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Abstract

Unsupervised image segmentation algorithms have matured to the point where they
generate reasonable segmentations, and thus can begin to be incorporated into larger
systems. A system designer now has an array of available algorithm choices, how-
ever, few objective numerical evaluations exist of these segmentation algorithms. As a
first step towards filling this gap, this paper presents an evaluation of two popular seg-
mentation algorithms, the mean shift-based segmentation algorithm and a graph-based
segmentation scheme. We also consider a hybrid method which combines the other
two methods. This quantitative evaluation is made possible by the recently proposed
measure of segmentation correctness, the Normalized Probabilistic Rand (NPR) index,
which allows a principled comparison between segmentations created by different al-
gorithms, as well as segmentations on different images.

For each algorithm, we consider its correctness as measured by the NPR index,
as well as its stability with respect to changes in parameter settings and with respect
to different images. An algorithm which produces correct segmentation results with
a wide array of parameters on any one image, as well as correct segmentation results
on multiple images with the same parameters, will be a useful, predictable and easily
adjustable preprocessing step in a larger system.

Our results are presented on the Berkeley image segmentation database, which
contains 300 natural images along with several ground truth hand segmentations for
each image. As opposed to previous results presented on this database, the algorithms
we compare all use the same image features (position and colour) for segmentation,
thereby making their outputs directly comparable.
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1 Introduction

Unsupervised image segmentation algorithms have matured to the point that they pro-
vide segmentations which agree to a large extent with human intuition. The time has
arrived for these segmentations to play a larger role in object recognition. It is clear
that unsupervised segmentation can be used to help cue and refine various recognition
algorithms. However, one of the stumbling blocks that remains is that it is unknown
exactly how well these segmentation algorithms perform from an objective standpoint.
Most presentations of segmentation algorithms contain superficial evaluations which
merely display images of the segmentation results and appeal to the reader’s intuition
for evaluation. There is a consistent lack of numerical results, thus it is difficult to know
which segmentation algorithms present useful results and in which situations they do
so. Appealing to human intuition is convenient, however if the algorithm is going to be
used in an automated system then objective results on large datasets are to be desired.

In this paper we present the results of an objective evaluation of two popular seg-
mentation techniques: mean shift segmentation [1], and the efficient graph-based seg-
mentation algorithm presented in [4]. As well, we look at a hybrid variant that com-
bines these algorithms. For each of these algorithms, we examine three characteristics:

1. Correctness: the ability to produce segmentations which agree with human intu-
ition. That is, segmentations which correctly identify structures in the image at
neither too fine nor too coarse a level of detail.

2. Stability with respect to parameter choice: the ability to produce segmentations
of consistent correctness for a range of parameter choices.

3. Stability with respect to image choice: the ability to produce segmentations of
consistent correctness using the same parameter choice on a wide range of dif-
ferent images.

If a segmentation scheme satisfies these three characteristics, then it will give useful
and predictable results which can be reliably incorporated into a larger system.

The measure we use to evaluate these algorithms is the recently proposed Normal-
ized Probabilistic Rand (NPR) index [6]. We chose to use this measure as it allows a
principled comparison between segmentation results on different images, with differing
numbers of regions, and generated by different algorithms with different parameters.
Also, the NPR index of one segmentation is meaningful as an absolute score, not just in
comparison with that of another segmentation. These characteristics are all necessary
for the comparison we wish to perform.

Our dataset for this evaluation is the Berkeley Segmentation Database [5], which
contains 300 natural images with multiple ground truth hand segmentations of each im-
age. To ensure a valid comparison between algorithms, we compute the same features
(pixel location and colour) for every image and every segmentation algorithm.

This paper is organized as follows. We begin by presenting some previous work on
comparing segmentations and clusterings. Then, we present each of the segmentation
algorithms and the hybrid variant we considered. Next, we describe the NPR index and
present the reasons for using this measure, followed by a description of our comparison
methodology. Finally, we present our results.
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2 Previous Work

There have been previous attempts at numerical image segmentation method compar-
isons, although the number is small. Here we describe some examples and summarize
how our work differs.

A comparison of spectral clustering methods is given in [8]. The authors attempted
to compare variants of four popular spectral clustering algorithms: normalized cuts by
Shi and Malik [13], a variant by Kannan, Vempala and Vetta [9], the algorithm by Ng,
Jordan and Weiss [11], and the Multicut algorithm by Meila and Shi [10], as well as
Single and Ward linkage as a base for comparison. They also combined different parts
of different algorithms to create new ones. The measure of correctness used was the
Variation of Information introduced in [12], which considers the conditional entropies
between the labels in two segmentations. The results of this comparison were largely
unexciting, with all of the algorithms and variants performing well on ‘easy’ data, and
all performing roughly equally badly on ‘hard’ data.

