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Abstract
We expect legged robots to be highly mobile. Human walking and running can

execute quick changes in speed and direction, even on non-flat ground. Indeed, anal-
ysis of simplified models shows that these quantities can be tightly controlled by ad-
justing the leg placement between steps, and that leg placement can also compensate
for disturbances including changes in the ground height. However, to date, legged
robots do not exhibit this level of agility or robustness, nor is it well understood
what prevents them from attaining this performance. This thesis begins to bridge the
gap between the theoretical motions of simplified models and the implementation of
agile behaviors on legged robots.

The state of the art allows room for improvement at the level of the simplified
model, at the level of hardware demonstration, and at the level of theoretical under-
standing of applying the simplified model to a real system. We make progress on
each of these facets of the problem as we work towards leveraging theory from the
simplified model to generate effective control for locomotion on robots. In partic-
ular, spring mass theory has identified deadbeat stability for planar running, but it
must be formulated in 3D to be applicable to a real system. We extend this behavior
to 3D, adding deadbeat steering to the tracking of apex height on unobserved terrain.
Running robots have yet to demonstrate the agile and robust behavior that the spring
mass model describes; existing implementations do not target the deadbeat behav-
ior. We apply state of the art control techniques to map the deadbeat stabilized planar
running onto our robot ATRIAS, and we successfully demonstrate tight tracking of
commanded velocities and robustness to unobserved changes in ground height. De-
spite this empirical proof of concept, it remains unclear how exactly the targeted
behavior of the simplified model affects the closed loop behavior of the full order
system. There are additional degrees of freedom which affect the tracking of origi-
nal goals and additional layers of control which may offer other sources of stability.
Furthermore, the hardware introduces perturbations and uncertainties which detract
from the nominal performance of the full order model. To answer these questions,
we formulate a framework founded on linear theory, and we use it to examine the
contributions of each component of the control and to quantify the expected effects
of the disturbances we encounter. This analysis reveals insights for effective control
strategies for legged locomotion and presents a tool for scientific iteration between
theory-based control design and evidence-based revision of the underlying theory.
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Chapter 1

Introduction

1.1 Problem Statement

Hypothetically, legged robots can be highly mobile; running and walking behaviors can exhibit

agile changes in speed and direction in a single step (Figure 1.1a), even on non-flat ground. To

date, real robots have not yet achieved this level of performance. They often fall; they can only

walk at low speeds and with conservative motions ; few can get off the ground to run or hop, and

those that do can only do so within a limited range of gaits.

Part of the problem is that legged locomotion is fundamentally not a straightforward control

task. The motion of the system is an outcome of the net forces and moments, or the net wrench,

applied by the feet against the ground. The nature of interaction between feet and the ground

limits the domain of wrenches that are possible. The normal (perpendicular to the surface) forces

can only push away from and never pull towards the ground. Based on the shape of the contact

surface and the available actuation, this phenomenon also translates into a maximum rotational

moment applied to the foot [59]. Furthermore, forces directed along the plane of contact are gen-

erated through friction and are limited by the coefficient of friction. These limitations on the net

wrench constrain the range of possible behaviors. Finally, legged locomotion is characterized by

intermittent contacts; each foot is periodically lifted off the ground and re-positioned. Reasoning

1



a b c

Figure 1.1: Agile and robust running. In (a), an athlete exemplifies how running can include agile changes in

speed and direction in a single step. Indeed, in (b) the spring-mass model (an abstraction described by a point

mass bouncing on a massless spring) can reproduce these behaviors by controlling the placement of the leg at each

step. This thesis explores how such behaviors developed at the level of the simplified model can be implemented

to control running on a higher order robot like ATRIAS in (c). Photograph in (a) used under fair use conditions.

effectively about the intermittent contacts and the resulting constraints on the net wrench poses

a challenging planning problem.

Simplified models are a popular strategy for approaching this challenge (Figure 1.1b). These

models use simplifying assumptions that implicitly obey the wrench limitations to approximately

describe the dynamics of the system using a reduced number of states and parameters. This

process allows for a more tractable planning problem. For example, representing the system

as a single mass attached to a rigid leg or to a linear spring resolves the future motion of the

system from any given initial condition. The leg placement can then be chosen accordingly to

generate desired motions from step to step. However, for this behavior to carry over to a full-order

robot, the robot must reproduce the assumed dynamics on the actual system while sufficiently

addressing any modes omitted by the simplified model. This control task is made even more

challenging by the disturbances and uncertainty encountered in hardware.

Specifically, the planar spring mass model can use leg placement to nearly perfectly track

running gaits on unobserved, uneven terrain [47, 169, 171]. While bipedal robots like ATRIAS

(Figure 1.1c) with light, compliant legs have been built [61, 149] to approximately match the
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characteristics of this idealized system, controllers designed around the simplified model have

yet to translate into hardware demonstrations of the modeled behavior, nor is it well understood

to what degree the behavior is limited by the omitted modes and by the realities of the hardware

platform.

This thesis begins to bridge the gap between the theory of simplified models and the imple-

mentation of effective locomotion on legged robots. Here, we extend the theoretical capabilities

of the spring mass model to 3D; we implement established control techniques to demonstrate pla-

nar spring mass running on a real robot; and we analyze the resulting system to understand the

effects of the spring mass based leg placement, of the closed loop feedback, and of the errors and

uncertainties encountered in hardware. In particular, the framework we develop sets up quantita-

tive comparisons between theoretical expectations and experimental data, which allows iteration

between theory-based control design and evidence-based revision of the underlying theory.

1.2 Approach

We want to determine to what extent the simplified spring-mass model can be leveraged to

achieve robust and agile running on the real robot. This query implies three separate questions:

1. What performance is possible within the simplified model?

2. What performance does that translate into for a full order system with perfect control?

3. How is this performance limited by the noise and uncertainty of the hardware platform?

In pursuing these questions, we develop insights that advance the overall understanding of how

to achieve robust and agile locomotion on legged systems and what fundamentally limits their

performance. In this section, we first present a conceptual diagram in Figure 1.2 to illustrate the

context of these three questions and the overall problem statement. Then, we elaborate more on

our approach to answering each question.
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Figure 1.2: Conceptual diagram of exploring the performance of the robot via simplified model. Solving for the

theoretical maximum performance A is intractable. A simplified model can offer a solution p for a subset of the

full space. Control that tracks the simplified model results in performance B in a perfect system, but noise and

uncertainty limits the performance on real hardware to curve C. The current state of the art D in hardware falls

short of the point p known in literature, but the gap is not well understood. We propose to identify C for a specific

simplified model and validate it in hardware to elevate D.
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Decomposing the problem

Figure 1.2 visualizes these components of the problem statement. The vertical axis measures the

performance of a controller; for example, this could be the ability of the robot to regulate its speed

within physical limits, measured as the amount of correction it can apply in a single step. The

horizontal axis represents the possible states of the full-order robot. To simplify the visualization,

we sketch a single parameter for these states, which could be the angular momentum of the robot

about the center of mass (CoM). The ability of a controller to regulate the robot’s speed generally

varies across the possible states.

With unlimited computation, a perfect model predictive controller would give the best possi-

ble performance from any state, represented by curve A. Finding and achieving this performance

is currently computationally intractable. However, identifying control for a simplified model

provides some non-optimal solution p for a specific subset of robot states. For example, any

point-mass model only describes behaviors with zero angular momentum about the center of

mass, which limits the analysis to the dashed vertical line. Imposing additional simplifying as-

sumptions (for example, a specific force profile) results in lower performance than the general

optimal solution within these states, which is typically still too hard to find. In our first question,

we seek to find the height of point p for the spring mass model. Because it exists only on the

dashed line, point p alone does not offer a sufficient description of how well the controller works

on the robot. In our second question, we seek to extend the point p into the curve B, which

describes how well the controller functions away from the nominal conditions. This curve peaks

at point p if the controller is designed to track the behavior of the simplified model, even though

the hypothetical optimal performance A may peak elsewhere. Finally, under realistic assump-

tions about noise and uncertainty, the performance curve B is lowered to curve C. In our third

question, we seek to define C theoretically and to validate it experimentally on our hardware

platform. This demonstration results in elevating D.

In the existing literature, various controllers proposed for simplified models have offered
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promising behavior in terms of point p, while real running has been demonstrated only at much

lower levels (curve D). However, the current literature has not sought to quantify how applicable

these strategies are by identifying curves B or C. The state of the art hardware performance D

exists empirically, but these techniques have not offered a comparison to a theoretical expecta-

tion. This gap between the theory and the hardware makes it difficult to reason about the steps

required towards attaining the next level of performance.

Behavior of the simplified model

We first explore the theoretical capabilities of leg placement control within the simplified model

of a spring mass system, which is suitable for our robot with light, compliant legs and passive

ankle joints. Existing literature has shown that leg placement policies can be designed for the

planar spring mass system to generate highly robust running on rough terrain [169]. To describe

a freely running system with no external support, we need to extend the behavior to 3D. Using

the return map formulation frequently applied to examine the stability of periodic orbits [185],

we compute the stride-to-stride transitions of the point-mass’s motion in 3D as parameterized by

the placement of the leg. Interpolating over the transition map produces a policy for matching a

target speed and a target direction motion in a single step, which we then extend to reject distur-

bances from unobserved uneven terrain. Physical limits such as the maximum torque, maximum

motor speed, and the coefficient of friction are translated into conditions on the dynamics of the

simplified model (as is done for the planar model in [47]), and we identify the feasible domain

of the proposed policy.

Transferring to the higher order system

Because the reduced order model does not account for all the degrees of freedom in the higher

order system, additional control must be designed to address these modes. In our case, the inertial

effects of the robot’s light legs are negligible, and the key omission of the simplified model is
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the robot’s rotational motion. As a point mass model, the spring mass system describes the

translational motion of the robot’s center of mass (CoM) while intrinsically implying constant

angular momentum.

Control based on stabilizing the hybrid zero dynamics of a system [135, 182, 206] offers a

formal solution to this type of problem via design of virtual constraints and applying nonlinear

control. Instead of applying this methodology, we use a conceptually similar approach that

leverages powerful results from linear theory, allows us to use well established control techniques

for reference following, and provides more explicit access to the deadbeat-stabilized simplified

model. We interpret the output of the closed loop simplified model as a reference motion given

by a specific leg placement in flight, a corresponding CoM trajectory in stance, and a fixed body

orientation with zero rotational motion. We then apply optimal control to follow this reference in

the stance phase; after linearizing the dynamics about the reference trajectory, we solve for the

minimum changes in control input that best drive down the weighted error across all the degrees

of freedom. More detailed formulations can include actuator limits as well as contact wrench

limits as constraints in the optimization. Such techniques have been widely applied on walking

robots [51, 68, 101, 104, 125] but have not yet been used to achieve running. We use the structure

of the closed loop dynamics and the emergent cost function to quantify the theoretical behavior

of the higher order system in terms of the overall rate of convergence as well as how the errors

are traded off between different degrees of freedom.

Practical limitations

Lastly, we quantify the performance we expect to attain given our theoretical understanding of

the problem and the properties of the real hardware. The nominal convergence of the tracking

error is based on an assumed model of the full robot’s dynamics and a perfectly generated control

input. In reality, the true dynamics of the system do not perfectly match the assumed equations

of motion, and the control input (in our case, ground reaction forces) cannot be directly ma-
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nipulated. These effects can be treated as perturbations to the nominal closed-loop system. By

assuming bounds on the sources of error based on theoretical analysis as well as empirical data,

we can then compute the associated bounds on the expected resulting state error in each step as

well as the bounds on the accumulated state error after multiple steps.

This process results in a quantified theoretical benchmark for performance. Comparing the

computed bounds with the observed state error in experimental data allows us to evaluate the

validity and applicability of the theory-based control design and to judge the success or failure

of the hardware implementation. It also highlights the most promising next steps, whether we

most crucially need a more descriptive model, improved actuator control, or a revised control

architecture. While the conservative nature of these bounds may limit their descriptiveness of

the actual performance, this formulation nonetheless serves as a first step towards analytically

comparing theory and empirical results.

Framework built upon trajectory tracking and linear theory

Linear theory facilitates understanding how the continuous feedback in stance, the leg placement

in flight, and any encountered disturbances or uncertainty all contribute to the nominal and ob-

served behaviors of the full order system. Specifically, we study the evolution of the state error

with respect to the dynamically defined reference trajectory. In stance, the continuous feedback

linearizes the error dynamics, and this linear time-varying system can be integrated into a discrete

linear propagation of the state error at touchdown to the ensuing takeoff. Bounded perturbations

integrate into a bounded drift in this transition model. Likewise, in flight, the re-planning of

the reference and the associated leg placement also define a discrete transition between the state

error at takeoff and at the ensuing touchdown. By linearizing this error transition in flight and

propagating the effects of non-linearities and other disturbances, we can then directly compose

the expected step-to-step error evolution of the real system using matrix multiplication.

This formulation provides a clear framework for deriving stability and evaluating perfor-
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mance: it allows us to integrate a variant of the Ricatti equation to derive infinite-horizon optimal

control in stance, it factorizes the Poincare stability analysis into flight and stance components,

and it allows us to apply known techniques to define attractive and invariant regions in terms of

state error as a function of the assumed bounded perturbations. We use these results to quantify

comparisons between theory and experimental data and to form hypotheses that generalize to the

effective control of legged systems.

In principle, our approach shares many underlying concepts with the hybrid zero dynam-

ics (HZD) framework that has demonstrated and formalized stable running on under-actuated

hardware [135, 182, 206]. Both formulations focus on deriving stability by leveraging model

reduction techniques and applying local feedback to track the reference behavior, and both for-

mulations utilize a combination of discrete and continuous feedback controllers. In terms of

significant differences, here we track target trajectories while HZD embeds target dynamics, and

here we start with the simplified model and discrete control while HZD starts with the full order

system and the continuous control. Throughout this thesis, we analyze the implications of the

similarities and differences between the two perspectives.

Summary

Based on previous studies of the spring mass model, we (and other researchers) hypothesize that

the spring mass model can translate into agile locomotion on robots with light and compliant

legs. However, this behavior has yet to be demonstrated on real robots, and furthermore, there

are still important gaps in the theoretical understanding of how the simplified model applies to a

real system. In this thesis, we approach the problem from both directions. On the hardware side,

we demonstrate the agility and robustness of planar spring mass running on our robot ATRIAS.

On the theory side, we decompose the problem into three separate investigations: we extend the

applicability of the simplified model to 3D, we examine the implications of additional degrees

of freedom and additional layers of control on a full order model, and we quantify the expected
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effects of bounded perturbations to our nominal system. We conduct the latter two studies in a

simple framework that leverages powerful tools for linear systems. In the end, this gives us an

improved understanding of how to design effective control, what kind of performance we can

realistically expect on a real system, and which directions of future work may deliver the largest

improvements to the state of the art implementations.

1.3 Contributions

Our goal is to bridge the gap between the demonstrated performance of running robots and the

agile theoretical behaviors derived from simplified models. Specifically, this work makes the

following contributions to the state of the art:

• extend the capabilities of the spring mass system to generate robust and agile running in

3D on unobserved, uneven terrain;

• implement planar spring mass running on hardware to demonstrate deadbeat tracking of

target velocities and robustness to unobserved, uneven terrain;

• clarify the theory behind how the design of the full order control generates an expected

closed loop behavior;

• formulate quantified theoretical expectations of performance on a noisy system that are

then compared to experimental data.

1.4 Thesis Overview

Chapter 2 reviews the existing literature on controlling legged robots, with an emphasis on sta-

bility and on running gaits. Chapter 3 presents the extension of the deadbeat stability of the

spring mass model to running in 3D. Chapter 4 introduces the ATRIAS robot as our hardware

platform and examines its theoretical capability of executing spring mass gaits. Chapter 5 details
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our control implementation for planar running with deadbeat velocity tracking and presents our

experimental results. Chapter 6 then presents a theoretical analysis of how the stability of the

system is a product of the continuous feedback applied in stance and the discrete motion planning

performed in flight. Chapter 7 presents a theoretical analysis of how the noise and uncertainty

we observe affect the expected performance. Finally, Chapter 8 summarizes the results of these

studies and explores the implications for future work towards achieving agile running on robots.

11



12



Chapter 2

Background

This thesis builds upon the existing work of many researchers in robotics. In this chapter, we

present a broad review of the relevant studies that precede our work. First, Section 2.1 sets up the

rest of the discussion by characterizing the basic components of legged locomotion, introducing

the concept of stability, and distinguishing between full and under-actuation. Section 2.2 reviews

control strategies commonly used by fully actuated robots, including position control and force-

based momentum control. Section 2.3 then presents methods that are appropriate for stabilizing

under-actuated systems (which are also highly applicable to and often used on fully actuated

systems), including optimal control and intermittent control for periodic systems. In particular,

in this context, leg placement emerges as a highly effective control strategy. Section 2.4 then

reviews the use of leg placement in control design, with an emphasis on placement strategies that

have emerged from studies of simplified models of the system dynamics. Finally, Section 2.5

discusses existing treatments on how model-based control designs carry over to real hardware

implementation. The main motivation for the work in this thesis is the gap between the agile and

robust running the simplified models can produce and the behaviors that have been demonstrated

on real hardware systems.
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2.1 Fundamentals of legged systems

2.1.1 Contact wrenches and leg placement

One way to interpret legged locomotion is to view it through two behaviors; the feet are po-

sitioned into contact with the ground, and forces and moments are then applied to the system

by pushing off the ground through these contacts. The limited nature of these contacts makes

control a challenging problem: typical feet can only push away from the ground and can never

pull towards it; the lateral forces they can apply are limited by friction; and the torques they can

apply are limited by the size of the foot and the availability of ankle actuation (see Figures 2.1).

In the book [173], Siciliano et al characterize this challenge a little more technically: “...

the global displacement and orientation of the robot can only be realized through contact forces.

Moreover, this motion is necessarily associated with a change of posture. More generally, the

system can achieved a desired movement if and only if the total wrench of gravity and the contact

forces is equal to the dynamic wrench of the robot. For a given control scheme, the question is

then to check whether this property is satisfied by the robot under control.”

The total change in linear and angular momentum of a system is equal to the net wrench (net

force and net moment) applied, and at any moment in time, only a limited set of net wrenches

is possible, depending on the relative position of the feet to center of mass. Due to this depen-

dence, motion generation is a product of choosing appropriate footing, and then applying feasible

wrenches to achieve desired accelerations.

In this thesis, we study how agile and robust running is a product of control strategies for

both leg placement and wrench generation subject to the contact constraints.

2.1.2 Stability and balance

Stability is a central concept throughout this thesis and features prominently in this background

chapter. Here, we will first briefly define what it means to stabilize a standing, walking, or
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Figure 2.1: (A). Contact wrench limitations. The net ground reaction force (blue vector) is the sum of all the

forces (black vectors) across the surface area of the foot. These forces can only have positive vertical components;

it is impossible to pull on the ground. The origin of the blue ground reaction force (GRF) is placed at the center of

pressure, which is the point at which the single GRF vector equivalently acts with a moment couple that is exactly

zero about the horizontal axes. Moving the GRF to a different point on the ground implies a non-zero moment

couple (in green, putting the GRF through the ankle comes with a non-zero ankle torque). The center of pressure is

always aligned with the ankle if the ankle joint is passive and produces no torque. The unilaterality of the contact

forces imply that the center of pressure never leaves the footprint. Friction constraints imply that the GRF vector

never tilts past a certain angle from the vertical. (B). An example of a violation of the contact wrench limits. The

dancer has leaned past his feet, and this pose can only be held by applying a high torque at his ankles. Equivalently,

the center of pressure for the blue moment-free GRF is placed under his center of mass. The required torque can

only be generated if his heels pull on the ground, which is usually impossible. Here, the dancer has fasteners in

his shoes that do in fact pull on the ground to generate the red GRFs. Legged systems usually cannot violate this

constraint. Photograph used under fair use conditions.
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running robot.

Stability is most intuitive when a robot standing still. The robot is balanced if it stays upright

and does not fall over. This can only happen when the net forces and torques acting on it all cancel

to zero; the robot is in equilibrium. The robot is stably balanced if recovers this equilibrium when

perturbed by external pushes. That is, if state errors get smaller over time, the robot is stable. If

instead errors tend to grow, the robot is unstable and eventually falls after a perturbation.

For a robot in motion, stability can still be viewed in terms of errors, despite not being in an

equilibrium condition. For example, if we want the robot to walk or run at a certain speed and

hold a certain posture, we can examine how errors in these states evolve. If the robot goes faster

and faster or leans farther and farther forward, the behavior is unstable; the errors will build up

until the system fails. On the other hand, if the robot can bring its speed and orientation to the

desired values from perturbed conditions, the overall motion is stable.

Having defined stability, we can now talk about robustness and agility. Robustness refers to

the ability of the robot to recover from large perturbations; if the robot steps off of a curb, we

want to study how quickly it can bring the state errors back to zero. Similarly, agility refers to the

robot’s ability to track changes in the desired motion; we may ask the robot to speed up or to turn,

and we are interested in how quickly it can respond to these commands and bring the relative

errors back to zero. Overall, this thesis focuses on how theories developed from the dynamics of

a simplified model can be translated into highly robust and agile running on a real machine.

2.1.3 Full actuation versus under-actuation

By definition [79, 178, 193], in a fully actuated system, each degree of freedom can be inde-

pendently controlled. As a result, it relatively straightforward to design stabilizing feedback

controllers that drive the system to the desired configuration, thereby reducing all errors to zero.

Using special shoes, the dancer in Figure 2.2A can use his ankle muscles to bring himself to an

arbitrary lean angle. To a more limited extent (determined by the contact wrench constraints),

16



A D

B C E
Figure 2.2: Examples of full actuation and under-actuation. The dancer in A and the IHMC Atlas robot in B are

both fully actuated. The dancer’s shoes are fixed to the stage and eliminate the contact wrench constraints, while

the robot’s “full actuation” must still respect these limits. Local balance strategies take advantage of the available

ankle torque as long as the center of pressure is kept within the footprint. The ballerina in the en pointe pose in D,

the same IHMC Atlas robot (designed and built by Boston Dynamics) standing on an edge in C, and the ATRIAS

robot in E are all under-actuated. These systems cannot generate torques against the ground and must rely on more

complex strategies for maintaining stability. Photograph in A used under fair use conditions. Photographs B and

C used with permission. Photograph D used with permission; model is Presley Parsons, photo by Laura Parsons.
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Figure 2.3: The Acrobot model consists of a series of two linked bars attached to the ground with a passive pin

joint. The angle between the bars is driven by a motor. This system is under-actuated due to the lack of a motor at

the pin joint with the ground. Despite the under-actuation, balance about the upright equilibrium can be maintained

with a variety of strategies, including linear optimal control.

Institute for Human and Machine Cognition’s (IHMC) Atlas robot (designed and built by Boston

Dynamics) in Figure 2.2B can use actuators in each of its joints to reach a desired posture. Many

of the successful walking and running robots explicitly or implicitly rely on full actuation in

their control design. We first briefly review these control strategies, as some of the concepts

encountered carry over to control of under-actuated systems.

In contrast, some platforms (including ours, the ATRIAS robot [61, 149]) are under-actuated.

Specifically, ATRIAS is under-actuated at its feet; the ankles generate no torque (Figure 2.2E).

Similarly, the ballerina in the en pointe pose in Figure 2.2D has no means of generating torques

against the ground. Likewise, IHMC’s Atlas in Figure 2.2C is standing on a line and cannot

apply torques in the frontal plane. This makes stability a more challenging control problem [79,

178, 193]. Naturally, the strategies used for stabilizing under-actuated systems are still highly

relevant for improving the robustness and the performance on fully actuated robots, and indeed

many of the fully actuated robots demonstrate effective use of these strategies (as evidenced by

Atlas in Figure 2.2C). Nonetheless, in this chapter we use the distinction between full and under

actuation to organize the review of the relevant literature.
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2.2 Strategies for fully actuated systems

2.2.1 Position control

Specifically, many robots – including the runners QRIO [121], ASIMO [188, 189, 190, 191],

HRP-2LR[86, 87], HUBO [30, 129], and the Toyota robot [187] – are actuated by high accuracy

joint servos that ultimately track individual joint positions and velocities with PID control. While

the low level feedback control is straightforward, maintaining balance then becomes more of a

motion planning problem. In higher layers, the controller is tasked with computing reference

joint trajectories describing a desired motion that is consistent with the dynamics of the system.

That is, specifying all the joint trajectories fully defines a hypothetical motion of the system,

where the associated linear momentum, angular momentum, and ground contact wrench all need

to be consistent. If the computed zero moment point (ZMP) – or equivalently the foot rotation

indicator (FRI) [59] – ever leaves the boundaries of the foot, the ground contact cannot apply a

large enough rotational moment to match the inertial effects of the specified motion. Thus, the

foot would roll onto an edge, thereby breaking the assumed static contact, and the nominal joint

trajectories then imply a different overall motion, which often corresponds to the robot falling

over despite all the joint errors being driven to zero. (Note that the ZMP as commonly defined

[201] is equivalent to the center of pressure, and physically it can never leave the footprint. The

ZMP stability criteria seen in the literature [83, 187, 188] refers to the computed ZMP associated

with the desired motion).

As a result, many of the position controlled robots operate around ensuring that the computed

ZMP of the reference joint trajectories stay near the center of the foot. These trajectories are often

generated by solving inverse kinematics after obtaining a ZMP-consistent CoM motion from a

simplified model [83]. In place of general inverse kinematics, resolved momentum control [84]

can be used to map center of mass and foot references to individual joint motions [30, 84, 121,

187, 188]. However, directly tracking these joint references with decentralized PID control in
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each joint is often insufficient for stabilizing the robot. These computations only account for the

dynamics of the nominal motion plan and do not provide any information about the feasibility

of corrective motions – the actual wrenches applied to the foot while the joint trajectories are

being driven to the references differ from the nominal wrenches, and FRI may leave the foot and

destabilize the system. Keeping the computed ZMP away from the edges of the foot provides

margin for small corrective actions.

Many tools and extensions [30, 83, 86, 87, 129, 187, 188, 189, 190, 191] have been applied to

improve the stability of position-based control in legged systems and have led to demonstrations

of stable running gaits on fully actuated robots. In principle, these strategies generally modify

the planned reference motion with more detailed considerations of the full system’s dynamics

such that errors and disturbances are handled more explicitly before being passed to the local

joint servos.

2.2.2 Inverse dynamics and force control

More recently, many roboticists have applied inverse dynamics and force control techniques to

improve the balancing capabilities of humanoid robots [37, 68, 116, 153, 154, 155, 167, 179,

203]. As opposed to position control methods which only explicitly consider the dynamic feasi-

bility of the reference motion, force control and inverse dynamics continuously solve the equa-

tions of motion, thereby providing constant access to the ground contact wrenches. These equa-

tions explicitly map between the forces and torques applied at each joint and the resulting rigid

body accelerations of the system, and this then allows dynamically consistent feedback control

to be generally posed as a constrained optimization problem – one can search for the applied

inputs that best achieve desirable accelerations within the feasible contact constraints.

More specifically, optimization-based inverse dynamics control has proved to be quite suc-

cessful in balancing and walking tasks on bipedal robots [51, 68, 101, 104, 125]. Operational

space control [92] (or task space control) defines tasks as desired accelerations and solves the
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equations of motion of the full system to find the torques that best achieve the tasks. For ex-

ample, these accelerations can be a combination of feed-forward and feedback for tracking a

specified motion of the CoM or of the swing foot. Using the centroidal momentum [122] matrix

further allows angular momentum tracking to be expressed as accelerations in the task space.

The task space formulation simplifies the expression of motion control; compared to needing

to design coordinated references trajectories for every joint, only the explicit motion goals are

expressed as tasks, while the optimization distributes the motion to the individual joints.

Many variations in the detailed formulation of the problem have been employed. Tasks can be

layered in hierarchies such that lower priority ones are addressed only in the null space of higher

priority ones [35, 116, 130, 131, 153, 168]. Alternatively, they can all be assigned weights to

trade off between objectives [35, 50, 51]. [68] reduce the size of the problem by using the

structure of the equations of motion to eliminate the joint torques from the set of decision vari-

ables. Without considering the limitations of the ground contact wrench, the inverse dynamics

can be solved efficiently as an unconstrained optimization [77, 116, 152]. Instead, the wrench

constraints can be approximated with linear inequalities, and the optimization problem is refor-

mulated as a constrained quadratic program (QP): tasks are tracked as closely as possible within

feasible dynamics [36, 102, 156]. [204] gives an alternative formulation as a conic optimization

with reduced variables and constraints.

The QP task space formulation of force control was used extensively by successful robots

(MIT, CMU, and IHMC Atlas robots, among others) at the DRC finals [51, 101, 104]. It serves

as a general tool that computes the joint actuation given a set of tasks to optimize, and the “art” of

the control design becomes choosing and prioritizing the right tasks for stable locomotion. IHMC

[101] tasks include tracking of the instantaneous capture point and the centroidal momentum of

the system. CMU [51] tasks include tracking of the centroidal momentum and compensating

for a dynamically estimated disturbance force. MIT [104] tasks include tracking body frames

attached to various points on the robot. For simulated running, prioritized task space control on a
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simulation of a 3D humanoid in [203] tracks foot trajectories to embed the 3D-SLIP derived leg

placement at a higher priority than other stabilizing tasks and demonstrates stable running with

good disturbance rejection.

The centroidal dynamics [122, 123] of a system describe the acceleration of the center of

mass and the rate of change of the total angular momentum. Many control designs ([33, 51, 67,

101, 103, 104, 107], among others) have leveraged the straightforward relationship between the

centroidal dynamics and the net external contact wrench, as this mapping remains valid regard-

less of the specific robot parameters or configuration. At its core, the task of balancing a robot

can be expressed as stabilizing the centroidal dynamics, while optimization and inverse dynamics

algorithms for whole-body-control must address how exactly the centroidal motion is distributed

to each joint and individual rigid bodies. Controllers can thus be designed to prioritize generating

contact wrenches that feedback stabilize the center of mass motion and total angular momentum.

Finally, at the level of defining feedback policies to stabilize the centroidal dynamics, these

controllers implicitly rely on the full actuation of the robot. That is, the desired net wrench is

typically expressed as independent PD laws on each of the 6 floating base degrees of freedom,

or subset of these if some of the modes are close to stationary (most implementations assume the

angular momentum is zero, and thus command a desired net wrench with no rotational moment).

Even when some of the degrees of freedom are zeroed, the underlying assumption they can all be

set independently remains the same. This assumption is explicitly abandoned when the contact

wrench constraints are active, but it is still typically implicit in the feedback design.

[208] demonstrates a departure from this implicit assumption when using angular momentum

strategies on Atlas to restore balance when necessary (as measured through the instantaneous

capture point – see Section 2.4.2 – versus the footprint). This mode of operation gives high

priority to the angular momentum tasks, effectively removing the “full actuation” of the linear

momentum. This control allows Atlas to temporarily solve the under-actuated problem of bal-

ancing on a line in Figure 2.2(C). [71] also applies inverse dynamics and motion planning for
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an under-actuated system, formulating the concept of flow tubes to design stabilizing policies

within the dynamic limitations.

Virtual model control

Instead of solving the full equations of motion for inverse dynamics, virtual model control [39,

141, 184] techniques uses the Jacobian matrices from the kinematic relationship between actuator

and end effector to approximate the mapping between applied forces and joint torques. The

end effectors can then be made to re-create the behavior of virtual elements (like springs and

dampers) that would lend stability to the system. This design process can generate simple and

intuitive stabilizing feedback for individual modes, but since the virtual components must be

consistent with the feasible outputs of the real actuators, virtual model control on its own often

implicitly relies on full actuation.

2.3 Strategies for under-actuated systems

Under-actuated robots must use more involved methods to remain stable. For example, if a robot

on point feet were to track the COM position with PD control, it then has no way of controlling

the angular momentum. In particular, ankle-less robots are fundamentally similar to the Acrobot

model [49, 106, 177, 193], described by a double-link pendulum with an actuator between the

links and a passive pin joint at the base (Figure 2.3). Despite the under-actuation, this system is

controllable – it can balance itself about the upright equilibrium pose, and the coupling between

the degrees of freedom plays a critical role its stabilization. The horizontal location of the center

of mass is responsible for maintaining the orientation of the robot, and single-instant-in-time

optimization (task space control) of independently designed tasks in these two modes can easily

lead to unstable control. The collection of works in [19, 20, 49] present comprehensive studies on

the balancing problem for this class of robot and includes a comparison of linear and non-linear

control strategies.
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2.3.1 Optimal control for challenging dynamics

Model-based optimal control [3, 9, 26] can address this issue of stability of an under-actuated

system. In general, optimal control poses the problem as a search for the execution that brings

the system to the desired equilibrium configuration or to the desired reference trajectory while

incurring the minimum total cost. The cost is typically defined as the weighted total error across

all states and the total applied actuation, both integrated on a potentially infinite time horizon

that looks into the future. If an infinite-horizon solution exists, the full system will be stabilized.

