of the design.

7.5.3 Student Interests and Background

In each of the three case studies, the interests and capabilities of students are pri-
marily discovered during the constraint-finding process. I believe that it was an
omission of our specific designs to wait until this step to engage with students. If
the initial evaluation is about retiring the risk of a design that is unacceptable to
end-users, students should be part of that evaluation. To some extent this was done
in the Robot Diaries program through the use of a focus group, and in this case
the lessons learned from the focus group caused significant changes to the program
design trajectory. As the other two programs sought to create tools for existing
curricula, the initial evaluations of these studies focused on gathering information
from teachers. If I were to re-run these studies, I would have surveyed students in
all three case studies before creating any hardware. By doing so, we may have dis-
covered certain constraints in time to affect the designs used in constraint-finding.
For example, we may have learned of the students’ fear of electrical wires in the
Braille Tutor case, or discovered what kinds of assignments excite students in com-
puter science education. Fortunately, in our case studies the initial tools designed

205

7. Summary, Analysis, and Conclusions

for the constraint-finding process were workable and acceptable to students. That
being said, I believe it is possible that an initial evaluation that solely focuses on
teachers could lead to a design that can not be tested in a constraint-finding process
because it is unacceptable to students.

7.5.4 Constraints

The alignment-centered design process is strongly focused on creating tools that
are well aligned to specific educational environments. This can leads to tools that
are highly specific. Such tools may have deep impact on a small community, but
are unlikely to be usable in other contexts. Of the three case studies, the Braille Tu-
tor is the best example of such a tool; the specific constraints that created successes
in the educational environment and that ensured that learning would transfer to a
regular slate and stylus also ensured that the tool would only ever be applicable
in schools for the blind in developing countries. The CSbots program has made
similar design choices that limit applicability; many robots are used in both en-
gineering and Computer Science programs (for example, LEGO Mindstorms and
NXT kits are used in both). By focusing on Computer Science education, we made
design choices that limit the applicability of the Finch to an engineering classroom;
the robot is self-contained and has neither mechanical mount points nor accessible
electrical signals.

Thus, different design processes may be called for if the idea for a project
stems more from technological innovation than from a clear application of exist-
ing technologies to an educational context. In the space of configurable embodied
interfaces, new sensing, processing, and actuation technologies are constantly ap-
pearing that may allow for the creation of a configurable embodied interface that
has fundamentally new capabilities. The designer may recognize broad educa-
tional applications for the interface, but may not have a specific curriculum or set
of learning goals in mind. In such a case, the alignment-centered design process
may lead to an overly specific design. I present an illustrative example of a project
that was characterized by creating a fundamentally new capability.

7.5.5 Conventional Engineering Design: The CMUCam

The CMUCam (Rowe et al., 2002) is a configurable embodied interface consisting
of a camera, microcontroller, and I/O pins to communicate with other microcon-
trollers and with computers. The microcontroller runs a program that uses com-
puter vision algorithms to determine things such as the center of a blob of the same
color, or the edge of white or black line. The microcontroller allows input from
other microcontrollers to set what color blob or type of line to track. Designed in

206

7.5. Challenges and Limits of Alignment-Centered Design

2001, the CMUCam was revolutionary; it allowed hobbyists and students to cre-
ate robots that could track brightly colored balls using very simple robot controller
boards. Prior to the CMUCam, a robot had to have an on-board full-scale com-
puter to display similar behavior. The CMUCam has found its way into a number
of robotics, computer science, and engineering courses at the university level; de-
spite this, the design process followed by the inventors was focused much more
on engineering than on education. The following is an account of this process,
described to me by one of the inventors of the camera.

The idea for the CMUCam came from the recognition of a new low-cost 8-bit
microcontroller, the Scenix SX28. It was posited by one of the inventors that the
chip might be fast enough to be able to simple vision processing. The utility of
such a sensor was instantly recognized by the inventors, all of whom had personal
experience as robot hobbyists. The CMUCam was then prototyped - a camera
module was located, several revisions of the CMUCam circuit board were created,
and the firmware was written. This happened over the course of several months,
and very much followed the style of Schon’s reflective process. The communica-
tion protocol between the CMUCam and other microcontrollers was written into
the firmware. Although the protocol was the way for outside users to access the
CMUCam’s functionality, the protocol was not tested by outside users. The inven-
tors did test the protocol with other microcontrollers to ensure there were no errors.
Finally, the CMUCam had several additional features - a status LED, and two ports
that allowed servo control. The servo control ports were added specifically because
there was just enough space in program memory left to support them, and it would
allow the CMUCam module to be turned into a ball tracking robot as a demon-
stration. The CMUCam was released in late 2001, with a manual documenting the
hardware and communication protocol. Although it was somewhat difficult to use,
the usefulness of the sensor generated a strong technically-savvy initial commu-
nity, who then provided support to one another. The CMUCam hardware iterated
on twice in the ensuing years, with releases of the CMUCam?2 and CMUCam3 gen-
erally trending towards both expanded functionality (due to improved underlying
technologies) and improved programmability/user-friendliness.

It would have been possible to use an alignment-centered design process on
the initial idea for the CMUCam; for example, the idea could have led to a product
well-suited to either a computer vision or embedded systems design course. How-
ever, such a process may well have led to the inclusion or exclusion of features that
would have prevented broad applicability.

207

7. Summary, Analysis, and Conclusions

7.6 Conclusions: A Choice of Process

Ultimately, the choice of a design process to use is up to the design team. In many
cases, this choice may be unconscious - it is quite possible for designers to simple
navigate an engineering design process in the same way that they are used to. A
major contribution of this thesis has been the formulation and description of the
alignment-centered design process. It is my fervent hope that the case studies and
analysis described herein allow designers to consider alignment-centered design,
in whole or in part, if the circumstances of their idea merit it.

A convergence of trends has decreased the engineering effort of creating a new
configurable embodied interface over the last twenty years:

e The number of available sensors and actuators has grown considerably; fur-
thermore, interfacing these sensors and actuators to microcontrollers has be-
come easier.

e Software and turn-key prototyping facilities have both simplified the process
of manufacturing complex circuit boards, mechanisms, and housings, and
has decreased the costs associated with prototyping.

e The component costs of sensors, microcontrollers, and actuators has fallen
significantly while the capabilities of these technologies have increased, al-
lowing more feature-rich tools to be created at lower prices.

The end result of these trends is that it is now possible to easily customize con-
figurable embodied interfaces to support the curricula of a wide variety of courses
and educational activities. Configurable Embodied Interfaces of the future may
be more diverse and more specialized than the general purpose tools built to date.
Tailored configurable embodied interfaces can be created to support any number
of topics, from geometry to world history, hand writing skills to microbiology, and
everything in between. These new tools will succeed in becoming educationally
relevant if they are designed not just for, but aligned with the educational context.

208

Appendix A

Robot Diaries Curriculum

This section contains the curriculum created for the second iteration of the Robot
Diaries program. The curriculum was created by Robot Diaries team members
Emily Hamner, Debra Bernstein, Kristen Stubbs, and the author. The curriculum
consists of five parts: an introduction to teachers explaining the philosophy behind
the program, three parts prescribing a chronologically ordered curriculum, and an
appendix containing additional activity ideas, materials and handouts, and some
documentation. Though assessment was not a major part of this curriculum, the
explicitness of the curriculum and learning goals should allow the creation of well-
aligned assessments. Each section starts with a table linking knowledge and skills
learning goals to specific instructional activities. Dispositional goals were not in-
cluded in these tables as they were seen as program-general (it was inappropriate
to link specific dispositional goals to activities). The specific dispositional goals
are specified at the end of this appendix.

209

Arts & Bots

An Arts and Technology Workshop for Girls

Community Robotics, Education and University of Pittsburgh Center for Learning
Technology Empowerment Lab in Out-of-School Environments
(CREATE Lab) (UPCLOSE)
The Robotics Institute Learning Research and Development Center

Carnegie Mellon University University of Pittsburgh

Table of Contents
Overview — Introduction for instructors including learning goals and materials.

Part 1: Introduction - Introduction to robots as expressive devices, hardware
components, and programming software.

Robots and Expression

Motors, LEDs, and Basic Circuits

Servos, Microcontrollers, and Program Building Blocks

Sequential Programming and Communicating with Programs

Part 2: Building Basics — Design, build, and program a simple robot.
e The Design Process
e Build Your Own Robot
e Write and Share Expressive Robot Programs

Part 3: Advancing Your Design — Iterative cycles of design, building, and structured
use activities.

e Expand Your Design

e Expand Your Robot

e Write and Share Longer Programs

Appendix — Expansion activities and supporting materials.
e Group Activities
e Individual Activities
e Pictures of Arts & Bots Materials

Arts & BotsRebet-Biaries | Carnegie Mellon University & University of Pittsburgh

Introduction to Teachers

In the Arts & Bots workshop girls create a personal, customized robot designed to serve
as a means of expression. Using light, sound, and movement, students can choreograph
their robot to express emotions. They can then share these expressions with their friends
in the Arts & Bots community. Ultimately, the robot provides a unique means of
exploring, expressing, and sharing emotions, ideas and thoughts while promoting
technological literacy and informal learning.

The Arts & Bots curriculum is driven by strong social narrative along a thread that has
extant value and meaning to diverse students. Technology is not the prime motivator but
rather an enabler for emotional and social communication. This sets Arts & Bots apart
from other technology programs, such as the US First, BEST, and Botball competitions.
These programs may engage certain types of students, but they also may limit participant
diversity because they are short-term, high-intensity, competition-driven and technology-
focused.

By appealing to students' experiences with storytelling, arts and crafts, and personal
communication, Arts & Bots aims to encourage technology literacy in a way which
appeals to a broad range of students; we hope this may eventually lead to greater
diversity within fields such as computer science and engineering.

Learning Goals

The Arts & Bots curriculum draws upon students' interests in arts, crafts, communication,
and storytelling while providing them with the technical knowledge and knowledge of the
design process which enables them to build and utilize their own personal robots. At the
beginning of each of the three main parts of the curriculum, you will find a chart detailing
more specific learning goals for that section. In general, the curriculum focuses on:

e Technical knowledge (i.e., how a circuit functions, how different motors move)

e Application of technical skills (i.e., attaching technical components to a controller
board)

e Design process knowledge (i.e., awareness of the steps of the design process)

e Application of the design process (i.e., use of the design process to create and
modify technological designs)

The overall structure of the curriculum is built around the design process, which consists
of:

Planning

Prototyping

Testing, evaluating, and critiquing designs
Troubleshooting

Documenting designs

After creating an initial robot, each student will be asked to evaluate and refine her robot
several times over the length of the course. This helps students to feel a stronger sense of

Arts & BotsRebet-Biaries | Carnegie Mellon University & University of Pittsburgh

ownership of their robots and encourages the development of problem-solving skills. In
addition, the Arts & Bots curriculum is designed to help students develop confidence in
themselves and their ability to work with technology, such that by the end of the
program, the student:

e |s aware that there are many ways to use technology, including in situations which
do not appear to be 'technological'.

e Has interest in further workshops/activities.

e Has interest in continuing to use the robot after the program has ended.

Voluntarily uses chat software, creates complex programs, or designs custom

robot parts.

Persists at tasks despite mistakes or difficulties.

Is willing to use new technologies.

Is willing to try to solve a problem before asking for help.

Is willing to try a variety of solutions to a problem.

Asks for help when it is needed.

Materials List

Technical Supplies
e Alligator clips

e Battery packs

e Batteries

e Switches

e Computers with internet access (1 / 2-3 students)
e Hummingbird microcontroller, power supply, mini USB cable (1 / student)
e Servos, servo extenders (at least 4 / student)
e Full color LEDs (2 / student)
e LEDs (at least 4 / student)
e Vibration motors (at least 2 / student)
e Motors (at least 1 / student)
e Wheels for motors (1 / student)
o Wire

e Speaker and speaker cable (1/ student)
e |R sensors

e Light sensors, LED flashlights, flashlights

Documentation Supplies
e Design notebooks (3-ring binders) (1/ student)
Pencils, Pens
Paper
Digital camera or Polaroid camera
Poster boards (documentation option 2)
Scanner (optional; documentation option 1)

Arts & BotsRebet-Biaries | Carnegie Mellon University & University of Pittsburgh

Craft Supplies

Tools

Foam board, cardboard

Scissors, glue

Hot glue guns, hot glue sticks

Foam

Bells, chimes, sandpaper, pie pans

Corn, rice, small boxes or containers with caps
Styrofoam balls (1 to 1.5 diameter)
Feathers, pompoms, pipe cleaners, ribbon
Popsicle sticks, dowel rods, wooden skewers
Jewels, googley eyes, felt

Cardboard cake circles

Construction paper

Markers

Kraft paper

Rubber bands

Zip ties, electrical tape

Animal print fabrics

Pushpins

Pegboard

#4 flathead screwdriver

#1 Phillips screwdriver

Wire cutters

Wire strippers

Exacto knives, replacement blades

Miscellaneous

Fairy tales

Additional Information on Materials

The craft supplies and materials you provide to the students can have a big impact on
student creativity and expressiveness. Below is more information on some of the supplies
we chose for our workshop and the reasoning behind these choices. You can also find

pictures of the technical supplies in the appendix.

Technical Supplies

LEDs — Provide students with a variety of LED colors (red, orange, yellow, green,

blue) to aid in emotional expression.

Wheels for Motors — Although the goal is not to make mobile robots, the wheels
attach easily to the motor shaft and make it easier to attach other things to the

motors.

Servos, Motors — Servos and motors are both good examples of components that

roboticists use regularly.

(1 / student)

(1 / student)

Arts & BotsRebet-Biaries | Carnegie Mellon University & University of Pittsburgh

Vi

e Vibration motors — Students enjoy using the vibration motors and they can relate
them to something in their everyday lives (vibrating cell phones).

Craft supplies
Bring craft supplies to each session. They can be integrated in to many of the activities,
even those that may not seem immediately crafty such as the sound making activities.

e Foam board — Foam board comes in white, colored (color one side, white other
side), and black. Avoid harder types of board such as Gator board because it is
too difficult to cut. Cardboard can be used as a less expensive alternative and
as a cutting surface.

e Hot glue sticks — In our experience, students loved using the hot glue guns. Get an
abundant supply of hot glue sticks.

e Styrofoam balls (1” to 1.5” diameter) — These are great for diffusing light from
LEDs. LEDs can be pushed directly in to the Styrofoam.

e Bells, chimes, sandpaper, pie pans, corn, rice, small boxes or containers with caps
— These can be used for the noise making activities.

e Jewels — Jewels can add a fun decorative accent and add to the inviting, girl-
friendly feel of the workshop.

e Cardboard cake circles — Cake circles are a quick and easy way to get circular
cutouts.

e Kiraft paper — Robot building can get messy. Use kraft paper to cover work
surfaces.

e Zip ties or cable ties — As well as organizing cables, zip ties can be useful for
attaching things together. However, students are often not familiar with them
and don’t make use of them without a demonstration.

e Pushpins — Pushpins are useful for making or starting holes.

e Pegboard — Pegboard can be used as a base surface. For example during the make
a noise activity, servos can be attached to the pegboard with zip ties or wire to
help hold them in place.

Documenting Designs
Throughout the curriculum, we have provided activities which encourage the girls to
document their designs. These documentation activities are an important part of the
curriculum, as giving girls the chance to share their experiences in their own words and
show off their creations fosters a sense of pride and accomplishment. There are two
documentation options:

Option 1: Girls create personal web pages using a blog format. This option requires
digital pictures and possibly video clips.

Option 2: Girls create posters. They may make formal posters or use collage techniques

to explain the development of their robots. This option requires Polaroid pictures or
printouts of digital pictures, and poster boards.

Arts & BotsRebet-Biaries | Carnegie Mellon University & University of Pittsburgh

Vil

In our experience girls loved creating their own web pages. They also really enjoyed
personalizing their pages through color and pictures. Using web pages to communicate
their experiences is in line with the Arts & Bots theme of using technology as a means of
creative self-expression and communication. If you choose not to use web pages in your
curriculum, you can still help girls reflect on their experiences and share their
accomplishments by displaying the girls’ posters for their families and peers.

Software Installation

As part of the workshop setup, you will need to install software on all the computers that
the students will be using. All the necessary software is included on the CD
accompanying this curriculum. Detailed software installation instructions are included in
the appendix.

Arts & BotsRebet-Biaries | Carnegie Mellon University & University of Pittsburgh

1-1

Part 1: Introduction

Part 1: Introduction - Introduction to robots as expressive devices, hardware

components, and programming software.
¢ Robots and Expression
e Motors, LEDs, and Basic Circuits

e Servos, Microcontrollers, and Program Building Blocks

e Sequential Programming and Communicating with Programs

Timeline
Activity Estimated Time | Elapsed time
Introduction to Arts & Bots 10 minutes 0:10
Survey 15 minutes 0:25
Group Activity: Expressive Charades 20 minutes 0:45
Introduction to Motors, LEDs, and Circuits 10 minutes 0:55
Group Activity: Hypnotic Eyes 10 minutes 1:05
Introduction to Hummingbird and Software 25 minutes 1:30
Group Activity: Make a noise 15 minutes 1:45
Home Activity 1: Scavenger Hunt 5 minutes 1:50
Home Activity Follow-Up: Scavenger Hunt 10 minutes 0:10
Introduction to Express-O-Matic 20 minutes 0:30
Group Activity: Foley Acrtist 40 minutes 1:10
Choose a User Name 15 minutes 1:30

Materials:

Design notebooks, pencils, markers (1/ student)

Alligator clips, battery packs, batteries, switches
Computers with internet access
Hummingbird, power supply, USB cable
Servos

LEDs

Vibration motors

Motors

Craft supplies, Pipe cleaners

Tools

Digital camera

LED flashlights

Sound materials (bells, chimes, paper, sandpaper, other frictional noises, pie pans, etc.)

(1/2-3 students)

(1 / student)

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

1-2

Learning Goals

Part 1: Introduction

Part 1: Introduction - Activities

— 1o ST 0 -
& — .. [
sglg |_E|F [2-/8 |3
S =] Q O o 2 c|a LL
S © f ~n 2 > S| % ..
= | = c % EI|W >
80|35 w o o 2o 2 o 2|lE Y
s2|S2|88|25|z28|c8|3¢E
Sa|lsW|ca|lg82|85|c=2|e<
o sl e o = <
3 8 = c el 2 9|3 =
g4z |TE|B |27 |8
S |5 | 2|0 |T |2
Technical knowledge
Describe how a simple circuit functions. X X
Describe how different motors move (DC,
vibration, servo). X X X X
Describe how a vibration motor works. X X X
Technical knowiedge application
Find the technical components presented in the
workshop which are a part of an everyday object
(i.e. robotic toy, Furby, appliance). X
Demonstrate the use of hand tools such as glue
guns, screwdrivers, and x-acto knives. X X
Tg Construct a simple circuit. X X X X
O |Attach servos, vibration motors, and LEDs to a
£ [controller. X | x X
% Create short programs using a graphical
2 [programming language. X X
Design process application
Planning
Formulate design goals. X
Identify design constraints. X X
Identify available resources. X X
Identify the limitations of an available resource. X X
Prototyping
Assemble the resources needed in order to
implement a design. X X

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

1-3 Part 1: Introduction

Introduction to Arts & Bots (10 minutes)
An introduction to Arts & Bots that covers:

e Tell girls what kinds of activities they will be engaged in during the workshop
(designing, building, personalizing, and programming robots; creating their own
web page to document their experiences; playing games with their robots and
putting on a play). Even if students have not worked with robots before, if they
can do arts and crafts, they can do this workshop.

e Open with the idea that robots can be used to express emotions. Discuss the
robots and robotic art pieces pictures on the handout. Talk about how they express
emotions and moods, communicate, make music, and use movement for
expression. Also point out that robots can be beautiful and creative. You can also
show one or both of the videos of Keepon included on the CD (one is very short,
just 14 seconds). See the Expressive Robots and Robotic Art instructor
information and student handout at the end of this section.

¢ Hand out binders so students have somewhere to store handouts, design ideas, etc.

e Inform girls that Arts & Bots is part of a research study. The researchers want to
see what kind of technology activities girls like. They might ask you to fill out a
survey or answer some interview questions. They will also be here to observe the
activities.

/ Video: Keepon Expressing and Keepon Dancing

Handout: Expressive Robots and Robotic Art

Survey (15 minutes)
Allow time to complete the introductory survey if not already completed. Survey will be
provided by the researchers.

Group Activity: Expressive Charades (20 minutes)
During this ice-breaker girls will play charades with some modified rules.
1. Girls will pick from a list of the following emotions:
Angry, Anxious, Ashamed, Bored, Cautious, Confident, Confused, Depressed,
Disgusted, Ecstatic, Embarrassed, Exhausted, Frightened, Frustrated, Guilty,
Happy, Hopeful, Hysterical, Insecure, Jealous, Lonely, Love-struck,
Mischievous, Overwhelmed, Sad, Shocked, Shy, Smug, Surprised, Suspicious.
2. The girls presenting is not allowed to vocalize in any way (speak or make
sounds).
3. Girls can access a number of props to make sounds and use a variety of
colored LED flashlights.

Each girl will have one minute to allow their team to guess the emotion being expressed.
After 15 minutes, we suggest the teachers guide a short discussion on the kinds of
motions and expressions that were successful in communicating an emotion. For large
groups, we suggest that this game is played in groups of 6, with the teacher moderating
each game.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

1-4 Part 1: Introduction

Introduction to Motors, LEDs, and circuits (10 minutes)
Show students what an LED, a motor, a switch, an alligator clip, and a battery pack are
and do. Explain how a circuit needs to be a closed loop in order to work. Explain how
energy flows from high to low potential, and then explain polarity to show how LEDs
only turn on in one direction while motors just change direction based on polarity.

Each group of girls should quickly put together a circuit that turns on either a motor or an
LED (green, blue or white LEDs only) with a switch.

Two AA batteries work with green, blue, and white LEDs. Red and yellow LEDs can’t
be used for this activity because the 3-volt, AA battery packs will burn out the LEDs.

