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Abstract

As robots become more reliable and user interfaces (UI) become more powerful, human-

robot teams are being applied to more real world problems. Human-robot teams offer re-

dundancy and heterogeneous capabilities desirable in scientific investigation, surveillance,

disaster response, and search and rescue operations. Large teams are overwhelming for a

human operator, so systems employ high level team plans to describe the operator’s super-

visory roles and the team’s tasks and goals. In addition, UIs apply situational awareness

(SA) techniques and mixed initiative (MI) invocation of services to manage the operator’s

workload. However, current systems use static SA and MI settings which cannot capture

changes in the plan’s context or the overall system configuration. The configuration for one

domain, device, environment, or section of a plan may not be appropriate for others, limiting

performance.

This thesis addresses these issues by developing a team plan language for human-robot

teams and augments it with a situational awareness and mixed initiative (SAMI) markup

language. SAMI markup captures SA techniques for UI components, MI settings for decision

making, and constraints for algorithm selection at specific points in a team plan. In addition,

we identify properties of the team plan language and use them to develop semantic and

syntactic software agents which aid plan development.

To test the team plan language and markup’s ability to capture complex behavior and

context specific needs, we design several experiments in simulation and deploy a large team

of autonomous watercraft. Run-time statistics and the team’s ability to adapt to challenges

“in the wild” are used to evaluate the effectiveness of the marked up language.

To assess the learnability of the language by non-experts, a user study evaluating a

series of self-guided lessons is designed. Users with exposure to computer science concepts

complete training material during which task performance and interviews are used to assess

the effectiveness and scalability of the material.

These contributions demonstrate an approach to improve the accessibility of human-robot

teams and their performance in complex environments.
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Chapter 1

Introduction

Multi-robot teams offer powerful capabilities for many real world problems, including disaster
response [140, 113, 26, 157, 140, 172, 114, 112], environmental monitoring [187, 123, 37, 52,
47], exploration [195], agriculture management [12, 12], network formation [38, 85, 142,
98, 18], and search and rescue [73, 76, 75, 155, 14]. Robots can achieve high level goals
that are not possible for a single robot by coordinating the execution of interdependent
tasks. Heterogeneous teams [86] allow for a wide range of tasks to be performed and enables
performance gains by selecting the most capable robot for particular tasks. To describe
the relationships between tasks and coordinate their execution, an expert describes this
information offline in a team plan [185, 164, 179]. When a team plan is run, it assigns tasks
to robots and the robots in turn invoke code to achieve each task. In the event of a robot
failure, team plans can describe how to reassign a robot’s tasks to functional teammates.
This reassignment allows larger teams to be more robust to failures compared to a smaller
team.

While multi-robot teams allow for a high level of performance and robustness, they
require complex software architecture [131, 56, 109]. At a low level is the code which runs on
individual robots, which may feature the latest and greatest algorithms for path planning,
localization, mapping, and task allocation for a particular scenario and set of assumptions.
At a high level is the team plan, which is commonly written in a specialized team planning
language capable of describing tasks and their relationships in a compact format. Team
planning languages often provide tools for finding logical errors which would result in a
deadlock of the team or undesired behavior. To bridge these two layers, interpreter code is
needed to translate an assigned task in a team plan into code invocation on a robot. These
architectures typically also require several configuration files to tune parameters, describe
the team, and connect the low level code, interpreter code, and team plan tasks.

While many multi-robot teams execute team plans fully autonomously [132], including
humans in the team provides many benefits. Human-robot teams can provide better per-
formance and robustness using the human’s domain knowledge to handle conditions which
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elude sensors, behavior that is hard to recognize, and actions that are difficult to formalize.
These operators - ecologists, rescue workers, and soldiers - increase the team’s flexibility
and robustness by providing high level guidance to the team and low-level assistance to
robots [2, 106, 99, 5]. Human-robot team plans capture the operator’s responsibilities in
addition to those of the robots, and the interpreter translates those responsibilities into code
invocation on the user interface (UI). However, operators are limited in how many robots
they can supervise due to natural limitations in memory, reaction time, and other cognitive
resources.

To make the most of the operator’s limited resources, application specific UIs employ
various techniques and tools to reduce the cognitive load placed on the operator [177]. Such
UIs have allowed non-expert operators to successfully control large teams of robots in a
number of domains [36, 141, 146, 165, 89, 177, 64]. One method to improve the operator’s
performance is to improve their internal model of the state of the world and how events will
affect it, commonly referred to as situational awareness (SA) [112]. By intelligently con-
trolling if, when, and how information is presented to the operator in the UI, their SA can
be improved, reducing the time it takes to process information and make decisions. Other
research looks into the best method to convert the user’s SA and knowledge into actions by
improving components in the UI. By improving the layout and interaction style of compo-
nents, operators can more efficiently take action. Yet another direction of research focuses
on improving the autonomy of individual robots to avoid situations which will require the
operator’s attention. Use of autonomy is highly situational: autonomy lightens the opera-
tor’s workload, but reduces their situational awareness and can have negative consequences
if the autonomy is unreliable. Levels of Autonomy [173, 149] describe a spectrum of collabo-
ration between operator and autonomy: the highest level uses full automation, fully ignoring
the operator, and the lowest level assigns full responsibility to the operator, providing no
automated assistance. Levels in the middle use mixed initiative, where autonomy can make
decisions for the operator, but the operator can intervene and adjust the decision themselves
at any time. This allows for the operator to be utilized when they are not busy, but does
not deadlock the team by requiring their input when they are occupied. Typically, a high
level of autonomy is used for low-level decisions with reliable autonomy. For decisions which
are high risk, high impact, or have unreliable autonomy, a low level of autonomy may be
used. Applying these techniques, human-robot systems often use a human operator at a
supervisory level to decide which team plans to run and provide assistance in their execution
as needed [31, 32, 68, 69, 135, 136, 65, 148].

In general, design decisions regarding situational awareness, UI layout, and level of au-
tonomy are optimized for a motivating scenario when developing the system, which limits
their adaptivity to unexpected events and new applications. As human-robot teams become
common tools capable of addressing a variety of scenarios and facing real-world failures, a
single set of rules cannot capture the needs of every situation. For example, when deciding
the best use of an operator’s resources, abnormal behavior for a robotic boat should be
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treated differently if it is in a pond versus near the edge of a dam. For the operator GUI, the
most appropriate types of information to display and component interaction style also varies
by situation. Humphrey [88] compares task performance between two UI map components
and finds that a top-down exocentric compass visualization to be better for metric judgment
tasks and an in-world egocentric visualization to be better for navigational tasks. For task
allocation algorithms, computation time balances against the quality of the solution, which
includes how many tasks are successfully allocated and how capable robots are for their
assigned tasks [108]. In tasks involving robot movement, allocation algorithms also trade
off how quickly the tasks will be completed against how efficiently they are performed. For
example, having a single robot perform many tasks in a local region may be efficient, but
moving other robots from another region to assist will result in the tasks being completed
faster at the expense of additional energy consumption. All of these design decisions require
knowledge of the context [115, 23, 10, 174, 63, 66] of the operation.

While the team plan is developed knowing exactly how each action contributes to the
overall goal and the status of the plan when a specific action is being executed, this context
is not captured in the team plan and thus cannot be transferred to the interpreter. To
the interpreter, two separate actions of moving from A to B are identical, even if the plan
developer added one of the actions knowing it was in the context of an emergency. The key
insight of this thesis is the concept of “marking up” a team plan with explicit contextual
information which is passed to the interpreter, allowing the system’s behavior to be adapted
appropriately.

This thesis asserts that a domain independent planning language and markup language
capturing context specific human-robot team behavior can be designed which non-experts can
be trained to use, which will improve practical deployment.

1.1 Thesis Contributions

This thesis makes 4 contributions:

1: SPN, an team planning extension to CPNs
In our first contribution, we address how to capture domain independent human-robot team
plans in a way that is accessible to non-experts. To operate in real-world domains, a com-
plex team planning language is needed to describe coordination of interdependent actions,
reassignment of failed robot’s tasks, and contingencies for unexpected circumstances. As
human-robot teams become common tools in these environments, users may not have an ex-
pert available to create or adjust plans, so a language non-experts can learn in a reasonable
amount of time is advantageous. In general, an increase in language complexity requires an
increase in training to use it, so a careful balance is needed between complexity and learn-
ability. We develop a planning language focusing on the ability to capture human-robot
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coordination in a compact, visual format. The language is based on Colored Petri Nets,
with several modifications to add representational power in a concise manner. By building
off of this framework, the language inherits behavioral verification properties as well as a
single representation for both execution and monitoring of designed plans.

2: SAMI, a markup language for team plans
Our second contribution addresses how to add context clues to team plans in a domain
flexible manner. One risk when developing the format for team plan markup is overfitting
for a particular type of action or domain, building it around concepts which do not translate
to other actions or domains. Overly specific markup will result in effectively having a unique
set of markup for every action in every domain. However, markup that is too generic may
be unable to capture contextual information with sufficient detail to improve performance.
We develop a markup language that can be applied to team plans to capture contextual
information at specific points. The markup can affect settings in the UI, optimization criteria
for algorithm selection, and the level of autonomy used for decision making. Meta-markup
is also developed which places limitations on how frequently or to what degree markup can
modify the UI.

3: Field observations and lessons learned
Our third contribution is a presentation of plan evolution and lessons learned over several
years of field deployment and robot design. To test the ability of the designed team plan and
markup languages to capture complex behavior, we write several team plans for a fleet of up
to two dozen small, autonomous boats. We contribute lessons learned from deploying large
robot teams outside of a laboratory environment. In particular, we discuss contingencies
which should be considered when designing team plans for use in the field. Furthermore,
we present lessons learned over several iterations of designing and manufacturing the boat
platform.

4: Model for design and evaluation of training material
Our fourth contribution addresses how to design and evaluate training material for design-
ing team plans. We create a set of in-depth lessons to teach non-experts how to use the
developed language and markup. We present a user study based approach for evaluating
the effectiveness of the lessons in achieving several goals. First we consider how to recruit
participants representative of the target demographic of the lessons and how to determine
the bounds of user backgrounds for which the lessons are effective. After conducting the
user study, we discuss measures which capture how well the lessons can be scaled to mass
consumption. We also discuss methods and metrics for evaluating how well users understand
the rules of the language as lessons are presented. Last, we present methods and metrics for
evaluating how well users are able to apply understanding of the language to create team
plans which achieve specific objectives.
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Portions of these contributions appear in the following works:
A. Farinelli, M. Raeissi, N. Marchi, N. Brooks, and P. Scerri. Interacting with team ori-
ented plans in multi-robot systems. In Autonomous Agents and Multi-Agent Systems, pages
1–30. 2016.
A. Farinelli, N. Marchi, M. Raeissi, N. Brooks, and P. Scerri. A Mechanism for Smoothly
Handling Human Interrupts in Team Oriented Plans. In Proceedings of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent Systems, 2015.
N. Brooks, E. de Visser, T. Chabuk, E. Freedy, and P. Scerri. An approach to team pro-
gramming with markups for operator interaction. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems, 2013.

1.2 Reader’s Guide

Below is a summary of the topics addressed in each chapter of this document. Table 1.1
summarizes the challenges addresses by each of the chapters.

Chapter 2 introduces related work in markup languages, GUI building, and team plan
architectures.
Chapter 3 defines the syntax of the designed SPN and markup language.
Chapter 4 investigates mathematical properties of the SPN language derived from its Petri
Net roots. Furthermore, it develops applications for these properties to assist in the creation
of SPNs.
Chapter 5 presents software for developing and executing SPNs. This includes an IDE for
developing SPNs using tools covered in Chapter 4. Additionally, two SPN execution GUIs
are shown, one for a watercraft domain and one for an aerial domain. We discuss differences
between the two domains and the resulting differences in the designed GUIs and markup
interpretation.
Chapter 6 goes into further detail about the watercraft domain introduced in Chapter 5.
We cover the iterative development and manufacturing cycle of two types of autonomous
surface vehicles (ASV). After introducing the robot platforms, we present a set of SPN plans
deployed on a fleet of these ASVs.
Chapter 7 presents an evaluation of the SPN interrupt mechanism using a simulation of
the operator responding to undesired behavior with and without the interrupt sections of a
SPN.
Chapter 8 presents an evaluation of the markup language using a simulation of the re-
sponsibilities of an operator and the effect on their workload and team performance when
markup is applied.
Chapter 9 presents a set of tutorials developed for teaching participants with programming
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experience how to write SPNs. A user study is also presented which evaluates the efficacy
of the tutorials in teaching participants how to design team plans.
Chapter 10 summarizes the presented work and proposes additional opportunities to fur-
ther the goals of this thesis.

Contribution 3 4 5 6 7 8 9

1: SPN language
2: SAMI language
3: Field experience
4: Training design & evaluation

Table 1.1: Contributions discussed in each thesis chapter
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Chapter 2

Background

In this chapter we will discuss several types of related work. First we will discuss existing
markup languages in various software domains. We will consider the format, role, and
tradeoff between genericness and expressiveness of these markup languages. This will provide
insight into how to structure a markup language for human-robot team plans which can
capture useful contextual information, such as the information in Figure 2.1. Next we will
discuss GUIs used to control robot teams and tools which can facilitate their development.
GUI building tools provide simplified and accelerated development, lowering the barrier to
customize components for specific situations. This has facilitated the design of specialized
GUIs for human-robot teams in a variety of scenarios. We will sample these GUIs and
consider the attributes which motivated UI design decisions. Being able to capture these
types of attributes will be necessary for an effective markup language. Then we will discuss
some common robotics problems with a range of algorithmic solutions. Similar to analysis
of related work in GUIs, we will consider the attributes which distinguish the algorithms.
These GUI and algorithm attributes will provide insight into the vocabulary needed in the
markup language so that context can be described in an “actionable” manner enabling the
modification of system behavior. Lastly, we will discuss existing team plan formats for
coordinating groups of humans, robots, and agents. In particular, we will consider how well
formats can capture the types of coordination problems we are interested in. Using insight
from other markup architectures we will also consider how compatible the formats are for
being “marked up.”

2.1 Markup Languages

Markup languages have been used in a wide variety of domains, including text editing [117],
webpage development [156, 20], data storage [22], speech synthesis [182], UI specification [71],
and agent behavior [163, 107, 82].
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Figure 2.1: A team plan representation (dashed box) with execution context (yellow callouts)

LaTEX [117] 1 is an document preparation system commonly used for academic papers.
With an extensive library of both official and user developed feature libraries, LaTEX has
a vast range of capabilities. One of the main features of LaTEX that distinguishes it from
traditional text editors is its markup-based approach to formatting. In traditional text
editors, fonts and sizes for chapters, sections, and text must be manually specified and
adjusted to improve readability and cosmetic appearance. Figures must be manually placed,
scaled, and labeled. References to sections, figures, and papers must be managed manually
in addition to the bibliography. Many academics have little background in typesetting, but
need professional looking documents. LaTEX addresses this problem by automating these
processes and others, using internal algorithms which optimize these and other aspects of the
document’s appearance. Instead of specifying exact fonts, kerning, and image placement,
users instead add markup to their LaTEX files providing higher level information which the
LaTEX engine considers when generating the document. Figure 2.2 shows some examples
of the markup system being used to capture formatting, content hierarchy, and arbitrary
content references at a high level. Similar to how a typical LaTEX user does not know
the best practices for type setting, the typical domain expert looking to use robots in their
task does not know the best human factors practices for GUIs and properties of various
algorithms.

1http://www.latex-project.org
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\section{Section 1}
\label{sec:section1}
This is the beginning of Section∼\ref{sec:section1}.
\begin{itemize}
\item \textbf{Item 1 should be emphasized}
\item {\tiny Item 2 should be in a small font}
\item Item 3

\end{itemize}

Figure 2.2: LaTEX code

Webpages have become an integral part of modern society, from electronic commerce,
to online learning, to personal blogs. A critical piece of infrastructure which allowed for
this dramatic growth was the LAMP software bundle. While robust, it requires expertise
to set up and maintain. As the technology has matured, the barrier to entry for webpage
development has lowered in part due to development of compartmentalized languages. While
there are many languages and development styles, website development tasks can be sorted
into three categories:
• Designing the content of the website
• Designing the visual style of the website
• Storing and retrieving data to be displayed

As webpages have matured, these tasks have become independent of one another through
the use of specialty languages for each task. Content Management Systems (CMS), such as
Wordpress and Squarespace, cater specifically to non-experts interested in quickly building
a website using only their knowledge of the desired structure and content. A library of “plug
and play” visual style options is made available, as shown in Figure 2.5, and the necessary
data manipulation architecture is hidden from the user. In an analogous system for designing
human-robot team plans, the user ideally would only need to know the desired content (i.e.,
goals and behavior) of the plan, and would not need to modify UI code or know how to
invoke specific algorithms for path planning or task allocation.

The HyperText Markup Language (HTML) [156] is commonly used to describe the struc-
ture, organization, and content of a webpage using markup in a similar manner as LaTEX.
HTML specifies a number of tags which can be placed around text are used to indicate how
content should be structured and stylistic effects, as shown in Figure 2.3. This allows content
to be developed independent of knowledge or expertise about specific browser compatibilities,
device resolution, or accessibility constraints.
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<!DOCTYPE html>

<html>

<body>

<h1>First Heading</h1>

<p>A paragraph.</p>

</body>

</html>

Figure 2.3: HTML code

Cascading Style Sheets (CSS) [20] can then be used to interpret the markup into spe-
cific formatting commands. Margins, borders, positioning, colors, fonts, and other visual
attributes are set according to the CSS interpretation, as shown in Figure 2.4. CSS allows
for different interpretation depending on a number of properties including device, browser,
and window resolution. In addition, the person designing the website can use existing tem-
plates designed by user interface and web design experts. This is analogous to the markup
compatible UI components we seek develop which can also be reused or modified to be used
across multiple application domains.

body {
background-color: lightblue;

}

h1 {
color: black;

margin-left: 20px;

}

Figure 2.4: CSS code

A popular method for storing structured data across many domains is the Extensible
Markup Language (XML) [22]. The human-readable data can be marked up hierarchically
with user-defined tags describing the attributes of the underlying information, as shown
in Figure 2.6. The XML data is then loaded and interpreted by an application, such as
an HTML file, Excel spreadsheet, statistics program. The simple structuring of XML is
one of its strengths, allowing it to easily be written, loaded, and manipulated by the most
appropriate tool for the situation’s demands, compared to having data embedded in an
HTML file, intertwined amongst formatting and visualization code. While not a research
topic in this dissertation, it is important that data collected by the robot team be stored
in a similarly structured manner. The use of a common database formats such as XML
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(a) “Twenty Sixteen” (b) “Twenty Seventeen” (c) “Kale”

Figure 2.5: Some “themes” offered by Wordpress

also allows for development of user-friendly webpage tools for displaying this type of data,
minimizing repeated reimplementation of common tasks. Similarly, a goal of the designed
language is to improve the reusability of UI components and robotics algorithms.

<robot>

<id>1</id>

<fiducial>Blue Circle</fiducial>

<model>Lutra</model>

<propulsion>diff-drive propeller</propulsion>

<phone>Galaxy S3 Mini</phone>

<date>December 2014</date>

</robot>

Figure 2.6: XML data

2.2 Human-Robot Interaction

2.2.1 GUI Building

Building GUIs, similar to building webpages, traditionally required expert knowledge of
layout design, drawing threads, and various software patterns. GUI frameworks, such as Java
Swing 2, QT 3, and GTK 4, provide support for much of this functionality, but still require
a degree of expertise. As computation power and demand for easily customizable GUIs
increased, the popularity of what you see is what you get (WYSIWYG) design increased.

2https://docs.oracle.com/javase/tutorial/uiswing
3https://www.qt.io
4https://www.gtk.org
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Figure 2.7: Netbeans Swing GUI Builder

In WYSIWYG GUI building tools such as Netbeans Swing GUI Builder 5, Eclipse Window
Builder 6, and QT Design 7, a user drags low level components onto a grid representing the
GUI, and the system constructs the underlying code to produce the visualization. These GUI
building tools also automate software patterns for responding to various aspects of component
manipulation. Figure 2.7 shows the Netbeans GUI builder being used to construct the menu
bar for an application. The left section shows the current state of the designed GUI, the top
right shows a list of available low level components, and the bottom right shows advanced
options for the currently selected component in the designed GUI.

These increasingly powerful GUI frameworks and building tools have resulted in so-
phisticated GUIs for specific purposes [193, 199, 173, 191] and using new input modali-
ties [134, 81, 80, 83, 100, 134, 59]. These GUIs use their domain specific context to choose
strategies that best utilize the operator’s cognitive resources and improve their situational
awareness [87, 168, 84, 17, 3]. The MAUVE [44] GUI uses a novel “Decision Support Dis-
play” to show the schedule of events and required team resources for a team of 4 UAVs
and 1 operator. The decision support display, shown on the right half of Figure 2.8a shows
bottlenecks in the current schedule where operator workload will dramatically increase due
to multiple assets simultaneously requiring operator resources. The decision support display
provides concise visualization of the problem and can assist the operator in adjusting the
schedule to reduce or avoid these bottlenecks. The SUAVE [1] GUI uses a World-In-View

5https://netbeans.org/features/java/swing.html
6https://eclipse.org/windowbuilder
7http://doc.qt.io/qt-5/qtdesigner-manual.html
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(a) MAUVE UAV GUI (b) SUAVE UAV GUI

approach to visualizing camera data from 22 UAVs in a search task. The 3D model of the
world is continually “painted” using the video feeds from the UAVs and the operator can
move their camera to inspect terrain from any viewpoint; Figure 2.8b shows an overhead
view of the display. Chung [34] uses swarm control algorithms and two primary human roles
to launch and control a fleet of 50 UAVs. The two roles are the swarm operator, responsible
for selecting swarm behaviors, and the swarm monitor, responsible for checking for battery
levels, altitudes, and anomalous behavior.

Several pieces of related work describe the team plan(s) within the operator GUI such
that information about the operator’s current task and team’s objective is available to the
GUI, allowing components to be modified and swapped out as needed to maximize the team’s
overall performance. Similar to levels of autonomy, related work approaches this topic using
mixed initiative adaptation [90, 101] as well as user initiated adaptation [62, 60, 25, 118, 190].
To avoid redesigning the markup system for every domain or redesigning all GUI components
for each team plan, our markup system must capture this contextual information such that
team plans and GUI components exist independently.

2.3 Planning Algorithms

Similar to operator GUIs, there is a wide variety of algorithms for multi-robot planning to
address the specific needs of a scenario. For path planning and motion control in multi-robot
teams, there is a great deal of research [24, 13, 167, 30, 16, 183, 186, 55] which employs a
variety of assumptions and techniques. Yan [198] performed a survey of multi-robot motion
planning approaches and divided algorithms into 4 categories:
• Cell decomposition
• Potential field
• Voronoi diagram
• Sampling-based

The categories were compared using qualities including optimality, efficiency, safety factor,
and scalable dimensionality. Yan also lists a common application for each category which
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leverages its strengths, including area coverage, formation control, exploration, and manip-
ulator control.

In the realm of multi-robot task allocation [21, 124, 45, 162, 200, 145, 130, 133, 94, 152,
116, 189], several taxonomies have been defined to analyze the extensive literature [108, 70,
198]. In Gerkey [70], algorithms were categorized using 3 primary characteristics:
• Single-task robots versus multi-task robots: Single-task robots can execute only one

task at a time, while multi-task robots can execute multiple tasks simultaneously.
• Single-robot tasks versus multi-robot tasks: Single-robot tasks require exactly one

robot to achieve it, while multi-robot tasks require multiple robots coordinating to-
gether.
• Instantaneous versus time-extended assignment: Instantaneous means that the avail-

able information concerning the robots, tasks, and environment does not allow for
planning for future allocations, while time-extended has more information, such as the
set of all tasks to be assigned or anticipated arrival times, allowing for future allocations
to be considered.

Algorithms were then categorized and compared using metrics including computation re-
quired per task or iteration, communication required per task or iteration, and solution
quality. Yan’s [198] survey also addresses allocation approaches, and divides them by imple-
mentation category:
• Market based
• Auction based
• Trade based

The capabilities of these styles are then compared, considering factors such as utility metrics,
support for task reassignment, communication complexity, and computation complexity.

Choosing the algorithm with the right balance of these competing factors requires knowl-
edge of the context the algorithm will be used for. Categorization in literature review papers
provides good insight into the types of high-level descriptors a markup language will need to
capture. By including known characteristics and performance preferences for path planning
and task allocation at specific points in team plans, we can then select the most appropriate
algorithm from a given set of implementations.

2.3.1 Autonomy

These planning algorithms and other sources of autonomy allow robots to act independently
of the operator. While this reduces operator workload for that particular decision [4, 122],
operating at the highest level of autonomy is not always desirable as the algorithm may lack
information only observable by the operator. In addition, removing the operator from the
decision making process also lowers their situational awareness of the state of the team and
task at hand [72]. One popular strategy adopted to pick the right balance between full robot
autonomy and no robot autonomy is sliding autonomy [95, 194, 74, 147, 166, 51, 137, 35, 153].
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System initiated sliding autonomy systems monitor the state of the system and workload of
the operator and determine which decisions will be made by system autonomy and which
will be made by the operator. Mixed initiative sliding autonomy allows the system to make
decisions for the operator, but the operator can intervene and adjust the decision themselves
at any time.

For our markup language we will grant the operator greater flexibility by allowing it to
specify mixed initiative sliding autonomy settings, using the Levels of Autonomy [173, 149]
to motivate markup descriptors.

2.4 Team Plan Representation

Now we will look at strategies in related work which defines team plan formats for combi-
nations of agents, robots, and humans.

2.4.1 Belief Desire Intention

The key aspect of STEAM [180] is team operators, which are based on the Joint Intentions
Theory introduced by [121]. In STEAM, agents can monitor the team’s performance and
reorganize the team based on the current situation. The TEAMCORE [154] architecture
builds off of STEAM, adding the concept of proxies and team-oriented programming (TOP)
to improve software integration and accelerate plan development. Each TEAMCORE agent
has a corresponding proxy which serves as a middle layer between the TOP framework and
domain-level agents. The proxy captures the capabilities of its agent and handles communi-
cation and coordination between other team members, and adds support for heterogeneous
and distributed teams. In TOP, the programmer specifies an organization hierarchy of sub-
teams and a graph of goals and the subteam responsible for them. The underlying TOP
infrastructure then handles the formation, maintenance, and coordination of the subteams.
It also allows for team reorganization in response to a team member’s failure. The specific
mechanics to accomplish a particular goal are left to the agent, allowing for plans to be
specified at a high level independent of the actual agents which will ultimately fulfill it. The
Machinetta [170] framework makes further improvements to the proxy concept, allowing for
larger teams of agents to work together.

BITE [96, 97] specifies a library of social behaviors and offers different synchronization
protocols that can be used interchangeably and mixed as needed. Inspired by STEAM [180],
BITE also maintains a organizational hierarchy and goal behavior graph. One key addition
in the BITE architecture is the introduction of a library of hierarchically linked social inter-
action behaviors implementing interaction protocols for synchronization and task allocation
The goal behavior graph allows specifying which synchronization or task allocation algorithm
is used by a particular behavior in the graph to address specific performance or robustness
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needs.
While these frameworks provide methods for building team oriented plans, they do not

feature mechanisms for a human operator to supervise the execution of the plans, such as
directing high level objectives or providing new information. In addition, while GUIs for
plan development have been created [154], the BDI architecture does not inherently provide
a graphical representation of the overall plan. Furthermore, there are no inherent properties
of these languages which can be leveraged to build tools for validation or verification.