On a finite horizon, the resulting control minimizes the total state error and effort applied. In

this discussion, there is an important distinction between “optimal control” and the optimization

used by the task-space algorithms discussed earlier. The optimal control formulation explicitly

considers the future states of the system, where the task-space optimization finds the best match

for the defined tasks at a single instant in time. The key observation here is that long term stability

would need to then come from appropriate choices of “tasks,” and full actuation facilitates this

step of the design process.

For example, linear quadratic regulation (LQR, the optimal control solution for unconstrained

linear systems with quadratic costs) is solved by integrating the Ricatti equation, which returns

the optimal control as a linear feedback law. This controller can also be extended to locally sta-

bilize nonlinear systems about the reference condition. For example, LQR applied to Acrobot

about its upright equilibrium automatically generates a linear feedback law that guarantees lo-

cal stability, where the design process implicitly handles the coupling between the horizontal

position and the dynamics of the orientation. In addition to stabilizing equilibrium poses, LQR

readily extends to tracking reference trajectories in a feed-forward plus feedback architecture

[17]. Beyond stabilizing challenging under-actuated systems, optimal control is a powerful tool

for effective control design even on fully actuated systems [51, 104]. For example, despite the

availability of ankle torque, identifying policies that intentionally minimize the required torques

can still be beneficial. Low ankle torques correspond to motions that keep the center of pressure
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away from the boundaries of the foot, thereby leaving a margin against instability.

While this “search for the fastest and cheapest convergence of all the state errors given the

dynamics of the system” is very powerful as a generalizable problem statement, the solution

generally cannot be expressed as a closed form feedback law. Model predictive control [3] itera-

tively re-solves the problem numerically, but this process is computationally expensive and slow

for high order models. A very wide variety of techniques have been developed to improve the

tractability of solving the optimal control problem, and within the legged locomotion community,

popular strategies include using reduced order models for motion planning [66, 83, 183, 187],

solving approximations to the optimal costs and policies that leverage linear or quadratic struc-

ture [29, 32, 51, 62, 79, 103, 104, 182, 194, 207], and handling the constraints in a separate step

(applying QP-based constrained inverse dynamics) after identifying an approximate optimal cost

function that ignores the constraints [51, 104]. In particular, the strategies used in [51, 104] show

that optimal control and task space optimization for inverse dynamics are not mutually exclusive.

[79] linearized the dynamics of a walking gait on ATRIAS to solve a stabilizing continuous-LQR

tracking problem, but found that the non-linearities of the system resulted in limited local sta-

bility. [29, 62, 182, 207] show that stability from optimal control and strategies that leverage

periodicity (discussed next) are also not mutually exclusive. In work in this thesis, we hypothe-

size that the step-to-step behavior designed with deadbeat control offers faster convergence and

improved mobility than the discrete LQR designs, and we explore the application of continuous

LQR for tracking the deadbeat stabilized motion plans.

2.3.2 Leg placement as an additional input, and periodic stability

Conceptually, another technique for handling the stability of under-actuated systems is to take

advantage of additional control inputs. Without needing to add actuators at the ankles, legged

robots differ from the Acrobot model in that they can lift and reposition their feet. This act of

taking a step can be a source of control; modifying the parameters (for example, timing and
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positioning of the step) allows for feedback and error correction. These adjustments can only be

made intermittently and are discrete actions, compared to the continuous joint torques discussed

earlier. In effect, this takes a more relaxed perspective to the overall goals – instead of trying

to constantly enforce a desired behavior, it may be possible to satisfy the original goal over the

course of multiple steps.

In practice, this commonly means that walking, running, or hopping robots can use changes

in stride-length to regulate their translational speed. The robot may then be loosely described as

no longer under-actuated – there are as many inputs as degrees of freedom, allowing for direct

and effective feedback control policies. This phenomenon is the key principle behind the long-

reigning success of Raibert’s hopping control [146, 147]. The system is fully parameterized

by its vertical motion, its horizontal motion, and its angular orientation. As long as all three

modes track their targeted behaviors, stability of the full order robot is achieved. Raibert applied

simple and robust policies to independently stabilize each of these three modes: thrusting force

delivered along the axis of the leg controls the vertical energy, linear feedback for leg placement

controls the forward speed from step to step, and PD servoing of the hip while the robot is in

stance controls the trunk orientation.

While this strategy does not provide any control authority for converging to target positions

and velocities within each stride, it does allow tracking of velocities across multiple steps; any

accumulated error of the horizontal position or velocity within individual strides can be reset

between strides. Stability of systems that use intermittent inputs can thus be defined with less

stringent requirements than a continuous system without discrete inputs; states may be allowed to

exhibit temporary divergent behaviors with increasing errors, as long as the intermittent control

provides sufficient correction. More formally, the local stability of repeating limit cycles [185] in

periodic systems can be studied with Poincare analysis, which examines how the states defined

at a once-per-cycle event change in sequential steps. In Chapter 6, we present an in-depth study

of how control design choices contribute to the structure of the Poincare map, and we generalize
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the analysis of error dynamics to apply to behaviors other than periodic limit cycles.

“Template-anchor” approaches [7, 13, 31, 52, 53, 132, 200] to implementing stable gaits

leverage the same underlying principles. A template model (like a rim-less wheel or a leg-

placement stabilized spring-mass system) that has inherent periodic stability in its dynamics is

identified, and the full order system (the “anchor”) is controlled to embed the dynamics of the

template. The available feedback on the full order system is then directed towards stabilizing

the extra degrees of freedom that are missing from the template model, such that the remaining

un-actuated modes are the template-stabilized ones.

2.4 Leg placement and simplified models

2.4.1 Leg placement on running robots

In the existing literature, running robots have demonstrated a wide variety of leg placement

policies, ranging from empirical approaches like Raibert’s work to more model-based studies

that offer theoretically more precise control of the motions as well as more formal analyses of

the stability of periodic trajectories. In [85, 86, 87], the HRP-2LR robot does not adapt the leg

placement to the current motion of the robot. Rather, the footholds are pre-planned based on a

specified long-term behavior, and the robot relies on other the continuous feedback and whole-

body motion planning to stabilize the motion given the specified placements. Similarly, HUBO

[30] does not reactively choose its leg placement. The hopping controllers studied in [19, 20]

likewise treat leg placement as a constraint.

As described earlier, Raibert’s pioneering work [146, 147] uses feedback on velocity to de-

termine the leg placement xf :

xf = xn − k(ẋ0 − ẋ).

After solving for the neutral point xn at which a nominal velocity ẋ0 is in equilibrium, the con-

troller targets an adjustment that depends linearly on the velocity error (extend the leg farther to
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slow down and bring it closer to speed up), thus controlling the forward hopping speed. Due to

its simplicity and its success, this policy has been adopted ubiquitously in simulated running and

walking systems [82, 214] as well as real running and walking systems [1, 2, 70, 140, 151].

On the MABEL robot, [181, 182], the leg placement policy is identified as part of a discrete

linear quadratic regulator (DLQR) that stabilizes the nominal gait. The authors identify a nomi-

nal limit cycle in the space of the full robot model for a running gait using numerical optimization

tools. The resulting cycle is unstable on its own, but a linearization of the stride-to-stride return

map allows a set of adjustable parameters (including leg placement and trunk orientation at tran-

sitions) to serve as control inputs. Applying DLQR directly yields a stabilizing solution, derived

from minimizing the summed one-per-stride state errors and the applied discrete adjustments for

all future steps.

The Toyota robot in [187] uses a predictive model to adapt the planned motion based on

the robot’s current configuration. Specifically, the authors specify a desired CoM position and

velocity two steps in the future. The control propagates the measured robot state through the

current step, and then solves a boundary value problem such that the target state is reached at

the end of the second step. The solution of the boundary-value problem includes the desired leg

placement of the upcoming step.

On ASIMO [188, 189, 190, 191], adjustments in leg placement are used as a last resort for

maintaining balance. That is, the primary source of stabilizing feedback comes from modifying

the wrench at the foot. When the desired corrective moment would exceed the moment that the

foot can apply, the controller accepts the extra uncorrected motion, which accumulates as an

growing error. The upcoming leg placement is then adjusted such that the accumulated error can

be addressed in future steps.
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Figure 2.4: The inverted pendulum and linear inverted pendulum are often used to model standing in place and

walking for humanoid robots. With a rigid leg, the inverted pendulum is constrained to move on a circle in 2D

or a sphere in 3D. With a telescoping leg that keeps the mass at a constant height, the linear inverted pendulum is

constrained to move on a line in 2D or a plane in 3D. Without ankle actuation, both systems are unstable around

the upright equilibrium, but repositioning the feet periodically resets the motion and can provide stability. Many

controllers integrate the un-actuated dynamics of these simplified models to plan the stabilizing leg placement.

Simplified models for leg placement

Simplified models represent the most crucial aspects of a system’s dynamics using a low num-

ber of parameters and variables. Applied to legged systems, they have been a useful tool for

capturing the relationship between the leg placement and the subsequent motion of the system.

This structured relationship can be exploited to find highly effective leg placement strategies for

achieving specific motions. Leg placement strategies derived from these models have been suc-

cessfully implemented for walking and balancing tasks, and this approach appears promising for

improving the agility and robustness of running.

2.4.2 Inverted and Linear inverted pendulum model

The inverted pendulum describes the system with a single rigid leg pinned to the ground at a

stationary foot, and all the mass concentrated at a fixed length l above the foot. The motion of

the CoM is thus constrained to lie on a circle (in 2D) or a sphere (in 3D) of radius l centered on

the foot. Without an ankle actuator, the system is fully passive. It has an unstable equilibrium

point when perfectly upright; it will fall over if slightly perturbed.

Many legged systems do not maintain a constant leg length, as the leg is actively articulated or
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incorporates some other actuated telescoping mechanism. The linear inverted pendulum model

(LIPM) modifies the rigid inverted pendulum with the assumption that the leg length varies with

the leg orientation such that a constant vertical height z0 is always maintained; the motion of the

CoM now lies on a line or plane instead of a circle or sphere. The name “linear” comes from the

fact that these dynamics match the linearization about the upright position of the rigid inverted

pendulum. This model is frequently used to represent walking [80, 83, 88, 188, 189, 190, 191],

as the body is typically held at an approximately constant height in walking gaits [209].

The equations of motion for the linear inverted pendulum are given by

mẍ =
mgx

z0

+
l

z
τx,

mÿ =
mgy

z0

+
1

z
τy.

relating the translational acceleration of the CoM to the applied torques in the ankle. Like the

inverted pendulum, the LIPM has an unstable equilibrium at the upright configuration, and ankle

torques would render the system fully actuated. If no ankle torques are applied, the system is

passive and gives a predictive model between initial conditions and the rest of single support,

which is often used [64, 80, 81, 105, 121, 186, 187] for identifying sequences of leg place-

ments that bring the system exactly to a desired state after a number of steps. Similarly, in

[43, 100, 143, 144], the authors use the model to identify the leg placement corresponding to the

capture point, which brings a non-stationary initial condition back to rest in a single step. This

analysis is extended to account for angular motion with the extended linear inverted pendulum

plus flywheel model. [183] uses this model to solve the model-predictive control problem of

trajectory generation for push recovery.

The bipedal linear inverted pendulum is an extension [128] that explicitly considers two legs

that gradually shift the vertical load from one leg to the other during double support. Adding the

dynamics of the double support phase allows for more direct reasoning of how to manipulate the

leg placement to track target speeds and reject disturbances.
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Figure 2.5: Spring mass model for running. The point mass bounces on a massless linear spring. The flight

phase of the system can be characterized by its apex height, as the speed at the apex can then be deduced from the

fixed energy of the conservative system. The transition between sequential flight phases is fully determined given

the landing angle of the leg. Thus, the simplified model is described by a mapping between apex states that is

parameterized by the leg placement. In 3 dimensions, the flight phase has the direction of motion as an additional

parameter, while the leg placement is further characterized by an out of plane splay angle. The stride-to-stride

transition is thus a two-to-two mapping.

2.4.3 Spring mass model

The constant vertical height of the LIPM implies constant vertical forces of exactly mg. This

does not agree with observations of animal locomotion, which instead exhibit compliant leg

behavior [5, 24, 40, 115, 209]; the leg force gradually loads and unloads in a spring-like way. The

spring mass model (SMM), or equivalently, spring loaded inverted pendulum (SLIP), is a point

mass model that assumes the leg behaves like a linear spring with axial leg force F = k(l0 − l).

This force points along the leg while gravity constantly pulls down on the point mass, and there

is no ankle actuation.
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The equations of motion of the system are

d

dt


x

y

z

 =
k

lm


x

y

z

 (l0 − l) +


0

0

−g

 ,
where

l =
√
x2 + y2 + z2,

and like the inverted pendulum and LIPM systems without ankle torques, these dynamics can

be forward integrated from any initial condition to generate the rest of single support. The

equation is fairly simple, but no analytic solution for the general trajectories are known while

approximations have been found [54, 158, 165]. Even without an analytical form, the model

conceptually describes the entire single support phase.

Running and hopping are captured by the SMM as sequential single support phases separated

by ballistic flight phases, whose dynamics are ẍ = ÿ = 0, z̈ = −g. Stance transitions to flight

when the leg length reaches l0, and flight transitions back to stance when the leg again touches the

ground at length l0. The orientation of the leg at touchdown can be freely chosen, however, and

it becomes a once-per-stride control input. Using return map analysis [185], numerous studies

have explored the effects of specific assumptions of the touchdown angle: constant touchdown

angles results in some locally stable gaits in 2D [6, 8, 56, 72, 166, 170], “retraction” of the leg

angle improves the stability [11, 16, 47, 169, 171], and while constant angles cannot stabilize the

3D system [166], stabilizing local feedback can be constructed [134, 166].

More generally, the leg angle is a parameter that governs the stride-to-stride transitions as-

suming SMM dynamics in stance; and control design is simply choosing the parameter that

produces the most desirable transition. Indeed, this interpretation of the dynamics for the planar

system gives rise to deadbeat running control [27, 47, 157, 170, 171] (Figure 2.6 as well as two-

step deadbeat walking control [199]. Conceptually, this is the same as the strategy used by some

LIPM policy walkers [80, 187] for a different set of states. In the spring mass system, the discrete

once-per-stride states are described by the apex height in flight, and the deadbeat control identi-
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(a) Deadbeat leg placement (b) Implemented as a time law for unobserved ter-

rain

Figure 2.6: Deadbeat leg placement for the planar SMM. The apex-to-apex mapping parameterized by the landing

angle α can be inverted to find the leg placement that maps from any current apex (within a specific domain) to

the desired one. This provides deadbeat stability of the running gait. If the ground height is unknown, each of the

deadbeat landing angles can be incorporated in a time-based policy α(t) such that whenever the system contacts

the ground, the current angle is the appropriate one. This transformation into a time policy is possible because the

time of landing and leg angle uniquely determine the original apex height. The result is a robust running gait that

is insensitive to unobserved changes in ground height.

fies the touchdown angle from any initial condition that returns the system to the target apex in a

single step. The domain on which such a solution exists depends on the friction cone as well as

the length of the leg. Finally, this deadbeat policy can be rendered robust to unobserved changes

in ground height by implicitly inferring the ground height through the time elapsed since apex

[47, 170, 171]. In Chapter 3, we extend this terrain-blind deadbeat behavior to include steering

in 3D.

In [203, 205], the authors linearize the dynamics of a more generalized model that allows

asymmetric spring profiles for a 3D compliant-leg system and solve discrete LQR for stabilizing

control over multiple outputs (including system energy and direction of motion) using multiple

inputs (including leg placement and stiffness parameters). Similarly, in [21], the spring stiffness

is used as an additional control input for stabilizing the spring mass model in 3D. In [27], the au-

thors argue that deadbeat solutions exist for the 3D SMM and propose an iterative computational

approach for finding them.
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To apply the SMM to walking, the model has been extended with a second mass-less spring

leg to describe the dynamics in double support. Similar to the case of running, researchers

have analyzed the stability of specific transition policies into double support with varied success

[10, 113]. Leaving the leg placement as an arbitrary but manipulable parameter of the stride-to-

stride dynamics of the bipedal spring mass model reveals two-step deadbeat solutions for gait

tracking [199].

To account for the non-trivial dynamics associated with the hip and the center of mass not

coinciding on a more realistic system, [135, 136] map the dynamics of this asymmetrical spring

loaded inverted pendulum (ASLIP) back to the simple SLIP by defining a virtual constraint

enforced by actuation at the hip. This then allows SMM leg placement strategies to be used

directly for the ASLIP model.

2.4.4 Other models for compliant legs

Other formulations similar to the SMM have also been applied to describe locomotion on com-

pliant legs. In [117], the authors first model the vertical dynamics of the system with the spring

mass model (independent of the horizontal states) and constrain the net GRF to act along the axis

of the leg, thereby resolving the horizontal component of the force. This results in a convenient

one way decoupling of the vertical dynamics, and the qualitative behavior of this model is largely

the same as the original SMM as long as the leg is nearly vertical. The concept of deadbeat leg

placement is unaffected by this modification to the details of the equations of motion.

In [45], the authors define a vertical force profile as a polynomial function of time. They

solve the boundary-condition problem to identify the deadbeat force input and resulting state

trajectory between the touchdown and desired takeoff conditions. Qualitatively, the resulting

force profile retains a spring-like shape while it automatically encodes deadbeat behavior on the

vertical states. The horizontal forcing and leg placement is then designed based on this vertical

behavior.

34



2.5 Performance on real machines

Transitioning from a theoretical controller to a hardware implementation is non-trivial. Most

model-based running robots end up running at significantly different gaits from the nominally

designed one. QRIO’s flight phase is 40% of the nominal duration [121], HRP-2LR’s running

speed is 64% of the nominal speed [85, 86], and MABEL’s running speed is 145% of the nominal

speed [182]. These differences largely stem from actuator saturation and un-modeled dynamics

including collisions, foot slip, and cable stretch.

Pure inverse dynamics based control tends to be unstable on hardware – especially when the

generated torque cannot be closed in a feedback loop, and most implementations augment the

control with kinematic feedback [50, 51, 101, 104, 107] through integration to reject errors that

stem from model errors and torque tracking. Adding these terms distorts the theoretical behavior

of the optimized inverse dynamics control.

[18, 51, 101] discuss the effects of various other challenges encountered on the Atlas plat-

form. Joint deformations lead to positional deviations, and these effects are mitigated by approx-

imating the deflection with a linear model. The sensory information is noisy, and depending on

the filtering applied, the stability of the system is highly sensitive to feedback gains on joint ve-

locities. The feedback gains are further limited by the latency in the communication, which had

to be estimated empirically. [51, 101] report the filter parameters and gains that they ultimately

settle on, commenting that the lower gains had “an acceptable cost to tracking performance.”

Perhaps due to diversity of the challenges encountered on hardware and diversity of the prac-

tical solutions applied towards addressing them, not much work has been done towards quantify-

ing or validating the convergence expected by model-based control design. Sufficiently overcom-

ing the modeling errors, disturbances, and uncertainties to demonstrate stability in real hardware

is achievement enough, and at the DRC, reliable repeatability may have been the most salient

measure of performance. However, in the interest of reproducing highly agile and robust behav-

iors predicted by simplified models, it is important to understand at a quantitative level to what
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degree this theory is limited by these realities of hardware systems, especially given the large

body of potentially applicable control developed around simplified models.

Theoretical treatment of a proposed controller’s practical performance is typically evaluated

through simulation-based studies of responses to specific perturbations. Many studies simulate

uneven terrain [108, 195] or externally applied limited-duration push disturbances [63, 203].

These approaches provide a useful measure of the ability of a system to recover from potentially

destabilizing events, but they do not fully describe how the tracking performance of a theoret-

ically derived model-based control would be validated in a comparison to noisy data from an

experiment with persistent sources of error.

Meanwhile, in the context of linear systems, there exist methods for quantifying the effects

of bounded perturbations to the nominal system [15, 22, 23, 74, 90]. For example, in [22], the

authors derive the invariant region for the closed loop evolution of a linear system whose dis-

turbances are limited by finite convex polyhedral bounds. Similarly, [57] formulates the control

design problem to preserve set invariance subject to bounded perturbations. Furthermore, many

of the issues discussed above can be represented as disturbance forces to a nominal closed loop

system that is agnostic to these effects.

In Chapter 7 of this thesis, we quantify the disturbances and uncertainties we encounter

empirically and apply numerical techniques and Lyapunov theory to formulate the theoretical

performance in terms of expected bounds. We find that the tracking demonstrated in our experi-

ments in Chapter 5 indeed lie within the expected range. While the conservative nature of these

bounds can limit their descriptiveness of the actual performance, this formulation nonetheless

serves as a first step towards analytically comparing theory and empirical results.

2.6 Summary

Maintaining balance and stability in legged systems is a challenging problem. Among other

strategies for feedback, leg placement offers a source of intermittent control. Many existing
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implementations have leveraged this control input to demonstrate stable gaits, but analyses of

simplified models suggest that higher performance control may be possible, especially for run-

ning gaits.

However, robots have not yet demonstrated these highly agile and robust behaviors. Further-

more, the theory does not yet clearly extend past an idealized low order model. The theoretical

behavior derived from a low order system may be limited by the requirements of stabilizing the

additional modes on a full order robot, and it may also be compromised by the unavoidable errors

and uncertainties associated with real hardware. The toll of these effects is currently unclear, so

the value of these theories remains unknown. The work in this thesis begins to bridge the gap

between hardware and theory for spring-mass running.
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Chapter 3

Deadbeat spring mass running in 3D

This chapter presents a study of agile and robust running in 3D within the dynamics of the spring

mass model (SMM), and the results show that the low order dynamics of this model have very

promising properties for agile and robust running. Despite the ground contact wrench constraints

and the under-actuation of the foot, the model is nonetheless capable of executing highly dynamic

motions. Leg placement allows the system to tightly control the speed and direction of running,

even on unobserved, uneven terrain.

Most of this material is published in the journal paper [210]. Section 3.1 reviews the back-

ground and the motivation for this work. In Section 3.2, we derive the deadbeat control for

bounce height and direction of motion, extend it to perform on uneven terrain, and compare the

tracking performance to classical heuristic leg placement strategies [146]. Finally, Section 3.3

frames the relevance of these results in the context of designing and implementing control for

legged robots.

3.1 Background

Over the past three decades, the spring mass model has developed into the basic behavior model

for studying the running gait in animals and robots. Established in the 1980’s [24, 115, 146, 148],
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the model has helped in early work to develop locally stable feedback controls for hopping and

running robots [146, 215] and to understand the leg function in animal and human runners [5, 24,

25, 40, 48, 115]. More recently, the focus on this model has shifted to developing approximate

solutions [54, 158, 165] and to understanding global running stability by analyzing the model’s

hybrid dynamics with Poincaré maps. This analysis method has proved especially productive

[72]. It has helped to reveal and understand the passive stabilization of insect running in the

horizontal plane [162, 163, 164], and of robot and human running in the sagittal plane [6, 8, 56,

170]. In addition, it has resulted in control strategies that promise to largely improve the stability

in running robots [11, 13, 16, 47, 161, 169, 171] (see Section 2.4.3 for a detailed discussion), to

the extent that they could one day outperform their animal competitors.

While the planar spring-mass model has greatly advanced the understanding of running dy-

namics and control in the horizontal and sagittal planes, few attempts have been made to transfer

this knowledge to three-dimensional locomotion. Seipel and Holmes [166] investigated running

stability with Poincaré analysis of the 3D spring-mass model. They showed that symmetric gaits

with a constant in-flight leg orientation defined with respect to the desired direction of motion

are unstable. By introducing linear feedback control derived from a local stability criterion, they

found stable running for motions sufficiently close to the sagittal plane. Peuker, Maufroy and

Seyfarth [134] expanded these results in a recent numerical study. Inspired by insights from the

work on insect running in the horizontal plane [164], they explored running stability using con-

stant leg angle policies with respect to the direction of motion and observed locally stable gaits

for a large range of leg angles. Beyond local stability analysis, Carver, Cowan and Guckenheimer

[27] investigated deadbeat stepping policies that drive the 3D spring mass model into desired sys-

tem states using the least number of steps. In particular, after deriving existence and uniqueness

conditions, they proposed an iterative algorithm to compute these policies and demonstrated it in

examples where the model’s horizontal position is perturbed in flight.

Here we show that identifying deadbeat policies for stability and steering in 3D spring-mass
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running can be largely simplified and that the resulting controller can in part be embedded in a

feed-forward manner generating highly robust locomotion over rough terrain. First, by param-

eterizing the full model dynamics in a motion-aligned frame, we reduce the essential behaviors

of stability and steering to a compact representation. We then use simple interpolation over this

representation to pre-compute the deadbeat policies for attaining all possible running behaviors.

Finally, we map these policies into the time after apex, and show in a simulation example that

the resulting control enables navigation to waypoints over rough terrain with large, frequent and

unknown ground disturbances (up to 30% of leg length in the example). Our results suggest

that compact and efficiently computed dead-beat policies for the 3D spring-mass model can be

combined with time-embedding to provide a powerful alternative for leg placement strategies in

highly maneuverable running robots.

3.2 Method and results

A few comments on notation. In this chapter, θ refers to the direction of motion (Fig. 3.1). The

rest of this thesis focuses more on whole-body control in the sagittal plane, and θ is re-defined to

describe the orientation of the robot (Fig. 4.2).

Throughout the thesis, we use vector representations of states and control inputs. Unless

explicitly denoted in the matrix equations, these vectors are column vectors. When written out in

text form (for example, q = [x, y, z], s = [q, q̇]), we sometimes omit the transpose operations

to reduce clutter. In this example, q and q̇ are a 3-by-1 column vectors, and s is a 6-by-1 column

vector.
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3.2.1 Dynamics and Problem Formulation

We model 3D spring-mass running similar to previous work [27, 56, 133, 166, 170] (Fig. 3.1).

The flight phase is modeled as a point mass m following a ballistic trajectory with

m


ẍ

ÿ

z̈

 =


0

0

−mg

 , (3.1)

where the coordinates are given in the apex frame. The apex describes the highest point in flight

and the apex frame aligns the x-axis with the direction of motion v at that point (with z pointed

up). In addition, the frame’s origin is located at the ground level. After the apex event, the

angle of attack α and the splay angle β parameterize the swing leg orientation. The swing leg

has a constant length l0, and the model transitions to stance when the point mass reaches the

touchdown height zTD = l0 sin(α).

During stance, the point mass rebounds on a massless spring with stiffness k and rest length

l0, assuming that the foot point stays fixed on the ground. The dynamics of the point mass are

governed by the gravitational force mg and the spring force F = k(l0/|l| − 1)l acting along the

leg axis l,

m


ẍ

ÿ

z̈

 = k(l0/|l| − 1)


x− xf

y − yf

z

+


0

0

−mg

 , (3.2)

where [xy0]Tf is the location of the foot point and |l|2 = (x−xf )2 +(y−yf )2 +z2. The resulting

trajectory of the point mass determines the spatial orientation and length of the spring. When the

spring length returns to l0 during rebound, the model transitions back to the flight phase.

The model describes running dynamics with alternating stance and flight phases of the left

and right legs as long as four conditions are fulfilled. First, the model reaches an apex in flight.

Second, at apex the height of the point mass exceeds the landing height, za > l0 sin(α). Third,

the point mass remains above ground throughout stance, z > 0. And fourth, the horizontal leg

42



β

α

x'

z'

y'

l0
x

z

y

z
zi+1

θi vi

vi+1

dθ

vi
g

Figure 3.1: The 3D spring-mass running model. The model describes a sequence of flight and stance phases. The

ith flight is characterized by a ballistic trajectory of a point mass m. The apex velocity vector vi and the vertical

axis define an apex frame (x, y, z) and a heading θi with respect to the world frame (x, y, z)′. The leg of length l0

is positioned with an angle of attack α and a splay angle β, both measured in the apex frame. In stance the point

mass rebounds on a massless spring leg (stiffness k, rest length l0). The model’s net behavior can be captured by

a behavior function f which maps the apex height zi+1(zi, αi, βi) and the change in heading dθ(zi, αi, βi). Due

to the symmetry of the model, f equally captures left and right leg behavior of the alternating stance phases in

running. g: gravitational acceleration, vi+1: velocity vector at apex i+ 1.
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forces stay within the friction limit,
√
F 2
x + F 2

y < µFz, where µ is the static friction coefficient.

(We do not consider slipping.) The last condition translates into a minimum angle of attack

αmin = atan(µ−1). Smaller landing angles will always lead to a violation of the friction condition

in stance.

Behavior Function and Control Objective

The behavior of the spring-mass model is captured by the apex return map, which is a discrete

mapping of the system state at apex between two consecutive flight phases. Poincare analysis

[185] is often been applied to test the stability of a passive system [95, 114]; here we use a similar

thought process to actively generate stable control. The complete map tracks the state vector

[x ẋ y ẏ z ż]a, where the subscript a denotes apex for each variable. However, to characterize the

model behavior, it suffices to track only a pair of variables, the apex height z and the deflection

dθ in heading. Similar to the planar case, ża = 0 by the definition of the apex. Furthermore, the

stance dynamics depend on the relative position of the foot with respect to the point mass and its

direction. This position is parameterized by α and β, making [x y]a unnecessary for computing

the motion between apexes (just as x can be discarded given α in the planar case). Note, however,

that these coordinates are required to track the absolute position of the system within the global

frame. Among the remaining variables, the magnitude of the horizontal velocity is coupled to

the height za by the constant system energy Es with ẋ2
a + ẏ2

a = 2Es
m
− 2gza. Therefore, the model

behavior is captured by

(zi+1, dθ) = f(zi,p)

where dθ is the horizontal deflection after the stance phase, f is a function of the model dynamics,

and p is the vector of model parameters. That is, given p, the previous apex height zi is the only

state needed for deriving the relative motion of the next flight phase. From this representation, the

apex return map R that characterizes running stability and global steering of the 3D spring-mass
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model can be formalized as

(z, θ)i+1 = R(zi, θi,p)

with θi describing the global heading in the ith step (Fig. 3.1) and θi+1 = θi + dθ.

The model behavior can be controlled by manipulating the return map, for which a goal

behavior is equivalent to a target state (z, θ)∗. The control problem consists of finding ways

to drive the model to the target state from arbitrary initial conditions, and deadbeat control is

achieved if a parameter policy p(zi, θi, z
∗, θ∗) exists that enforces (z, θ)i+1 = (z, θ)∗ for all

possible (z, θ)i. As a result, the general problem of controlling the model behavior resolves for

each initial state i to the minimization problem

pi = argmin
p

d( (z, θ)∗, R(zi, θi,p) ) (3.3)

where d(., .) is an appropriate measure of distance (the Euclidean norm, for example). If a vector

pi exists that brings the minimum to zero, then deadbeat control is achieved; otherwise, the state

(z, θ)i+1 will be as close to (z, θ)∗ as possible.

In the 3D spring-mass model, the vector

p = [Es m g k l0 α β]

contains seven parameters, several of which are suitable for control. In particular, we choose the

two angles that define the swing leg orientation as the control inputs, u = [α β], to demonstrate

how leg placement in the flight phase generalizes the deadbeat control of planar spring-mass

running to 3D locomotion and steering. The remaining parameter vector p̂ is fixed to Es = 1785

J, m = 80 kg, g = 9.81 ms−2, k = 15 kNm−1 and l0 = 1 m; these values fit a human-like system

running at about 5ms−1 [170]. The model behavior function f is thus written as

(zi+1, dθ) = f(zi,u, p̂) (3.4)
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and the control problem reduces to

[α β]i = argmin
[α β]

d( (z, θ)∗, R(zi, θi,u, p̂) )

[α β]i = argmin
[α β]

d( (z∗, θ∗ − θi), f(zi,u, p̂) ) (3.5)

Note that more parameters can be included in solving (3.3). The added degrees of freedom

in the control input can then be used to consider further performance metrics (compare [47] for a

planar example), or to embed lower priority tasks as in redundant manipulators [93]. In this work,

matching the degrees of freedom between the control targets (z, θ)∗ and inputs (α, β) avoids this

redundancy and simplifies the demonstration of deadbeat control.