Handout: Circuit Basics

Group Activity: Hypnotic Eyes (10 minutes)
Materials per student: 2 pipe cleaners, 1-2 motors, 1-2
switches, 3-6 alligator clips, 1 battery pack for 2 AA
batteries (3.2V), 1 battery pack for 4 AA batteries
(6.4V). (If there are not enough materials for each
student to have 2 motors and circuit sets, students can
work in pairs, each making 1 circuit.)

Students should use the pipe cleaners to create hypnotic
spiral eyes and attach these to the motors. They should : :
then experiment with (a) making the eyes spin in the opposite direction by flipping the
positive and negative sides of the battery, (b) making the eyes spin faster or slower by
changing between the 3.2V battery pack and the 6.4V pack.

Introduction to Hummingbird and Software (25 minutes)
Begin this introduction by explaining what the purpose of the Hummingbird is (to act as a
way for girls to control and program their robots without constantly flipping
switches/pushing buttons). In groups, lead girls through hooking up their motors from
the previous activity (keep the eyes attached), an LED, a vibration motor, and a servo.
Since the girls haven’t yet seen servos and vibration motors, their function should be
briefly demonstrated. See the How to Connect to the Hummingbird handout for
connection details.

Handout: How to Connect to the Hummingbird

Once the girls have hooked up the motors, LED, servo, and vibration motor, lead them
through launching the software and show them how each component can be controlled.
They can then control the hypnotic eyes using the software instead of by making changes
to the physical circuit as in the previous activity. Note how it is much easier to change the
direction or speed or rotation and that the software gives finer control over speed.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

1-5 Part 1: Introduction

Handout: Software Instructions (located in the Appendix)

Group Activity: Make a noise (15 minutes)
Task girls with building something using motors or servos and noise-making materials

(bells, chimes, paper, sandpaper, other frictional noises, pie pans, paper cups, and other
craft materials) to create a simple noise. Their creations should be controlled using the
software.

Home Activity 1: Scavenger Hunt (5 minutes)
Girls go home with the task to find objects in their home that have one or more of the
following: buttons & switches, motors, LEDs, something programmable, and something
robotic. ‘Computer’ is not an acceptable answer for any category. There’s a Bonus for
finding things that can fit in two or more of the categories!

Handout: Individual Activity 1: Scavenger Hunt

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

1-6 Part 1: Introduction

Home Activity Follow-Up (10 minutes)
Review the scavenger hunt findings. See if any students found an item that non one else
found. Compare answers and see who found the most unique items.

Introduction to Express-O-Matic (20 minutes)
Launch the software and show the Express-O-Matic tab. Explain how it allows you to
script your creations to move and act automatically. Explain the process of using
Express-O-Matic, specifically:

¢ Using the Hummingbird tab to create and save expressions.

e Chaining together expressions.

e Creating a loop to continuously repeat expressions.

e Changing the delay between expressions.
We suggest you have a robot ready to demonstrate with, and quickly create a sequence of
expressions by saving two or three expressions and chaining them to make a sequence.

Handout: Refer to the Software Instructions (located in the Appendix).

Group Activity: Foley Artist (40 minutes)
Several Harry Potter clips are included on the CD accompanying the curriculum. Copy
these clips the students’ computers as part of the setup for this activity. Make sure VLC
Media Player is installed on the students computers prior to this activity. (See the
appendix for VLC Media Player installation instructions.)

Assign each group of 3-4 girls a ten second clip from a Harry Potter film. (Longer clips
can be divided so that each group has a few good sounds in their section of the clip. For
large workshops, multiple groups may work on the same clip.) Tell students about how
artists create sound effects in movies, and how sound effects are very important for
setting the mood and tone of a scene. Then introduce them to the activity — they’ll need
to make robots that create sound effects for short film clips. The sound effects they
decide on don’t need to sound the same as the ones in the clip. It’s up to their artistic
imagination what kinds of sounds fit. The last five minutes of this activity should be
dedicated to the groups of girls demonstrating their effects.

Handout: Harry Potter Clip Contents

Choose a User Name (15 minutes)
Students will be using software that allows them to share messages with each other. In
order to send and receive messages, each girl will need to create her own unique user
name and password. Girls can also add an avatar image to their profile (which will show
up when they use the messaging software). See the Create a User Name information sheet
for instructors and handout for students.

You will need to give a list of the girls’ user names to one of the researchers so that each
student can be given access to the messaging software. (The user names will also be used

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

1-7 Part 1: Introduction

to create personal web pages for the girls.) Be sure to collect a list of all the girls user
names.

Handout: Choose a User Name

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

1-8 Part 1: Introduction

Handouts and Additional Materials

In this appendix you will find the following handouts and additional materials that you
may need during Part 1 of the Arts & Bots workshop:

e Expressive Robots and Robotic Art — This is an informational guide to the
robots pictured in the handout below. It contains background information on the
robots pictured in the student handouts to aid instructors in guiding discussion.

e Expressive Robots and Robotic Art Images — This handout is used to illustrate
how robots can be used for emotional expressiveness and communication in the
introduction.

e Circuit Basics — Covers how circuits work and how to make them.

e How to Connect to the Hummingbird — This handout covers how to hook up
servos, speakers, LEDs, motors, and vibrating motors to the Hummingbird. It also
gives brief descriptions of what the components do or how they work.

e Individual Activity 1: Scavenger Hunt — This is the handout that girls take
home to use in the Scavenger Hunt activity.

e Harry Potter Clip Contents

e Choose a User Name (for Instructors) — Step by step instructions for creating a
messaging user name and password. Includes additional notes for instructors.

e Choose a User Name — Step by step instructions to walk students through
creating their messaging user name and password.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Expressive Robots and Robotic Art

Background Information for Instructors

Below are descriptions of various robots and robotic art pieces that are expressive,
communicative, musical, kinetic, and beautiful. Background information taken from the various
robots’ websites is included for your reference.

Keepon — by Marek Michalowski and Hideki Kozima

Keepon can turn, nod, rock side-to-side, and bob up and down allowing
him to direct attention and express emotion. Keepon can also detect beats
using its microphone and is a great dancer.

Two Keepon videos are included on the CD accompanying this
curriculum (they are also available on beatbots.org). One shows Keepon
being attentive to a toy and expressive when he sees a face. The other
shows Keepon dancing.

From http://beatbots.org:

“Keepon is a small creature-like robot designed to interact with children
by directing attention and expressing emotion. Keepon's minimal design
makes its behaviors easy to understand, resulting in interactions that are enjoyable and
comfortable—particularly important in our research on human social development. Keepon has
soft rubber skin, cameras in its eyes, and a microphone in its nose.

“Keepon has been used since 2003 in research on social development and communication. We
have studied behaviors such as eye-contact, joint attention, touching, emotion, and imitation
between Keepon and children of different ages and levels of social development. In the case of
children with autism and other developmental disorders, we have had encouraging results with
the use of Keepon as a tool for therapists, pediatricians, and parents to observe, study, and
facilitate social interactions.”

On Beyond Duckling — by lan Ingram
This bird-like robot swims on a pond and performs a

bird mating ritual. It has a forlorn, sad appearance
when the mating ritual is not answered.

From http://www.ingramclockworks.com:

“A new species of urban, mechanical waterfowl native to southwest Pennsylvania, found
exclusively on ponds in Schenley Park. First described by lan Ingram, the Ingram Clockworks
resident naturalist, the machine has been observed engaging in what appears to be an unrequited
mating ritual while rowing around its natural habitat.”

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Augmented Fish Reality — by Ken Rinaldo

In this art piece the fish’s movements control the
movement of the pedestal holding their fish bowl.
Projections from cameras inside the fish bowls create
the feeling of being inside the bowl.

From http://accad.osu.edu/~rinaldo:

“Augmented Fish Reality is an interactive installation
of 5 rolling robotic fish-bowl sculptures designed to
explore interspecies and transpecies communication.
These sculptures allow Siamese Fighting fish to use mtelllgent hardware and software to move
their robotic bowls - under their control. Siamese fighting fish have excellent eyes which allow
them to see for great distances outside the water. They have color vision and seem to like the
color yellow.

“This design uses 4 active infrared (IR) sensors around each bowl which allow the fish to move
forward & back and turn the bowls. By swimming to the edge of the bowl the fish activate
motorized wheels that move the robots in that direction. Humans will interact with the work
simply by entering the environment. In past artworks | have found that the Siamese fighting fish
move toward humans, presumably because they associate humans with food. Still, these are
robots under fish control and the fish may choose to approach and/or move away from the human
participants and each other. These bowls consist of a living environment of peace lillys, which
help to absorb the waist stream from the fish. The bowls and robots are designed to allow the fish
to get to within 1/4 inch of each other for visual communication between the fish, both male and
female. Small lipstick video cameras mounted on forty-five degree angles under two of the
bowls image the interior of the fish bowls as well as humans in this environment and these
images are intercepted with transceivers and projected back to the walls of the installation and
give human participants a sense both looking to the interior of the tanks and feeling as if they are
immersed in the tanks.”

Juke_bots — by Matthias Gommel, Martina Haitz, g \
and Jan Zappe :

Juke bots is two robotic arms that create musical
performances by manipulating records on a turntable,
like a DJ.

From http://www.robotlab.de: : 15 T

“juke_bots is an installation, in which two robot arms
act like a DJ. Each machine is circularly surrounded
by records which it can select and pick up. In front of each arm a record player is positioned so
that the robot can thread the records under its needle.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

“Without putting down the record on the turntable the robot can play and scratch it, both forward
and reverse, speed up or slow down the music, and thus generate new sounds with own
characteristics.

“The 'juke_bots' can be displayed either as an autonomous performance or as an 'interactive'
installation. In this version the audience can start the robots either by motion sensor or by
throwing coins in the slot of the interface.”

Blue Butterfly Machine — by Rebecca Horn

This art piece combines delicate butterfly wings with
small gears and motors creating a machine that is
striking and beautiful. The intricate mechanism makes
the butterfly wings flutter delicately.

From
http://philonous.typepad.com/musings from the lehi
gh v/2006/11/an obsession wi.html:

“Illness became a metaphor for [Horn] as an artist and
incapacity led to her insignia: use of the lightest of
materials, feathers most of all; an obsession with the
fragility of the body, with what can be appended to it and how it can be modified into an
artwork ...

“What's striking about the [work] is also the ironic way in which Horn juxtaposes the fragile
natural beauty of the butterfly wings with the artificial and mechanical ... calling to mind the
tension between such delicate natural beauty and the artistic impulse to freeze nature, to ‘fix [it]
in a formulated phrase,/ And when [it is] formulated, sprawling on a pin,/ When [it is] pinned
and wriggling on the wall,” to wonder at its fragility and impermanence.”

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

;a\, \ 2 =
e RSN

B

N

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

How Circuits Work
To get your circuit to work, you need a battery and some alligator clips. You then have a choice of
other things to put in the circuit — LEDs, motors, and/or switches.

The most important thing you need to know to get your circuit fo work is that everything you put in
should make a loop or chain. This is because electricity flows along the wire, and everything it flows
through turns on. Switches work by breaking the loop when they're turned to off. Look at the following
drawings for right and wrong ways to hook up circuits. You can from the diagram that when the circuit

is set up right, electricity flows from the + side of the battery to the minus side. You don’t need to have
all the circuit parts show in the example — you could have just a battery and a motor, for example.

= ...
./

./
@
8= —@=
i

Right Wrong

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

How to Connect to the Hummingbird

Before you do any connecting, make sure the Hummingbird is turned off!

Inserting wires in to locking terminals:

Use a screwdriver to depress the locking tab. Insert the wire in to the hole. Release the
tab and gently pull on the wire to see if it stays in place.

LED

LED stands for ‘Light Emitting Diode’.
LEDs are small lights that can come
in many different colors depending
on the type of material used to make
them.

Connect to one of the ‘LED’ ports.
Connect the red wire to one of the ‘+
ports. Connect the black wire to the
adjacent ‘-’ port.

Full-color LED

Full-color LEDs are like three single-
color LEDs in one. They can produce
red, green, and blue light. By varying
the intensity of the three colors, the
combined light output can be any
color.

+ Plug in to one of the ‘ORB’ ports.

+ Connect the red wire to one of the
‘RED’ ports.

+ Connect the green wire to the
adjacent ‘GREEN’ port.

+ Connect the blue wire to the
adjacent ‘BLUE’ port.

+ Connect the black wire to the
adjacent ‘-’ port.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

How to Connect to the Hummingbird

Before you do any connecting, make sure the Hummingbird is turned off!

Servo

Can move back and forth about 140°.
The HS-311 servo is a medium power
servo.

Plug in to one of the ports labeled
‘SV1’ through ‘SV4’. Make sure the
black wire is towards the edge of the
board (plugged in to the pin labeled
‘B’).

Motor
Spins forwards or backwards at
varying speeds.

Connect to the ‘MOTORS’ ports.
Connect the red wire to one of the ‘+
motor ports. Connect the black wire
to the adjacent ‘-’ motor port.

e mm Em mm Em o mm Em Em N Em BN BN S Gm B Em B mm Em S Em mm Em A Em Em oEm

- mm Em o Em Em EE Em B N R Em S B N SN BN S N AN BN B A Em B A Em Em o

Speaker

The Hummingbird has a built-in audio
amplifier that supports MP3 and WAV
files.

Connect the two speaker wires to the
‘SPEAKER’ port. Connect the
speaker cable to the ‘MONO’ jack on
the Hummingbird and the headphone
jack on your computer.

Vibration Motor

Has an off-center weight that makes
the motor vibrate when it spins.

Connect to the ‘VBR’ ports. Connect
the red wire to one of the ‘+’ ports.
Connect the black wire to the
adjacent ‘-’ port.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Scavenger Hunt!
Find objects in your house that have one or more of the following: Buttons & switches, motors,
LEDs, something you can program, and something you think is robotic. You can’t use
‘Computer’ as an answer in any category. Bonus for finding things that can fit in two or more of

the categories!

Something that has Something that has Something robotic
buttons or a switch a motor in it
Something that you Something that has an

can program LED or indicator light

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Harry Potter Clip Contents

Dementor Battle

:00-0:11 Dementors arrive

:11-0:22 Dementors attack

:22-0:27 Harry tries to get his wand
:27-0:32 Harry casts his patronus
:32-0:35 Dementor flees

O O O O O

Neville Finds Room
0:00-0:27 Door to the Room of Requirement appears and
opens

Neville vs. Practice Dummy
0:00-0:08 Dummy advances
0:08-0:14 Neville tries to disarm it

Stupefy practice
0:00-0:12 Nigel practices stupify on Harry

Harry and Cho practice
0:00-0:04 Nigel is floating
0:04-0:09 Cho looses concentration

Azkaban Escape
0:00-0:05 Explosion
0:05-0:19 Thunder and lightning

Umbridge Breaks Through
0:00-0:10 Rumbling
0:10-0:16 Mirror shatters
0:16-0:35 Final blow

Dumbledore Escapes
0:00-0:06 Phoenix arrives
0:06-0:10 Phoenix leaves

Voldemort Battle

0:00-0:02 Voldemort casts spell
0:02-0:12 Destruction!

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Choose a User Name (for Instructors)

Students will be using software that allows them to share messages with each other. The
messaging software depends on a special server to send and store messages. CMU will run the
message server for the workshop. Access to the messaging server, and thereby the ability to send
messages to members of the group, requires a user name and password.

Each girl will need to create her own unique user name and password. Preferably she should also
add an avatar image to her profile. Follow the instructions below to create a user name, password,
and avatar image (special notes to instructors are included in italics).

©oNo O

10.

Go to the TeRK website:
http://www.terk.ri.cmu.edu. (TeRK is a project
run by CMU. Arts & Bots is a part of the TeRK
project and uses TeRK software.)

Click the ‘Become a member’ link in the top right
corner of the homepage.

Enter an email address. A confirmation email will
be sent to the email address so it should be one
that you can access from the computer you are
currently using. (If a student does not have an
email address, you may use an instructor’s email
address. However because the TeRK database
will only allow one user to sign up for each email
address we recommend changing the email from
‘instructor@site.org’ to
‘instructor+studentUserName@site.org’. ~ Most
mail programs ignore anything after the plus sign
unless you have special filters set up. However, if
no email arrives, be sure to check your spam box.)
Enter a screen name. (Hint: your screen name
does not have to be very complicated because
TeRK has a relatively small set of users.) Before
going any further write down your screen name in
your design notebook.

You can select an avatar image now or later.

Hit ‘Submit’ at the bottom of the page.

cles for Teaching and Learning
haging, and affordable for all. Learn more about us

FEATURED ROBOT LOGIN

Become a Member

Fill in the membership information below. We will send a confirmation email to the

ss vou provide with a hyperlink to complete your membership registration.

ss and screen name are required to register. Your email
address will be kept private, but other information will be viewable by others on
your profile page. See our Privacy Policv.

Email *: jdoe@yahoo.com
ne *: Jane

Avatar Image: [C:\Pictures\kiccoro.gf || Browse... | 32 x 32 pixel image

City:
Country:

Favorite Robots
(Real or
fictional):

Email me TeRK [7]
events and news:

Open the confirmation email sent from the TeRK site and click the confirmation link.

Enter your screen name and choose a password. Hit ‘Submit’ to complete your registration.

If you did not previously select an avatar image, you can do so by clicking ‘Edit Profile’. If
you want to change your avatar later, you can log in to the TeRK site using your user name

and password and then edit your profile.

An instructor is making a list of everyone’s user names so that you can use the messaging
software. Make sure the instructor writes down your user name on the list. (Collect all of the
girls’ user names and give them to one of the researchers so that they can be given access to

the messaging server being run at CMU.)

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Choose a User Name

Some of the software you will be using during the workshop allows you to send
messages to other workshop participants. In order to send and receive messages,
you need your own user name (also called a screen name). You can also upload an
avatar image that will show up by your user name when you send messages.
Follow these steps to create a user name and password and upload an avatar:

1. Go to the TeRK website:
http://www.terk.ri.cmu.edu.

cles for Teaching and Learning

2. Clle the ‘Become a member, llnk ln the haging, and affordable for all. Learn more about us

top right corner of the homepage.

3. Enter an email address. A confirmation
email will be sent to the email address so Become a Member
it should be one that you can access from
the computer you are currently using.

4. Enter a screen name. (Hint: your screen

name does not have to be very g4
complicated because TeRK has a m (i
relatively small set of users) Before | = T s
going any further write down your screen

Favorite Robots

name in your design notebook. ol
5. You can select an avatar image now or

later.
6. Hit ‘Submit’ at the bottom of the page.

Email me TeRK [

7. Open the c_onfirmati(_)n email sent frpm e s e)
the TeRK site and click the confirmation
link.

8. Enter your screen name and choose a password. Hit ‘Submit’ to complete your
registration.

9. If you did not previously select an avatar image, you can do so by clicking ‘Edit
Profile’. If you want to change your avatar later, you can log in to the TeRK site
using your user name and password and then edit your profile.

10.An instructor is making a list of everyone’s user names so that you can use the
messaging software. Make sure the instructor writes down your user name on
the list.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

2-1

Part 2: Building Basics

Part 2: Building Basics — Design, build, and program a simple robot.

e The Design Process
e Build Your Own Robot

e Write and Share Expressive Robot Programs

Timeline
Activity Estimated Time | Elapsed time
The Design Process 5 minutes 0:05
Design / Plan 15 minutes 0:20
Build / Implement Designs 1 hour 1:20
Group Activity: Robot Dance Party 30 minutes 1:50
Documenting Designs 10 minutes 2:00
Documenting Designs: Sharing Your Design 30 minutes 0:30
Journey
Group Activity: Show and Tell 20 minutes 0:50
Group Activity: Improv 10 minutes 1:00
Group Activity: Charades 30 minutes 1:30
Introduction to Messenger 15 minutes 1:45
Individual Activity 2: Share a Story 5 minutes 1:50
Materials:
Design notebooks (1 / student)
Pencils, markers
Computers with internet access (1/ 2-3 students)
Hummingbird, power supply, USB cable (1 / student)
Servos (2 / student)
LEDs (full color or tri-color if available) (2 / student)

Cardboard and foam board
Craft supplies

Tools

Camera

Scanner (optional)

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

2-2

Learning Goals

Part 2: Building Basics

Part 2: Building Basics - Activities

The Design Process

Planning
Prototyping
Group Activity:
Charades
Individual Activity 2:

Documenting Designs

Share a Story

Learning Goals

Technical knowledge application

Demonstrate the use of hand tools such as glue guns,
screwdrivers, and x-acto knives.

Construct a simple circuit.

Attach servos, vibration motors, and LEDs to a
controller.

Create short programs using a graphical programming
language.

Design process knowledge

Describe all of the steps in the design process.

Explain why design is an iterative/experimental
process.

Design process application

Planning

Create a technological design or modify a feasible
technological design to meet an individual or
community need.

Formulate design goals.

Identify design constraints.

Identify available resources.

Identify the limitations of an available resource.

XX XXX

Draw a sketch or diagram of a technological design.

X

Prototyping

Assemble the resources needed in order to implement a
design.

Construct a physical prototype of a technological
design.

Documenting designs

Describe a technological design using writing or
photography.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

2-3 Part 2: Building Basics

The Design Process (5 minutes)
When people want to create or improve something—anything from buildings to clothing
to cakes—there are a set of steps that they follow in order to turn their ideas into reality.
These steps are known as the design process.

Suppose that you want to create a new recipe. You first need to spend some time
planning: you have to figure out what kind of dish to make and what ingredients to use.
You might decide you want to make a new type of chocolate chip cookie with some
special ingredient or flavor added, so you would have to plan out how much of your new
ingredient you want to add to an existing recipe.