2.4.2 Finite State Machines

Finite State Machines (FSM), also known as Finite State Automatons (FSA), are a popular
computational model due to their visual nature and analytical properties. A deterministic
finite state machine M is a 5-tuple, (Q,Σ, δ, q0, F ), consisting of:
• A finite set of states Q
• A finite set of input symbols called the alphabet Σ
• A transition function δ : Q× Σ→ Q
• An initial or start state q0 ∈ Q
• A set of accept states F ∪Q

However, as a FSM exists in one state at a time, it does not inherently support concurrency.
To cover the state space capturing the status of each member of the team, the FSM size
grows exponentially as there must be a state for every possible combination of team member’s
statuses. FSMs face similar difficulties modeling synchronization, and require exponential
growth in the state space or additional mechanisms.

One approach to addressing these limitations is by using a hierarchy of state machines.
Hierarchical finite state machines (HFSM), popularized by state charts[79], allow for better
organization and reuse of state sequences in multiple contexts, potentially reducing the
overall state space size. Alur [6] defines a HSM as a tuple (K1, ...Kn) of modules, where each
module Ki has the following components:
• A finite set Ni of nodes.
• A finite set Bi of boxes. The sets Ni and Bi are all pairwise disjoint.
• A subset Ii of Ni, called entry nodes.
• A subset Oi of Ni, called exit nodes.
• An indexing function Yi : Bi 7→ i+ 1...n that maps each box of the i-th module to an

index greater than i. If Yi(b) = j, for a box b of module Ki, then b can be viewed as
a reference to the definition of the module Kj. If b is a box of the module Ki with
j = Yi(b), then pairs of the form (b, u) with u ∈ Ij are the calls of Ki and pairs of the
form (b, v) with v ∈ Oj are the returns of Ki.
• An edge relation Ei consisting of pairs (u, v) where the source u is either a node of a

return of Ki, and the sink v is either a node or a call of Ki.
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Figure 2.9: An explosive ordinance disposal (EOD) MissionLab plan (from [57]).

Marino [129] develop a HFSM-based approach for using a multi-robot team to patrol
an area. The robots in this scenario are designed to be fully decentralized with no explicit
communication. As no coordination between the robots is needed and the robots only need
to model their own state, this allows for a compact state space. Three superstates, or
boxes, corresponds to range of distances (large, medium, or small) between the robot and
the perimeter of the patrol area, and the nodes, or states, inside the superstates handle the
robot behavior for that condition.

The MissionLab [8] architecture allows for mission plans to be designed using FSA in the
MissionLab Configuration Editor GUI. States in a mission may correspond to complex tasks,
which are achieved by sub FSAs. The language is used for multi-robot teams [126] where each
robot has a separate HFSA modeling their own state. Limited coordination can be achieved
through states where a signal is sent/received to/from a team member. Figure 2.9 shows a
MissionLab plan which uses a single robot to detect and clear landmines. MissionLab features
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a GUI for running missions where a human operator selects a mission to run. Once a mission
starts, the operator can bias the robot teams movements to assist in exploration and can
modify gains for each robot’s obstacle avoidance and goal attraction. Two usability studies
were conducted evaluating the usability of MissionLab by new users. In the first usability
study [9], speed and accuracy of mission planning in the MissionLab configuration editor was
evaluated. Participants in the study had either no programming background, programming
background but no MissionLab experience, or programming background and MissionLab
experience. Participants were introduced to the MissionLab language through a guide sample
mission. Afterwards, the participants were provided with instructions for 5 new missions
to implement independently. For a subset of the participants with programming fluency,
additional experiments were conducted to compare the configuration editor to writing the
mission in C code with an equivalent set of C functions as the actions in the configuration
editor. In the second usability study [57], speed and accuracy of mission planning was
compared between a new wizard and the existing configuration editor. The wizard helps
users build plans by retrieving previously created missions and allowing the user to adapt
them to the new situation. Participants were recruited from both technical (engineering,
computer science, or math-related topics) and non-technical backgrounds and were divided
into a group to use the wizard and a group to use the configuration editor. Participants
completed 4 tutorials, plus 1 additional tutorial for the wizard group, before going on to
2 tests, which described a scenario to write a mission for. The resulting design time and
accuracy of the created missions as well as the perceived difficulty in created them was
compared.

However, as with state machines, hierarchical state machines still lack a natural way to
capture the concurrent actions of multiple robots. Using separate HFSMs for each robot
allows for concurrent actions in a concise manner, but limits the representation of synchro-
nizing actions.

2.4.3 Petri Nets

Petri Nets (PN) [150], another graphical computation model, compactly support synchro-
nization and concurrency and are a popular choice for designing, executing, and/or moni-
toring multi-agent processes. Graphically, a PN is represented by a directed bipartite graph,
in which nodes could be either places or transitions, arcs connect places to transitions and
vice versa. Places in a Petri net contain a discrete number of marks called tokens. A par-
ticular allocation of tokens to places is called a marking and it defines a specific state of
the system that the Petri Net represents. Weights on the arcs define the number of tokens
that must be present in certain places to trigger a change in the system, which results in
token movement. This greatly simplifies representing the statuses of multiple team mem-
bers and allows for a compact representation for synchronization. Formally, a PN is a tuple
PN = (P, T, F,W,M0), where
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(a) Ordinary action (b) Sensing action (c) Branching actions (d) Interrupt action

Figure 2.10: Key types of PNP structures taken from [201]

• P = {p1, p2, . . . , pm}, is a finite set of places.
• T = {t1, t2, . . . , tn}, is a finite set of transitions.
• F ⊆ (P × T ) ∪ (T × P ), is a set of arcs.
• W : F → N, is a weight function.
• M0 : P → N0 is an initial marking.
• P ∩ T = P ∩ F = T ∩ F = ∅ and P ∪ T ∪ F 6= ∅.

The marking of a PN evolves based on the firing behavior of the transitions. A transition
t can fire whenever it is enabled (e.g., when each input place pi of the transition is marked
with at least W (pi, t) tokens) and if the transition fires W (pi, t) tokens are removed from
each input places pi and W (t, pj) tokens are added to each output place pj.

Petri Nets have a number of extensions [33, 61] and are a popular choice for multi-robot
plans [29, 103, 110, 119, 125, 197, 11]. Petri Net Plans (PNP) [201] take inspiration from
action languages and offers a rich collection of mechanisms for dealing with action failures,
concurrent actions and cooperation in a multi-robot context. Different sections of a PNP
correspond to activities of different robots in the team, with a token for each robot indicating
its current action. The PNP is built from from PNP structures, each corresponding to some
sort of action, as seen in Figure 2.10. Structures are combined in series and parallel to form
complex plans.

While the use of Petri Nets allows for a centralized view of the entire team, the PNP
framework includes functionality to build distributed plans for each robot from the central-
ized version, adding in structures for soft and hard synchronization. Another useful function
offered by the formalism of PNP is the possibility to modify the execution of a plan at
run-time using interrupts placed on transitions, as seen in Figure 2.10d. Task allocation
is possible through PNP structures similar to sensing events, where branch options would
include boolean comparators such as closestToBall, and !closestToBall.

In [40], Costelha uses Generalised Stochastic Petri Nets (GSPN) to model multi-robot
plans. The framework is built around 4 types of places: predicate places, action places, task
places, and memory places. Predicate places capture beliefs about a predicate and come
in pairs: one for the belief the predicate is true and one for the belief that the predicate is
false. Transitions and edges are created such that, for each pair of predicate places, one place
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Figure 2.11: The Score Goal task plan PN (from [40])

will have one token to indicate that is the current belief and the other place will be empty.
Memory places have no specific properties and are used as a conventional PN place to mark
that certain information has been obtained. Action places act as macro places [15], enabling a
corresponding action PN which models that action’s execution. Action PNs contain memory
and predicate places, but as they are modeling atomic actions, do not contain action or task
places. Task places are similar to action places in that they act as macro places enabling
a task plan PN to run. Task plan PNs model a high level objective and can contain any
type of place, including task places for other tasks. Figure 2.11 shows the Score Goal task
plan. The various PNs are linked together via an algorithm which merges duplicate predicate
references and connects action and task macro places with their corresponding PN. Creating
coordinated multi-robot teams in a soccer domain is explored in [39], where each robot has its
own set of task and action PNs and synchronization between robots in those PNs is achieved
using additional macro places. These macro places model the transmission (or reception)
of a piece of information to (or from) a teammate, such as being ready to pass the ball
(or the teammate being ready to pass the ball). The framework allows for various models
of communication, from deterministic communication to communication with probabilistic
transmission time and failure.
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2.4.4 Colored Petri Nets

Colored Petri Nets (CPN) [91] extend Petri Nets where tokens have attached data values
called the token’s color. The firing behavior of transitions and consequently the evolution
of the net’s marking can depend on a token’s color. In addition, transitions can modify
the value(s) of the token’s color when they are fired. A CPN is defined by the tuple N =
(P, T, F,Σ, C,N,E,G, I) where:
• P = {p1, p2, . . . , pm}, is a finite set of places.
• T = {t1, t2, . . . , tn}, is a finite set of transitions.
• F ⊆ (P × T ) ∪ (T × P ), is a pairwise disjoint set of arcs.
• Σ is a set of color sets defined within CPN model. This set contains all possible colors,

operations and functions used within CPN.
• C is a color function. It maps places in P into colors in Σ.
• N is a node function. It maps F into (P × T ) ∪ (T × P ).
• E is an arc expression function. It maps each arc f ∈ F into the expression e. The

input and output types of the arc expressions must correspond to the type of the
nodes the arc is connected to. Use of node function and arc expression function allows
multiple arcs connect the same pair of nodes with different arc expressions.
• G is a guard function. It maps each transition t ∈ T to a guard expression g. The

output of the guard expression should evaluate to Boolean value: true or false.
• I is an initialization function. It maps each place p into an initialization expression
i. The initialization expression must evaluate to multiset of tokens with a color corre-
sponding to the color of the place C(p).
• P ∩ T = P ∩ F = T ∩ F = ∅ and P ∪ T ∪ F 6= ∅.

Moreover, similar to PN, CPN can be analyzed and verified either by means of simulation or
formal analysis methods [159], thus allowing validation of team oriented plans before their
execution.

Colored Petri Net Plans (CPNP) [128] build off the basis of PNPs, but add the additional
representational power of CPNs. In a CPNP extension built for multi-robot teams, tokens
in CPNP represent robots, differentiated by a robot ID variable in their token color. Guards
placed on transitions allow for a boolean expression using a token’s variables to act as an
additional firing constraint for the transition. Arc expressions allow for complex evaluations
to be performed on token variables. For input arcs (arcs from a place to a transition), arc
expressions limit which tokens are moved when a transition fires to those with a particular
value for a variable. For example, an input arc expression can specify a particular value for
the robot ID variable, effectively only moving that robot’s corresponding token. For output
arcs (arcs from a transition to place), arc expressions can change token variable values for
the tokens moved by the transition’s firing. Dynamic task assignment and reassignment
is made possible by including variables representing the status of each task to the robot
token color set. An external task allocation algorithm is then able to indicate the resulting

21



Figure 2.12: The dynamically allocated Organize Room CPNP (from [128]). Some repeated
arc expressions are omitted for compactness.

allocation by changing the value of an assigned task to in progress in the token corresponding
to the assigned robot. Figure 2.12 shows a CPNP with two parts. The top CPNP uses a
predefined allocation, where robot R1 opens a room, after which R1 and R2 enter the room
and clean it. After cleaning is done, task allocation is enabled via an output arc expression
to allocate a joint lifting task consisting of lifting the object from its right (t1) and its left
(t2). The bottom CPNP shows the execution of the tasks, with the allocated robots moving
into position before the lift action is executed by both robots simultaneously.

2.4.5 Language Design

Visual representations have been an effective technique for teaching both teaching chil-
dren [42, 43, 120] and novices [48, 50, 151, 127] to program individual robots. In addition,
visual representations also provide an intuitive method for adding markup. Petri Nets offer
this while adding increased representational power of sequential and parallel coordination.
Furthermore, the analytical properties of Petri Nets and Colored Petri Nets could reduce the
amount of training required to use the language through the use of assistance and debugging
tools.

Building off this related work, we will add several other capabilities to a new team plan-
ning language based off of Colored Petri Nets. In many scenarios, especially those involving
exploration, tasks will be dynamically generated. As new points of interest are discovered,
further investigation may be required by a team member with different capabilities or fewer

22



responsibilities. Human domain knowledge is a necessary element in our applications, so
operator interaction will be a fundamental aspect of the presented team planning language.
While adding these capabilities, considering the implementation method’s impact on learn-
ability [105, 104, 138, 111] will be important to allow for use in real world applications where
non-experts will be responsible for designing team plans.
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Chapter 3

Language Syntax

3.1 SPN Definition

SAMI Petri Nets (SPN) are based on Colored Petri Nets and Hierarchical Petri Nets, with
various extensions to add the capability to send and receive commands and information
from team members, to perform and reference task allocations, and to capture situational
awareness and mixed initiative (SAMI) directives. In more detail, SPNs are based on the
CPN modelling language defined in [92], which supports hierarchical CPN and the use of
variables.

We define a SPN structure as the following tuple 〈P, T, F,E,R, SM〉, where:

• P = {p1, p2, ..., pi} is a finite set of places.
• T = {t1, t2, ..., tj} is a finite set of transitions.
• F ⊆ (P × T ) ∪ (T × P ) is a set of edges.
• E = {e1, e2, ..., ek} is a set of events.
• R = F → {r1, r2, ..., rm} is a mapping of edges to a set of edge requirements.
• SM = P → {sm1, sm2, ..., sml} is a mapping of places to a set of sub-missions.

The SPN models the execution of a team plan by representing the current state of the
system (i.e., the markings of the places), the evolution of system states over time, and the
interactions between the different components of the systems. In more detail, the SPN
implementation defines a plan manager, which is an execution engine responsible for all
interactions among the different components of the robotic platforms. All interactions take
the form of commands (or requests) sent from the plan manager to the robotic platforms (or
to the operators) and information received from human operators/robotic platforms.

In what follows, we describe each of the main elements of the SPN and then provide
operational semantics in the form of firing rules for the transitions.

Events: events fall under two categories: output events and input events.
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Output events are associated to places in the Petri Net (using the mapping EO = P →
{oe1, oe2, ..., oeq} ⊆ E, which maps each place to a set of output events) and represent
commands or requests that are sent to human operators, robot proxies1, or agents. When
a token(s) enters a place, all the output events on the place, EO(p), are processed. The
registered handler for that class of output event is sent the output event oe along with the
tokens that just entered the place (Algorithm 3).

For output event classes that contain data fields, there are 3 ways to specify the infor-
mation, which are listed here with example usage in our outlined scenario: (1) Value defined
offline by the Petri Net developer (the battery voltage threshold to send a low-energy alert
to the operator). (2) Value defined by the operator at run-time (a safe temporary position
for robots to move to in order to avoid an incoming manned boat). (3) Variable name whose
value is written by an input event at run-time (a variable to retrieve the path returned from
a path planning agent via a “Path Planning Response” input event). Variables are explained
in more depth later in this section.
Input events are associated to transitions (using the mapping EI = T → {ie1, ie2, ..., ieh}
⊆ E, which maps each transition to a set of input events) and contain information received
from human operators, robot proxies, or agent services, which perform assistive functions
such as path planning, task allocation, and image processing. The set of input events on a
transition, EI(t), are responses to an output event on a place preceding the transition. For
an input event ie that will contain information at run-time (such as a generated path or
selection from an operator), a variable name is used so the information can be accessed by
output events.

Input events contain “relevant proxy” and “relevant task” fields, which contain the iden-
tities of the proxy(s) or task(s) (if any) that sent or triggered the input event.

Events in SPN have a function that is very similar to actions in the PNP framework [201]:
the PNP framework describes the evolution of a robotic system where states change due to
actions and SPN describes the evolution of a team plan where the states change due to
events. However, an important structural difference is that in PNP actions are associated
to transitions, while in SPN we associate output events to places and input events to tran-
sitions. The rationale behind this choice is twofold: first, we have a more compact SPN,
second, this results in a more efficient implementation. To see this, consider the place with
output event “ProxyExecutePath” in Figure 3.1 which is connected to a transition with
“ProxyPathCompleted”. This path execution sequence is captured with one place and one
transition. If we instead associate output events with transitions, we would need a place rep-
resenting the precondition for starting ProxyExecutePath, a transition that actually sends
the ProxyExecutePath, a second place that represents that the proxies are executing the
path, and a second transition with the ProxyPathCompleted input event. This extra place

1With the term proxy we refer to a software-service that connects a specific boat with the rest of the
system
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and transition for each action sequence results in a much less compact network. In addition,
we use the output event instance’s unique id as criteria for matching a received input event
to a transition in the SPN. This is necessary in the common case where an input event is
used in multiple transitions, such as having instances of ProxyExecutePath and ProxyPath-
Completed, so that the correct transition’s firing requirements are updated. In contrast,
associating output events to transitions would make the pre-conditions and post-conditions
for the events more visible in the CPN representation. This could be a valuable feature
for a designer and would be more in line with traditional PN specifications of control sys-
tems. However, a precise assessment of this trade-off requires further investigations while
our focus here is to provide a mechanism for smoothly handling interrupts in the SPN plan
specification language. Hence, we leave the analysis of this issue to future work.

When an input event is received by the system and matched to its corresponding transi-
tion in a Petri Net, it is marked as being “received” (Algorithm 1). When a transition fires,
its input events’ “received” statuses are reset (Algorithm 2).

Variables: Similar to the model for CPN proposed in [92], SPNs support a variable database,
where variables are typed and scoped globally or locally. The use of variables is a key element
to keep the network compact and to make the plan specification framework flexible and easy
to use. Global scope variables allow plans to share information, such as a sensor mapping
density, while local scope variables allow multiple copies of a plan to run simultaneously
without overwriting instance specific data, such as locations to visit. Different variables can
be defined for each input event. Fields in output events can refer to these variables, provided
they are of the corresponding type and within scope.

Tokens: In general, the CPN modeling language allows to define a variety of color sets for
tokens in order to support different data types such as list, structure, enumeration, etc. We
now explains our data types for SPN. The SPN tokens have four pieces of information: a
name (String), a token type (TokenType), a proxy (ProxyInt), and a task (Task). Each token
tk is one of three TokenTypes: Generic tokens have no defined proxy nor task and are used
as counters. Proxy tokens contain a proxy but no task. These are created whenever a robot
proxy is added to the system at run-time. Task tokens contain a task and might contain a
proxy. Task tokens are created by the Petri Net execution engine when a plan is started,
creating one for each task in the plan. When the task is allocated to a proxy, the proxy
field of the task’s corresponding token is set to the proxy assigned to the task. The data
within the token (ProxyInt for proxy tokens, Task for task tokens) can be used by events to
address specific resources in the team (e.g., tell Proxy A to go to a location or tell Task A
it is complete). The data can also be used in edge requirements to require specific proxy or
task tokens to be in a place in order for a transition to fire (equivalent to arc inscriptions in
CPN Tool). In this sense, the proxy token for Proxy A and the proxy token for Proxy B are
of different color sets. The full color set would thus be generic, the list of all proxies, and
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the list of all tasks. Representing proxies and tasks in this manner allows for multi-robot
plans with arbitrary numbers of team members that must execute the same actions (i.e.,
the Proxy Execute Path in the CLV plan reported in Figure 3.1) to be constructed and vi-
sualized compactly, compared to having an individual Petri Net for each member of the team.

Edge Requirements: Edges fall under two categories: incoming edges if ∈ F , which
connect a place to a transition, and outgoing edges of ∈ F , which connect a transition to a
place. Similarly, Edge Requirements have two categories: incoming requirements ir, which
are mapped by R from incoming edges, and outgoing requirements or, which are mapped
by R from outgoing edges. In a standard Petri Net, incoming edges have a weight which
specifies the number of tokens required for a transition to fire, which are then consumed,
and outgoing edges have weights which specify the number of tokens to add to the connected
place.

Colored Petri Nets allow edges to specify different quantities for different colors of tokens.
SPN edge requirements have additional options to maintain the network as compact as
possible.

Each incoming requirement ir on an incoming edge if , R(if), specifies tokens that
must be present or absent in the connected place in order for the connected transition to
fire. However, when a transition fires, these tokens are not always removed as this could
cause undesired interruption of behavior controlled by output events in the connected place.
Instead, each outgoing requirement or on an outgoing edge of , R(of), specifies tokens that
should be removed from the incoming places (the places preceding the connected transition)
and tokens that should be added to the connected place.

This is achieved by having each outgoing requirement specify a set of tokens and an
action to perform on those tokens: take, consume, or add. Taking a token removes it from
incoming places and adds it to the outgoing place. Consuming a token removes it from
incoming places. Adding a token adds a copy of the token to the connected place. The
take action represents the standard operation that is executed on PN and CPN when a
transition fires. However, consume and add are extensions to the standard semantics of PN
used in SPN only to maintain the network’s compactness. Specifically, the motivation for
using these actions is that since we have output events associated to places, we need a way
to move a token from a preceding place to a following place without removing it from the
initial place. If we expand the network as described above (i.e., adding two places and one
transition) we would not need this extension. Furthermore, while we could use standard
PN structures to implement these actions (e.g., we could add a specific transition without
outgoing edges to consume a token from a place) this would defeat the purpose of having
a compact network. Similar to Colored Petri Nets, the set of tokens specified by an edge
requirement can be generic tokens or specific task tokens. Edge requirements can also refer
to “relevant tokens” which are defined by the input events on the transition being evaluated.
The list could contain proxy token(s), in the case of a “Path Completed” input event which
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specifies the proxy token for the robot that finished, so that at run-time that proxy token
can be moved forward in the Petri Net. It could also contain task token(s), in the case of a
“Task Completed” input event signaling that a particular task has been completed.

Sub-missions: The SPN language supports hierarchical team plans, allowing a place (called
a sub-mission place) to have a set of “sub-missions”, SM(p). Sub-mission in SPN provide
a specific implementation of hierarchical CPN [92]. Each sub-mission sm is an SPN which
is run in either dynamic or static mode. For dynamic sub-missions, when tokens enter the
sub-mission place of the parent plan a new instance of the sub-mission SPN is started and
the initial marking is defined as those tokens in the sub-mission’s start place (Algorithm 3).
In contrast, static sub-missions are instantiated only once, when the parent plan is instan-
tiated, and have an empty initial marking. They share their start place with the parent
plan: tokens that enter the parent sub-mission place are also added to the start place of the
sub-mission.
All sub-missions can return values and tokens as well as write to variables shared with their
parent plan. When a token(s) enters an end place in a sub-mission, the sub-mission is marked
as being “complete.” Until then, transitions in the parent plan leaving the sub-mission place
are prevented from firing (Algorithm 1). When a transition fires, the completion status of
any sub-mission in an incoming place is reset (Algorithm 2). Sub-missions allow developers
to reduce repeated creation of common sequences and increase readability of the plan.

Markup: Each event e has a set of markup (using the mapping MK = E → {mk1,mk2,
...,mkn}, which maps each event to a set of markup). Markup are context clues associated
to events which can provide several types of information: which GUI components and wid-
gets are most appropriate for operator interaction, which set of priorities an agent service
should consider when choosing from multiple algorithms, and which level of mixed-initiative
autonomy to employ in making decisions.

Markups are an addition to the CPN model we consider here [92], which can be exploited
to support situational awareness and mixed initiative control, making the model more flexi-
ble. We discuss markups here for completeness, however we do not use this concept in our
empirical analysis nor in the definition of the interrupt mechanism that is the main focus of
this paper.

Each markup m ∈MK(e) has a number of options and variables that the SPN developer
must specify. GUI components and agent services correspondingly indicate which markup
options they support, allowing the most appropriate ones to be retrieved automatically at
run-time.

For example, the “relevant proxy” markup indicates to the GUI that the locational data
of certain proxies should be displayed to the operator in addition to any other information
contained within the event. Settings include the proxy selection criteria (the event’s relevant
proxies or all proxies) and which data to visualize (including pose, current path, future
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Figure 3.1: SAMI Petri Net “Cooperative Location Visit” plan (without the interrupts).
The starting place is colored green and the end place is colored red

paths, and past paths). The “mixed initiative trigger” markup is used to indicate when
system autonomy should make a decision and if the operator should be informed. Options
range from never using system autonomy, using autonomy after a timer expires, or using
autonomy immediately without consulting the operator.

The main components of an SPN are illustrated in a sample plan in Figure 3.1. When
a plan is selected to run, an initial marking is applied to the plan’s start place, pS ∈ P (the
leftmost place, colored green). When a token enters an end place, PE ⊂ P, pS /∈ PE, the plan
terminates (the rightmost place, colored red). The initial marking is a generic token and a
proxy token for each boat, which triggers Algorithm 3 when applied to pS.

Operator Select Robot List is triggered asking the operator to select the boats that will
participate in the plan from the list of corresponding proxy tokens it received. When the
operator performs this action, an Operator Selected Boat List input event will be generated
and matched to its transition in the SPN. Its received status is set to true and Algorithm 1
will be called. The transition will be enabled and fired via Algorithm 2, taking the relevant
tokens (i.e., the tokens corresponding to the selected boat proxies) to the next place. The
plan progresses in a similar way until the tokens reach the last place (i.e., all selected boats
have completed their path).

When this happens the plan reaches the end place and is no longer active.
To illustrate how the concept of color is used for modelling a multi robot team in SPN,

two consecutive markings of the CLV plan execution are shown in figures 3.2a and 3.2b.
The figures display the same SPN reported in Figure 3.1. These markings illustrate how
the colored tokens (related to different boats) progress through the SPN. Figure 3.2c reports
the state of the SPN where all proxy tokens are inside the Proxy Execute Path place. In this
state of the SPN the related output event instructs the three platforms to execute the their
path (shown in the rightmost image). The path that each platform must execute is specified
by the task assignment algorithm which was selected by the operator in the preceding place
(Task Assignment Request). In contrast to a plan specified with a non-colored PN, a single
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SPN defines the entire team plan, instead of representing one PN for each robotic platform.

Algorithm 1 Checks if a transition should be enabled

1: procedure Check transition
2: for ie ∈ EI(t) do . Check that all input events have been received
3: if ie.received == false then return false
4: end if
5: end for
6: for if ∈ t.inEdges do . Check that all incoming edge’s in requirements have been

satisfied
7: for ir ∈ R(if) do
8: if ir.satisfied == false then return false
9: end if

10: end for
11: p = if.start
12: for sm ∈ SM(p) do . Check that any sub-missions on an incoming place are at

a goal state
13: if sm.complete == false then return false
14: end if
15: end for
16: end for
17: return true
18: end procedure

3.1.1 Summary

In this chapter, we presented the syntax rules for SAMI Petri Nets (SPN). SPNs are a
significant extension to CPNs, allowing for tokens to represent robots or tasks, events to
control token movement, variables for event fields, inhibitor and reset arc functionality, and
nested sub-missions.

Petri Nets are not the only model which could be used to design this type of language,
and there are many other ways Petri Nets could be extended to develop a similar language.
Our selections were made based on our target applications at the time. One difficult lan-
guage design decision was encoding behavior for an unknown team size, which could happen
for a number of reasons: robots could be added or removed from the system during a plan’s
execution, the operator could be instructed to select a subset of the team to be used in the
plan, or tasks could be dynamically created in response to a team member’s actions. Manip-
ulating an unknown group size led to the development of the “relevant token” mechanism
and need for inhibitor arc support.
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(a) Initial marking of the CLV plan, with 3 tokens (associated to boats) and 1 generic token (a
generic token is always included in the initial SPN marking to start the plan).