Another attempt at segmentation algorithm comparison is presented on the Berke-
ley database and segmentation comparison website [5]. Here a large set of images
are made available for segmentation evaluation, and a framework is set up to facilitate
comparison. Comparisons currently exist between using cues of brightness, texture,
and/or edges for segmentation. However, there are no current examples of comparisons
between actual algorithms which use the same features. The measure used for segmen-
tation correctness is a precision-recall curve based on the correctness of each region
boundary pixel. Different boundary thresholds are used to obtain different points on
the curve. The reported statistic is the F-measure, the harmonic mean of the precision
and recall. This measure has the downside of considering only region boundaries in-
stead of the regions themselves. Since region difference is a quadratic measure whereas
boundary difference is a linear measure, small boundary imperfections will affect the
measure more than they necessarily should.

Our current work is the first which presents a segmentation algorithm comparison
within a framework which is independent of the features used, which compares each
of the three traits of correctness and stability with respect to parameters and images,
and which uses a measure of correctness which can compare all of the necessary seg-
mentations in a principled and valid manner. In addition, we consider two popular but
previously unevaluated algorithms.

3 The Segmentation Algorithms

As mentioned, we will compare three different segmentation techniques, the mean
shift-based segmentation algorithm [1], an efficient graph-based segmentation algo-
rithm [4], and a hybrid of the two. We have chosen to look at mean shift-based segmen-
tation as it is generally effective and has become widely-used in the vision community.
The efficient graph-based segmentation algorithm was chosen as an interesting com-
parison to the mean shift in that its general approach is similar, however it excludes the
mean shift filtering step itself, thus partially addressing the question of whether the fil-
tering step is useful. The combination of the two algorithms is shown as an attempt to
improve the performance and stability of either one alone. In this section we describe
each algorithm and further discuss how they differ from one another.
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3.1 Mean Shift Segmentation

The mean shift based segmentation technique was introduced in [1] and has become
widely-used in the vision community. It is one of many techniques under the heading
of “feature space analysis”. The mean shift technique is comprised of two basic steps:
a mean shift filtering of the original image data (in feature space), and a subsequent
clustering of the filtered data points. Below we will briefly describe each of these steps
and then discuss some of the strengths and weaknesses of this method.

3.1.1 Filtering

The filtering step of the mean shift segmentation algorithm consists of analyzing the
probability density function underlying the image data in feature space. Consider the
feature space consisting of the original image data represented as the(x, y) location
of each pixel, plus its colour in L*u*v* space(L∗, u∗, v∗). The modes of the pdf
underlying the data in this space will correspond to the locations with highest data
density. In terms of a segmentation, it is intuitive that the data points close to these
high density points (modes) should be clustered together. Note that these modes are
also far less sensitive to outliers than the means of, say, a mixture of Gaussians would
be.

The mean shift filtering step consists of finding the modes of the underlying pdf and
associating with them any points in their basin of attraction. Unlike earlier techniques,
the mean shift is a non-parametric technique and hence we will need to estimate the
gradient of the pdf,f(x), in an iterative manner using kernel density estimation to find
the modes. For a data pointx in feature space, the density gradient is estimated as
being proportional to the mean shift vector:

∇̂f(x) ∝
∑n

i=1 xig
(
‖x−xi

h ‖
)∑n

i=1 g
(
‖x−xi

h ‖
) − x (1)

wherexi are the data points,x is a point in the feature space,n is the number of
datapoints (pixels in the image), andg is the profile of the symmetric kernelG. We use
the simple case whereG is the uniform kernel with radius vectorh. Thus the above
equation simplifies to:

∇̂f(x) ∝

 1
|Sx,hs,hr |

∑
xi∈Sx,hs,hr

xi

− x (2)

whereSx,hs,hr
represents the sphere in feature space centered atx and having spatial

radiushs and colour (range) radiushr, and thexi represent the data points within that
sphere.

For every data point (pixel in the original image)x we can iteratively compute the
gradient estimate in Eqn.2 and movex in that direction, until the gradient is below a
threshold. Thus we have found the points wherê∇f(x′) = 0, the modes of the density
estimate. We can then replace the pointx with x′, the mode with which it is associated.

Finding the mode associated with each data point helps to smooth the image while
preserving discontinuities. Intuitively, if two pointsxi andxj are far from each other
in feature space, thenxi 6∈ Sxj ,hs,hr

and hencexj doesn’t contribute to the mean shift
vector gradient estimate and the trajectory ofxi will move it away fromxj . Hence,
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(a) (b) (c) (d)

(e) (f) (g)

Figure 1: Example of changing scores for different segmentation granularities: (a)
Original image, (b)-(g) mean shift segmentations using scale bandwidth (hs) 7 and
color bandwidths (hr) 3, 7, 11, 15, 19 and 23 respectively.

pixels on either side of a strong discontinuity will not attract each other. However,
filtering alone does not provide a segmentation as the modes found are noisy. This
“noise” stems from two sources. First, the mode estimation is an iterative process,
hence it only converges to within the threshold provided (and with some numerical
error). Second, consider an area in feature space larger thanSxj ,hs,hr and where the
colour features are uniform or have a gradient of 1. Since the pixel coordinates are
uniform by design, the mean shift vector will be 0 in this region, and the data points
will not move and hence not converge to a single mode. Intuitively, however, we would
like all of these datapoints to belong to the same cluster in the final segmentation. For
these reasons, mean shift filtering is only a preprocessing step, and a second step is
required in the segmentation process: clustering of the filtered data points{x′}.