You would then bake a batch of cookies following your plan: this is called prototyping,
producing a physical representation of your idea to see how feasible it is. Once you've
baked the cookies, naturally you would one to eat one! You would test your cookie to
see if it tastes the way that you wanted. If the cookie doesn't quite turn out the way you
hoped, you would start troubleshooting—figuring out what might have gone wrong and
how you might fix it. For example, if your cookies are too crunchy, you might need to
bake them at a lower temperature or for a shorter amount of time. Or if you can't taste
your secret ingredient, you might need to add more of it, or use something slightly
different. If you're making almond-flavored cookies, for example, and you tried adding
almond extract to the dough, they might not taste nutty enough: you might want to add
some chopped almonds, too.

Once you think you've figured out what the problem is, you can iterate—that is, you'll go
back and repeat the design process, remembering what you've learned. So you'll make a
new plan for how to change your recipe, you'll bake another batch of prototype cookies,
and you'll evaluate how they turned out. You can keep repeating the process until you've
got a cookie recipe that you really love.

Another way to make your cookie recipe better is to get feedback from other people. You
can share some of the cookies with your friends and then listen carefully to their
reactions.

As you're creating your cookies, you'll want to document what you've been doing, such
as what changes you're making to your recipe and how the results turn out. Once you're
happy with your cookies, you'll want to be sure you write down the recipe you used so
you can make them again or share the recipe with your friends.

In summary, the steps in the design process are:
» Planning
= Prototyping
= Testing and troubleshooting
= Evaluating and critiquing designs
= Documenting designs

Handout: The Design Process

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

2-4 Part 2: Building Basics

Planning (15 minutes)
In our experience students often worked with the materials right in front of them. If
students aren’t already familiar with the craft materials available, you can aid their
creativity by making them aware of the variety of materials available to them. 1t may help
students to look briefly at the available materials before or during their planning.

Handout: Instructions for Design Planning and Building

Today you are going to build an expressive robot that has a body, 2 servos,
and 2 LEDs. The servos can control arms, legs, ears, antennae, wings, fins,
heads, tails, and so on. The LEDs can be used in the eyes, ears, nose,
antennae, or some other part of your robot.

How will your robot look?

Before you begin building you need a plan. Draw one or more pictures of
your robot. Label the moving parts and the LEDs.

Prototyping (1 hour)

Have the students refer to the handout and their design sketches as they start building. Be
sure students know what materials are available to them. Remind students that this is the
first iteration through the design cycle. The robots do not need to be perfect or polished at
this point. In future sessions, after testing and evaluating their robot designs, students will
be revising their designs, adding additional components (more servos, more LEDs,
motors, and a speaker), as well as continuing to decorate and personalize their robots.

In our experience, kids can spend a long time building and personalizing their robots. We
have specifically tried to keep building time short at this point in the curriculum so that
students can get through all stages of the design cycle and iterate on their designs before
getting too attached to the first iteration of the robot.

Group Activity: Robot Dance Party (30 minutes)
Have the girls bring in music from home (or provide a selection of music). Each girl
should choose a 1-minute music clip, and programs her robot to dance to the music. If
they want to, pairs or groups of girls can work together to coordinate their dances.

Some students will take longer than others to assemble their robots. If there are students
who do not yet have working robot, assist them in completing their robots during this
time.

After 25 minutes, go around the room and ask girls to demonstrate their dancing robots.
Documenting Designs (5-10 minutes)

Tell the students about the web pages/posters they will be making in a future session. The
photos and documentation activities they do today will help them with their web

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

2-5 Part 2: Building Basics

pages/posters. Each girl’s web page/poster is a place for her to share the story of how she
created her own unique robot.

Take pictures of each of the robots. If you have access to a scanner, you can scan the
girls’ design sketches or you can take photos of the sketches for the web page.

Have the girls write in their notebooks for 5 minutes. They may answer one or more of
the reflection questions or write about something else related to their work today.

Handout: Reflection 1

Reflection questions:

e What was the biggest challenge you faced in designing and building
your robot today? How did you solve it?

e Why did you choose to make your robot look the way it looks?

e Is there something you want to add to your robot?

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

2-6 Part 2: Building Basics

Documenting Designs: Sharing Your Design Journey (30 minutes)
At this point in the workshop, the girls should be ready to begin creating web pages that
document their ‘design journey.” (If a web page is not available or is difficult to access,
they can do this on a poster).

Introduce students to the documentation website, robotdiaries.org. Show them how to log
in and edit their personal page. Students will use these web pages throughout the
workshop to document the process of designing and building their own robot. They
should refer to their answers to the reflection questions as a source of material for their
sites.

Handout: Website Instructions

In preparation for this activity you should upload the pictures you have taken of the
students’ robots over the course of the workshop. Follow the Uploading Photos
instructions on the Website Instructions for Instructors page included in the additional
materials section.

Additional Materials: Website Instructions for Instructors

Group Activity: Show and Tell (20 minutes)
Give each girl a chance to show her robot to the rest of the group. If you have a large
group, this can be done in smaller groups of 4 to 6 girls.

Girls should show their robot and talk briefly about its expressive features. Because
feedback is an important part of the design process, encourage other girls to ask
questions, complement good ideas, give suggestions, etc. Before beginning the show and
tell you may want to review the feedback guidelines handout to encourage kind and
constructive feedback and help the girls make the most of the feedback they receive.

Handout: Feedback Guidelines

Group Activity: Improv (10 minutes)
This game is designed to stimulate thinking about expression as well as get girls moving
around.

Players should stand in pairs facing each other. Ask players to look at each other with
fear. Sounds and physical movement are encouraged. Then ask everyone to change
partners. Ask players to look at each other with envy. Change partners again. Ask players
to look at each other joyfully.

Then yell any of the three emotions. Players need to find the partner with which they did
that emotion and do it again. Repeat this several times. Then ask players to walk around

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

2-7 Part 2: Building Basics

the room. When they meet one of their 3 partners, they return to the look that went with
that partner. In between partners they stay neutral.

You can try more or different emotions, of course. A list of emotions is provided in the
charades game description below.

Group Activity: Charades (30 minutes)
Have the girls brainstorm a list of emotions as a group. Display the list in a visible place
so that girls can reference it throughout the activity. If you are short on time, you can
supply the list of emotions. Sample emotions include: happy, sad, angry, afraid,
surprised, disgusted, ambivalent, anxious, bored, confused, depressed, doubtful, envious,
embarrassed, frustrated, guilty, proud, regretful, shameful, euphoric, grateful, hopeful,
hysterical, lonely, in love, paranoid, pity, pleased, enraged, compassionate, calm,
suspicious, ecstatic, melancholy, joyful, excited, nervous, meditative, shocked, lovesick,
cheerful. You'll want a list of at least as many emotions as there are girls (3 emotions for
each team of 2-3 girls).

Split into teams. Ideally you should make 3 or more teams of 2-3 girls each. Have each
team draw 3 of the emotions from a hat.

Give the teams time to program roboticons for their selected emotions. Then have them
present their roboticons to the other teams by playing them on their own team’s robot.

Scoring Option 1 (shorter): The other teams try to guess which emotion is being
expressed. Award 1 point to the first team to make the right guess.

Scoring Option 2 (longer): The guessing teams consult amongst themselves and come up
with a single guess as to which emotion is being expressed. After each team has reached
a consensus, share the guesses. Award 1 point to each team that guesses correctly. Award
1 point to the presenting team for each correct guess they receive.

If the girls will be creating web pages, this may be a good opportunity to take some short
video clips of the robots in action.

Introduction to Messenger (15 minutes)
Briefly show students how to use the messenger portion of the software. Have each girl

or each group post their favorite sequence created during charades to the public message
board, and then play a sequence posted by another group.

Handout: Refer to the Software Instructions (located in the Appendix).

Individual Activity 2: Share a Story (5 minutes)
Individual activities are design for students to complete on their own, either at home or
during free time at the workshop location. Students should expect to spend roughly 15-30
minutes on this activity.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

2-8 Part 2: Building Basics

e Either write a diary entry for your day or week or write a story.

e Make at least 3 roboticon programs for your robot that help express your diary
entry or tell your story.

e Use the RoboticonMessenger to share what you’ve created with the group. If you
wrote a personal diary entry, you do not need to share the text of your diary entry;
you can choose to share just the roboticons and the emotions they represent.

e Read the stories shared by your friends and try playing their roboticons on your
own robot. Can you feel the emotions they are expressing? Do you think the
roboticons look different on your robot than on your friends’ robots?

Handout: Individual Activity 2: Share a Story

Individual Activity Follow-Up (the following session)
Address any problems students faced with the individual activity. If you have time, invite
1 or 2 students to share their story and play the roboticons on their own robot.

Discussion questions:
e Can you feel the emotions the robots are expressing?
e Do the roboticons look different on your robot than on your friends’ robots?
e Are there any group favorites? What makes those particular roboticons stand out?

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

2-9

Part 2: Building Basics

Handouts and Additional Materials

The Design Process — A diagram illustrating the design process.

Instructions for Design Planning and Building — Contains instructions for
planning and building the first version of the robot. Also contains pictures of
sample robots to serve as inspiration and provide visual clues for building.
Reflection 1

Website Instructions for Instructors — Directions for setting up the students’
personal web pages and uploading photos to Flickr for the students to include on
their web pages.

Website Instructions — Covers logging in the robotdiaries.org site, adding
content, and changing the theme for girls’ personal pages.

Feedback Guidelines — Guide for giving and receiving effective feedback.
Individual Activity 2: Share a Story

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

The Design Process

Planning:

Figuring out
how to turn
your idea into

something real.

Documenting:

Keeping a
record of what
you did and why
so that you don’t
forget!

Prototyping:
Building a
model based on
your plan.

Testing:
Making sure
your prototype
works the way
it should.

Evaluating:

Determining
what to keep
and what to
improve for
next time.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Today you are going to build an expressive robot that has a body, 2 servos, and 2 LEDs.
The servos can control arms, legs, ears, antennae, wings, fins, heads, tails, and so on. The
LEDs can be used in the eyes, ears, nose, antennae, or some other part of your robot.

How will your robot
look?

Before you begin building you need a plan. Draw one or more pictures of your robot.
Label the moving parts and the LEDs.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Reflection 1

improve our design. Your reflections today will also be a source of material for
your web page or poster.

Reflection Questions:
e What was the biggest challenge you faced in designing and building your
robot today? How did you solve it?
¢ Why did you choose to make your robot look the way it looks?
\ e Is there somethina vou want to add to vour robot?

(Reflecting on and documenting our experiences as we design something helps us to\

J

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Webpage Instructions for Instructors
Girls will be creating their own web pages in order to document their design journey.

Creating User Accounts

You will need to create a user account for each student. We have started this process but you will
need to make the login name and password for each student. Use the same login name that girls
created for the messaging software.

There is a webpage ready for each girl. The pages use different color names, for example
robotdiaries.org/red, robotdiaries.org/blue, etc. The list of colors available for your particular
workshop is included with your curriculum materials.

1. Go to http://www.robotdiaries.org/FirstColorName (see the list of colors for your
workshop site).
2. Log in to the site with Username:
Password:

w

Click ‘Log In’
Log in with Username:
Password:
Click the ‘Admin’ link at the top of the page.
Click the ‘Manage’ link on the top right.
Click the ‘Users’ tab.
Click the ‘+ New User’ button.
Enter the girl’s first name, an email address (you can use info@robotdiaries.org), and
login name. The Group should be set to Member. Enter the password and confirm the
password (use ‘...” as the default password). Then click the ‘Add User’ button.
10. Click the ‘Settings’ link on the top right.
11. Change the Site Name from ‘My Awesome Site’ to the girl’s login name or first name.
Then click the ‘Update’ button.
12. Repeat the steps with a new color for each girl.

B

©Co~No O

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Uploading Photos

Students will be able to include images, videos, and sounds on their web pages. We have set up a
Flickr account where you can upload photos and videos so that you they will be available for the
girls to add to their websites. We have already uploaded some images of the technical
components the girls will be learning about and screenshots of the robot programming software
in case girls would like to use these images on their websites.

Because photos uploaded to the Flickr account will be public, limit uploads to images of robots
and other items created by the students. Do not upload images of the students.

To upload new images or videos:

1.
2.
3.

N gk

Go to http://www.flickr.com/photos/robotdiaries
Click ‘Sign In’ in the top right corner.
Sign in using ID:
Password:
Click ‘Upload Photos’
Click ‘Choose Photos’
Select the photos you want to open on your computer and click ‘Open’.
Make sure that ‘Public’ is selected under Set privacy.
Click ‘Upload Photos’.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Loggi
1.
2.

3.
4.
5.

Webpage Instructions

ng In
Go to http://www.robotdiaries.org
Log in to the site with Username:

Password:
Click on your user username (or page name) in the column on the right.
Click the ‘Log In’ link (on the right under Welcome Guest!).
Enter your Username and Password. Your default password is ‘...” until you change it.

Changing Your Password

1. Log In to your page. Your default password is ‘... .

2. Click the ‘User Controls’ link in the column on the right.

3. Enter your new password, confirm the password by entering it again, and click the
‘Update’ button.

Posting

1. To add a new post to your website, click the ‘Write’ link at the top of the page (you must
be logged in).

2. 'You can now add text, audio, links, photos, quotes, or videos to your page by clicking on
the appropriate tab. You will probably use ‘Photo’ and ‘Text’ most often.

3. Let’s say you want to add a photo. Click the photo tab. Then either ‘Browse’ to find the
photo on your computer or enter the URL (web address) where the photo is located
online. In the ‘Caption’ box, enter the text that you want to accompany your post.

4. Click ‘Publish’ when you are ready to add your post to your website.

Flickr Photos

We have created a Flickr account so that you can easily add pictures from the workshop to your
web page. Follow the instructions above for posting photos. When it is time to select the photo,
you will enter a URL in the box that says ‘From URL?’ (you will not use the ‘Browse’ button).
To get the URL of a photo in the Flickr account, follow these steps:

1.

2.
3.
4

Go to http://www.flickr.com/photos/robotdiaries
Find the picture that you want to include in your web page and click on it.
Click and drag the photo to the address bar.

. When you release the photo in the address bar you should see a webpage showing just the

photo and nothing else (no text or other images).
Copy the URL (the web address).
To copy the URL you must highlight the full address in the address bar. Click on
the address with the right mouse button.
Select ‘Copy’ from the menu that appears.
You can now paste the URL in to the box that says ‘From URL?’ to post it to your web
page.
To paste, click in the box with the right mouse button.
Select ‘Paste’ from the menu that appears.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Themes

You can change the color theme for you page.

First click ‘Write’ at the top of your page.

Then click ‘Extend’ on the top right.

Click the ‘Select’ button to choose the theme you want.
Click ‘View Site’ on the top right to return to your site.

RN

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Feedback Guidelines

Giving and receiving feedback is an important part of the design process.
Here are some guidelines for giving good feedback and for receiving
feedback from others.

The person giving feedback should:
ALWAYS balance a negative comment with a positive one.

ALWAYS be specific. Suggest a specific improvement instead of just
saying something needs improvement, or give examples of familiar
products that have desirable features that could apply this concept.

ALWAYS ask precise clarification questions.

NEVER make a vague statement (e.g., “I don’t like the way it looks”).
NEVER attack the character of the designer.

NEVER make comments about the designer instead of the idea.

The person receiving feedback should:

ALWAYS listen actively and make notes.

ALWAYS pay attention to both positive and negative aspects of the
feedback.

ALWAYS thank the person providing feedback for particularly good
insights.

NEVER defend or argue about the negatives brought up.

NEVER turn clarification questions or answers into justifications for
every aspect of the system. ONLY ask questions to help you
understand the comments.

NEVER take the comments personally.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Individual Activity 2: Share a Story

e Either write a diary entry for your day or week or
write a story.

e Make at least 3 roboticon programs for your robot
that help express your diary entry or tell your
story.

e Use the RoboticonMessenger to share what
you’ve created with the group. If you wrote a
personal diary entry, you do not need to share the
text of your diary entry; you can choose to share
just the roboticons and the emotions they
represent.

e Read the stories shared by your friends and try
playing their roboticons on your own robot. Can
you feel the emotions they are expressing? Do you
think the roboticons look different on your robot
than on your friends’ robots?

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-1

Part 3: Advancing Your Design

Part 3: Advancing Your Design — Iterative cycles of design, building, and structured

use activities.
e Expand Your Design
e Expand Your Robot
e Write and Share Longer Programs

Timeline
Activity Estimated Time | Elapsed time
Individual activity follow-up 5-10 minutes 0:10
Iteration Example: Robotic Desk Lamp 10 minutes 0:20
Design Reflection 5 minutes 0:25
Making Changes 1: Brainstorming and 60 minutes 1:25
Building
Introduction to speakers 5 minutes 1:25
Group activity: Robot Mad Libs 25 minutes 1:50
Document designs + reflection 10 minutes 2:00
Individual activity 3: Robot meets world
Individual activity follow-up 5-10 minutes 0:10
Making Changes 2: Design reflection and 15 minutes 0:25
brainstorming
Building (adding new components to robot) 45-55 minutes 1:20
Prepare for show and tell 15 minutes 1:35
Group show and tell and feedback 20 minutes 1:55
Document designs + reflection 10 minutes 2:05
Individual activity 4: Pull the Chain
Individual activity follow-up 5-10 minutes 0:10
Introduction to sensors 15-20 minutes 0:30
Introduce idea of Play 5 minutes 0:35
Planning for Play 30 minutes 1:05
Design/re-design and building for play 50 minutes 1:55

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-2

Part 3: Advancing Your Design

Documenting designs + reflection 10 minutes 2:05
Individual activity 5: Silly messages
Individual activity follow-up (optional)
Continue working on play 75 minutes 1:15
Group Activity: Robot makeover 30 minutes 1:45
Survey 15 minutes 2:00
Group Activity: Play Presentation 30-60 minutes 1:00
Materials:
Design notebooks (1 / student)
Pencils, markers
Computers with internet access (1/ 2-3 students)
Hummingbird, power supply, USB cable (1 / student)
Servos (2 / student)
LEDs (4 / student)
Vibration motors (2 / student)
Motors (1 / student)

IR distance sensor

Light sensor

Speaker and speaker cable
Cardboard and foam board
Craft supplies

Tools

Digital camera

Scanner (optional)

Copies from book of fairytales

(approximately 1 / student)
(approximately 1 / student)

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-3

Learning Goals

Part 3: Advancing Your Design

Part 3: Advancing Your Design - Activities

Design / Plan

Build / Implement
Designs
Libs
Individual Activity:
and Tell
Pull the Chain

Documenting Designs
Group Activity: Mad
Robot Meets World

Group Activity: Show
Individual Activity:

Group Activity: Play

Individual Activity:

Silly Messages

Learning Goals

Technical knowledge application

Demonstrate the use of hand tools such
as glue guns, screwdrivers, and x-acto

Attach servos, vibration motors, and

Create short programs using a graphical

XXX

Design process knowledge

Describe all of the steps in the design

Explain why design is an important part

Explain why design is an

Design process application

Planning

Create a technological design or modify
a feasible technological design to meet

Formulate design goals.

Identify design constraints.

Identify available resources.

Identify the limitations of an available

XX XX

Draw a sketch or diagram of a

X XXX XX

Create a design which utilizes

Modify a design or implementation

X

XX
X

XIXXXPXX XX

Prototyping

Assemble the resources needed in order

X

X

Construct a physical prototype of a

Evaluating designs

Assess how well a technological design
meets an individual or community need.

Judge the benefits and drawbacks of a
design modification with respect to

Troubleshooting

Identify problems with a technological

Devise possible solutions to the
problems with a technological design.

Documenting designs

Describe a technological design using

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-4 Part 3: Advancing Your Design

Individual Activity Follow-Up (5-10 minutes)
Address any problems students faced with the individual activity. If you have time, invite
1 or 2 students to share their story and play the roboticons on their own robot.

Discussion questions:
e Can you feel the emotions the robots are expressing?
e Do the roboticons look different on your robot than on your friends’ robots?
e Are there any group favorites? What makes those particular roboticons stand out?

Iteration Example: Robotic Desk Lamp (10 minutes)
Show the Robotic Desk Lamp as a sample robotic technology that went through several
design iterations. Show the Robotic Desk Lamp video from the CD. See teacher
discussion guide and student handouts.

/ Video: Robotic Desk Lamp
Handout: Design Iterations of a Robotic Desk Lamp

Design Reflection (5 minutes)
Based upon your discussion of the homework, ask students to reflect on this question:
How can | make my robot more expressive?

Handout: Reflection 2

Making Changes 1: Brainstorming and Building (60 minutes)
Remind students of the goal of being able to communicate and express feelings with the
robot.

Today, you can make your robot more expressive by adding additional servos, LEDs,
motors and sound capabilities. You will have at least two other sessions to work on your
additions and robot customization so you can test your robot between sessions and make
improvements at the next session. The additional components you can use are: 2
additional servos, 4 additional LEDs, 2 vibration motors, 1 motor, and 1 speaker.

By the end of the final design session you will need to integrate at least three of the five
different types of components listed above, but try to integrate as many as you can. For
today, try to integrate at least one new component into your robot.

Adding these additional components will require you to re-design parts of your robot.
This is all part of the design process. You did a great job building your initial robots, and
now you have a chance to improve your robot and make it exactly the way you want it!

Before students begin building, they should spend 20 minutes brainstorming about how
they want to add these new components to their robots.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-5 Part 3: Advancing Your Design

Handout: Redesign Instructions

Introduction to Speakers (5 minutes)
When students have finished brainstorming, show students the speaker, and
demonstrate how to attach the speaker to the Hummingbird. The How to Connect
to the Hummingbird handout from Part 1 describes how to connect the speaker.

We have noticed that students sometimes have trouble managing their time during design
sessions. To help keep the students on track, we recommend regular reminders about
how much design time they have remaining.

Group Activity: Robot Mad Libs (25 minutes)
This activity is a take-off on the game Mad Libs. Mad Libs is a game where one person
asks another for a list of words, and then inserts the words into a story in pre-determined
places. The result is a very funny story. In this version of the game, we will insert
roboticons into a story along with words.

There are some sample stories (along with slots for roboticons) in the Appendix.
However, the girls in the group can also write their own stories for this activity.