(b) This marking shows the state of the SPN after the operator selected the boats for executing
the mission. At this point the 3 tokens representing the boats are moved to the next place in the
SPN.

(c) This marking shows the state of the SPN when the proxy tokens are inside the Proxy Execute
Path place. At this point each boat will execute its related path based on the task assignment
algorithm which was selected by the operator in the previous place Task Assignment Request. The
paths for the three boats are reported in the rightmost image.

Figure 3.2: SAMI Petri Net showing a partial execution of the “CLV” plan (without the
interrupts)
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Algorithm 2 Fires an enabled transition

1: procedure Fire transition
2: t ∈ T . t is the transition we are executing
3: TKA = ∅ . TKA is a map associating tokens to add to outgoing places (initially

empty)
4: TKR = ∅ . TKR is a map associating tokens to remove to incoming places (initially

empty)
5: for of ∈ t.outEdges do . Fill in TKA and TKR

6: for or ∈ R(of) do
7: for p ∈ t.outP laces do
8: TKA.put(p, getTokensToAdd(or))
9: end for

10: for p ∈ t.inP laces do
11: TKR.put(p, getTokensToRemove(or))
12: end for
13: end for
14: end for
15: for p ∈ t.outP laces do
16: enterPlace(p, TKA(p))
17: end for
18: for p ∈ t.inP laces do
19: leavePlace(p, TKR(p))
20: end for
21: for p ∈ t.inP laces do . Reset completion status of all sub-missions on incoming

places
22: for sm ∈ SM(p) do
23: sm.complete = false
24: end for
25: end for
26: for ie ∈ EI(t) do . Reset receipt status of all input events on the transition
27: ie.received = false
28: end for

32



29: Tcheck = ∅ . Tcheck is a list of transitions we could have affected and should now
check (initially empty)

30: for p ∈ t.outP laces do . Fill in Tcheck
31: for t2 ∈ p.outTransitions do
32: if t2 /∈ Tcheck then
33: t2→ Tcheck
34: end if
35: end for
36: end for
37: for p ∈ t.inP laces do
38: for t2 ∈ p.outTransitions do
39: if t2 /∈ Tcheck then
40: t2→ Tcheck
41: end if
42: end for
43: end for
44: for t2 ∈ Tcheck do
45: if checkTransition(t2) == true then
46: fireTransition(t2)
47: end if
48: end for
49: end procedure

Algorithm 3 Handles tokens entering a place

1: procedure enterPlace
2: TK = {tk1, tk2, ..., tkn} . TK is a list of tokens being added to the place
3: for oe ∈ EO(p) do
4: processEvent(oe, TK)
5: end for
6: for sm ∈ SM(p) do
7: beginSubMission(sm, TK)
8: end for
9: if p ∈ PE then

10: finishPlan(p, TK)
11: end if
12: end procedure
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Chapter 4

Language Properties

In this chapter, we discuss how the SPN language introduced in Chapter 3 deviates from
traditional CPNs, the resulting effects on the language’s behavioral properties, and methods
to leverage those and other properties to assist in the development of SPNs.

4.1 Language Deviation

4.1.1 Events

SPNs use the concept of input and output events. PNPs [201] have a similar concept to
input events in the form of ordinary actions and sensing actions. As shown in Figure 4.1,
these are modeled with transitions having events describing the start and termination of the
action. Ordinary actions model deterministic actions with an input place pi, start event ts,
execution state pe, termination event te, and output place po. Sensing actions model non-
deterministic actions where the outcome is unknown until execution time; actions where the

(a) Ordinary action (b) Sensing action

Figure 4.1: PNP actions taken from [201]
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(a) An SPN with events (b) The PNP style equivalent

Figure 4.2: Moving SPN events to only use transitions

outcome is unknown even at execution time are outside the scope of the language. Sensing
actions consist of an input place pi, start event ts, execution state pe, and a number of
pairs of termination events {tet, tef} and output places {pot, pof}. For sequential actions, the
output place po of the first action can be merged with the input place pi of the second action,
reducing the overall size of the graph.

In SPNs, we further reduce graph size by merging pi, ts, and pe into a single place, with
the output event acting as both the start event and execution state. Each possible input
event result for a given output event or interrupting input event are then placed on outgoing
transitions tie which are analogous to termination events te. As shown in Figure 4.2, this
merging can reduce SPN sizes by nearly half, but results in additional complexity in other
aspects of the language. If we want to create a PNP equivalent to a SPN, we would begin
by reversing this expansion.

4.1.2 Color Sets

In traditional CPNs, each place has an associated color: for any marking, each token in a
place must be of that place’s color. In SPNs, we have 3 token colors which increases repre-
sentational power: Generic, Proxy, and Task. Figure 4.1.2 defines a color for each of these
token types following the CPN Tools [93, 159] syntax. Knowing which type of token will
be used for a given set of events and markup is difficult as some events can use multiple
types and markup can further modify which types can be used. For example, the “Goto
Location” output event could be activated by a proxy token or a task token. Furthermore,
a place with a “Operator Approve” output event could be activated with a generic token,
but if “Relevant Proxy” markup is added, then the place would need to be activated with
proxy or task tokens to make use of the markup. As a result, we treat each token and
assign each place’s color to Task token, as both Generic token and Proxy token are subsets
of Task token. Arc expressions can be used to differentiate between these token types to
conform to edge requirement rules given the following implementation rules:
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• Generic tokens: P id == T id == Undefined id == 0

• Proxy tokens: P id > 0 and T id == Undefined id == 0

• Task tokens: T id > 0

Declarations:

color P id = int;

color T id = int;

color T class = string;

color Generic token = φ;
color Proxy token = product P id;

color Task token = product P id * T id * T class;

var Undefined id = 0;

Figure 4.3: Color declarations for SPN token types

4.1.3 Out Edge Requirement Actions

Edge requirements in SPNs have substantial differences from standard PNs resulting from
the use of output events to model both the initiation and ongoing execution of an action.
Consider a scenario where the battery drops below a threshold, resulting in a “Low Battery”
input event being generated. Depending on the context of different parts of the SPN, each
place may handle the event differently or ignore it. Sections near end states may ignore
the warning, while other sections may want to perform additional computation before de-
ciding whether to substitute another robot. In the latter case, we would want the robot
to continue its current responsibilities while events on other places and transitions do the
required computation and selection. These computations will likely require use of the robot
or task’s token and, in a traditional PN structure, would require moving the token out of
the current place to the new place which marks the beginning of the computation section,
pc. In a PNP, to prevent interrupting the action being executed in pe, we would need to loop
a token back to the place in addition to adding it to pc. In a SPN model with the combined
states, this would result in entering poe again, which would trigger both the initialization and
execution of the action and not just the execution action. To address this while maintaining
the benefits of the smaller PN using the merged poe places, the following modifications to
edge requirement behavior were introduced.

For a PN, in edge requirements list tokens that must be present in the connected place for
the connected transition to fire. If an enabled transition fires, the listed tokens are removed
from the associated place. In an SPN, when an enabled transition fires, the listed tokens are
not removed.
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(a) An SPN consuming a required token (b) The PN equivalent

Figure 4.4: Conversion of “Consume” out edges in an SPN

For a PN, out edge requirements list tokens that should be added to the connected place
when the connected transition fires. In a SPN, when an enabled transition fires, out edge
requirements can choose from 3 different actions that can be taken for the listed tokens:
consume, add, or take. We will now investigate how to translate this behavior to that of a
standard CPN.

Consuming Tokens

For Consume out edge requirements, the SPN manager attempts to remove the listed tokens
from all the connected transitions’s incoming places. When the listed tokens are also the
listed tokens for the in edge, this can easily be translated to a PN, as shown in Figure 4.4.
However, if the tokens are not also specified in an in edge, no standard CPN equivalent can
be constructed. There are two ways the marking of the SPN in Figure 4.5a could change
when the transition fires. If P1 has both a Generic and Robot token, both will be removed
from P1 and the Robot token will be added to P2. If P1 has a Generic token but no
Robot tokens, the Generic token will be removed from P1. This cannot be modeled using
a separate transition for each of these results, because there is no guarantee that when a
Generic and Robot token are present that the first transition will fire, as both transitions
would be enabled. This would require the concept of transition priority, where a transition
cannot fire if a transition with higher priority is enabled. One method for enforcing priority
is via inhibitor arcs, an extension to Petri Net which allow in edges inhibit a transition from
firing if the connected place has any tokens. Figure 4.5 shows a CPN equivalent of the SPN
using an inhibitor arc.

Adding Tokens

For Add out edge requirements, the SPN manager adds the listed tokens to the connected
place places, as in a typical CPN. However, to convert an SPN “add” out edge to a CPN,
additional out edges would be needed to add tokens to the transition’s incoming place, as
the SPN in edge did not remove them. Figure 4.6 shows a SPN using generic tokens and a
CPN equivalent.
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(a) An SPN with more out edge requirements
than in edge requirements (b) The CPN equivalent

Figure 4.5: Conversion of “Consume” out edges in an SPN

(a) An SPN adding a required token (b) The PN equivalent

Figure 4.6: Conversion of “Add” out edges in an SPN

(a) An SPN with events and edge
requirements (b) The CPN equivalent

Figure 4.7: Conversion of an SPN with events and edge requirements
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(a) An SPN taking a required token (b) The PN equivalent

Figure 4.8: Conversion of “Take” out edges in an SPN

Taking Tokens

For Take out edge requirements, the engine attempts to remove the listed tokens from all the
connected transitions’s incoming places and add the listed tokens to the connected place. It
is equivalent to the combined effects of a Consume and Add out edge requirement for the
listed tokens. When the listed tokens are also the listed tokens for the in edge, this can easily
be translated to a PN, as shown in Figure 4.8. When there they are not listed in the in edge
requirements, a concept of priority must be used similar to Figure 4.5.

4.1.4 In Edge Requirement Quantity

In standard PN and CPNs, in edge requirements specify the minimum quantity of a token
necessary for the connected transition to be enabled. This corresponds to the Greater Than
or Equal To “≥” quantity in SPNs. However, in many scenarios this is not sufficient to
captured desired behavior, in particular when the robot team size varies or tasks are created
dynamically in the plan. For example, consider a scenario where a group of robots is selected
by the operator to execute a formation path. After the entire formation has reached the
destination, another action should be taken. If the size of the group is known, we know
the number of tokens that should have been moved once the entire formation has finished
and could add edge requirements accordingly. When the group size is unknown, this is
not possible. In another scenario, the operator may provide a list of locations, and a task is
created for each one. Barring complications, the SPN should not terminate until all tasks are
completed. If the number of tasks created was known, tasks could be moved into a common
place upon completion and the number of tasks could be used by an edge requirement for
the transition to an end place. When the number of tasks is unknown, this is not possible.
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Less Than

To address this limitation, SPN in edge requirements can instead specify the maximum
quantity of a token for the connected transition to be enabled using the “Less Than” quantity.
Specifying “Less Than 1” for a type of token prevents the connected transition from firing
if any tokens of that type are present in the connected place. This is equivalent to the zero
testing inhibitor arc extension to PN and CPNs. A “Less Than” requirement with quantity
larger than 1 is equivalent to a threshold testing inhibitor arc.

Relevant Tokens

As individual or sets of tokens enter places, they activate the output events attached to the
place. These output events in turn send commands to team members, such as the operator,
robots, or AI services. These team members in turn return input events as they complete the
received commands. The tokens that should be moved as a result of the input event varies
depending on the event. For instance, plans may commonly use the operator to choose a
subset of the robot team for a particular goal or recovery action. This is achieved using the
output event “→Operator Select Robots” and input event “←Operator Selected Robots”.
When the operator makes their selection and the “←Operator Selected Robots” is generated,
only the tokens corresponding to the selected robots should be moved into the next place.
The other tokens should remain in the original place. In another scenario, a set of sensor
measuring tasks has been created. When a robot is assigned the task, the SPN directs it to
move to its associated location and afterwards perform an action, such as recording a sensor
measurement. This movement is achieved with the output event “→Proxy Execute Path”
and input event “←Proxy Path Completed”. When the SPN executes, it is possible multiple
robots will be moving to their assigned task’s location simultaneously. When a robot reaches
its task’s location, it generates a “←Proxy Path Completed”. A mechanism is needed so
that only the token representing that robot’s task is moved when the transition fires.

In a SPN, the tokens to be moved in these examples can be referred to as “relevant tokens”
in edge requirements. In a CPN, this concept could be represented by using multiset arc
inscriptions to capture the number of relevant tokens and adding guard to the transition
limiting token movement to a generic token or specific proxy or task tokens.

All Tokens

In other circumstances with a dynamic number of robots or tasks, the plan may require
a transition to move all of the corresponding tokens. For example, when a set of tasks
are dynamically created, the SPN developer may want to display some information on the
GUI before beginning task execution. If the developer wishes to move the task tokens
through the place(s) and transition(s) used to display this information using a list of tokens,
this would require knowing the number of tasks ahead of time. To address this, out edge
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requirements can specify that “All” tokens of a particular type present in the incoming
place(s) be consumed, added, or taken. The “All” expression can be translated to a CPN
multiset arc expression, and the type of token moved can be controlled by using guards on
the transition, similar to Relevant Tokens handling.

4.1.5 Sub-missions

Sub-missions provide a simple mechanism to reuse common sequences of actions and com-
partmentalize sections of SPNs. A root mission may have any number of sub-missions, and
sub-missions may have sub-missions of their own. While sub-missions do not add represen-
tational power, they can speed up development and increase readability. When a parent
SPN spawns a sub-mission, the sub-mission behaves like a root mission with the following
exceptions:
• Sub-missions may have a different initial marking than if it was spawned as a root

mission

• Sub-missions have additional variable namespaces to consider (all parent mission names-
paces)

• Parent SPNs can generate events for their sub-missions; for instance, if a parent mission
is aborted, it will generate abort input events for its sub-missions

For the parent SPN, sub-missions can have the following effects:
• Sub-mission completion is required for a transition to be enabled

• Sub-mission tokens can be added via an out edge requirement if the connected transi-
tion has any in places which have a sub-mission

Sub-missions can be represented in a PNP format in a similar fashion as output and input
events (Section 4.1.1), with transitions for the start sub-mission event and a sub-mission
termination event. In SPNs where sub-mission tokens are added into the parent mission via
an out edge requirement, a CPN equivalent can be constructed using arc expressions and
guards, similar to Relevant Tokens handling.

4.2 Behavioral Analysis

4.2.1 Reachability Graphs

One of the advantages of using a PN model is the ability to analyze several behavioral
properties [28, 158, 28, 53] to find syntax and semantic errors in a developed plan.

Reachability graphs are one method for performing this analysis [46, 192, 7]. These
graphs take an initial marking M0 and construct the resulting state space of the PN by iter-
atively expanding enabled transitions. Each node in the graph represents a unique marking
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which may be reached by more than one firing sequence. Each edge in the graph represents
the enabled transition which has been selected to fire. One limitation to this approach is
Petri Nets with unbounded places: places which may have an infinite number of tokens as
the result of some firing sequence. This occurs when the following are true:

∃ sequence |Ma
sequence−−−−−→Mb

Mb ≥Ma ⇐⇒ ∀p ∈ P, Mb(p) ≥Ma(p)
∃ punbounded ∈ P |Mb(p) > Ma(p)

This sequence can trigger an infinite number of times, generating a unique marking each
time, which would thus require an infinitely large reachability graph. Support for unbounded
places is added in coverability graphs.

4.2.2 Coverability Graphs

Coverability graphs [161] address this problem by identifying these infinite firing sequences
and using ω to represent unbounded quantities in a node. For every marking M ′′ 6= M ′ on
a path from the initial marking M0 to M ′ , if M ′ ≥M ′′, then M ′(p) is set to ω for all p ∈ P
with M ′(p) > M ′′(p). Note that, if there are no unbounded places, the reachability graph
and coverability graph are identical.

Inhibitor Arcs

An important property of Petri Nets is monotonicity, which guarantees that adding tokens
to a marking will not decrease the number of enabled transitions. Given a PN with markings
Ma and Mb, we formally define this property as follows:

Ma ≥Mb ⇒ ∀t ∈ T | enabled(Mb, t)⇒ enabled(Ma, t)

Petri nets with inhibitor arcs, or PTI nets, complicate behavioral analysis as they violate
this property [27]. Monotonicity is an important property for collapsing the state space in the
reachability graph, as unbounded places can be simplified to a single coverability graph node
using omega. However, in recent work Reinhardt [160] provides a method for determining
reachability for PTI nets with a single inhibitor arc. Van de Nes [188] provides a method
for constructing a coverability graph for PTI nets with a single inhibitor arc. Methods for
constructing graphs for nets with multiple inhibitor arcs are explored, but require some
knowledge of the boundedness of the inhibitor place. Fortunately, in practice SPNs typically
use only a single inhibitor arc in order to trigger the termination of a plan with a dynamic
number of tasks. For scenarios in which multiple inhibitor arcs are needed, they will likely be
bound by the team size or number of generated tasks: in this case, analysis may be possible
for “supported” team and task pool sizes.
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4.3 Graph Based Assistants

If a reachability or coverability graph can be constructed, properties of the graph can be
used to create syntax and semantic tools, referred to as “Assistants.”

4.3.1 Reachability

Given a reachability or coverability graph for a PN, a marking Mb is reachable from marking
Ma if there exists a path in the reachability graph from Ma to Mb. This is particularly useful
to see if goal markings are possible from the initial marking M0. Conversely, it can be used
to test that no path exists between two states.

4.3.2 Boundedness

A place is called k-bounded if it does not contain more than k tokens in any reachable
marking, including the initial marking. Petri nets in which all places have a k-boundedness
of 1 are referred to as being safe. For a PN with a finite reachability graph, it can be called
k-bounded if all of its places are k-bounded. Unbounded PNs have at least one unbounded
place.

As SPNs use tokens to represent team members and tasks, there are many situations
where safeness would be violated due to expected behavior. Instead, the desired boundedness
may instead be the size of the team or number of tasks. Analyzing boundedness for a given
team or task size could identify syntax causing unnecessary duplication of tokens which could
result in unexpected behavior or difficulty understanding the state of the team at runtime.

4.3.3 Other Assistants

Several other assistants can be used without a reachability or coverability graph. However,
some of these assistants require “meta-knowledge” about events. For output events, this
knowledge consists of the types of tokens it uses (e.g. generic, proxy, task, and/or relevant
tokens) and the input events it can generate. For input events, the knowledge captures the
types of tokens it acts on and the types of tokens it produces.

Start and End Places

This assistant checks that the root of the coverability graph is a start place and that it is
the only start place in the SPN. In addition, it checks that there is at least one end place
in the SPN and provides a warning otherwise. If any end place exists as a non-leaf in the
graph, an error is generated.
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Events

Given meta-knowledge of events, errors are generated if, for an input event on a transition,
there is no incoming place with an output event which can generate that input event. Con-
versely, an warning is generated if, for an output event on a place, there is no outgoing
transition containing that input event.

Token Requirements

Edges without edge requirements are immediately flagged as an errors. Given meta-knowledge,
errors are also generated if, for an output event, no incoming transition’s out edge require-
ment would provide a useable token type. Similarly, warnings are generated if a transition’s
in edge requirements or out edge requirements do not act on token types relevant to its input
event(s).

4.3.4 Summary

In this chapter we discussed properties of the SPN language which could be used to assist
in team plan development. The developed graph based assistants required special properties
of SPNs to be mapped back to CPN extensions, allowing standard analytical properties to
be used. Non-graph based assistants provide additional assistance based on syntax rules of
the language and meta knowledge of the events used in the domain.

The focus during language development was making SPNs as user friendly as possible,
not to preserve analytical properties. Depending on the target demographic’s background,
the balance between initial complexity and increased analytical power could be shifted.
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Chapter 5

GUI

In this chapter we will present an IDE for designing SPNs and SAMI compatible operator
interfaces.

5.1 DREAMM IDE

Figure 5.1 shows the developed Integrated Development Environment (IDE) for SPNs, named
DREAMM. 1

Mission Tree

The Mission Tree on the left side of the GUI shows the list of SPNs and sub-missions in
the loaded project file. Users can reorder, rename, delete, and clone SPNs via this panel or
select the mission that is shown in the Mission Model View.

Mission Model View

The Mission Model View in the center of the GUI is used to view and edit the selected SPN.
Developers can use the mouse to reposition or delete individual or groups of vertices and
mouse menus to make changes to a vertex’s label, events, and markup.

For plans with several contingencies and interrupts, the large number of edges can make
it difficult to gauge connectivity. Specifically, it complicates viewing the incoming places for
a transition which would trigger a contingency or interrupt. To address this, two different
visualization modes were created - nominal and recovery. Nominal mode shows all of the
details of the SPN, as seen in Figure 5.2a. Recovery mode shows only the silhouette of the
graph’s vertices, hiding all text and all labels as shown in Figure 5.2b. If a vertex or edge

1Other collaborators in DREAMM development included Athena Johnson, Dan Bernstein, and Richard
Johnson
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is created while in recovery mode, it is referred to as a recovery vertex or edge. Recovery
vertices and edges are hidden when the IDE is in nominal mode, but are otherwise identical
to vertices and edges created in nominal mode. When a vertex is selected while in recovery
mode, a subset of the graph is fully displayed, showing the selected vertex’s connections
to other nominal and recovery vertices. This allows the developer to quickly check which
sections of a plan a particular contingency or interrupt covers and how it could affect SPN
execution. Figure 5.2c shows the result of selecting a transition while in recovery mode which
has one incoming place and one outgoing place. Figure 5.2d shows the result of selecting a
recovery transition while in recovery mode which is connected to every place in the SPN.

Figure 5.3 shows the event editor window used to edit settings and variables used by
events on a vertex. The left third of the frame contains a text searchable list of available
events. The middle third of the frame shows the current events on the vertex with options
to delete them or reset their settings. The right third of the frame shows the variable
specification and definition options for the event selected in the middle frame.

Toolset Palette

The Toolset Palette on the right side of the GUI allows developers to locate specific events and
sub-missions which can then be dragged and dropped to be added into the SPN. Dropping
onto an existing place or transition will add the element to it (if syntactically allowed) and
dropping onto a blank space creates the appropriate place or transition and adds the element
to it.

Mission Issues View

The Mission Issues View in the bottom center of the GUI displays any errors or warnings
that have been detected. The bottom right of the Mission Model View displays the number
of each of these for quick reference. Errors are illegal or missing syntax which will prevent
the SPN from being executed. Warnings do not prevent a SPN from executing, but may
result in undesired behavior. Chapter 4 discusses the SPN properties which are used for this
process. Each entry in the table has a text summary of the problem and possible solution.
When an entry is selected, any places, transitions, or edges associated with the entry are
highlighted in the Mission Model View.

5.1.1 Event Wizard

Developing plans in DREAMM can require performing many repetitive actions to add in
simple, predictable functionality. For instance, after dropping “ProxyStartTimer” from the
Toolset Palette, “ProxyTimerExpired” is dropped, a second place is created, and edges and
edge requirements are added to them. To reduce these repetitive actions, an “Event Wizard”
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(a) Nominal mode

(b) Recovery mode, no vertex selected
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(c) Recovery mode, vertex selected

(d) Recovery mode, vertex selected

Figure 5.2: Using the recovery visualization mode in DREAMM
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Figure 5.3: Modifying variable for an output event

was created which could take a representation of a sequence of actions to be performed after
dropping an event and automate its execution. Also developed was an edge requirement
computation algorithm, which would assist in adjusting edge requirements in the overall
plan as events were added.

Sequence representations were divided into two categories: flexible and manual.
A flexible sequence for an output event defines a list of input events that should lead

out of the dropped event and the types of tokens (none, proxy, or task) the event needs to
execute. For example, ProxyStartTimer would have an input event list containing Proxy-
TimerExpired and would require a proxy token to be used. For each input event listed, a
new transition leading out of the output event’s place is created and the input event is added
to the transition.

A flexible sequence for an input event defines a list of output events that should lead
out of the dropped event and the minimum in edge requirements and out edge requirements
necessary for the event to perform as expected. For example, ProxyTimerExpired would
have an empty output event list and require an “All Relevant Tokens” in edge requirement
and a ”Take All Relevant Tokens” out edge requirement.

A manual sequences for an event explicitly defines all the vertices, events, edges, and edge
requirements, which are then instantiated in the SPN. Manual sequences are used when a
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flexible sequence cannot capture necessary requirements. For example, a flexible sequence
cannot specify that tokens should be removed from a place as an input event occurs and
that a transition connected to a second place should be enabled when the first is empty.
Importantly, the edge requirement computation algorithm cannot modify edges created by
a manual sequence.

If an event is dropped and there is no flexible or manual sequence for it, it is added to
the SPN and the requirement computation algorithm is triggered. The algorithm assumes
that event does not require any tokens to operate.

Edge Requirement Computation

Each time an event is added or deleted from the SPN by the developer or wizard, a edge re-
quirement computation algorithm attempts to update edge requirements as needed. Consider
the following example: A developer starts a new SPN by dropping a “SystemStartTimer”
output event. It has a flexible sequence definition listing the “SystemTimerExpired” input
event and not requiring any specific tokens. “SystemTimerExpired” has a flexible definition
listing no output events and listing no in or out edge requirements. As no specific tokens are
required, the computation results in using a generic token to activate “SystemStartTimer”
and “SystemTimerExpired” is given the in and out edge requirements “≥ 1 Generic” and
“Take 1 Generic,” respectively.

Next, the developer drops a “OperatorSelectRobot” output event onto the outgoing place
created for the “SystemTimerExpired” transition. “OperatorSelectRobot” has a flexible def-
inition listing the “OperatorSelectedRobot” input event and requiring proxy tokens. “Oper-
atorSelectedRobot” has a flexible definition listing no output events and listing “All Relevant
Tokens” as a in edge requirement and “Take All Relevant Tokens” as an out edge require-
ment. These edge requirements are added, as well as a “≥ 1 Generic” and “Take 1 Generic,”
so that the generic token is moved forward through the plan. Additionally, to ensure the
proxy token requirement for “OperatorSelectRobot” is fulfilled, “Take All Proxy” is added
as an out edge requirement for “SystemTimerExpired.”

5.2 GUI

In this section we present two GUIs designed for different domains which are compatible
with SAMI markup. Figure 5.4 shows the architecture of the execution software, separated
by various knowledge requirements.

5.2.1 CRW GUI

Figure 5.5 shows the GUI designed for the Cooperative Robotic Watercraft (CRW) project.
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Figure 5.4: SAMI system architecture design
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Mission Monitor

SPNs are invoked and monitored in the top-right section of the GUI, using the same SPN
visualization format SPN developers are familiar with.

The left third of this GUI is used to display information using the Message Frame,
Communication Frame, Interrupt Frame, Allocation Frame, and Map Frame.

Message Frame

The message frame handles text based information sent to the operator by SPNs.

Communication Frame

The communication frame provides a summary of the status of each team-member, using
color coding and text as necessary by SPN markup.

Interrupt Frame

The interrupt frame is used by the operator to trigger interruptions in the currently running
SPNS.