3.1.2 Clustering

After mean shift filtering, each data point in the feature space has been replaced by its
corresponding mode. As described above, some points may have collapsed to the same
mode, but many have not despite the fact that they may be less than one kernel radius
apart. In the original mean shift segmentation paper [1], clustering is described as a
simple post-processing step in which any modes that are less than one kernel radius
apart are grouped together and their basins of attraction are merged. This suggests
using single linkage clustering, which effectively converts the filtered points into a
segmentation.

The only other paper using mean shift segmentation that speaks directly to the
clustering is [2]. In this approach, a region adjacency graph (RAG) is created to hierar-
chically cluster the modes. Also, edge information from an edge detector is combined
with the colour information to better guide the clustering. This is the method used in
the publicly available EDISON system, also described in [2]. The EDISON system is
the implementation we use here as our mean shift segmentation system.

3.1.3 Discussion

Mean shift filtering using either single linkage clustering or edge-directed clustering
produces segmentations that correspond well to human perception. However, as we
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discuss in the experiments section, this algorithm is quite sensitive to its parameters.
The mean shift filtering stage has two parameters corresponding to the bandwidths
(radii of the kernel) for the spatial (hs) and colour (hr) features. Slight variations in
hr can cause large changes in the granularity of the segmentation, as shown in Fig.1.
By adjusting the colour bandwidth we can produce over-segmentations as in Fig.1b
which show every minute detail, to reasonably intuitive segmentations as in Fig.1f
which delineate objects or large patches, to under-segmentations as in Fig.1g which
obscure the important elements completely. This issue is a major stumbling block
with respect to using mean shift segmentation as a reliable preprocessing step for other
algorithms, such as object recognition. For an object recognition system to actually
use a segmentation algorithm, it requires that the segmentations produced be fairly
stable under parameter changes and that the same parameters produce stable results for
different images, thus easing the burden of parameter tuning. In an attempt to improve
stability, we consider a second algorithm.

3.2 Efficient Graph-based Segmentation

Efficient graph-based image segmentation, introduced in [4], is another method of per-
forming clustering in feature space. This method works directly on the data points in
feature space, without first performing a filtering step, and uses a variation on single
linkage clustering. The key to the success of this method is adaptive thresholding.
To perform traditional single linkage clustering, a minimum spanning tree of the data
points is first generated (using Kruskal’s algorithm), from which any edges with length
greater than a given hard threshold are removed. The connected components become
the clusters in the segmentation. The method in [4] eliminates the need for a hard
threshold, instead replacing it with a data-dependent term.

More specifically, letG = (V,E) be a (fully connected) graph, withm edges and
n vertices. Each vertex is a pixel,x, represented in the feature space. The final seg-
mentation will beS = (C1, ..., Cr) whereCi is a cluster of data points. The algorithm
is:

1. SortE = (e1, ..., em) such that|et| ≤ |et′ | ∀t < t′

2. Let S0 =
(
{x1}, ..., {xn}

)
, in other words each initial cluster contains exactly

one vertex.

3. For t = 1, ...,m

(a) Let xi andxj be the vertices connected byet.

(b) LetCt−1
xi

be the connected component containing pointxi on iterationt−1,
andli = maxmstC

t−1
xi

be the longest edge in the minimum spanning tree of
Ct−1

xi
. Likewise forlj .

(c) MergeCt−1
xi

andCt−1
xj

if

|et| < min{li +
k∣∣Ct−1
xi

∣∣ , lj +
k∣∣Ct−1
xj

∣∣} (3)

wherek is a constant.

4. S = Sm
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(a) (b) (c) (d)

Figure 2: Example of changing scores for different parameters using efficient graph-
based segmentation: (a) Original image, (b)-(d) efficient graph-based segmentations
using scale bandwidth (hs) 7, color bandwidth (hr) 7 andk values 5, 25, 125 respec-
tively.

We can make the algorithm more efficient by considering only the 100 shortest
edges from any vertex instead of the fully connected graph. This does not result in any
perceptible quality loss.

In contrast to single linkage clustering which uses a constantK to set the threshold
on edge length for merging two components in Eqn.3, efficient graph-based segmen-
tation uses a variable threshold. This threshold effectively allows two components to
be merged if the minimum edge connecting them does not have length greater than
the maximum edge in either of the components’ minimum spanning trees, plus a term
τ = k

|Ct−1
xi | . As defined here,τ is dependent on a constantk and the size of the

component. Note that on the first iteration,li = 0 and lj = 0, and
∣∣C0

xi

∣∣ = 1 and∣∣∣C0
xj

∣∣∣ = 1, sok represents the longest edge which will be added to any cluster at any

time,k = lmax. Also, as the number of points in a component increases, the tolerance
on added edge length for new edges becomes tighter and fewer mergers are performed,
thus indirectly controlling region size. However, it is possible to use any non-negative
function forτ which reflects the goals of the segmentation system.

The merging criteria in Eqn.3 allows efficient graph-based clustering to be sen-
sitive to edges in areas of low variability, and less sensitive to them in areas of high
variability. This is intuitively the property we would like to see in a clustering algo-
rithm. However, the results it gives do not have the same degree of correctness as
mean shift-based segmentation, as demonstrated in Fig.2. This algorithm also suffers
somewhat from sensitivity to its parameter,k.