3.2.2 Control Strategy Derivation

The behavior function f(zi,u, p̂) is nonlinear. To solve (3.5) for arbitrary target states, we first

perform a numerical scan to generate a discrete representation of f . We then define a particular

measure d and use interpolation to derive the control inputs [α β]i that project from the initial

states into arbitrary target states. In the final part of this section, we apply the transformation

between apex height and falling time [169] to derive a control strategy that does not require

knowledge about the actual ground level to produce deadbeat control of stability and steering.

Discrete Representation of Model Behavior

We scan the model behavior f(zi,u, p̂) over the inputs α and β for all possible initial apex

heights zi. As control input ranges, we choose α ∈ [45◦, 90◦] and β ∈ [0◦, 180◦]. The lower

bound αmin is governed by the static friction limit assuming µ = 1. Due to the reflection sym-

metry of the model with respect to the sagittal plane, it suffices to scan β within 0◦ and 180◦

to capture the model behavior for all possible splay angles. The initial height is limited to zi ∈

[0.71, 2.27] m. The minimum corresponds to the landing height defined by zmin = l0 sinαmin; the

maximum zmax = Es/(mg) results from converting all system energy into potential energy. Us-
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Figure 3.2: Numerical representations of model behavior for two different initial apex heights zi = 1.25 m (A-B)

and zi = 0.85 m (C-D). (A) Apex height zi+1[α, β, zi] and deflection dθ[α, β, zi] as functions of foot placement

projected onto horizontal plane (Fig. 3.1) for zi = 1.25 m. The radius rmax describes the friction limit. Maps

are color coded from low (blue) to high values (red). Empty regions indicate that the model does not return to

an apex in the next flight phase. The white circle highlights the stopping point at which all energy is directed

into vertical motion. (B) Closeup section with apex height and deflection behaviors overlaid as contour plots.

Contour lines show inputs [α β]i that produce the same apex height zi+1 (ring sections) or deflection dθ (rays).

(C,D) For zi = 0.85 m, the landing condition limits the maximum angle of attack to αmax = asin(zi/l0). This

constraint results in a minimum radius rmin for the feasible foot positions, reducing the domain of the behavior

map projection to an annulus.
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ing these ranges, we generate the discrete functions zi+1[α, β, zi] and dθ[α, β, zi] that represent

f(zi,u, p̂) (3.4) with an α-β-zi resolution of 22x45x150 by numerically integrating the model

dynamics (Eq. 3.1) and (Eq. 3.2) between two apexes (computation time less than a day on a

modern desktop PC).

Figure 3.2 shows the discretized model behavior for two different initial heights zi. The con-

trol inputs α and β are represented as foot point locations relative to the point mass and projected

onto the x-y plane. The projection forms a disc centered on the origin, which corresponds to

α = 90◦ with the foot directly below the point mass. The distance from the origin is given by

l0 cos(α), and β describes the angular position relative to the direction of motion. The friction

limit defines the maximum disc radius rmax = l0 cosαmin (Fig. 3.2A). The discrete functions

zi+1[α, β, zi] and dθ[α, β, zi] are well behaved and centered about a characteristic point (white

circle) lying on the β = 0◦ axis. This characteristic point is the spring-mass model’s equivalent

to the capture point of the linear inverted pendulum walking model [80, 143, 196]. Landing

with the foot positioned at this point stops the motion in the x-y plane as all the system energy

is re-directed into vertical motion with zi+1 = zmax. Landing past this point leads to backward

motion (dθ = 180◦). Foot positions resulting in equal apex heights zi+1 form concentric rings

about the stopping point with decreasing heights, eventually interrupted by the rmax given by the

friction limit. By contrast, configurations with equal deflections dθ form rays that originate from

the stopping point. The closeup in figure 3.2B shows that the inputs [αβ]i can reach a large range

of target behaviors (z, dθ)∗.

The range of target behaviors that can be reached diminishes when the initial height drops

below the rest length l0 = 1 m of the spring. Figure 3.2C-D shows an example with zi = 0.85

m. The disc of foot positions reduces to an annulus with an inner radius rmin =
√
l20 − z2

i that

corresponds to a landing angle αmax = asin(zi/l0) (Fig. 3.2C). Steeper angles of attack cannot

exist due to ground contact. As a result, individual behavior goals may not always be achievable

simultaneously. For instance, a target height of z∗ = 0.95 m cannot be achieved with a target
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deflection dθ∗ = 0◦ from this initial apex height (Fig. 3.2D).

Deadbeat Control Policy

For controlling the model behavior, we prioritize robustness against ground disturbances over

heading directions and require that the apex height goal is achieved whenever possible. To realize

this constraint, we split (3.5) into two stages. The first stage identifies the set of control inputs

Uz∗(zi) = {[α β] : zi+1(α, β, zi) = z∗} (3.6)

that enforce the desired apex height z∗. The second stage then solves the minimization problem

[α β]i = argmin
Uz∗ (zi)

|θ∗ − θi − dθ(α, β, zi)| (3.7)

to find the control input [α β]i ∈ Uz∗(zi) that best aligns the heading with the target heading

θ∗. Given a target apex height, the two stages are straightforward to implement using bilinear

interpolation on the discrete functions zi+1[α, β, zi] and dθ[α, β, zi] for the range of initial apex

heights zi.

The constrained optimization on the behavior function yields the tables α[zi, dθ
∗, z∗] and

β[zi, dθ
∗, z∗], which contain the control policy that projects initial states (z, θ)i into target states

(z, θ)∗. The domain of this policy is limited to the set of initial heights {zi|Uz∗(zi) 6= ∅} ⊂

[l0 sin(αmin), Es/mg] for which the apex constraint can be satisfied. If zi falls outside of this

domain, it is impossible to project to the target z∗ in one step and the control policy picks the

nearest neighbor height from the domain.

As an example, figure 3.3A shows as contour plots the resulting policy for achieving a target

height of z∗ = 1.1m. For this target height, all possible initial heights zi ∈ [0.71, 2.27]m can

be projected to zi+1 = z∗ in a single step. The policy is characterized by a divider, which is

defined by the friction limit and the touchdown condition (black curve). Above (and to the right

of) the divider is the deadbeat region, where any target deflection can be achieved along with the
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Figure 3.3: Control policy for achieving z∗ = 1.1 m. (A) Control tables α[zi, dθ
∗, z∗] and β[zi, dθ

∗, z∗] are

shown as contour plots for all possible initial heights zi with ranges of target deflections dθ∗. The black curve

describes the friction and touchdown limits. The region of deadbeat control for stability and steering is above this

divider and below the system energy limit. Below the deadbeat region, the control policy clips the parameters to

the ones on the divider to minimize |dθ − dθ∗| while enforcing zi+1 = z∗. The red line indicates the steady state

control zi = zi+1 = z∗ (B) Same as (A) except that control tables are transformed to the time after apex.
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target height, realizing deadbeat control for both behavior goals. Below the divider, however,

target deflections cannot be reached and the control policy returns the closest alternative. For

instance, the spring-mass model can achieve steady state running with zi = z∗ = 1.1 m for

target deflections dθ∗ = θ∗ − θi up to ±74◦, where the control input is [α β] = [45◦,∓20◦]

(intersection of red line and black curve in each panel). For larger target deflections, the control

input will remain at [45◦,∓20◦], maintaining deadbeat control of the apex height but clipping the

directional tracking.

Transformation into Time Policy

Previous work on the planar spring-mass model has shown that deadbeat control using the angle

of attack α(zi) can be transformed into a time-based control α(t) during flight if the time is mea-

sured from the apex event, t ≥ tapex [47, 169, 171]. This transformation fundamentally changes

the control. Instead of selecting a single leg placement based on a single height at apex, the

time-indexed sequence of leg placements embeds the deadbeat behavior across a range of apex

heights. In effect, ground height variations in the upcoming step are automatically accommo-

dated as they correspond to different falling times. We generalize this transformation to include

the splay angle β and generate a control policy that does not require knowledge about the actual

ground level to produce a time-based deadbeat control of stability and steering.

The time transformation takes advantage of the free-fall dynamics after the apex to replace zi

with a function of time in the control tables. The height of the point mass at touchdown is given

by zTD = l0 sinα. Given that time t has passed between apex and touchdown, this apex must

have been at a height zapex = l0 sinα + g
2
t2. The correspondence can be used to transform the

table α[zi, dθ
∗, z∗] into a time-based table

α[zi, dθ
∗, z∗]→ α[ti, dθ

∗, z∗] (3.8)
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which defines the angle-of-attack control as a time policy after the apex event. At the time

ti =

√
2

g
(zi − l0 sinα[zi, dθ∗, z∗])

the angle of attack assumes the value α[zi, dθ
∗, z∗]. If the model lands, the apex height must

have been zi; otherwise, the flight phase continues and the system automatically prepares for

stance at a later time corresponding to a different pair of apex height and angle of attack. Since

α[zi, dθ
∗, z∗] belongs to a joint control input for α and β, the control table of the splay angle

transforms in the same way,

β[zi, dθ
∗, z∗]→ β[ti, dθ

∗, z∗]. (3.9)

In effect, (3.8) and (3.9) realize deadbeat control of stability and steering without actually sensing

the ground level.

Figure 3.3B shows the resulting time policy for the previous example of achieving a target

height of z∗ = 1.1m (Fig. 3.3A). The policy shares features with the original control policy. A

divider (black curve) again separates between the deadbeat control region that achieves target

deflections along with the target heights (above divider) and the region in which the deflections

are clipped to the closest alternative (below divider). In the time policy, the divider is solely

defined by the friction limit as the landing condition maps onto t = 0. At that time, only de-

flections that are smaller than ±20◦ can be realized. As time progresses, larger target deflections

become possible with the same minimum landing angle (αmin = 45◦), allowing sharper turns

that in steady-state (red curve with zi = z∗) can reach up to ±74◦ per step. Reducing the friction

coefficient µ enforces larger maximum landing angles and leads to smaller maximum deflections.

For a given target deflection dθ∗, the time policy describes an increasing angle of attack α(t)

that retracts the leg in the present example. Although leg retraction has been associated with

stabilizing running [34, 69], in general, it is not the cause of stability. Rather, deadbeat control

requires a specific sequence of landing angles, which can appear as retraction for some model

parameters but not for others.
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3.2.3 Control Performance in Simulation

We test the performance of the time-based control strategy (3.8) and (3.9) for running and steer-

ing in a 3D simulation environment. Specifically, we focus on locomotion robustness when

encountering large, frequent and unknown changes in the ground height, and on the sensitivity

of the control to changes in model parameters. In addition, we provide in these tests a comparison

to the leg placement strategy of the classical Raibert controller [146] as a baseline for assessing

the quality of the proposed strategy.

Robustness to Changes in Ground Height or System Energy

In the robustness test, the simulated environment consists of flat square tiles (1x1m2) which de-

fine random height levels that are uniformly distributed between±∆zmax
2

(Fig. 3.4), with ∆zmax =

25cm (25% of the model’s nominal leg length) as the maximum step change that can be encoun-

tered going up or down. The spring-mass model is launched into this environment at an initial

apex height of z0 = 1m with a velocity of 5ms−1 (model parameters as defined in section 3.2.1).

The target height is set to z∗ = 1.1m. In addition, we assume that waypoints define heading tar-

gets, where the target deflection dθ∗ is computed as the change required to redirect the motion in

flight towards the current waypoint. Once the model gets within 0.5m of this waypoint, the target

heading switches to the next one. (We forego advanced path planning algorithms for simplicity.)

In the simulation, the time-based control shows large robustness to changes in the ground

level. The model navigates robustly through the 3D environment, maintaining running stability

while making sharp turns toward the way-points (Fig. 3.4). The control performance is summa-

rized in Fig. 3.5 for a random navigation trail with a total of 500 steps (Fig. 3.5A). The vertical

steps encountered on the trail cover the full range from -25cm to +25cm (Fig. 3.5B). Whenever

touchdown occurs at a ground height z′g,i = 0, the target height is met exactly (zi+1 − z∗ = 0,

Fig. 3.5C). Ground deviations y′g,i 6= 0 on the other hand can lead to subsequent apex heights zi+1

with errors εz = zi+1 − z∗ up to -10/+20cm and to errors in deflection εdθ = dθi+1 − dθ∗ of up
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changes in the ground height. The spring-mass model is launched at 5ms−1 over random ground with step changes

up to 25cm. In flight, the leg’s attack and splay angles are updated after the apex event based on the time policy

(3.8) and (3.9) with a target height of z∗ = 1.1m (Fig. 3.3B). Target deflections are generated by waypoints Wi

(green poles). The resulting trajectory of the point mass is shown (yellow, projection onto horizontal plane in

black) with the leg sketched at touchdown and takeoff (red). The inset provides an aerial view with the point mass

trajectory in blue and the resulting foot placements FP in stance marked as red circles.
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to ±10◦. These errors fall within the deadbeat region of the control (section 3.2.2 and Fig. 3.3)

such that they are corrected in the next step and do not accumulate. In effect, the system keeps

robustly navigating through the environment despite the large ground disturbances.

The tracking errors are caused by changes in system energy, which are induced by the chang-

ing ground levels. We derived the time-based deadbeat control from the behavior function f

assuming a particular system energy Esys = m||v0||2
2

+ mgz0 given by the initial conditions

||v0|| = 5ms−1 and z0 = 1m. In the environment with nonzero landing heights, however, the

effective system energy changes from step to step by ∆Ei = −mgz′g,i (between ±5% of the

total energy), which alters the system behavior and reduces the precision of the applied deadbeat

control. (Note that changes in ground level or system energy thus express the same disturbance

to the system behavior as indicated by the horizontal axis in Fig. 3.5C).

In general, we observe similar ranges of errors when encountering disturbances of similar

relative changes in energy. For instance, at system energies corresponding to slower running

speeds of 2.5ms−1 and 3.75ms−1 (at apex height za = 1m), we find similar error ranges to the

ones we observed for running at 5ms−1 if we limit the ground changes to levels of 6.5cm and

8.5cm, which correspond to the same 5% changes in energy.

Although energetic disturbances can be corrected by stabilizing the system energy in stance,

such corrections reduce the energetic efficiency of locomotion when performed from step to

step. Because the spring mass model is conservative, it cannot correct for changes in system

energy. To overcome this limitation, several extensions of this model have been proposed in

theory and application [12, 55, 96, 146, 161, 215]. These extended systems can effectively cope

with energetic disturbances ranging from dissipative losses to sloped terrain by regulating system

energy during stance. However, the control proposed here demonstrates that a tight regulation of

system energy from step to step is not required on rough terrain that is flat on average. Nor would

such regulation be energetically effective, since it would brake in one step only to re-accelerate in

the next. In contrast, the proposed control strategy tolerates local, step-to-step changes in system
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z' = 0

z'g,i

Δzg

zi+1 = 
z*+εz(ΔEi)

ith touchdown zm

z'g,i+1

Figure 3.6: Stumbling margin. Variable ground levels y′g,i introduce energetic disturbances ∆Ei = −mgz′g,i

resulting in the tracking error εz(∆E) that is measured with respect to the ground at the previous touchdown.

The stumbling margin ym describes the maximum height of the ground change ∆zg that the system can tolerate

without stumbling in the next step.

energy or ground level without consuming power. An extension of this control with an explicit

method for stabilizing system energy over a longer horizon of multiple steps could thus combine

robust and energy efficient running and steering in sloped environments.

Margin of Stability against Stumbling

While the model did not fail, the margin of stability against stumbling was only ∆zmax = ±19cm

in this example. The stability margin zm is given by the vertical distance

zm = zi+1 − l0 sinα[0, dθ∗, z∗]

between the foot and the ground at apex (Fig. 3.6). Stumbling occurs if this margin vanishes and

the leg protrudes into the ground (zm < ∆yg). In steady state locomotion with zi+1 = z∗ = 1.1m,

the time-based control has a margin of at least 29cm (at t = 0, α ≤ 54◦, Fig. 3.3B). Since the

errors in system energy produce apex height tracking errors, the actual margin deviates from the

steady state value depending on the disturbance encountered in the previous step. In the worst

case, the previous step causes the maximum observed undershoot of εz = −10cm (Fig. 3.5C),

reducing the margin for the next step to

zm = z∗ + εz − l0 sinα[0, dθ∗, z∗] ≈ 19cm. (3.10)
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Systematic Error
Deadbeat / Constrained Deadbeat / Classical

steady state εz (cm) RMS εz (cm) max εz (cm) RMS εdθ (deg) max εdθ (deg)

0 -0.3 -0.3 -1.2 0.3 0.3 6.7 0.5 0.5 19.8 0.9 0.0 3.8 3.3 0.0 11.2

∆E = −10% +15.2 +15.2 -0.6 15.7 15.1 5.2 27.4 16.0 15.6 4.0 3.6 2.4 15.4 6.9 8.8

-5% +5.9 +5.9 -1.0 5.7 5.8 6.0 6.8 6.1 17.6 3.2 1.5 3.2 6.0 2.6 9.1

+5% -4.2 -4.2 -1.5 4.0 4.0 7.6 4.9 5.3 23.1 2.9 1.2 4.4 9.8 1.9 12.9

+10% -7.4 -7.4 -2.2 7.0 7.1 8.6 35.9 12.9 25.3 4.6 2.3 5.2 19.3 3.5 15.8

∆k = −10% -7.5 -7.5 -1.5 7.8 7.5 6.9 9.8 7.9 26.4 1.5 0.6 5.1 4.8 1.0 14.6

-5% -3.7 -3.7 -1.4 3.9 3.7 6.8 4.8 3.9 22.8 1.1 0.2 4.3 5.2 0.5 13.0

+5% +3.6 +3.6 -1.3 3.7 3.9 6.8 4.6 4.1 17.7 0.3 0.3 3.3 1.4 0.5 9.9

+10% +7.2 +7.2 -1.2 7.4 7.7 6.9 8.4 8.4 16.4 0.6 0.4 2.9 2.7 0.8 8.5

∆α = −2◦ +10.9 +10.9 -1.5 10.1 9.8 7.1 16.8 11.0 16.8 2.4 2.3 4.2 7.6 3.9 13.7

−1◦ +5.0 +5.0 -1.4 4.9 4.5 6.8 6.2 5.1 24.2 0.9 1.0 4.0 3.1 1.8 12.4

+1◦ -4.4 -4.4 -1.3 4.2 3.9 6.7 5.0 4.4 17.2 2.6 1.0 3.6 8.9 1.6 9.9

+2◦ -8.1 -8.1 -1.3 7.6 6.9 6.8 9.8 8.0 15.3 3.9 2.2 3.3 12.2 3.1 8.7

∆β = ±1◦ -0.1 -0.1 -1.3 2.8 1.7 6.3 7.1 2.7 22.2 1.7 0.8 4.2 5.2 1.0 11.5

±2◦ +0.3 +0.3 -1.4 5.0 3.3 7.8 14.4 4.9 27.7 2.3 1.6 4.2 5.5 1.9 15.4

∆t = 15 ms +3.9 +3.9 - 3.9 4.9 - 4.9 6.4 - 1.5 1.5 - 5.1 2.8 -

30 ms +9.3 +9.3 - 9.2 9.7 - 13.3 10.9 - 2.2 3.2 - 10.1 5.3 -

Table 3.1: Sensitivity of tracking on flat ground. Maximum and root-mean-square errors in tracking height (εz)

and deflection (εdθ) are shown for the deadbeat, turn-rate constrained deadbeat (Sec. 3.2.3), and classical con-

trollers (Sec. 3.2.3). “Steady state” refers to straight-line motion with zi = zi+1. Smaller errors between con-

strained deadbeat and classical control are in bold.

The model would have stumbled in this next step if there had been a rise in ground level of

∆zg > 19cm. Thus, (3.10) defines the actual stability margin in the example.

Besides increasing the target height to create a bouncier gait, the stability margin can also

be improved by decreasing the initial angle of attack. In fact, at t = 0 the control tables allow

a minimum of α = 45◦ that aligns with the friction limit (Fig. 3.3). As l0 sin 45◦ = 0.71m, a

modified time policy that starts with this angle will, at the expense of an unavoidable deflection

in the largest upward steps, increase the stability margin by 10cm to ∆zmax ∼ ±29cm, or about

30% of the leg length.

58



Sensitivity to Changes in Dynamic and Control Parameters

In further simulation experiments, we test the sensitivity of the time-based control strategy to

systematic errors in model parameters. Like the system energy Esys, a change in any other ele-

ment of the parameter vector p̂ causes a deviation in the behavior function f(zi,u, p̂), producing

height and deflection errors. Although p̂ includes five parameters, we take advantage of the fact

that they collapse to only two independent parameter groups in dimensional analysis (dimen-

sionless system energy Ẽsys = Esys
mgl0

and stiffness k̃ = kl0
mg

) [54], and we only consider changes

in system energy ∆E and leg stiffness ∆k to characterize the sensitivity of the leg placement

strategy to systematic errors in the dynamic parameters. In addition, we consider systematic er-

rors in the control with regard to the positioning accuracy of the leg (∆α and ∆β) and the update

frequency of the control loop (time delay ∆t). For each parameter, we first repeat the random

waypoint navigation experiment over flat ground to isolate its effect on the control performance

and then investigate its influence in rough terrain locomotion.

Table 3.1 summarizes the results of the sensitivity analysis on flat terrain. Without any param-

eter disturbances, very small tracking errors in height and deflection persist due to the discrete

representation of the behavior function f (maximum errors ≤0.5cm and < 3.5◦ for the sharpest

turns). With parameter disturbances, the model is most sensitive to systematic changes in system

energy and the angle of attack, producing maximum errors of 36cm and 20◦ (∆E = 10%) and

17cm and 12◦ (∆α = 2◦). On average, however, tracking errors stay much smaller. Moreover, if

the controller is constrained to make wider turns, the maximum errors are reduced substantially

(commanded deflections of |dθ∗| > 20◦ are truncated to a maximum turning rate of dθ∗ = ±20◦

per step for ‘constrained deadbeat’ in Tab. 3.1), demonstrating that accuracy in modeling and

tracking matter the most for aggressive turning maneuvers.

As a characteristic example of the influence of systematic parameter changes on control per-

formance during rough terrain locomotion, Figure 3.7 shows the combined effects of systematic

errors in energy estimation and energy disturbances from rough ground. As mentioned in sec-
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Figure 3.7: Sensitivity of tracking apex height on rough ground to systematic changes in energy ∆E = ±3%

(blue/red dots). Tracking errors are shown as a function of ground level. (A) Time-embedded deadbeat control.

The gray envelop outlines the tracking error of the unperturbed model (Fig 3.5C). Systematic model errors produce

systematic shifts in tracking error including the zero error height (vertical lines). (B) Same control limited to

maximum turning rate of 20 deg per step. The black dots show the tracking error of the corresponding unperturbed

model. (C) Classical Raibert-style leg placement control (limited to 20 deg per step to avoid falling). Tracking

errors remain large but nearly unaffected by systematic modeling errors (compare to red dots in Fig. 3.8C). Similar

effects are observed in the deflection errors εdθ (not shown).

tion 3.2.3, changing the initial system energy has the same effect as changes in ground height;

it re-centers the tracking errors about a new ground height where the step change ∆Ei in en-

ergy cancels the systematic error, ∆Ei = −∆E. For example, with a systematic change of

∆E = ±3%, the control is perfect at a ground height of z′g,i = ±7cm and the energetic errors

encountered now range in [−1.5%, 7.5%] (blue dots in Fig. 3.7A,B) and [−7.5%, 1.5%] (red dots)

instead of [−4.5%, 4.5%] (shaded gray area in A and black dots in B). Apart from this horizontal

shift along the height or energy axis, the shape of the original tracking error function (gray re-

gions in Figs. 3.5C and 3.7) remains unchanged. (Other systematic parameter disturbances have

similar effects on rough terrain locomotion, systematically deforming the original error function.

Their plots are omitted here.)

The results of the sensitivity analysis show that for an implementation in running robots,

automatic model calibration may be required as demonstrated by [16] for a planar hopper that

derives its control from the deadbeat control of the planar spring-mass model. The clearly sys-

tematic trends in the steady state errors for each disturbance suggest that such tuning will be

effective.
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Comparison to Classical Leg Placement Strategy

Classical approaches to the control of hopping or running robots often rely on the Raibert con-

troller [146, 215]. This controller has three components including a thrust law for energy reg-

ulation in stance, a stance-phase attitude control for the robot center body, and a leg placement

control in flight for the generation of gait and turning. To compare the quality of the control pro-

posed here to existing control approaches used in legged robotics, we focus on the leg placement

component of the Raibert controller (the spring mass model is energetically conservative and has

a point mass body without pitch) and redo the robustness and sensitivity tests.

The leg placement of the classical controller uses the horizontal velocity ẋ = [ẋ ẏ]T and the

duration Ts of the previous stance to estimate a “neutral foot point” for a symmetric stance phase,

and then applies a linear correction about this point based on the desired velocity ẋd = [ẋ ẏ]Td .

The resulting leg placement is given by

xf =
ẋTs

2
+ kẋ(ẋ− ẋd), (3.11)

where xf = [x y]Tf is the horizontal distance vector of the foot point from the hip joint, and kẋ is

a proportional gain. Within the theoretical framework developed in this paper, xf is equivalent

to the control input u = [α β], ẋ describes the x-direction of the apex frame and an initial apex

height zi = Esys
mg
− |ẋ|

2g
, and the pair (|ẋd|, ẋd − ẋ) translates into the desired state (z∗, dθ∗).

Thus, (Eq. Eq. 3.11) can be interpreted as a policy for approximating the behavior function f

by linearizing it about the points where zi+1 = zi along the zero turning axis (β = dθ = 0,

Fig. 3.2). While the neutral point adapts based on the previous stance phase, the slope kẋ of

the linearization remains constant, requiring a single compromised approximation at different

locations of f .

The comparison of the two leg placement strategies shows that the time-embedded leg place-

ment strategy enables much sharper turns and tracks the target state faster and more accurately

(Fig. 3.8). By design, the time-embedded deadbeat control (black dots) generates virtually no

deviation from the target state for running and turning on flat ground (Fig. 3.8B). In contrast,
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Figure 3.8: Comparison to classical leg placement strategy. (A) Random navigation trail example generated by

the leg placement strategy of the Raibert controller with limit on turning rate of 20 deg per step to avoid falling. (B)

Apex return maps generated from running and turning on flat ground for the classical strategy (red dots) and the

time-embedded deadbeat strategy (black dots in a very tight cluster). Steady state locomotion corresponds to dots

on the diagonal line (zi+1 = zi). (C) Errors in apex height for running and turning in rough terrain as a function

of ground height or system energy. (D) Corresponding rough-ground return maps. (E) Errors in deflection over

rough terrain as a function of ground height or energy.
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the classical approach (red dots) needs to be constrained to a maximum turning rate of 20 deg

per step to avoid falling (compare Figs. 3.8A and 3.5A), gets attracted away from the target state

during turns because the linearization gain kẋ cannot simultaneously fit turning and straight-

line running, and only slowly returns to the target state after turns due to a slanted return map

(Fig. 3.8B). This difference in performance also shows on rough ground where the deviations

from the target state are large and the return to the target state remains slow (Figs. 3.8C,D) for

the classical control. Likewise, the directional tracking is also looser with the classical control

(Fig. 3.8E).

For systematic errors in the model parameters, the performance of the classical control does

not change significantly. In general, it is still worse than that of the time-embedded strategy

with the same constraint of 20 deg per step on the maximum turning rate (rms and max error

values in Tab. 3.1) due to the slower speed of recovery in the return map. However, unlike the

time-embedded strategy, the classical control shows no large drift from the target state in steady

locomotion (steady state errors in Tab. 3.1) due to the feedback properties of (Eq. Eq. 3.11),

which tend to correct for unmodeled behavior.

3.2.4 Summary

Using a compact representation of the 3D spring mass model’s dynamics, we have derived and

demonstrated in simulation a time-based leg placement strategy for highly robust running and

steering in uncertain 3D environments. The identified control strategy generalizes the time-

based control derived for the planar spring mass model [169, 171] and allows a legged system to

navigate very rough terrain (up to 30% of leg length in the presented example) without feedback

about ground disturbances (Fig. 3.4). It is nearly deadbeat with respect to stabilizing the apex

height and heading direction, as long as the relative disturbances in system energy and the other

model parameters stay small (Figs. 3.5 and 3.7, Table 3.1). Moreover, it outperforms a classical

leg placement strategy in terms of turning rate and disturbance rejection (Fig. 3.8).
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The compactness and performance of the proposed control strategy stems in large part from

separating the control into feedback detection of the direction of motion and feedforward com-

pensation for unknown ground disturbances. Like previous work on the control of 3D spring

mass running, the leg placement strategy developed here requires state feedback about the direc-

tion of motion. In [166] and [27] this feedback information is used explicitly. Although [134]

find that control relative to the velocity vector in flight yields inherent stability without the need

for corrective strategies, it depends on measuring this state at least intermittently. The control

developed here requires a similar intermittent feedback. At every apex during flight, the direction

of motion needs to be known to align the apex frame. However, the robustness to ground level

disturbances is realized with feedforward control. Instead of correcting for past disturbances,

the time-indexed control adapts the leg placements to accommodate ground variations in the up-

coming step by taking advantage of the relationship between falling time and falling height. The

resulting control strategy reveals how highly robust running and steering could be achieved in

uncertain environments.

3.3 Conclusions and future work

In this chapter, we extended the theory of deadbeat spring-mass model (SMM) running to 3D.

Once per stride, we use the 3D SMM to compute the optimal leg placement that matches the

next apex state as closely as possible in terms of direction of motion and apex height. If the

terrain height is unknown, arranging the different solutions from different initial conditions by

their time of touchdown yields a time law for leg placement that provides near deadbeat stability

on unobserved uneven terrain. Prior to this work, deadbeat leg placement had only been shown

for the 2D SMM.

In addition, we analyze the sensitivity of this system to various disturbances and compare

the performance to classical leg placement policies. Simulation confirms that the deadbeat con-

trol law converges significantly faster than heuristic linear feedback that many running robots
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currently use [2, 146], even when the latter is optimally tuned to exactly match the slope of the

behavior map. This is because the behavior map is not well described with a linearization, though

it is low dimensional and easily stored in a look-up table. Conceptually, this demonstrates that

the role of leg placement in the dynamics of legged system is non-linear, and that numerical

tabulation is an effective way to account for this non-linearity.

In the bigger picture of designing control for legged robots, we use the simplified model to

plan motions that satisfy our gait objectives and are likely to obey the dynamics of the actual

robot. Using models with as few parameters and degrees of freedom as possible generally makes

the planning problem easier and more intuitive. However, there are two distinct costs to making

such simplifying reductions.

First, by constraining the simplified model to a limited set of behaviors, the planner may

be overlooking potentially better solutions. A force-controlled system like ATRIAS (details in

Chapter 4) can produce a wider range of force profiles than the fixed spring stiffness described

by the spring mass model. However, the results in this chapter show that even within the overly

restrictive terms of this simplified model, highly agile and robust running can be attained; we do

not need a more descriptive and computationally expensive model to produce highly dynamic

behaviors.

Secondly, a simplified model is often a lower order representation that omits modes from

the full order system. In this case, the spring mass model does not describe angular momentum

or changes to total system energy. The behavior of these modes then have to be addressed by

supplementary control, which may interfere with assumed dynamics of the simplified model.

Chapter 6 is largely dedicated to studying these interactions. Alternatively, the model can be

redefined more descriptively to explicitly account for the additional dynamics with additional

authority (which makes the planning problem harder). In [203, 205], the authors show that using

different spring stiffnesses for each half of stance provides good control authority over the system

energy, and in [45], the authors effectively deadbeat stabilize the energy by solving the boundary-
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value problem for a polynomial force profile. The costs and benefits of using these alternative

models can be an interesting topic for future work.

In the context of the overarching questions asked in the beginning of this thesis, these results

show that the low order dynamics of the 3D spring mass system have very promising properties

for agile and robust running. Despite the constraints imposed by the fundamental contact wrench

limitations of legged systems, the model is nonetheless capable of executing highly dynamic

motions; the two free parameters of leg placement in each flight phase can be mapped to deadbeat

tracking of apex height and direction of motion. Our analysis shows that friction limitations and

geometric limitations leave a reasonably large basin of attraction for deadbeat control (Figure

3.3), and even outside of this basin, the apex height can still be deadbeat stabilized while tracking

less steep turn angles.