Map Frame

The map frame shows a map, the team members, and their currently executing action. If
necessary, the operator can manually manipulate which sensor overlays are shown. The map
frame also contains buttons for activating low-level control of a robot, including teleoperation,
which overrides commands sent by SPNs in the event of dangerous, unexpected behavior.
The decision queue in the bottom-right section of the GUI handles all SPN interactions with
the operator. Rather than manipulating the components on the left third of the GUI to
present text options or request definitions on the map, Algorithm 4 is used to construct a
component for each interaction. As SPNs generate interactions, they are added to a priority
queue, using Priority markup on interactions to sort the queue. The top interaction in the
queue is then shown in the bottom-right of the GUI. In Figure 5.5 the only interaction in
the queue is specifying the area for a team of boats to map.

5.2.2 AIMS GUI

Figure 5.6 shows the GUI designed for Adaptive Interface Management System for Netcentric
Supervisory Control of Multiple UAVs (AIMS). 2 The components on the left border of the

2Other collaborators in AIMS GUI development included Athena Johnson, Dan Bernstein, and Richard
Johnson
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GUI are used to summarize the status of assets in the team and show the most relevant
video feed.

The top-right component is a map used for visualizing, selecting, and creating geographic
information.

The bottom-right component is a message box similar to the message frame in the CRW
GUI.

The bottom-center component is the mission manager, which has 4 tabs: Plan, Gantt,
Detect, and Decisions. The Plan tab allows the operator to view descriptions of available
SPNs and start instances. The Gantt tab shows a Gantt chart inspired visualization for each
running SPN called the phase chart, which is discussed in more detail below. The Detect
tab, analogous to the interrupt frame in the CRW GUI, is used to trigger interrupt behavior
in SPNs. The Decision tab is similar to the decision queue in the CRW GUI and shows
the top decision in the priority queue. However, instead of creating a new map component
for geographic decisions, it modifies the existing map. In Figure 5.6, the current decision is
approving paths for a set of UAVs.

5.2.3 Phase Chart

The Phase Chart was designed to provide the information shown in the SPN visualization,
but in a format understandable to operators with limited exposure to Petri Nets. Figure 5.7
shows the phase chart for a SPN describing a search operation, which has been divided into
three sections, or phases : getting locations of interest from the operator, assigning search
tasks at these locations to team members, and performing the search tasks. The first row
of the chart contains sequentially ordered buttons for each “phase”. Clicking one of these
buttons displays the sequence of actions which take place in that phase of the SPN in the
subsequent rows. In Figure 5.7, the “Task assignment” phase has been selected and its
actions are displayed. Each of the subsequent rows corresponds to a team member, such as
the operator, the SAMI engine, or a UAV. Actions are placed in the row corresponding to
the team member responsible for executing it. Each teal box represents an action in that
phase which has not yet been executed. When an action is executed, the box changes from
teal to green. Operators can preview future branches in the plan by clicking on the different
branching actions and the chart will update to reflect the effects of that branching action. In
Figure 5.7, the effects of the “Yes” branching option for the “Operator Chooses Allocation”
is being previewed. The purple box indicates the end of the current phase and contains the
name of the phase SPN execution will continue in. In Figure 5.7, the purple box indicates
that the “Task assignment” phase has no more actions and that future actions continue in
the “Task execution” phase.

The chart is built when a SPN is started by searching through it for two types of markup:
Phase Item and Phase Branch. By incorporating the phase structure into the SPN using
markup, we can use all the SPN’s knowledge about sequential and parallel properties of
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actions when building the chart.
Adding PhaseItem markup on an event indicates that an action box should be added

to the phase chart for the associated place or transition. Phase item markup contains two
pieces of information: the name of the phase it belongs to and the team member responsible
for it. The phase name is used to determine which phase the action box should be added
to. The responsible team member determines which row the action box is placed in. Team
member options include operator, SAMI, Proxy, and user-named tasks.

Adding PhaseBranch markup on an event indicates that a branching option should be
added to the previous PhaseItem action box in the phase chart. This adds a node as de-
scribed in PhaseItem and also adds a button onto the node for the nearest PhaseItem (going
backwards in the SPNs connectivity graph). Phase Branch markup requires the same in-
formation as Phase Item plus a short description of the choice which would lead to this
branch’s execution. This text is used to label the button added to the action box for this
branch option.

In the following examples, we copy the information specified in a phase related markup
into the place or transition’s label. If the place or transition has Phase Item markup, the
label will have two sets of brackets: the first set of brackets contains the Phase name and
the second set the Actor responsible. If the place or transition has Phase Branch markup,
the label will have a third set of brackets containing the Action name. Figure 5.8 shows the
SPN section and resulting phase chart for the “Get locations” phase of the plan. Figure 5.9
shows the SPN section and resulting phase chart for the “Task assignment” phase of the
plan. Figure 5.10 shows the SPN section and resulting phase chart for the “Task execution”
phase of the plan.

5.2.4 Component Construction

Components and widgets
To increase code reusability, UI elements are often separated into components and widgets.
Components are stand alone components, such as maps and text boxes. Each component has
a set of widgets, which are optionally added to an instance of a component to add additional
complexity, such as a map layer showing planned paths for robots. Widgets may reduce
the operator’s context switching time for certain scenarios by compactly presenting certain
types of information, but may increase it in others when that information is unnecessary
and the widget obfuscates important information. Requiring operators to manually adjust
component and widget settings as needed is also time consuming. To address this, many
UIs have rules where widgets are activated, deactivated, or modified as the operator enters
different modes of operation. For instance, when teleoperating a robot, additional video feeds
for the robot may be shown or enlarged. Markup allows developers to take this further,
by specifying contextual information which affects the ideal configuration. One way to
provide this ideal configuration is to specify a configuration of components and widgets
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Figure 5.7: Phase markup for UAV search plan

for every combination of interaction data type and markup set. However, this becomes
increasingly difficult as the numbers of interaction types and markup options grow, resulting
in exponential growth for hand-coded UI component and widget configurations and clear
motivation for automating this process [67, 102]. We address this problem by dynamically
creating and modifying UI components to conform to the requirements of an interaction’s
data types and markup.

Component capabilities
We divide operator interactions in SPNs into two categories, creation and selection deci-
sions. Creation decisions are those in which some sort of definition must be provided by the
operator, such as a point of interest. Selection decisions are those in which information is
presented to the operator and may require the operator to make a choice, such as selecting
from a set of path planning solutions for a robot. Displaying information is considered a
subset of selection decisions, where no actual selection needs to be made.

We refer to markup compatible components and widgets as markup components and
markup widgets. Each of these has several data structures capturing what data types they
can be used to create or select as well as what markup options they support. Using this
knowledge, we can automatically construct the minimum set of UI components and widgets
necessary to create or select information of a certain data type and markup set. For existing
components, we can modify widget usage to use the minimum set necessary for a particular
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Figure 5.8: “Get locations” SPN section and phase chart
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Figure 5.10: “Task execution” SPN section and phase chart
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decision. This functionality enables increased reuse of code within a database and could
allow for simpler integration of UI research from external sources [41, 178, 175].

Dynamically constructing components also provides benefits when using custom data
classes. As SPN functionality expands, often custom data classes are required to capture a
set of information composed of existing data classes. Traditionally, new components would
have to be constructed for each of these custom data classes, though the new component
may simply be a list of the existing components for each sub-class. We can automate this
by recursing into data types and attempting to find a set of components that collectively
represent a data type when no single component can.

Each markup component and widget defines the following lists:
SCC (List<Class> singleCreationClasses): This can be used to create an single instance of
these classes
SSC List<Class> singleSelectionClasses): This can be used to select from/show a single
instance of these classes
MCC (List<Class> multiCreationClasses): This can be used to create a list of instances of
these classes
MSC (List<Class> multiSelectionClasses): This can be used to select from/show a list of
instances of these classes
HCC (Hashtable<Class, List<Class>> hashtableCreationClasses): This can be used to
create a list of table entries for these class pairs
HSC (Hashtable<Class, List<Class>> hashtableSelectionClasses): This can be used to se-
lect from/show a list of table entries for these class pairs
MO (List<Enum> markupOptions): This can be used to interpret these markup options

In addition, markup components define the following:
WC (List<Class> widgetClasses): Markup widget classes which can be attached to this
component class

This automation is achieved in two parts: scoring and construction. Scoring determines
if creating a component that captures the full scope of the decision is possible and, if so,
to what degree the component will support the specified markup. Construction uses the
scoring to create or modify the instances of the components and widgets.

Algorithm 4 is the overall scoring algorithm. For each quantity case, it initially uses
Algorithm 5 to try to find a single component and widget set for the decision. If this is
unsuccessful, the next action varies based on the quantity. In the single quantity instance,
it attempts to recursively find a collection of components which capture the decision using
Algorithm 6. In the case of a multiple quantity, such as a list of a class, the algorithm
searches for a component which supports a single quantity of the class. This component
can be cloned as many times as necessary to show definitions (in the case of selection) or
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create definitions (in the case of creation). If this fails, then recursion is used for find a set
of components which can show a single definition, which is similarly cloned as many times
as necessary. In the case of a hashtable quantity, the algorithm searches for a component
for the hashtable key’s class and another component for the hashtable value’s class. If this
fails for either/both class(es), it recursively searches for a combination of components for
the failed class(es). The returned value is -1 if no collection of components can capture the
interaction’s data type.

Algorithm 5 uses the data structures mentioned above to try and find a single component
and widget set which captures the data structure and maximizes markup support. To pre-
serve space and clarity, only a single case is handled. Other cases follow the same pattern,
but use the corresponding list. If a component or one of its widgets supports the data type,
then the component’s score is set to 0. The score is incremented for each markup option
which the component or one of its widgets supports, with the max score possible equal to
the size of the markup list. The best score keeps track of which component supports the
data type and supports the most markup options. If none of the components and widgets
support the data type, the returned value is -1.

Algorithm 6 is invoked by Algorithm 4 when Algorithm 5 fails to find a single component
to represent a data structure. This algorithm breaks down the provided class, or key and
value classes, into a list of their subclass (line 5). Algorithm 5 is then used to find a
component for each of these subclasses. If that is not possible, the algorithm recurses into
that subclass until either a supporting component is found or a recursion limit is reached. If
the recursive search for a component reaches the recursion limit at any point, the algorithm
returns -1 to signal no combination of components could collectively represent the original
class.

To increase clarity, components of Algorithms 4, 5, and 6 were omitted which keep track
of which components and widget classes returned the best score (if a score greater than -1
was found). These lists are used to construct or modify the component used by the UI. If no
component with score greater than -1 exists, a text component with a warning messaged is
used to alert the operator of the deficiency. In practice, if components have been created for
all primitive classes, this warning only appears when the recursion limit is small or when an
unrecognized class contains itself as a subclass (for instance, a linked list of an unrecognized
class).

5.3 Meta-markup

One concern when using situational awareness markup is that an marked up event could
occur with high frequency and could result in a decrease in operator situational awareness.
This could be the result of the SPN developer and SPN field operator having limited com-
munication during the plan’s initial design.
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Algorithm 4 Produces a component meeting certain requirements

Input: Enum type, Enum quantity, Class keyClass, Class valueClass
Output: Object component

1: procedure Construct Component Score
2: score = -1
3: switch quantity do
4: case SINGLE
5: score = GetDirectScore(type, quantity, NULL, valueClass)
6: if score == -1 then
7: score = GetRecursiveScore(type, quantity, NULL, valueClass, score, 3)
8: end if
9: case MULTI

10: score = GetDirectScore(type, quantity, NULL, valueClass)
11: if score == -1 then
12: score = GetDirectScore(SINGLE, quantity, NULL, valueClass)
13: if score == -1 then
14: score = GetRecursiveScore(SINGLE, quantity, NULL, valueClass,

score, 3)
15: end if
16: end if
17: case HASHTABLE
18: score = GetDirectScore(type, quantity, keyClass, valueClass)
19: if score == -1 then
20: keyScore = GetDirectScore(SINGLE, quantity, NULL, keyClass)
21: if keyScore == -1 OR valueScore == -1 then
22: keyScore = GetRecursiveScore(SINGLE, quantity, NULL, keyClass,

score, 3)
23: end if
24: valueScore = GetDirectScore(SINGLE, quantity, NULL, valueClass)
25: if valueScore == -1 OR valueScore == -1 then
26: valueScore = GetRecursiveScore(SINGLE, quantity, NULL, valueClass,

score, 3)
27: end if
28: score = min(keyScore, valueScore)
29: end if
30: return score
31: end procedure
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Algorithm 5 Direct score

1: procedure Get Direct Score(Enum quantity, Class targetKeyClass, Class target-
ValueClass, List<Markup> markups)

2: bestScore = -1
3: for markupComponent do
4: score = -1
5: switch type do
6: case SELECTION
7: switch quantity do
8: case SINGLE
9: if targetValueClass ∈ SSC then

10: score = 0
11: else
12: for markupWidget do
13: if targetValueClass ∈ markupWidget.SSC then
14: score = 0
15: end if
16: end for
17: end if
18: if score == 0 then
19: for markupOption do
20: if markupOption ∈ MO then
21: score++
22: else
23: for markupWidget do
24: if markupOption ∈ markupWidget.MO then
25: score++
26: end if
27: end for
28: end if
29: end for
30: end if
31: case MULTI
32: ...
33: case HASHTABLE
34: ...
35: case CREATION
36: ...
37: bestScore = max(bestScore, score)
38: end for
39: return bestScore
40: end procedure 65



Algorithm 6 Recursive score

1: procedure Get Recursive Score(Enum type, Class targetClass, List<Markup>
markups, int recursionLimit)

2: if recursionLimit <= 0 then
3: return -1
4: end if
5: subClasses = targetClass.subClasses
6: if subClasses.size == 0 then
7: return -1
8: end if
9: minScore = 0

10: for subClass do
11: score = GetDirectScore(type, SINGLE, NULL, subClass, markups)
12: if score == -1 then
13: score = GetRecursiveScore(type, SINGLE, NULL, subClass, markups,

recursionLimit-1)
14: end if
15: minScore = min(maxScore, score)
16: end for
17: end procedure
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In one motivating plan, a SPN gets a list of locations from the operator, then requests
temperature measurements be taken at each of those points. The input event corresponding
to the completion of a measurement is marked up with ”Relevant Area” and ”Relevant
Information” to include the location in the current view and show the visualization for
that data type. In this scenario, the developer of the plan believes the measurements will be
spaced far apart and the map manipulations will thus occur infrequently. If the measurements
are nearby, then the map will be moved around frequently, increasing cognitive load on the
operator.

In a second motivating plan, a SPN has several Display Message output events which are
handled by the Message Frame. The developer may not be aware that events are triggered
frequently in a particular deployment location, causing many messages to be displayed. Given
the high frequency of arriving messages, the Message Frame may be constantly adding and
rearranging messages, requiring great effort for the operator to read the messages.

To address these problems in a manner that preserves our ability to be context-aware,
we create a new markup which provides guidance to the GUI on how to handle displaying
repeated activation/receipt of an output/input event. This abstract markup can then be
interpreted by the rules designed by the GUI’s designer. Consider scenario 1: a GUI designed
for several monitors with a dedicated map for sensor readings and a dedicated map for making
decisions may not have a problem when measurements arrive frequently. In scenario 2, the
size of the text message display in the GUI will be tightly related to the cognitive load from
frequent messages, with larger monitors being able to handle more messages.

We created two new markup items to address these concerns:
Manipulation Frequency: Instructs the GUI that it can suppress manipulation of a com-
ponent if it has already manipulated it recently.
• Suppress - Discard the event’s message if it has already sent a message within a

cooldown period determined by the GUI designer
• Timed Batch - Delay adding the event’s message until a cooldown period determined

by the GUI designer expires
Manipulation Component: Instructs the GUI that it can suppress manipulation of a
component if the user has recently used it.
• Focus Suppress: Do not make changes to a component while the operator’s focus is on

the component
• Timed Suppress: Do not make changes to a component if the operator has manipulated

it within a time period

5.3.1 Summary

In this chapter, we presented UIs for an operator in two different domains and an IDE
for SPN plan developers. We also presented algorithms which will assist in the reuse of
components within and across domains, which could decrease workload for UI developers
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and allow for greater impact of human factors research. However, given a sufficiently large
library of UI components, it is unlikely that markup alone will be sufficient to distinguish
between all the components. It will likely be necessary for the domain and human factors
experts to select a subset of components to specify in the domain configuration file which
will then be used to construct and manipulate components.
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Chapter 6

Field Deployment

To test the capability of the SAMI language to specify complex plans, domain libraries were
written for the Cooperative Robotic Watercraft (CRW) project [169, 171]. The CRW project
investigates the use of small, autonomous watercraft for environmental monitoring and flood
response. Relative to other types of vehicles, watercraft are inexpensive, simple, robust, and
reliable. In the domain of environmental monitoring, large numbers of inexpensive watercraft
can provide high density, routine mapping for a variety of measurements. In response to
flooding, flat-bottomed boats using fan propulsion can safely and effectively move through
shallow or debris-filled water to provide situational awareness and deliver supplies.

6.1 Boat Development

The first boat, shown in Figure 6.1a, was designed to in 2011 to investigate the use of
smartphones in low cost robots. Each boat uses an Android smartphone for communication,
either through a wireless local area network or 3G cellular network, GPS location, compass
measurements, and a multi-core processor. An application on the Android phone receives
high level objectives, such as waypoints, from the user interface or team plan. Control
algorithms then generate low level motor and sensor commands to achieve these objectives,
and transmit them to an Arduino Mega based electronics board via Bluetooth or USB
OTG. The electronics board then interfaces with the motors’ electronic speed controllers
(ESC), steering servos, and equipped sensors. It supports a wide variety of devices including
acoustic doppler current profilers and sensors that measure electroconductivity, temperature,
dissolved oxygen, and pH level. The Android application then logs the sensor data with the
time and location. A large capacity 8000mAh lithium polymer battery powers the electronics
board, motors, and sensors. Figure 6.4a shows the system architecture for the boats.

In 2012, a grant in collaboration with CMU Qatar began, enabling year round devel-
opment and testing of the boat platforms. Development efforts were focused in Pittsburgh
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(a) Fan airboat model (b) First multi-production airboat model

Figure 6.1: Boat propulsion methods

during the spring, summer, and fall. Each winter, a finalized build was mass produced and
the constructed boats were shipped to the CMU Qatar campus. A team of 2 to 4 people,
including one full time CMU Qatar staff member, would then deploy the boats using the
SAMI software to test new functionalities of the vehicle and language. 1

Changes to the boat designs can be sorted into 4 co-dependent categories. Financial cost
is a driving factor at odds with the other categories. In general, lower cost components are
less reliable and have fewer capabilities. Using the lowest cost solutions will generally result
in a larger fleet, but the individual boats will be more prone to failure.

Manufacturability is a driving factor limiting the size of the fleet and usability of the
boat as a research platform. Each boat component was obtained in one of 3 ways: as an off-
the-shelf (OTS) part, manufactured in-house, or outsourced. OTS availability was generally
the most desirable option: by sacrificing customization, the time and financial costs of these
components was vastly reduced. OTS parts, in particular smartphones, are a core piece
of technology enabling low cost construction of a fleet of autonomous boats. However,
many parts are not available in this fashion as there is not a large commercial market for
autonomous watercraft. In these cases, they must be custom manufactured either in-house
or by an external company. In-house manufacturing is only viable when the tools and skills
are available, and then the balance of time versus financial cost must be assessed. For
components requiring highly specialized tools and/or skills to manufacture practically, such
as custom drivetrain gears, outsourcing is the only option. Committing to a design early
reduces the cost through a single bulk purchase, while continually iterating can improve
performance while increasing cost.

1Other collaborators in boat development included Alex Long, Chris Tomaszewski, and Pras Velagapudi
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Capability encompasses hardware and software features of the robot which define the do-
main tasks it can accomplish. Increasing capability improves the types of team plans that can
be run and the general robustness of the individual robots. For example, boat hardware and
software was gradually increased to interface with new water sensors. As sensor compatibil-
ity was increased, new SPNs could be designed to investigate phenomena related to dissolved
oxygen, pH, temperature, and electroconductivity levels and sonar scans. Propulsion ability
captures the range of propulsion options, such as fan-driven versus propeller-driven, and the
amount of power that can be delivered to the drive system. Low power systems cannot
operate in high currents and propeller systems cannot operate in shallow water. Propulsion
capabilities affect other capabilities; for example, a boat with limited propulsion will not be
able to move a heavy sensor around. Communication strength is the ability for the robots
and base station to communicate with each other wirelessly. While equipping each boat with
a powerful external antenna will increase their communication range, it will cost more time,
money, and reliability to purchase and protect the antenna.

Deployability captures several practical aspects the robot’s usability in field deployments.
Given a “support team” of 2 to 4 people, one of the primary factors in this category was ease
of setup, teardown, and transportation. The reliability of the boats was also important as
a robot failure diverts the support team’s attention from managing or deploying additional
boats. Another factor was durability: the boat hull and propulsion parts inevitably collide
with other boats or objects while on the water and being transported off-road. Consumer
grade electronics were highly susceptible to permanent damage when in contact with the
harsh saltwater, so a high level of protection while on the water and during transport was
critical. Repairability of the boat was also important, describing if a sub-component can be
replaced without having to replace parent components, and the financial and time cost of
obtaining and installing the replacement. It is worth noting that robot development in Qatar
at the time of this project lacked many of the resources in Pittsburgh. Online shopping and
inventories are rare and there are no companies analogous to McMaster Carr and Sparkfun.
When unanticipated items were needed, the quickest solution was often to import the parts
from the US, which required two weeks to ship and clear customs.

6.1.1 Winter 2012 Model

The primary focus of boat development for the first winter trip to Qatar was increasing boat
deployability while balancing cost.

One of the main improvements to deployability and capability in this model was the
custom design of a watertight compartment in the boat hull, as shown in Figure 6.2a. The
compartment was sealed using a rubber foam gasket and acrylic “top plate” which was
held tight against the hull with bolts. The phone, boat battery, and electronics board were
mounted inside the compartment, and watertight rated connectors were used to connect the
fan motor and water sensors. This replaced watertight OtterBoxes, which had limited room
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(a) Fan driven boat (b) Differential drive propeller boat

Figure 6.2: Boat propulsion methods

for equipment and fragile tabs.
In a significant improvement to both deployability and manufacturability, the hard-carved

foam hulls used in the previous model, shown in Figure 6.1b, were replaced with thermo-
formed ABS plastic hulls (Figure 6.2a). A bottom and top hull mold were made from hand
cut MDF segments which were glued and clamped together. A thermoformer was then used
to heat ABS plastic, suction it to the mold, and then “pull” off the molded plastic. The top
and bottom plastic hull pieces were then glued together using high strength ABS adhesive
and filled with 2 part expanding foam to maintain buoyancy in the event of a hull fracture.

Four of these boats were produced and shipped to Qatar.

6.1.2 Winter 2013 Model

The primary focus of boat development for the 2013 winter trip to Qatar was capability
while balancing cost.

While fan-driven boats have many benefits for flat water operation and sensor measure-
ment described previously, several desirable deployment locations in Qatar were in open
water with wind speeds regularly between 10 and 30 mph. Given the high winds, low ef-
ficiency of fan driven boats, and large cross section by the fan shroud, there were many
days where effective experiments were limited or impossible as the boats could not navigate
against the current. This motivated the development of a stronger propulsion method as
well as research into path planning exploitation of velocity fields. To increase deliverable
power and efficiency while reducing wind profile, the fan was replaced with a dual-propeller
differential drive, shown in Figure 6.2b. Flex-shaft cables and couples were used to connect
each propeller to a high performance, hobby grade brushless DC motor. Flex-shaft cables
were selected over solid shafts for their simple integration and superior propeller interface
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angle. Significant electronics board development enabled the increased power output and
individual control of the ESCs. The motor for the fan propulsion model was air cooled and
was mounted sufficiently high above the water to avoid oxidation from the salt water. To
cool the each of the DC motors used in the propeller design, aluminum ”water jackets” were
used, which fit snugly around the motor and are circulated with water to disperse heat. A
pump was added into the system, which drew in water from the exterior of the boat to ensure
heat could quickly be dumped. An open system using an exterior water source benefits from
greater design simplicity and cooling capability compared to a closed cooling system, which
recycles a reservoir of water, but is vulnerable to getting clogged from outside particulates
and objects. Metal strainers were added to mitigate the buildup of these materials at the
water intake.

A new MDF mold was produced featuring a larger electronics compartment to house the
drivetrain and a low profile, channeled hull design to improve steerability. The channeled
hull design decreases the ability to operate in shallow water as the boat sits lower when at
rest, but shallow water operation was not a priority for the propeller driven boat model.
Expanding foam was again used to fill the interior of the hull, but a jig was constructed to
maintain the gasket interface points during the foam expansion.

To improve deployability and manufacturability, the ”top plate” securement was effec-
tively inverted, such that the user tightens down a nut instead of tightening down the bolt.
Helicoil was used in the winter 2012 model to add threading for the bolt after the hulls had
been joined and filled with foam. Helicoil did not stand up well to the daily wear and tear of
repeatedly inserting and removing bolts, with some helicoil failing. When the helicoil failed,
the bolt could not be tightened, allowing small amounts of water to flow into the electron-
ics compartment through the bolt hole. Additionally, bolt securement was time-consuming,
especially if a hand screwdriver was used instead of a power screwdriver. Given the need
to remove the plate to access the electronics, improving this process was important. Wing
nuts were used for tightening down the plate as they were found to be the quickest for hand-
tightening. Additionally, a neoprene foam was used for the gasket instead of rubber, as it
was found to provide a greater tolerance for tightening while maintaining a watertight seal.

While clear acrylic plate was inexpensive and allowed easy viewing of internal compo-
nents and use of a prism, the heat from the sun caused certain components to overheat in
experiments with the 2012 boats Qatar. The addition of thermal blanket material or spray
paint to the top plate was tested during the 2012 deployments and both addressed the prob-
lem. For ease of application, spray paint was applied to the top plates, except for the prism
area.

Another navigation reliability issue encountered was the boat’s report yaw orientation
reversing occasionally. This was identified as a problem when the boat crested over large
waves, which given the orientation of the phone and axis calibration, registered as the boat
turning around. An improved phone mount was fabricated to keep the phone at an angle
minimizing the effects of waves on the phone’s bearing measurement.
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Nexus 5 phones were used for these boats instead of Nexus S models for several reasons.
The Nexus S phones suffered from a reliability problem where GPS would stop updating
during extended deployments. This was identified as a bug in phone’s stock Android OS,
where commands to prevent the GPS from sleeping did not work. To prevent this problem,
software was used to keep the screen on permanently at the cost of battery life. The Nexus
5 supported updated versions of the Android operating system as well as improved GPS and
wireless chipsets. To further improve software reliability, improvements to the electronics
board were added enabling the use of the USB to-go protocol to communicate with the phone
in place of bluetooth communication. The bluetooth stack previously used suffered from
reliability issues, with the boat becoming inoperable when a fatal error occurred. This also
increased deployability by allowing the electronics board to automate some Android related
tasks, such as starting the Android application and removing bluetooth communication
related tasks.

A deployability problem encountered in 2012 was the slow disconnecting and reconnecting
of cables using Deans electrical connectors. Deans connectors were initially selected to
maximize manufacturability, as they are the quickest to solder compared to other connectors
which met performance requirements. Deployability was decided to be a higher priority
and Deans connectors were replaced with XT-45 connectors. To reduce the decrease in
manufacturability, a soldering jig was constructed.

Six of these boats were produced and shipped to Qatar.

6.1.3 Winter 2014 Model

The focus of the development for the winter 2014 model was manufacturability, as nearly
two dozen would be built, and deployability, as the fleet would need to be deployable by 2
to 4 people.