3.3 Hybrid Segmentation Algorithm

An obvious question emerges when describing the mean shift based segmentation
method [1] and the efficient graph based clustering method [4]: can we combine the
two methods to give better results than either method alone? More specifically, can we
combine the two methods to create more stable segmentations that are less sensitive to
parameter changes and for which the same parameters give reasonable segmentations
across multiple images? In an attempt to answer these questions, the third algorithm
we consider is a combination of the previous two algorithms: first we apply mean shift
filtering, and then we use efficient graph-based clustering to give the final segmenta-
tion. The result of applying this algorithm with different parameters can be seen in Fig.
3. Notice that forhr = 15 the quality of the segmentation is high. Also notice that the
rate of granularity change is slower than either of the previous two algorithms, even
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3: Example of changing scores for different parameters using a hybrid segmen-
tation algorithm which first performs mean shift filtering and then efficient graph-based
segmentation: (a) Original image, (b)-(g) segmentations using scale bandwidth (hs)
7, and color bandwidth (hr) andk value combinations (3,5), (3,25), (3,125), (15,5),
(15,25), (15,125) respectively.

though the parameters cover a wide range.

4 Evaluation Methodology

Having described each of the segmentation algorithms to be evaluated, we now present
the evaluation measure and methodology to be used.

4.1 Normalized Probabilistic Rand (NPR) Index

The performance measure we use is the Normalized Probabilistic Rand (NPR) index
[6], an extension of the Probabilistic Rand (PR) index introduced in [7]. In our tests,
we would like to compare a test segmentation of an imageStest with a set of ground
truth segmentations (human segmentations in this case),S1, ..., SK . We will consider
a segmentation “good” if it correctly identifies the pairwise relationships between the
pixels as defined in the ground truth segmentations. In other words, for any pair of
pixelsxi, xj we would like the labels of those pixelslStest

i , lStest
j to be the same in the

test segmentation if the labelslSk
i , lSk

j were the same in the ground truth segmentations,
and vice versa. We would also like to penalize inconsistencies between the test and
ground truth label pair relationships proportionally to the level of consistency between
the ground truth label pair relationships. These requirements lead us to the PR index:

PR(Stest, {Sk}) =
1(
N
2

) ∑
i,j
i≺j

[
I
(
lStest
i = lStest

j

)
pij

+ I
(
lStest
i 6= lStest

j

)
(1− pij)

] (4)

Let cij = I
(
lStest
i = lStest

j

)
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Then the PR index can be written as:

PR(Stest, {Sk}) =
1(
N
2

) ∑
i,j
i≺j

[cijpij + (1− cij)(1− pij)] (5)

Where N is the number of pixels, andpij is the ground truth probability that

I(li = lj). In practicepij = 1
K

∑
I
(
lSk
i = lSk

j

)
, the mean pixel pair relationship

among the ground truth images. The PR index takes a value in the interval[0, 1], and
a PR index of 0 or 1 can only be achieved when all of the ground truth segmentations
agree on every pixel pair relationship. A score of 0 indicates that every pixel pair in
the test image has the opposite relationship as every pair in the ground truth segmenta-
tions, while a score of 1 indicates that every pixel pair in the test image has the same
relationship as every pair in the ground truth segmentations.

As described in [7], the PR index has the desirable property that it does not allow
arbitrary refinements or generalizations of the ground truth segmentations. In other
words, if two pixels are in the same region in most of the ground truth segmentations,
they are penalized for not being in the same region in the test segmentation, and vice
versa. Also, the penalization is dependent on the fraction of disagreeing ground truth
segmentations. Thus, there is a smaller penalty for disagreeing with an inherently am-
biguous pixel pair than with a pixel pair on which all of the ground truths agree. An
example of this refinement policy is shown in Fig.4. Fig. 4a shows an image, Fig.
4b shows two test segmentations, and Fig.4c shows the ground truth hand segmen-
tations for that image. It appears as though the first ground truth labeling is based on
texture, while the second is based on colour. The top test segmentation only has region
divisions that exist in at least one of the two ground truth images, it has divided the
image based on both colour and texture. The bottom test segmentation, however, has
region divisions which exist in neither of the ground truth images. Thus, the top test
segmentation will have a higher index than the bottom one.

This refinement policy is attractive for evaluating most segmentation tasks in which
we would like to avoid arbitrary refining and coarsening of a segmentation. For exam-
ple, for an object recognition system, it is important to differentiate between a segmen-
tation which gives object-level regions, one which gives part-level regions, and one
which gives even smaller over-segmented regions. However, if your application is not
sensitive to different granularities, a different measure should be used, such as the LCE
[14].