The remaining chapters in this thesis attempt to answer how well these “promising proper-

ties” carry over to real legged robot.
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Chapter 4

Overview of the ATRIAS robot

The ATRIAS robot is our vehicle for testing the theory of spring-mass running. This chapter

presents its basic properties and their implications on our problem formulation and our overall

approach to control design.

Section 4.1 first describes the construction of the robot. Section 4.2 explains high level

choices that we make based on ATRIAS’s properties. Specifically, we limit the current im-

plementation to the saggital plane, we decouple the force-controllable rigid body dynamics from

the actuator dynamics by formulating series elastic actuation, and we define our problem as an

optimal control problem in the space of the centroidal dynamics. Section 4.3 then presents the

equations of motion for the robot and for the actuators, which are used throughout the remaining

chapters of this thesis. Section 4.4 derives the feasible spring-mass behaviors from ATRIAS’s

power and kinematic limits. Finally, Section 4.5 gives a concise chapter summary.

4.1 Physical properties

We work with a copy of the ATRIAS robot [61, 149], designed and built by Dr. Jonathan Hurst’s

lab at Oregon State University. The name ATRIAS stands for Assume This Robot Is A Sphere;

the robot was designed to closely match the simplified spring mass model with the intention
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(a) photo of ATRIAS from the

side.

(b) photo of 5-bar mechanism and leaf springs in

leg.

τh, front

Fl

τh,sag

Fl

φ

γ

θ

β

l

(c) diagram of ATRIAS.

Figure 4.1: Bipedal robot ATRIAS. ATRIAS [61, 149] is a bipedal robot with light, compliant legs. The five-bar

mechanism allows the actuation to be located at the hip, minimizing the mass and inertia of the legs. Serial springs

in the five-bars provide torque sensing and allow closed-loop torque control in the saggital plane. Each leg has

actuated three degrees of freedom with respect to the trunk, but no ankle actuation.
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of demonstrating the robust and energetically efficient locomotion that the theoretical model

exhibits [46, 97, 180]. Towards this end, ATRIAS’s mass (68 kg total) is concentrated near the

hip and the legs are kept very lightweight (2.3 kg each). Furthermore, serial springs in the legs

add compliance to the system.

Each leg is composed of carbon fiber tubes arranged in a five-bar structure (17 and 95 cm

at min and max extension). See Figures 4.1(a) and (b). (Note that this structure of four links is

termed a “five-bar” due to the independent actuators at the trunk, which makes the trunk a fifth

bar with zero length). This structure allows the actuation and gearing to be placed at the hip,

minimizing the rotational inertia about the center of mass. A pair of 200 A DC brush-less motors

sits at each hip. When the motors are driven in the same direction, the leg is swung forward

or backward (relative angle γ − θ in Fig. 4.1) in the sagittal plane. When they are driven in

opposing directions, the leg is lengthened or retracted (length l in Fig. 4.1). Each motor is linked

to a 50:1 harmonic drive that is connected to a leaf spring. Since the springs are in series with the

motors, they do not provide the passive torques and forces that parallel springs would. Instead,

they can be viewed as the compliant elements within series elastic actuators (SEAs) [137] (see

Section 4.2.2 for a more detailed review of SEAs). The deflections in the springs describe the

torques applied to the five-bar, and the geared output of the motors serve as inputs that drive the

spring deflections. This closed loop force control is made possible by high accuracy encoders

measuring the joint angles on either side of each spring and Hall effect sensors inside the motors.

Through the geometry of the five-bar, the coupled output of the pair of spring deflections in each

leg maps to an axial force Fl (Fig. 4.1) along the leg and a rotational torque τh,sag between the

leg and the hip. This transmission of torques and forces is detailed in Section 4.3.4.

Laterally, each hip is actuated by a 60 A DC brush-less motor connected to a 57:1 belt drive

system located in the trunk. Each hip’s range of motion spans from −80 ≤ β ≤ +110 (Fig.

4.1) degrees measured from the trunk. Since the pair of motors and pair of harmonic drives

provide a total of 20 kg centered on each hip at 17 cm from the pelvis, their inertial effects are
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non-negligible in the frontal plane.

The legs terminate at rounded, point feet. When on the ground, this constrains the GRF to

act through the point contact with no applied rotational moments. For 3D locomotion, they can

been augmented with passive ankles and 13 cm feet, which serve to resist yaw moments. Besides

the yaw resistance, the passive ankle joint renders the rest of the contact dynamics of the foot

identical to those of the original point foot.

4.2 Fundamental assumptions, overall approach, and related

background

Based on ATRIAS’s construction, we first make three high level choices that define our overall

problem formulation.

4.2.1 Sagittal plane instead of 3D

We develop the control theory towards that eventual goal of achieving agile running in 3D. In

Chapter 3, we derive stabilizing leg placement for the dynamics of the 3D system. The process

of using floating base equations of motion in Section 4.3 to compute inverse dynamics is equally

valid in 2D or 3D, and the state-space optimal control we use in Chapters 5 and 6 for designing

feedback for an under-actuated system readily accepts the degrees of freedom and control inputs

of the full 3D system.

However, within this thesis, we focus on 2D locomotion on the hardware and use a boom to

constrain robot to move in only the sagittal plane. This decision was based on primarily on two

observations of ATRIAS’s frontal plane capabilities. In particular, without springs on the lateral

motors, we cannot use SEA control to close the loop on desired torques at these joints, while

relying on open loop motor torques would significantly lower the effectiveness of a pure force

control formulation. Furthermore, the relatively weak structure of the leg with respect to lateral
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loads (the knees have built-in fuses that break in this direction, which also introduce unmodelled

compliance) significantly limits the application of active control for dynamic motions in the

frontal plane.

For these reasons, our experimental demonstration of agile spring-mass running is limited to

the sagittal plane. We also accordingly focus the theoretical analysis of the closed loop dynamics

on this 2D system such that we can anchor the analysis in our experimental data. Nonetheless,

the techniques we develop in this thesis for tracking the desired closed-loop reference trajectory

with optimal control, analyzing the full order error dynamics, and propagating the theoretical

expectations of disturbances generalize to robot running in 3D.

4.2.2 Series Elastic Actuators (SEAs) as torque sources

Series Elastic Actuator (SEA) control [137, 142, 145] has become an increasingly popular and

effective method for implementing closed loop force and torque control on robotic systems, and

ATRIAS’s construction is well suited to take advantage of this approach. This then allows us to

model idealized joint torques when formulating the dynamics of the robot. (We do not expect

perfect torque generation by the SEA control, and Chapter 7 is largely dedicated to studying the

effects of these tracking errors).

Highly geared electric motors like the ones on ATRIAS suffer from high impedance from re-

flected inertia and high stiction [142], which would effectively adds significant actuator dynamics

and complicate the concept of directly applying joint forces or torques if the geared output were

directly connected to the leg. Series elastic actuation [137, 142, 145] significantly dimishes these

effects and has allowed roboticists to apply “ideal” force and torques sources as control inputs at

the joint level. In an SEA, the motor and the load (i.e, the two sides of the joint) are separated

by a compliant element such that Hooke’s law yields the force or torque applied across the joint.

An inner loop controller is designed for using the motor to close a loop around the spring deflec-

tion, thereby resulting in a joint-level actuator limited only by the relatively high bandwidth and
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tracking accuracy of the inner loop SEA control.

Over the last two decades, the performance of SEA control has seen continuous improvement,

and SEAs have been widely utilized as high fidelity torque-sources on legged robots including

Spring Flamingo [140], M2V2 [139], Hume [176], COMAN [197], ScarlETH [76], TORO [44],

THOR [73], and Valkyrie[127]. In these implementations, the outer loop that commands forces

or torques and the inner loop SEA control must be designed to interact stably. [73] provides a

comprehensive description of the state of the art, and here we summarize some of the key results.

[76, 160, 192, 198, 212, 213] each closed a loop around the motor velocity to reduce sensitivity to

stiction and backlash, [198] studied passivity for stability guarantees, [73, 99, 126] each applied

disturbance observers to further improve the inner loop performance, [160] implemented a multi-

input formulation that uses a filtered estimate of load velocity as a feed-forward signal.

By design, the resulting closed loop SEA system approximates an ideal actuator such that at

the joint and rigid body level, the dynamics of the robot are separated from the internal dynamics

of the SEA – the robot equations of motion treats joint torques as inputs. There are many reasons

to use this decoupling as long as the approximation is valid.

By assuming ideal joint torques, the equations of motion take on the standard form used ubiq-

uitously on humanoid robots. This allows the direct use of the force control and inverse dynamics

formulations detailed in Section 2.2.2, which have proven highly effective for tracking the cen-

troidal dynamics of the robot and demonstrating stability. In particular, since these second-order

equations of motion take joint torques as the input, the contact wrench is also at the input level.

Therefore, the input can be mapped directly to the GRFs, which makes it easy to formulate

control that obeys the contact wrench constraints; [36, 102, 156, 204] each implement efficient

constrained optimization algorithms that explicitly preserve the stability of the ground contact.

If the equations of motion were to describe a higher order control input with non-negligible ac-

tuator dynamics, any contact wrench constraints would then need to be applied in a significantly

more expensive constrained trajectory optimization problem, which is much more challenging to
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implement as a real-time controller. Similarly, these second order inputs facilitate a direct trans-

lation of the spring-mass model, which is naturally formulated as a force-driven second order

system.

This decoupling assumption allows us to study the theory of spring-mass running in a less

platform-specific manner. All robots have centroidal dynamics and ground contact wrenches;

most modern humanoid robots are force controllable; but few robots share ATRIAS’s specific

leg construction. Using the SEA formulation replaces this last level with a generic torque source,

allowing our results to directly generalize to other robots. Similarly, here our goal is to study

the general transfer of spring-mass theory onto higher order systems, and separating the actuator

control from the remaining robot dynamics clarifies the scope of this study.

On a practical level, separating the rigid body dynamics from the actuator control into cas-

caded systems allows a potentially high bandwidth inner loop to effectively eliminate the effects

of uncertainties and disturbances in the actuator dynamics. Just as velocity-based SEA control

[160, 192, 198, 212] have leveraged Hall effect sensors and high bandwidth embedded controllers

to reduce the sensitivity of the motor control to stiction and backlash, high bandwidth inner loop

SEA control reduces the sensitivity of the outer loop robot behavior to any modeling errors of

the motor-to-spring-to-load dynamics. Finally, also on a practical level, we can update the ar-

chitecture of the SEA control based on the newest studies to improve our performance without

needing to revise the structure of our overall theory.

On the other hand, some researchers [63, 79, 119, 182] have chosen to directly model any se-

rial compliance in the full equations of motion without formulating a separate “actuator” control.

Thus, the control inputs are motor velocities or motor torques, instead of idealized joint torques.

Fundamentally, the biggest advantage of this approach lies in avoiding the potentially erroneous

assumption that the robot dynamics and the motor approximately decouple across the spring.

That is, if the closed loop tracking bandwidth of the SEA control is not significantly higher than

the desired bandwidth of the outer loop control, these two systems can have destabilizing inter-
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actions. Effective control design would need to account for the slow dynamics of the “actuator”

in conjunction with the rigid-body dynamics of the robot.

In our work so far, we have only explored control designs with limited outer loop gains that

avoid interaction with the inner loop SEA control. Comparing these results to controllers derived

from a non-cascaded model of the full order system can be an interesting avenue for future

research.

4.2.3 Optimal control for the higher order system

It is clear that ATRIAS has more degrees of freedom and wider range of available actuation than

the simplified spring-mass model – ATRIAS has rotational inertia, non-constant system energy,

and can produce GRFs that do not match the virtual linear spring. How to handle the degrees of

freedom omitted by the simplified model is a recurrent question in the literature on model-based

walking and running control, and the existing solutions can be approximately partitioned into

three schools of thought for this issue.

Many roboticists have applied heuristic based “template-anchor” arguments [7, 13, 31, 52,

53, 132, 200]. The simplified model is treated as the “template,” which defines a set of desired

dynamics. The “anchor” is a higher complexity model that more accurately describes the spe-

cific real system, and intuitive control policies are applied such that the dynamics of the anchor

are made to embed that of the template. These policies typically directly stabilize the extra de-

grees of freedom while the desired properties of template are approximately retained. Through

design of these embedding policies, researchers have successfully demonstrated stabilized sys-

tems in simulation and on hardware. However, quantifying the performance or formalizing the

convergence of these systems is often challenging.

Our early work [211] towards embedding deadbeat spring mass running on ATRIAS was in

fact closely aligned with this approach. We reasoned that the two main modes omitted by the

spring mass model were the total system energy and the pitching of the trunk. We added a virtual
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damper to the virtual spring force of the SMM to allow the injection or removal of energy in each

step, and we augmented the torque control at the hip with PD feedback to stabilize the pitch of

the trunk. While this produced reasonable results in simulation [211] and gave us our first stable

running experiments, we could not make theoretical claims of performance or stability, and we

did not have access to the ground contact constraints (due to the additional torques at the hips).

In the second school of thought, control based on computing the hybrid zero dynamics (HZD)

of a system offers a formal analysis of local stability [28, 135, 136, 182, 206] of the full order sys-

tem. This framework provides a mathematical structure well suited for studying the empirically

demonstrated stability of the “template-anchor” implementations. The dynamics of the lower

order system define the zero dynamics, which are parameterized by virtual constraints applied to

the higher order system. These constraints can be chosen to embed a simplified system like the

spring mass model [135, 136], or they can be designed through optimization [182]. Input-output

linearization yields continuous feedback control that enforces these constraints, and a discrete

control (that includes the leg placement) is designed to stabilize the zero dynamics. This outer

layer of control can be motivated by heuristics including Raibert-style velocity control [136] or

coupling torso pitch to velocity [182], or it can be designed through optimal control with discrete

LQR. Finally, local stability of the resulting system is checked using Poincare analysis (discrete

LQR guarantees stability if it is used). [28] showed that under certain conditions, Poincare sta-

bility on the reduced order model implies local asymptotic stability of the full order system.

While this formulation is closely related to our study of spring mass running on a higher

order robot, on its own it does not provide a complete picture of the full capabilities of a force

controlled robot. The continuous dynamics of the full order system may be coupled in a way

that allows more effective error rejection than defining and enforcing virtual constraints while

implicitly reserving other error modes to be stabilized by the discrete control. That is, it may be

possible to apply a combination of continuous and discrete feedback strategies to better track the

multi-modal dynamics of the system.
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Continuous optimal control (reviewed in Section 2.3.1) describes the third school of thought

for how to address the “extra degrees of freedom.” Given a model of the dynamics of the full

order system, the control problem is explicitly posed as a search for the fastest and cheapest

convergence of all the state errors, with no explicit distinction between the modes represented

in and those omitted by the simplified model. Solving the the optimal tracking problem thus

provides an explicit answer to how the full order system can best produce the desired motion.

For linear systems with quadratic costs, the Ricatti equation returns the optimal control as a linear

feedback law (LQR), while nonlinear systems can be locally stabilized by applying LQR about

the reference condition. This widely used result and the proven success of other optimal control

techniques throughout the locomotion literature (Section 2.3.1) lead us to hypothesize that we

can design effective control that exploits the behavior of the closed-loop simplified model while

stabilizing all the modes of the full order system by formulating and solving the optimal control

problem.

4.3 Model and dynamics

In this section, we present our model of ATRIAS, the actuators, and their equations of motion.

The resulting equations are the foundation of our model-based control design; from these deriva-

tions, we extract both the simplified centroidal dynamics that we use for optimal control as well

as numerically computed matrices that we use for inverse dynamics. Furthermore, these equa-

tions are required for deriving ATRIAS’s capabilities as a function of power limitations (Section

4.4.1).

4.3.1 Floating base robot and dynamics

We define a planar robot model (Fig. 4.2) that captures the essential characteristics of ATRIAS.

It has a trunk of mass m = 63.4 kg and inertia It = 2.2 kg m2 about the center of mass, which
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Figure 4.2: Rigid body model for equations of motion. The planar robot is represented by a rigid body trunk

above the hips, rotary actuators τh,i at each hip, linear actuators Fl,i in each leg, a small inertia Im in each hip, and

a small mass mf in each foot. A virtual leg can be described between the trunk CoM and the stance foot. External

forces Fx and Fz applied to the foot map to the robot states through a Jacobian matrix.

is located distance d = 0.19 away from the hip joint. The effect of each five-bar leg mechanism

is represented by two components: a rotary actuator with outputting torque τh,i on disc with a

small inertia Im = 0.3 kg m2 at the hip, and a linear actuator outputting force Fl,i that extends

the leg with a small point mass mf = 2.4 kg at the foot.

This system has three degrees of freedom for the floating base [154] and two more for each

leg. Here, the position vector q = [x, z, θ, γ1, γ2, l1, l2] consists of the coordinates x, z and θ

describing the global position and orientation of the trunk, along with γi and li describing the

global orientation and length of each leg (Fig. 4.2). The concatenation [q, q̇] gives the full state

of the system. These floating base coordinates make no assumptions about ground contact. A

leg in stance would introduce two translational constraints that reduce the model to a five degree

of freedom system.

Through defining the kinetic energy, potential energy, and the generalized forces and torques

acting on the system, we apply the method of Lagrange [58, 120] to produce the equations of
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motion

M(q)q̈+ h(q, q̇) = Sτ + J(q)TF

whereM is the mass matrix, vector h accounts for Coriolis, centrifugal, and gravitational forces,

the selection matrix S assigns control inputs τ to q, and the Jacobian J maps external forces F

to q. The control vector τ is composed of the hip torque τh,i and linear force Fl,i of each leg, and

the vector F is the external force. The geometry dependent Jacobian J of the foot is given by

J =

Jx
Jz

 =

1 0 −d cos θ l cos γ 0 sin γ 0

0 1 d sin θ −l sin γ 0 cos γ 0

 .
In running, at most one foot is in contact at a time, so we drop the subscripts i in the Jacobian

equation for brevity. We generate the matricesM, h, S, and J symbolically in Matlab.

4.3.2 Stance dynamics

Without loss of generality, we define the origin to be at the foot, such that xfoot = zfoot = 0. For

a leg in stance, we assume the standard constraint of the ground providing the exact force that

prevents motion of the foot. Written as a function of coordinates q, this requirement of ẋfoot = 0

and żfoot = 0 implies the acceleration constraints

Jq̈+ J̇ q̇ = 0.

Combining the floating base equations of motion and constraints into a single system of equations

yields

M7×7

J2×7

 q̈ +

 h7×1

(J̇ q̇)2×1

 =

S7×4

02×4




τh,1

τh,2

Fl,1

Fl,2


+

(JT )7×2

02×2


Fx
Fz

 , (4.1)

which relates robot accelerations, actuator inputs, and reaction forces.
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Compared to a derivation from a manipulator perspective [120] for a five degree of freedom

system, the constrained floating base equations of motion include two extra degrees of freedom

that define the two redundant modes. Eq. 4.1 uses larger matrices to compute the same mapping

between actuator inputs and robot accelerations, but in doing so it also explicitly computes the

GRFs as the constraint forces.

Buried within Eq. 4.1 are the centroidal dynamics:

mtotẍcom = Fx,

mtotz̈com = Fz −mtotg,

Itθ̈ + Imθ̈1 + Imθ̈2 = −zcomFx + xcomFz,

where the center of mass coordinates [xcom, zcom] are computed by taking the mass-weighted

average of the trunk and foot coordinates, and the small hip inertias Im contribute minimally to

the total angular momentum.

By intentional design [61, 149], the post-actuator mass mf and inertial Im are very small.

(This is not to be confused with the non-negligible reflected inertia N2Ir ≈ 3.75 kg m2 for SEA

control with rotor inertia Ir and gearing N . That is, very little spring torque is required to accel-

erate the load, but significant motor torque is required to accelerate the rotor behind the spring.)

To use force control on the swing leg, we would need derive gains based on non-zero represen-

tations of mf and Im; force control is not defined for inertia-less dynamics (Section 5.5 explains

the position control we apply to the swing leg). However, when we consider the net linear mo-

mentum and angular momentum of the robot, the inertial forces from mf � m and Im � It

have negligible effects. This effectively allows us to drive the swing leg independently of the

centroidal dynamics and to directly relate the pitch of the trunk to the net angular momentum.

After eliminating mf and Im, the swing leg is independently driven to control [γ2, l2] using

the inputs [τh,2, Fl,2], such that the coordinates of the robot are reduced to q = [x, z, θ, γ1, l1] and

a the inputs are reduced to τ = [τh,1, Fl,1] for just the stance leg. The dynamics of the reduced
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states are given by the system of equations

m 0 0 0 0

0 m 0 0 0

0 0 It 0 0

0 0 0 0 0

0 0 0 0 0





ẍ

z̈

θ̈

γ̈

l̈


+



0

mg

0

0

0


=



0 0

0 0

−1 0

1 0

0 1



τh
Fl

+ JT

Fx
Fz

 ,

Jq̈+ J̇ q̇ = 0.

where the indices differentiating the legs have been dropped, l is the length of the stance leg, and

Fx,z are the horizontal and vertical GRFs (Fig. 4.2).

Finally, re-arranging terms in this system of equations yields the intuitive results of
m 0 0

0 m 0

0 0 It



ẍ

z̈

θ̈

 =


0

−mg

0

+


1 0

0 1

−z x


Fx
Fz

 ,
τh
Fl

 =

 l cos γ −l sin γ

− sin γ − cos γ


Fx
Fz

 ,

(4.2)

(4.3)

where Eq. 4.2 gives the centroidal dynamics and Eq. 4.3 gives the inverse dynamics as a 1-to-1

invertible mapping between the virtual inputs [τh, Fl] and the GRFs. See Figure 4.3. The acceler-

ations γ̈ and l̈ can be recovered through the remaining equations, which resolve the constraints.

On a more general platform with significant multi-body mass and inertia distributions, forward

and inverse dynamics would instead need to be solved from Eq. 4.1.

The derivation in this section thus shows that for ATRIAS, the full rigid body dynamics are

nearly equivalent to the centroidal dynamics.

4.3.3 Flight dynamics

When the system is in flight, there are no external forces and no geometric constraints. The equa-

tions of motion are simply ẍ = 0, z̈ = −g, and θ̈ = 0. Each leg can positioned independently
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z

Figure 4.3: In the sagittal plane, ATRIAS’s full order dynamics are approximately equivalent to the centroidal

dynamics (by neglecting the masses and inertias below the hip). The inverse dynamics is reduced to a mapping

that generates [Fx, Fz] in stance using joint torques, and the full order robot model consists of the coordinates

q = [x, z, θ]. See Equations 4.3 and 4.2.

with [τh,i, Fl,i] driving [γi, li], which does not affect the centroidal dynamics.

4.3.4 Actuation and series elasticity

The virtual inputs Fl,i and τh,i are directly related to the torques in the two leaf springs on each

leg. Neglecting the very low inertia of the carbon-fiber segments, this mapping is determined by

the geometry of the five-bar mechanism,

τSEA =
τh,i
2
± Fl,ils sin(

ρ

2
), (4.4)

where ls = 0.5 m is the length of the five-bar segments and ρ is the splay angle between the two

proximal segments (Fig. 4.4A).

In each spring (see Figure 4.4B), the joint torque acting between the motor and the load is

given by the deflection scaled by the spring constant kSEA ≈ 3600 Nm/rad:

τSEA = kSEA(θm − θl).

The dynamics of the load angle are the result of a geometric mapping of the robot dynamics

derived in Section 4.3. The motor-side angle θm is driven by a geared output of the electric
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Figure 4.4: Actuation system. The virtual inputs Fl and τh have a 1-to-1 mapping to and from the pair of torques

applied between the robot body and each the top two segments of the five-bar (A) (Section 4.3.4). This structure

with four links is called a five-bar (due to the two independent actuators at the hip) as the robot body defines a link

of zero length. The torque between the robot and each of the upper leg segments is given by the deflection in the

rotational spring between these two bodies. This system is sketched as a linear spring in (B), and we treat it as a

series elastic actuator (SEA) (Section 4.3.4). The geared output of the electric motor is the joint angle θm defined

with respect to the body (the trunk) of the robot. The spring separates this motor angle from the load angle θl,

such that the torque between the robot and the load is given by τSEA = kSEA(θm − θl).
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motors, with the harmonic drives providing a gear ratio of N = 50 : 1. The dynamics of this

system are approximately

N2Irθ̈m = µNτr − τSEA, (4.5)

where the effective motor inertia is dominated by the reflected rotor inertia N2Ir ≈ 3.75 kg m2,

and the effective torque is amplified by the gearing of the harmonic drive but reduced by drive

efficiency µ. This efficiency is dynamic; it is 77% when the motor is stalled and loaded, reduces

to 58% when the output moves at 2π rad/s, and falls as low as 36% when the load has very low

inertia [65].

We take advantage of a high frequency (10 kHz vs 1 kHz) controller on-board the motor

amplifier servo drives [41] to close a loop on motor velocities. [76, 198, 212, 213] have shown

that this approach can significantly reduce sensitivity to friction, backlash, and modeling error

of the actuator dynamics. On ATRIAS, this on-board controller uses an auto-tuner [42] that

empirically identifies the plant dynamics between rotor velocity and applied currents. Thus,

instead of working directly with the motor dynamics in Eq. 4.5, we effectively see the system

d

dt
τSEA = kSEA(θ̇m − θ̇l), (4.6)

where we can command a motor velocity θ̇∗m at 1 KHz. Nonetheless, whatever motion is gen-

erated is ultimately sourced by applied currents and rotor torques that obey the dynamics of

Eq. 4.5.

4.4 Spring-mass gait design within ATRIAS’s limits

ATRIAS’s power limits and joint angle limits translate into a range of feasible deadbeat running

behaviors.
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Figure 4.5: A nominal rotor torque profile for a moderate spring-mass gait with k = 16000 N/m, z∗0 = 1.09 m,

and z∗a = 1.12. The solid black line represents Equation 4.7 solved for τr and the two dashed black lines are the

corresponding inertial and SEA components. The red lines show the continuous and peak rotor torques that can

be applied based on motor current limitations.

4.4.1 Maximum torque output

The on-board current control must apply the effective torque µNτr to achieve the specified motor

velocity θ̇∗m. In effect, the motor current limits that bound rotor torque τr then impose maximum

joint torques τSEA that can be achieved. From the actuator dynamics in Equation 4.5, we can

compute what rotor torques must be applied to follow a prescribed motion and corresponding

torque profile in the SEA,

µNτr = N2Irθ̈m + τSEA. (4.7)

The applied rotor torque must overcome the current SEA torque and also accelerate the motor

angle to create the desired motion. The motor acceleration is equal to the sum of the load accel-

eration θ̈l and the scaled acceleration of the spring torque ∆̈spring = τ̈SEA
kSEA

. For a nominal motion

(i.e., the sinusoidal center of mass trajectory of a spring-mass system), the trajectory of the load

angle can be computed through kinematics. Likewise, we can directly compute the acceleration

of the nominal force profile. Thus everything on RHS of Eq 4.7 is known.

84



Figure 4.5 shows the nominal rotor torque τr profile for a moderate gait parameterized by a

virtual spring stiffness of 16000 N/m, a virtual spring rest length of 1.09 m, and an apex height

of 1.12 m. The required motor torques are dominated by the SEA torque τSEA that must be

opposed; the inertial effects from the dynamics of the actuator contribute less than 8% to the

required motor torques. More explicit optimization routines may be applied [79, 182] to identify

gaits that minimize the applied torque. The rotor torque limits shown are based on the continuous

(100 A) and peak (165 A) current limits of the motor.

In addition to the feedforward torque computed above for a nominal spring-mass behavior,

we leave room for feedback control. The gap between the maximum rotor torque and the nominal

rotor torque trajectory (Fig. 4.5) describes how much actuation is available for generating cor-

rective GRFs. We heuristically choose to reserve 40% of our theoretical maximum rotor torque

for feedback. After accounting for the geometry-dependent mechanical advantage in the five-bar

(Equation 4.4), we use numerical techniques to identify a spring-mass gait that nominally con-

sumes 60% of the available rotor torque at zero forward velocity to produce a maximum hopping

height of 0.03 m with an apex height of 1.12 m and an appreciable flight phase of 156 ms.

Experimental evaluation of this design

Experimentally, direct measurements of the applied motor current show that the actuators are

often saturated during stance control (Fig. 4.6, bottom) even when the net desired spring torques

are within nominal bounds (Fig. 4.6, top). Despite our assumption that only 60% of the peak

rotor torque is required for producing the nominal hopping motion, the control utilizes much

higher torques in practice. This effect is partially caused by the need to oppose off-nominal

torques in the springs as well as the extra torques required for the VSEA feedback control.

Furthermore, friction and errors in the assumed efficiency model can cause the motors to saturate

more frequently than the above analysis would expect (i.e, the green curves in the bottom plots

go to torques of higher magnitude, leaving less room for feedback before saturation occurs).
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Figure 4.6: Tracking performance for different levels of the actuator control. Left and right columns correspond

to the two SEAs in the left leg during a stance-swing cycle. Top row reports SEA torques measured by spring de-

flections; middle row reports rotor velocities measured by incremental encoders; bottom row reports rotor torques

measured by current sensors.
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The closed-loop SEA control in Equation 4.6 theoretically creates first-order exponential

convergence of the spring torque error, but the saturations in motor torque compromise the track-

ing of the rotor velocities and invalidate the assumption behind expected convergence. Thus, the

errors in spring torque can grow while the motor currents are saturated. In Chapter 7, we analyze

the effects of these errors in spring deflection.

4.4.2 Current-induced velocity limits

The servo drive amplifier regulating the motor current has a nominal operating voltage of 50 V,

which translates into a maximum swing speed of 7.9 rad/s for the hip angle and a maximum rate

of length change of 5.6 m/s for the unloaded leg at a retracted length of 70 cm. These limits

hypothetically restrict the leg placement behaviors that are feasible, but on our system these

velocity limits are largely irrelevant; the swing leg has sufficient time during the full swing-

stance cycle of the opposing leg to be moved into position.

4.4.3 Kinematic limits from hard-stops

The 5 bar mechanism of the leg and the maximum range of travel of the hip joints restrict the

relative motion of the leg. We impose tighter virtual limits to avoid harmful impacts on the

hardware. This results in a maximum horizontal extension of the leg at touchdown (given a

landing height), which in turn restricts the domain of SMM leg placement policies (Chapter 3)

that ATRIAS can implement.

Given a landing height z∗TD = 1.09 m (derived in Section 4.4.1) and a vertical trunk orienta-

tion, ATRIAS’s geometry allows for a leg placement of |x∗TD| ≤ 0.36 m. For the derived spring

stiffness, the limited range on leg placement directly translates into a limited range of speeds ẋi+1

that can be reached in the next step (through integrating the dynamics of the simplified model).

The range of feasible speeds varies with the initial speed, and this domain and range of deadbeat

behaviors is shown in Figure 4.7. In particular, the maximum sustainable speed is 2.6 m/s and
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Figure 4.7: Domain and range of deadbeat running. The kinematic limits of the leg restrict the leg placement

to |x∗TD| ≤ 0.36m. Given the spring stiffness derived in Section 4.4.1, this range defines limits on the velocity

transitions as a function of initial velocity. The x axis shows ẋi and the y axis shows the feasible ẋi+1 within

the kinematic limits. The diagonal line of ẋi = ẋi+1 gives the sustainable gaits; speeds for which this line is not

included in the reachable range cannot be maintained.

has no ability to accelerate, and from a hopping in place initial condition, the theoretical control

allows for speed changes of up to ±2 m/s.

In theory, the domain of deadbeat control is also limited by GRFs staying within the fric-

tion cone. Here, the geometric maximum leg placement is a tighter constraint (since the GRF

acts through the virtual leg), automatically satisfying friction coefficients greater than 0.33. We

estimate a friction coefficient of at 0.5 in our setup.