To reduce cost, the Samsung Galaxy S3 mini was selected as the phone model for the
2014 model.

Despite the use of a soldering jig, XT-45 connectors were still slow to wire and were slow to
connect and disconnect compared to other connector types. To improve manufacturability
and improve deployability, high power electrical connectors were replaced with Anderson
Powerpole connectors. Figure 6.4b shows the electronics board connected to its top plate,
with Powerpole connectors inside the compartment and IP67 rated watertight connectors
outside the compartment. Powerpole connectors require the use a special crimping tool
which removes the need to solder wires to the connector.

To manufacture dozens of hulls, a higher quality mold was required which would sustain
repeated thermal stress from thermoforming. The new mold, show in Figure 6.3b, was
made from vertical layers of high density wood cut using a CNC router and then coated
with epoxy. Finally, a release wax was added to regions of the mold with concave features
to relieve stress when separating the molded plastic from the mold, reducing probabilities
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of the plastic cracking. The new hull was designed to have greater buoyancy to support
large sensor payloads. In addition, a thicker ABS was used to increase durability during
transportation and allow safe operation in near-freezing water.

To improve manufacturability, boats were filled with blocks of styrofoam instead of air
bags. Styrofoam blocks were more cost effective and could be easily taped down, increasing
the amount of fill and reducing the time required to align the top and bottom hull pieces.

One of the largest improvements to fleet deployability was the development of rotating
“tabs” connected to the hull which replaced the bolt and wingnut assemblies in holding
lids against the hull. The tabs (Figure 6.3c), combined with a new neoprene foam gasket
material, allowed a lid to quickly be locked in place by depressing the lid against the gasket
and then rotating each of the tabs into a position above the lid.

In the 2013 model, phone mounts required some careful maneuvering to slide the phone
into position. To increase deployability by speeding up phone mounting, a velcro mount
was used where velcro on the back of the phone attached to velcro at the front of the
compartment. This greatly improved deployability, but reduced capability as the phone’s
camera feed was no longer useful.

During field deployments, particles in the water flowing through the cooling system would
occasionally get stuck at tube junctions. If enough particles built up in a junction, it would
cause the tube to separate from the junction, resulting in saltwater flooding the internal
compartment. This was not detectable until the boat stopped working because the entire
compartment was flooded, corroding and destroying all the electronics. To increase relia-
bility, a new cooling system was designed which removed the use of external water. This
cooling system used pre-primed distilled water to draw heat from the motors and ESCs and
an aluminum heat pipe on the underside of the hull to exchange heat with the external body
of water. The likelihood of a pipe disconnecting was greatly reduced as no foreign particles
could enter the system, and if a pipe did disconnect, the small amount of distilled water
would not permanently damage the electronics.

A second source of saltwater entering the internal compartment and destroying electron-
ics was imperfect sealing in the drive system, as water could enter through the flex-cable
tube as grease was dislodged. To increase reliability and add more storage space for addi-
tional batteries, a second compartment was added to the hull design in front of the original
compartment to isolate any water leakage to the rear compartment. The rear compartment
housed the motors and ESCs, and the front compartment housed the more water-sensitive
boat battery, phone, and electronics board. An elevated channel was used to run wires
between the two compartments.

The 2013 drive system suffered from many deployability problems. The set screws re-
quired to couple the motor shaft to the flex cable required constant tightening. In addition,
the hobby grade flex cables used were not designed for use in extremely salty water and
would rust if not greased and cleaned daily. Overtime, exposure to the elements and retight-
ening would degrade the cable until it required replacement. This required disassembling and
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(a) Powerpod (b) Bottom hull mold (c) Plate tabs

Figure 6.3: 2014 boat components

(a) System architecture of a boat (b) Electronics board (c) Boat fiducials

Figure 6.4: 2014 boat components

reassembling many components and was not scalable to a larger number of robots without
increasing the size of the support team. Furthermore, while the boats performed well in high
current, when larger payloads were added, such as side scanning sonar systems, the boat had
difficulty moving against the current. To address these problems, an new drive system was
designed using a solid shaft instead of a flex cable. While this led to a less efficient propeller
interface with the water, a solid shaft increases energy efficiency and allows the boats to
be easily stacked for transportation. The shaft was greased and sealed with a brass tube,
protecting the shaft from the elements and eliminating regreasing tasks. Custom gears to
lower the gear ratio were outsourced to improve operation in high current and with large
payloads and eliminate shaft couplers. Each drive system was housed in an acrylic enclosure
and the entire“power pod” (Figure 6.3a) bolted into the posterior hull compartment, greatly
simplifying the replacement process in the event of failure.

Twenty-three of these boats were produced and shipped to Qatar.
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(a) Doha Corniche (b) Katara Beach (c) Fuwayrit Beach

Figure 6.5: Deployment locations

6.2 Test Sites

In this section we describe the locations the boats were deployed in and the unique challenges
each offered. In each of these environments, a high power wireless antenna was used to create
a wireless network connected the base station laptop and boat phones. The operator uses
a SAMI compatible GUI described in Chapter 5 to instantiate SPN plans, monitor their
execution, and provide input as necessary.

Doha Corniche

Figure 6.5a shows the initial test site on the Doha Corniche. Because the Corniche is near
the Emir’s palace, access for boat experiments required a great deal of paperwork and had
rigid hours of access. Quadrotors were prohibited from operating on the premises, which
reduced our ability to film experiments. The water along the Corniche often experienced
high winds which proved to be too much for the fan-propelled boats to drive against, even
with moderate amounts of switchbacking. Due to the complicated access, limited parking,
and traffic congestion in the area, new deployment locations were investigated.

Katara Beach

Figure 6.5b shows the primary test site for propeller driven boats, Katara Beach. Katara
Beach is a large beach site and has many areas with limited access for boat trailers to load
and unload boats, jetskis, and even rowboats. While swimming is limited to a small area,
boat traffic is common, requiring operator vigilance to detect and react to boats approaching
the deployment location. Buoys, anchoring rope, and construction platforms are moved on a
day to day basis, presenting new obstacles both for the boats and the operator’s perception.
Removing a boat from the water at Katara beach is complicated by boat wake, high winds,
and a concrete ramp extending into the water, which can damage hulls and propellers if the
fall of the tide has been underestimated. However, in the event of catastrophic hardware
failure, lifeguards on jetskis are happy to help recover the boat.
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(a) Transportation of equipment (b) System setup at Katara Beach

Figure 6.6: Deployment setup

Fuwayrit Beach

Figure 6.5c shows the secondary test site, Fuwayrit Beach. Fuwayrit Beach is a relatively
remote beach on the east coast of Qatar which lacks the boat traffic found at Katara Beach.
The geographic properties of parts of Fuwayrit Beach shelter it from the wind found on
the Corniche and Katara Beach, making it a good location for windy days or when private
events limit access to Katara Beach. In particular, Fuwayrit Beach has a large sand bank
with shallow water where navigation is largely unaffected by the wind and makes deployment
and recovery simple. However, the falling tide quickly exposes it, forcing manually recovery
of any boats left in the sand and redeployment to a more exposed part of the beach.

6.3 Deployed Plans

In this section, we will discuss a set of plans used during deployments in Qatar. These
plans use a subset of the output and input events and markup described in Appendix .2.
Figure 6.7 shows a timeline of plan usage during a 3 hour deployment at Katara Beach.
We will describe and analyze 4 of these plans: Connect Boat, Connect and Station Keep,
Explore Area, and Monitor Connectivity.

6.3.1 Connect Boat

The “Connect Boat” plan shown in Figure 6.8 was used to connect the operator GUI to
a boat’s Android phone server. To reduce the amount of time required by the operator,
the SPN variable system was used to store global variable definitions of the “BoatProxyId”
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Figure 6.7: Plan invocations during a 180 minute deployment at Katara Beach
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Figure 6.8: Connect Boat SPN

# Run Total Duration Avg Duration
134 18min 56s 8s

Table 6.1: Runtime statistics for Connect Boat over 2 days

class, which consisted of the boat’s static IP address, name, and visualization color. Instead
of manually entering this information, instead the operator was presented with a list of
all BoatProxyId definitions in scope of the plan and selected the desired boat as shown in
Figure 6.9. After the operator selects the boat ID, the SPN connects the GUI to the server,
waits for a connection to be established, sets steering and throttle gains according to a global
variable, then notifies the operator the boat is connected. The use of a SPN variable for
the gains allows for variants of this plan to be easily created to account for different drive
systems and daily variations in wind and tide forces, e.g. “Connect Fan Boat on Windy
Day”. Rather than have each variation of this plan in a single SPN library, instead a SPN
library for each deployment scenario is be created, e.g. “Katara Beach, Windy.”

To expedite boat ID selection by predictably presenting IDs, markup is used to specify
that IDs should be sorted alphabetically. Table 6.1 shows statistics collected over 2 days
demonstrating how often boat servers were connected to and the average time between
spawning the plan instance and the plan instance ending. Boats could be connected to
multiple times in one day due to circumstances such as the GUI being restarted or the
operator disconnecting from a boat server. An additional variant of this plan used the
“ProxyAddDescription” output event to set the boat’s description to SHORE to note that
the boat is currently on the shore. This description can be used by the GUI to filter data
and options in other plans.

6.3.2 Connect and Station Keep

The “Connect and Station Keep” plan shown in Figure 6.10 was used to incrementally put
boats into the water. It was designed to require only short bursts of operator attention so
that the operator could assist in preparing other boats for deployment. When the plan is
started, the operator selects a location in the water which connected boats will be instructed
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to station keep near. The operator is then instructed to select a boat they wish to deploy into
the water from a list of boat servers the GUI has connected to. For the boat of interest, the
operator or team member performs a brief, visual diagnostics check on the shore, places it in
the water, then selects it from the list in the GUI. The SPN then calculates a unique location
near the specified location for that specific boat to station keep on to minimize collisions with
other boats. The proxy’s token is then moved into a place which spawns a Station Keep
sub-mission, which references this unique location. For various reasons, such as dynamic
hazards and changing tides, it is valuable to be able to change the central station keeping
location without starting a new plan and re-adding each boat. This is achieved through
an operator interrupt which moves a token a the place with a “RedefineVariablesRequest”
output event. The SPN has the central station keeping location’s variable name specified
as the variable name to redefine. At run-time, the variable’s value is retrieved, and an
appropriate component is constructed based on the value’s class so that the operator can
define a new value. Once a new value has been received and saved to the variable name, a
“RedefinedVariablesReceived” input event is generated. At this point, lookup table of unique
proxy locations is regenerated, using the updated central station keeping location value and
a copy of each proxy token that has been selected so far by the operator. The next time a
boat’s Station Keep sub-mission performs a distance comparison, it will compare it to the
newly computed location.

To speed up boat selection, two types of markup can be added to the OperatorSelectBoat
output event. SortOptions markup is used to sort the list of boats chronologically. The
GUI interprets this markup by sorting the list of proxy tokens used to activate the event
chronologically by the time the proxy was first created (i.e., when the GUI first connected
to the boat), with the most recently connected boat at the top of the list. This markup
is very useful in the field, where a boat is typically connected via a “Connect Boat” plan
and then immediately selected in the “Connect and Station Keep” plan, where it will be
at the top of the list. Another useful addition is using the FilterOptions markup to omit
options not relevant to SHORE. When combined with other plans setting proxy descriptions,
this can prevent the operator from sifting through the list of boats which are in the water
ProxyAddDescription updates the proxy description as WATER. As adding additional boats
is less important than resolving existing problems, the “Add another?” OperatorApprove
output event message is marked up with low priority.

A video of this plan in use at Katara Beach with an overlay of the operator GUI and
a simplified SPN state representation is viewable at https://www.youtube.com/watch?

v=l5Qhp1JSoNI . Figure 6.11 shows a selection of frames from the video2. To improve
readability, events and edge requirements are hidden in the SPN state representation, which is
instead summarized using vertex labels and tokens. The video demonstrates the importance
of the station keeping formation and redefinition interrupt as well as the ease of adding boats

2This video was accepted to IJCAI-VC-2015.
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# Run # Add Boat
Avg Time

Between Add
# Redefine

Location
Total

Duration
Avg

Duration
8 208 110s 30 3hr 34min 26min 45s

Table 6.2: Runtime statistics for Connect and Station Keep SPN over 2 days

and low level of required operator involvement.
Figure 6.12 shows a time window of GPS paths for boats executing the Connect and

Station Keep in a eastward flowing current. A time window was selected to improve visual
clarity, hence only a subset of boat paths include movement from the shore to the station
keep location. Note that the dock ramps present in the satellite image were not present at
this deployment and the tidal boundary was farther out. This visualization displays data
from several invocations of Connect and Station Keep which used slightly different station
keeping points. Each invocation uses a Proxy Compare Distance threshold of 10m - this
distance is shown at scale in bottom right corner of the figure.

Table 6.2 presents statistics for the plan collected over 2 days. These statistics show
that the plan was active during a large portion of the deployment (3 hours and 34 minutes
over the course of the 2 days) and the operator interrupt used to change the station keeping
location was used frequently (a total of 30 times over 8 instances of the SPN). On average,
boats on the shore were added at the rate of 1 boat per 1 minute 50 seconds, allowing enough
time to perform a quick diagnostics check and place it in the water. This diagnostic check
consisted of the following actions:
• GPS check: Check that boat’s reported location on the GUI is reasonable
• Compass check: Check that boat’s reported heading on the GUI is reasonable while

held pointing in each cardinal direction
• Motor check: Check that propellers generate air movement in the correct direction and

magnitude when teleoperated to execute a left turn and right turn
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Figure 6.11: Video frames from Connect and Station Keep video
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Figure 6.12: Boat paths during connect and station keeping

6.3.3 Explore Area

The Explore Area plan, shown in Figure 6.13, was used to get an operator-defined area of
water and divide it among an operator-selected set of robots. Upon starting the plan, the
operator is asked to define the area to be explored. After defining the area, the operator
selects a subset of the robot team to be used for the exploration. A subsection of the area
and “lawnmower” path through it is assigned to each of these robots. When all of the robots
have finished their path, the plan notifies the operator and ends.

The Explore Area plan contains several operator interrupts. The ”Team avoid boat“
interrupt was used to address the situation where another watercraft needed to pass through
the area being mapped. Prior to adding this interrupt, the procedure in this situation was
to cancel the plan, start a new plan to move the boats out of the way, and then restart the
plan. This solution required a great deal of operator attention and resulted in remapping
the previously explored area unless the operator meticulously defined a new area carving out
each robot’s partially completed lawnmower pattern. Instead, when the speedboat interrupt
is activated, a copy of each proxy token which was selected to explore the area is used to
activate the “speedboat.SK 2DOF” sub-mission. In this sub-mission, shown in Figure 6.14,
the operator selects a location clear of the approaching boat’s path. Similar to the Connect
and Station Keep plan, it then selects a unique, nearby location for each boat in the plan
and conducts station keeping centered on that location. This plan retains the ability to
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use an operator interrupt to redefine the central location if the boat changes course or
there are multiple incoming boats. This plan has 3 notable differences compared to the
station keeping in Connect and Station Keep. First, when robot’s are beyond the distance
threshold from their unique location, the “ProxyGotoPointAndBlock” output is used in
place of “ProxyGotoPoint.” ProxyGotoPointAndBlock behaves similar to ProxyGotoPoint
except that, after arriving at the destination, any other waypoints in the robot’s waypoint
queue originating from other SPNs are “blocked” from executing. When the SPN containing
the activated ProxyGotoPointAndBlock terminates, this block is removed. This behavior
is necessary to prevent the robot from draining its battery by entering a loop where it
travels to its “avoid boat” station keeping point, then drives back towards its assigned
exploration area until it reaches the “avoid boat” distance threshold, where it then travels
back to its station keeping point. A second difference is the use of Priority markup on
ProxyGotoPointAndBlock, which is set to CRITICAL. Its interpretation results in the robot
immediately executing the command instead of adding it to the end of the robot’s queue of
commands.

The third difference is the termination condition. In Connect and Station Keep, the
station keeping sub-missions have no termination condition and are instead terminated when
the parent plan ends. As detailed in Chapter 3, when a mission ends, all of its sub-missions
are also ended. The mission will end either when the operator answers “No” when asked if
they want to add another boat or when the operator chooses to abort the mission. In the
Avoid Boat sub-mission, an “OperatorApprove” output event is used to ask the operator
if it is safe to terminate the mission. If “Yes” is selected, the mission is ended. If “No” is
selected, the question is asked again. Note that this method of ending the plan was design
with knowledge of how the runtime GUI (presented in Chapter 5) would handle interactions.
For a GUI which uses a “queue” of interactions and a dedicated space where the operator
can browse through the queue, the operator can “ignore” interactions without compromising
the rest of the GUI’s functionality. If the GUI instead used “pop-up message” style of
interaction, this method of terminating the plan would be unusable as the message would
appear indefinitely until “Yes” is selected. Adding a system timer event before asking the
question again would decrease the severity of this problem, but the operator would lose the
ability to end the plan on demand. A better solution which would work for both styles of
GUIs would be to instead use an operator interrupt to end the plan.

OperatorSelectBoat has 3 pieces of Markup: FilterOptions, SortOptions, and Default-
Selection. The Filter Options markup is set to only INCLUDE options associated with
DEPLOYED. For OperatorSelectBoat, the GUI interprets this markup by looking at the
name of the boat and the description set using the “ProxyAddDescription” output event.
If a boat has been selected in the Connect and Station Keep plan, its description will be
set to DEPLOYED unless it has encountered an error, which will be discussed below in the
“Monitor Communications” plan. The Sort Options markup is set to ALPHABETICAL to
present boat names in a predictable manner. The Default Selection markup is set to ALL
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# Run # Avoid Interrupt Total Duration Avg Duration
13 6 57min 12s 4min 24s

Table 6.3: Runtime statistics for Explore Area SPN over 2 days

as typically the entire team is used. The result of these three markups is that only the
boats currently in the water and not experiencing errors are selectable, and these boats are
presented alphabetically and by default their boxes are “checked.”

The DisplayMessage output events each have a “RelevantProxy” markup set to ACTI-
VATING TOKENS. When tokens enter the place and activate Display Message, a message
is is placed in the operator GUI’s Message Frame as described in Chapter 5. When this
message is clicked, the markup is interpreted by zooming out the Map Frame if necessary
to ensure the markers for all the boats whose proxy tokens activated Display Message are
visible and also highlights those markers.

Figure 6.15 shows images of the GUI and a team of boats executing the Explore Area
plan. In Figure 6.15a, the area has already been defined and the operator is asked to select
the boats to be used. The yellow area in the map does not correspond to the defined area, it is
a separately defined area corresponding to obstacle free space where high WiFi connectivity
was observed. As noted, the markup for “Operator Select Boat List” is interpreted such
that only “deployed” boats without known problems are displayed, and by default all those
boats are selected. In Figure 6.15e, the operator is asked to provide definitions for the Avoid
Boat interrupt: the location for station keeping and the timer duration for checking a boat’s
distance from the location. Two locations (shaded yellow spheres) are seen in the map as
the expert operator clicked once in the map, then decided to choose a location farther north
and clicked a second time, knowing that the GUI would return the last provided location.
Alternatively, the operator could use the “Clear” button to remove all currently clicked
locations if they wish to change their initial selection.

Figure 6.16 shows a time window of GPS paths for 4 boats executing the Explore with
Interrupt plan. In this particular instance, the white robot encounters a compass failure
and begins driving in circles. The operator invokes the Proxy Abort interrupt for the boat
and then teleoperates it to the shore. The yellow boat completes its locally stored set of
Explore Area waypoints, but later encounters a communication problem and is unresponsive
to operator commands. The current carries it to the western shore, where it is recovered and
walked back to the operator station.

Table 6.3 shows runtime statistics for the Explore Area plan. Over 13 invocations of
the plan, the Avoid Boat interrupt is used 6 times. One invocation is substantially longer
than the others due to a large area being selected. Some invocations are shorter as they are
used for reasons other than mapping such as testing motor resistances and PID values and
increasing network load.
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(a) Selecting boats to use for exploration (b) Selected boats moving into position

(c) Monitoring exploration execution (d) Executing ”lawnmower” pattern

(e) Invoking “Avoid Boat” contingency (f) Boats at safe location

Figure 6.15: Explore Area SPN executing
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Figure 6.16: Boat paths during lawnmower exploration

6.3.4 Communications Monitoring

The “Communications Test” plan shown in Figure 6.17 was designed to visualize and manage
wireless connectivity problems. Wireless performance during field deployments was poor
compared to laboratory and shore side tests. It was hypothesized this is largely due to
the electromagnetic absorption properties of water and mounting height of the smartphone.
Before this plan was designed, an experiment was performed to compare the maximum range
from the omnidirectional base station antenna where a connection to a single boat could be
maintained. A single boat was placed in the water and slowly driven away from the shore
until connectivity failed. The boat was then brought back to shore, reconnected, and then
carried at waist level along the shoreline until connectivity failed again. Figure 6.20 shows
the results of this experiment, where the range in the water (90m) was less than half of that
on the shore (200m).

In deployments with team sizes greater than 6, frequent and dramatic connectivity prob-
lems were encountered within the measured range. Waypoint commands sent to nearby
boats were often not received and pose updates were received by the GUI less frequently. It
was hypothesized that the water absorption also impacted the bandwidth of the router by
increasing packet failure. This could be compounded by increased packet collisions due to
tight grouping of increasingly large formations. If the operator did not realize boats were
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not received commands, the boats would drift farther from communication range until com-
munication was impossible. Recovering the boat then required waiting until it drifted to
another shore, or using motorized watercraft to retrieve it.

This plan was designed with two purposes in mind. First, the plan should provide
the operator with a quick way to check connectivity across the entire team to recognize
patterns or conditions which affect communication quality. This plan was designed for quick
experimentation without having to constantly retrieve and deploy boats to update firmware
and copy data files. Second, the plan should prevent boats from drifting away if the operator
was is busy with other tasks or away from the computer.

In the plan, robot tokens are moved between places corresponding to increasing levels of
connectivity problem severity. When data is received from the robot, in the form of its pose,
the robot’s token is moved back to the place representing nominal connectivity. Operator
interrupts are present so the timers controlling movement between the places can be adjusted
on the fly. If a robot remains in the “Critical” communication place for a period of time,
the robot will be told to move to a recovery location defined when the plan is selected. This
waypoint command is sent continuously until the robot arrives at the recovery location as
the poor communication level greatly increases the probability that a command sent only
once would not be received.

Operator select boat list uses Sort Options markup to alphabetize the boat list for ease of
selection. Each Display Message event uses 3 types of markup. Proxy Status is used to note
the status of the proxy in the Communications Monitoring plan, and its definition of Nominal,
Warning, or Severe corresponds to the Nominal, Warning, or Critical place the Display
Message event is on. The GUI interprets the Proxy Status markup by changing the color of
the robot’s border in the Comm Frame: red if its status is Critical in any plan, yellow if its
status is not Critical in any plan but is Warning in at least one, and green if its status is not
Critical nor Warning in any plan. Relevant Proxy is interpreted by the GUI when the message
is clicked in the Message Frame. When clicked, the Map Frame is zoomed out (if necessary)
so that the robot corresponding to the message is visible and the robot is also highlighted.
The Display Message events corresponding to Warning and Critical communication states
also have Priority markup set to High and Critical, respectively. This ensures that newly
arriving messages about nominal connectivity for one boat do not displace slightly older
messages about critical connectivity to another boat. The Keyword markup requires a String
“keyword” value indicating that events with the same keyword markup should be grouped
together. The Message Frame interprets Keyword markup by maintaining a table mapping
each encountered keyword to the most recent message marked up with that keyword. When
a message with a keyword is received, it replaces the previous message for that keyword (if
one exists) in the table. This results in the old message being removed from the Message
Frame and the new message being added. If Relevant Proxy or Relevant Information markup
is also present on the event, the table lookup contains those definitions (the proxy ID and
information type, respectively) in addition to the keyword. This markup serves two purposes
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for Display Message. First, it prevents the high frequency connectivity messages from being
displayed separately, which would quickly obscure other messages. Second, through use with
Relevant Proxy markup, it prevents old, high priority messages about critical connectivity
to a boat from being placed higher than newer messages about nominal connectivity being
established with that same boat. The ProxyGotoPoint event in the “Go home” place also
uses Priority markup. As in the Avoid speedboat interrupt in the Explore Area SPN, this
is set to CRITICAL to indicate the waypoint should be executed immediately.

Figure 6.18 shows the GUI executing the Monitor Comms SPN. The router was turned
off to simulate a total loss of communication, resulting in each boat’s border in the Comm
Frame to turn red as seen in Figure 6.18a. In Figure 6.18b, the router has been turned on
and boats begin reconnecting and restoring nominal connectivity.

Figure 6.19 shows boat paths during a time window where the base station router stopped
functioning. The operator recognized the failure and was able to set up a backup router, and
the “Resend WP” events were able to regain control of all but 5 boats before they drifted
out of range of the backup router.
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(a) Connectivity to all boats is poor

(b) Connectivity restored after network reconnection

Figure 6.18: Identifying WiFi network failure
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Figure 6.19: Boat paths during router failure

6.3.5 Communications Measurements

To begin thorough investigation of the relationship between phone height and wireless con-
nectivity, two experiments were designed by a member of the CMU Qatar Networking Sys-
tems Lab. The goal of these experiments was to evaluate when positioning the phone dif-
ferently could significantly improve connectivity or if additional hardware, such as external
antennas for the boats, would be necessary. Ideally, a large, outdoor body of water with no
current would be used to minimize boat motion while recreating environmental conditions.
Such a body of water was not available, so these experiments were designed to be run at a
field deployment location, where non-trivial water current is present.

The first experiment was designed to evaluate how changing the height of the phone
relative to the water surface would affect connectivity between the phone and a laptop next
to the base station antenna. Data packages were transferred between the laptop and a sec-
ondary phone attached to a propeller boat, recording transfer speed and number of dropped
packets. Statistics were captured for several configurations varying the distance between
the boat and base station antenna and the vertical mounting location of the experimental
phone. To maintain a constant distance in a body of water while performing data transfer
measurements, the boat was tethered to an anchor a desired distance from the base station
antenna. The boat was then commanded to drive to a waypoint directly away from the
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Figure 6.20: Distance (in meters) at which boats can maintain a stable connection to the base
station antenna (yellow marker) while floating in the water (top semicircle) versus sitting on
the shore (bottom semicircle)
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antenna, introducing any motor electromagnetic interference and ensuring the phone was
oriented in a consistent direction for the duration of the experiment.

The second experiment was designed to evaluate how changing the height of the phone
relative to the water surface would affect connectivity between two phones in an ad-hoc
network in addition to the relative heading between the two phones. A detailed text de-
scription and sketch, shown in Figure 6.21, of the desired motion of the boats which would
fulfill desired experiment requirements were provided by a networking expert with limited
knowledge of SPNs and other team planning languages. The description and sketch were
then translated by an expert (myself) into a SPN. Figure 6.22 shows a subset of one version
of this plan capturing boat movement for the first two waypoints. The plan begins with the
operator selecting a boat twice. The first boat will be assigned the blue waypoints in the
plan sketch, and the second the red waypoints. When a boat is selected, its token is moved
either to the top half of the SPN, which will handle the blue waypoints, or the bottom half,
which will handle the red waypoints. After both boats are selected the operator is asked
to approve sending each boat their first waypoint. When the waypoints are approved and
both are completed by the corresponding boat, the operator is again queried about starting
the next set of waypoints. This allows the operator to run the necessary data collection and
then trigger the next set of waypoints. Once the second set of waypoints is completed, the
presented SPN ends.