There are several ways to run this activity:

e Have the girls brainstorm a list of emotions (or use the list generated during the
charades game), and have the girls each create roboticons that express one or two of
those emotions. Make sure the girls post their emotions on the messenger software,
so that anyone in the group can access them. Then, split the group up into pairs and
distribute the stories (or have the girls write their own). Each girl will provide her
partner with the necessary words/emotions/actions to fill in the Mad Lib, and then the
partner will play the story for her, including her words and the roboticons from the
messenger. (Remember, an important part of this game is that the person providing
the words/emotions/actions has not yet seen the story.)

e Mad Libs can also be played as an individual activity. Girls can create roboticons for
different emotions outside of class time, and write their own stories if they wish.
Follow up during the next workshop session by inviting students to ‘play Mad Libs’
(play the roboticons during the stories) at the session.

Additional Materials: Sample Mad Libs

Documenting Designs and Reflection (10 minutes)
Take pictures of each of the robots. If you have access to a scanner, you can scan the
girls’ design sketches or you can take photos of the sketches for the web page.

Have the girls write in their blogs for a few minutes. Ask them to answer the following
questions. In addition, they can also write about other aspects of their work today.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-6 Part 3: Advancing Your Design

Reflection questions:
e What changes did you make to your robot today?

¢ Why did you make those changes? Were any of these changes the result of
something you learned while using your robot? If so, what?

e What was the biggest challenge you faced in redesigning your robot today and
how did you solve it?

e Based on your experience playing Mad Libs, do you think your robot is more
expressive now than it was before? How?

Handout: Reflection 3

Individual Activity 3: Robot Meets World

Individual activities are designed for students to complete on their own, either at home or
during free time at the workshop location. Students should expect to spend roughly 15-30
minutes on this activity.

The purpose of this individual activity is to give the students a chance to ‘show off” their
robot to someone outside of the workshop.

e First, identify someone (such as a family member, friend, or teacher) who you
think would enjoy meeting your robot.

e Talk to them about how you can use a robot to express yourself, and
demonstrate how your robot can express at least 3 different emotions.

e ldentify at least 3 technical parts on your robot (e.g., servo, motor, LED) and
explain what each one does.

Handout: Individual Activity: Robot Meets World

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-7 Part 3: Advancing Your Design

Individual Activity Follow-Up (5-10 minutes)
In-class discussion questions for the ‘Robot Meets World’ activity:

Who did you teach about your robot?

What did you teach them? What emotions did you demonstrate?

How did they respond?

Had they ever seen a robot like yours before?

Making Changes 2: Design Reflection and Brainstorming (15 minutes)
Remind students of the goal of being able to communicate and express feelings with the
robot.

e Direct students to read the reflections they did during the last session, particularly
their answer to the question, “Based on your experience playing Mad Libs, do you
think your robot is more expressive now than it was before?” Encourage them to
think about their answer to this question, and also to reflect on the reactions they
received during the Robot Meets World activity. Then ask them to think about
this: What changes do you want to make to your robot as a result of those
activities? For example, are there other things you would like the robot to be
able to do or express? Encourage students to draw some of their ideas about how
the robot can be more expressive.

e Remind students that they have additional materials to work with while expanding
their robots (2 additional servos, 4 additional LEDs, 2 vibration motors, 1 DC
motor, and 1 speaker available to expand your robot).

Remind students of the building handout from the previous session.

Building (45-60 minutes)
After reflecting and brainstorming, students will be ready to make changes to their robots.

Prepare for Show and Tell (15 minutes)
Fifteen minutes before the group show and tell is to begin, let students know they should
begin preparing. This may mean putting the finishing touches on their robot, getting the
part of the robot they are currently building to work, or writing a program to show off
their cool new expressive features.

Group Activity: Show and Tell and Feedback (20 minutes)
The goal of Show and Tell is to give each girl a chance to show off her robot to the rest
of the group, and to receive feedback on her robot from the rest of the group.

If you have a small group of girls (6 or fewer), go around the room and have each girl
present her robot. If you have a large group, you may want to break the group up in to
small groups of 4 students each, and have students do the show and tell within their small
groups.

Before beginning the show and tell and feedback session, you may want to review the
Feedback Guidelines handout from Part 2.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-8 Part 3: Advancing Your Design

Questions for the group to think about when seeing each robot:
e What feeling or impression do you get from observing or interacting with
this robot?
e What is the most interesting or creative thing about this robot?
¢ Do you have any suggestions for how she can change her robot to make it
even more expressive?

Allow 15 minutes for show and tell followed by a group discussion.

Group discussion questions:
e Have your robots become more similar to each other or more different
from each other since the first day? In what ways?
e Are there any trends or similarities in how people used particular
components for expression? Did anyone come up with radically different
expressive uses for any components?

Documenting Designs and Reflection (10 minutes)
Take pictures of each of the robots. If you have access to a scanner, you can scan the
girls’ design sketches or you can take photos of the sketches.

Have the girls write in their blogs for a few minutes. Ask them to answer the following
questions. In addition, they can also write about other aspects of their work today.

Reflection questions:

e What changes did you make to your robot today?

e Why did you make those changes? Were any of these changes the result of
something you learned while using your robot? If so, what?

o Based on the feedback you got at the Show and Tell, do you want to make
additional changes to your robot? If so, what?

e Have your ideas about what you want your robot to do or to be changed since you
first built it?

Handout: Reflection 4

Individual Activity 4: Pull the Chain
Pull the chain is a storytelling game that can be run as either an individual or a group
activity.

e Toplay as an individual game, decide who will begin the story. That girl
should write the opening line of a story and make an expression or sequence
to accompany it. Pass your story and roboticon to the next person in the group
using private messaging (in your message, remember to include a list of each
girl who has already contributed, so everyone has a turn to contribute). Each
person should add another line to the story and another roboticon until each
person in the group has contributed to the story. Share the final story on the
public messaging board for everyone to read and play on their robots.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-9 Part 3: Advancing Your Design

e Pull the chain can also be played as a group game within the workshop. To
play as a group game, have each student write the opening line of her own
story and make an expression or program to accompany it. Students then pass
their stories and programs on to the next student (using private messaging),
and that student adds another line and program to the story until each person
in the group has contributed to each story. Share the final stories on the public
messaging board for everyone to read and play on their robots.

Handout: Individual Activity 4: Pull the Chain

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-10 Part 3: Advancing Your Design

Pull the Chain Follow-Up (5-10 minutes)
If this activity is done as an individual activity, share the whole story in class and let the
students watch the story as it is expressed on a few different robots. If the activity is
done as a group activity, choose one or two stories to share with the class.

Discussion questions:
e Think about how the story looked on each of the robots. Did the story look
different on these different robots?
e If so, how was it different?
e Why do you think it looked so different?
e What does this tell us about the importance of robot form for expressing
emotions?

Introduction to Sensors (15-20 minutes)
Show students the sensors that are available to use with the Hummingbird (light and
distance sensors). Demonstrate how to attach sensors to the Hummingbird and how to
read their values from the Hummingbird tab in the software and use the Conditions in the
Express-o-Matic tab.

It may be helpful to bring materials that the girls can use to explore the sensors. For
example, flashlights can be helpful when learning about light sensors.

Handout: How to Connect Sensors to the Hummingbird

Introduction to Play (5 minutes)
The group will create a play based on a fairy tale. The play will involve robotic actors
(humans can be actors too). The girls will also create robotic props or set pieces using
Sensors.

We recommend splitting into groups of 3-6 girls each (3-4 is ideal per group), and having
each group work on their own play. Within each group, girls can perform different roles
(playwrights, robot directors, human actors, sets and costumes, etc.).

Remind students that as well as making custom programs for the play, they can reuse
emotions programmed for previous activities. They will the play to parents and families
at the end of the workshop.

Begin this activity by sharing the fairytales with students. Ask them to select one of the
fairytales and start thinking about the play (they can adapt the fairytale for the play if they
want to). The next step is to figure out what (if any) changes they will need to make to
their robots for the play (i.e., building new components, developing new programs).

Each student should incorporate a sensor into the technology. They can do this by adding
a sensor to their robot, or creating a prop or set piece that incorporates a sensor.

Handout: Fairytales for play. (Copy from book of fairytales.)

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-11 Part 3: Advancing Your Design

Planning for Play (30 minutes)
After students are introduced to the idea of the play (above), ask them to begin planning
the new robots and/or props they will need for the play. Ideally, they will do this
planning on paper. Students can make lists of the elements they will need and begin
sketching out sets and props. By the end of this planning session, students should know
how they are going to modify their existing robots, and what they still need to build to
complete the play.

Design/Re-design and Building for Play (50 minutes)
During this time, students will actively design, re-design, and build elements they will
need for the play.

Documenting Designs and Reflection (10 minutes)
Ask the girls to take pictures of their new or modified designs and reflect on the
following questions on their websites:

e Have you made any changes to your robot today? If so, what changes did you make
and why?

e Are you building new elements for the play? If so, what?
e How are you using sensors?

Handout: Reflection 5

Individual activity 5: Silly Messages
This is the last individual activity of the workshop. Invite the students to send a silly
roboticon to the friend of their choice.

Handout: Individual Activity 5: Silly Messages

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-12 Part 3: Advancing Your Design

Silly Messages Follow-up
If the girls want to, they can share their silly messages with the group.

Continue Working on Play (75 minutes)
Students will continue working on their play, including narration and robotic elements.
By the end of this session, students should be finished building and have their final play
props in place. Students should practice the play at least once before the end of the
session.

Group Activity: Robot Makeover (30 minutes)
This activity doubles as an imbedded evaluation metric, allowing instructors and
researchers to assess if individual students can (a) construct a simple circuit, (b) attach
components to a microcontroller, (c) demonstrate the use of hand tools, and (d) write
robot programs.

The goal here is to have the girls perform a ‘robot makeover’, where the girls are given a
robot that is only capable of expressing one type of emotion. Their goal is to broaden the
range of expressions possible for the robot.

To complete this task, students will need to:
e Construct a circuit that lights an LED when a switch is flipped.
e Attach servos, vibration motors, motors, LEDs, and sensors to the Hummingbird.
e Create the missing blocks in a programming puzzle.

Each student should solve the puzzle individually, but her time can be added to her team
time.

NOTE: This activity is subject to change as we observe the progress of the workshop and
the students. Researchers will help run this activity.

Survey (15 minutes)
Allow time to complete the post workshop survey if not already completed. The survey
will be provided by the researchers.

Group Activity: Play Presentation (30-60 minutes)
Present the completed play(s) to parents, family, and friends.

You can also invite family members and friends to view demonstrations of the robots and
view the webpages/posters.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

3-13

Part 3: Advancing Your Design

Handouts and Additional Materials

In this appendix you will find the following handouts and additional materials that you
may need during Part 3 of the Arts & Bots workshop:

Design Iterations of a Robotic Desk Lamp — Discussion guide for teachers to
accompany the handout below. Includes discussion points for each desk lamp
image in the student handout as well as additional background information.
Design Iterations of a Robotic Desk Lamp — Handout for students showing the
multiple iterations in the design of a professional expressive robot.

Reflection 2

Redesign Instructions — Instructions for brainstorming and redesigning the
robots.

Sample Mad Libs — Sample Mad Libs to be read by the instructor as an
introduction to the Mad Libs game.

Reflection 3

Individual Activity 3: Robot Meets World

Reflection 4

Individual Activity 4: Pull the Chain

How to Connect Sensors to the Hummingbird

Reflection 5

Individual Activity 5: Silly Messages

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Design Iterations of a Robotic Desk Lamp

Discussion Guide for Teachers
Robot design and images by Guy Hoffman, MIT Media Lab

The Robotic Desk Lamp was designed to study how a robot could evoke a personal
relationship with people through abstract gestures and nonverbal behavior. The robot’s
movements can be programmed and the lamp can shine in a variety of colors such as purple,
red, blue, and white. Because of the Desk Lamp’s expressiveness, it was part of a theater
performance with human actors.

The designer of the Robotic Desk Lamp went through multiple design e

iterations. With each round of iteration he refined the form of the robot and s re——

its mechanical structure. LT
N < et

1. Early Sketches — The designer experiments with different forms in his
early sketches.

2. First Iris Prototype — The first prototype is only a portion of the whole
robot.

3. Material and Shape Studies — The sketches become more concrete and
specific. The designer experiments with different materials and different
shapes for the head of the lamp. Note the four different head shapes in the
computer sketch.

4. Iris and Lens Prototype — The next prototype is more elaborate.

5. Final Design — The final design sketches are very detailed and exact.

6. Final Assembly — The final robot is the result of many iterations of
design.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Additional Information
From http://web.media.mit.edu/~quy/aur/:

“AUR is a robotic desk lamp, a collaborative lighting
assistant. It serves as a non-anthropomorphic robotic
platform as part of Guy Hoffman’s Ph.D thesis on human-
robot fluency, embodiment, and nonverbal behavior.

“The lamp's design was conceived around an existing 5-DoF
robotic arm, and is aimed to evoke a personal relationship
with the human partner without resorting to creature-like
features such as eyes, limbs, or a mouth. By retaining the
lamp's "objectness”, Hoffman hopes to explore the
relationship that can be maintained between a human and an
object through abstract gestures and nonverbal behavior
alone.

“The lamp is animated using a custom pipeline enabling the dynamic control of behaviors
authored - in part - in a 3d animation system, and has perform in a unique human-robot joint
theater performance in May 2007.”

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Design Iterations of a Robotic Desk Lamp
Robot design and images by Guy Hoffman, MIT Media Lab

Form Mechanics

EE]I']}’ Sketches ﬁ“

First Iris Prototype

——

Material & Shape Studies

—

Iris & Lens Prototype

P ——

Final Design

;—_b Final Assembly

@ Early Sketches @ First Iris Prototype

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

@ Material and Shape Studies @ Iris and Lens Prototype

/ P T
X - 5y
. - -

Wi

<
=

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Reflection 2

Reflection Question:
e How can you make your robot more expressive?

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Today, you can make your robot more expressive
by adding additional servos, LEDs, motors and
sound capabilities. You will have at least 3 sessions
to work on your additions and robot customization
SO you can test your robot between sessions and
make improvements at the next session.

The additional components you can use are:
e 2 additional servos

4 additional LEDs

2 vibration motors

1 motor
1 speaker

Try to integrate as
many components as
you can. By the end
of the final design
session, you should
have used at least 3 of
the 5 different types of
components listed.

Adding these additional components will require
you to re-design parts of your robot. This is all part
of the design process. Now you have a chance to
improve your robot and make it exactly the way
you want it!

Before you begin building spend 20 minutes
brainstorming about how you will add new
components to your robot to make it more
expressive. Draw some sketches in your notebook
and label the new components.

For today, try to
integrate at least one
new component into
your robot.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Sample Mad Libs

Siblings

My little brother Jamie makes me so _(emotion roboticon) ! He was in my _ (place)

earlier this morning and he messed everything up - I was so _(emotion roboticon) at him.

He pulled all my _ (adjective) (plural noun) off the shelf and threw them around the

room, and then he broke one of my _(plural noun) by knocking it off my dresser. | was

so _(emotion roboticon) that | _(past tense verb) at him, but he wouldn’t stop. Then my

dad came in - boy was he _(emotion roboticon). He picked Jamie up and carried him out

of the room. This made Jamie _(emotion roboticon) , and | felt really _(emotion

roboticon). But then I brought him a _(noun) , and that made him _(emotion roboticon) .

Spiders
There is a _(noun) in my bedroom. | really hate (repeat first noun)s. This one is
(adjective) — almost the size of my thumb. Ever since I could remember, I’ve been

(emotion roboticon) of (repeat first noun)s. | once found a (adjective) one in my closet,

sitting on top of my favorite (noun) — yuk! Now this _(adjective) (repeat first noun) is
in my bedroom, and I don’t know what to do about it.
Maybe I’ll try _(verb)ing to scare it off. Okay, here goes... amazing, it didn’t even

move. What if | _(verb) atit? Again, nothing. Now I’m _(emotion roboticon) — what’s

going on here? Let me take a closer look...
No wonder it didn’t move. It’s not a (repeat first noun) at all — it just a piece of

(noun) . I’'m so (emotion roboticon) !

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Reflection 3

(Reflectlon Questions: \

What changes did you make to your robot today?

¢ Why did you make those changes? Were any of these changes the result of
something you learned while using your robot? If so, what?

e What was the biggest challenge you faced in redesigning your robot today
and how did you solve it?

e Based on your experience playing Mad Libs, do you think your robot is

\ more expressive now than it was before? How?)

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Individual Activity 3: Robot Meets World

Introduce your robot to someone who is not part of
the Arts & Bots workshop.

e First, identify someone (such as a family member,
friend, or teacher) who you think would enjoy
meeting your robot.

e Talk to them about how you can use a robot to
express yourself, and demonstrate how your robot
can express at least 3 different emotions.

e Identify at least 3 technical parts on your robot
(e.g., servo, motor, LED) and explain what each
one does.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Reflection 4

(Reflection Questions: \

e What changes did you make to your robot today?
¢ Why did you make those changes? Were any of these changes the result of
something you learned while using your robot? If so, what?

e Based on the feedback you got at the Show and Tell, do you want to make
additional changes to your robot? If so, what?

e Have your ideas about what you want your robot to do or to be changed
\ since you first built it?

J

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Individual Activity 4: Pull the Chain

Pull the chain is a storytelling game. Someone from
the group should be selected to start the story.

Write the opening line of a story and make an
expression or sequence to accompany it. Pass your
story and sequence to the next person in the group
using private messaging (in your message, remember
to include a list of each girl who has already
contributed, so everyone has a turn to contribute).

Each person should add another line to the story and
another sequence until each person in the group has
contributed to the story. Share the final story on the
public messaging board for everyone to read and play
on their robots.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

How to Connect Sensors to the Hummingbird

Connecting Sensors

+ Make sure the Hummingbird is turned off before attaching the sensors!
+ Locate the ports on the Hummingbird labeled “SENSOR1” and “SENSOR2”.

+ Each sensor has three wires, a red power wire, a black ground wire, and a yellow

signal wire.

+ Insert the red wire into the power port (labeled ‘+’).

+ Insert the black wire into the ground port (labeled “-”).

+ Insert the yellow wire into the signal port (labeled “S”).

+ Gently tug the three wires to make sure they stay in place.

e mm mm mm mm oEm mm o e Em o Em o mm o Em o Em Em Em o oEm Em oEm m

IR range-finder (distance sensor)

Detects objects between 4” and 30”
away

The range sensor is composed of an
emitter and detector module and
some sophisticated circuitry. The
emitter operates by emitting a narrow
beam of infrared light. If this beam
hits an object, the light will reflect
and some of it will be picked up by
the detector. The circuitry at the core
of the sensor determines how long it
took for the light to travel to the
object and back to the detector — a
pretty impressive trick, given that
light travels 1 billion feet in one
second! The circuitry converts this
measured distance to a voltage,
which is read in by the Hummingbird
and can be used by our programs.

B Em M Em EE Em G BN N BN BN EN BN BN BN Gm BN BN BN BN BN N BN AN BN EE SN BN S SN BN BN AN Bm BN BN BN B BN B Em o

Photoresistor (light sensor)
Measures light levels

The light sensor is based on a
photoresistor, which is a device that
changes electrical resistance based
on the amount of light hitting the
surface — as more light hits the
surface, the resistance decreases.
We have connected the photoresistor
in series with a fixed resistance
resistor, and are applying a fixed
voltage across the circuit — as the
resistance of the photoresistor
changes, the voltage at the junction

between the photoresistor and
resistor also varies. The
Hummingbird sensor ports can

measure this voltage, and convert it
into a value that we can use in our
programs.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

- Em Em Em Em o Em o Em o Em o Em o oEm o

Reflection 5

improve our design. Your reflections today will also be a source of material for
your web page or poster.

Reflection Questions:
e Have you made any changes to your robot today? If so, what changes did
you make and why?
e Are you building new elements for the play? If so, what?
\ e How are vou usina sensors?

(Reflecting on and documenting our experiences as we design something helps us to\

J

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

Individual Activity 5: Silly Messages

This is the last individual activity of the workshop.
Send a silly roboticon to the friend of your choice.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-1 Appendix

Appendix — Expansion activities and supporting materials.
e Group Activities
e Individual Activities
e Pictures of Arts & Bots Materials
e Software Installation Instructions

Group Activities

Furby Take Apart
Take apart a Furby or other robotic or electronic toy (ex: singing, dancing hamster). This
activity can be done as a demo or in small groups.

LED Clothing and Jewelry
Girls create clothing and jewelry with integrated LEDs. Some ideas for materials that
can include LEDs (purchase or have students bring in):

e Gloves

e Stretchy wrist bands

e Necklace strands

e Foam or paper masks

This activity can start with a quick (3-5 minute) presentation of all the available
materials. During this presentation, you should demonstrate how an LED (without any
wires attached) and a coin cell battery can be put together with electrical to make a
glowing orb. Girls should be urged to think for a couple of minutes before starting to
figure out what they want to make.

-

Students can tape both pins of the LED to the battery to create a light that is
always on. To create an LED flashlight that lights up when pinched (a), tape one
side of the LED to the battery (b) and use electrical tape to partially insulate the

Kother side of the battery (c). /

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-2 Appendix

LEDs without wires attached are fairly inexpensive, as are coin cell batteries. The
materials used for this activity can be considered one-time use, if you want to allow the
girls to take their creations home.

LED Light Show
Create an LED light show set to a piece of music.

Name that Tune

This activity fits after the “Make a Noise” activity and can be used when introducing the
programming software. After creating something that can make noise, program the object
to sound out the rhythm of a familiar song or nursery rhyme. See if others can guess what
the song is.

Provide a list of songs for students to choose from in order to make the guessing easier. It
can be quite difficult to pick out the tune based on rhythm alone.

Robot Dance Party Expansion

Lead in to Robot Dance Party activity with a discussion about how movies use music to
help convey emotions. Shrek has some good examples. Have students name other
example movie scenes. Talk about how you feel when you hear certain pieces of music.
Do you feel proud or patriotic when you hear the national anthem or God Bless America?
How do you feel when you hear Amazing Grace or Kumbaya?