4.5 Summary

We presented the key features of the ATRIAS robot and argued that it is a suitable platform for

testing optimal control applied to the centroidal dynamics of the robot. This is facilitated by

formulating force control and inverse dynamics while using SEA control to close the loop on
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desired joint torques. We use this chapter to set up the associated equations of motion behind

these techniques, and we hypothesize that ATRIAS is capable of planar deadbeat spring mass

running within a domain defined by its power and kinematic limits. This hypothesis is validated

in Chapter 5.
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Chapter 5

Transfer of deadbeat spring mass running

onto ATRIAS

The results in Chapter 3 show that the spring mass model (SMM) is capable of highly agile and

robust running via leg placement, and the analysis in Chapter 4 suggests that ATRIAS is capable

of demonstrating these behaviors in the sagittal plane. However, this theoretical performance far

exceeds what has been demonstrated in running robots [75, 78, 146, 182]. Like ATRIAS, these

robots are clearly more complex systems than the conceptual SMM, and experiments have not

sought to reproduce the maximum agility and robustness available to the simplified model. As a

result, the utility of these SMM theories for the control of complex running robots had remained

largely unclear.

In this chapter, we describe our implementation of the control on ATRIAS for planar spring-

mass running with deadbeat velocity tracking and present our experimental results. Much of this

material has been reported in [111, 112, 211]. Section 5.1 discusses the relevant state of the art in

literature. Section 5.2 first provides an overview of the control architecture before the subsequent

sections explain the implementation of each module in greater detail. Section 5.8 presents our

experimental results for tracking changing speeds on flat terrain and for running at a constant

speed over rough terrain. Finally, Section 5.9 motivates the more detailed theoretical analysis
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that we develop in Chapters 6 and 7 to better understand the contributions of leg placement and

continuous feedback as well as the effects of perturbations and uncertainties.

5.1 Background

5.1.1 Spring mass theory in robots

While experimental studies on human-scale, self-contained robots have yet to explore the be-

haviors allowed by spring mass theory, several researchers have investigated the foot placement

strategies of the SMM on more simplified hopping robots. For an early example, Zeglin [215]

investigated state space planning algorithms based on the SMM for a bow-legged hopper with

a compressible spring and passively stabilized trunk. More recently, Shemer and Degani [172]

investigated deadbeat hopping policies for a similar monopod robot with a gyroscopically stabi-

lized trunk in a low gravity environment. They used an analytical approximation of the SMM to

compare the effect of constant deadbeat impact angles to swing leg retraction policies. Finally,

Uyanık and colleagues [118] quantified the predictive performance of analytical approximations

of the SMM in achieving deadbeat behavior using a monopedal spring leg with no attached trunk.

These studies were all performed with small and specialized one-legged platforms, characterized

by prismatic legs, passively stabilized trunk motion in stance, and external sensor measurements.

In contrast, we are interested in understanding if the SMM leg placement theories can be trans-

ferred to more humanoid robots; here we implement deadbeat SMM strategies on ATRIAS, a

bipedal machine of human scale and weight with an actively controlled trunk and without exter-

nal sensing (Chapter 4).

5.1.2 Technical implementation

Implementing closed loop control on hardware systems is a very well studied problem in robotics

and across engineering. At a high level, we propose a specific decomposition of the overall
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task of implementing deadbeat SMM running into sub-problems that we then individually tackle

with established techniques, and we hypothesize that these choices lead to effective results. In

this work, we do not offer significant innovation to these algorithms, but our structured imple-

mentation has allowed us to demonstrate the novel result of deadbeat spring-mass running on a

full-bodied robot.

In particular, we formulate deadbeat control of the simplified model by building on the body

of work reviewed in Section 3.1. We use tools from linear systems and optimal control to stabilize

the full order robot. The books [9, 14, 15, 26, 90] provide thorough theoretical derivations

and guidelines for practical application. We solve constrained inverse dynamics for a torque

controlled system in line with the formulations posed by many other roboticists, as detailed in

Section 2.2.2. We control our joint torques by building upon the SEA studies developed in

[124, 137, 160, 198, 212, 213] (reviewed in Section 4.2.2) and use standard kinematic [173, 174]

algorithms to execute position control of the swing leg. Finally, we apply Kalman filtering [60,

89, 202] throughout our system for extracting state estimates from the sensor data.

5.1.3 Problem formulation and decomposition

Beyond the direct implementation of these algorithms, the challenge of building an effective con-

troller for the full order system lies in how we choose to represent and deconstruct the problem.

Here, we took an approach that leverages linear theory and optimal control as much as possible.

The context, motivation, and outcomes of this choice of architecture are discussed in detail in

Chapter 6.

5.2 Overview of control architecture

This section first gives an overview of the control architecture. See Figure 5.1. The desired

running behavior is described by an externally specified velocity ẋ∗i and apex height z∗a,i for
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Motion planning:
Simplified model

Optimal control:
LQR
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LQR
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reference
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Figure 5.1: Overview of control architecture, see beginning of Section 5.2 for a full explanation. Individual

modules can be sorted into layers accordingly to the level of detail of the underlying model. Layer A uses the

simplified model (translational dynamics only) to do motion planning. Layer B adds the rotational dynamics to

define a full order model. The motion plan is tracked in the full order space using optimal control. Layer C

accounts for the leg geometry and the SEAs to generate the desired GRFs and to track the leg placement. Layer

D is the actual robot hardware, which takes motor velocity commands and outputs sensor information. The sensor

signals are passed into estimation routines, and a model-adaptation block uses the error across multiple steps to

adjust the leg placement.
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each flight phase (parameters of the planar SMM running gait; see section 2.4.3), along with a

stationary pitch θ∗ for the trunk.

At the highest level (A), we use the reduced-order simplified model to do motion planning at

the end of each stance phase. Given the state of the robot at takeoff (denoted with subscript to and

index i − 1) and assuming the dynamics of the simplified model, we identify the leg placement

and COM trajectory in next stance phase (index i) that will most closely match the desired gait

parameters in the ensuing flight phase. Specifically, this defines the touchdown (denoted with

subscript td) condition [xtd, ztd]i, the nominal COM trajectory during stance [x∗(t), z∗(t)], and

the nominal GRFs [F ∗x (t), F ∗z (t)]i during stance.

At the second level (B), a full order representation of the robot (with states [q, q̇] composed

of the orientation θ along with the COM coordinates [x, z]) is driven by the moment-free GRFs

acting through the point foot of the leg in stance. We apply LQR to solve the optimal control

formulation of the trajectory tracking problem. The output of this control block is the desired

GRF vector [Fx, Fz], which is a sum of the feedforward force profile [F ∗x (t), F ∗z (t)] and the LQR-

derived feedback.

At the third level (C), we take into account the specific properties of ATRIAS’s construction

to generate these GRFs in stance and to track the desired touchdown condition with the swing leg.

Inverse dynamics maps the GRFs into joint torques [τf , τb] for the pair of series elastic actuators

at the hip of the stance leg, and we command motor velocities θ̇m to close the loop around the

corresponding target spring deflections. For a leg not in stance, we plan a trajectory that swings

it into position for the upcoming stance phase while maintaining sufficient ground clearance and

minimizing the anticipated impact. We then command motor velocities θ̇m to track this trajectory

with position based control.

The hardware level (D) accepts motor velocity commands and passes back raw sensor data.

Each control block in layers B and C needs continuous state information, which is provided by

estimation routines (Kalman filters) that act on data from the on-board IMU and joint encoders.
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The simplified model updates the motion plan at end of each stance phase and only uses dis-

crete state estimates. Specifically, in this implementation, the simplified model only needs the

estimated forward velocity ˆ̇xi−1.

Finally, over the course of multiple steps, we apply an adaptive learner to identify and com-

pensate for systematic errors. This routine augments the simplified model leg placement [x∗td, z
∗
td]

with an adjustment before the desired touchdown condition is passed to the swing control.

The following sections will describe the implementation of each module in greater detail.

5.3 Planning with the simplified model

We use a modified spring-mass model to plan a feasible hopping pattern and a leg placement that

deadbeat stabilizes the horizontal speed at each step. The final output of the simplified-model

based motion planning layer is three objects. It provides a reference trajectory [x∗(t), z∗(t)]i

(where t = 0 starts at touchdown) for the upcoming stance phase to arrives exactly at the desired

apex in the next flight phase. The initial condition of this trajectory [x∗TD, z
∗
TD]i defines the target

leg placement. Lastly, the planner also returns the nominal force profile [Fx(t)∗, F ∗z (t)]i along

this reference trajectory.

5.3.1 Modified spring-mass model

First, we modify the original spring-mass model using the same change made in [117] to describe

a “vertical spring.” This modification decouples the vertical dynamics to enable independent

control of apex height and horizontal speed achieved during flight, and it implicitly defines a non-

constant system energy with more natural gait variables for hopping at a fixed height. For gaits

with mostly vertical leg angles, the two models are virtually indistinguishable. More importantly,

from a theoretical standpoint, this change does not affect the concept of deadbeat stability through

leg placement – there is still a 1-to-1 mapping between the discrete control input of leg placement
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Figure 5.2: Prescribed vertical motion z∗(t) between two apexes. The motion is derived from Eq. 5.2 assuming

m = 64kg and k = 16 kN/m. The motion is used by the ATRIAS controller as a target behavior and re-initiated

in every flight phase.

and the discrete output of velocity in the next flight phase. the modified SMM dynamics are given

by by

mẍ = k (z∗0 − z)
x

z
,

mz̈ = k (z∗0 − z)−mg.

(5.1)

(5.2)

The vertical force is a function of only the vertical states, and the horizontal force is scaled such

that the total GRF is still directed along the axis of the leg.

5.3.2 Feasible hopping pattern

Based on ATRIAS’s actuation limits, we numerically optimize for a gait that achieves maximum

hopping height while reserving 40% of the available actuation for feedback (Section 4.4.1). This

yields the vertical reference motion z∗(t) in Figure 5.2 with a 3 cm hopping height an a 156 ms

flight phase.

5.3.3 Deadbeat speed control

Given the vertical reference, we compute the corresponding return map (see Chapter 3) of the

horizontal motion by integrating the dynamics in Eq. 5.1 from an array of initial conditions
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(parameterized by speed ẋi and touchdown position xTD,i):

ẋi+1 = freturn map(ẋi, xTD,i, z
∗(t)).

The deadbeat control law for leg placement in flight to regulate running speed is then

x∗TD,i = f−1
return map(ẋi, ẋ

∗
a, z
∗(t)) (5.3)

where ẋ∗a is the desired speed ẋi+1 for the next flight phase. The domain and range of this

tabulated control policy is limited by ATRIAS’s maximum leg extension and is shown in Figure

4.7; the top sustainable speed is 2.6 m/s, and the control can make one-step changes in velocity

of ±2m/s from hopping in place.

Just as the original SMM implicitly assumes a fixed energy, this simplified model implicitly

assumes exact tracking of the profile z∗(t). Under this assumption, the leg placement in Eq. 5.3

then provides 1-to-1 deadbeat control of the horizontal velocity ẋi at each step within the domain

defined above.

5.4 Stance leg control

We solve finite-horizon optimal control for tracking the reference motion with GRFs as the con-

trol input. These GRFs are passed through constrained inverse dynamics to yield joint torques,

which are then passed on to the SEA control.

5.4.1 Model-based optimal control

First, the 2 degree-of-freedom reference trajectory [x∗(t), z∗(t)]i from the simplified model must

be converted to a properly defined reference in the 3 degree-of-freedom state space of the full

order robot, where the coordinate vector q = [x, z, θ] is composed of the CoM coordinates and

the trunk orientation (Section 4.3). Note that for the model of ATRIAS presented in Section 4.3,

the full order dynamics and the centroidal dynamics are equivalent.
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Because the simplified model applies no net moment about the center of mass, any full order

trajectory with θ̈ = 0 is consistent with simplified motion described by [x∗(t), z∗(t)]i and v∗i (t) =

[F ∗x (t), F ∗z (t)]i (we use v here for the GRFs to reserve u as the change in GRFs in Eq. 5.5). For

this experiment, we choose a stationary upright torso with θ∗ = θ̇∗ = 0.

The equations of motion (Eq. 4.2) derived in Section 4.3 yield the non-linear state-space

dynamics of s:

ṡ =



ẋ

ẍ

θ̇

θ̈

ż

z̈


= f(s,v) =



ẋ

Fx
m

θ̇

xFz−zFx
It

ż

Fz
m
− g


, (5.4)

where the only non-linearity occurs in the angular acceleration.
The state error ξ = s − s∗(t) is defined with respect to the time-varying reference s∗(t).

Linearizing these dynamics about the reference then produces the error dynamics

ξ̇ = f(s,v)− ṡ∗,

ξ̇ =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

F∗
z (t)

It
0 0 0 −F

∗
x (t)

It
0

0 0 0 0 0 1

0 0 0 0 0 0


︸ ︷︷ ︸

A(t)



x− x∗

ẋ− ẋ∗

θ − θ∗

θ̇ − θ̇∗

z − z∗

ż − ż∗


︸ ︷︷ ︸

ξ

+



0 0

1
m

0

0 0

− z
∗(t)
It

x∗(t)
It

0 0

0 1
m


︸ ︷︷ ︸

B(t)

Fx − F ∗
x

Fz − F ∗
z


︸ ︷︷ ︸

u

+



0

0

0

1
It

0

0


︸ ︷︷ ︸
Bnl

δnl(ξ, u),

with

δnl(ξ, u) = (x− x∗)(Fz − F ∗
z )− (z − z∗)(Fx − F ∗

x ).

(5.5)

with

Perturbation term Bnlδnl captures the non-linearities in the dynamics, and dropping this term

results in the approximation of linear, time-varying (LTV) error dynamics:

ξ̇ = A(t)ξ+B(t)u. (5.6)

The relative magnitude of the nonlinearities compared to other sources of error is examined in

Chapter 7.

99



In these LTV error dynamics, there is a one-way decoupling that separates the vertical states

sz = [z, ż] and input Fz from the remaining states sx = [x, ẋ, θ, θ̇] and input Fx. That is, the

dynamics of [z, ż] depend only on these states sz and on Fz, while the dynamics of the remaining

states depend on the full set of states and inputs. If we further approximate the system about the

upright condition with x∗ = 0, F ∗x = 0, the error dynamics become fully decoupled:

ξ̇ =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

F ∗
z (t)
It

0 0 0
��

��*
0

−F ∗
x (t)
It

0

0 0 0 0 0 1

0 0 0 0 0 0


︸ ︷︷ ︸

Adecoupled(t)



x− x∗

ẋ− ẋ∗

θ − θ∗

θ̇ − θ̇∗

z − z∗

ż − ż∗


+



0 0

1
m

0

0 0

− z∗(t)
It �

��>
0

x∗(t)
It

0 0

0 1
m


︸ ︷︷ ︸

Bdecoupled(t)

Fx − F ∗x
Fz − F ∗z

 . (5.7)

In effect, this assumption pushes more modeling error into the term δnl in Eq. 5.5, but it al-

lows us to derive, implement, and validate simpler control laws in lower-dimensional systems.

Throughout this thesis (especially Chapters 6 and 7), we rely on the two-dimensional subsystem

sz to visualize and interpret results, and we rely on the subsystem sx to study the fundamental

challenges of under-actuation and the unstable mode of inverted-pendulum type models. The

math we use and the controllers we derive have no issues with going from vectors of length 2

or 4 to vectors of length 6; and the de-coupling assumption can be easily removed for a final

implementation.

Over the course of each stance phase, the goal is to keep state error ξ small with feedback

control u to track the reference motion s∗(t) . We formulate a finite-horizon optimal control

problem to minimize the total cost J composed of quadratic state costs H ≥ 0,Q ≥ 0 and
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control costsR > 0, assuming linear error dynamics:

J(ξ,u, t) = ξT (tf )Hξ(tf ) +

∫ t=tf

t=0

ξT (t)Q(t)ξ(t) + uT (t)R(t)u(t)dt,

Jopt(ξ, t) = min
u
J(ξ,u, t),

uopt(ξ, t) = argmin J(ξ,u, t),

subject to

ξ̇ = A(t)ξ +B(t)u.

This is a finite horizon, linear quadratic regulation (LQR) problem for a time-varying system,

which is solved by back-integrating the Ricatti equation

−Ṗ (t) = Q(t)− P (t)B(t)R−1(t)BT (t)P (t) + P (t)A(t) +AT (t)P (t)

from the terminal condition P (t = tf ) = H to yield the time-varying cost function Jopt(ξ, t) =

ξTPξ and the optimal feedback law

K(t) = R(t)−1BT (t)P (t)

uopt = −K(t)ξ,

vopt = v∗ + u = v∗ −K(t)ξ.

(5.8)

Applying the decoupling assumption in Eq. 5.7results in two independent optimization problems

that yield
F opt
x = F ∗x −Kx(t)(sx − s∗x),

F opt
z = F ∗z −Kz(t)(sz − s∗z)

where the gain vectorKz(t) has 2 terms and the gain vectorKx(t) has 4 terms.

We experimentally tuned the terminal cost H and the integrated costs Q and R to keep the

feedback gains low (to avoid unstable interaction with the higher frequency SEA dynamics) and

for the observed tracking of trunk pitch, running velocity, and apex height. Chapter 6 thoroughly

analyzes the theory in terms of stability and trade-off between states.
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5.4.2 Inverse dynamics

The inverse dynamics layer of the stance control solves for the spring torques that best match the

optimal GRFs [F opt
x , F opt

z ] within the ground contact constraints.

In our implementation, we use a boom with the intention of planarizing the system. Instead,

the actual motion travels on a sphere. The difference goes to zero as the boom radius increases,

but in our setup, it produces a non-negligible asymmetry in the stance dynamics. The authors in

[182] also take note of this discrepancy in their experiments. This phenomenon is equivalent to

the wheelbarrow effect, where the outer leg sees a small mechanical advantage while the inner

leg sees a small mechanical disadvantage, thereby scaling the net force acting on the system.

Instead of explicitly modeling the boom constraint and the additional forces, we design our

control towards the eventual goal of unconstrained locomotion. Therefore, while the robot is

constrained to the boom, the commanded GRFs are compensated with the appropriate scaling to

recover the desired net force. We implement a disturbance observer that estimates the scaling

factor through comparing measured spring deflections and estimated CoM accelerations (see

Section 5.6). In [182], the authors scale the virtual compliance of the leg by a factor of 10%. To

avoid over-cluttering the notation, we do not define a new variable to represent the scaled GRF

commands; this operation is applied directly to [F opt
x , F opt

z ].

The applied GRFs must obey the ground contact wrench constraints (Section 2.1.1). The

ground can only push with Fz ≥ 0, and the coefficient of friction µf requires |Fx| ≤ µfFz (here

we model µf = 0.5). Thus, the force commands [F opt
x , F opt

z ] are saturated with respect to these

bounds. Note that the moment-free constraint is implicitly enforced by the representation of the

net contact wrench as [Fx, Fz]. Next, the 1-to-1 mapping in Eq. 4.3 converts the scaled, saturated

GRFs to the virtual force and torque pair [Fl, τh], which is finally converted to a desired pair of

spring torques [τf , τb] as a function (Equation 4.4) of the configuration of the five-bar.

The process used here equivalently solves a specific formulation of what the hierarchical

quadratic programming (QP) approach to inverse dynamics (reviewed in detail in Section 2.2.2)
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more generally solves as a constrained optimization problem. Here, the only objective is pro-

ducing the LQR-computed GRF, and maintaining ground contact is imposed as a higher priority

constraint. We use the structure of our equations of motion to limit the complexity of the “inverse

dynamics” steps to a 1-to-1 inversion preceded by saturations. In effect, this leaves the “optimiza-

tion” to a higher layer of the control architecture that uses model-based prediction (Chapter 6)

to reason about the under-actuation of the system. The effects of the saturation on the optimality

(and thus stability) of the control are empirically observed to be very small (Figure 7.3 in Chapter

7).

5.4.3 SEA control

To accurately generate the desired GRFs, we apply SEA control to close a feedback loop around

the desired spring torques [τf , τb]. We implement the control formulated in [160], which uses the

measured load velocity to do full-state feedback (Equation 4.6) and create a first order exponen-

tially stable error. The velocity-sourced formulation takes advantage of high on-board bandwidth

to reduce tracking sensitivity to friction and efficiency. Despite the structural simplicity of Equa-

tion 4.6, the implicit motor dynamics and estimator dynamics can create performance issues. Our

empirical data (Figure 4.6 in Section 4.4.1) suggests we that may be able to improve the tuning of

this control, and many state of the art techniques apply frequency-space design to address these

issues and improve performance [94, 212, 213].

This study focuses on the higher level behavior of the robot, and we treat SEA tracking

errors as perturbations to the system (analyzed in detail in Chapter 7). The SEA performance we

attained was sufficient for proceeding with our implementation, but improvement to this layer of

the control may be a promising avenue of future work.
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5.5 Swing leg control

Any leg in swing is controlled via position control. Targets positions for the feet relative to

the CoM are mapped through the kinematics of the five-bar to define target hip joint angles θ∗l

(Figure 4.4B). The target joint angles are then tracked with position control that assumes the

spring forms a rigid coupling between the motor angle and the load angle:

θ∗m = kp(θ
∗
l − θ̂m) + θ̇∗l .

This decision is based upon the very low post-spring inertia of the leg (Section 4.3) and the

high stiffness of the spring, which together would require very high bandwidth force control.

Meanwhile, position control works reasonably well since these properties closely approximate a

system in which the motor output shafts are rigidly connected to the joints. However, as a result

of this control design, the positional accuracy of the foot is compromised by the uncontrolled,

naturally damped oscillations in the spring. The effects of leg placement error are studied in

Chapter 7.

The deadbeat motion plan defines a desired leg placement [x∗TD, z
∗
TD]i based on the dynamics

of the simplified model and the state of the robot at takeoff. Upon takeoff, we define a kinematic

trajectory for the primary leg (i.e, the next one to touch down) that meets a minimum vertical

clearance (of 20 cm), arrives at the desired leg placement, and matches the horizontal ground

velocity to reduce impact forces. During the stance phase, the swing leg mirrors the stance leg as

a heuristic preparation for leg placement, and the secondary leg mirrors the primary leg in flight.

5.6 Estimation

The controller requires state information in the form of CoM positions and velocities, pitch and

pitch rate, and actuator states. In addition, it needs to know when each leg is in contact with the

ground. The CoM positions are estimated via Kalman filtering, contact detection is handled with
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a state machine, and the other values are taken directly from high confidence sensor readings and

their filtered derivatives.

5.6.1 Kalman filtering

We use two independent but identically structured Kalman filters estimating the horizontal and

vertical CoM states. In both filters, the underlying model is a point mass m influenced by an

applied force F . For instance, the resulting discrete time process equation of the filter for the

horizontal states is
xt+1

ẋt+1

ẍt+1

 =


1 ∆t 0

0 1 ∆t

0 0 1



xt

ẋt

ẍt

+


0

0

1
m

 (F̂ x
t − F̂ x

t−1) +


0

0

1
m

wt,
where ∆t = 1 ms is the time step and w is Gaussian white process noise with covariance Q =

25 N2. This is a third order model so that we can estimate accelerations and compute the scaling

that the boom effectively applies (Section 5.4.2) to the net forces acting on the system. The force

F̂ x is estimated from the measured torques of the hip SEAs and the commanded torques of the

lateral motors (ATRIAS has no torque sensing for its lateral motors). This is accomplished by

solving for F in equation 4.1 which assumes a static point of contact, yielding the dynamics,

F̂ = fdyn(τ̂ , q, q̇). (5.9)

The measurement equation of the filter is
x̂Rt

x̂Lt

ˆ̈xAt

 =


1 0 0

1 0 0

0 0 1



xt

ẋt

ẍt

+ vt,

where x̂L/R are estimates of the horizontal distances from the left and right feet to the CoM,

respectively, ˆ̈xA is an estimate of the horizontal acceleration of the CoM, and v is measurement

noise. The distances are computed from the 3D model of ATRIAS with three rigid bodies (Figure
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4.1c), using the robot’s measured joint angles and trunk orientation. The acceleration is calcu-

lated using acceleration measurements from an IMU attached to ATRIAS’s trunk. The horizontal

filter is initialized using these measurements on every touchdown to account for a changing foot

point. The vertical filter is only initialized once on the first touchdown. The covariance matrix

Rt =
1

∆t


Rmx − µR(Rmx −Rmn) 0 0

0 Rmx − µL(Rmx −Rmn) 0

0 0 RA


of the measurement noise is adaptive. Specifically, the covariance for the distance measurement

noise is inversely proportional to the estimated load on each leg in units of body weight, µR/L =

10 F̂ z
R/L/(mg) (µR/L clamped to [0, 1], Rmn = 5× 10−5 m2, Rmx = 1 m2, and RA = 4 m2/s4).

This continuous scaling inflates the uncertainty on an unloaded leg’s CoM measurement by Rmx

such that this measurement provides negligible influence to the overall estimate of the CoM from

the point of contact.

This Kalman filter thus performs sensor fusion, produces a cleaner velocity signal than raw

differentiation and is less delayed than low pass filtering. See Figure 5.3.

Similarly, we designed a Kalman filter for estimating the load angle in the SEA. Initial ex-

periments suggest this is an effective means of removing the delay introduced by the aggressive

filtering required for removing high frequency vibrations in the measured load angle. However,

we did not implement this filter for this set of experiments.

5.6.2 Contact detection, stance vs. swing

The contact state of each leg is determined from the estimated vertical GRF, F̂z. ATRIAS has no

explicit contact or force sensing at its feet; instead, the force estimate (5.9) is used to determine if

a leg is in stance. An F̂z exceeding 50% of body weight triggers the touchdown event and causes

the control to enter the stance phase. Conversely, once the vertical CoM velocity ˆ̇z crosses

from negative to positive values, indicating rebound, a drop in F̂z below the 50% threshold
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(a) Kalman filtering of CoM coordinate z.

(b) Kalman filtering of CoM velocity ż.

Figure 5.3: Kalman filtering of vertical state. The coordinates of the CoM cannot be measured, but they are

inferred through measured joint angles and a model of ATRIAS mass distribution. There is no useful kinematic

information when the system is in flight. The Kalman filter combines these kinematic “sensor” readings with

accelerometer data and spring deflection measurements. The differentiated velocity “measurements” in (b) are

particularly noisy, but the Kalman filter outputs a much smoother estimate. There is no available measurement of

ground truth for validating these estimates. See Chapter 7 for a discussion on the gray region labeled “bound,”

which is an empirically-formed assumption about estimation error.
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triggers take off and the exit from stance control. This threshold level creates a small delay of

approximately 15 ms (about 5% of stance duration) in contact detection.

5.7 Model adaptation

The final piece of control implementation is the online adaptation of the deadbeat control (Equa-

tion 5.3) derived from the simplified model. To counter small systematic modeling errors (like an

offset in the estimated CoM location) and repeatable perturbations (like repeatable impact forces

from touchdown), the observed error in the return map behavior of ATRIAS is approximated by

a linear model

˙̂xi+1 − ẋa = ε1ẋa + ε0, (5.10)

where ˙̂xi+1 is the observed speed in the flight phase i + 1 and ẋa is the targetted apex speed. ε0

and ε1 are obtained online through linear regression,ε1
ε0

 = (XTX)−1XTY ,

with Xi = [ẋa 1] and Yi = ˙̂xi+1 − ẋa. This error is then anticipated and compensated for by

adapting the leg placement xTD,i. For small deviations, the return map of the approximate SMM

generates an error

ẋi+1 − ẋa =
∂freturn map

∂ẋ
(ẋi − ẋa) +

∂freturn map

∂xTD
(xTD,i − x∗TD,i)

with the partial derivatives pre-computed from the SMM return map. Hence, the observed error

(5.10) is compensated for by the adapted landing angle,

xnew
TD,i = x∗TD,i − (ε1ẋa + ε0 +

∂freturn map

∂ẋ
(ẋi − ẋa))

(
∂freturn map

∂xTD

)−1

.

This algorithm fits an error model based on the parameters of desired change in speed and

initial speed, and it was empirically successful in reducing the asymmetries between the right

and left legs. Chapter 6 reveals a stronger formulation for a multi-state model (with matrix Ts)

of the error dynamics based on the closed loop gains. See Section 6.5.3.
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Figure 5.4: CMU’s ATRIAS biped shown in the boom testbed during the ground disturbance experiments with

unexpected height changes of ±15 cm (discussed in section 5.8.4).

5.8 Experimental results and simplified analysis

Here, we present our experimental demonstration of deadbeat spring-mass running. In terms of

analyzing the results, here we first present a brief overview of the demonstrated behaviors, while

Chapters 6 and 7 are largely dedicated to formally studying the expected and the observed perfor-

mance of the controller. First, we run the system on level ground at a constant speed to establish

a baseline for performance. We then test the controller’s ability to accurately change running

speeds between steps on level ground to assess the transfer of the spring mass model’s (SMM)

nominal agility. Finally, we experiment with trials of constant speed running on rough terrain to

examine the sensitivity of the closed loop system to these disturbances. (Unlike the SMM gaits

examined in Chapter 3, the planning strategy (Section 5.3.1) used in this set of experiments is

not designed for rough terrain robustness).

All in all, we achieve highly accurate tracking of the running speeds for spring-mass gaits, we

successfully execute one-step transitions between gaits of different speeds, and we demonstrate

substantial tolerance for step changes in ground height going both up and down.
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5.8.1 Undisturbed running

First, we evaluate the performance of the proposed controller in undisturbed running over level

ground at a target speed of 1 m s−1, which we use as a “best-case” for the subsequent experiment

of targeting changing running speeds. The gait converges to the target speed with an average

error of 0.05 m/s, the target apex height is tracked with an average error of 2.6 cm, and the

pitch of the trunk converges to a lean angle of ≈ 7.6◦. Figure 5.5 shows the evolution of the key

variables over one stride in each leg. At the level of the simplified model, the motion differs from

the nominal CoM trajectory [x∗(t), z∗(t)] in stance with an error (mean and standard deviation)

of 4.5 ± 4.7 cm in x and 2.6 ± 2.0 cm in z and tracks the nominal leg placement (parameterized

here by the virtual leg angle at touchdown) with an error of 0.99± 0.80 ◦ (Fig. 5.5a). The tracking

of the CoM cannot be considered on its own; the optimal control is simultaneously regulating

trunk orientation, which has an error of 7.6 ± 6.2 ◦ (Fig. 5.5b). This active feedback is applied

using deviations in the GRFs from the reference GRFs of the simplified model (difference of 110

± 130 N, Fig. 5.5c). At the actuator level, the desired SEA torques are tracked within an error of

(53 ± 68 N m, Fig. 5.5d), which is limited by the observed 20 Hz closed-loop bandwidth of the

SEA control.

5.8.2 Tracking SMM deadbeat velocity targets

In a second series of experiments we test how closely the implemented controller can realize the

deadbeat behavior of the theoretical SMM model when the desired apex velocity ẋ∗i changes.

We perform two sets of five repeated trials, in which ATRIAS runs over flat ground with desired

apex velocities that change every five steps (Fig. 5.6a). In the first set, the change is 0.2 m s−1

with a maximum base velocity of 1.0 m s−1. In the second set, the change and maximum base

velocity are 0.4 m s−1 and 1.6 m s−1, respectively. Larger step sizes require deadbeat foot targets

beyond the mechanical limits of ATRIAS at high velocities (Figure 4.7). These limits impose a

maximum possible velocity of 2.6 m s−1 for the chosen spring mass gait.
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Figure 5.5: Tracking performance of implemented controller for ATRIAS running at 1 m s−1 over flat ground

without gait disturbances. Shown are the desired (red dashed) and observed trajectories (black solid) of key

control variables (Fig. 5.1) for two consecutive steps. The asymmetry between the left (L) and right leg (R) occurs

due to the boom constraint.
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) ∆ẋ∗a = 0.2 m s−1

mean
individual

steady state

1 2 3 4 5

0

0.1

0.2

0.3

steps taken

R
M

SE
ve

lo
ci

ty
(m

s−
1
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Figure 5.6: Tracking of SMM deadbeat velocity targets. (a) Profile of desired apex velocities ẋ∗a for changes of

0.2 m s−1 (circles) and 0.4 m s−1 (crosses). The first 20 steps are used in each trial for the online adaptation of

the return map (Sec. 5.7) and do not count toward the experiments. (b) Root-mean-square error between the target

velocity and the robot’s velocity in flight over the number of consecutive steps taken after a change in the velocity

target. Averages over all five trials are shown for the entire experiment (black) and separated out based on the

different trials (gray). The dashed line indicates the average tracking error in undisturbed locomotion at 1 m s−1

(Sec. 5.8.1).
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The observed velocity tracking performance is summarized in figure 5.6b. ATRIAS tracks

desired apex velocity changes of 0.2 m s−1 (circles) with the average error observed in undis-

turbed running (0.05 m s−1, dashed line; compare Sec. 5.8.1) after one step, indicating deadbeat

tracking within the performance expectations defined by the tracking of the undisturbed gait.