The PR index does however have one serious flaw. Note that the PR index is on
a scale of 0-1, but there is no expected value for a given segmentation. That is, it
is impossible to know if any given score is good or bad. The best we can hope to
do is compare it to the score of another segmentation of the same image, but still we
do not know if the difference between the two scores is relevant or not. Also, we
certainly can not compare the score of a segmentation of one image with the score of
a segmentation of another image. All of these issues are resolved with normalization
to produce the Normalized Probabilistic Rand (NPR) index [6]. The NPR index uses a
typical normalization scheme: if the baseline index value is the expected value of the
index of any given segmentation of a particular image, then

Normalized index=
Index− Expected index

Maximum index− Expected index
(6)
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(a) (b) (c)

Figure 4: Synthetic example of permissible refinements: (a) Input image, (b) Segmen-
tations for testing, and (c) ground truth set

Figure 5: Examples of segmentations with NPR indices near 0.

The expected value of the normalized index is 0, so we know exactly when a segmen-
tation is better than average or worse than average. Fig.5 gives a couple of examples
of segmentations for which the absolute value of the NPR index is small (< 0.003).

To be able to compare the segmentations of two different images, we need to in-
clude all possible images into the expectation calculation. So the expected value of the
PR index as given in Eqn.4 is:

E
[
PR(Stest, {Sk})

]
=

1(
N
2

) ∑
i,j
i≺j

{
E

[
I
(
lStest
i = lStest

j

)]
pij

+ E
[
I
(
lStest
i 6= lStest

j

)]
(1− pij)

}
=

1(
N
2

) ∑
i,j
i≺j

[
p′ijpij + (1−p′ij)(1−pij)

] (7)

Let Φ be the number of different images in the entire dataset, andKφ the number of
ground truth hand segmentations of imageφ. Thenp′ij can be expressed as:

p′ij =
1
Φ

∑
φ

1
Kφ

Kφ∑
k=1

I
(

l
Sφ

k
i = l

Sφ
k

j

)
(8)
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Since in computing the expected values no assumptions were made as to the number
of regions in the segmentation, nor the size of the regions, and all of the ground truth
data was used, the NPR indices are comparable across images, across segmentations,
and across segmentation granularities. These are key properties which facilitate the
comparison we perform in this paper.

4.2 Comparisons

Now that we have described the algorithms we wish to compare, and a measure for
comparison, we can finally describe the specific comparisons we wish to perform. We
believe that there are two key factors which allow for the use of a segmentation algo-
rithm in a larger object detection system: correctness and stability.

Correctness is the obvious ability that we desire from any algorithm, the ability to
produce results that are consistent with ground truth. Thus correctness is measured by
the size of the NPR index. It has been often argued that the correctness of a segmen-
tation is irrelevant, with the only relevant fact being whether or not the segmentation
improves the recognition system. If the recognition system to be used is known, then
it may be appropriate to measure the performance of the segmentation algorithm in
conjunction with the rest of the system. However, there is value in weeding out poten-
tial segmentation algorithms which may give non-sensical results, and this can be done
separately from the rest of the system. Also, it is often the case that it is not known
beforehand which recognition algorithm will be best suited to a given problem, hence it
is useful to have a generally well-behaved segmentation algorithm to use with multiple
recognition algorithms. In addition, when evaluating a system with multiple compo-
nents, it is often important to know which component specifically is causing a certain
behaviour. Thus, we present here a comparison of the correctness of the segmentation
algorithms apart from any recognition system.

Perhaps a more important indication of a segmentation algorithm’s usefulness is
its stability. If an algorithm gives reasonably correct segmentations on average, but
is wildly unpredictable on any given image or with any given parameter set, it will
be useless as a preprocessing step. We would like a preprocessing step to produce
consistently correct segmentations of similar granularity so that any system built on
top of it can predict its outcome. We require segmentations with low bias and low
variance. There are two basic types of stability, stability with respect to parameters
and stability across images. Stability with respect to parameters refers to achieving
consistent results on the same image given different parameter inputs to the algorithm.
In other words, we would like the algorithm to have low variability with respect to its
parameters. Stability across images refers to achieving consistent results on different
images given the same set of parameters. If a segmentation algorithm can be shown to
be both correct and stable, then it will be a useful preprocessing step for many systems.

5 Experiments

The following plots explore each of the issues raised in the previous section. Note that
the axes for each kind of plot have been kept constant so plots may be compared easily.
In each experiment, the label ‘EDISON’ refers to the publicly available EDISON sys-
tem for mean shift segmentation [2], the label ‘FH’ refers to the efficient graph-based
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Figure 6: Examples of images from the Berkeley image segmentation database [5]

segmentation method by Felzenszwalb and Huttenlocher [4], and the label ‘MS+FH’
refers to our hybrid algorithm of mean shift filtering followed by efficient graph-based
segmentation. All of the experiments were performed on the publicly available Berke-
ley image segmentation database [5], which contains 300 images of natural scenes with
approximately five to seven hand segmentations of each image as ground truth. Exam-
ples of the images are shown in Fig.6.

In all of the following plots we have fixed the spatial bandwidthhs = 7, since it
seems to be the least sensitive parameter and removing it makes the comparison more
approachable. Also, although the FH algorithm as defined previously only had one
parameter,k, we need to add two more. The FH algorithm requires the computation
of the distances between points in feature space. Since our feature space consists of
{x, y, L∗, u∗, v∗}, we need to put all of the dimensions into the same scale. Hence we
will divide each dimension by the corresponding{hs, hr} as in the EDISON system.
So each algorithm was run with a parameter combination from the sets:hs = 7, hr =
{3, 7, 11, 15, 19, 23}, andk = {5, 25, 50, 75, 100, 125}.