The results of these experiments are not yet available, but its creation demonstrates the
value in being able to rapidly prototype plans for non-robotics experts. The plan was able
to be created in the field and iterated as runtime behavior was viewed.

6.3.6 Summary

In this chapter we presented lessons learned during hardware development, SPN plan design,
and field deployment over several years of operating a fleet of autonomous boats. The fleet
was operated in several environments with challenges ranging from quickly changing tides
to motorboat traffic.

When implementing events for the first time in this boat domain, we were initially unsure
as to the scope of an event. Initially, it was not clear if station keeping should be a single
event or an entire plan. In general, it is simpler to err on the side of capturing the behavior
with a single event. Once in the field it will quickly become apparent if the behavior requires
more customization than a single event can provide.

Another observation during these deployments was the importance of rapid modification
of team behavior to exploit or troubleshoot temporary phenomena in the environment or
team. While we initially planned to spend most plan development time creating complex
coordination, we found that reliable assistance with routine tasks, such as station keeping
while incrementally deploying boats, was vital and more nuanced than anticipated. This
suggests that building up a robust library of plans for routine actions should be the first
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Figure 6.21: Non-expert sketch of a desired SPN
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priority before developing more complex plans requiring a human expert’s knowledge.
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Chapter 7

Interrupt Evaluation

In this section, we describe the interrupt mechanism of SPNs following the syntax presented
in Chapter 3. Afterwards we will discuss a “Cooperative Location Visit” SPN which makes
use of interrupts 1.

7.0.1 PN Modeling of an Interrupt

The Petri Net paradigm does not offer a special construct to implement interrupts, but it
is possible to replicate the behavior of an interrupt through a specific sequence of places
and transitions [49]. Figure 7.1 reports an example of an interrupt realized in the Petri Net
framework. Essentially, the normal execution flow can be interrupted when the system is in
State A. The interrupt can be triggered by the human operator simply placing a token in
the Interrupt Place. This will enable the Interrupt Handler transition, hence changing
the execution flow of the plan. If the Interrupt Handler transition fires, the system will
place a token in the End Interrupt place, and, when the execution of such behavior is
completed (i.e., when the Return to State A transition fires), the system resumes the
normal execution by placing a token back to the State A place. Notice that during the
execution of the interrupt behavior, the transition End of State A is not enabled, therefore
the flow of execution can not progress to State B until the interrupt handler behavior is
completed.

7.0.2 SPN Modeling of an Interrupt

Following the interrupt implementation idea described in Figure 7.1, we use three key ele-
ments to model the interrupt mechanism in the SPN framework: i) a place (called Interrupt

1This chapter is based on our JAAMAS 2016 article Interacting with Team Oriented Plans in Multi-Robot
Systems [58].
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State A

State B

Interrupt Place

End of State AInterrupt Handler

End Interrupt

Return to State A

Figure 7.1: Interrupt implementation with Petri Net.

place) ii) a transition that starts the interrupt handling procedure (Start interrupt transi-
tion) and, iii) a transition that determines the end of the interrupt procedure (End interrupt
transition). Now, consider a generic plan that we represent with a Source place, indicating
the state of the system that could receive an interrupt, a transition, indicating some part of
a plan, and a Destination place, indicating the state of the system that should be reached
when the interrupt handling procedures terminates (consider that the source and destination
places could be the same).

Figure 7.2 shows the structures we propose to add interrupts to. We consider two types of
interrupts: a proxy interrupt (see Figure 7.2a) and a general interrupt (see Figure 7.2b). As
the figures show, the structure to realize these two types of interrupts is the same; however,
the events attached to the places/transitions and the requirements on the edges of the net are
different. In both structures, the Start interrupt transition and the End interrupt transition
are connected by a Sub-mission interrupt place which represents a sub-mission that models
the appropriate interrupt handling behavior. After the execution of the sub-mission all the
tokens returned by the sub-mission (i.e., the tokens which completed the sub-mission) move
to the destination place of the interrupt, and restore the normal behavior of the plan. Below
we describe these two interrupt types in more detail.

Proxy Interrupt The proxy interrupt relates to a specific subset of the platforms, and
affects the execution flow of those platforms only (while the others continue the normal
execution of the plan). This type of interrupt typically represents a procedure that should
be activated in response to some proxy-level events, e.g., the battery of a boat reaches a
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critical level and the boat should stop the current plan to go to a recharge area.
In particular, the interrupt place generates a Proxy Interrupt, which is an output event2.

The Proxy Interrupt Received input event encapsulates the information regarding which
proxies should be involved in the event. Such information is used by the Start interrupt
transition to take only the relevant tokens from the Source place and move them to the Sub-
mission interrupt place. Consequently, only the tokens specified by Proxy Interrupt Received
will stop their current plan to execute the interrupt sub-mission. Such relevant tokens are
selected with a plan specific procedure, and this often requires a user interaction (i.e., the
user directly selects which platforms should execute the interrupt sub-mission).

General Interrupt The general interrupt is a team-level interrupt that is not specific to
a particular platform. The general interrupt represents a situation where all robotic-boats
should perform a particular procedure, e.g., stop all current plans and go to a safe position
as a manned boat is approaching.

In contrast to the proxy interrupt, the general interrupt will remove all tokens present in
the Source place and transfer them to the sub-mission. Hence, the event generated by the
Interrupt place is a different output event, named General Interrupt. Such event is generated
to trigger the interrupt mechanism but does not contain any specific information regarding
the relevant proxies (as all proxies are relevant in this case). Consequently, the Start interrupt
transition requires a generic token (and not a proxy token) and it will transfer all the proxy
tokens from the Source place to the Sub-misison interrupt place. Note that, unlike a proxy
interrupt, a general interrupt has no input event on the start interrupt transition, as it
always moves all tokens and thus does not require any additional information. A general
interrupt is essentially a compact way of representing an interrupt for all proxies. Such
compact representation is crucial for team level plans that must be designed and monitored
by human operators.

The interrupt parts of the SPN are not logically different from non-interrupt parts. Hence,
since SPN supports sub-missions, we can also have nested interrupts.

7.0.3 Using Interrupts

Here we provide an exemplar multi-agent plan, discussing the possible use of both interrupt
types described above. In particular we consider a Cooperative Location Visit (CLV) plan
where the operator selects a group of boats to visit a set of locations to perform point
measuring tasks. The boats should navigate to each location and acquire a specific measure
(e.g., pH level, oxygen level, temperature). In this work, we assume that each boat is
equipped with the same sensors, hence visiting the same location with different boats does
not provide more information and should be avoided. For this scenario, the task allocation

2Recall from Section 3.1 that output events are associated to places and contain commands or requests
for other modules. Input events are associated to transitions and encapsulate information that should be
consumed by the module that receives such event
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(a) Proxy Interrupt (b) General Interrupt

Figure 7.2: Types of interrupt implemented in the SPN framework.

method selected to assign boats to locations is based on Sequential Single Item auctions [184].
The method assigns locations to boats sequentially, and for each location the system selects
the boat that can provide the lowest path cost. Such path cost is computed as the minimum
path cost that the boat can achieve when inserting the current location in the set of locations
that are already assigned to such boat 3.

The CLV plan is reported in Figure 7.3. In such a plan, the general interrupt handles
a situation where the user decides to temporarily stop the current plan of all the boats to
avoid a dangerous situation, i.e., a manned boat that enters the area where the boats are
operating. The general interrupt starts from the Proxy Execute Path place and goes back to
the same place. When the interrupt triggers, all the tokens present in the Proxy Execute Path
place are transferred to the sub-mission place. This token transfer requires the presence of
at least one Proxy token in the Proxy Execute Path place and is performed by using the take
action (see Section 3.1) on all Proxy tokens that are present in such place. As mentioned
in Chapter 3 the take action will remove the specified tokens from the incoming place and
will add them to the outgoing place, which in this case is the Assemble sub-mission (SPN
not shown). Hence the effect of this token transfer is that all proxies will stop executing
the current action and will start the Assemble sub-mission. Such sub-mission, sends all
the boats to a specific safe assemble position and then waits for operator input to end the
plan, allowing the parent plan to continue. When the operator decides that the dangerous
situation is over, the End general interrupt transition fires and boats are sent back to the
Proxy Execute Path place, where they resume executing the plan, maintaining their previous

3Since computing the minimum path cost given a sequence of visit locations is in general NP-Hard, we
use a nearest neighbor heuristic: the path is built incrementally by selecting the location closest to the last
added location for the boat. To select the first location, we choose the location closest to the boat’s position.
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location assignments. This token transfer is triggered by the End general interrupt event
and is performed with the take action on all sub-mission tokens. The sub-mission tokens are
the set of tokens which reached the end place in the sub-mission; in this case, these are the
proxy tokens for the boats which were station keeping to avoid the danger. The take action
means that the proxy tokens will be removed from the Start sub-mission place and added to
the Proxy Execute Path place.

In contrast, the proxy interrupt allows the operator to stop the execution of a selected
subset of the boats without interfering with the plan execution of the other boats. This
is useful when the human operator should handle an event that influences the behavior
of a specific group of boats, i.e., a boat that reaches a critically low battery level. The
proxy interrupt moves the set of selected proxies to the sub-mission place while the others
will continue their execution. In our exemplar plan, the sub-mission associated with the
interrupt, Recharge, pauses the current plans of the provided proxies and sends them to a
recharge station, where batteries are replaced with fully charged ones. The sub-mission then
ends, allowing End proxy interrupt to fire, which moves the proxies back to Proxy Execute
Path where they resume visiting locations. Similar to the general interrupt, we use the take
action to transfer tokens from the Proxy Execute Path place to the Recharge sub-mission
and then the take action to transfer them back. However, in this case we take from the
Proxy Execute Path place only the Relevant tokens, i.e. the tokens associated to proxies
that must be recharged. As mentioned in Section 7.0.2, the information regarding which
tokens are relevant is specified by the input event Proxy Interrupt Received associated to the
Start Proxy Interrupt transition.

Depending on the specific plan and on the desired behavior for the interrupt sub-mission,
we might need to insert extra elements into the basic plan. An example of this is the plan
to handle the traverse dangerous area event, shown in Figure 7.4 and discussed in detail in
Section 7.1.

By combining the team-level and proxy-level interrupts our approach provides a powerful
and general model to allow sophisticated interactions between the human operators and the
robotic system. As the empirical evaluation shows, this results in a significant performance
gain for the system.

7.1 Empirical Results

In this section we present a quantitative evaluation of our approach to team plan monitoring
in the CRW domain. We first describe our empirical methodology, then we present and
discuss the results we obtained.
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Figure 7.3: The Cooperative Location Visit plan specified in the SPN framework, with both
general and proxy interrupts.
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7.1.1 Empirical Methodology

The main goals of the empirical evaluation are: i) to validate the applicability of the interrupt
mechanism to team-level plans that represent realistic use cases, ii) to evaluate the gain
achieved by such a mechanism, in terms of task specific performance as well as operator
load, with respect to aborting the plan when an incident arises.

As a first step, we consider two versions of the CLV plan discussed in Section 7.0.3: the
“interrupt” version which encodes interrupts within the plan (reported in Figure 7.3) and the
“standard” version without any interrupts (reported in Figure 3.1). Next, we define three
possible incidents: i) general alarm, ii) temporary boat pull-out and iii) traverse a dangerous
area. We then simulate the execution of both versions of the CLV plan for each incident,
measuring indicators of task specific performance and operator work load. When we execute
the standard plan and one of the incidents takes place, the human operator must abort the
entire plan’s execution, execute the plan that can resolve the incident, and then start a new
instance the original plan once the resolution plan has finished.

In more detail, the incidents and the co-related team behaviors have been defined as
follows:

General alarm represents a danger that may significantly interfere with the plan execution
of all the boats. An example of this could be a manned boat that enters the operative areas
of the robotic boats. If this happens the human operator should signal to all the platforms
that all plans should be suspended to avoid collisions. When the manned boat leaves the
scene the human operator can then instruct the boats to recover the execution of their plans
(i.e., execute the remaining tasks). This situation can be handled with a general interrupt
as all the boats will have to execute the same specific sub-mission (i.e., reach a safe position)
before recovering their plans. In our empirical evaluation we simulate the occurrences of sev-
eral general alarm incidents while a CLV plan is running. In particular, we fix the number
of incidents to happen and distribute them randomly during the plan execution.

Temporary boat pull out represents an incident that interferes with a specific subset
of robotic platforms and that will not directly hinder the plan execution for the rest of
the team. An example of this could be the need to recharge the battery for one robotic
boat. Specifically, we simulate a discharge process for the boats, where the battery level
is reduced based on distance traveled. The discharge process includes a random element
that increases or decreases the units of battery consumed to simulate possible not-modeled
situations (such as currents) that impact the amount of energy required to traverse a given
distance. In more detail, if we indicate with bi(t) the level of battery at time t for boat i,
we have that bi(t+ τ) = bi(t)−Kdi(τ)(1 +R), where τ is a positive value that represents a
time interval, di(τ) represents the distance (in meters) traveled by boat i in the time interval
τ , K is a constant that expresses the units of battery required to travel one meter, and
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R ∼ U(−0.1, 0.1) is a random variable drawn from a uniform probability distribution.

Traverse dangerous area represents an incident where several boats must traverse an
area that is problematic for navigation. For example consider a scenario where a part of the
intervention area is cluttered with objects (e.g., vegetation, pieces of wood, etc.) or presents
strong currents. In this situation, we require a human operator to constantly monitor the
operation of the platforms to be able to promptly intervene (i.e., teleoperating the boats) if
necessary. Since it is impossible for a single operator to effectively monitor and teleoperate
multiple boats at the same time, a key element for this plan is to synchronize the execution
of the boats making sure that only one boat is actively navigating in the dangerous area,
while other boats that might need to traverse the same area will wait for the availability of
the human operator.

In the standard plan without interrupts, the operator should abort the plan, which means
all boats should stop what they were doing. The human operator can then monitor the boats
inside the area sequentially. Boats outside the area will be stopped until there is only one
boat inside the area, then the plan will resume which means that all remaining tasks will be
reassigned. If we execute the plan with the interrupt mechanism, the operator can choose
to monitor one platform while all other boats that are inside the area will be stopped until
the human operator becomes available for close monitoring. Meanwhile other boats outside
the area will continue their paths.

Figure 7.4 reports the CLV plan with a proxy interrupt to handle the traverse dangerous
area incident. Specifically we report the parent plan in Figure 7.4a and the traverse dangerous
area sub-mission plan in Figure 7.4b. Notice that in the parent plan (Figure 7.4a) proxy
tokens can follow two different branches to reach the end place of the plan, depending on
whether they enter a dangerous area or not. Since in this case the plan should terminate
only when all boats have finished their paths (i.e., boats that never entered the dangerous
area in addition to boats that did), as mentioned in Section 7.0.3 we must insert extra
transitions and places to make sure that the plan will terminate only when all boats have
visited their assigned locations. This is the role of the place labeled Consume generic for
each boat. In more detail, this place will accumulate one generic token for each platform
that is selected by the operator (this is done through the loop in the upper part of the
plan). Then when the proxy tokens representing the platforms reach this place, such generic
tokens will be consumed (this is done through the loop in the left part of the plan). The
plan will then terminate only when all such generic tokens have been removed. This is done
through the last transition (All boats finished) which effectively represents an inhibitor arc
(it will fire when there are no tokens in the preceding place). 4 Notice that the structure
of the interrupt is the same as the one reported in Figure 7.2a, i.e., we have a place that

4While in our case the number of proxy / generic tokens is always finite, we might not know this number
before the plan starts. Hence we use the inhibitor arc to check whether a place is empty.
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enables the interrupt associated to the output event Proxy Interrupt and a start transition
for the interrupt (associated to the input event Proxy Interrupt Received) that moves only
relevant proxy tokens (i.e., only boats that are inside the dangerous area) to the interrupt
sub-mission.

The “Traverse Dangerous Area” sub-mission reported in Figure 7.4b is used as static sub-
mission (see Chapter 3) in the Start sub-mission place. Thus, when the transition holding
the input event Operator Selected Boat List in the CLV plan fires, the generic token added
to the Start sub-mission place is also added to the start place of the single instance of the
sub-mission. In the sub-mission, the generic token will then be moved to the Generic holder
place. This place is crucial to synchronize the behaviors of the platforms: if a proxy token
enters the sub-mission, the corresponding boat will be stopped and it will not be allowed to
execute the remaining path unless there is a token in the Generic holder place. Since the
transition Move single boat takes that generic token, only one boat at a time will be allowed
to execute the path inside the dangerous area. The next boat will start the path execution
only when the boat currently traversing the dangerous area has completed its path (i.e.,
when the Path done, start next boat transition fires) or it is out of the dangerous area (i.e.,
when the Out of danger, start next boat transition fires). That is because both these transi-
tions put a generic token back in the Generic Holder place. Note that these two transitions
are mutually exclusive, so it is not possible for both of them to trigger, which would result
in two generic tokens being place in Generic holder. Overall this plan represents a complex
team oriented plan that requires a sophisticated synchronization between the boats, however
the interrupt mechanism and the use of advanced features of the SPN framework (such as
the static sub-mission) allows us to realize such a plan in a fairly compact structure.

Execution model for the system In our experiments we adopt the following execution
model for the system: when we execute the interrupt version of a plan, with interrupt
mechanisms in place, we assume that whenever an incident requiring intervention arises,
the operator will trigger the corresponding interrupt. For example, when we execute the
CLV plan and the battery level of a boat reaches a critical level, in our simulation the
corresponding proxy interrupt will always be triggered and the correct boat will be selected.
In other words, we assume the human operator will always do the correct actions that the
framework offers to respond to an incident. This is because our intent here is to evaluate
the interrupt mechanism and not the human interface. As mentioned in the intro, a proper
evaluation of the human interface falls outside the scope of this contribution.

When we execute the standard version of the plan, which lacks interrupts, we assume that
the human operator will abort the current plan, start a new plan(s) to handle the incident
and, finally, when the incident has been resolved (e.g., a low battery has been swapped),
they will start a new instance of the original plan to complete its objectives. Note that, when
the operator starts the new instance of the original plan, all required information must be
re-inserted, such as the locations to visit. In our experiments, we assume the operator can
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(b) The (static) sub-mission for the traverse dangerous area

Figure 7.4: CLV plan with the interrupt for traverse dangerous area
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keep track of which locations have been visited and re-start the plan only with the locations
yet to be visited (reducing the number of interactions in favor of the standard approach).
Moreover, we assume that the operator will start the new instance of the original plan only
after the plan(s) used to resolve the incident has been completed. For incidents which do not
affect the entire team (e.g., a boat with a low battery requiring a pull out and a subset of the
team needing to traverse a dangerous area), this means that some of the team will remain
idle when the original plan is aborted, even though they are not involved in the incident. We
further investigate this with a second set of plans for the temporary boat pull out scenario.
In these “reassignment strategy” versions of the standard and interrupt plans, when a boat
leaves to swap its battery, the rest of the team continues with its tasks. Furthermore, we
reassign the locations that boat was responsible for to the other members of the team. When
the battery swap is finished, we reassign all tasks that must still be accomplished to all boats.
Note that, while the commands sent to the boat team are identical for the standard and
interrupt versions of the plan for the reassignment strategy, the actual SPNs and the way
the operator interacts with them to respond to the low battery incident are different.
Metrics The metrics we extract from the simulation combine task dependent metrics and
metrics to evaluate the operator load. Specifically, the task dependent metric is the time to
complete a plan while the load metric is the number of user actions required to start/abort
the plan, trigger the interrupt, provide information to the boats (e.g., the locations to visit).
In our experiments such interactions always take the form of a click (on a map or on a
button), hence we measure the number of clicks that the operator performs. Since the
main goal of the empirical evaluation is to compare the use of the interact mechanism with
the standard execution model, we compute and report the percentage gain of the interrupt
mechanism for both metrics. In particular, we compute (vStd−vInt)

max {vInt,vStd}
∗ 100, where vStd is the

value of the metric obtained with the standard execution model and vInt is the value of the
metric obtained with the interrupt mechanism. Since for both metrics the lower the better, a
positive value indicates superior performance of the interrupt mechanism over the standard
execution model.

In all the following experiments, the interrupt mechanism does not provide additional
domain knowledge with respect to the standard plan execution. In particular, the recovery
procedure for handling the incidents is the same when using interrupt and when aborting
plans. Overall, our goal here is to provide a domain-independent interrupt mechanism,
for the SPN plan specification language, which can select the most appropriate domain-
dependent recovery procedure when an incident happens. Moreover, we aim at doing this
in a smooth way (i.e., without stopping and restarting the plan that is currently running).
While one could potentially devise a different domain-specific mechanism to select the most
suitable recovery procedure this would defeat the purpose of using a general plan specification
language such as SPN.

In this perspective, the gain we obtain is due to the presence of the interrupt mechanism
that smoothly changes plan execution instead of aborting and restarting. Consequently, in
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Configuration Std Int. % Gain (Interrupt vs Standard)
#boat,#loc.,r.t. #rec. #rec. Total Time # interactions

3, 20, 10 6 6 6.3% 73%
5, 20, 10 5 5 23% [± 0.5] 68%
3, 20, 20 6 6 26% [± 2.5] 72% [± 0.8]
5, 20, 20 5 5 27% [± 6.6] 64% [± 3.7]
3, 30, 10 11 12 26% [± 1.2] 69% [± 9.5]
5, 30, 10 10 12 21% 75%
3, 30, 20 11 12 48% [± 0.8] 80% [± 0.1]
5, 30, 20 10 12 27% [± 2.9] 75% [± 0.5]

Table 7.1: Results for the CLV plan and boat pull out event. Each configuration specifies the
number of boats, the number of locations, the time required to recharge the boat’s battery
(in seconds). The number of recharge (#rec) represents the number of times a boat required
a recharge action for the standard execution (Std.) and for the plan with the interrupt (Int.)

most situations the interrupt mechanism will require fewer interactions, because we need
at least the same number of user interactions to stop and re-start the plan compared to
interrupting it. However, for completion time there might be situations where having the
interrupt mechanism does not help (e.g., see results for Table 7.1).

In the next section we report and discuss the results obtained with our empirical evalu-
ation.

7.1.2 Quantitative Results in Simulation

Table 7.1 reports results obtained for the CLV plan and the boat pull out incident. In
particular, we consider a set of configurations, where each configuration is defined by three
elements: i) the number of boats involved in the plan (3,5), ii) the number of locations to be
visited (20,30) and iii) the time required to exchange a boat’s battery expressed in seconds
(10,20). For each configuration we executed 10 repetitions. We report the average values of
the gain for both metrics and the standard error of the mean (shown in square brackets).
In the tables, we report only the percentage gain for configurations that show a statistically
significant difference between the values of the means5.

As it is possible to see, for all configurations the plan with the interrupts achieves better
performance both in terms of time to complete the plan as well as for the operator workload.
In more detail, focusing on the time to complete the plan, we can see that the gain of the
interrupt mechanism with respect to the standard mechanism increases when the recharge
time increases, because in the standard execution model all plans must be aborted when a

5To check whether results are statistically significant we run a t-test with α = 0.05.
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Configuration % Gain (Interrupt vs Standard)
#boat,#loc.,#alarms # interactions

3, 20, 1 44% [± 0.6]
5, 20, 1 40% [± 1.4]
3, 20, 3 65% [± 0.6]
5, 20, 3 61% [± 1]
3, 30, 1 46% [± 0.3]
5, 30, 1 16% [± 1.9]
3, 30, 3 68% [± 0.23]
5, 30, 3 66% [± 0.4]

Table 7.2: Results for the CLV plan and the general alarm event. Each configuration specifies
the number of boats, the number of locations and the number of alarms.

Configuration % Gain (Interrupt vs Standard)
#boat,#loc.#boats inside area Total Time # interactions

3, 20, 2 5.2% [± 2.9] 40.2% [± 2.16]
5, 20, 2 6.9% [± 2.2] 39.1% [± 0.5]
3, 20, 3 10.4% [± 1.7] 42.5% [± 0.6]
5, 20, 3 9.8% [± 1.8] 42.9% [± 1.1]
3, 30, 2 (4.3% [± 2]) 45.3% [± 1.6]
5, 30, 2 9.9% [± 2.4] 43.6% [± 1.3]
3, 30, 3 5.4% [± 1.3] 43.6% [± 0.5]
5, 30, 3 15.9% [± 1.7] 44.4% [± 0.5]

Table 7.3: Results for the CLV plan and enter dangerous area event. Each configuration
specifies the number of boats, the number of locations and the number of boats that are
inside the dangerous area at the same time (the value between parenthesis is not statistically
significant according to a t-test with α = 0.05, all others are).
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Simple Strategy Reassignment Strategy
Configuration % Gain (Interrupt vs Standard) % Gain (Interrupt vs Standard)

#boat,#loc.,#rec,r.t. Total Time #interactions # interactions

3, 20, 3,10 11% 65% 80%
5, 20, 3,10 16% 65.4% 81%
3, 20, 3, 20 14.8% 64% 79.6%
5, 20, 3, 20 13.4% 63.4% 78.7%
3, 30, 5,10 13% 75.6% 86%
5, 30, 5,10 17% 73% 85%
3, 30, 5, 20 16.8% 76% 86%
5, 30, 5, 20 11% 76.6% 83%

Table 7.4: Results for the CLV plan and boat pull out incident for the previous simple
strategy (do not reassign tasks) and reassignment strategy. Each configuration specifies the
number of boats, the number of locations, the time required to recharge the boat’s battery
(in seconds). The number of recharge (#rec) represents the number of times a boat required
a recharge action which is assumed to be 3 for 20 locations and 5 for 30 locations in these
experiments.

boat must recharge, while in the interrupt model the other boats can continue with their
plan execution. As for the operator work load, the interrupt mechanism requires far fewer
user actions than the standard plan. This is due to the fact that, in the standard execution
model, the user must re-insert the locations that the boats must visit when the CLV plan is
re-started. Notice that the number of recharge actions is higher when using the interrupts
model. This is because the standard mechanism re-starts the whole plan each time a boat
must be re-charged, consequently the remaining locations to be visited will be re-allocated
among the currently available platforms. This provides solutions of higher quality for the
allocation process (i.e., shorter paths), compared to the interrupt mechanism, which uses
the same solution throughout the entire plan execution. Therefore, when using the interrupt
mechanism boats might end up traveling more, and since the battery discharge process
depends on the traveled distance, this results in more recharge actions. However, as results
clearly show, this is compensated by a significant reduction in time to complete the plan and
operator load.

Table 7.2 reports results achieved for the CLV plan and the general alarm incident. We
considered the same number of boats and number of tasks, and we vary the number of alarm
incidents that will appear during the plan (1,3). As before, we report the average values of
the gain and the standard error of the mean.

Concerning the operator work load, these results confirm the superior performance of the
approach that encodes interrupts in the plan. However, in this case, the difference in time
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to complete the plan does not show a statistical significance, consequently we do not report
such values. This is because the procedure to handle the general alarm requires all boats to
stop and wait until the original plan can be safely re-started. Hence, the actions that the
boats perform when aborting a plan are very similar to the interrupt handling procedure. In
all the simulations we do not consider the time required by a human operator to perform the
click actions but we simply count the number of clicks. This is because a proper evaluation of
such time would be highly dependent on the skills of the operator. However, in practice this
time will not be negligible and would significantly increase the gain in favor of the interrupt
mechanism.