Hokey Pokey
Program your robot to do the hokey pokey. If your robot doesn’t have movable body
parts for all parts of the song, be creative!

Sensing Box

Make a box that responds when someone picks it up. Use this activity as an introduction
to sensors.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-3 Appendix

Individual Activities

Emotions Warm Up

What emotions do you feel and communicate? Draw pictures to illustrate or represent the
emotions. What do your pictures have in common with pictures drawn by the others in
the group (colors, shapes, etc.)?

Invitation to the Robot
(If girls will be taking their robots home.) Write an invitation for the robot to come live at
your home.

Prepare a Home
(If girls will be taking their robots home.) Find a place for your robot to live. Prepare a
special home where your robot will live.

Robot Biography
Write a story or draw a cartoon about your robot’s history or background. The story
might explain the robot’s appearance, name, or other interesting things about your robot.

My Roboticon Profile

Create a robot program that expresses your personality and identity. Share your program
on the public messaging board. Take a video clip of the program running on your robot to
include on your web page as sort of personal profile.

Cool Robot Video Clip
Create a program that shows off the expressiveness and uniqueness of your robot. The
program may be accompanied by a back story. Create a video clip of your program to
include on your website.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-4 Appendix

Arts & Bofts
Materials

Alligator clips Battery pack Switch

A NI NN NI NN NN NN NN NN NN N NS NN I NN I NN NN N NN EEEEEEEN E N NN I NI NN NN NN NN N NN NN NN NI NSNS NN I NN NN EEEEEEE

Vibration motor
Makes vibrations

Motor and wheel
* Light emitting diode = Spin forward and back

sssssssssEnsunennnnennnennn o e nEEEEEE NN E N E R EE s n A A En s ananEnnnn s I N NN N AN E NN I NN EEEEEEEEEEE

Coincell battery LED

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
EE NN NN NN NN N NN N NN N NN NN NN NN I NN N NN N NN N NN N NN NN NN NN EEEEEEEEN

I IS I NN NN NN I NN I E NI NN NI EEEE NN E NN NN I NN SN NI NN EEEEEEEEEEEEEEEEEEE]
T I EE I EEEEEEEE NN NI NN I E NI NN NI EEEE NN NN E NI NN I E NI NN I NN NN NN NN EEEEEEEEEE

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-5 Appendix

Hummingbird AC adapter USB cable Cable ties

Servo Servo extender

Moves back and forth

Speaker Speaker cable

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-6 Appendix

Photoresistor Wire cutter Wire stripper

Light sensor

A NI NN NI NN NN NN NN NN N NN N NS NN I NI NN I NN N EEEEEEEEEN

IR range-finder
Distance sensor

Screwdriver

BN NN NN NN NN NN NN NN NN NN NN I NN NN NN NN NN NN NN NN NN EEEEEEEEEE
EEEE I EE I NN NN NN NN I NN I E NI EE NN I EE NN NN I NN SN NI NN EEEEEEEEEEEEEEEE

IlIIlIIlIIlIIlIIlIIlIIlIIlIIllI{lIIlIIlIIlIIIIIIIIIIIIIIIIIIIIIIII

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-7 Appendix: Software Installation

Software Installation Instructions

This document provides instructions for installing the various software packages
necessary to run the Arts and Bots workshop. All of the software installation files have
been included on the accompanying CD. You will need to install the following software
in order:

1. Hummingbird Drivers (install using a computer administrator account)
2. VLC Media Player (install using a computer administrator account)
3. Java Runtime Environment (JRE) (install using a computer administrator account)
4. Arts and Bots (install under the students’ account)

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-8 Appendix: Software Installation

Installing the Hummingbird Drivers

1. Double click on the file labeled CDM 2.04.06.exe in the CD’s Hummingbird Drivers
folder. This will open an installation dialog that looks like the following:

C:\Users\robot250\AppData\Local\TemE\ckz GLKZ\DPInst_ Monx86.exe -

«fi32-bit 0S detected
"C:\Users\robot258\AppData\Local\Temp\ckz_GLKZ\DPInstx86.exe"
Installing driver....

Note that installation may take several minutes. Upon completion, the screen will
disappear without warning - do not be alarmed if this happens, it means the software was
installed successfully.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-9 Appendix: Software Installation

Installing the VLC Media player

1. To install the VLC media player, used for playing movie clips used during the
workshop, double click on the file vic-0.8.6h-win32.exe. This will bring up an
installation program.

2. Click ‘Next’ through all of the menus, and then hit ‘Finish’ when you have completed
installation.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-10 Appendix: Software Installation

Installing Java

1. To install Java, double click on the file in the Java JRE folder on your CD called “jre-
6u6-windows-i586-p-s.exe

2. Click ‘Accept’ to the first question posed by the installation program. The program
will then start installing Java, bringing up the following status window:

] Java Setup - Prog oo =

Installing Java

This may take a few minutes 0SZ{77

Status: Registering Java Runtime Environment

; :
Now you can have a full-featured office suite that’s
compatible with Microsoft Office for free!

* Powerful, integrated set of word processing, spreadsheet, presentation, drawing
and database applications

* Reads, edits and saves Microsoft Office files

* Supports over 70 languages and Solaris, Windows, Linux and Mac operating systems
= Uses industrystandard, open file format {OpenDocument) as its default file format

* Built-in, one<lick PDF export

ann.’Of‘f iceorg

Installation may take 5-15 minutes. Once installation is complete, you will see the
following window:

Thank You!

You have Successfully Installed
Java™

The Java powered Internet is now available to
you. You can experience the wide variety of
fun, engaging Java applications and games.
For more information on what Java can do for
you, go to java.com

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-11 Appendix: Software Installation

Arts and Bots Software Installation

1. Copy the entire ‘Arts and Bots’ folder from the CD to the computer desktop.

2. Plug in and power on a Hummingbird.

3. To run the Hummingbird Software, double click on the file ‘ArtsAndBots.bat’ in the
Hummingbird Software:

M s o0]
S & Burn

nt hare

Favorite Links

E| Documents
. E Pictures

R Music

% Recently Changed
E Searches

Public

Folders

0

gy

N

ArtsAndBots
Windows Batch File

-

Mame
[ZE] ArtsindBots
1) emu_us_kal

] emulex

| commuons-collections-..

commaons-legging-1.1

|| librdxSerial jnilib
=] logdj-1.2.15
mrpl-graphics

=l

|| mirpl-ice

] mrpl-peer
|| mirpl-utilities

| RXT¥comm
%] nexParallel.dll
%) retxSerial.dll

] swing-layout-1.0.3

Date modified

6,/27/2008 3:59 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM
6/27/2008 3:56 PM

Date modified: 672772008 3:58 PM

Size: 1.32 KB

Date created: 6/27/2008 4:12 PM

Type

Windows Batch File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
JMILIE File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File
Executable Jar File

Application Extens...
Application Extens...

Executable Jar File

2KB
4,785 KB
586 KB
558 KB
52 KB
847 KB
240 KB
1,034 KB
150 KB
154 KB
158 KB
110 KB
383 KB
35 KB
23 KB
102 KB
15 KB
59 KB
47 KB
76 KB
116 KB

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-12 Appendix: Software Instructions

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-13 Appendix: Software Instructions

Arts and Bots Software Instructions

This document is meant as a training and reference guide for using the Arts and Bots
software. With the software you can make your robot make a single expression (like
happy), make programs that cause the robot to move between expressions and react to
sensors, and to share these programs and expressions with other people.

The Arts and Bots Software is divided into three sections:

e The ‘Hummingbird’ allows you to directly control parts of your robot that are
attached to the Hummingbird robot controller. You can use it move all the parts
of your robot into a single expression (like arms up and LEDs green for happy),
and then save that expression.

e The Express-O-Matic allows you to chain together any number of expressions
into a sequence to make your robot move from one expression to another. You
can also use sensors to have your robot react to things like motion and light.

e The Messenger allows you to share the expressions and sequences you make as
roboticons. You can also use it to look at, play, and modify the expressions and
sequences that your friends make.

So that’s the overview — now we’ll look at each section in more detail to give you an idea
of how to use them. But before we do that, we have to start the software!

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-14 Appendix: Software Instructions

Starting the Arts and Bots software

Go to Arts and Bots software directory on your computer, and double click on
‘ArtsAndBots’ to launch the software:

The Arts and Bots software will launch and start looking for Hummingbird controllers
attached to the computer:

| Hurmminghird r Express-0-Matic rMessenger

r Personal Shared

Expressions
Alloff

Allon

Crazy
Scanning for the Hummingbird. .. Down
HandsUp
Onedn
QOrangeOn
WhiteOn

Cd

Scanning for Hummingbird on serial port: COM22

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-15 Appendix: Software Instructions

If you have not already done so, plug a Hummingbird into your computer using the USB
cable, and power on the Hummingbird by connecting its power supply and turning it on.
The software may continue to look for the Hummingbird for up to one minute; once it is
found, it will look like this:

Hummingbird Express-0-Matic | Messenger

| Clear || Refresh || Save | Personal | Shared
Expressions
alloff

allon

Crazy

Down

HandsUp

Oneln

OrangeOn
WhiteOn

Connected to Hummingbird on serial port: COM16

Congratulations, you are now set up to use the software!

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-16 Appendix: Software Instructions

Hummingbird

¥ . . T :
Hummingbird nExpress-O-Matlc |/Messenger |
r

The Hummingbird Section of the software allows you to control components attached to
the Hummingbird. To control a specific component, simply click on the checkbox for
that component — for example, if I wanted to control LED 1, | would click on its
checkbox:

[T

T e
1 2 1 2
Maotars Wik, Maotars

Checkbox

=

S

(=]
Control Box “«: ! LED's Orbs
1 2

ﬁhi 'F*'E 2 4
HOEER L[]
Slider
-\—_.__9 1k/;'

Sensars
2 1
[[|

Once a checkbox is checked, a control box that allows you to control it will appear. Most
control boxes are sliders — for the LED the slider controls how bright the LED is. Try the
other checkboxes to see how they work.

A special note about the sensor boxes; they show you the current value of the sensor (a

number from 0-1000). You can’t change this because the sensor is changing it, and if no
sensor is attached, the number it displays doesn’t mean anything.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-17

Appendix: Software Instructions

Once you’re used to using the checkboxes, make your robot express by changing the
right components to something that you like. For example, if | had a robot with two
servo arms and two eyes, | could set the arms to point up and turn on the eyes. | would
save that expression by hitting the ‘Save’ button, and then the software would ask me to
name the expression. I called it ‘HandsUp’ and once it is saved, it shows up in the
‘Personal’ list of Expressions that I’ve made.

| &| Arts & Bots

_l—‘—'—J

Hummingbird r Express-0-Matic r Messenger |

pen Delete

| Clear |‘ Refresh “ Save || r Personal | Shared

Servas

Expressions

Alloff

Allon
Crazy

Dawn

EanasUEJ

Oneln
OrangeOn
WhiteOn
Save expression as:

|HandsUp|

| OK || Cancel |

Connected to Hummingbird on serial port: COM16

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-18 Appendix: Software Instructions

Just for fun, I’ll make a second expression called HandsDown where the arms are down
and the eyes are off:

I GamcoeEs

Y
Hummingbird rExpress—O—Matic rMessenger |

Open Delete

| Clear H Refresh H Save | l/PersonaI Shared l

e ’ - Expressions
Alloff
Allon
Crazy

Dawn
HandsUp
Qnedn
Orange0On
WhiteOn

Save expression as:
|HandsD0wn|

| 0K H Cancel |

vl 1]

Connected to Hurmmingbird on serial port: COM16

Now that | have both of those expressions, | have the necessary building blocks to write a
program that moves the robot back and forth between the two — in my case, that would

mean | could have the robot move its arms up and down and eyes on and off. To do that,
I’1l need to switch tabs to Express-O-Matic.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-19 Appendix: Software Instructions

Express-O-Matic

e
lfHummingbird rExpress-O-Matic iMessenger

Click here to move to
Express-O-Matic

The Express-O-Matic allows you to chain Expressions together to build Sequences,
allowing your robot to automatically change from one expression to another. To build a
sequence, you need to click on an Expression in the Expression List, and drag it into the
Sequence Builder:

| £| Arts & Bof L
Express-O-Matic [Messenger Delete
| Clear | Save | Play l/PersonaI Shared
Expressions .
o List of)
Allon k Expressions
Crazy
. Daown
Sequence Builder Area HandsDown
HandsUp
QOnedn
Seqguences LiSt Of
crazylLaugh . e
WaveHands EXIStIng
Sequences

Conditions
n Sensor 1 - Avera
%) Sensor 1 - Bright

- Sensor 1 - Dark

Sensor 1 - Nothin

—
i Sensor 1 -

Connected to Hummingbird on serial port: COM16

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-20

Appendix: Software Instructions

I’1l do so with the HandsUp and HandsDown expressions I made previously:

ﬁm & Bots E=REER=)

Hummingbird Express-0-Matic rMessenger |

Delete

| Clear | Save | Play

HandsUp

2.05

HandsDown

(Personal

Shared

Expressions

Alloff
Allon
Crazy
Down
HandsDown
HandsUp
QOnedn

Seguences

crazylLaugh
WaveHands

Conditions

Step Properties

Expression: HandsDown

Wait Until: |Z2.0 seconds |:||Loop back to beginning

Delete Step

Connected to Hummingbird on serial port: COM16

n Sensor 1

4 Sensorl

- Sensor 1

Sensor 1

—
i Sensor 1l
ﬂ Sensor 1

Averal™
Bright 3
Dark

Mothin

Somed

Somet]

A]

L]

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-21 Appendix: Software Instructions

Now I can play these expressions by hitting the play button. It’ll move the robot to the
settings from the first expression, wait 2.0 seconds, and then move to the second
expression. To make it more interesting, we can click on the checkbox marked ‘Loop
back to beginning’. Now if we hit play again, it the robot will move between the two
expressions forever, waiting 2 seconds at each one. You can adjust how long it takes to
move from one expression to the next by changing the ‘Wait Until” at each step — you can
make it real small (like 0.1 seconds), or real long (like 10 seconds).

Try modifying these things and playing the program to see how it looks. Note that your
program needs to be stopped for you to change any part of it.

Once you have something you like, you can save it with the save button — it’1l show up in
the ‘Sequences’ list, and you can always reopen it by double clicking on it:

-
| Arts & Bots (=lE=] = |
Hummingbird Express-O-Matic I/Messenger | ‘ Append | Delete

| Clear [| Save ||| Play fPersonaI Shared
. . . Expressions

AllOff -

allon
0.5s 1.0s c
HandsDown HandsUp razy
1t

Drown

HandsDown —
HandsUp

Save Sequence ‘ ﬁ Qneon
Sequences

Save Sequence as: crazylaugh
MoveHands

WaveHands

4]

|M0'¢eHands|

| 0K || Cancel |

Conditions
Step Properties Sensar 1 - Averad—|
. 0 - Bri
Expression: HandsUp a Sensor 1 - Bright =
Sensor 1 - Dark
Wait Until: (1.0 seconds Loop back to beginning -

o SEnsorl - Nathin

Delete Step i Sensor 1 - Somet

ﬂ Sensor 1l - Somet [
Connected to Hummingbird on serial port: COM16 4| | [¥

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-22 Appendix: Software Instructions

You can also use the sensors to make your robot wait until a sensor has been tripped.
There are two kinds of sensors you can use — a light sensor, and a distance sensor. To use
a sensor, drag a ‘Condition’ into one of the boxes — with my current sequence I’ll drag
Sensor 1 — Dark into the ‘HandsUp’ box. Now the sequence will wait to put the arms
down again until my light sensor sees very little light.

Hummingbird Express-0-Matic | Messenger Delete

| Clear | Save | Flay l/PersonaI Shared

. . E Expressions
_] bird
HandsDown
0.5s Sensor 1 4C HandsUp

HandsDawn HandsUp
1t

hi
schoolbell

Sequences
birdCall
MoveHands

Conditions
Sensor 1 - Average List of
Step Properties ¢ Sensor 1 - Bright L Conditions
. ou can
Expression: HandsUp n Sensor 1 - Dark y .
: use with
) . o o Sensor 1 - Mathing
Wait Until: Sensor 1 - Dark Loop back to beginning the
i Sensor 1 - Someth
sensors

Delets Step ﬂ Sensor 1 - Someth

Sensor 2 - Averagg

Connected to Hummingbird on serial port: COM16

Now that you have a sequence that you like, you can share it with your friends, allowing
them to play the sequence on their robots. To do so, you’ll need to go to the Messenger
screen.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-23 Appendix: Software Instructions

Messenger

|/Hummir1gbird r Express-0-Matic |]/ Messenger

The first thing you need to do is to login. Login with the user name and password that
you created (or that was assigned to you).

i N
ETEe T _ mmcoEs
rHummingbird rE){press—O—Matic rMessenger | Attach Delete

[| Login |] My Calor l/ Personal | Shared
A~ Expressions
= bird
Message Histor
= g HandsDown 1
. HandsUp
Click here to hi
chin schoolbell
User: |YnurName
Password: |uuu|
| Login | ‘ Cancel | Sequences
Send To: MoveHands
Subject:
Message: Cancel
Attached Roboticons
Drop a roboticon here to attach it to your message.

Connected to Hummingbird on serial port: COM16

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-24 Appendix: Software Instructions

Once you’ve logged in, many things on the Messenger screen will become active. Your
username will be displayed in the top left, above a list of all the people who you can talk
to. User names that are lit are currently online — so in the following screen capture you
can see that Captain_LED and Jane are online.

[———

Hummingbird Express-0-Matic Messenger Delete
F . =

(Jane Your Username I | Logout 'l My Colar l/PEI’sonaI -

. \ Expressions £ Check out
[Public . bird shared

Message History / HandsDown expressions
H Captain_LED HandsUp

¥
Chlangrethe " 2gguences
color of your hoolbell :
text and user seeeE (roboticons)

Tane herel

~
List of friends. [|[Send Te: [users ||| mepy

Subject: Hello m
The ones that | | -
are lit up are Message: |Welcome to Arts and Bots!| Cancel

currently
logged in.

-~ | |[|Sequences
| MoveHands

You can send messages to everyone or one person

LN r
fAttached Roboticons - - 3
Use this to share expressions and sequences

Drop a roboticon here to attach it to your message.

L

Connected to Hummingbird on serial port: COML1E

You can use the message sending box to send messages — use the ‘Send To:’ box to
choose who to send it to. You can also reply to messages you’ve received.

Along with sending your messages, you can also attach Roboticons — these are

Expressions or Sequences that you’ve created that you want to share. You’ll share these
with whoever you send the message to.

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A-25 Appendix: Software Instructions

You can also check out Roboticons that have been shared with you — click on the
‘Shared’ tab to look at these. If you want to open them up, you can do so in the Express-
O-Matic and Hummingbird sections of the software. For example, Captain_LED just
shared the ‘birdCall’ expression with everyone, so now I can go to Express-O-Matic and
open it up:

Humminghird Express-0-Matic rMessenger |

‘ Clear | Save | Play Personal
N . Shared Expressions

2.0s
HandsUp

Shared Seguences
MoveHands
birdCall

Conditions
{d Sensor 1 - AVE!I’EIQEA

Step Properties % Sensaor 1 - Bright Li

Expression: HandsUp n Sensor 1 - Dark

Sensor 1 - Mothing
Wait Until: [1.0 | seconds Loop back to beginning I - L - Someth
ensor 1 - Some

Delete Step - Someth

- Averagg |
Connected to Hummingbird an serial port: COM16 [*]

That’s all the instructions you’ll need to start using the Arts and Bots software. We hope
you enjoy it!

Arts & Bots | Carnegie Mellon University & University of Pittsburgh

A.1. Dispositional Goals

A.1 Dispositional Goals

Top-level goal: Engagement The program will help girls see technology as in-
teresting and deeply relevant to their lives, and help motivate their continued en-
gagement and exploration of technology. There are a number of ways in which we
sought to measure movement towards this goal:

e Students show interest in further workshops.

e Students express interest in continuing to use the robot after the workshop
ends.

e Students persist in the face of technical difficulties.

e Students use the chat software, create complex programs, or make custom
robot parts outside of workshop times.

o Finally, students integrate technology with their social life. For example, one
girl made a Halloween robot that would say trick or treat.

Top-level goal: Confidence The program will help girls to develop confidence
in their own ability to create with, modify, or troubleshoot the technology in their
lives. This could be demonstrated by students in a number of ways:

e They are not afraid to take something apart. Error messages don’t scare or
cause them to freeze into inaction.

e Students exhibit a willingness to try before asking for help, but are willing
to ask for help when necessary.

Top-level goal: Multiple “right” answers Students have incorporated the idea
that there is no one right answer to solving many real-world problems. This should
lead to increased efficacy in practical problem solving, as students are more willing
to try a variety of solutions.

Top-level goal: Creative use of technology Students understand that there are
many ways to use technology (including in situations which do not appear to be
technological), and that some of these constitute creative ways to use and think
about technology.

309

A. Robot Diaries Curriculum

310

Appendix B

Assignments for CCAC CIT-111
and CIT-130

The assignments in this chapter were used in the Fall 2009 Finch Pilot and were
written together by Don Smith (Faculty at CCAC) and the author. The Finch was
introduced in assignment four in the introductory course and in assignment two in
the intermediate course. All the assignments after the Finch was introduced used
the Finch.

311

CIT111

Lab Assignment 1
First Program

Due Date: 08/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit this Lab assignment as
an attachment via e-mail. Be sure to include in the e-mail, your name,
lab assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssignl.

Write, compile, and test a program that displays the following text, as
shown below, to the console. Notice the spacing, spelling and case of the
output. Be sure to explain why you are taking Java Programming. This
explanation can be as short or as long as you want. Please do not use the
reason shown in the example.

General Dutput X

———————————————————— Configuration: «<Defsultr>------------—--—-———
L1] programs will redguire commehts.

Hy namme iz needed in these conments.