5.1 Maximum performance

The first set of experiments will examine the correctness of the segmentations produced
by the three algorithms. We considered each of the three algorithms with a reasonable
set of parameters. The left plot in Fig7 shows the maximum NPR index on each image
for each algorithm. The indices are plotted in increasing order for each algorithm,
hence image rank 190 refers to the image with the 190th lowest index for a particular
algorithm, and may not represent the same image across algorithms. The right plot
in Fig 7 is a histogram of the same information, showing the number of images per
maximum NPR index bin.

All of the algorithms produce similar maximum NPR indices, demonstrating that
they have roughly equal ability to produce correct segmentations with the parameter set
chosen. Note that there are very few images which have below-zero maximum NPR
index, hence all of the algorithms almost always have the potential to produce useful
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results. These graphs also demonstrate that our parameter choices for each algorithm
are reasonable.
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Figure 7: Maximum NPR indices achieved on individual images with the set of pa-
rameters used for each algorithm. Plot (a) shows the indices achieved on each image
individually, ordered by increasing index. Plot (b) shows the same information in the
form of a histogram.

5.2 Average performance per image

The next set of plots in Figs.8-12 also consider correctness, but instead of the maxi-
mum index achieved they demonstrate the mean index achieved. The first plot in each
row shows the mean NPR index on each image achieved over the set of parameters
used (in increasing order of the mean), along with one standard deviation. The second
plot in each row is a histogram of the mean information, showing the number of im-
ages per mean NPR index bin. An algorithm which creates good segmentations will
have a histogram skewed to the right. The third plot in each row is a histogram of the
standard deviations. This plot partially addresses the issue of stability with respect to
parameters. A standard deviation histogram that is skewed to the left indicates that the
algorithm in question is less sensitive to changes in its parameters. Using the means
as a measure certainly makes us more dependent on our choice of parameters for each
algorithm. However, while we can not say that we have seen the best or worst per-
formance of any of the algorithms, we can compare their performance with identical
parameters.

5.2.1 Average performance over all parameter combinations

Figure Fig. 8 shows the mean NPR plots for each of the three systems, EDISON,
FH, and MS+FH, with averages taken over all possible combinations of the parameters
hr andk. Notice that these three rows of plots paint a different picture than the first
set. While in terms of the maximum NPR index achievable on each image the three
algorithms were comparable, in terms of mean NPR index the efficient graph-based
segmentation (FH) falls behind the other two. Also note that the standard deviation
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histogram of the hybrid algorithm (MS+FH) is the most left-heavy, reflecting that it is
the least sensitive to its parameters.
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Figure 8: Mean NPR indices achieved using each of the segmentation algorithms.
The first row shows results from the mean shift-based system (EDISON), the sec-
ond from the efficient graph-based system (FH), and the third from the hybrid seg-
mentation system (MS+FH). Results from each algorithm are given for individual
images over the parameter set of all combinations ofhr = {3, 7, 11, 15, 19, 23} and
k = {5, 25, 50, 75, 100, 125}. Plots (a), (d) and (g) show the mean indices achieved on
each image individually, ordered by increasing index, along with one standard devia-
tion. Plots (b), (e) and (h) show histograms of the means. Plots (c), (f) and (i) show
histograms of the standard deviations.
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5.2.2 Average performance over different values of the colour bandwidthhr

Although the above comparison is an interesting preliminary look at the data, it is
actually biased since it is based on a different number of parameters for each algorithm,
hence we now move on to more specific comparisons. This next comparison considers
the NPR indices averaged over values ofhr, with k held constant. The plots showing
this data for the EDISON method are the same as in the last section, in the first row
in Fig. 8. Fig. 9 gives the plots for the efficient graph-based segmentation system
(FH) for k = {5, 25, 125}. We only show three out of the six values ofk in order
to keep the amount of data presented reasonable. Fig.10 gives the same information
for the hybrid algorithm (MS+FH). The most interesting comparison here is between
the EDISON system and the hybrid system. We would like to judge what impact the
addition of the efficient graph-based clustering has had on the segmentations produced.

Notice that fork = 5, the performance of the hybrid (MS+FH) system in the first
row of Fig. 10 is slightly better and certainly more stable than that of the mean shift-
based (EDISON) system in Fig.8. For k = 25, in the second row of Fig.10, the
performance is more comparable, but the standard deviation is still somewhat lower.
Finally, for k = 125, in the third row of Fig.10, the hybrid system performs compa-
rably to the mean-shift based system. From these results we can see that the change to
using the efficient graph-based clustering after the mean shift filtering has maintained
the correctness of the mean shift-based system while improving its stability.

Looking at the graphs for the efficient graph-based segmentation system alone in
Fig. 9, we can see that although fork = 5 the mean performance and standard deviation
are promising, they quickly degrade for larger values ofk. This decline is much more
gradual in the hybrid algorithm.