Table 7.3 presents results for the CLV plan with the traverse dangerous area incident.
Again we consider the same number of boats and tasks and we vary the number of boats
that simultaneously enter the dangerous area during the plan (2,3). In this case, if a single
boat is inside the dangerous area there is no need for interrupting the plan. This is because
the plan monitoring framework allows the operator to override boat autonomy at any time,
directly teleoperating a single platform without aborting the current plan. Hence, if a single
boat is traversing the dangerous area the operator can focus his/her attention on such a
boat without changing the behaviors of the other platforms. However, if more than one
platform are traversing the dangerous area at the same time, the plan must be changed to
stop all boats inside the area so to focus operator attention on a single one. Hence, in our
experiments, we consider only situations where at least two boats are simultaneously inside
the dangerous area.

Results shows that also for this type of incident the interrupt mechanism provides an
important gain (about 40%) in operator load and that such a gain does not vary significantly
across the considered configurations. This is reasonable as the number of interactions that
the operator must perform does not depend on number of boats and only marginally on
the number of visit locations: in the standard version of the plan the operator will have to
re-insert a higher number of locations when re-starting the plan, this is confirmed by a small
increase in the gain when there are 30 locations to visit. As for completion time, the gain is
less significant and there is no clear trend with respect to the configurations we considered.
In fact, in this case, the gain depends on how tasks are placed with respect to the dangerous
area. In any case, the use of our interrupt mechanism is providing a positive gain in all the
configurations we considered.

Table 7.4 shows the results obtained for the CLV plan and the boat pull out incident
using two different incident handling strategies, as described above. The goal of this set of
experiments is to assess the flexibility of our interrupt mechanism and investigate whether
the efficiency of the interrupt structure is dependent on the use of particular sub-missions.
We consider the set of configurations used in Table 7.1, but to better compare the two plans
we now assume a fixed number of recharge incidents during the plan (i.e. 3 boat pull out
incidents for 20 locations and 5 incidents for 30 locations). The first two columns present
the results using the same handling strategy and plans as in Table 7.1, while the third
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column shows the results for number of interactions for the reassignment strategy version of
the standard and interrupt plans6. As mentioned previously, in the reassignment strategy
versions of the plans, whenever the boat pull out incident occurs, the related boat will go to
the base station for recharging while the remaining tasks are reassigned to the other boats,
which continue visiting their assigned locations. When the boat is recharged, all the locations
that must still be visited will be reassigned to all boats (including the recharged one).

Results show that the the total time gain for the reassignment sub-mission interrupt
mechanism according to this metric is not significant. This is expected as in both the
standard and interrupt plans, the boats are never idle, unlike the simple strategy version
of the standard plan. However, the gain for number of interactions (clicks) significantly
increases. This is because, when the interrupt mechanism is not used, the operator needs
to reassign the tasks when the recharging boat goes to the base station and when it comes
back. In contrast, when the interrupt mechanism is used everything is handled through
the sub-mission hence there are fewer interactions. In summary, the key point is that the
interrupt mechanism helps in terms of completion time and interactions, and it is a flexible
and general approach that can be easily used with different sub-missions.

Finally, a video showing an exemplar execution of the CLV plan presented in Figure 7.3
is reported here7. The video shows that, when the general interrupt is triggered all the
boats move through the interrupt branch and enter a recovery sub-mission that sends them
all to a safe assembly location. When the alarm is over, the boats resume their previous
plan. In contrast, when the proxy interrupt is triggered, the selected boat proceeds to the
recharge area while the execution of the other boats progresses unchanged. When such boat
completes the recharge plan, it returns to finish executing its previous plan.

The video shows how our mechanism allows the human operator to smoothly handle
different types of interrupts during the execution phase of complex team-level plans.

7.1.3 Validation on Robotic Platforms

We validated the use of our approach for interacting with team oriented plans on real robotic
platforms. Specifically, we performed several experiments where a single operator was in
charge of monitoring and interacting with the operation of several boats (up to nine). Here
we discuss a specific experiment where platforms are sequentially inserted into the water
and, as they are added, they start to execute a Connect and station keep plan to maintain
a specific predefined position. A video of an exemplar run for the connect and station keep
experiment can be found here8 while Figure 7.5 reports a picture of the same run.

6According to a t-test with α = 0.05, the total time gain for the reassignment versions of the interrupt
versus standard plan is not statistically significant, so we do not report such metric in the table.

7http://profs.sci.univr.it/~farinelli/videos/CLV.mp4
8https://youtu.be/l5Qhp1JSoNI
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Figure 7.5: A picture of the connect and station keep experiment. The image shows a subset
of the platforms and the current state of the SPN representing the connect and station keep
plan. The interrupt portion of the plan is visible in the top part of the picture and the firing
transition (highlighted in purple) is the one that starts the interrupt to change the position
where boats should perform station keeping.

The experiment has been conducted in a marine coastal area, and as it is possible to see,
currents would make the boats float away when motors are shut down. To avoid this, when
executing the connect and station keep plan, the boats will periodically turn on their motors
to move toward a assembly positions specified when the plan is invoked (left of the screen).
This is a crucial behavior to effectively deploy a large team of platforms. The video shows
the boats executing the plan, the evolution of the CPN representation for this plan, and a
few screen-shots of the graphical interface that the operator uses to monitor the plan.

In this experiment the interrupt mechanism is used to re-define the points where boats
should perform station keeping. This is a general interrupt as all boats will change their
behavior. The operator activates the interrupt at minute 1:50 of the video, and it is possible
to see how all boats change their plan and perform the station keep behavior in a different
position (center of the screen). 9 This behavior is used in field deployments when large speed
boats approach the current station keeping location, risking a collision with the robots.

These experiments demonstrate that our interrupt mechanism helps human operators to
easily control the deployment of real robotic platforms.

9This video was accepted to the IJCAI 2015 video competition.
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7.1.4 Summary

In this chapter we discussed the motivation, implementation, simulated evaluation, and field
operation of the SPN “interrupt” mechanism which allows an operator to quickly trigger
complex behavior. Interrupts were a key feature of the language in field deployments and
nearly all plans used in Chapter 6 had at least 2 interrupts. Support for globally scoped
variables also proved to be important, as it allowed for information to be shared across plans
and their interrupt behaviors. For instance, adjusting the “safe” recovery location in one
plan due to receded tides or a newly docked boat could then be carried across to other plans.
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Chapter 8

Markup Evaluation

In this chapter we present an experiment to evaluate markup performance.
The unpredictability of field deployments makes controlled experiments extremely diffi-

cult. Instead, we will use the Cooperative Robotic Watercraft project simulator to compare
performance of a plan with SAMI markup to a plan without SAMI markup. The simula-
tion described below is designed based on observations from field deployments described in
Chapter 6. By changing the number of robots, supporting team members, robot hardware,
GUI, operator skill level, location, or many other factors, the behavior of the team can vary
drastically. This limits the usefulness of an evaluation based on absolute measurements, so
we focus evaluation on trend based metrics.

8.1 Design

Two versions of the plan were compared: a markup version with SAMI markup customized
for each event and a generic version with identical markup across similar events. The latter
case represents a team plan in a framework without SAMI markup, where the UI, robots,
and AI treat each instance of an event class identically.

In the scenario, a team of boats is used to perform sensor mapping in the area of a dock.
Occasionally, manned boats will enter or leave their section of the dock. If the operator
notices the boat, they will use an interrupt to enable a section of the SPN where they
specify a safe location for the robots to temporarily station keep at while the boat enters
or leaves the area. If the operator fails to notice the boat, or the robots don’t move fast
enough, the robots could get damaged by a collision with the much larger manned boat. In
the version of the plan with customized markup, movement events in the interrupt section of
the plan will have markup specifying speed should be optimized. This will result in robots
moving twice as fast when performing interrupt-related movement in the markup plan. In
the generic plan, robots will move at the same base velocity whether they are mapping or
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Figure 8.1: Avoiding a hazard while mapping an area

avoiding a boat.
The team consists of simulated robots with properties modeling those of the Lutra pro-

peller boat described in Chapter 6 and a simulated operator. As described in Chapter 5,
the operator has a prioritized queue of decisions which is populated by SPNs. The operator
is simulated by consuming the front item of this queue after waiting for a period of time
approximating the decision time for a human operator. To simulate the complexity of a live
field deployment, in which the operator’s attention is also required to make observations
about the team, “background” actions are also added to the decision queue, including:

• Scanning area for new hazards

• Checking each robot for anomalous behavior

• Actions to prepare other robots for deployment

• Interpreting received data

Scanning area for new hazards may reveal static obstacles, such as submerged trees
or buoys, or dynamic obstacles, such as speedboats. If an obstacle is seen measures are taken
to avoid it, such as adding the obstacle to the path planner via the GUI, running a separate
SPN to map and add the periphery of the object to the path planner, and triggering an
interrupt to move out of a dynamic obstacles path. In this scenario, the operator spends
30 second segments looking for incoming watercraft. If an obstacle is detected, an interrupt
is invoked which will move the robots to a pre-designated safe location. After arriving,
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the boats wait 30 seconds to allow the watercraft to pass without harming the boats, then
resume their previous actions. Figure 8.1 shows a team of 6 simulated robots moving to a
safe location when their exploration is interrupted.

Checking robots for unexpected behavior consists of checking the GUI for warn-
ings, such as a low battery, and watching visible robots’ behavior to identify failures the
software cannot recognize, such as a localization failure. Methods for addressing this behav-
ior include teleoperation, running a separate diagnostic SPN, and triggering an interrupt. In
this scenario, the operator spends 30 second segments looking for anomalous behavior.

Actions to prep other robots for deployment consists of assembling components,
starting software, checking diagnostics, and moving prepared robots into the field. In this
scenario, the operator spends 30 second segments performing tasks and coordinating with
other human team members to prepare or repair other robots.

Interpreting received data consists of reviewing sensor data and progress in the SPN
and comparing it to previous data and the operator’s expectations Unexpected data may
result in running additional plans, discussing progress with other team members, or making
notes for post-deployment analysis. In this scenario, the operator spends 30 second segments
reviewing received data and monitoring progress.

8.2 Results

The simulation results when running the two versions of the SPN were recorded for several
different team sizes and the following metrics were compared

• Mission time: The time it takes for the exploration SPN to be completed

• Hazard resolution time (seconds): The time it takes the robots to move from their
positions when the interrupt is triggered to the safe location

• Number of measurements: Number of unique measurements taken, where unique means
no other measurements have been taken within 1m of this measurement

Table 8.1 shows the results from the simulation and the percent gain of the markup
version (M) of the plan compared to the generic version (G). Percent gain is calculated using
the formula

%Gain =
quantitymarkup−quantitygeneric

quantitygeneric
× 100

For mission time and hazard resolution time, we want a decrease (negative gain). For number
of measurements, we want an increase (positive gain). The hazard resolution time decreases
substantially in the markup version of the plan. As the robot speed is doubled during
hazard resolution in the markup version, it is expected the reduction would be approximately
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(a) Scenario 1 SPN

(b) SPN for injecting simulated operator background actions

Figure 8.2: SPNs used during markup evaluation simulation
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Performance metric Number of robots
3 4 5 6

G Hazard resolution time (s) 32 32 33 32
M Hazard resolution time (s) 17 17 17 17
% Gain (-) -47 -47 -48 -47

G Mission time (s) 515 435 368 303
M Mission time (s) 500 419 352 287
% Gain (-) -2.9 -3.7 -4.3 -5.3

G Number of measurements 2679 2756 2714 2708
M Number of measurements 2635 2740 2699 2692
% Gain (+) -1.6 -0.58 -0.55 -0.59

Table 8.1: Percent gain for statistics comparing markup (M) version of plan to generic (G)
version of plan. (-) indicates a negative value is desired, (+) indicates a positive number is
desired.

50%. By reducing the hazard resolution time, the mission time is also reduced, resulting
in short mission times for the markup plan. Furthermore, as the time taken to explore the
area decreases as team size increases, the fraction of mission time corresponding to hazard
resolution also increases. This results in an increasingly negative percent gain as the team
size increases. However, the number of measurements taken decreases for the markup version
of the plan. This is due to the sampling rate of the simulated sensor. When the team is
moving from their mapping area to the safe area, they continue collecting measurements. In
the markup version of the plan, the faster movement rate results in fewer measurements being
taken. However, this does not have a large impact on the overall number of measurements as
the explored region is large. The number of robots does not appear to significantly affect the
percent gain. This is likely due to other factors which also affect the number of measurements
taken when reacting to a hazard, such as distance from and angle to the safe location.

8.2.1 Summary

In this chapter we presented evolution of the markup language over several years of field
deployments and a simulation evaluating of the effects of SAMI markup on SPN plan per-
formance. Markup was applied to a boat exploration plan to prioritize resolution of hazard
avoidance in the plan over other factors such as measurement quantity.

As the motivation for markup requires situations where context demands a change in
system behavior, it can be difficult to evaluate its expressiveness through simulations which
are sufficiently nuanced without being overly engineered. In addition to quantitative per-
formance evaluation, it is also important to simply practice writing marked up plans for
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hypothetical scenarios in a familiar domain and scenarios presented in related literature in
order to identify limitations of the current markup vocabulary.
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Chapter 9

User Study

An important step in making robot teams common tools in the real world is improving
their accessibility. The accessibility of current systems is largely limited by the need for a
robotics or planning expert to write and adjust plans each time goals or scenarios change.
However, basic programming skills are becoming widespread in the scientific community
for automating tasks, designing simulations, and analyzing results. As a result, in many
of the domains where robot teams offer great potential there will be user(s) with a basic
programming background. If training for using a team planning language builds naturally
off of basic programming concepts, these users may be able to learn and apply it to their
domain [57, 144, 181, 77, 139, 143, 78]. However, if the training takes more time than would
be saved by using the robot team, then there is less incentive. Similar to how the accessibility
of robot teams is limited by the need for an planning expert, the scalability of the training
process should not be limited by requiring the presence of a language expert.

In this chapter, we will discuss the design and evaluation of training material designed
to teach non-experts to use the SPN language with 4 goals in mind:

• Identify the range of user backgrounds the training material is appropriate for

• Create training material that can be scaled to large numbers of users

• Measure how well users understand SPN syntax after completing the training material

• Measure how well users can transfer knowledge to actual scenarios after completing
the training material
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9.1 Study Design

9.1.1 Capturing the Demographic

One of the goals of this thesis is to provide a team planning language useable by non-experts.
Our concept of a non-expert is based on two factors. First, a non-expert would have some
knowledge of programming, but programming would not their field of expertise. Second, a
non-expert may have some knowledge of planning or petri nets, but again would not be their
field of expertise.

For our purposes, we consider non-expert programmers as those with some knowledge
of programming, but programming is not their field of expertise. To measure programming
knowledge, we consider relationships between programming expertise, completed degrees,
and degrees in progress. Degrees in computer science generally involve a high level of pro-
gramming. Degrees in engineering generally require some programming. Those currently
pursuing a degree have not yet been exposed to all the material required to complete the
degree, so we consider completed degrees to yield more programming expertise. In addition
we consider self-reported frequency of programming and familiar programming languages.
We anticipate that users who program on a daily basis will in general have more expertise
than those who program less frequently. We also consider the number and classification
of familiar programming languages. We hypothesize that more languages and a variety of
types of languages translates to more programming expertise. In addition, experience with
certain programming languages may translate to better learning of the SPN language than
others. For example, the R programming language is primarily used for statistical computa-
tion, whereas C++ is commonly used for applications requiring logical operations common
in team plans.

We consider two factors when evaluating background with planning problems and lan-
guages. Similar to programming experience, we consider educational background. Those
currently pursuing a degree in robotics or having completed a degree in robotics will likely
have some exposure to planning problems. In additional to educational background, we
consider self-reported familiarity with petri nets. We consider knowledge of Petri Nets to be
uncommon and that existing experience would indicate an expert background in planning.
Furthermore, those with knowledge of Petri Nets will already be familiar with much of the
lesson content and will be less effective at evaluating the efficacy of the training material.

The resulting survey capturing these attributes is shown in Figure 9.1. Participants were
recruited through a university participant pool mailing list and bulletin board advertisements
in engineering and computer science buildings. These advertisements directed interested
viewers to fill out the recruitment survey and, if selected, to fill out a schedule of available
times.

When selecting the participant, we excluded applicants considered to have novice or
expert knowledge of the above areas. For our purposes, we considered an applicant to be an
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expert if any of the following were true:

• Have completed a degree in computer science or robotics and program on a daily basis

• Have used Petri Nets

We considered an applicant to be a novice if the following was true:

• Have not completed a degree in computer science and do not currently program and
have not used Petri Nets

Users who were neither an expert nor novice were classified as non-experts.

9.1.2 Designing the Material

Lessons were designed with the ultimate goal of being packaged with the SPN software and
being completely self guided. The lessons used a slideshow format and incrementally intro-
duced new syntax or capabilities in the language. This concept of incremental complexity
was an important step in reducing the size and duration of the training material. By choosing
the scope of the entirety of the training material before developing individual lesson content,
it was possible to choose a total of 2 SPN team plans which could be incrementally built
up through the individual lessons. While this requires more planning when designing lesson
content, it avoids a new team plan being introduced each lesson, which increases lesson size
and duration. Figure 9.2a shows the first iteration of “Connect and Station Keep” plan,
used in Lesson 2, and Figure 9.2b shows the seventh and final iteration of the plan, used in
Lesson 8. The tradeoff in this approach is that future expansion of the training material may
require reworking some or all of the existing lessons to retain a small number of team plans.
The slideshow format was selected as it allows for easy distribution online, a self-guided
pace, and on-demand review of earlier concepts. Lesson slides occasionally included cap-
tioned videos demonstrating how to perform a specific action in DREAMM, such as adding
a place or changing a variable’s value. Periodically slides contained a Quiz or a Job for the
user used to assess syntax understanding and knowledge transfer, respectively.

Quizzes presented sample SPNs and asked the user questions about its state or behavior
based on syntax rules that had been presented. After completing each quiz, the solution was
immediately presented to the user so they could identify any sources of misunderstanding.
Answering quizzes generally involved multiple choice or selecting elements in a presented
SPN matching specified requirements. This will simplify notifying users of errors in a fully
self-guided version of the training. In addition, it will allow for identifying quizzes which are
commonly answered incorrectly and may need clarification or more supporting content.

Jobs instructed users to apply their knowledge to modify SPNs in DREAMM to include
newly presented syntax rules or to achieve a new goal. To reduce training time and test
understanding of the language rather than power of language tools, DREAMM assistant
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1. Name:

2. Age:

3. What is your affiliation with CMU? (select one)

• Student

• Faculty

• Staff

• Other

4. List all degrees in progress:

5. List all completed degrees:

6. Which best describes your programming background? (select one)

• Daily

• Weekly

• Monthly

• I do not currently program

7. List all programming languages you are comfortable programming in:

8. Which best describes your knowledge of Petri Nets? (select one)

• I have not heard of Petri Nets

• I have used Petri Nets before

• I currently use Petri Nets for some task

Figure 9.1: Recruitment Survey
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(a) First iteration

(b) Seventh (final) iteration

Figure 9.2: Incremental complexity in Connect and Station Keep SPN
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agents developed using properties discussed in Chapter 4 were disabled. A simple agent
which added a graphical reminder to edges without edge requirements was enabled, but
did not provide suggestions for edge requirements. A future user study could compare the
effectiveness and user preferences concerning assistant agents. To reduce user confusion, the
DREAMM editor was modified to support lesson modes corresponding to each lesson: when
in a lesson mode, elements of the language or GUI which had not yet presented to the user
were hidden. To reduce user confusion, the DREAMM editor was modified to support lesson
modes corresponding to each lesson: when in a lesson mode, elements of the language or GUI
which had not yet presented to the user were hidden. For example, before edge requirements
are introduced, the only option when clicking on an edge is to delete it, and compilation
warnings due to unspecified edge requirements are suppressed. Section .4.1 provides more
detail about these lesson modes. Additionally, lesson specific domain configuration files were
used to ensure that only events and task classes which had been introduced to the user were
presented as options in the corresponding dialog boxes. Jobs were designed to generally
require only a few actions and have a limited number of correct variations so that evaluating
the user’s answer could be automated for the most common answers.

Lesson List

In total, 10 lessons and a final plan were designed. A rough description of each lesson is
provided below.

Lesson 1: Motivation: What are team plans and why do we use them?
Lesson 2: Introduction: Introduction of places and transitions
Lesson 3: Events: Making team members do things via events
Lesson 4: Generic tokens: Using the concept of a token to represent a single robot’s
status
Lesson 5: Edge requirements: Moving a robot’s token around the SPN to in response
to events
Lesson 6: Robot tokens: Using colored tokens to represent multiple robots
Lesson 7: Operator interaction: Getting information from the operator at run-time
Lesson 8: Variables: Storing and retrieving information sent by team members
Lesson 9: Tasks and task tokens: Creating, allocating, and performing tasks
Lesson 10: SAMI markup: Changing mixed initiative autonomy and GUI presentation
Final plan construction: Constructing a SPN from a text description

Additional lessons were developed for distribution to collaborators, but were not included
in the user study to reduce experiment duration and increase participant retention.
Lesson 11: Sub-missions: How to re-use common SPN sections as sub-missions
Lesson 12: Contingencies: How to set up portions of a SPN to trigger based on a received
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input event indicating a contingency measure is needed
Lesson 13: Interrupts: How to set up portions of a SPN to trigger based on a received
interrupt from the operator

Some slides from Lesson 6 on robot tokens are shown in Figure 9.3. The slides for each
lesson are provided in Appendix .4.2. The lessons were built around two motivating plans:
(1) station keeping (Figure 9.4) and (2) measurement collection (Figure 9.5). Users slowly
built up to the final station keeping plan in lessons 1 through 8. Initially the station keeping
plan was built for one robot with no concept of token color or termination condition. As the
idea of multiple robots and an operator were introduced in subsequent lessons, the station
keeping plan was expanded and modified to incorporate those concepts. Similarly, users
built up the measurement collection plan in lessons 9 and 10 beginning with a simple task
allocation plan.

Final Plan

In the final plan, participants were instructed to design a SPN which would achieve the
following:

• First, the operator should be asked to create a list of locations

• When the list of locations is received, Camera tasks should be generated from the list
of locations

• When the task tokens are received, they should be allocated immediately by the System
AI.

• When a task is assigned, the robot for the task should move directly to the tasks
location

• When the robot for the task arrives, it should take a panorama

• After taking the picture, the robot should wait 5 seconds

• After waiting 5 seconds, the task is complete

• When there are no unfinished tasks, the mission should end

Figure 9.6 shows the initial version of the final plan participants were instructed to create.
Similar to lesson jobs, the role of the final plan was to help asses how well the user could
transfer their knowledge of the language into a SPN. After completing the initial version of
the plan, participants were instructed to modify it such that the panoramas would be taken
simultaneously, with the assumption that the tasks could all be allocated at the same time
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Figure 9.3: Some slides from Lesson 6: Robot tokens
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(i.e., there were at least as many boats with cameras as there were camera tasks). Figure
9.7 shows a modified version of the final plan achieving this goal. The completed lessons did
not demonstrate how to achieve this effect, though a similar mechanism was used in a lesson
to end a plan when all tasks were completed. It was our hypothesis that users would not be
able to fully complete this task. If users were able to complete this task easily, it would be
evidence that the lessons could be more abstract and thus shorter.

Cognitive Walkthrough

To improve learnability, a cognitive walkthrough [196, 176] approach was used when designing
quizzes and jobs. In a cognitive walkthrough, evaluator(s) work through tasks being designed
from the perspective of the target user. The goal is to tell a story for each action in a sequence
required to perform a task, taking into account the following factors:

• Will the user try to achieve the right effect?

• Will the user notice that the correct action is available?

• Will the user associate the correct action with the effect they are trying to achieve?

• If the correct action is performed, will the user see that progress is being made toward
solution of their task?

The two primary considerations when simulating the user’s perspective were the currently
completed lesson content and the DREAMM interface for the lesson. The DREAMM lesson
modes detailed in Appendix .4.1 were constructed using the cognitive walkthrough process to
ensure DREAMM functionality was consistent with the user’s knowledge and expectations
of the GUI in a given lesson.

Structured Interview

After each lesson retrospective probing [19] was performed in the form of a structured in-
terview. The goal of the structured interview was to identify poorly addressed language
concepts and confusing or inadequate material which would lower scalability, understand-
ability, and transferability. Figure 9.8 shows the high level structure of the interview. During
the user lessons, an audio recording was made to capture any “thinking out loud” and to
record the structured interview. In addition, the computer screen was recorded to capture
GUI interaction and mouse pointer identification of specific elements of SPNs and slides.
The interview, audio, and video were all used to evaluate how well the training material met
its goals and identify areas for improvement.
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1. Review quizzes

(a) Were you confident when answering this quiz?

(b) If answered incorrectly, did you understand the correct answer?

2. Review jobs

(a) Were you confident when performing this job?

(b) If performed incorrectly, did you understand the explanation?

3. Amount of content

(a) Were there any concepts you felt would benefit from additional slides?

(b) Were there any concepts you felt had too many slides?

4. Feedback on slides

(a) Were there any slides that caused confusion?

5. Feedback on DREAMM videos

(a) Were there actions in DREAMM videos you were unable to recreate?

(b) Were there actions in DREAMM you feel there should be a video for?

6. Feedback on DREAMM

(a) Were there any actions in DREAMM you encountered difficulty performing?

7. Other sources of confusion

(a) Were there any other sources of confusion in this lesson?

Figure 9.8: Retroactive probing dialogue
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9.2 Study Results

Participant Demographics

In order to perform a time intensive and in-depth study, a study size of 6 participants was
selected. Below are the recruitment demographics of the five non-experts and one novice.
The novice user’s results were used to begin identifying concepts and details which would
need to be added to the lessons to broaden the accessible audience.

Gender:
5 / 6 Male (Novice)
1 / 6 Female

Last received diploma:
4 / 6 B.S. Engineering (Novice)
1 / 6 BS CS
1 / 6 HS diploma

Current program:
1 / 6 BS Humanities and Social Sciences
3 / 6 MS Engineering (Novice)
1 / 6 PhD CS
1 / 6 None

Which best describes your programming background? (select one)
1 / 6 No programming experience (Novice)
4 / 6 Do not have a CS degree, but have taken a class involving programming
1 / 6 Have a CS degree

Which best describes how often you typically program? (select one)
1 / 6 Monthly
3 / 6 Weekly
1 / 6 Daily
1 / 6 No programming experience (Novice)

List all programming languages you are comfortable programming in:
1 / 6 None (Novice)
1 / 6 Python, JavaScript
1 / 6 C++, Java, Python, MATLAB
1 / 6 C, C++, Matlab, R
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1 / 6 MATLAB, Java
1 / 6 C

Lesson Durations

The lesson durations for each participant are shown in Table 9.1. This is the length of time
from when they began the lesson to when the post-lesson interview began. Some lessons were
designed to be longer than others based on the amount of content to be covered, number
of quizzes, and number of jobs. Users could ask for assistance during the lesson if lesson
content was unclear or unexpected behavior in DREAMM was encountered. Blue, bolded
text indicates the participant completed that lesson slower than the average participant and
red, unbolded text indicates the user completed that lesson quicker than average. User 5 is
the novice user, and did not complete all lessons before the allocated time for the experiment
expired.