I am taking thiz class becauze ...

Jawva iz a programming language with great potential.

Frocess completed.

Build utput | [=] General Qutput | 8 Task View

If you need help.....ask.

CIT111

Lab Assignment 2
Using data in a program

Due Date: 08/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit this Lab assignment as
an attachment via e-mail. Be sure to include in the e-mail, your name,
lab assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign2.

Write, compile, and test a program that prompts for input about a motor
vehicle. The program asks the user for the number of miles driven (integer)
and the gallons of gas used (double). With the input data the program
calculates miles-per-gallon for the vehicle. An example of the program is
shown below. (Hint) M.P.G. = miles driven divided by gallons of gas used.

General Dutput |

———————————————————— Configuration: «<Defsultr>-----------——--—--——
Enter the miles driwven: -> 204

Enter the gallonz of fuel used: -> 9.3

The miles-per-gallon bhased on the data entered is 21.9354533537096774

Process completed.

Build Cutput | [=] General Qutput | 8 Task View

If you need help.....ask.

CIT111

Lab Assignment 3
Variables and Numeric Operators

Due Date: 09/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit this Lab assignment as
an attachment via e-mail. Be sure to include in the e-mail, your name,
lab assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign3.

Write a program that prompts the user for input using the JOptionPane
class dialog boxes. First prompt the user for their name. Next ask the user
for the year they were born. Create two constant variables, one for the
current year and the second for the average life expectancy of 82.3 years.
Calculate the user’s age and the percentage of the user’s life lived. Display
this information as shown below.

Input PE| Input Pg|
] Enter your name: 5 Enter the year you were horn:
Mike Morris | 11962 |
OK Cancel 0K Cancel

Message

,® Hello Mike Morris, you are 47 years old.
Do you know you have lived 57% of your life?

OK

If you need help.....ask.

CIT111

Lab Assignment 4
Finch Software and Selection Control
Structures

Due Date: 09/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit this Lab assignment as
an attachment via e-mail. Be sure to include in the e-mail, your name,
lab assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign4.

Write a program that tells the user if the Finch is currently placed with the
beak up, beak down, or level. The program should speak the Finch’s
current orientation; print the orientation to the console. The Finch should
also light up the LED red when the Finch is placed with the beak pointing
up, blue when the Finch is level, and green with the Finch is oriented with
the beak pointed down. The LED should stay lit up for at least five
seconds.

Here are some methods from the Finch API that should help:
isBeakUp, isBeakDown, isFinchLevel
saySomething

setLED
sleep

If you need help.....ask.

CIT111

Lab Assignment 5
Looping

Due Date: 09/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit this Lab assignment as
an attachment via e-mail. Be sure to include in the e-mail, your name,
lab assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign5.

Program your Finch to wander around a room. When it encounters an
obstacle, it should back up and turn away from it randomly for two seconds
— you can do this by sending negative random values to the left and right
wheel velocities. The program should generate two random values for the
wheel velocities using the Random class. The Finch’s beak should glow
green when it is moving around, and change to be red when it sees an
obstacle and it is moving away from it. Since Finches are diminutive and
polite creatures, it should also apologize for nearly running into an obstacle
when it sees one.

Have the Finch continue running this program until it is picked up and
placed on its tail.

Here are some methods from the Finch API that should help:

setWheelVelocities
saySomething
setLED

sleep

isBeakUp
iIsObstacleRightSide
isObstacleLeftSide

If you need help.....ask.

CIT111

Lab Assignment 6
Methods

Due Date: 10/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit this Lab assignment as
an attachment via e-mail. Be sure to include in the e-mail, your name,
lab assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign6.

Teach your Finch to sing by writing a method that converts notes to tones
to play. You have been provided with an extended skeleton file called
LabAssign6Skeleton.java — add this to your project and rename it
LabAssign6.java. You will need to complete the notePlayer() method to
complete this program.

The method takes a character as an input — acceptable characters are
A,a,B,b,C,c,D,d,E,e,F,f,G, and g. Based on the input, you will need to use
the Finch’s playTone method to generate the correct musical note.
playTone takes two arguments — frequency, and duration. For duration,
you can use 600 ms for lower case characters and 1200 ms for upper case
characters (so upper case characters are long notes and lower case are
short notes). For frequency, use the following mapping of characters to
frequencies:

Aa — 440
Bb — 494
Cc — 262
Dd — 294
Ee — 330
Ff — 349

Gg - 392

When a note is played, you should also light the Finch’s beak; each note of
a different frequency should have a unique color, though notes with the

CIT111

same frequency but different durations (like ‘A’ and ‘a’) can have the same
color.

If a character is sent to the method that is not correct (for example, the
letter ‘J’), the method should return false. If a correct character is sent, it
should return true — this functionality will be tested, so make sure you try
sending incorrect characters.

Here are some methods from the Finch API that should help:
setLED
playTone

Here are some songs you might recognize:
ccggaaGffeeddCggffeeDggffeeDccggaaGffeeddC
bagabbbaaabdDbagabbbbaabaG

CCCdEedefG

cdeccdecefGefG

If you need help.....ask.

CIT111

Lab Assignment 7
Methods

Due Date: 10/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit this Lab assignment as
an attachment via e-mail. Be sure to include in the e-mail, your name,
lab assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file as directed below.

Would we rather create R2D2 or the Terminator? That's the central question behind the
notion of emotional robots - if we give our robots the ability to feel, they're much less
likely to annihilate the human race with nuclear weapons (1) or to enslave us so that
they can use us as batteries(2). Right now, the Finch doesn't have any emotions and a
world dominated by small but coldly brutal USB tethered robots is only a few iterations
of Moore's law away (3). Save us all from this fate by giving the Finch some emotions.
In this assignment, you will create a new class, called MoodyFinch, which has an
internal emotional state. You have been provided with a skeleton file and will need to fill
in the following methods:

[* Sets the internal emotion variable. */
public void setEmotion(String setting)

[* Plays the sequence of the current emotion - this is filled
in for you */
public boolean playEmotion()

/* Returns the Finch's current emotional state */
public String getEmotion()

[* The Finch shows that it's angry */
private void angry()

/* The Finch runs a happy routine */
private void happy()

/* The Finch runs a sad routine */
private void sad()

/* The Finch should act apathetic and uncaring */
private void blah()

CIT111

The angry, happy, sad, and blah routines are private, and so can't be
called by any methods outside the MoodyFinch class. Instead, people
using the MoodyFinch class will call playEmotion() to play whichever of
these four routines the Finch is feeling right now. The routines

should involve use of the beak LED, the motors, and the Finch should
say something whenever one is called.

Two files have been provided to you - LabAssign7Main.java, which calls

the MoodyFinch class and uses it, and MoodyFinchSkeleton.java, which you
can use to get started writing your class. Good luck, and remember,

the fate of the world depends on you!

1 - See Terminator. And Battlestar Galactica (though arguably those
robots had emotions, but they should've been programmed with happier
ones)

2 - See The Matrix

3 - Computers double in processing power roughly every 18 months

If you need help.....ask.

CIT111

Lab Assignment 8
Arrays

Due Date: 11/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit this Lab assignment as
an attachment via e-mail. Be sure to include in the e-mail, your name,
lab assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign8.

This assignment uses the Finch robot to collect data from its sensors. The
data collected is stored in arrays. Once data collection is complete, the
program displays the data in various forms as output to the console. Have
your Finch follow a course as defined below. There are 5 data collection
points. At each point have the Finch collect data with its right and left light
sensors.

When gathering data use the methods getRightLightSensor() and
getLeftLightSensor(). Store the data in two int arrays. One array for the
right side light values and another array for the left side light values. While
the Finch is traveling through the course collecting data have its beak turn
red. Use a loop to have the finch collect data. The array below has the
distances information for the Finch to follow. Use the straight() method of
the Finch class to read in the distances. When the Finch has completed its
data collecting, announce completion. Display the follow information using
a method for each task:

Display the light data, left and right sensor values separately
Use the services of the Arrays class to display the formatted output
Display the sum of the left and right sensor values by point location
find the brightest point on the course and display the brightest point
which is the largest value of both the left and right sensors summed
e Calculate the average value of the left and right light sensors

CIT111

Distances:

Start to point 1 is 3 feet

Point 1 to point 2 is 2 feet

Point 2 to point 3 is 6 feet

Point 3 to point 4 is 2 feet

Point 4 to point 5 is 3 feet

double[] distance = {91.44, 60.9%906, 182.88, 60.96, 91.44 };

Example of console output:

General Dutput £

———————————————————— Configuration: FinchTester - JDE wers
Light data collected:

Bight sensor:[72, 72, 81, 100, 94]

Left sensor:[e5, 7e, 61, 73, 10&8]

Surmned Light data:
Point #1 i=s 144
Point #2 is 148
Point #3 i= 14z
Point #4 i=s 178
Point #5 i=s 200

The brightest point is #5 with a walue of 200

The avwverage wvalue of the right light sensor is 85.:2
The average wvalue of the left light sensor is 77.2
Thiz concludezs the program

Process completed.

£ >
Build cutput | (=] General Output

Course map:

2

T - Start /
Finish

A
A

CIT111

Lab Assignment 9
GUI with Layout Manager

Due Date: 11/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit the Java source code file
as an attachment via e-mail. Be sure to include in the e-mail, your
name, lab assignment number, and class section. My e-mail address
is dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign9.

Create a GUI that uses a JFrame. The GUI has 5 JButtons in the order
and location shown below. These buttons are placed inside a JPanel and
placed in a BorderLayout. When a button is pushed, the Finch responds by
executing the button’s label command. The distance for the Finch to travel
forward or backwards is 10 — 20 cm. Turning should be in the range of 35
— 90 degrees. The dance button has the Finch perform a short 7 step
dance routine. Have the Finch’s beak change color for each button
command. Below is an example of the GUI.

E Finch Interface E@@

Forward

Left Dance Right

Backward

If you need help.....ask.

CIT111

Lab Assignment 10
GUI with Sliders

Due Date: 12/??/09

Your name and Lab assignment number must be included at the top
of the Java source file in comments. Submit the Java source code file
as an attachment via e-mail. Be sure to include in the e-mail, your
name, lab assignment number, and class section. My e-mail address
is dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign10.

Create a GUI that uses a JFrame. The GUI has 5 JSliders in the order and
location shown below. These JSliders are labeled and placed inside a
JPanel. When a JSlider knob is dragged along its track, the Finch
responds by moving its wheels or changing beak color. Below is an
example of the GUI.

Left Wheel Velocity

1
1L [

35 25 15 5 5 15 25 35
Right Wheel Velocity

|
! L A

35 25 15 5 5 15 25 35
Red

0 50 100 150 200 250

1] K0 100 150 200 250
Blue

0 50 100 150 200 250

If you need help.....ask.

CIT130

Lab Assignment 1
Java Data Types

Due Date: 08/??/09

All programs should use standard Java naming conventions, have
proper indentation and comments. Points will be deducted for
programming assignments not having these elements. Your name
and Lab assignment number must be included at the top of the Java
source file in comments. Submit this Lab assignment as an
attachment via e-mail. Be sure to include in the e-mail, your name, lab
assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssignl.

Write a Java program that accepts two integers. Use the Scanner class to
read in the input. Ask the user for any of the five arithmetic operations to
perform on the two integers. Output is displayed as a floating point number
where appropriate. Below are examples of the program executing.

———————————————————— Configuration: <Defaultr-—-—-————--———--——————— Configuration: <Defaultr---——--—-——--—————————
Enter first integer: -> & Enter first integer: -> &
Enter second integer: -»> 7 Enter second integer: -»> 2
Enter operation choice Enter operation choice

1 - addition 1 - addition

Z - subtraction 2 - subtraction

3 - maltiplication 3 - multiplication

4 - diwvision 4 - diwvision

5 - modulu= 5 - modulus

Choice... -» 1 Choice... -> 4

Sum is 13.0 Quotient iz 2.5

Process completed. Process completed.

I

2 Build Output | (=] General Output | (7 Task View 28 Build Cutput | (=] General Cutput | 74 Task view

Enter first integer: -> 5
Enter second integer: -> 2
Enter operation choice

1 - addition

Z - subtraction

3 - maltiplication

4 - division

5 - modulus

Choice... -> 5

Modulus is 1

Frocess conmpleted.

Build Output | (=] General Output | 74 Task view

CIT130

Lab Assignment 2
Using Classes, Dialog Windows,
Finch Robot

Due Date: 09/??/09

All programs should use standard Java naming conventions, have
proper indentation and comments. Points will be deducted for
programming assignments not having these elements. Your name
and Lab assignment number must be included at the top of the Java
source file in comments. Submit this Lab assignment as an
attachment via e-mail. Be sure to include in the e-mail, your name, lab
assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class nhame LabAssign2.

This lab assignment will use the JOptionPane class from the swing package and the
Finch robot and software.
The Finch is applying for a job as a weatherman. Give your Finch the ability to talk
about the weather by creating a program that:
e Accepts a location as an input from the user.
e Creates a WeatherReader object using this location (don't forget to
import RSSReaders.WeatherReader!)
e Extracts the current temperature of the input location
e Has the Finch interpret this temperature by commenting on it and by
setting the color of its LED.

o So for example, if the temperature is 30 or below, you might turn the LED
blue and have the Finch say “It's crazy cold out, time to head south”. The
Finch should say something different and have a different LED color for
temperatures 30 and below, between 30 and up to 50, between 50 and up
to 70, between 70 and up to 90, and over 90.

o The Finch should always say the temperature, but it's up to you what
else the Finch says or how you light up the LED, they just need to be
different.

e Some hints:

o Take a look at the javadoc for the RSSReaders, specifically the
weather reader. Note that it is constructed with a string, and that
the getTemperature method is crucial here.

o You will need the following Finch methods - setLED, sleep, and
saySomething; look for these in the Finch javadoc

o The Finch talks kind of funny, so sometimes it helps to print out
what it's saying to the console

CIT130

Add a sleep of at least 10 seconds to the end of your program.
Because saySomething doesn't block while it's running, it's possible
to call it and then immediately called myFinch.quit() - if that
happens you'll only hear a fraction of a second of speech. The sleep
is there so that you give your Finch time to say whatever it needs to
say.

Your computer must be on the internet for this program to work.
Here's some typically cold, hot, and moderate cities if you want to
test several of your conditions:

Barrow, AK

Fargo, ND

Phoenix, AZ

Las Vegas, NV

Death Valley, CA

San Francisco, CA

San Diego, CA

CIT130

Lab Assignment 3
Methods and Loops

Due Date: 9/??/09

All programs should use standard Java naming conventions, have
proper indentation and comments. Points will be deducted for
programming assignments not having these elements. Your name
and Lab assignment number must be included at the top of the Java
source file in comments. Submit this Lab assignment as an
attachment via e-mail. Be sure to include in the e-mail, your name, lab
assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign3.

Teach your Finch to sing by writing a method that converts notes to tones
to play. You will need to complete a method named notePlayer() for this
assignment. The declaration should be:

public boolean notePlayer(char note)

The method takes a character as an input — acceptable characters are
A,a,B,b,C,c,D,d,E,e,F,f,G, and g. Based on the input, you will need to use
the Finch’s playTone method to generate the correct musical note.
playTone takes two arguments — frequency, and duration. For duration,
you can use 600 ms for lower case characters and 1200 ms for upper case
characters (so upper case characters are long notes and lower case are
short notes). For frequency, use the following mapping of characters to
frequencies:

Aa - 440
Bb — 494
Cc—262
Dd — 294
Ee — 330
Ff — 349

Gg - 392

CIT130

When a note is played, you should also light the Finch’s beak; each note of
a different frequency should have a unique color, though notes with the
same frequency but different durations (like ‘A’ and ‘a’) can have the same
color.

If a character is sent to the method that is not correct (for example, the
letter ‘J’), the method should return false. If a correct character is sent, it
should return true — this functionality will be tested, so make sure you try
sending incorrect characters.

A second method is needed for accepting input from the user using a
JOptionPane input dialog window. This method accepts a String as a series
of notes. This method calls the notePlayer() method parsing each
character of the input String.

The declaration should be:

public void parseNotes()

If a bad note is in the input String, the Finch should stop and announce it is

stopping.

In the main() method create an instance of the LabAssign3 class and use
that object to call the parseNotes() method.

Here are some songs you might recognize:
ccggaaGffeeddCggffeeDggffeeDccggaaGffeeddC
bagabbbaaabdDbagabbbbaabaG

CCCdEedefG

cdeccdecefGefG

If you need help.....ask.

CIT130

Lab Assignment 4
Data Validation and Exceptions

Due Date: 09/??/09

All programs should use standard Java naming conventions, have
proper indentation and comments. Points will be deducted for
programming assignments not having these elements. Your name
and Lab assignment number must be included at the top of the Java
source file in comments. Submit this Lab assignment as an
attachment via e-mail. Be sure to include in the e-mail, your name, lab
assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign4.

In this lab assignment you will program the Finch to play Midi files and
dance to them. To help you do this, we have provided a wrapper class,
called MidiPlayer.java, that you should copy in the FinchCode/finch
directory and add to the project using Project->add files in JCreator. You
can view the commented source of this file for information on how to use
the methods of the class. To complete the program you will need to use
the following methods from the MidiPlayer class:

public Sequence getSequence (File file) throws IOException,
InvalidMidiDataException, Exception

Gets the sequence from the file object sent to the method. The sequence
generated is then passed to the play method.

public void play(Sequence sequence, boolean loop) throws
InvalidMidiDataException

Plays the Midi file encapsulated in sequence. The second argument is
whether to loop play of the file, true for looping, false for no looping.

public int getBeatInterval()
This method returns the interval, in milliseconds, between beats of the
song.

public void close()

CIT130

This closes the sequence and shuts down the player.

To write your program, you should create two methods — playMidi(), which
gets the midi filename from the user and starts the Finch dancing, and
dance(), which contains a series of steps that play will select from. Their
method declarations are:

public void playMidi()

public void dance(int step)

Your program should execute as follows:

The main() method should instantiate an object of the LabAssign4 class,
call the playMidi() method, and invoke System.exit(0).

The playMidi() method should instantiate globally defined MidiPlayer and
Finch objects. It should request the name of a Midi file from a console
prompt. Using the Scanner class, assign the file name to a String. The
playMidi() method should then convert the String into a File object using the
File class. At this point, you will need to use the File object as an argument
in the getSequence() method of the Midiplayer class. This method returns
a Seqguence class object which is needed to call the play() method of the
MidiPlayer class. Notice that getSequence() throws three exceptions. Your
program should distinguish between these exceptions as follows:

e If an IOException is caught, the user entered in a bad filename, and
the program should loop back to where the user was asked to enter a
filename.

e If an InvalidMidiDataException is caught, the Midi file was corrupt.
The program should exit using System.exit(0); and print an error
message like “Data corrupt”.

e If a general Exception is caught, the program should exit and print an
error message like “Unknown Error”.

Once a Sequence class object is generated, you should call the
MidiPlayer’'s play() method. Note that it too throws an exception, and you
will need to catch this in the same way you caught the
InvalidMidiDataException for the getSequence() method.

The playMidi() method should use the getBeatInterval() method to
determine the time between beats. This value will be used by the Finch to
move to the beat. Start the Finch in a loop that occurs so long as its beak is
not pointed up. The dance() method (see below) will be called using one of

CIT130

six step values as an argument. Finally close the MidiPlayer and quit the
Finch to end the playMidi() method.

Create a dance() method that switches between six different steps, and use
the loop to go through these steps in order. The steps are up to you, but
they should look fairly different and each should have its own LED coilor.
Use the setWheelVelocities() and setLED() methods to accomplish this.
Time the steps to go with the beats by moving to the next one at the
interval between beats.

Once the Finch is picked up and pointed with beak up, the MidiPlayer
should close and the Finch should quit Again this functionality is built in the
playMidi() method.

We have provided you with four midi files and a corrupt file. Place these in
the FinchCode directory. Try them all, and try invalid file names as well —
we will test whether your program correctly catches both invalid flenames
(IOException) and corrupt midi data (InvalidMidiDataException).

P.S. You can get more midi files at http://www.mididb.com/

CIT130

Lab Assignment 5
Finch plays Simon

Due Date: 10/??/09

All programs should use standard Java naming conventions, have
proper indentation and comments. Points will be deducted for
programming assignments not having these elements. Your name
and Lab assignment number must be included at the top of the Java
source file in comments. Submit this Lab assignment as an
attachment via e-mail. Be sure to include in the e-mail, your name, lab
assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign5.

Program your Finch to play a modified version of the memory game Simon.
In the game you will write, the Finch will print and say an orientation, either
Up, Down, Left Wing Down, or Right Wing Down. You will then need to
move the Finch to that orientation. If you do this successfully, the Finch will
print a new orientation — you'll have to move the Finch to the first
orientation, then to the new one. This game goes on for as many moves as
you can remember. When you finally mess up, the Finch will tell you how
many moves in a row you got right, and either congratulate or insult you for
it.

Here's the details:
Your main() method should instantiate an object of the LabAssign5 class

and then call one method with that object — the playGame() method.
playGame() has the following structure:

¢ Instantiate the globally defined Finch object
e Instantiate a Random class object
e Create an ArrayList of type String

Start a loop that ends when the player makes an incorrect move. The loop
should:

CIT130

e Use the Random class object to generate a random number from O to
3

e Use a control structure to add to the ArrayList a String containing the
value “Up” for 0, “Down” for 1, “Left Wing Down” for 2, and “Right
Wing Down” for 3

e Print and say what the move is

e Print and say that the user needs to repeat all of the moves done so
far.