5.2.3 Average performance over different values ofk

The final set of plots of this kind in figures Fig.11and Fig.12examine the mean NPR
indices ask is varied throughk = {5, 25, 50, 75, 100, 125} andhr is held constant.
Once again we only look at a representative three out of the six possiblehr values,
hr = {3, 7, 23}. Since the mean shift-based system doesn’t usek, this comparison is
between the efficient graph-based segmentation system and the hybrid system. It is im-
mediately evident that the mean performance of the hybrid system is far superior to the
efficient graph-based segmentation system, and that the results are much more stable
with respect to changing values ofk. Hence, adding a mean shift filtering preprocessing
step to the efficient graph-based segmentation system is clearly an improvement.
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Figure 9: Mean NPR indices achieved using the efficient graph-based segmentation
system (FH) on individual images over the parameter sethr = {3, 7, 11, 15, 19, 23}
with a constantk. Plot (a) shows the mean indices achieved on each image individu-
ally, ordered by increasing index, along with one standard deviation. Plot (b) shows a
histogram of the means. Plot (c) shows a histogram of the standard deviations.
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Figure 10: Mean NPR indices achieved using the hybrid segmentation system
(MS+FH) on individual images over the parameter sethr = {3, 7, 11, 15, 19, 23} with
a constantk. Plot (a) shows the mean indices achieved on each image individually,
ordered by increasing index, along with one standard deviation. Plot (b) shows a his-
togram of the means. Plot (c) shows a histogram of the standard deviations.
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Figure 11: Mean NPR indices achieved using the efficient graph-based segmentation
system (FH) on individual images over the parameter setk = {5, 25, 50, 75, 100, 125}
with a constanthr. Plots (a), (d) and (g) show the mean indices achieved on each image
individually, ordered by increasing index, along with one standard deviation. Plots (b),
(e) and (h) show histograms of the means. Plots (c), (f) and (i) show histograms of the
standard deviations.
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Figure 12: Mean NPR indices achieved using the hybrid segmentation system
(MS+FH) on individual images over the parameter setk = {5, 25, 50, 75, 100, 125}
with a constanthr. Plots (a), (d) and (g) show the mean indices achieved on each im-
age individually, ordered by increasing index, along with one standard deviation. Plots
(b), (e) and (h) show histograms of the means. Plots (c), (f) and (i) show histograms of
the standard deviations.
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5.3 Average performance per parameter choice

The final set of experiments looks at the stability of a particular parameter combination
across images. In each experiment results are shown with respect to a particular param-
eter, with averages and standard deviations taken over segmentations of each image in
the entire image database.

5.3.1 Average performance over all images for different values ofhr

The first three sets of graphs show the results of keepingk constant and choosing
from the sethr = {3, 7, 11, 15, 19, 23}. Fig. 13 shows the results of running the
EDISON system with these parameters, averaged over the image set and with one
standard deviation. Fig.14 shows the same information for the efficient graph-based
segmentation (FH) on the six possible values ofk. Fig. 15shows the same information
for the hybrid (MS+FH) system.

As before, we can see that the hybrid algorithm gives slight improvements in sta-
bility over the mean shift-based system, but only for smaller values ofk. We can also
see that, except fork = 5, both the mean shift-based system and the hybrid system are
much more stable across images than the efficient graph-based segmentation system.

3 7 11 15 19 23
−2

−1.5

−1

−0.5

0

0.5

1

Colour bandwidth (hr)

N
P

R
 in

de
x

EDISON: NPR vs hr

Figure 13: Mean NPR indices using the EDISON segmentation system on each colour
bandwidth (hr) over the set of images, with one standard deviation.

5.3.2 Average performance over all images for different values ofk

The last two sets of graphs in Fig.16 and Fig. 17 examine the stability ofk over a
set of images. Each graph shows the average algorithm performance taken over the set
of images with a particularhr and each graph point shows a particulark. Once again
we see that combining the two algorithms has improved performance and stability.
The hybrid algorithm has higher means and lower standard deviations than the efficient
graph-based segmentation over the image set for eachk, and especially for lower values
of hr.
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Figure 14: Mean NPR indices using graph-based segmentation (FH) on each colour
bandwidthhr = {3, 7, 11, 15, 19, 23} over the set of images. One plot per value ofk.
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Figure 15: Mean NPR indices using hybrid segmentation (MS+FH) on each colour
bandwidthhr = {3, 7, 11, 15, 19, 23} over the set of images. One plot per value ofk.
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Figure 16: Mean NPR indices using efficient graph-based segmentation (FH) on each
of k = {5, 25, 50, 75, 100, 125} over the set of images. One plot per value ofhr.
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Figure 17: Mean NPR indices using hybrid segmentation (MS+FH) on each ofk =
{5, 25, 50, 75, 100, 125} over the set of images. One plot per value ofhr.
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6 Summary and Conclusions

In this paper we have proposed a framework for comparing image segmentation algo-
rithms, and performed one such comparison. Our framework consists of comparing
the performance of segmentation algorithms based on three important characteristics:
correctness, stability with respect to parameter choice, and stability with respect to im-
age choice. If an algorithm performs well with respect to all of these characteristics,
it has the potential to be useful as part of a larger vision system. The measure used
within our framework is the Normalized Probabilistic Rand index [6], which facilitates
principled comparisons between segmentations of the same or different images, and
generated with multiple algorithms and parameters. The NPR index does not place any
restrictions on the number or distribution of regions in competing segmentations, and
it generates scores which are easily interpretable, making it ideal for this task.