However, the robot requires more steps for tracking 0.4 m s−1 changes (crosses), caused mainly

by increased ground impacts at the higher horizontal velocities. We measure a peak horizontal

impact force of approximately 200 N when running at 1.0 m s−1. This impact force increases to

nearly 300 N when running at 1.6 m s−1.

5.8.3 Simple analysis via simulation

Here we perform a rudimentary numerical study of the expected performance of the transfer of

SMM velocity tracking to a noisy, higher order system; Chapters 6 and 7 present more detailed

analyses. From a high-level perspective, differences between the real system and the theoretical

model can come from unintentional force errors and from intentional changes to the force profile

for stabilizing the extra degrees of freedom. We simulate the simplified model (Equations 5.1

and 5.2) subject to the force errors measured on the hardware (i.e, difference between desired

and measured spring deflections), and we observe similar velocity tracking errors, with an RMS

tracking error of 0.06 m s−1 (compare the velocity errors in Figure 5.7) and a peak error of to

0.15 m s−1 at 1.6 m s−1. The disturbance forces are largest at the beginning of stance due to an

initial impact, but the velocity errors grow significantly throughout stance. This tendency is an

inherent property of both the hardware and the simplified system (discussed in Chapter 6).

We also simulate the intermediate complexity model (Fig. 5.1b) with an initial orientation

error of 10◦ and observe a velocity error of 0.05 m s−1 after one step (compare to the pitch error

in Figure 5.5). The simulated system completely recovers after two steps, while the empirical

system exhibits steady state error due to ongoing perturbations and modeling error. Nonetheless,

this simulated motion reveal consistent scaling between the pitch errors and the translational
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errors we see empirically.

These observations suggests that tracking performance could be improved by extending the

simplified model to account for ground impacts and for the angular momentum of the robot in

running gaits.

5.8.4 Rough terrain experiments

With the third series of experiments, we explore how closely the implemented controller follows

the deadbeat behavior of the SMM when the robot encounters unexpected changes in ground

height. We perform experiments for six different ground height changes of ±6 cm, ±11 cm and

±15 cm, each repeated for three trials. In all trials, ATRIAS encounters the ground disturbance

while running at 1.0 m s−1 with its reference gait. (Sec. 5.8.1).

Figure 5.9 shows the velocity tracking performance of ATRIAS after encountering a ground

height change measured as the error in velocity over the steps taken. Deadbeat behavior would

result in an error no larger than the average error of 0.05 m s−1 observed in undisturbed running

at 1.0 m s−1 from the first step on. However, each of the ground height changes results in a

substantial velocity error in the first step of about the same size (0.2 m s−1 to 0.4 m s−1), which

only gradually diminishes in the next steps.

The velocity error and its gradual decay are largely independent of the direction and size of

the ground height change, which seems counterintuitive. For instance, a height drop of 15 cm

results in an increase in speed to 2 m s−1 if maintaining the same total system energy. Similarly,

a height increase of the same amount cannot be achieved without increasing system energy, even

with zero speed. Comparing the two cases, it seems they should lead to very different behaviors,

and thus velocity errors, after the disturbance.

One potential explanation is that these errors are primarily due to the increased ground im-

pacts and trunk orientation errors, which are common to all of the height changes. The sudden

ground height changes are implemented as sheer jumps in the floor surface using concrete blocks

114



time (s)
70 75 80 85 90 95 100

x 
re

la
tiv

e 
to

 fo
ot

 (
m

) 
an

d 
dx

 (
m

/s
)

-0.5

0

0.5

1

1.5

2

2.5
position
velocity
reference

(a) Hardware data over full experiment.

time (s)
0 5 10 15 20 25 30 35

x 
(r

el
at

iv
e 

to
 fo

ot
) 

an
d 

dx

-0.5

0

0.5

1

1.5

2

position
velocity
reference

(b) Simulation of perturbed simplified model.
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Figure 5.7: Sensitivity to force errors. Hardware tracking of horizontal position and velocity versus simulation of

spring-mass model subject to force disturbances, using force error data measured from the SEAs in the hardware

data. CoM velocity plotted in black, and the flat grey lines show incremental target apex velocities (while the

dashed green reference velocities change throughout stance). The similar quality of the velocity tracking in simu-

lation shows that our implementation recovers the deadbeat tracking of the simplified model within the sensitivity

of the simplified model to the force disturbances we encounter.
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ideal control. This shows that a error in pitch results in errors at the velocity level, which partially explains the

observed tracking error of our desired velocities. In particular, the scaling of the pitch-to-velocity relationship is
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(Fig. 5.4). This leads to increased impact forces of nearly 500 N and swing foot impacts with the

side of the elevated ground. These disturbances and the subsequent required trunk stabilization

may explain the reduced accuracy of the tracking of target speeds on rough terrain. The detrimen-

tal effect of swing leg impacts suggests that hardware implementations may be improved through

compliant swing leg motions than what the stiff kinematic control (Section 5.5) provides.

5.9 Conclusions and unanswered questions

These results show that despite the numerous sources of error and uncertainty and the additional

degrees of freedom on ATRIAS, agile behaviors derived from a simplified model can be trans-

ferred to the real, full-order robot. In this study, we limited the implementation to the deadbeat

tracking of speeds in a planar running, while the theoretical study in Chapter 3 showed that the

spring mass model can further describe deadbeat steering in 3D as well as feedforward robust-

ness to changes in terrain height. The remainder of this thesis focuses on the theory behind

how the low order behavior is stabilized in the higher order system, and on how to extend the

theory with quantified qualifications of the expected performance on real hardware. The hard-

ware demonstration of the full capabilities predicted for the spring mass model is left for future

research.

The results obtained here motivate a number of fundamental questions. The controller con-

sists of two main parts: a discrete component that executes motion planning and leg placement

once per flight phase (theory from simplified models can inform the design of this component),

and a continuous component that uses force feedback for trajectory tracking throughout each

stance phase. It is not immediately clear how much of the agility and stability is attributed to

each of these control blocks – does the continuous control have enough authority to stabilize run-

ning motions without needing precise motion plans and accurate leg placement from the motion

planner? Would it be capable of executing agile changes? On the other side, we have already

argued that the lower order model alone does not stabilize the full order system (unless the un-
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addressed modes are passively stable); thus it was necessary to augment the spring-mass control

with continuous feedback. However, it is still unclear how much the overall stability and track-

ing relies on the control provided by the reference following, and whether high performance

spring mass running can be achieved with minimal bandwidth or power provided to the contin-

uous control. Furthermore, it is unclear how these two sources of control would be best used

in conjunction. Chapter 6 addresses these questions with a linear study of the closed loop error

dynamics.

In addition, there is a significant gap between the theoretical design and expected behav-

ior and the observed performance. Multiple assumptions (including full state feedback, ideal

actuation, and perfect models of the dynamics) are clearly violated in the experimental setup,

but these violations should not immediately invalidate all of the theory. Instead of the deadbeat

controller promising an exact match of the target velocity and the reference following guarantee-

ing exponential convergence under unrealistic assumptions, the theory should have a meaningful

interpretation in realistic settings. We would like to have a more rigorous answer than simulat-

ing a specific initial condition or a specific disturbance to compare with the data. Intuitively,

higher performance controllers with faster expected convergence would lead to better tracking

of the desired motion, and better tracking from the actuators would lead to less deviation from

the nominal behavior. Chapter 7 uses bounded assumptions on the sources of error to extend the

theory with quantified bounds on the expected tracking.
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Chapter 6

Stability and performance through the

combined action of the flight and stance

controllers

As motivated in Section 5.9, we want a clearer understanding of how the closed-loop dynamics

of the full order system are generated by the combined effects of the discrete, simplified-model

based control applied in flight and the continuous reference-tracking control in stance. In this

chapter, we study the step-to-step error propagation as the composition two linear mappings.

This allows us to solve infinite-horizon optimal control in stance with proper consideration of

the error rejection provided by the leg placement, to modify the simplified model’s deadbeat law

with optimized adjustments, and to develop fundamental insights about the control design of

legged systems.

Section 6.1 discusses the relevant literature. Section 6.2 derives the linear closed loop error

dynamics, which are then used in Section 6.3 to properly formulate and solve the infinite-horizon

optimal control problem for tracking the stabilized motion of the simplified model. Section 6.4

applies these results to analyze and propose improvements to the control of the vertical subsys-

tem, and Section 6.5 similarly presents a set of examples applied to the horizontal-and-rotational
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subsystem. Finally, Section 6.6 summarizes the main contributions of this work.

6.1 Background

6.1.1 Poincare analysis

Poincare analysis has been heavily utilized for studying and deriving stability of periodic systems

[185]. A Poincare section is defined by describing a discrete event that occurs once per cycle (i.e,

apex of the flight phase); this reduces the continuous representation of the system to a discrete

model. The Poincare map is the function that describes how the state on the Poincare section

changes from cycle to cycle. The local stability of a limit cycle is then given by the Jacobian

matrix of this mapping function. If all its eigenvalues have magnitude less than one, nearby states

on the Poincare section will converge to the limit cycle, while any eigenvalue with magnitude

greater than one implies divergence.

In Section 3.1, we reviewed how Poincare analysis has been applied to examine the stability

of various leg placement strategies in spring mass running, given a pre-specified description of

the closed loop dynamics. Furthermore, this formulation has also informed the design of actively

stabilizing discrete control policies, including the deadbeat 3D leg placement control that we

develop in Chapter 3. In general, the method we presented and other constructive approaches

describe the return map with parameters that can be treated as discrete control inputs, thereby

allowing the direct manipulation of the structure of the closed loop return map. We used tabular

lookup to achieve deadbeat stability (with Poincare eigenvalues of 0) for a simplified model;

other techniques have used simple feedback [166] or discrete, linear optimal control [31, 182]

to create asymptotic stability. In [194] learning algorithms are applied on hardware experiments

to identify the control parameters that minimize the magnitudes of the eigenvalues of the return

map.

In this chapter we apply similar reasoning to analyze the stability of the combined stance
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and flight controllers. While many studies have focused on the local stability of a single limit

cycle [32, 136, 182] such that periodicity becomes a requirement in the control design, here we

use a slightly more general formulation that examines the error dynamics at discrete events. As

a result, the control generalizes to tasks other than converging to a steady-state limit cycle; for

example, we can track transitions between different gaits and have access to a library of motions

described by the simplified model.

In addition, the factorization presented here offers new insight to the fundamental properties

of running gaits and their implications for control. Most existing studies numerically check the

eigenvalues of the Poincare map to confirm stability or use it as a tool for automatically gen-

erating stable discrete controllers as one of the final steps in the control design. We present the

individual matrices as the explicit error dynamics under closed loop control, and thus these struc-

tures take on a central role throughout the design process as well as the performance analysis.

They clarify the effects of each layer of control, they directly represent the dynamic coupling

between different modes of the closed loop system, and they facilitate the analysis the system’s

response to perturbations (Chapter 7).

6.1.2 Optimal control for stability

Continuous optimal control (see Section 2.3.1) can provide another perspective on stability by

working explicitly with the dynamics of the actuated system. Since the problem is formulated as

a search for the minimum total accrued state error while applying the least amount of total control

to required to bring the system to the desired reference, the infinite-horizon solution is necessarily

stabilizing if it exists; otherwise the cost being minimized would be unbounded. For a linearized

system, the solution for minimizing integrated quadratic costs (LQR) is described by a linear

feedback law paired with an emergent quadratic Lyapunov function (frequently called the “cost-

to-go”). The stability guarantee is reflected in non-positive derivative of the Lyapunov function.

This formulation is particularly useful for finding efficient, stabilizing solutions on systems with
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challenging properties like under-actuation. In the previous discussion on Poincare analysis, the

constructive techniques that apply discrete LQR on the transition model similarly have guaran-

teed stability (assuming controllability of the linear model) – not only do the Poincare states

exponentially converge with eigenvalues of magnitude less than one, they do so in a sequence

that minimizes the total summed error.

After linearizing the time-varying dynamics about a reference trajectory (in place of a sta-

tionary equilibrium point), LQR can be applied to the trajectory-following problem. However,

the time-dependent dynamics required for an infinite horizon formulation are often undefined.

There are multiple ways the stability guarantee can be recovered. If the dynamics can be prop-

erly represented for unbounded time (for example, time-invariant or periodic dynamics), then

the Ricatti equation can still be integrated until convergence. Alternatively, a receding-horizon

formulation applies a terminal state constraint to the finite-horizon optimization problem to guar-

antee stability [150], though these methods often still require significant online computation and

can produce unbounded gains. The finite horizon problem that we solved in Section 5.4.1 is

unconstrained and does not guarantee stability on its own in terms of a continuously decreas-

ing Lyapunov function. Instead, we use Poincare analysis to confirm the stability of combined

controllers in terms of decreasing error at discrete events.

Specifically, for periodic running and walking gaits, infinite-horizon linear time-varying LQR

(LTV-LQR) has been formulated for continuously stabilizing reference behaviors. [79] uses tra-

jectory optimization techniques to identify an energy-optimal limit cycle for walking on ATRIAS

and applies LTV-LQR to track this reference motion. Since the state at the end of the cycle

matches the state at the beginning, the backwards integration of the Ricatti equation is propa-

gated from step to step by directly carrying over the cost function. The integration eventually

converges to return the infinite horizon cost and associated feedback control law. As a local pol-

icy that tracks the fixed limit cycle, this control does not take any advantage of other mechanisms

for feedback, including leg placement.
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In [32], the authors apply LTV-LQR to stabilize a compass-walking limit cycle on an under-

actuated robot. The limit cycle itself is simultaneously optimized to reduce the cost passed

to the LQR; this defines a much more complex optimization problem that is approached with

probabilistic nonlinear techniques. In effect, this formulation then includes leveraging stabilizing

effects from parameters of the periodic gait (like leg placement); when applied to the spring mass

model [32], this optimization reproduces the deadbeat swing leg trajectory (discussed in Chapter

3) that provides feedforward robustness to terrain changes. However, the periodicity constraint

of a limit cycle does not allow for any stabilizing behaviors described by a feedback law.

In [104], the authors formulate LTV-LQR to stabilize a reduced-order model of the center of

mass motion on ATLAS. If the desired motion includes a flight phase (during which there are no

GRFs and control authority is thus lost), the ballistic motion describes a predictable propagation

of the system, which then allows the optimal cost to be explicitly mapped across the discontinuity.

The “jump-Ricatti equation” can then be integrated on time scales “long enough to approximate

the infinite horizon solution.” In this work, the authors do not use any stabilizing feedback in the

flight phase.

All these formulations rely on solving how the motion is propagated across multiple cycles

such that the Ricatti equation can be backwards integrated to converge to the optimal and guar-

anteed stable control law. In our work presented here, the closed-loop leg placement of the

simplified model directly encodes stabilizing effects in this transition between steps. As a result,

we are able to formulate LTV-LQR to design an optimal, continuously-stabilizing feedback con-

trol that explicitly accounts for the stability transferred from the deadbeat spring mass model,

thereby directly answering one of the central questions of this thesis.

6.1.3 Hybrid zero dynamics for stable embedding of lower order model

Hybrid zero dynamics [28, 135, 136, 182, 206] offers a closely related perspective for designing

stable control on the full order system. The primary distinction lies in how the “reference” is
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defined. Instead of a trajectory described by a specific state evolution as a function of time,

the dynamics of the lower order system define a manifold on which the states evolve. As a

surface instead of a trajectory, this manifold incorporates some of the degrees of freedom of the

system, and the control that drives the full order dynamics towards the surface may not need to

handle the challenges of under-actuation; the design of the virtual constraints is often matched

to the available sources of active control. As a result, HZD-based control can be made to have

a time-invariant structure [28, 182], which may be beneficial in that the resulting motion is not

clock-driven. This difference is examined in more detail in Section 6.6.2.

On its own, the zero dynamics (i.e, the behavior of the lower order system on the constrained

manifold) are not guaranteed stable. The energy-efficient running limit cycle optimized in [182]

is passively unstable, and it is made stable by an outer loop control that uses leg placement and

other discrete parameters are a control input. This feedback law is solved with discrete LQR

given the linearized Poincare dynamics of the closed continuous loop system. In effect, this

design procedure inverts the trajectory-tracking process we solve here with optimal control: the

authors of [182] first design continuous feedback laws to reduce the order of the higher order

system, and then stabilize the resulting dynamics using the available discrete inputs; we first

model highly stable behavior in the simplified system and then stabilize the full order system

with the available continuous control inputs.

One of the central questions we try to answer in this thesis is “how do the stable behaviors of

the simplified model transfer to the full order system?” This question is more directly addressed

from the optimal control perspective; we minimize the total error and control effort, where the

controller must identify the correct compromises to stabilize all the degrees of freedom. The

stability imparted by the deadbeat leg placement is explicitly exploited by solving LTV-LQR

using the dynamics of the full order system. From the HZD perspective, we would instead answer

“can we stably embed the dynamics of our desired behavior within the higher order system?”

The stability of the deadbeat leg placement can only be implicitly leveraged by choosing virtual
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constraints that omit the speed of the robot, thereby putting this degree of freedom in the zero

dynamics and reserving it to be regulated by the deadbeat controller. The final step of solving

the discrete LQR would then be redundant with the proposed deadbeat leg placement.

Despite these subtle differences in formulation, the framework we use here and the HZD

framework are founded on the same fundamental concepts that describe the closed loop motion

of a periodic system, and the main results may be translated between the two perspectives with a

little effort.

6.1.4 Summary and contributions

In the current literature, numerical Poincare analysis is the primary method of studying the sta-

bility of a closed loop, periodic system. In this work, we factor the return map for running into

two components – one that comes from leg placement and motion planning in the flight phase,

and one that comes from trajectory following in the stance phase. This decomposition provides

clear insights about how control design decisions of legged systems influence gait stability. In

particular, using this structure, we can augment the deadbeat leg placement from the simplified

model with a full order feedback term that recovers deadbeat stability on the full order system.

This generalizes deadbeat spring-mass theory to higher order systems.

Optimal control is a powerful tool that has been used to generate feedback policies to stabilize

otherwise unstable limit cycles. Here, we solve LTV-LQR to track reference motions (that need

not be periodic limit cycles) of a closed loop simplified model such that the continuous feedback

explicitly accounts for the stabilizing properties of the underlying model. This is achieved by

modeling the error dynamics of flight phase given the closed loop leg placement.

Hybrid zero dynamics offers a formal framework for stably embedding the dynamics of a

lower order model in a higher order system. While this existing theory is highly relevant to our

study of transferring deadbeat SMM running to the full order robot, the conceptually similar

approach we develop in this work allows us to apply optimal control and linear theory for a
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Figure 6.1: Closed loop evolution of state error. The states of the system are defined in stance and given by

s = [q, q̇], where coordinate vector q = [z, x, θ] consists of the CoM coordinates and the trunk orientation. The

state error ξ = s − s∗ is defined with respect to reference s∗. This reference is re-computed in each flight phase

(based on the simplified model) and determines the leg placement, which effectively allows a minimization of the

error ξTD by generating a motion plan from the expected touchdown state sTD to the desired apex. In each stance

phase, the continuous control acts to reduce state error ξ. The error dynamics of the total system can be expressed

as a recursive mapping between errors defined at discrete events.

more direct understanding of how the different layers of control interact and ultimately generate

stability and agility on the full system. Furthermore, this approach directly extends to stably

tracking arbitrary motion plans using the available sources of control, without relying on the

periodicity of a nominal limit cycle.

6.2 Linear model of closed loop error dynamics

The results in this chapter and Chapter 7 all stem from framing the control problem in terms of

the error dynamics.

6.2.1 Definition of states and errors

We proceed with the definitions used in Section 5.4.1; See Figure 6.1.

The task of agile and robust running on the full order robot can be described as minimizing
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the difference between the apex parameters pi = [θa, θ̇a, ẋa, za]i at each step and the desired

values p∗ = [θ∗a, 0, ẋ∗a, z
∗
a]. Poincare return map analysis 6.1.1 yields the local stability of how

the error vector pi − p∗ changes from step to step under closed loop control. This analysis

is typically performed at the apex event to minimize the number of independent parameters.

By construction, the deadbeat reference trajectory s∗(t)i exactly matches p∗ at the apex of the

ensuing flight phase. In this chapter, our goal is to study the convergence of the state error

ξ = s − s∗, which in turn implies the convergence of pi to p∗. To explicitly examine the errors

of the gait parameters at the apex, we would derive the nonlinear function p − p∗ = fapex(ξTO)

using the equations of motion for a ballistic system in flight (Section 4.3.3). However, since the

continuous force control defines the error dynamics ξ̇ in the stance phase, it is more convenient

to study the evolution of the full state error vector ξ defined in stance.

6.2.2 Error dynamics in stance

The general solution of LTV systems is known ([14]). For any system of the form

ẋg = Ag(t)xg +Bg(t)ug(t)

(where we use subscript g to denote a generic variable) with a known initial condition xg(t0), the

unique solution at any future time t1 > t0 is given by

xg(t1) = Φ(t1, t0)xg(t0) +

∫ t1

t0

Φ(t1, t)Bg(t)ug(t)dt, (6.1)

where the state transition matrix Φ(t1, t0) is solved by forward integrating the matrix differential

equation

∂

∂t1
Φ(t1, t0) = Ag(t1)Φ(t1, t0)

from the initial condition of Φ(t0, t0) = I . (For reference, ifAg(t) is constant, transition matrix

Φ(t1, t0) is the matrix exponential eAg(t1−t0)).
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In the stance phase, given a time-varying linear feedback law u = −K(t)ξ, the linearized

error dynamics form the LTV system

ξ̇ = (A(t)−B(t)K(t))︸ ︷︷ ︸
Acl(t)

ξ(t).

Thus, the evolution of the error from any time t0 to later time t1 in the stance phase is described

by the linear mapping

ξ(t1) = Φ(t1, t0)ξ(t0),

where Φ(t1, t0) is integrated using the nominal closed loop dynamics Acl(t). Specifically, in

each stance phase the error at takeoff is a linear mapping of the error at touchdown:

ξTO,i = Φ(tTO,i, tTD,i)︸ ︷︷ ︸
Ts

ξTD,i, (6.2)

thereby defining stance transition matrix Ts (with subscript s for stance).

6.2.3 Error dynamics across flight

The state error at the next touchdown ξTD,i+1 is governed by the three things that happen in

the flight phase. The states are propagated from the initial condition sTO,i, a new reference

trajectory s∗(t)i+1 is computed, and the swing leg is moved into the desired landing configuration

uf,i = [x∗TD,i+1, z
∗
TD,i+1]. We label the leg placement as uf,i (with subscript f for flight and step

index i) since it serves as an input to be assigned by the controller during the ith flight phase.

Conceptually, the job of the controller in this phase is to use the simplified model to choose

the reference s∗(t)i+1 and associated leg placement uf,i that minimizes the anticipated error

ξTD,i+1 = sTD,i+1 − s∗TD,i+1 at touchdown. Here, we will analyze the error dynamics of the

flight phase for the control we implemented in Chapter 5.

Defining tf = t− tTO,i as the time elapsed since takeoff, the motion of the system in flight is
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given by

ẋ(tf ) = ẋTO,

z(tf ) = zTO + żTOtf −
g

2
t2f ,

ż(tf ) = żTO − gtf ,

θ(tf ) = θTO + θ̇TOtf ,

θ̇(tf ) = θ̇TO.

(6.3)

The system transitions to the next stance phase when the foot contacts the ground, and we label

the flight time tf at which this event occurs as tc,i (with subscript c for contact). Assuming

contact occurs after apex (which resolves the two-to-one nature of the t2f term in z(tf )), there is

a one-to-one mapping between the parameters zTD,i+1 and tc,i given by

zTD,i+1 = z(tc,i|zTO,i, żTO,i),

tc,i(zc,i+1|zTO,i, żTO,i) =
żTO,i +

√
ż2
TO,i + 2g(zTO,i − zc,i+1)

g
. (6.4)

Then, using equations 6.3 along with the reset condition of xTD,i+1 = x∗TD,i+1, we can solve for

the touchdown state as a function of the previous takeoff state and the leg placement:

sTD,i+1 = fflight(sTO,i,uf,i).

Given the current velocity ẋ ∈ sTO,i and target velocity ẋ∗, the simplified model planning

layer (Section 5.3.1) generates a reference s∗(t)i+1 for the next stance phase that exactly produces

the necessary change in velocity in one step (while also matching the rest of the apex parameters

in p∗i ). That is, s∗TD,i+1 has ẋ∗TD,i+1 = ẋa and ẋTO,i+1 = ẋ∗a. Unlike x∗(t)i, z∗(t)i is defined by a

fixed limit cycle (Section 5.3.1) independent of the take-off state sTO,i; there is no feedback on

the vertical states at the planning level. The x and z coordinates of the initial condition s∗TD,i+1

of this reference define the target leg placement uf,i = [x∗TD,i+1, z
∗
TD,i+1], thus describing a

tabulated, nonlinear controller uf,i(sTO,i).
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Finally, this allows us to describe the touchdown error ξTD,i+1 of the upcoming stance phase

as a function of the takeoff state sTO,i from the current stance phase:

ξTD,i+1 = sTD,i+1 − s∗TD,i+1 = fflight(sTO,i,uf,i(sTO,i)) (6.5)

In particular, the x and z terms of this error vector ξTD,i+1 are 0 by position-based leg placement,

and the velocity term ẋ is 0 by design of deadbeat control. We can linearize about the nominal

takeoff condition this mapping to express

ξTD,i+1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 tc 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 g
ż∗TD

ż∗TO
ż∗TD


︸ ︷︷ ︸

Tf

ξTO,i + ∆nl,f (6.6)

where Tf (with subscript f for flight) is the linear transformation of the state error in flight, and

the extra term ∆nl,f captures any nonlinearities in the original mapping in Eq. 6.5. We show in

Chapter 7 that ∆nl,f is negligible? for the gait we implement.

6.2.4 Closed loop convergence

Having derived linear models for how the state error evolves both in stance and in flight, we can

now compose a recursive mapping of the error between steps:

ξTO,i+1 = TsξTD,i+1 = TsTfξTO,i.

Equivalently, we can also express

ξTD,i+1 = TfTsξTD,i.

The product TsTf is the linearized return map, or Poincare matrix, of the error at takeoff, while

the product TfTs is the linearized return map of the error at touchdown. These maps have
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the same eigenvalues, which determine the local stability of the closed loop system. Beyond

describing the stability of a steady-state limit cycle under closed loop control, these matrices

also describe the convergence to arbitrary running patterns generated by the simplified model

from Section 5.3.1 under closed loop control.

6.3 Infinite horizon optimal control of stance phase

Having constructed the error transition matrix Tf for the flight phase, we can now properly

formulate the infinite-horizon LTV-LQR tracking controller discussed in Section 6.1.2. Instead

of a defining the finite-horizon problem for a single stance phase posed in Section 5.4.1 with cost

function

Ji(ξ,u, t) = ξTTO,iHξTO,i +

∫ t=tTO,i

t=tTD,i

ξT (t)Q(t)ξ(t) + uT (t)R(t)u(t)dt,

with integrated state cost Q(t) ≥ 0, integrated control cost R(t) > 0, and terminal state cost

H ≥ 0, we now define the infinite horizon problem with cost function

J∞i (ξ,u, t) =
∞∑
k=i

Ji(ξ,u, t),

where the costs are summed starting from the current step i and propagated indefinitely into

the future. Matrix H is no longer a one-time terminal cost, but now serves the role of a once-

per-stride penalty on state errors measured at takeoff (H could be made to penalize apex errors

w.r.t target apex parameters p). The solution to this optimal control problem is found by back-

integrating the jump Ricatti equation [110], where

−Ṗ (t) = Q(t)− P (t)B(t)R−1(t)BT (t)P (t) + P (t)A(t) +AT (t)P (t)

describes the propagation of the cost matrix P within a continuous stance phase, and

PTO,i−1 = T T
f PTD,iTf +H

(6.7)

describes the propagation of the cost matrix P within a continuous stance phase, and

(6.8)

gives the propagation of the cost matrix across flight phases. Intuitively, the “jump” part of this

equation describing the discontinuous flight phase propagation comes from substituting ξTD,i =
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TfξTO,i−1, such that the cost-to-go from the touchdown state

ξTTD,iPTD,iξTD,i = ξTTO,i−1(T T
f PTD,iTf )ξTO,i−1

can be represented in terms of the previous takeoff. The addition of H in each “jump” comes

from accumulation of one-per-stride error upon the (i− 1)st takeoff.

When the backwards integration of this system converges such that J∞i (ξ, t) ≈ J∞i−1(ξ, t), it

means that all future costs are properly represented in cost matrix P (t): given any current error

ξ the optimal feedback control will exactly accumulate finite cost ξTP (t)ξ while converging to

the reference motion. Note that time-varying matrixP (t) is periodic once the back integration of

J∞(ξ, t) has converged, so the numerical representation of P (t) only needs to span the duration

of one stance phase. Finally, the infinite-horizon optimal feedback law is then

uopt = −K(t)ξ,

where

K(t) = R(t)−1BT (t)P (t).

See the blue lines in Figure 6.2(a) for an illustration of the back-integration and convergence.

Stability is guaranteed by using the cost function J∞ as a Lyapunov function, and it can be

re-confirmed by examining the eigenvalues of resulting return map TsTf .

We tune this controller by choosing weights Q(t), R(t), and H to keep the feedback gains

in K(t) low enough to avoid coupling with the actuator dynamics and to keep the time-varying

gains from changing too quickly. This requires a different set of weights from the ones used in

the finite horizon problem solved in Section 5.4.1.

6.3.1 Iterative re-design

This LTV-LQR formulation automatically designs the continuous feedback design as an optimal

control problem given the closed loop discrete dynamics. As commonly done in HZD formula-

tions, the discrete control can be automatically designed as an optimal control problem given the
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closed loop continuous dynamics. Iteration between these two steps in the style of expectation-

maximization (EM) algorithms [38] in the machine learning community then converges to a

locally optimal combined control that best exploits the interaction between the two layers of

control. Such a process may be an efficient alternative to the highly expensive combined opti-

mization problem formulated in [32].

6.4 Applied examples for vertical system

In this section, we use the linear error dynamics derived in Section 6.2 and the infinite-horizon

optimal control derived in Section 6.3 to work through a series of examples for the de-coupled

vertical system with state [z, ż] and input Fz.

In Section 6.4.1, we show the stability of the control we applied in the experiments of Chapter

5, we show the instability of a lower-gain stance controller, and we use LTV-LQR to derive a low-

gain, guaranteed stable, optimal control with good tracking.

In Section 6.4.2, we use the structure of the linear error dynamics to derive a landing-height

law that stabilizes the vertical states without high gain continuous feedback. Existing spring-

mass based controllers have not leveraged this parameter as an available control input. We then

further demonstrate that iteration between the optimal design of stance and flight control con-

verges to a design that uses both strategies in tandem.

6.4.1 LTV-LQR in stance

The control we implemented in our experiments in Section 5.8 was originally designed for sim-

plicity. The reference motion is a fixed spring-loaded hop of constant height for each step, and

we chose the vertical leg placement to match the nominal landing height of this trajectory. This
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Figure 6.2: LTV-LQR design for vertical system, see discussion in Section 6.4.1. We implemented the black gains

by ignoring the effects of Tf , using high enough feedback gains to make Ts sufficiently strong. Higher control cost

on R gives red gains when ignoring Tf , which generates an unstable system. Using the high cost R but accounting

for Tf , infinite horizon optimal control in blue necessarily stabilizes system. The back-integration of the jump

Ricatti equation converges in about 3 cycles.
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results in the flight transition matrix

Tf =

 0 0

− g
ż∗TD

ż∗TO
ż∗TD


from Equation 6.6.

Since the stance error dynamics are described by a force-driven second order system, we

chose constant PD gains tuned with infinite-horizon LQR (for a system assumed to permanently

stay in stance) to be high enough to stably track the reference. Low gain feedback can “stabilize”

Ts while leaving the composition TsTf unstable (a known property of hybrid dynamical systems

[90, 159]). In theory, increasingly high gain feedback drives Ts to 0, thereby stabilizing the

composition TsTf . In practice, our feedback gains are limited by the bandwidth of the actuator

control, and we observe oscillations in the force tracking as the gains are increased. We tuned

the system experimentally to identify the black gains in Figure 6.2(a) (kp ≈ 6200, kd ≈ 1100),

which yields Poincare eigenvalues eig(TsTf ) of [0, 0.09] and stabilizes the simulated system in

Figure 6.2(c).