At this point, you should create a loop that goes through every move so far,
starting with the first one created. This loop checks that a move is correct
by calling a second method, moveCorrect().

moveCorrect() returns a Boolean value, and is passed a String. For each
of the four possible moves, check if the Finch is in the orientation
suggested by the String (either Up, Down, Left Wing Down, or Right Wing
Down). Give the player five seconds to get to the correct move — you can
continue checking throughout the five seconds by constantly reading the
Finch methods, like myFinch.isBeakUp() (for example, if you set a counter
in the loop and had a sleep of 100 milliseconds, you could cause the loop
to exit if either the myFinch.isBeakUp() method became true, or if the
counter exceeded 50 (50*100 milliseconds = 5 seconds). If the player gets
the correct move, the Finch’s beak should flash green for 1 second, the
Finch should beep happily, and the moveCorrect() method should return
true. If they don’t get it within five seconds, moveCorrect() should return
false.

If the player correctly gets the whole sequence, your overall loop should
continue and generate a new move for them to remember. If they mess up,
the program should tell them the maximum number of moves they reached.
The Finch should also render judgment — if the total moves are less than 4,
insult them for having a bad memory, if moves are 4-8, tell them to try
again next time, and if it's 9 or more, congratulate them

CIT130

Lab Assignment 6
Inheritance

Due Date: 10/??/09

All programs should use standard Java naming conventions, have
proper indentation and comments. Points will be deducted for
programming assignments not having these elements. Your name
and Lab assignment number must be included at the top of the Java
source file in comments. Submit this Lab assignment as an
attachment via e-mail. Be sure to include in the e-mail, your name, lab
assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class as instructed below.

Would we rather create R2D2 or the Terminator? That's the central question behind the
notion of emotional robots - if we give our robots the ability to feel, they're much less
likely to annihilate the human race with nuclear weapons(1) or to enslave us so that
they can use us as batteries(2). Right now, the Finch doesn't have any emotions and a
world dominated by small but coldly brutal USB tethered robots is only a few iterations
of Moore's law away (3). Save us all from this fate by extending the Finch class to give it
some emotions; you will create

a new class, called MoodyFinch, which has an internal emotional state. Because
MoodyFinch is an extension of the Finch class, it will have all of the methods and
capabilities of the Finch class, but you will add to those by writing several unique
methods in MoodyFinch, specifically:

[* Sets the internal emotion variable.

* Returns true if an acceptable emotion (Angry, Sad, Happy, or Blah)
* was used, false otherwise

*/

public boolean setEmotion(String setting)

/* Plays the sequence of the current emotion */
public void playEmotion()

/* Returns the Finch's current emotional state */
public String getEmaotion()

[* The Finch shows that it's angry */
private void angry()

CIT130

[* The Finch runs a happy routine */
private void happy()

/* The Finch runs a sad routine */
private void sad()

[* The Finch should act apathetic and uncaring */
private void blah()

The angry, happy, sad, and blah methods are private, and so can't be
called by any methods outside the MoodyFinch class. Instead, people
using the MoodyFinch class will call playEmotion() to play whichever of
these four routines the Finch is feeling right now. The routines

should involve use of the beak LED, the motors, and the Finch should
say something whenever one is called.

The client class has been provided to you - LabAssign6Main.java, which creates and
instance of the MoodyFinch. Good luck, and remember, the fate of the world depends

on you!

1 - See Terminator. And Battlestar Galactica (though arguably those
robots had emotions, but they should've been programmed with happier
ones)

2 - See The Matrix

3 - Or so sci-fi authors would have us believe

CIT130

Lab Assignment 7
Abstract and Interface

Due Date: 11/??/09

All programs should use standard Java naming conventions, have
proper indentation and comments. Points will be deducted for
programming assignments not having these elements. Your name
and Lab assignment number must be included at the top of the Java
source file in comments. Submit this Lab assignment as an
attachment via e-mail. Be sure to include in the e-mail, your name, lab
assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class as instructed below.

The year is 2030. Robots have become common commodities. Our government has
determined a need to standardize the robotics industry. They have provided a standard
interface with methods that need apply to all robots on wheels. This interface is
provided. Your task is to implement the interface class Robot.java. You will create a
class named StandardFinch. This class will use composition rather than inheritance.
The StandardFinch class will be composed of a Finch class object. Declare the Finch
object as a class instance variable and instantiate it in the method initialize(). You will
test the Java class completed with StandardFinchDriver.java.

Before you start this assignment, please read the information provided at Sun
Microsystem’s web site. This information should help you understand the task ahead.
The link is provided.

http://java.sun.com/docs/books/tutorial/java/landl/createinterface.html

CIT130

Lab Assignment 8
GUI

Due Date: 11/??/09

All programs should use standard Java naming conventions, have
proper indentation and comments. Points will be deducted for
programming assignments not having these elements. Your name
and Lab assignment number must be included at the top of the Java
source file in comments. Submit this Lab assignment as an
attachment via e-mail. Be sure to include in the e-mail, your name, lab
assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class nhame LabAssign8.

Write a GUI application that powers the Finch. The application will use a
JFrame. In the north position of the window a label appears and in the
south position a series of movement buttons. Two graphic images are in
the east and west regions of the GUI. The center position has a series of
buttons when pushed use a group of RSS feeder classes. Write separate
methods for these button routines.

If the “Stock Price” button is pushed a dialog window prompts the user for a
stock symbol and the Finch reports the stock name and current trading
price for the stock symbol entered. The beak turns red if stock price is less
than $10.00 and turns green if stock price is $50.00 or greater, otherwise
the beak color is yellow.

When the “Weather Report” button is pushed a dialog window prompts for
the city and state. The Finch reports the current condition for the location
entered. If the temperature is 32 or less degree the beak of the Finch turns
blue and if temperature is greater than 75 degrees the beak is red,
otherwise the beak color is yellow.

The “Music Chart” button prompts the user for a chart position and the
Finch reports the song and musical artist. The beak turns cyan in color
while reporting the information.

CIT130

When the “Dictionary” button is pushed a message dialog window appears
stating the Finch will say and spell the word of the day and then does so.
The movement buttons at the bottom of the GUI cause the Finch to perform
the button’s label action.

Your GUI should look similar to the example below. The window has a set
size that cannot be changed.

Finch Interface

Finch Control Panel GUI

Stock Price

Weather Report

Music Chart

Dictionary

Forward Backward Left Right

Stock Report - Symbol : IPod Music Report - Top 100
Enter the stock symbol Enter the ranking position of the top 100 songs
ML | E |
OK Cancel OK Cancel

Weather Report - City Dictionary.com - WOTD

Enter the name of the city
|Denver| |

The Finch will say and spell the word of the day

OK

OK Cancel

Weather Report - State

Enter the two character postal abbreviation for the state
co |

OK Cancel

CIT130

Lab Assignment 9
My Finch GUI

Due Date: 12/03/09(final deadline)

All programs should use standard Java naming conventions, have
proper indentation and comments. Points will be deducted for
programming assignments not having these elements. Your name
and Lab assignment number must be included at the top of the Java
source file in comments. Submit this Lab assignment as an
attachment via e-mail. Be sure to include in the e-mail, your name, lab
assignment number, and class section. My e-mail address is
dsteach9@hotmail.com . Print a hard copy of the source code to be
submitted in class. Name your file and class name LabAssign9.

Write a GUI application that powers the Finch. The application will use a
JFrame. Use layout managers, and Swing class GUI components. Your
grade for this assignment will be based on complexity, design and
functionality.

Grading Criteria:

Three or more layout managers.............ccooviiiiiiinnnn. 30pts
Implement two or more interface classes....................... 30pts
Text field input........coooii i 20pts
Embedded graphiCs..........ccoviiiiiii 10pts

Naming conventions, indents, comments....................... 10pts

Appendix C

Finch Documentation

This Appendix contains documentation materials provided to students in the Finch
pilots at CCAC. It includes four files:

e The Finch Manual - A description of the Finch hardware, covering the avail-
able sensors and outputs.

o Finch Quick Reference - A listing of the most frequently used program meth-
ods of the Finch class/API.

e Creating and Running Robot Programs - A guide to creating and compiling
new programs in Jcreator. Jcreator is the software environment that was used
in the courses for both Finch and standard programming assignments.

e Finch Driver Setup - A manual for installing the USB driver required for
Finch operation.

341

Finch Manual

Introduction

This document provides a quick overview of the Finch, a new robot
for wuse 1in computer science education. Finch is fully
programmable in Java, and allows students to use a host of
sensors and output devices not available to them if using just a
computer. It is also very cute.

USB

The Finch uses an FTDI FT232R USB to serial converter chip to
communicate with a computer. As with all USB devices, the Finch
requires a driver to be installed on the computer before it is
plugged in for the first time. Drivers are available here:
http://www.ftdichip.com/Drivers/VCP.htm

The Finch draws all power from USB, and is technically classified
as a high-current USB device. It communicates at a baud rate of
57600, and when plugged in will show up as a serial or ‘COM’ port.

Sensors

The Finch is capable of sensing ambient light levels, temperature,
obstacles placed in front of it, and acceleration. Refer to the
annotated images of the Finch on the next page to see where
sensors are placed on the Finch.

Light. The Finch uses two photoresistors to detect ambient light
levels. The sensors are placed in the front of the robot on
either side of the hump. They are placed to allow the robot to
easily sense the direction of a bright light source, so as to
turn towards or away from it.

Temperature. The Finch has a single thermistor sensor that
detects the ambient temperature. The sensor can also determine
the temperature of an object if the object is placed in contact
with the sensor. The temperature sensor is accurate to within 2
degrees Fahrenheit.

Obstacles. The Finch can detect if obstacles are placed in front
of it. The sensors face forward, and are on the left and right
side of the Finch so as to detect obstacles placed on both sides
of the Finch. The sensors can detect obstacles up to 1 foot away.

Due to the limitations of this type of sensor, some objects,
primarily those made of black plastic, will not be sensed.

Accelerometers. The Finch uses a 3-axis MEMS accelerometer to
detect acceleration in all three spatial dimensions. The sensor
can detect accelerations of +/- 1.5 gees. The primary use of the
accelerometer is to detect the direction of gravity, so as to
know how the Finch is oriented (flat on the ground, upright, etc).
It is also possible to detect spikes in acceleration caused by
tapping the Finch, or quickly moving it by hand.

Motors

The Finch has two motors and uses its tail as a slide caster. It
can turn in place around the axis of its two wheels. The wheels
are pushed against the motor shafts, eliminating the need for a
gearing system. Black and white encoder stickers are stuck to
the inside of each wheel to allow the Finch to track and control
its position and velocity. The encoders have a resolution of
©.75 cm or 0.3 inches per tick.

Light & Sound

The Finch has a full-color LED embedded in its ‘beak’. This LED
contains red, green, and blue elements. By setting the intensity
of each element the LED can be controlled to make any color.
There are 256 settings for intensity for each color element,
ranging from @ (off) to 255 (full on).

The Finch has an on-board buzzer which is capable of playing
sounds with frequencies between 100 Hz and 10 KHz. Software that
comes with the Finch also allows the programmer to control
computer speakers so as to play synthesized speech, wav files, or
musical notes.

TEMPERATURE SENSOR LIGHT SENSORS

OBSTACLE
DETECTION
SYSTEM
USB CABLE
& PLUG

LED — — ACCELOROMETER

Image 1: Finch Sensor Placement

WHEEL ENCODERS

OBSTACLE MICROCONTROLLER
DETECTION

SYSTEM

USB CABLE
& PLUG

LED

TEMPERATURE
SENSOR

11/4/08

LIGHT SENSORS ACCELOROMETER BUZZER

Image 2: Finch Interior

Finch Quick Reference

You can see full definitions of method calls and constructors for the various robot related
classes you will use in this course by double clicking on the
FinchDocumentationQuickLink.html file. This document is meant as a quick reference
to some of the methods that you will be using most often.

Speakers:

void saySomething (String text)

Uses the Text To Speech library to synthesize audio from the text variable, and play that
audio on the computer’s speakers. Note that this program blocks for the amount of time
that it takes to synthesize the audio - for example, synthesizing the sentence "Hello
world" may block further program execution for two seconds.

void playTone (int frequency, int duration)

Plays a tone over the computer speakers or headphones at a given frequency (in Hertz)
for a specified duration in milliseconds. Middle C is about 262Hz. Visit
http://www.phy.mtu.edu/~suits/notefregs.html for frequencies of musical notes.

Motors:

void setWheelVelocities (double leftVelocity, double rightVelocity)
Sets both Finch’s wheels to the velocities specified. leftVelocity and rightVelocity are
specified in centimeters per second. The range is from -35 to +35. To backup, send
negative velocities to this method.

void setWheelVelocities (double leftVelocity, double rightVelocity,
int timeToHold)

Same as above but only sets the wheels to spin at the velocity specified by timeToHold.
timeToHold is in milliseconds.

void stopWheels ()
Stops the Finch’s wheels.

LEDs

void setLED (int red, int green, int blue)

Sets the color of the LED in the Finch's beak. The LED can be any color that can be
created by mixing red, green, and blue; turning on all three colors in equal amounts
results in white light. Valid ranges for the red, green, and blue elements are 0 to 255.

Sensors:

int getLeftLightSensor ()
int getRightLightSensor ()

Returns the value of the left or right light sensor. Valid values range from 0 to 255, with
higher values indicating more light is being detected by the sensor.

boolean isObstaclelLeftSide ()
boolean isObstacleRightSide ()

Returns true if there is an obstruction in front of the left or right sides of the robot.

double getTemperature ()
Returns the current temperature reading at the temperature probe. The value returned is in
Celsius. To get Fahrenheit from Celsius, multiply the number by 1.8 and then add 32.

double getXAcceleration ()
double getYAcceleration ()
double getZAcceleration ()

This method returns the current X, Y, or Z acceleration value experienced by the robot.
Values for acceleration range from -1.5 to +1.5 gees.

boolean isFinchLevel ()
boolean isFinchUpsideDown ()
boolean isBeakUp ()

boolean isBeakDown ()
boolean isLeftWingDown ()
boolean isRightWingDown ()

These methods are used to get the Finch’s orientation — they return true if the Finch is
level, upside down, etc, and false otherwise. Only one of these methods will return true
for any given orientation. For example, if you place the Finch flat, isFinchLevel will be
true and the rest will be false.

Miscellaneous

void sleep (int ms)
This method uses Thread.sleep to cause the currently running program to sleep for the
specified number of milliseconds.

Creating and Running Robot Programs

To write programs for the Finch, you will need to work within a Java project. For those
who use JCreator, a project is already available with the Finch software package. The
following is a step by step guide for how to compile and run programs for the Finch robot
in JCreator. If you wish to use an IDE other than JCreator, there are instructions
available at:

http://csbots.wetpaint.com/page/How+to+Compile

for several other IDEs.

If this is your first time using the robot, it is strongly suggested you do the following in
order.

Opening the FinchProject

1.) Open the project by double clicking the OpenFinchInJCreator batch file in your class
folder. The JCreator IDE should start.

=)
= ‘ - . . = ‘ ‘ |
GS)=| .. » Finch » v |44 || Search P
v C O W W = = l E
‘ ‘ Organize™~
Faiordatinke Name Date modified Type
E Documents Documentation 7/31/2008 4:50 PM File Folder
| SIS
. .. FinchCode 7/31/2009 5:10 PM File Folder
E e & FinchDocumentationQuickLink.html 7/31/20094:37PM Chrome HTML
@ Music [&] OpenFinchIn)Creator.bat 7/31/2009 510 PM Windows Batch File
43 Recently Ch d
& Recenty Lhange Type: Windows Batch File
!B Searches Size: 32 bytes
Public Date modified: 7/31/2009 5:10 PM
Folders ball 711 m | ’
} 4 items

=

It is possible that JCreator will not open if you have not associated .jcp
files with JCreator yet — if this is the case, you will need to go into the
FinchCode directory, right-click on FinchProject.jcp, and select “Open
With... . Once you’ve done that, navigate to
C:\Program Files\Xinox Software\JCreatorVV4LE and click on JCreator.exe.

Adding new files to the project

2.) The file FinchTemplateFile.java is a skeleton file for you to copy and create new
programs with. Instead of editing FinchTemplateFile.java directly, you should make a
new file so that you always have a clean starter copy of FinchTemplateFile.java to fall
back on. To make a new file from FinchTemplateFile.java, right click on
FinchTemplateFile.java and select copy (1). Then right click on MyPrograms, and select
paste (2).

[B8 FinchProject - JCreator FinchProject - Creator

 File Edit Find View Project Build Tools Configure ‘ File Edit Find View Project Build Tools Configure
- S HE BB 9 -84 A-FHE B 9- -]

E Workspace "FinchProject”: 1 Project Workspace "FinchProject” 1 Project
=-[E FinchProject
MyPrograms
D ExampleFile java

Compile Folder
Add

& Open

commaor Cu-t
finch jar Copy

& Compile FinchTemplateFile java

Cut ! Paste
Package View ! Cepy RackageView Delete
PackageView not avail PackageView n
Paste Rename
Delete Exclude From Project
Rename Refresh From Local

Exclude From Project

f Properties

7 Properties
(£l Class View | [[5 Package View [Z3] Class View | [[3h Package View
General Qutput General Qutput
| Configuration: FinchProjec | -—= Configuration: FinchProject

(1) Copying the File (2) Pasting the File

3.) You will also want to rename the file. Right click on the new
FinchTemplateFile.java file in the MyPrograms folder and click on rename. Rename the
file myTest.java.

FinchPraoject - JCreator

File Edit Find View Project Build Teools Configure

-3 H @ BB 9 O

[Workspace FinchProject” 1 Project
=-[g FinchProject

MyPrograms
n ¥ 0
finch et
I FinchTempla @ Compile ExampleFilejava
: commonsdod Cut
- finch jar
Copy
Paste
Package View
FackaosView naot ay Delete
| Rename

Exclude From Project

f Properties

gl Class View | ([Package View

General Output
| ———————————————————— Configuration: FinchProject

4.) Because Java requires that all class names and filenames match, you will also have to
rename the class name. To do this, edit the line that reads

“public class MyFirstFinch” to read “public class myTest”. You can now edit this file
and write code to your heart’s content. For any future assignment, just follow the same
procedure for adding files to the project.

Compiling and Running a Test Program

5.) Before you attempt to run a test program, make sure that the Finch is plugged
into a USB port on the computer.

6.) Double-click on the file that you want to run by double clicking on it in the “File
View’,

7.) Compile the project by either hitting the F7 key or going to Build->'Compile Project'
in the top menu.

[l FinchPraject - ICreator - [ExampleFilejava) (|)
File Edit Find View Project | Build | Tools Configure Window Help
a -5 3 By | &l Compile Project F7 ~@|» -l@ @ ERG E
File View g x|[|2 CompileFile "
[Workspace FinchProject” 1Project | |[| [» Execute Project F5 T
=@ FinchProject . i
- Execute Fil pers
£ MyPrograms B ecute File
‘D ExampleFile java —| Runtime Configuration... Ehat turns on the LED and flashes it
{5 finch |_ = L
D Finch TemplateFile java *f 3
commensdogging properties
e finch jar import finch.*:
Package View 1 x [public clas=s ExampleFile
PackageView not available {
=] pubklic static woid main(final Stcring[] args)
{
J/ Instantiating the Finch ckject
Finch shinyBeak = new Finch{():

8.) Now run the file that is by going to the ‘Build” menu and clicking on ‘Execute file’.
DO NOT run the file by clicking on ‘Execute Project’ or by clicking on the blue run
arrow.

h'g‘ FinchProject - JCreator - [ExampleFile.java] @M
File Edit Find View Project | Build | Tools Configure Window Help
e RAN= A" ENLE: - %] Compile Project F7 - A ,L. ~| @ @ : E & 3 ;?"
e o x ‘ 3| Compile File o X
E@ Workspace FinchProject”: 1 Project I [» Execute Project F5 =
=@ Pt ot Ij Execute File Fers 5
29 MyPrograms
-] ExampleFile java = Runtime Configuration... Ehat turns on the LED and flashes it
#-3) finch I 7 L
+-J1 FinchTemplateFile java - b
commons-ogging properties
"] finch jar import finch.*;

Finch Driver Setup

You must install the proper driver before plugginghe Finch. If you have already
plugged the Finch in, just unplug it and follow #teps for your OS.

Windows XP or Vista

Go to the following URL and download the file aatlwebpage:
http://www.ftdichip.com/Drivers/CDM/CDM%202.04.1&e

Run this executable. It will pop up a command liviedow that will look something like
this:

s C:ADOCUME - 1\ADMINI-1\LOCALS ~1\Temp\ckz_BPJX\DPInst_Monx86.exe

32-hit 085 detected
"G DOCUME™1~ADHMINI “1~LOCALE“1~Temp ckz _BPJH~DPInztxB6 exe"
Installing driver..

This window may only appear for a few secondst dppears and then disappears, this
means the driver was successfully installed. Yay now plug in your Finch.

Mac OSX
Download the driver from the following link:

Intel Macs:
http://www.ftdichip.com/Drivers/VCP/MacOSX/UniBinflIUSBSerialDriver v2 2 1

0.dmg

Power PC (before 2007):
http://www.ftdichip.com/Drivers/VCP/MacOSX/FTDIUSEB8alDriver v2 1 10.dmg

Before you take the following steps, note that installation will require you to restart
your computer.

Run the .dmg file that is downloaded.

The following window should appear:
_fj &) ﬂ % Install FTDIUSBSerialDriver Kernel Extension

Welcome to the FTDIUSBSerialDriver Kernel Extension Installer

\ Welcome to the Mac 05 X Installation Program. You will be
© Introduction guided through the steps necessary to install this software.

Go Back | Continue |

Click through the various Continue and Install metwinstall the driver — you should
not need to use anything but the default settings.

Other Operating Systems (Linux, €tc):

Go to the following website and select the appedprdriver:
http://www.ftdichip.com/Drivers/VCP.htm

Bibliography

AAAS (2007). Atlas of Science Literacy. Project 2061 and the National Science
Teachers Association.

Abimbola, R., Alismail, H., Belousov, S. M., Dias, B., Dias, M. F.,, Dias, M. B.,
Fanaswala, 1., Hall, B., Nuffer, D., Teves, E. A., Thurston, J., and Velazquez, A.
(2009). istep tanzania 2009: Inaugural experience. CMU Tech Report CMU-RI-
TR-09-33.