For our comparison task, we chose to compare two popular segmentation algo-
rithms: mean shift-based segmentation [1] as implemented by the EDISON system
[2] and a graph-based segmentation scheme [4]. We also proposed a hybrid algorithm
which first performs the first stage of mean shift-based segmentation, mean shift filter-
ing, and then applies the graph-based segmentation scheme, as an attempt to create an
algorithm which preserves the correctness of the mean shift-based segmentation but is
more robust with respect to parameter and image choice.

The first comparison we performed considered the correctness of the three algo-
rithms. All three algorithms had the potential to perform equally well on the dataset
[5] given the correct parameter choice. On average over the parameter set, however, the
hybrid algorithm performed slightly better than the mean shift algorithm, and both per-
formed significantly better than the graph-based segmentation. We can conclude that
the mean shift filtering step is indeed useful, and that the most promising algorithms
are the mean shift segmentation and the hybrid algorithm.

The second comparison we performed considered stability with respect to parame-
ters. In this comparison, the hybrid algorithm showed less variability when its param-
eters were changed than the mean shift segmentation algorithm. Although the amount
of improvement did decline with increasing values ofk, the rate of decline was very
slow and any choice ofk within our parameter set gave reasonable results. Although
the graph-based segmentation did show very low variability withk = 5, changing the
value ofk decreased its stability drastically.

Finally, we compared the stability of a particular parameter choice over the set of
images. Once again we see that the graph-based algorithm has low variability when
k = 5, however its performance and stability decrease rapidly with changing values
of k. The comparison between the mean shift segmentation and the hybrid method is
much closer here, with neither performing significantly better.

For the three characteristics measured, we have demonstrated that both the mean
shift segmentation and hybrid segmentation algorithms can create realistic segmen-
tations with a wide variety of parameters, however the hybrid algorithm has slightly
improved stability. Thus, we would choose to incorporate the hybrid method into a
larger system.

24



References

[1] D. Comaniciu, P. Meer, “Mean shift: A robust approach toward feature space
analysis”, IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24,
pp. 603-619

[2] C. Christoudias, B. Georgescu, P. Meer, “Synergism in Low Level Vision”, Intl
Conf on Pattern Recognition, 2002, 4, pp. 40190

[3] B. Georgescu, I. Shimshoni, P. Meer, “Mean Shift Based Clustering in High Di-
mensions: A Texture Classification Example”, Intl Conf on Computer Vision,
2003

[4] P. Felzenszwalb, D. Huttenlocher,“Efficient Graph-Based Image Segmentation”,
Intl Journal of Computer Vision, 2004, 59 (2)

[5] D. Martin, C. Fowlkes, D. Tal, J. Malik, “A Database of Human Segmented Natu-
ral Images and its Application to Evaluating Segmentation Algorithms and Mea-
suring Ecological Statistics”, Intl Conf on Computer Vision, 2001.

[6] R. Unnikrishnan, C. Pantofaru, M. Hebert, “A Measure for Objective Evaluation
of Image Segmentation Algorithms”, CVPR workshop on Empirical Evaluation
Methods in Computer Vision, 2005.

[7] R. Unnikrishnan, M. Hebert, “Measures of Similarity”, IEEE Workshop on Com-
puter Vision Applications, 2005, pp. 394–400.

[8] D. Verma, M. Meila, “A comparison of spectral clustering algorithms”, Univ of
Washington technical report, 2001.

[9] R. Kannan, S. Vempala, A. Vetta, “On clusterings - good, bad and spectral”,
FOCS, 2000, pp. 367-377.

[10] M. Meila, J. Shi, “Learning segmentation by random walks”, NIPS, 2000,
pp. 873-879.

[11] A. Y. Ng, M. I. Jordan, Y. Weiss, “On spectral clustering: Analysis and an algo-
rithm”, NIPS, 2002, pp. 849-856.

[12] M. Meila, “Comparing clusterings”, Univ of Washington Technical Report, 2002.

[13] J. Shi, J. Malik, “Normalized cuts and image segmentation”, IEEE Transactions
on Pattern Analysis and Machine Learning, 2000, pp. 888-905.

[14] D. Martin, “An Empirical Approach to Grouping and Segmentation”, Ph.D. dis-
sertation, 2002, University of California, Berkeley.

25


	Introduction
	Previous Work
	The Segmentation Algorithms
	Mean Shift Segmentation
	Filtering
	Clustering
	Discussion

	Efficient Graph-based Segmentation
	Hybrid Segmentation Algorithm

	Evaluation Methodology
	Normalized Probabilistic Rand (NPR) Index
	Comparisons

	Experiments
	Maximum performance
	Average performance per image
	Average performance over all parameter combinations
	Average performance over different values of the colour bandwidth hr
	Average performance over different values of k

	Average performance per parameter choice
	Average performance over all images for different values of hr
	Average performance over all images for different values of k


	Summary and Conclusions