Applying the same constant LQR design with a 40 times larger quadratic control cost R pro-

duces the lower feedback gains in red. This results in unstable Poincare eigenvalues of [0, 1.4],

and the simulation in Figure 6.2(d) diverges with larger and larger apex errors.

However, applying the LTV-LQR formulation derived in Section 6.3 that explicitly accounts

for the flight phase yields time-varying feedback gains that are guaranteed to be stable. Here,

we keep the inflated control cost 40R and back-integrate the jump Ricatti equation 6.8 until

convergence. In Figure 6.2(a), the stance phase farthest to the right (which is integrated first due

to the backwards-time nature of the Ricatti equation) starts with the same low-gain feedback as

the red system; the lines are over-laid and the dark blue gains are hidden. In the preceding stance

phase, the optimal control identifies higher time-varying gains (dark blue) that account for the

propagated cost of the flight phase. This process is continued until the time-varying gains no

longer change in sequential steps; here, it takes approximately 3 steps for the gains to converge.
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The converged gains are shown as a light blue reference in each of the plotted stance phases to

illustrate the evolution of these gains.

The key result here is that by explicitly accounting for the flight dynamics Tf , infinite-

horizon optimal control automatically shapes the initially unstable gains to achieve stability. The

Poincare eigenvalues of the time-varying control law are [0, 0.1], and the simulation in Figure

6.2(e) demonstrates the convergence. In particular, the tracking accuracy is similar to the high-

gain system in black, but significantly lower feedback forces are applied (Figure 6.2(b)) as the

gains are on average much lower (Figure 6.2(a)).

This simulated study thus illustrates the effectiveness of applying the techniques from Section

6.3 to properly formulate optimal control design of the continuous feedback given the dynamics

of Tf – stability is guaranteed, and the solution features good tracking and low control costs.

6.4.2 Using the landing height in flight

We return to the unstable, low constant gain system in red (Figure 6.2, and Figure 6.3) from

the previous study as a motivating example. If the hardware does not have sufficient actuator

bandwidth to apply the stabilizing continuous feedback derived by LTV-LQR (blue gains in

Figure 6.3(a)), the Poincare matrix TsTf may still be stabilized through modifying Tf , given the

closed loop structure of Ts. This is the design procedure typically applied in HZD approaches.

In particular, the vertical leg placement z∗TD,i+1 parameterizes the evolution of the system and

may be used as a control input in the flight phase. Spring-mass leg placement strategies (see Sec-

tion 2.4.3) have used a single parameter to represent touchdown (classically leg angle α, which

is analogous to x∗TD,i+1 here) and maintained constant leg length l (analogous to z∗TD,i+1). Our

implementation in Chapter 5 followed this convention. However, from the flight error propaga-

tion model based on Equations 6.3 and 6.4, we can derive control that leverages this previously

unused input.

We linearize the flight error propagation around the original condition of a fixed landing
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Figure 6.3: Landing height adjustment in flight, see discussion in Section 6.4.2. Red system uses constant gains

and no leg placement; it is unstable. Blue system solves LTV-LQR, guarantees stability, requires higher gains.

Brown system keeps the red gains, but uses landing height adjustment. Green system is designed by iterating be-

tween LTV-LQR design and landing-height design. Simulated trajectory is of this iteratively optimized controller.
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height z∗TD,i+1 = z∗0 and model the changes in touchdown error ξz,TD,i+1 in response to a change

δzTD in the landing height:

ξz,TD,i+1 =

 0 0

g
ż∗TD

ż∗TO
ż∗TD

 ξz,TO,i +

 1

− g
ż∗TD

 δzTD,
ξz,TO,i+1 = Ts

 0 0

g
ż∗TD

ż∗TO
ż∗TD

 ξz,TO,i + Ts

 1

− g
ż∗TD


︸ ︷︷ ︸

BzTD

δzTD.

This equation describes a discrete linear system with state ξz,TO and input δzTD, and discrete

LQR returns a feedback policy of the form δzTD = −KzTDξz,TO,i, thereby generating the new

Poincare matrix Ttotal = Ts(Tf −BzTDKzTD) under closed loop landing height adjustment.

Without re-tuning the low, constant stance gains in red (Figure 6.3(a)), this discrete control (in

brown) stabilizes the Poincare matrix to eigenvalues of [0, 0.45] (Figure 6.3(b)) while applying

low forces for feedback correction (Figure 6.3(c)).

Finally, as proposed in Section 6.3.1, we can iterate between the optimal design of the discrete

control and the optimal design of the continuous control. That is, after solving the LTV-LQR

problem yielding a new Ts for the closed loop stance dynamics, we can solve the DLQR problem

for leg height adjustment, thereby adjusting the flight dynamics with Tf−BzTDKzTD. In Figure

6.3(b), we repeat this process 25 times to converge to a control (green lines) that uses both landing

height adjustment and optimized time-varying gains. The result is a controller that uses much

lower gains in the stance phase. The off-nominal landing height used by this controller can be

seen in Figure 6.3(d), where the blue trajectory and the green reference are not perfectly matched

on touchdown.

To take advantage of the available actuator bandwidth on ATRIAS – for which the original

constant gains in black (Figure 6.2) were feasible – we run the iterative optimization with the

original control cost R without the inflation introduced at the beginning of Section 6.4.1. The

resulting gains are shaped similarly to the iterated optimal control Figure 6.3(a), but at the scale
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of the original gains we implemented. In practice, higher gains improve the convergence (i.e,

eigenvalues closer to 0) of Ts, which improves the disturbance rejection studied in Chapter 7.

In this simulation study, we applied discrete LQR to design a feedback law that adjusts the

landing height to improve the tracking of the vertical states. This is analogous to adjusting the

length of the leg in flight for the spring-mass model, which is a previously un-exploited source

of control. We showed that the leg placement design is compatible with the LTV-LQR for the

continuous control in stance and allows for drastic reduction of feedback gains.

6.5 Applied examples for the x-and-pitch system

Section 6.4 examined control for stabilizing the vertical states [z, ż]; this section presents stud-

ies on the control for the system with the remaining states [x, ẋ, θ, θ̇] controlled by input Fx.

Intuitively, this system is where the under-actuation is prominently visible – both the pitch θ and

the horizontal position x are driven by a single force input in stance. Raibert control and other

heuristic methods [7, 13, 31, 52, 53, 132, 200] rely on introducing additional input via leg place-

ment between stance phases to reduce the responsibilities of the stance feedback, HZD methods

optimizes the use of the discrete input and formalizes the local stability of these strategies, while

pure trajectory-tracking approaches locally solve the under-actuated stabilization problem.

Our implementation in Chapter 5 tested and confirmed the hypothesis that (simplified) model-

based design of the leg placement can generate highly precise tracking of desired velocities. Here

we use the tools developed earlier in this chapter to clarify the implications of this strategy on

the stability of the full order system. In particular,

• Properly tuned finite horizon LQR is stable, but we can re-derive this behavior more for-

mally using infinite horizon optimal control.

• Adding the closed-loop stability of the simplified model to the infinite horizon LQR sig-

nificantly improves its feasibility and its performance.
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• Ts gives the coupling between states and allows for modification to the leg placement

policy.

6.5.1 Finite horizon versus infinite horizon LQR

First, we show that LTV-LQR around the deadbeat reference model yields similar behavior to

what we tuned by hand using finite horizon LQR. See Figure 6.4. The feedback gains Kx are

plotted in the top row, while the eigenvalues of P are plotted in the bottom row. The finite-

horizon solution on the left does not propagate any information between steps; it resets to a pre-

defined terminal cost at each touchdown state and integrates the Ricatti equation for the known

time-varying dynamics. Experimentally, we found that choosing a terminal cost that emphasizes

orientation error lead to stable running, matching the principles governing heuristically design

controllers. The dashed light blue lines in Figure 6.4(a) and 6.4(b) correspond to the x feedback

that would re-direct the GRF (given an assumed F ∗z and z∗) through the center of mass, thereby

imparting no net moment to the system. This can be viewed as a neutral reference to help

understand the behavior of the control – the fact that it is always negative reveals the natural

instability of x in an inverted-pendulum system: an axial GRF amplifies any positional error

as the system falls over. The black and green lines correspond to corrective PD gains on the

orientation.

In Figures 6.4(b) and 6.4(d), we solve the infinite horizon LTV-LQR by integrating the jump-

Ricatti equation until convergence. The transient solution during this integration (from right to

left for decreasing time) is plotted in dashed lines, and the converged solution is over-laid in solid

lines; the optimization converges in roughly 2 steps.
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Figure 6.4: (A)Finite-horizon gains were tuned empirically on hardware. The dashed blue line is −F
∗
z (t)
z∗ , which

is the effective gain on x required such that Fx is directed through the center of mass. Intuitively, it can be thought

of as the baseline compensation for creating no pitching moment. The fact that it is always negative (as is the

optimal x gain in blue) shows the unstable closed loop tendencies of the horizontal behavior – holding the trunk

upright implies unstable feedback of x. This is a fundamental property of the inverted pendulum model. (B) The

infinite horizon problem propagates costs across the flight phase and computes gains accordingly.
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The closed loop error propagation in stance Ts of the two controllers are nearly the same:

Ts,finite-horizon =



1.68 0.37 0.09 0.03

4.82 1.65 0.25 0.15

0.16 0.03 0.29 0.01

2.41 0.49 −0.89 0.00


, eig(Ts,finite-horizon ) =



3.06

0.34

0.23

0.00



Ts,infinite-horizon =



1.70 0.38 0.11 0.03

4.88 1.66 0.28 0.15

0.06 −0.01 0.11 0.02

2.62 0.54 −0.89 −0.07


, eig(Ts,infinite-horizon ) =



3.10

0.33

−0.01 + 0.08i

−0.01− 0.08i


. (6.9)

They both let the translational errors grow exponentially during stance, relying on the flight
control with

Tf =



0 0 0 0

0 0 0 0

0 0 1 0.16

0 0 0 1


to address these modes. Their total closed loop dynamics are given by the Poincare matrices

Ts,finite-horizon Tf =



0 0 0 0

0 0 0 0

0.54 0.11 0.15 0.015

2.41 0.49 −0.99 0.00


, eig(Ts,finite-horizon Tf ) =



0.08 + 0.09i

0.08− 0.08i

0

0


,

Ts,infinite-horizon Tf =



0 0 0 0

0 0 0 0

0.46 0.08 −0.03 0.01

2.62 0.53 −0.89 0.07


, eig(Ts,infinite-horizon Tf ) =



−0.05 + 0.07i

−0.05− 0.07i

0

0


.

Solved as an explicit optimization problem with a model of the flight dynamics, the infinite-

horizon problem achieves slightly faster convergence with slightly lower gains. More impor-

tantly, on a theoretical level, this approach is guaranteed stable and returns a continuous Lya-

punov function that is always decreasing.

We simulate the system to track a desired velocity profile that takes 3 steps at each at 0, +0.3,

-0.3, and 0 m/s. The total behavior of the controllers presented are extremely similar, and here

we only plot the infinite-horizon simulation in Figure 6.5. We start from an initial condition with

a 10 degree error the trunk and a 1 cm offset in x. The orientation is corrected in the stance

phases of the first two steps, and the initial error in x leads to a growth in the velocity error
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during the first step. The deadbeat simplified model generates a reference that corrects this error,

and the total state tracking is nearly perfect after the second step. The cost-to-go is continuously

decreasing as it converges to 0.

6.5.2 LTV-LQR without leg placement

Next, we consider stabilizing fixed limit cycles without using leg placement to track the velocity.

In this case, the 2nd entry on the diagonal on Tf becomes 1 instead of 0, since any error in

speed at takeoff gets directly carried over to the next touchdown. Designing a stabilizing stance

controller by hand would be difficult, but LTV-LQR (keeping the same costs Q and R from the

deadbeat LTV-LQR design) eventually converges to a theoretical solution which uses very high

gain feedback on x synchronized with quickly changing gains in the other states(Figure 6.6(a)).

These high gains match the fact that the cost function (Figure 6.6(b) is two orders of magnitude

larger than deadbeat stabilized cost (Figure 6.4(d)). If we were to attempt to balance the robot on

point feet (the Acrobot stabilization problem), we would solve the infinite horizon LQR problem

for a constant height and no flight transitions. This produces the straight-line gains in Figure

6.6(a).

This theoretically stabilized system is not feasible on ATRIAS; the high gain feedback far

exceeds the observed bandwidth of our SEA control. In simulation, it demonstrates very limited

tracking capabilities of reference velocities. In Figure 6.6(c), we ask for 5 steps each at target

speeds of 0, 0.05, and 0 m/s. The initial perturbation of 1 cm and 10 degrees leads to substantial

velocity and orientation errors that are gradually reduced over the course of 5 steps; the tracking

performance of even a very small change in velocity is poor. Figure 6.6(e) shows that the applied

control is dominated by the required feedback for balancing the under-actuated system. When

the desired speed is changed, the controller experiences a new instantaneous perturbation, and

re-starts a gradual convergence to the new limit cycle. The theoretical guarantee of a decreasing

cost function is maintained (Figure 6.6(f)) and only increases upon the unmodeled perturbation
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Figure 6.5: Simulation of infinite-horizon LQR tracking deadbeat behavior of simplified model. The initial

condition has a 10 degree error in θ and 1cm error in x. (a) shows the tracking of the reference positions and

velocities (in dashed green) from the deadbeat stabilized simplified model. Relative errors in these states grow

exponentially, as is most evident in the first step. (b) shows the orientation, (c) show the applied horizontal GRF,

and (d) shows the LQR cost, which is guaranteed to be decreasing as a function of time.
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of a change in desired velocity.

The high sensitivity of this controller stems from having no means of independently control-

ling the two degrees of freedom, and x must be prioritized over θ. This is especially problematic

on a low rotational inertia robot like ATRIAS, where generating Fx comes from applying hip

torques, which create large accelerations on the orientation. Thus, without accounting for the

stabilization available through the discrete control, LTV-LQR techniques like the one proposed

in [79] are limited to overly aggressive strategies that are stable in simulation but not applicable

to hardware due to limited bandwidth and limited disturbance rejection.

6.5.3 Coupled states and potential revision of leg placement policy

Earlier in this thesis (Chapter 1), we raised the question of how the extra degrees of freedom

and the associated feedback control affect the assumed behaviors of the states described by the

simplified model. With linear closed-loop error dynamics through u = −K(t)ξ, the inter-

dependency of the different states of the system is now explicitly known; the multi-state error

vector evolves through ξTO = TsξTD. For example, from the [2,3] entry of the infinite-horizon

closed loop transition matrix in Equation 6.9, a 0.5 radian (29◦) error in pitch θ at touchdown

will lead to a 0.14 m/s error in horizontal velocity ẋ at takeoff. While the math is not new

and the result is highly intuitive, it does not seem to be a commonly examined perspective in

the literature, despite the ubiquity of trade-offs between dynamically coupled states in legged

systems.

One possible conclusion is that these coupling terms are small – we accept that non-zero pitch

θ and pitch velocity θ̇ introduce minor perturbations to the desired deadbeat velocity tracking,

and we keep the deadbeat leg placement from the low order model that is agnostic to these

rotational states. The smallness of the coupling terms comes from the low rotational inertia It

of the robot. In 6.5.2, the low inertia prevents us from balancing in place; here, it can justify

ignoring the rotational dynamics effects on the translational dynamics.
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Figure 6.6: Simulation of LTV-LQR tracking of single non-adaptive limit cycle. LTV-LQR derives stability by

using x and gravity to control the pitch. These gains are not realistic for the hardware; they exceed the actuator

bandwidth. Rejection of errors is slow despite large feedback forces. Convergence is theoretically guaranteed.

146



Alternatively, just as we designed the vertical leg placement in Section 6.4.2, we can use Ts

to revise the original leg placement policy. The state errors have the discrete dynamics of

ξTD,i+1 =



0 0 0 0

0 0 0 0

0 0 1 tc

0 0 0 1


︸ ︷︷ ︸

Tf

ξTO,i +



1

0

0

0


δxTD,

ξTO,i+1 = Ts



0 0 0 0

0 0 0 0

0 0 1 tc

0 0 0 1


ξTO,i + Ts



1

0

0

0


δxTD (6.10)

Thus, to re-formulate deadbeat velocity control that takes the rotational states into account, we

could derive

δxTD = − 1

Ts,[1,2]

([
0 1 0 0

]
TsTf

)
ξTO,i,

= −
[
0 0 0.06 −0.04

]
ξTO,i.

(6.11)

where Ts,[1,2] = 4.88 is the adjusted leg placement’s effect on the velocity error in flight and

selection matrix
[
0 1 0 0

]
singles out the velocity dynamics in transition matrix TsTf . This

computation yields gains that exactly cancel out the pitch-induced errors on ẋTO. See Figure 6.7.

Instead of targeting perfect velocity control at the expense of the other states, DLQR yields

a feedback law that uses leg adjustments to trade between long term errors in all the states. We

observed that DLQR produces nearly the same policy as the adjusted deadbeat velocity law; this

is outcome of the pitch-stabilization in stance being largely independent of the leg placement.

Iterating the continuous and discrete optimizations as described in Section 6.3.1 likewise has

very little additional effect.
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(c) x and ẋ for adjusted leg placement
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Figure 6.7: Adjusting the deadbeat law for the full order model. Given closed loop stance dynamics As, we can

modify the leg placement to compensate for velocity errors induced by θ and θ̇, predicted from the takeoff state.

This yields a linear modification to the original deadbeat leg placement. The plots in the top row use the simplified

model leg placement policy, the plots in the bottom row use the modified leg placement policy. Both continuous

controllers use the same LTV-LQR. The system is simulated from a takeoff state with 30◦ of pitch error. 4 flight

and 3 stance phases are plotted; the blue x position is plotted only in stance. Leg placement adjustments are the

positional offsets (difference between blue and dashed-green) at each touchdown in Figure 6.7(c). The velocity

in black thus returns to the desired value by the end of stance. Without the adjustment, the initial 30◦ error leads

to a 15 cm/s velocity error in the first flight phase in Figure 6.7(a). Notice the target leg-placement for the next

stance phase is the deadbeat correction of this 15 cm/s velocity error. The adjusted deadbeat law keeps a nominal

reference of 0 in the second step due to having no velocity error in flight, but it makes a 2 cm adjustment in leg

placement to predictively account for the pitch errors.
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6.5.4 Open loop continuous control

In Section 5.9, it was unclear how well the simplified-model-based discrete control could func-

tion without continuous feedback. Here, we show that discrete feedback in the leg placement

alone is sufficient to stabilize the under-actuated x-θ dynamics and can execute the deadbeat

transitions of the simplified model.

We zero out the continuous force feedback gain −K(t) = 0, integrate Ts(t) from the con-

tinuous open-loop dynamics, and solve discrete LQR for the discrete error dynamics in Equation

6.10. This process returns a leg adjustment policy of

δxTD = −kx,TDξ =

[
0 0 0.065 0.043

]
ξ

that is added to the original deadbeat leg placement. Simulation shows that this discrete-only

control demonstrates good error rejection from a perturbed initial condition and executes dead-

beat velocity tracking (Figure 6.8). The adjusted leg placements can be seen in Figure 6.8(a) to

be reasonable.

This perhaps non-intuitive result means that as long as the stance dynamics are predictable

(i.e, Ts can be computed), leg placement can offer sufficient control authority to exponentially

stabilize the pitch while deadbeat stabilizing the translational states. Note that this control is

formulated as a feedback modification of the original deadbeat control; the linear structure of the

error dynamics makes deriving such a policy quite straightforward. The unknown practicality of

this hypothetical strategy defines a strong motivation for the analysis we present in Chapter 7.

Note that if F ∗x were not defined as a function of time but defined instead as the state-based

behavior F ∗x (s, Fz) = x
z
Fz (i.e, keep the GRF pointing through the CoM), then Ts would yield

a uncontrollable system in Equation 6.10 and DLQR fails. Intuitively, this definition of “feed-

forward” leaves no control authority over the angular momentum.
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Figure 6.8: Open loop continuous control with DLQR leg placement. Adjustments to the deadbeat law that correct

the pitch from step to step stabilize the system from initial error of 10 cm/s in velocity, 1 cm in position, and 10

degrees in pitch. The initial velocity error lies directly on top of the velocity reference – the first step chooses a

leg placement and plans a motion that perfectly cancels this error.

6.6 Discussion and conclusions

6.6.1 Summary of contributions

In this chapter, we used linear theory to define the closed loop error dynamics of the full order

system as a factorized Poincare mapping ξTO,i+1 = TsTfξTO,i. The matrix Tf encodes the

deadbeat stability of the closed loop simplified model, and we are thus able to formulate infi-

nite horizon LTV-LQR for the continuous controller with explicit knowledge of the transferred

stability. This optimal control approach guarantees stability, identifies non-intuitive but poten-

tially effective control strategies that exhibit good tracking with low feedback gains, and remains

compatible with optimal control formulations often applied to design the discrete controller. In

addition, the linear system ξTO,i = TsξTD,i clearly gives the dynamic coupling between state er-

rors. This can be leveraged to augment the simplified model with additional feedback in the full

order space; in particular, we can re-formulate the deadbeat law in the full order model. Finally,

these linear error dynamics set up a useful framework for the sensitivity analysis developed in

Chapter 7.

Applying these methods to our decoupled systems reveals new insights about control of the
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centroidal dynamics on a under-actuated runner. In z, the touch-down height (or leg length)

is a under-utilized control input of the spring-mass model that can contribute to stability and

reduce the required feedback gains. Continuous feedback may not be necessary, even in the

under-actuated x-and-θ subsystem. In the x-and-θ subsystem, overall performance is drastically

improved by allowing the use of leg placement for velocity control; this comes from the limited

control authority of a low rotational-inertia system. As a result, ATRIAS is well suited for de-

coupled control design (including the point-mass spring-mass model control we use) and poorly

suited for standing in place.

6.6.2 Relationship with HZD

As covered in Section 6.1.3, one of the key distinctions between the framework used here and

the HZD formulation is the order in which the continuous and discrete control are designed. The

theme of this thesis is more closely aligned with starting from the discrete system such that we

can explicitly leverage the stability derived from the discrete control of the simplified model. The

examples in Sections 6.4.2 and 6.5.3 show that these design processes are not mutually exclusive

and that they can even be performed iteratively. However, the HZD perspective does not easily

access optimal control for the design of the continuous control based on the properties of the

discrete control.

The other primary distinction between the two frameworks is defining the reference as a tra-

jectory versus as a set of dynamics. Due to ATRIAS’s inertial properties, x and θ are forced

into nearly independent control strategies where x is addressed discretely and θ is handled con-

tinuously, and there are no issues with relying on the discrete control to generate a stabilizing

solution based on the reduced order reference dynamics. However, on systems with more rota-

tional inertia, it becomes increasingly important to solve the under-actuated balancing problem

using the dynamics of the full order model. In the framework we develop here, optimal control

naturally transitions to these momentum-based balancing strategies as they become more rele-
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vant. In addition, formulating the control as trajectory following allows the smooth transition

between different gaits and behaviors without being constrained to periodic limit cycles.

Time dependence

LTV-LQR uses a time-varying model to take advantage of the available theory for optimal control

of linear systems. In place of optimal time-varying gains, HZD often returns time-invariant

feedback laws. This allows the control to not lock onto a pre-defined trajectory and have to

catch up to (or slow down to) some reference state. In the trajectory following formulation, re-

planning at every step alleviates this issue, and we do not observe significant problems with this

effect in our experiments. Formulating the control in terms of transverse dynamics [109] is also

a possible solution, but the math for this technique is complicated. [98] presents a detailed study

on time-based control of state-based constraints.

Furthermore, it is not clear that time-invariant formulations are in fact more practical. For

example, consider the spring force generated by the virtual leg. This reference behavior could be

implemented as the time-invariant state feedback Fz = kspring(z−z0), or it could be implemented

as a Fz(t) = z∗(t) function of time. Note that the different formulations would lead to different

Amatrices in the linearized error dynamics. Since ATRIAS does not have a parallel spring in the

leg, this virtual spring force Fz is generated through closed loop control. Using a time invariant

virtual spring results in F cmd
z = kspring(z − z0) −Kξ, which puts kspring into the feedback loop.

Time varying control results in F cmd
z = F ∗z (t) −K(t)ξ. Here, kspring = 16000, which is much

larger than the position gain for feedback correction. In practice, high gain feedback can cause

issues with lower level control loops, though this effect can be alleviated by careful estimator

design.
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6.6.3 Relevance to other robots

This chapter presents a comprehensive theoretical study on the stabilizing the centroidal dynam-

ics of a hybrid legged system using linear optimal control. These results directly generalize

to the balancing problem for multi-link robots with significant inertia using the existing tech-

niques that solve inverse dynamics with a hierarchical quadratic program or with weighted task

space priorities (Section 2.2.2). In particular, the formulations used in [104] or [51] could di-

rectly use the cost function returned by the LTV-LQR in the QP inverse-dynamics. This results

in model-predictive balancing that accounts for trade-offs between linear and angular momen-

tum and leverages leg placement. These strategies are required for under-actuated robots like

ATRIAS, and remain pertinent to fully actuated robots with limited ankle actuation imposed by

contact wrench constraints.

6.6.4 Unclear practicality

The potential improvements to the control derived in Sections 6.4 and 6.5 have highly promis-

ing convergence properties, but unknown practical value. Realistically, low continuous gains

may respond poorly to perturbations in stance, and pure leg placement strategies may be overly

sensitive to model inaccuracies and leg placement errors. Without quantified measures of sensi-

tivity to realistic conditions, these proposed designs carry little weight. Chapter 7 works towards

extending the theoretical description of the control to account for these effects.
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Chapter 7

Expected performance in the presence of

noise and uncertainty

The existing literature in legged locomotion lacks theoretical studies on the interpretation of

experimental data (see Section 2.5). In principle, the advantage of model based design over em-

pirical techniques are the guarantees of stability and the potential for more precise behaviors as

well as optimality. In practice, the attainment of these goals cannot be meaningfully evaluated

without a quantified extension of the theory. Convergence proofs guarantee perfect tracking of

a nominal limit cycle, but this never achieved on hardware. The various reasons why perfect

tracking is impossible are well understood, but without quantifying these effects, there is no

measure of “how close” should the produced behavior be. As a result, the value of the formal

theory remains unknown. Similarly, studies of simplified models can propose deadbeat tracking,

but there is no theoretical benchmark for judging imperfections in the experimental implemen-

tation. In this chapter, we derive an extension to the theory that allows meaningful evaluation of

experimental results obtained in the presence of bounded uncertainties and perturbations.
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7.1 Overall approach

In this study, we are not trying to derive nor prove stable interactions between actuator dynamics,

estimator dynamics, and outer loop control. This challenge is often approached at a theoretical

level using passivity [4, 138, 198] arguments or H∞ [91, 175] control. In our implementation,

we used the widely practiced techniques [17] of separating bandwidths and applying filtering to

avoid instabilities. Given the performance we achieve through tuning our inner loops, we now

study the performance at the higher level of tracking the desired spring mass running gaits. We

make coarse estimates that quantify our actuator and estimator performance, and we want to

analyze how the theory performs subject to these errors compared to how our hardware actually

performed.

The linear framework we set up in Chapter 6 provides a platform that naturally extends to an-

alyzing the effects of bounded error. In this chapter, we modify the equations of the nominal error

dynamics to explicitly account for linearization errors, force tracking errors, and leg placement

errors, which all present as disturbances to the assumed convergence of the closed loop system.

As a result, instead of theoretical convergence to perfectly follow the reference trajectory, we

derive an attractive and invariant region in terms of state errors. The system is guaranteed to

converge to and then stay within this envelope, thereby defining theoretical expectation that can

be validated by experimental data. Furthermore, from breaking down the sources of error into

quantified components, we can make predictive statements about how various improvements to

the lower level systems would affect the final higher level performance. Throughout this chapter,

we base our analysis on data from the experiments we reported in Section 5.8.

7.2 Assumptions

We start with basic assumptions about the lower level systems and any external disturbances.

Specifically, we assume magnitude bounds on our estimation error, our force tracking error,
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and our leg placement error. The goal is not to formulate precise, robust guarantees based on

cautious models of the sources of error; rather we are simply constructing quantified handles on

the perturbations to allow the theoretical study of the propagation of errors.

7.2.1 Bounded estimation error

The true, unobservable state vector is s, while all the control acts on the output ŝ of the Kalman

filter (Section 5.6.1). We compute an estimated a state error of ξ̂ = ŝ − s∗, while the actual

state error is ξ = s − s∗. The difference between the estimated vectors and the real vectors is

uncertainty σ = ξ − ξ̂ = s− ŝ.

Kalman filtering does not guarantee bounded estimation errors; we are imposing an artificial

assumption. We have no means of extracting ground truth for our states s, but we can approxi-

mate the uncertainty based on comparing filter data to raw sensor data (Figure 7.1). Furthermore,

the covariance of the Kalman filter represents of the uncertainty in the state estimation, and we

define a model of the estimation error that has a similar behavior. Figure 7.1(a) shows the as-

sumed magnitude bounds |σz|max(t) and |σż|max(t). The position uncertainty converges quickly

in stance through measuring the joint angles of the stance leg, while the velocity uncertainty

converges more slowly due to the required filtering of the noisy position signals. In flight, there

are no informative sensor readings. The velocity uncertainty does not grow significantly since

the acceleration of the COM is known with fairly high confidence for the ballistic trajectory. The

position uncertainty grows due to integrating the uncertain velocity at takeoff.

Comparing the resulting envelope (gray region in Figures 7.1(b) and (c)) around the state

estimate to the unfiltered encoder data provides a qualitative assessment of the appropriateness

of these bounds.
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(a) assumed error bounds

(b) estimated z vs raw sensors (c) estimated ż vs differentiated and filtered sensors

Figure 7.1: Model of bounded estimator error. (a) shows the assumed bounds, which are motivated by what can

be seen in (b) (c) as well as the dynamics for propagating uncertainty in a Kalman filter. (b,c) The Kalman filter

state estimate is padded by an envelope (shaded gray) for the model of maximum uncertainty. The coordinates of

the CoM cannot be measured, but they are inferred through measured joint angles and a model of ATRIAS mass

distribution. There is no available measurement of ground truth for validating these estimates.
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7.2.2 Bounded force error

There are three primary sources of disagreement between the GRFs produced on the machine

and the nominal closed loop GRFs v = v∗ −K(t))ξ assumed in the linear model of the closed-

loop error dynamics ξTO = TsξTD,i (Equation 6.2). First, the feedback controller acts on the

estimated state error ξ̂ in place of the ideal state error ξ, creating a mismatch of −K(t)σ. Given

the assumed estimator uncertainty bounds |σz|max(t) and |σż|max(t) as functions of time, the cor-

responding time-varying bounds on the scalar mismatches −K(t)σ for Fx and for Fz are each

solved as a linear programs. This component of the force error is shown as the difference between

the red and blue lines in Figure 7.2.

Secondly, any saturations imposed by contact wrench constraints modify the originally com-

manded GRF (Section 5.4.2). These effects are recorded and observed to be both small and

short duration (Figure 7.3). This observation shows that the trajectory following problem for

a spring-mass trajectory is not significantly hindered by the contact constraints (i.e, the nomi-

nal trajectory has good margins with respect to the contact wrench limits), and applying LQR

in place of constrained MPC is an appropriate approximation to the constrained MPC optimal

solution. Note that the saturations still provide an important safeguard against destabilizing the

contact condition, but they do not significantly perturb the performance of the trajectory tracking.

Finally, the SEA controllers do not perfectly track the desired spring deflections that corre-

spond to the commanded GRFs. We map the measured spring deflections from the experimental

data to equivalent “measured” GRFs, which are then compared to the commanded GRFs. At the

motor control level, whenever the desired rotor velocities are being properly matched by the on-

board motor controller, the SEA control nominally produces first-order exponential convergence

of any spring deflection error. However, the experimental data shows that the motors are often

saturated at their peak current and cannot provide sufficient torque to match the rotor velocities

commanded by the SEA controllers (Section 4.4.1). As a result, the recorded GRF errors do not

decay exponentially, as shown in Figure 7.2.
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Figure 7.2: Force errors. Black lines are the recorded differences between measured force and commanded force.

Green lines are the 90-percentile bounds (for removing outliers), and the red line is a resulting magnitude bound

that is fit to the data. The difference between red and the blue comes from adding the effects of Kσ for bounded

σ.