Acroname (2009). Brainstem overview. Http://www.acroname.com/brainstem/-
brainstem.html.

Adams, J. C. (2007). Alice, middle schoolers & the imaginary worlds camps.
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education.

Arsenault, J., Godsoe, S., Holden, C., and Vetelino, J. (2005). Integration of sen-
sors into secondary school classrooms. Proceedings of Frontiers in Education.

Atmel (2006). Atmega88 datasheet. Http://www.atmel.com/dyn/resources/prod-
_documents/doc2545.pdf.

Banzi, M. (2008). Getting Started with Arduino. O’Reilly.

Barnes, D. J. and Kolling, M. (2005). Objects First with Java. 2nd edition. Pearson
Education.

Bell, P. (2004). On the theoretical breadth of design-based research in education.
Educational Psychologist, 39:243-253.

Bell, T. and Fellows, M. (2010). Cs unplugged. Http://csunplugged.org.

Bernstein, D. (2010). Developing technological fluency through creative robotics.
University of Pittsburgh Doctoral Thesis.

355

BIBLIOGRAPHY

Bielaczyc, K. (2006). Designing social infrastructure: Critical issues in creat-
ing learning environments with technology. Journal of the Learning Sciences,
15:301-330.

Biggs, S. (1989). Resource-poor farmer participation in research: a synthesis
of experiences from nine national agricultural research systems. International
Service for National Agricultural Research.

Bjerknes, G., Ehn, P., and Kyng, M. (1987). Computers and democracy: A Scan-
dinavian challenge. Aldershot.

Blank, D., Kumar, D., Marshall, J., and Meeden, L. (2007). Advanced robotics
projects for undergraduate students. In Symposium on Robots and Robot Venues:
Resources for Al Education.

Bloom, B. (1956). Taxonomy of Educational Objectives, Handbook I: The Cogni-
tive Domain. David McKay Co Inc.

Blum, L., Cortina, T., Lazowska, E., and Wise, J. (2008). Special session: The
expansion of cs4hs: An outreach program for high school teachers. Proceed-

ings of the 39th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE 2008.

Botball (2009). Botball website. Http://www.botball.org/.

Brand, P. and Schwittay, A. (2006). The missing piece: Human-driven design and
research in ict and development. Information and Communication Technologies
and Development, 2006. ICTD ’06, pages 2—10.

Brown, A. (1992). Design experiments: Theoretical and methodological chal-
lenges in creating complex interventions in classroom settings. The Journal of
the Learning Sciences, 2:141-178.

Brown, B. (2007). A Guide to Programming in Java; 2nd edition. Lawrenceville
Press.

Buechley, L. and Eisenberg, M. (2007). Fabric pcbs, electronic sequins, and socket
buttons: Techniques for e-textile craft. Journal of Personal and Ubiquitous Com-

puting.

Bunnell, T. H., Yarrington, D. M., and Polikoff, J. B. (2000). STAR: articulation
training for young children. In International Conference on Spoken Language
Processing.

356

BIBLIOGRAPHY

Cannon, K. R., Panciera, K. A., and Papanikolopoulos, N. P. (2007). Second an-
nual robotics summer camp for underrepresented students. Proceedings of the
12th Annual Conference on innovation and Technology in Computer Science
Education.

Chamot, J. (2006). Electronic braille tutor teaches independence. National Science
Foundation Press Release.

Class, B. (2009). A Blended Socio-Constructivist Course with an Activity-Based,
Collaborative Learning Environment Intended for Trainers of Conference In-
terpreters, PhD dissertation 420. Facult de psychologie et des sciences de
I’ducation, Universit de Genve.

Cohen, S. A. (1987). Instructional alignment: Searching for a magic bullet. Edu-
cational Researcher, 16:16-20.

Collins, A. (1992). Toward a design science of education. Springer-Verlag.

Cooper, S., Dann, W., and Pausch, R. (2003). Teaching objects first in introductory
computer science. Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE 2003.

Cornwall, A. and Jewkes, R. (1995). What is participatory research? Social Sci-
ence and Medicine, 41:1667-1676.

Crowley, K. and Jacobs, M. (2002). Buildings islands of expertise in everyday
family activity. In G. Leinhardt, K. Crowley & K. Knutson (Eds.), Learning Con-
versations in Museums., pages 333-356. Lawrence Erlbaum Associates.

Deitel, H. and Deitel, P. (2005). Java How to Program. 6th edition. Pearson
Education, Inc.

Dias, M. B. (2010). Techbridgeworld website. Http://www.techbridgeworld.org.

Dias, M. B., Dias, M. F,, Belousov, S., Rahman, M. K., Sanghvi, S., and El-
Moughny, N. (2009). Enhancing an automated braille writing tutor. /IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Dijkstra, E. (1988). On the cruelty of really teaching computing science.
Http://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html.

DiSalvo, C. (2007). Neighborhood networks website. Http://www.neighborhood-
networks.net/index.html.

357

BIBLIOGRAPHY

Doerschuk, P., Liu, J., , and Mann, J. (2007). Pilot summer camps in computing
for middle school girls: from organization through assessment. Proceedings of
the 12th Annual Conference on innovation and Technology in Computer Science
Education.

Druin, A. (1999). Cooperative inquiry: developing new technologies for children
with children. In CHI ’99: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 592-599, New York, NY, USA. ACM.

Druin, A. and Hendler, J. (2000). Robots for kids: exploring new technologies for
learning. Morgan Kaufmann.

Elia, J. (1986). An alignment experiment in vocabulary instruction: Varying in-
structional practice and test item formats to measure transfer with low SES
fourth graders. PhD thesis, University of San Francisco.

Fagin, B. and Merkle, L. (2003). Measuring the effectiveness of robots in teaching
computer science. In SIGCSE, pages 307-311.

Fahey, P. (1986). Learning transfer in main ideas instruction: Effects of instruc-
tional alignment and aptitude on main idea test scores. PhD thesis, University
of San Francisco.

FIRST (2009a). For inspiration and recognition of science and technology (first)
website. Http://www.usfirst.org/.

FIRST, I. (2009b). Innovation first inc. Http://www.innovationfirst.com/.

Fitzpatrick, D. (2008). City to have a robotic birthday party. Pittsburgh Post-
Gazette. Http://www.post-gazette.com/pg/07124/783255-85.stm.

Forouzan, B. A. and Gilberg, R. F. (2001). Computer Science: A Structured Pro-
gramming Approach Using C. 2nd edition. Brooks/Cole.

Frei, P., Su, V., Mikhak, B., and Ishii, H. (2000). curlybot: designing a new class
of computational toys. In CHI '00: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 129-136, New York, NY, USA.
ACM.

Frost, D. (2007). Fourth grade computer science. Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education.

Hamner, E., Bernstein, D., Lauwers, T., Nourbakhsh, I., and DiSalvo, C. (2008a).
Robot diaries: Broadening participation in the computer science pipeline

358

BIBLIOGRAPHY

through social technical exploration. Proceedings of the AAAI Spring Sympo-
sium on Using Al to Motivate Greater Participation in Computer Science.

Hamner, E., Bernstein, D., Lauwers, T., Stubbs, K., Crowley, K., and Nourbakhsh,
I. (2008b). Robot diaries interim project report: Development of a technology
program for middle school girls. CMU Tech Report CMU-RI-TR-08-25.

Hamner, E., Lauwers, T., and Bernstein, D. (2010). The debugging task: Evaluat-
ing a robotics design workshop. Proceedings of the AAAI Spring Symposium on
Beyond Robotics: Design and Evaluation.

Hoadley, C. M. (2004). Methodological alignment in design-based research. Edu-
cational Psychologist, 39:203-212.

Horstmann, C. (2005). Java Concepts. 4th edition. John Wiley & Sons, Inc.
Horstmann, C. (2006). Big Java, 2nd edition. John Wiley & Sons, Inc.

Hylton, P. and Otoupal, W. (2005). Preparing urban secondary school students for
entry into engineering and technology programs. Proceedings of Frontiers in
Education.

ITEA (2000). Standards for technological literacy: Content for the study of tech-
nology. Http://www.iteaconnect.org/TAA/PDFs/xstnd.pdf.

Kalra, N., Lauwers, T., and Dias, M. (2007a). A braille writing tutor to combat
illiteracy in developing communities. Al in ICT for Development Workshop,
International Joint Conference on Artificial Intelligence.

Kalra, N., Lauwers, T., Stepleton, T., Dewey, D., and Dias, M. (2007b). Iterative
design of a braille writing tutor to combat illiteracy. Proceedings of the con-
ference on International Conference on Information and Communication Tech-
nologies and Development.

Kim, H. J., Coluntino, D., Martin, F. G., Silka, L., and Yanco, H. A. (2007). Art-
botics: community-based collaborative art and technology education. In SIG-
GRAPH '07: ACM SIGGRAPH 2007 educators program, page 6, New York,
NY, USA. ACM.

Koczor, M. L. (1984). Effects of varying degrees of instructional alignment in post
treatment tests on mastery learning tasks of fourth-grade children. PhD thesis,
University of San Francisco.

359

BIBLIOGRAPHY

Koedinger, K., Anderson, J., Hadley, W., and Mark, M. (1997). Intelligent tutoring
goes to school in the big city. International Journal of Artificial Intelligence in
Education, 9:30-43.

Krathwohl, D. R., Bloom, B. S., and Masia, B. B. (1973). Taxonomy of Educational
Objectives, the Classification of Educational Goals. Handbook II: Affective Do-
main. David McKay Co Inc.

Lahiri, A., Chattopadhyay, S., and Basu, A. (2005). Sparsha : A comprehensive
indian language toolset for the blind. Proceedings of the 7th International ACM
SIGACCESS conference on Computers and Accessibility, pages 114-120.

Lauwers, T. and Nourbakhsh, I. (2007). Informing curricular design by survey-
ing csl educators. In Proceedings of the 4th International Symposium on Au-
tonomous Minirobots for Research and Edutainment.

Lauwers, T., Nourbakhsh, I., and Hamner, E. (2009). Csbots: design and deploy-
ment of a robot designed for the cs1 classroom. Proceedings of the 40th ACM
Technical Symposium on Computer Science Education, pages 428—432.

Lauwers, T., Nourbakhsh, I., and Hamner, E. (2010). A strategy for collabora-
tive outreach: Lessons from the csbots project. Proceedings of the 41st ACM
Technical Symposium on Computer Science Education.

Lego (2009). Mindstorms nxt website. Http://mindstorms.lego.com/.

LeGrand, R., Machulis, K., D., M., Sargent, R., and Wright, A. (2005). The xbc:
a modern low-cost mobile robot controller. In Intelligent Robots and Systems,
2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pages 3896—
3900.

Lewis, J. and Loftus, W. (2005). Java Software Solutions: Foundations of Program
Design. 4th edition. Addison Wesley, Pearson Education, Inc.

Malik, D. (2004). C++ Programming: From Problem Analysis to Program Design.
2nd edition. Course Technology, Thomson Learning.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., , and Rusk, N. (2008). Pro-
gramming by choice: urban youth learning programming with scratch. Proceed-
ings of the 39th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE 2008.

Martin, F. (1988). Children, Cybernetics, and Programmable Turtles, master’s
degree thesis. MIT Media Lab.

360

BIBLIOGRAPHY

Martin, F. (1994). Circuits to Control: Learning Engineering by Designing Lego
Robots. PhD thesis, MIT.

Martin, F. (2000). Robotic Explorations: A Hands-on Introduction to Engineering.
Prentice Hall.

McCauley, R. and Manaris, B. (2002). Computer science education at the start
of the 21st century - a survey of accredited programs. In Proceedings of 32nd
ASEE/IEEE Frontiers in Education Conference.

McNally, M. (2006). Walking the grid: Robotics in ¢s2. In Proceedings of the Sth
Austalian conference on Computing education, pages 151-155.

Melchior, A., Cohen, F., Cutter, T., and Leavitt, T. (2005). More than robots: An
evaluation of the first robotics competition participant and institutional impacts.
Heller School for Social Policy and Management, Brandeis University.

Miller, D. P. and Stein, C. (2000). so that’s what pi is for! and other educational
epiphanies from hands-on robotics. pages 219-243.

Mitchell, F. M. (1999). All students can learn: Effects of curriculum alignment on
the mathematics achievement of third-grade students. In Paper presented at the
Annual Meeting of the American Educational Research Association.

Morris, H. H. and Lee, P. (2004). The incredibly shrinking pipeline is not just for
women anymore. Computing Research News.

Mostow, J., Roth, S., Hauptmann, A. G., and Kane, M. (1994). A prototype read-
ing coach that listens. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI-94).

Norman, D. and Draper, S. (1986). User Centered System Design. L. Erlbaum and
Assoc.

Nourbakhsh, I., Crowley, K., Wilkinson, K., and Hamner, E. (2003). The educa-
tional impact of the robotic autonomy mobile robotics course. Technical Report
CMU-RI-TR-03-29, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA.

Nourbakhsh, 1., Hamner, E., Lauwers, T., DiSalvo, C. F., and Bernstein, D. (2007).
Terk: A flexible tool for science and technology education. In Proceedings of
AAAI Spring Symposium on Robots and Robot Venues: Resources for Al Educa-
tion.

361

BIBLIOGRAPHY

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic
Books.

Parallax (2009). About the basic stamp. Http://www.parallax.com/tabid/-
295/Default.aspx.

Peaco, F. L. (2004). Braille literacy: Resources for instruction, writing equipment,
and supplies. NLS Reference Circulars.

Perkins (2006). Perkins brailler. Catalog of Products; Howe Press of the Perkins
School for the Blind.

Raffle, H. S., Parkes, A. J., and Ishii, H. (2004). Topobo: a constructive assembly
system with kinetic memory. In CHI "04: Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 647-654, New York, NY, USA.
ACM.

Reshko, G., Mason, M., and Nourbakhsh, 1. (2002). Rapid prototyping of small
robots. Technical Report CMU-RI-TR-02-11, Robotics Institute, Pittsburgh, PA.

Resnick, M., Martin, F., Sargent, R., and Silverman, B. (1996). Programmable
bricks: Toys to think with. IBM Systems Journal, 35.

Resnick, M. and Ocko, S. (1991). LEGO/Logo: Learning Through and About
Design. Ablex Publishing.

Rittle-Johnson, B. and Koedinger, K. R. (2001). Using cognitive models to guide
instructional design: The case of fraction division. Proceedings of the Twenty-
Third Annual Conference of the Cognitive Science Society, pages 857-862.

Roberts, E. (1995). The Art and Science of C: A Library-Based Introduction to
Computer Science. Addison Wesley.

Rowe, A., Rosenberg, C., and Nourbakhsh, 1. (2002). A low cost embedded color
vision system. In Proceedings of IROS 2002.

Rusk, N., M., R., Berg, R., and Pezalla-Granlund, M. (2008). New pathways into
robotics: Strategies for broadening participation. Journal of Science Education
and Technology, 17:59-69.

Saettler, P. (1990). The Evolution of American Educational Technology. Libraries
Unlimited.

Sandoval, W. A. (2004). Developing learning theory by refining conjectures em-
bodied in educational designs. Educational Psychologist, 39:213-223.

362

BIBLIOGRAPHY

Sandoval, W. A. and Bell, P. (2004). Design-based research methods for studying
learning in context: Introduction. Educational Psychologist, 39:199-201.

Savitch, W. (2006). Absolute Java. 2nd edition. Addison Wesley.

Schon, D. A. (1984). The Reflective Practitioner: How Professionals Think In
Action. Basic Books.

Schroeder, F. (1989). Literacy: The key to opportunity. Journal of Visual Impair-
ment and Blindness, pages 290-293.

Schuler, D. and Namioka, A. (1993). Participatory design: Principles and prac-
tices. Lawrence Erlbaum.

Schweikardt, E. and Gross, M. D. (2006). roblocks: a robotic construction kit
for mathematics and science education. In ICMI ’06: Proceedings of the 8th

international conference on Multimodal interfaces, pages 72—75, New York, NY,
USA. ACM.

Schweikardt, E. and Gross, M. D. (2008). The robot is the program: interacting
with roblocks. In TEI ’08: Proceedings of the 2nd international conference
on Tangible and embedded interaction, pages 167-168, New York, NY, USA.
ACM.

Shamlian, S., Killfoile, K., Kellogg, R., and Duvallet, F. (2006). Fun with robots:
A student-taught undergraduate robotics course. In /CRA, pages 369-374.

Sierra, K. and Bates, B. (2005). Head First Java. 2nd edition. OReilly.
Simon, H. (1957). Models of Man. John Wiley.
Simon, H. (1996). The Sciences of the Artificial - 3rd Edition. MIT Press.

Soloway, E., Guzdial, M., and Hay, K. E. (1994). Learner-centered design: the
challenge for hci in the 21st century. Interactions, 1(2).

Soloway, E., Jackson, S. L., Klein, J., Quintana, C., Reed, J., Spitulnik, J., Strat-
ford, S. J., Studer, S., Jul, S., Eng, J., and Scala, N. (1996). Learning theory in
practice: Case studies of learner-centered design. In CHI ’96: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 189-196,
New York, NY, USA. ACM.

Tabak, I. (2004). Reconstructing context: Negotiating the tension between exoge-
nous and endogenous educational design. Educational Psychologist, 39:225—
233.

363

BIBLIOGRAPHY

Tallarico, I. (1984). Effects of ecological factors on elementary school student per-
formance on norm referenced standardized tests: Nonreading behaviors. PhD
thesis, University of San Francisco.

Tallyn, E., Stanton, D., Benford, S., Rowland, D., Kirk, D., and Paxton, M. (2004).
Introducting escience to the classroom. In Proceedings of the UK e-Science All
Hands Meeting, pages 1027-1029.

Vegso, J. (2005). Interest in cs as a major drops among incoming freshmen. Com-
puting Research News.

Vegso, J. (2006). Drop in cs bachelors degree production. Computing Research
News.

Vernier (2009). Vernier website. Http://www.vernier.com/.

Weber, G. and Brusilovsky, P. (2001). Elm-art: An adaptive versatile system for
web-based instruction. International Journal of Artificial Intelligence in Educa-
tion, 12(4):351-384.

Wiggins, G. and McTighe, J. (2005). Understanding by Design, Expanded 2nd
Edition. Prentice Hall.

World Health Organization (2004). Fact sheet 282: Magnitude and causes of visual
impairment.

Yim, M., Chow, M. D., and Dunbar, W. L. (2000). Eat, sleep, robotics. pages
245-292.

Zweben, S. (2005). 2003-2004 taulbee survey: Record ph.d. production on the
horizon; undergraduate enrollments continue in decline. Computing Research
News.

364

	Contents
	Introduction
	Definitions of Educational Technology
	Configurable Embodied Interfaces
	Thesis Statement and Contributions
	Statement
	Contributions

	Organization of the Work

	Configurable Embodied Interfaces in Education
	Computer Science Education
	Manual Programming
	Visual and Textual Programming

	Creative and Engineering Design
	Controllers
	Programs

	Science Education
	Summary

	Methods for the Design of Configurable Embodied Interfaces
	Alignment in Instructional Design
	Extending Alignment
	Participatory Design
	Design-Based Research
	Implications of these Methods for the Design Process
	A Common Design Process
	Implementation

	The Braille Writing Tutor
	Writing Braille
	Timeline of the Project
	My Role on the Project

	Ideation
	Other Tutor Systems

	Design, Pilot, and Evaluation of the First version of the Braille Tutor
	Goals, Instruction, and Assessment of a Braille Writing Curriculum
	Design Constraints
	E-slate Design
	The Tutor Software
	Field Study and Evaluation

	Second Design Cycle
	E-slate Changes
	Early Tutor Improvements

	On-going Software and Curricular Improvements
	Foreign Language Writing Support
	Local Accents and Languages Audio Support
	Motivational Games
	E-slate hardware modifications
	Pilots and Evaluation

	Summary

	Robot Diaries
	Motivation and Program Goal
	Timeline of the Project
	My Role in the Project

	Ideation
	Focus Group

	Participatory Design Sequence
	Curriculum Progression
	Summer Workshop
	One-Day Workshops
	Fall Workshop
	Validation of the Approach

	Designing for Dissemination
	Learning Goals
	Curriculum
	Assessment Approach
	Tools
	Evaluation Strategy
	Fluency Moments - an Analysis Methodology
	Piloting the Design
	Evaluation

	Next Steps
	Next Steps: Adapting Robot Diaries to Formal Educational Settings
	Improving Disseminability

	Summary

	CSbots
	Motivation and Program Goal
	Timeline of the Project
	My Role in the Project

	Approach
	Initial Evaluation
	Iterative Design
	Partnerships
	Alignment

	Ideation
	Initial Evaluation
	Textbook Survey
	Survey of Educators
	Partners' Prior Curricula

	Initial Design
	Learning Goals
	Curriculum
	Robot Platform
	Software

	Pilots and Evaluation
	CCAC Summer 2007
	Ohlone fall 2007
	CCAC fall 2007
	High School Pilots

	Redesign
	Design Constraints
	Robot
	Software
	Curriculum

	Finch Pilots and Evaluation
	CCAC Pilot
	High School Pilots

	Next Steps
	Charter Schools
	Additional Language Support
	Commercialization

	Summary

	Summary, Analysis, and Conclusions
	Summary of the Design Process
	Ideation
	Initial Evaluation
	Constraint-Finding Process
	Systems Alignment Cycles
	Measuring Alignment
	Dissemination

	Similar Design Processes
	Learner-centered Design

	The Domain of Alignment-Centered Design
	Alignment-Centered Design and Engineering Design
	Ideation
	Initial Evaluation
	Prototyping
	Testing
	Analysis
	Dissemination

	Challenges and Limits of Alignment-Centered Design
	Evaluation
	Human Resources
	Student Interests and Background
	Constraints
	Conventional Engineering Design: The CMUCam

	Conclusions: A Choice of Process

	Robot Diaries Curriculum
	Dispositional Goals

	Assignments for CCAC CIT-111 and CIT-130
	Finch Documentation
	Bibliography