Figure 7.3: Hardware data of saturation of commanded GRFs for contact wrench constraints. To ensure the foot

stays in stable contact, F cmd
z is constrained to be non-negative, and F cmd

x is constrained to friction cone described

by |F cmd
x | ≤ µfFz| where µf = 0.5. These constraints saturate the original red forces from LQR to the black

values. This plot shows that these effects are small and short duration; the forces are nearly always identical.
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As discussed in Section 5.4.2, the boom also provides unmodeled forces, but these effects are

already accounted for by a disturbance observer that scales the force commands accordingly.

These analyses show that the primary source of force error in these experiments is the SEA

tracking. Applying feedback to potentially incorrect state estimates and constraining our control

to the feasible contact wrench have much smaller effects.

The observed force tracking errors closely follow a repeatable pattern, so we define two

different models of total force error. As a more practical assumption for treating the closed loop

SEA control as a black box, we define a symmetric magnitude bound with the blue envelope in

Figure 7.2. For evaluating how well the ensuing analyses in this chapter describe the observed

data, we define a tighter envelope with the green bounds, which are defined by the 10 and 90

percentiles of the recorded force errors.

7.2.3 Bounded nonlinearities and other modeling errors

From Equation 5.5, the linear model of the closed loop error dynamics drops the term

δnl(ξ, u) = (x− x∗)(Fz − F ∗z )− (z − z∗)(Fx − F ∗x ),

This omission describes a disturbance torque (with subscript nl for nonlinear). When the dy-

namics are further simplified to decouple the control design by assuming x∗ = F ∗x = 0 in the

Adecoupled and Bdecoupled matrices in Equation 5.7, an additional disturbance torque of

δdc = −(F ∗x )(z − z∗) + (x∗)(Fz − F ∗z )

(with subscript dc for decouple) is introduced.

These disturbance torques and are plotted in Figure 7.4 to examine the practical cost of our

simplifying assumptions. Compared to the disturbances imparted by the force tracking errors

−z∗(t)δx +x∗(t)δz in Equation 7.1, the non-linearities and decoupling-induced errors are indeed

negligible. We then fit empirical bounds to each of these sources, as illustrated in Figure 7.2 for

the empirical bounds on the generalized force errors.
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Figure 7.4: Torque perturbations. The non-linearities, de-coupling assumptions, and force tracking errors all

contribute perturbing torques to the pitch of the system. This plot shows that the non-linearities and de-coupling

assumptions are not significant compared to the force-tracking errors. The centroidal dynamics are very nearly

linear, and almost de-coupled.

7.3 Drift accumulated in one step

In this section, the theoretical toll that these disturbance forces and torques take on the tracking

performance of the nominal controller is computed. We are then able to derive the requirement

for “the theory to be validated by the data,” subject to the assumptions made in Section 7.2.

Defining the time elapsed in stance ts = t− tTD, the perturbed error dynamics in stance are

ξ(ts) = Φ(ts, 0)ξTD + ∆s(ts),

where the “drift” term ∆s(ts) describes the accumulated deviation from the assumed linear error

dynamics (Equation 6.2) given by state transition matrix Φ(ts, 0).

The decoupled error dynamics (Equation 5.7) augmented with the corresponding perturba-
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tions are given by

ξ̇ =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

F ∗
z (t)
It

0 0 0
�
��
�* 0

−F ∗
x (t)
It

0

0 0 0 0 0 1

0 0 0 0 0 0


︸ ︷︷ ︸

Adecoupled(t)



x− x∗

ẋ− ẋ∗

θ − θ∗

θ̇ − θ̇∗

z − z∗

ż − ż∗


+



0 0

1
m

0

0 0

− z∗(t)
It �

��>
0

x∗(t)
It

0 0

0 1
m


︸ ︷︷ ︸

Bdecoupled(t)

Fx − F ∗x
Fz − F ∗z



+



0 0 0

0 1
m

0

0 0 0

1
It
− z∗(t)

It

x∗(t)
It

0 0 0

0 0 1
m


︸ ︷︷ ︸

Bp(t)


δnl + δdc

δx

δz


︸ ︷︷ ︸

δp

, (7.1)

where the ideal GRFs [Fx, Fz] come from linear feedback on ξ. Bpδp describes all the perturba-

tions, which consist of GRF mismatches δx, δz and modeling errors δnl and δdc. Substituting in

the linear feedback for the GRFs yields the closed loop dynamics of

ξ̇ = Acl(t)ξ +Bp(t)δp

with closed loop matrix

Acl(t) = A(t)−B(t)K(t).

The general solution to a linear time-varying system (Eq. 6.1) solves the evolution of the

perturbed error dynamics:

ξ(ts) = Φ(ts, 0)ξTD +

∫ ts

0

Φ(ts, t)Bp(t)δp(t)dt

This yields the affine transformation ξ(ts) = Φ(ts, 0)ξTD + ∆s(ts) of the state error ξ

from touchdown to any later time in the stance phase. Recall from Section 6.2.2 that the state
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transition matrix Φ(ts, 0) is numerically integrated as a function of the nominal closed loop

dynamicsAcl(ts). ∆s(ts) is the drift accumulated during the stance phase, and we now compute

its bounds based on the bounded assumptions of the perturbation forces and torques in δp.

To formulate boundedness in terms of state errors ξ, we first define a distance metric using

the weighted L2 norm | |W for a symmetric, positive-definite weighting matrixW :

|ξ| ≡ ξTWξ.

W set to a semi-definite (not a proper norm) rank one matrix isolates the measurement of a

single state. Choosing W to be the cost-to-go from the LQR design of the continuous feedback

defines error as the expected total cost of the control. W can also be generated by solving the

discrete Lyapunov function for the stabilized periodic system (see Section 7.5.1).

Applying the triangle inequality of integrals yields

|∆s(ts)| = |
∫ ts

0

Φ(ts, t)Bp(t)δp(t)dt|,

|∆s(ts)| ≤
∫ ts

0

|Φ(ts, t)Bp(t)δp(t)|︸ ︷︷ ︸
|∆̇s|(ts,t)

dt.

Thus, a bound of the drift can be solved through maximization of the integrand. Maximizing this

expression subject to linear constraints on δp is a non-convex quadratic program:

|∆̇s|max(ts, t) = max δp(B
T
p (t)Φ(ts, t)

TW TΦ(ts, t)Bp)δp,

subject to

δmin
x ≤ δx ≤ δmax

x ,

δmin
z ≤ δz ≤ δmax

z ,

δmin
m ≤ δm ≤ δmax

m ,

(7.2)

subject to

where modeling error δm = δnl + δdc is the sum of the torque errors induced by non-linearities

and decoupling assumptions.

This optimization problem is generally NP-hard, but it does not need to be solved in real

time. We use Matlab’s multi-start algorithm to search for the global maximum. Note that if

164



a rank one weighting matrix W is used for isolating the drift along a single coordinate (i.e,

Wx = diag([1 0 0 0 0 0])), then the non-convex QP reduces to two linear programs

that search for the maximum and minimum of the drift rate. Technically, a semi-definite W

does not properly define a norm operator, but this is not an issue for the arguments applied in

this section. A semi-definite W cannot be used for the derivation of the attractive and invariant

region (Section 7.5).

By discretizing the stance phase in the interval 0 < t < ts, numerically solving Eq. 7.2

to find |∆̇s|max(ts, t), and then numerically integrating this function from t = 0 to t = ts, the

maximum drift |∆s|max(ts) over a finite period ts is computed (Figure 7.5). This is the largest

weighted drift that can accumulate from the perturbations experienced up through time ts:

|∆s(ts)| ≤ |∆s|max(ts). (7.3)

Note that the full computation must be repeated for different values of ts; the numerically com-

puted integrands cannot be re-used since they explicitly depend on the end time ts.

7.3.1 Comparison of theory to experimental data

In the presence of these bounded uncertainties and perturbations, estimated state error ξ̂ extracted

from experimental data can be decomposed into four components:

ξ̂(ts) + σ(ts) = ξ(ts)

ξ̂(ts) + σ(ts) = Φ(ts,0)ξ0 + ∆s(ts)

ξ̂(ts) + σ(ts) = Φ(ts,0)(ξ̂0 + σ0) + ∆s(ts)

ξ̂(ts) + σ(ts) = Φ(ts,0)ξ̂0 + Φ(ts,0)σ0 + ∆s(ts).. (7.4)

• σ(ts) is the uncertainty in the current measurement,

• Φ(ts,0)ξ̂0 is the expected closed loop error evolution from the estimated initial condition

ξ0,
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Figure 7.5: Maximum drift |∆s|max(ts) accumulated in the vertical states over one step. Stance is plotted in

solid, flight is plotted in dashed. The algorithm integrates the worst-case disturbances forces subject to the closed

loop dynamics. The blue bounds come from using the looser force bounds from section 7.2.2, which sums SEA

tracking errors as well as estimation induced feedback errors and any applied saturations. The green bounds make

a less realistic assumption, integrating the repeatable profile of the SEA tracking errors that we observe in the data.

• Φ(ts,0)σ0 is the propagation of any estimation error σ0 of the initial condition, and

• ∆s(ts) is the accumulated drift.

For the experimental results to validate the theoretical expectations, any measurement ξ̂(ts) must

lie within a feasible range of these four factors. Here, we presented the decomposition with the

state at touchdown tTD = 0 as an initial condition, but this formulation can also be expressed

from an arbitrary choice of initial condition.

7.3.2 Example applied to vertical states

This section shows that the experimental results from Chapter 5 agree with the expected perfor-

mance, but the derived bounds seem overly conservative.

We compute the maximum drift in z and in ż, where we isolate these coordinates by using

rank one weighting matricesW to define the norm function | |. See Figure 7.5.

Maximum drift |∆s|max(ts) accumulated in the vertical states over one step is computed by
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integrating Equation 7.3 through solving the constrained optimization problem in Equation 7.2.

Stance is plotted in solid lines, and flight is plotted in dashed lines (where the drift in flight is

integrated from for a uncontrolled system to a small perturbations). This algorithm integrates

the worst-case disturbance forces subject to the closed loop dynamics for a given horizon ts.

The blue bounds come from using the loose, symmetrically-bounded force profile from Section

7.2.2 (blue envelope in Fig. 7.2), which sums SEA tracking errors as well as estimation induced

feedback errors and any applied saturations. The green bounds make a less realistic assumption,

integrating the repeatable profile of the SEA tracking errors that we observe in the data (green

envelope in Fig. 7.2).

Now we can examine the tracking we observe in experimental data using the decomposition

presented in Equation 7.4. See Figure 7.6. The heights z are plotted in absolute coordinates in

the top row for a sense of scale and plotted relative to the reference trajectory in the bottom row

for clarity. Two steps are plotted, with touchdowns occurring near t = 69.7 and t = 70.2. The

takeoff event is marked with an open circle. The reference trajectory is the dashed green line. The

estimated state ẑ is the solid blue line, and it is enveloped by the dashed blue line for maximum

measurement uncertainty σz (from the assumed model in Figure 7.1). We take each touchdown

to be a new initial condition z0, and the expected closed-loop propagation of z0 is shown in pink.

The closed-loop propagation of the maximum uncertainty of each touchdown defines the pink

envelope. Intuitively, if the touchdown state is mis-estimated, the actual state would converge

along some trajectory within the envelope, if there were no external perturbations. Finally, the

maximum drift |∆s,z|max grows the pink envelope out to the red envelope and accounts for all the

error can be accumulated due to the bounded perturbation forces. If the state estimation were

perfect, theory expects the blue line to stay within the red envelope. Allowing for estimation

errors, theory expects the blue envelope to maintain overlap with the red envelope; the real state

must be described by a feasible, perturbed trajectory from some unknown initial condition.

Applying high gain feedback control shrinks both the pink and red envelopes by making state
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Figure 7.6: Tracking of vertical trajectory from experimental data. See discussion in Section 7.3.2.
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transition matrix Φ(ts, 0) strongly contractive. Having accurate state estimation reduces the blue

envelope and contributes to reducing the red envelope via reducing the force error associated

with erroneous feedback control. Having accurate force tracking collapses the red envelope.

This examination shows that for the loose force bounds that we assume, the trajectory track-

ing has mediocre guarantees (approximately 5 cm of error in each stance). However, the actual

tracking stays well within these bounds, showing the assumption to be overly conservative. This

is related to our actual force errors being approximately zero mean, despite having large magni-

tudes. Instead, by integrate the empirically observed tight force bounds, the theoretically guaran-

teed tracking better matches the observed errors, thus showing that the hardware does follow the

modeled dynamics. To improve performance, we could improve the convergence of Φ(ts, 0) (in-

creasing the feedback gains to improve the convergence typically results in larger force tracking

errors) or improve the accuracy the SEA control. The red bounds scale linearly with the max-

imum force errors, so twice as accurate SEA tracking would approximately half the maximum

state error.

7.4 Deviations in flight

Just as the deviation of the stance error dynamics from the nominal linear system with bounded

drift term ∆s(tTO − tTD) in the previous section, this section derives the deviation ∆f in flight

error propagation:

ξTD,i+1 = TfξTO,i + ∆f ,

where Tf is the linearization derived in Section 6.2.3.

Here, there are primarily two sources of deviation. First, the leg placement policy is based

on the state estimate at takeoff ŝTO and is sensitive to estimation error σTO. For the policy

(Section 5.3) used in the experiments, the horizontal leg placement nominally cancels the speed

error based on the speed at takeoff by matching ẋ∗TD,i+1 = ˆ̇xTO,i. Estimation error on the takeoff

speed thus leads to an equal and opposite deviation in the speed error on landing: ẋTD,i+1 −
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ẋ∗TD,i+1 = −σẋ,TO,i. The target landing height z∗TD is a fixed policy with no state feedback, so

this component has no sensitivity to estimation error σTO.

Secondly, the position-based servoing of the swing leg can miss the target [x∗TD,i+1, z
∗
TD,i+1],

where we denote the leg placement error as [εx, εz]. These errors come from intentionally ig-

noring the compliance of the spring (by applying position control directly to the rotor angles,

see Section 5.5), imprecise tracking of the desired rotor angles, and any unexpected changes in

terrain height. Empirically, we observe errors of approximately 1 cm in each coordinate due

to the first two effects. In addition, the kinematic uncertainty [σx, σz] is added to [εx, εz] due

to the state estimation used in closing the position loop on leg placement. In our rough terrain

experiments (Section 5.8.4), the steps up and down introduce additional vertical errors of up to

15 cm.

These placement errors [εx, εz] perturb the assumed flight transition. εx directly becomes a

horizontal position deviation ∆f,x = xTD − x∗TD at touchdown. εz not only becomes a vertical

position deviation ∆f,z on touchdown, but it also changes the time of contact tc,i (Section 6.2.3).

From the ballistic equations describing the flight phase, this results in touchdown deviations in

vertical velocity ∆f,ż and ∆f,θ, which can be solved algebraically.

The total effect of estimation error σTO and leg placement error [εx, εz] on the flight error

transition is thus given by

ξTD,i+1 = TfξTO,i + ∆f ,

where

∆f =



0 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


σTO,i +



1 0

0 0

0
θ̇TO,i
ż∗TO,i

0 0

0 1

0 g
ż∗TO,i



εx
εz

 .

where

(7.5)
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Lastly, there are potentially non-linearities ∆nl,f (from Equation 6.6) in the nominal takeoff-

to-touchdown error mapping that are neglected by matrix Tf . These effects can be shown to be

negligible.

Applying the assumptions on bounded errors in terms of |σẋ,TO,i| ≤ σmax
ẋ (Section 7.2),

|εx| ≤ εmax
x , and |εz| ≤ εmax

z , Equation 7.5 is used in solving a constrained maximization problem

structurally identical to Equation 7.2, thereby yielding the maximum deviation |∆f | in a single

flight phase.

7.5 Total state error accumulated across multiple steps

Sections 7.3 and 7.4 derived the bounded drift ∆s accumulated in each stance phase and the

bounded deviation ∆f experienced in each flight phase for the affine mappings

ξTO,i+1 = TsξTD,i+1 + ∆s,i+1,

ξTD,i+1 = TfξTO,i + ∆f,i.

This results in the recursive affine mapping

ξTO,i+1 = TsTf︸ ︷︷ ︸
Ad

ξTO,i + Ts∆f,i + ∆s,i+1︸ ︷︷ ︸
∆tot,i+1

,

This results in the recursive affine mapping

(7.6)

where subscript d denotes “discrete.”

If the Poincare matrix Ad = TsTf has eigenvalues of magnitude less than 1, the system is

stable (Chapter 6); state errors are not amplified from step to step. Here we show that given the

error reduction provided through Ad, the bounded discrete disturbance in each step |Ts∆f,i +

∆s,i+1| ≤ |∆tot|max can only sum to some maximum error |ξTO|max on the infinite horizon,

thereby defining an invariant and attractive region in the space of errors ξTO measured at takeoff.

That is, based on the assumptions made in Section 7.2, it is guaranteed that |ξTO| shrinks in each

step if it is larger than |ξTO|max, and that once it is within this bound, it cannot leave. Note that
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Ad has no dependency on the assumptions made in Section 7.2; it depends only on the nominal

control design.

7.5.1 Tools from linear theory: norms, weighting matrices, and the dis-

crete Lyapunov equation

Recall that the weighted L2 distance for a vector is defined by symmetric, positive-definite

weighting matrix W , with |ξ|2W = ξTWξ (throughout other sections in this chapter, the sub-

script W is implicit when using the norm operator | |). Any symmetric, positive definite W has

a symmetric, positive definite matrix square root V = W
1
2 such that V V = W . Then, the

distance function |ξ|W =
√
ξTWξ can be equivalently written as |ξ|W = |V ξ|I .

The induced matrix norm |Ad|W (by definition) is the maximum of |Adξ|W|ξ|W
for any ξ. It

can be shown that for the weighted L2 vector norm with positive semi-definite W , the induced

matrix norm is given by the largest singular value of V AdV
−1. The largest singular value of a

real square matrix M is the square-root of the largest eigenvalue of the product MTM (where

the transpose is replaced with the complex conjugate for complex matricesM ).

Given that Ad has stable eigenvalues, there exists a unique, symmetric, positive definite

solutionW to the discrete matrix Lyapunov equation for any symmetric positive definite matrix

Q:

AT
dWAd −W = −Q. (7.7)

This theorem is proved in [15]. As a result, if we temporarily ignore the deviation ∆tot, we can

pick any positive definiteQ to achieve

|ξTO,i+1|2 − |ξTO,i|2 = ξTTO,iA
T
dWAdξ

T
TO,i − ξTTO,iWξTO,i

= −ξTTO,iQξTO,i.

More intuitively, given a target convergence behavior described by arbitrary matrix Q, we

can solve the discrete Lyapunov function for the transformation V = W
1
2 and the associated

weighting matrix W such that the unperturbed, re-mapped system converges with scaling Q.
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We can use this equation to generate weighting matrices W such that the induced matrix norm

|Ad|W is less than one (which is not generally guaranteed by the stability property of eigenvalues

ofAd having magnitudes less than one).

7.5.2 Derivation of the invariant and attractive region

Assuming the induced matrix norm |Ad| < 1,

|ξTO| ≤
1

1− |Ad|
|∆tot|max = |ξTO|max (7.8)

describes an invariant and attractive region.

First we prove invariance: |ξTO,i| ≤ |ξTO|max implies

|ξTO,i+1| ≤ |AdξTO,i|+ |∆tot|max

≤ |Ad|
(

1

1− |Ad|
|∆tot|max

)
+ |∆tot|max

=

(
|Ad|

1− |Ad|
+

1− |Ad|
1− |Ad|

)
|∆tot|max = |ξTO|max.

(7.9)

(7.10)

(7.11)

Line 7.9 applies the triangle inequality to the recursive dynamics in Equation 7.6. Line 7.10

applies the definition of induced matrix norm and substitutes the definition from Equation 7.8.

Line 3 is algebraic manipulation. Thus, we have shown that if step i started within this region,

the next step i+ 1 will also stay within it.

Next we prove attractiveness, where |ξTO,i| ≥ |ξTO|max implies |ξTO,i+1| − |ξTO,i| < 0.

|ξTO,i+1| − |ξTO,i| ≤ |AdξTO,i|+ |∆tot|max − |ξTO,i|

≤ |Ad||ξTO,i|+ |∆tot|max − |ξTO,i|

= (|Ad| − 1)|ξTO,i|+ |∆tot|max.

Given |Ad| < 1, the first term is negative. Therefore,

|ξTO,i+1| − |ξTO,i| ≤ (|Ad| − 1)
1

1− |Ad|
|∆tot|max + |∆tot|max = 0.

(7.12)

(7.13)

(7.14)

Given |Ad| < 1, the first term is negative. Therefore,

(7.15)

173



Line 7.12 applies the triangle inequality to the recursive dynamics in Equation 7.6. Line 7.13 ap-

plies the definition of induced matrix norm, and line 7.14 is algebra. In line 7.15, the introduced

fraction is less than one, thereby reducing the magnitude of a negative number. Thus, we have

shown that if step i is not within the region, the next step i+ 1 will get closer to the region.

These two proofs hinge upon identifying a matrix norm for |Ad|W that is less than one (i.e,

showing the unperturbed sequence of state errors to be contractive). Intuitively, using the cost-to-

go from the optimal control applied in the control design or using the discrete matrix Lyapunov

equation to construct a decreasing cost-to-go provides viable options for such a weighting matrix

W . In particular, solving the discrete Lyapunov equation (7.7) using Q = I always guarantees

|Ad|W < 1:

|Ad|2W = max eig
(
(V AV −1)T (V AV −1)

)
= max eig

(
V −1ATV V AV −1

)
= max eig

(
V −1(W −Q)V −1

)
= max eig

(
I −W−1

)
< 1.

(7.16)

(7.17)

(7.18)

(7.19)

Line 7.16 comes from the definition of the induced matrix norm (using the matrix square root

V =
√
W ), and line 7.17 is algebra (using the symmetry of V ). Line 7.18 applies the discrete

matrix Lyapunov equation, and line 7.19 distributes the multiplication and substitutes Q = I.

The maximum eigenvalue is less than 1 becauseW is guaranteed positive definite.

It is known ([15]) that “better” choices of Q than the identity matrix I can provide “better”

proofs of convergence, where the matrix norm induced byW is smaller. This results in a tighter

attractive and invariant region. We hypothesize that using W from the LQR construction of the

feedback control results in a contraction mapping closely related to the actual behavior of the

system.

The proofs presented here are not new; they are fundamental tools from linear theory. Here,

we applied them to derive quantified, theoretical performance metrics that are suitable for exam-

ining experimental results.
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Figure 7.7: Convergence of vertical errors at takeoff. See discussion in Section 7.5.3.

7.5.3 Example applied to vertical states over multiple steps

Here we the examine the experimental convergence the error of the vertical states [z, ż] at takeoff,

as this 2D system (decoupled from the horizontal and rotational states) can be easily visualized

in 2D figures.

First, we derive bounds on the maximum total perturbation ∆tot = Ts∆f + ∆s(TTO − TTD)

acquired in one step. Numerical evaluation of the matrices in Equations 7.5 and 7.6 show that leg

placement error εz has negligible effect given the closed loop dynamics described by Ts; ∆tot is

dominated by the drift in stance. We then evaluate the stance drift in a variety of combinations.

See Figure 7.7. From Section 7.3.2, we can identify the maximum single-step drift along

z and along ż using rank one weighting matrices. The maximum value at takeoff is computed

assuming both the tight force bounds (straight dashed lines in black) and the loose force bounds

(straight dashed lines in green). In theory, these describe limits on the difference between takeoff

errors ξTO and their predicted values TsξTD, which are plotted as the red data points in Figure

7.7A. This does not account for any estimator uncertainty σ, which would widen each set of

bounds.

We also compute |∆s|max using the LQR cost from our control design (Section 5.4.1) and
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from the guaranteed Lyapunov function construction using Q = I . The cost-to-go creates the

inner black and green ellipses for loose and tight force bound assumptions, while the choice of

Q = I generates the light blue ellipse assuming loose force bounds. Like the straight lines de-

scribed above, these boundaries correspond to the differences between observed and anticipated

error, plotted as red points in the left figure A.

Over the course of multiple steps, the drifts can accrue to drive the errors away from the

origin, while the nominal closed loop behavior pulls them back in. In figure B on the right, the

expected errors are plotted in red, while the observed errors are plotted in blue (their difference

yields the data in figure A). The straight black and green lines do not describe theoretical bounds

on these measurements as they do not account for accumulated errors across steps. Rather,

the matrix norm applied to the LQR bound |Ad| = 0.19 grows the black and green ellipses

by a factor of 123%, such that each outer ring gives the invariant and attractive region under

loose and tight force assumptions – the red and blue data points in figure B are theoretically

guaranteed to stay within these constraints. Using Q = I to compute a contractive mapping

yields |Ad| = 0.869, which means the guaranteed region is an ellipse 763% the size of the one

plotted. This guarantee is far more conservative and not practically relevant.

Overall, we see that these experimental vertical errors validate the theoretical expectations

of our model based control design. The tracking is not perfect, but it is within the expectations

based upon the assumptions made in Section 7.2.

This analysis visualizes the effects of the continuous and discrete feedback controllers. The

discrete control can help reset the error between steps, thereby reducing the matrix norm respon-

sible for how errors persist from step to step. If deadbeat control is available (i.e, for the forward

velocity ẋ, the corresponding entries of the matrix Tf can be set to exactly 0 such that there is

no growth of the inner ellipse to form the outer ellipse. However, even with perfect deadbeat

planning in the discrete control, the performance of the continuous control still determines the

size of the original inner ellipse. Specifically, deadbeat control does not imply zero state errors
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in the presence of perturbations; it implies nothing is carried over to the next step. On the other

hand, higher and higher performance of the continuous control can theoretically approach perfect

tracking by collapsing the inner ellipse, even without requiring discrete control. However, we

observed in Chapter 6 that the under-actuation limits what the continuous control can achieve on

its own, and the continuous control greatly benefits from the stability that the discrete feedback

can generate.

7.6 Summary and discussion

We started with assumed models that bound the estimation error and the force tracking error.

In addition to these two sources of uncertainty, we account for the modeling errors introduced

by the linearization of the centroidal dynamics and by the decoupling of the vertical subsystem

from the horizontal and rotational subsystem, which are shown to be relatively minor. Linear

theory allows the integration of these effects into a bounded region that describes the expected

tracking performance, which can then be compared to noisy hardware data. On our experiments,

this analysis reveals that improving the force tracking in the SEA control offers the most promise

for improving the tracking performance.

Then, by modeling the leg placement error in addition to the estimation error, we propagate

the deviations from the nominal error dynamics in the flight phase. Composing the two perturbed

systems together produces a discrete affine model of the perturbed error dynamics from step to

step, from which we derive the expected long term closed loop error evolution. This analysis

results in a theoretical invariant and attractive region in terms of state error that can be compared

to hardware results. Having a Lyapunov function in the form of “cost-to-go” from the control

design facilitates the computation of an accurate and meaningful region.

As a result, the theoretical expectations of a control design are validated with two types

of comparisons to the experimental data. The short term closed loop behavior is checked by

comparing the propagation of an uncertain initial condition to the bounded drift integrated over
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a finite horizon. The long term convergence is checked by comparing the guaranteed invariant

region with the observed errors over multiple steps. The next step would be to perform the

analyses described here for the x and θ states, where the current results have been limited to z.

Based on this analysis, a theoretically promising controller can be judged by its short term

error propagation and by its invariant and attractive region. A potentially fruitful avenue of future

work would be to apply these analyses to the new control strategies identified in Chapter 6 and

validate the expected performance with hardware experiments.

This process begins to bridge the current gap between theoretical studies of model based con-

trol and their hardware implementations. We believe this a crucial step, and without quantified

comparisons between the expected results and the observed results, there is only limited value

in designing high performance control or formulating proofs of convergence. The conservative

nature of describing worst case bounds limits the realism of this approach, and more refined

formulations can be an interesting topic for future research.
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Chapter 8

Conclusions

8.1 Big picture

On the whole, we come away with an clearer overall understanding of the basic underlying me-

chanics behind the control of legged systems. Upright systems have a tendency to tip over, which

is an unstable mode whether the system is standing still or in motion. Fighting this effect is one

task, while orienting the trunk is another. Under-actuation means they cannot be addressed in-

dependently in one stance phase, though systems with sufficient inertia can solve them together.

Leg placement can allow intermittent stabilization of the tipping problem, and the continuous

actuation can thus be dedicated to orienting the trunk. Raibert control and other heuristic meth-

ods leverage this concept but stop short of maximizing the performance of either component of

the control. Instead, the spring mass model or other predictive models of the continuous dynam-

ics can maximize performance of the discrete control to achieve deadbeat stability. Likewise, a

model of the discrete dynamics allows for optimization of the continuous control. More gener-

ally, model-based optimal control does not require a separation of the rotational dynamics and the

translational dynamics; there is simply the potential to use both sources of control for stabilizing

the system.
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8.2 Contributions

In this thesis, we make four key contributions.

In Chapter 3, we extend the deadbeat agility and robustness of the simplified model to include

steering in 3D on unobserved, uneven terrain. The results show that the mapping between the

inputs of leg placement and the outputs of steering angle and apex height are non-linear, as the

deadbeat law significantly outperforms the optimized classical linear control in terms of tracking

and allows for more aggressive turns.

We demonstrate a novel level of performance for 2D running in Chapter 5. By tracking the

motion of the deadbeat stabilized spring mass model, we achieve high accuracy tracking of the

desired running speed, even across one-step changes in the target speed. We also demonstrate

robustness to steps up and down, but these experiments do not exhibit the tracking expected by

the deadbeat simplified model, perhaps due to the large impact forces. This potential explanation

should be examined using the techniques developed in Chapter 7.

In Chapter 6, we present a linear decomposition of the closed loop error dynamics, which

lends insight to the control design process. In particular, we use it to formulate optimal control

in a way that automatically takes advantage of the stability exhibited by the simplified model

and accounts for any other discrete dynamics. This decomposition also produces the closed-

loop dynamic coupling between state errors, which can be then used to modify the original leg

placement to recover full-order deadbeat velocity or optimize for other performance measures.

In Chapter 7, we develop a formulation in which the theoretical tracking error is a quantified

function of the perturbations to the nominal system. This allows us to validate the model-based

control design with comparisons to experimental data, and to propose promising avenues of fu-

ture work. Specifically, non-linearities in the centroidal dynamics are indeed negligible, deadbeat

stability alone does not guarantee good tracking, and that our current implementation primarily

suffers from errors in the closed loop actuator control. However, the conservativeness of using

bounds leaves room for improvement with more accurate treatments of the effects of perturba-
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tions and uncertainty.

8.3 Potential tasks for future research

The results from this thesis motivate interesting avenues for future research. The model-based

techniques we use can be adapted to include more of the actuator dynamics in the full order

model of the robot, such that the inputs are motor velocities and the equations of motion in-

clude the spring torques. Just as we mapped hip torques to Cartesian GRFs to avoid linearizing

the geometry of the leg, the motor velocities may be mapped to rates of change of the GRFs.

This modification would be a departure from the general study of spring mass motion within

the centroidal dynamics of a system, but it may be an effective means of controlling ATRIAS,

as our results suggest that the actuator dynamics may indeed be significant. It may be very

interesting to compare the performance of such an “un-cascaded” control architecture, which

would then clarify how appropriate it is to treat human-scale robots with geared electric drives as

force-controlled systems. In turn, this would also offer insight to the relevance of second-order

simplified models of legged locomotion on such robots.

We showed that model-based control can transfer the targeted behavior of the simplified

model to the real robot, using deadbeat velocity control as an example behavior. The full ca-

pabilities of the spring mass system allow for additional behaviors. First, the time-based leg

placement that lends feed-forward robustness to uneven terrain specifies a specific swing leg tra-

jectory, where the current implementation designs the swing leg motion to minimize impacts with

the ground. The trade-off between these two effects depends on the actuator dynamics, which

may be explicitly modeled as described above. Secondly, the forces and control required for the

highly agile 3D running described by the spring mass model seem to be outside of ATRIAS’s ca-

pacities, but the implementation of this behavior may be an exciting project for a different robot.

Lastly, similar to the leg length adjustment we identified in Chapter 6, other works have use

modified models (Section 2.4.3) with additional parameters (for example, changing the spring
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stiffnesses) that effectively increase the capabilities of the motion planning in the discrete con-

trol. An exploration of transferring these strategies to hardware using the techniques derived in

this thesis could be interesting.
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