User L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Total
1 2:50 28:24 9:16 8:25 44:45 28:07 26:38 54:46 1:07:05 5:35 4:35:51
2 1:19 16:11 7:41 7:26 20:38 19:37 16:06 24:09 39:50 4:05 2:37:02
3 1:05 22:38 15:06 2:12 25:00 22:28 27:34 30:46 38:22 5:39 3:10:50
4 1:33 23:22 51:56 21:08 1:08:37 1:05:26 56:03 53:58 1:28:44 9:00 7:19:47
5 2:37 37:13 40:37 5:48 1:38:34 34:52 55:38 1:12:57 1:07:29 - 6:55:45
6 2:10 27:48 19:32 3:30 50:06 37:48 38:41 54:48 1:12:26 9:33 5:16:22
Avg 1:56 25:56 24:01 8:05 51:17 34:43 36:47 48:34 1:02:19 6:46 5:00:24

Table 9.1: Completion time for each lesson and each participant (hour: minutes: seconds)
Bolded, blue durations indicate above average; red durations indicate below average

Lesson Scheduling

Table 9.2 shows the number of days between each lesson for each participant. Most sessions
were scheduled within 2 days of the previous lesson, although there are some larger gaps due
to the participant’s travel schedule.
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User L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Final
1 - 0 2 0 3 0 0 9 2 5 0
2 - 0 2 0 12 2 1 2 2 2 0
3 - 0 18 0 0 0 1 0 0 1 0
4 - 0 1 0 0 1 3 0 1 0 0
5 - 0 26 0 0 0 2 2 0 1 0
6 - 0 0 0 1 1 1 0 7 4 0

Table 9.2: Number of days elapsed since previous lesson: Bolded, red quantities are greater
than 2 days

Quiz Results

Table 9.3 shows the number of the quizzes answered correctly for each user and lesson.
In general, the total number of quizzes correlates with the length and complexity of the
lesson. Quizzes were presented either directly after presentation of a new concept to evaluate
understanding or at the beginning of a lesson to review earlier concepts that would be used
frequently in the lesson.

User L2 L3 L4 L5 L6 L7 L8 L9
1 8/8 4/4 2/2 28/29 12/12 4/4 3/3 4/4
2 8/8 4/4 2/2 29/29 11/12 4/4 3/3 4/4
3 8/8 4/4 2/2 29/29 12/12 4/4 3/3 4/4
4 8/8 4/4 2/2 29/29 12/12 4/4 3/3 4/4
5 8/8 4/4 2/2 29/29 12/12 2/4 3/3 4/4
6 8/8 4/4 2/2 29/29 12/12 4/4 3/3 4/4

Table 9.3: Number of quizzes answered correctly for each lesson and each participant:
Bolded, red numbers indicate at least one answer was incorrect.
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Job Results

User L2 L3 L5 L6 L7 L8 L9 L10
1 2/2 2/2 2/2 1/1 2/4 6/6 1/2 2/2
2 2/2 2/2 2/2 1/1 4/4 6/6 1/2 2/2
3 2/2 2/2 2/2 1/1 3/4 6/6 2/2 2/2
4 2/2 2/2 2/2 1/1 2/4 6/6 2/2 2/2
5 2/2 2/2 2/2 1/1 0/4 3/6 1/2 -
6 2/2 2/2 2/2 1/1 3/4 4/4 1/2 2/2

Table 9.4: Number of jobs performed correctly for each lesson and each participant: Red
numbers indicate at least one job was not performed correctly

Final Plan

All five non-experts constructed solutions for both versions of the final plan. The beginner
user did not begin the final plan due to time constraints.

For the asynchronous version of the plan, 3 of the 5 participants were able to construct a
correct solution. For the synchronous version of the plan, none of the participants were able
to construct a correct solution.

9.3 Analysis

9.3.1 Demographic

The novice participant experienced many difficulties with the lessons, and did not begin
Lesson 10 nor the Final Plan as training time had expired. With one exception, the completed
lessons were performed in an above average amount of time. In addition, the participant
requested clarification during lessons on concepts such as as variables and looping.

On average, the non-experts completed the ten lessons in 4 hours and 35 minutes. User
feedback largely consisted of suggestions to improve clarity of instruction, quizzes, and jobs,
with only a few instances of requests for additional content. These requests are detailed
below in Section 9.3.3 and Section 9.3.4. Overall, the feedback suggests the lessons were
scoped appropriately for users with exposure to programming and computer science.

9.3.2 Language Scalability

To improve scalability, training material should not require an expert user’s presence. The
expert user present during the study performed several tasks: quiz grading, job grading,
task clarification, and reviewing earlier concepts. The answer format for the quizzes can
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be sorted into 4 categories: free response, multiple choice, labeling a provided plan, and
adding to a provided plan. To automate free response quiz grading, the questions would
converted to multiple choice answers. Users’ free response answers and retroactive probing
dialog would be used to select a set of answers. Multiple choice answers can easily be graded
programmatically. Quizzes involving labeling a plan, i.e. updating where tokens will be,
have exactly one correct answer and can be graded automatically. Quizzes involving adding
to a provided plan are similar to jobs, but were performed on a paper handout instead of
DREAMM. These would be converted to jobs.

Automatic grading of jobs is possible by comparing the user’s plan file to an “answer
key” plan file. Certain flexibility would be necessary, such as allowing multiple events on a
vertex to be placed in any order and comparing variable mapping and not specific variable
names.

Task clarification was necessary in several lessons. Updating the training material ac-
cordingly to eliminate these sources of confusion may be sufficient to remove the need for
an expert for task clarification. Otherwise, additional user studies may be necessary to
iteratively improve lesson clarity.

One of the most common pieces of feedback was the desire for a mechanism to review
topics on demand during lessons. Several concepts were proposed, including adding a glossary
of terms with links to relevant lessons. A second option was adding tool text to keyword
concepts, with the hover text providing a brief refresher and links to relevant lessons. A
third option was to create a wiki of key terms, with hyperlink encyclopedia references to
other key terms used in an entry. Given all three of these concepts use similar content, a
future study could compare which combination of approaches is most useful for users.

9.3.3 Language Learning

Quizzes were used as the primary assessment of a user’s understanding of language syntax.
The results in Table 9.3 show that incorrect quiz answers were uncommon: in both instances
where a non-expert user answered a quiz incorrectly, they indicated in the structured inter-
view that the content was understood but that the quiz’s wording was confusing. None of the
quizzes reviewing concepts from previous lessons were answered incorrectly. We hypothesize
this was due to the generally short time gap between most lessons for participants, as shown
in Table 9.2.

The beginner user had difficulty answering a quiz question involving looping. It would
be necessary to add additional content explaining looping to address this difficulty.

A common request during post-lesson interviews was more detailed explanations of var-
ious robotics and programming terms used in the lessons, including system, runtime, and
variable field. Explanations relating the terms to the Cooperative Robotic Watercraft project
were understood and would be a useful addition to the training material.
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9.3.4 Language Application

Job Results

Jobs results were one method used to assess a user’s ability to transfer knowledge of the
language into usable team plans. Table 9.4 shows that each user had difficulty with at least
one job.

In Lesson 7 a common source of confusion was using “Relevant Token” edge requirements
for edges connected to transitions with no input events. Additional content and a quiz could
be used to reinforce that “Robot” token edge requirements must be used for these transitions.
Another source of confusion was adding looping to plans based on a question presented to the
operator. Figure 9.9a shows a mistake where looping moved tokens too far back in the plan,
where other edge requirements would prevent the the moved token from creating triggering
the behavior additional times. A quiz reminding developers to consider other existing edge
requirements could be effective in addressing this type of semantic error.

Several users were confused in Lesson 8 by how to use the map widget to provide static
definitions as the tutorial video showed how to provide a static definition for a string using a
text field. Additional video content demonstrating map usage would address this confusion.

In Lesson 9 several users were confused by the instructions for a job designed to test their
ability to use variables correctly. One source of confusion was the names to use for variables.
Examples in the lesson assigned variable names to fields for certain events, but not all of
the events used in the job. Some participants did not know to choose their own names to
assign to variables for these other event’s fields. In addition, the job of assigning write and
read variable names to all input and output event’s fields for an entire plan was found to be
overwhelming. These participants suggested adding an additional job earlier with a similar
task but for a smaller plan. A second source of errors involved the @task variable. The
@task variable is specified as a read variable for output event fields to indicate that when
a task token activates the event, that field’s value should be read from the corresponding
task. For example, in the final plans (Figure 9.6 and Figure 9.7) robots are assigned tasks
which are tied to a particular location. The @task variable is used as the read variable for
the Location field in the Robot Goto Location output event so that when a task token enters
the place, the robot assigned to that task is instructed to goto the task’s location. Some
participants referenced the @task variable incorrectly, such as listing it as the read variable
for the Generate Task output event’s TaskClass field instead of providing a definition such
as Temperature or Camera.

Final Plan Results

The two versions of the final plan were another method used to gauge participants’ abilities
to apply the training material.

Due to time constraints, the beginner user did not have time to begin the final plan.
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(a) Incorrect implementation of looping blocked by >= 1 Robot requirement

(b) Correct implementation of looping

Figure 9.9: Confusion about looping
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All non-expert users produced a plan to address the initial, asynchronous version of the
plan. Figure 9.6 shows a plan meeting all of the specified requirements. Three participants
made plans identical to this, with inconsequential differences such as variable names. The
other two participants made errors when addressing the requirement “When the task to-
kens are received, they should be allocated immediately by the System AI.” The desired
method was to use the “Mixed Initiative” markup on “→Operator Select Allocation” out-
put event, and using the “Immediate” option to indicate the autonomy should immediately
make the decision for the operator. An earlier example showed how to use “Mixed Ini-
tiative” markup to timeout an operator decision after 10 seconds. Instead, several users
removed the place with the “→Operator Select Allocation” output event and the tran-
sitions with the “←AllocationsRejected” and “←AllocationAccepted” input events. This
connected the transition with the “←AllocationsReceived” input event to the place with the
“→ApplyAllocation” output event. However, as “←AllocationsReceived” returns a list of
allocations and “→ApplyAllocation” requires a single allocation, their variables are incom-
patible, leading to the “→ApplyAllocation” being undefined. Participants indicated naming
an event “Operator Select Allocation” implied an operator would always be involved. Re-
naming the event or providing an example of this use of the Mixed Initiative markup to the
lesson could address this confusion.

None of the users were able to complete the synchronous version of the plan without
assistance. A correct solution to this version of the requirements is shown in Figure 9.7.
Participants were unable to encode detection of when all boats were at their task’s location.

Lesson 9 introduced a pattern to determine when all tasks were finished, which was used
to transition the plan to an end place, seen in Figure 9.5. A similar pattern using “Robot At
Location” instead of “Task Completed” could be used to determine when all task’s robots
were in position, but the lesson did not cover variations of the pattern. This variation of
the final plan was designed to gauge if additional content would be necessary for users to
recognize and repurpose the “all tasks finished” pattern. One participant identified that
the all tasks finished would be used, but could not determine the exact format. Another
participant proposed methods for synchronizing the action which would require unsupported
events and/or functionality in the language, such as adding an input event which would be
generated when all paths were finished, or using a variable on an in-edge requirement to set
the required number of robot tokens on an in edge to the number of tasks. In the post-lesson
interview, participants recommended adding additional lesson content specifically addressing
repurposing the all tasks finished structure.

9.3.5 Summary

In this chapter, we discussed a process used to design training material to teach non-experts
how to design SPNs and a model for evaluating the effectiveness of the material. Cognitive
walkthrough, incremental complexity, and a pilot study were used to design the material,
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while retrospective probing and structured interviews were used to asses learnability. De-
signing a small set of plans with incremental complexity required significant development
effort and several iterations as scope of the lesson material was increased and reduced based
on total duration. However, my intuition is that it is of key importance to quickly training
users.

To support our first contribution of a team planning language for non-experts, we con-
ducted a user study with 5 non-expert programmers and one novice programmer. Results
for the target demographic of non-experts were encouraging, with an average completion
time of 5 hours. We choose to recruit 5 non-experts based on several usability study recom-
mendations and the required time involvement, which is a small number compared to other
types of user studies. Consistent with other usability studies, I found that the users for the
large part were confused and made mistakes in similar areas. If resources made a 10 user
study possible, I believe it would be more beneficial to run two studies of 5 users, improving
material in between, than to conduct a single study of 10 users.
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Chapter 10

Discussion

10.1 Summary

This thesis document has presented research efforts and evidence of 4 contributions.

SPN Team Plan Language We designed the SAMI Petri Net language as an extension
of Colored Petri Nets. Extensions were designed to add compact and simple representation
power of complex concepts such as team coordination, contingency invocation, and task as-
signment. These extensions were then analyzed to find reduction rules to allow for the use
of existing Petri Net analysis techniques in plan development assistant agents. Additional
agents were developed using meta-knowledge of events in the domain to provide additional
tools to developers. We presented SPN plans designed in two domains, one using autonomous
watercraft and one using autonomous aerial vehicles, to demonstrate the ability of the lan-
guage to capture plans in multiple domains. Plans were executed and refined in the field
for a team of autonomous boats to find useful extensions to the language, such as opera-
tor interrupts, and to test the limits of the language. A simulation environment was then
used to evaluate the impact of operator interrupt mechanism and results showed that both
hazard resolution time and operator involvement decreased as desired. A set of lessons to
teach non-experts to develop team plans was designed and evaluated in a user study, which
showed that that non-experts were able to successfully design team plans after an average
lesson completion time of 5 hours.

SAMI Markup Language We designed the SAMI (Situational Awareness and Mixed
Initiative) markup language for use in human-robot team plans. We applied markup to
the SPNs we developed in two domains and designed operator UIs for each to demonstrate
its flexibility across domains. Using lessons from extensive field deployments, the markup
vocabulary was expanded and plan markup was modified to better fulfill the needs of the
team. We also presented a simulation designed to evaluate how well markup could affect
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team behavior at specific states in a team plan. The results of the experiment showed that
the markup language was able to prioritize boat safety over data collection only when a
boat was in physical danger. Finally, our user study showed that the markup concept was
understood by non-expert users, but that naming conventions for markup keywords should
be carefully considered to prevent confusion.

Field Experience For our third contribution we presented experience gained through ex-
tensive field deployments. We described design tradeoff decisions made over several years
of hardware iterations with the goal of improving capability of a large robot team deployed
by a small number of operators. We described operational hazards at several deployment
sites and how team plan and human-robot interaction was adjusted to operate within those
conditions. We found wireless connectivity issues due to water absorption to be the primary
and unanticipated source of failure for the team, but were able to design and test team
plans to assist in the recognition and recovery of robots in the event of connectivity failure.
To address this failure mode, hardware upgrades supporting an external antenna would be
required, though software framework upgrades to support decentralized, ad-hoc networks
could also be a solution.

Training Design and Evaluation In our fourth contribution we demonstrated a method
for creating training material for a team planning language. We presented a strategy using
a combination of cognitive walkthrough, incremental layering of language complexity to
existing material, and a pilot study to create a set of 10 lessons which could be converted
entirely to online media. In addition, we presented techniques for conducting a learnability
study designed to evaluate the effectiveness of developed material. The lessons incorporate
quizzes and jobs to evaluate a user’s understanding of language syntax and ability to apply
it. Our learnability user study also used retrospective probing and structured interview
techniques to identify shortcomings in the material which can be addressed and iterated
upon.

These 4 contributions provide a powerful system for human-robot teams which are ready
to be put in the hands of users. Using this framework and training material, non-experts
interested in using multi-robot teams to achieve tasks have a lower barrier to entry. In
addition, our framework allows for several desirable improvements for collaboration between
domain experts, human factors experts, and planning experts. The presented architecture
separates team plans, UI components, and service algorithms, reducing complications due
to collaboration across a shared codebase. This separation, combined with our domain
configuration file architecture, also allows for UI components, service algorithms, and plans
to easily be shared between collaborators, allowing for greater impact of research efforts.
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10.2 Future Topics

10.2.1 Geographic Markup

One useful extension to the SAMI markup language would be geographic markup, which
would be attached to regions on a map instead of specific events in the plan. In the plans
presented in Chapter 6, markup related to geographic factors worked well as dangerous
regions were typically associated with specific sections of the plan, such as moving from
the shore to the open water area. When this is not the case, it would be useful to modify
priorities, optimization factors, and levels of autonomy based on if the associated team
member is inside or outside of specific regions. One of the challenges in this concept is how
to resolve scenarios where the same category of markup should be applied to an event both
as geographic markup and conventional event markup.

10.2.2 Designer Development

Another area of future research is enabling users without programming exposure to use
the language. The results of the user study in Chapter 9 suggest more time and training
material would be necessary for a user without programming exposure to write their own
plans. Another strategy is to simplify writing plans, sacrificing representational power to
gain accessibility. One method currently being investigated which adopts the simplification
strategy is a new Designer mode in the DREAMM IDE presented in Chapter 5, which is
similar in concept to the MissionLab wizard [57].

In this mode a designer navigates through a dialog tree of questions about the desired
plan’s behavior and upon completion the system generates a corresponding SPN. Figure 10.1
shows an example of this dialog tree where the designer has requested an exploration plan
prioritizing energy efficiency. Grey, dashed boxes are question nodes which represent some
decision requiring the designer’s input. Each question node has a number of children called
option nodes, represented as solid boxes. Green boxes indicate the option node selected by
the designer, leaving the unselected options red. For visual clarity, only two of the question
nodes have their option nodes visible. Decisions near the root of the tree would determine
high level characteristics of the generated plan, determining which SPN template to use, and
decisions near the leafs would determine low level details, such as markup on events. Hand-
coding a SPN for each possible enumeration of the decision tree would be time consuming.
To address this, an underlying system of SPN “fragments” is developed by an SPN expert
which correspond to option nodes. When the SPN expert creates the decision tree which is
presented to the designer, the expert also creates rules describing how to combine fragments
when their corresponding option nodes are selected.
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Figure 10.1: Sample tree for Designer workflow
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10.2.3 Markup Transferability Across Devices

SAMI markup was designed to provide a sufficient level of information for a UI to act on
without overfitting for a particular domain or UI style. By designing SPNs in multiple do-
mains we can identify shortcomings in the markup language’s transferability across domains.
One method to evaluate how well markup translates across different UI styles would be to
design a SAMI compatible UI for new types of control devices. In Chapter 5, we focused on
a GUI designed for a laptop selected for its balance of portability, display size, and ability to
compile code. In future research, shortcomings in markup interpretation could be analyzed
when using the same SPN on a more portable device, such as a tablet or smartphone. These
devices allow the operator to easily move around the test site, but have a smaller screen size
and are typically constrained to touch screen interaction. We anticipate the greater mobility
of the devices improves the operator’s situational awareness, but increases the importance
of markup’s ability to capture interaction priority and mixed initiative autonomy as user in-
teractions become less frequent due to the limited visualization space and slower interaction
speed. In the other extreme, plans could be tested on a remote, multi-display workstation.
In this case, we anticipate interaction priority and mixed-initiative autonomy markup to
be less important as visualization space and interaction speed is improved, but situational
awareness markup to become critical.

10.2.4 Decentralized Execution

In the presented work we have assumed a centralized communication model due to the high
level of involvement of an operator. However, in some domains a distributed model may be
preferred for robustness and expandability [54]. To support decentralized execution, future
research would develop algorithms similar to those in PNP [201] to take a centralized SPN
and generate distributed CPNs with appropriate synchronization points. One challenge in
developing this type of algorithm is the ability to dynamically create tasks and subteams
during an SPN’s execution. This would require dynamically determining the team-members
involved at each synchronization point. In practice, a decentralized plan may require more
than these synchronization points. Contingencies for identifying and addressing communi-
cation failure may differ for a centralized model versus a decentralized model.
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[10] Marcelo Gabriel Armentano and Anaĺıa Amandi. Plan recognition for interface agents. The
Artificial Intelligence Review, 28(2):131, 2007.

157



[11] Quan Bai, Minjie Zhang, and Khin Than Win. A colored petri net based approach for multi-
agent interactions. In Proc. of 2nd International Conference on Autonomous Robots and
Agents, Palmerston North, New Zealand, pages 152–157, 2004.

[12] Antonio Barrientos, Julian Colorado, Jaime del Cerro, Alexander Martinez, Claudio Rossi,
David Sanz, and João Valente. Aerial remote sensing in agriculture: A practical approach to
area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics,
28(5):667–689, 2011.

[13] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. Optimizing schedules for priori-
tized path planning of multi-robot systems. In Robotics and Automation, 2001. Proceedings
2001 ICRA. IEEE International Conference on, volume 1, pages 271–276. IEEE, 2001.

[14] Markus Bernard, Konstantin Kondak, Ivan Maza, and Anibal Ollero. Autonomous trans-
portation and deployment with aerial robots for search and rescue missions. Journal of Field
Robotics, 28(6):914–931, 2011.

[15] Luca Bernardinello and Fiorella De Cindio. A survey of basic net models and modular net
classes. In Advances in Petri Nets 1992, pages 304–351. Springer, 1992.

[16] Graeme Best, Jan Faigl, and Robert Fitch. Multi-robot path planning for budgeted ac-
tive perception with self-organising maps. In Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on, pages 3164–3171. IEEE, 2016.

[17] Bradley J Betts, Robert W Mah, Richard Papasin, Rommel Del Mundo, Dawn M McIn-
tosh, and Charles Jorgensen. Improving situational awareness for first responders via mobile
computing. 2005.

[18] Deepak Bhadauria, Onur Tekdas, and Volkan Isler. Robotic data mules for collecting data
over sparse sensor fields. Journal of Field Robotics, 28(3):388–404, 2011.

[19] Julie H Birns, Kristen A Joffre, Jonathan F Leclerc, and Christine Andrews Paulsen. Getting
the whole picture: Collecting usability data using two methods—-concurrent think aloud and
retrospective probing. In Proceedings of UPA Conference, pages 8–12. Citeseer, 2002.

[20] Bert Bos, H̊akon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading style sheets, level 2 css2
specification, 1998.

[21] Sylvia C Botelho and Rachid Alami. M+: a scheme for multi-robot cooperation through
negotiated task allocation and achievement. In Robotics and Automation, 1999. Proceedings.
1999 IEEE International Conference on, volume 2, pages 1234–1239. IEEE, 1999.

[22] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible markup language (xml). World Wide Web Consortium Recommendation REC-
xml-19980210. http://www. w3. org/TR/1998/REC-xml-19980210, 16:16, 1998.

158



[23] Frank Broz, Illah Nourbakhsh, and Reid Simmons. Planning for human–robot interaction in
socially situated tasks. International Journal of Social Robotics, 5(2):193–214, 2013.

[24] James Bruce and Manuela Veloso. Real-time randomized path planning for robot navigation.
In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, volume 3,
pages 2383–2388. IEEE, 2002.

[25] Andrea Bunt, Cristina Conati, and Joanna McGrenere. Supporting interface customization
using a mixed-initiative approach. In Proceedings of the 12th international conference on
Intelligent user interfaces, pages 92–101. ACM, 2007.

[26] Jennifer L Burke, Robin R Murphy, Michael D Coovert, and Dawn L Riddle. Moonlight in
miami: Field study of human-robot interaction in the context of an urban search and rescue
disaster response training exercise. Human–Computer Interaction, 19(1-2):85–116, 2004.

[27] Nadia Busi. Analysis issues in petri nets with inhibitor arcs. Theoretical Computer Science,
275(1-2):127–177, 2002.

[28] Maria Paola Cabasino, Alessandro Giua, Stéphane Lafortune, and Carla Seatzu. Diagnos-
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work for multimodal generation: The behavior markup language. In International Workshop
on Intelligent Virtual Agents, pages 205–217. Springer, 2006.

165



[108] G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias. A comprehensive taxonomy for
multi-robot task allocation. The International Journal of Robotics Research, 32(12):1495–
1512, 2013.

[109] David Kortenkamp, Reid Simmons, and Davide Brugali. Robotic systems architectures and
programming. In Springer Handbook of Robotics, pages 283–306. Springer International Pub-
lishing, 2016.

[110] Yehia Thabet Kotb, Steven S Beauchemin, and John L Barron. Petri net-based cooperation
in multi-agent systems. In CRV, pages 123–130, 2007.

[111] James Kramer and Matthias Scheutz. Development environments for autonomous mobile
robots: A survey. Autonomous Robots, 22(2):101–132, 2007.
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[164] Juan Jesús Roldán, Jaime del Cerro, and Antonio Barrientos. A proposal of methodology for
multi-uav mission modeling. In Control and Automation (MED), 2015 23th Mediterranean
Conference on, pages 1–7. IEEE, 2015.

[165] Ariel Rosenfeld, Noa Agmon, Oleg Maksimov, Amos Azaria, and Sarit Kraus. Intelligent
agent supporting human-multi-robot team collaboration. In IJCAI, pages 1902–1908, 2015.

[166] Heath A Ruff, Sundaram Narayanan, and Mark H Draper. Human interaction with lev-
els of automation and decision-aid fidelity in the supervisory control of multiple simulated
unmanned air vehicles. Presence: Teleoperators and virtual environments, 11(4):335–351,
2002.

170



[167] Malcolm Ross Kinsella Ryan. Exploiting subgraph structure in multi-robot path planning.
Journal of Artificial Intelligence Research, 31:497–542, 2008.

[168] Paul M Salmon, Neville A Stanton, Guy H Walker, Daniel Jenkins, Darshna Ladva, Laura
Rafferty, and Mark Young. Measuring situation awareness in complex systems: Comparison
of measures study. International Journal of Industrial Ergonomics, 39(3):490–500, 2009.

[169] Paul Scerri, Balajee Kannan, Pras Velagapudi, Kate Macarthur, Peter Stone, Matt Taylor,
John Dolan, Alessandro Farinelli, Archie Chapman, Bernadine Dias, et al. Flood disaster
mitigation: A real-world challenge problem for multi-agent unmanned surface vehicles. In
International Conference on Autonomous Agents and Multiagent Systems, pages 252–269.
Springer, 2011.

[170] Paul Scerri, David V Pynadath, Nathan Schurr, Alessandro Farinelli, Sudeep Gandhe, and
Milind Tambe. Team oriented programming and proxy agents: The next generation. In In-
ternational Workshop on Programming Multi-Agent Systems, pages 131–148. Springer, 2003.

[171] Paul Scerri, Prasanna Velagapudi, Balajee Kannan, Abhinav Valada, Christopher
Tomaszewski, John Dolan, Adrian Scerri, Kumar Shaurya Shankar, Luis Bill, and George
Kantor. Real-world testing of a multi-robot team. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 3, pages 1213–1214. In-
ternational Foundation for Autonomous Agents and Multiagent Systems, 2012.

[172] Jean Scholtz, Jeff Young, Jill L Drury, and Holly A Yanco. Evaluation of human-robot
interaction awareness in search and rescue. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, volume 3, pages 2327–2332. IEEE, 2004.

[173] Thomas B Sheridan and William L Verplank. Human and computer control of undersea
teleoperators. Technical report, DTIC Document, 1978.

[174] Reid Simmons. Contextual awareness for robust robot autonomy. Technical report,
CARNEGIE-MELLON UNIV PITTSBURGH PA, 2013.

[175] Glenn Smith, Robert Smith, and Aster Wardhani. Software reuse across robotic platforms:
Limiting the effects of diversity. In Software Engineering Conference, 2005. Proceedings. 2005
Australian, pages 252–261. IEEE, 2005.

[176] Rick Spencer. The streamlined cognitive walkthrough method, working around social con-
straints encountered in a software development company. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems, pages 353–359. ACM, 2000.

[177] Aaron Steinfeld. Interface lessons for fully and semi-autonomous mobile robots. In Robotics
and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, vol-
ume 3, pages 2752–2757. IEEE, 2004.

171



[178] David B Stewart and Pradeep K Khosla. Rapid development of robotic applications using
component-based real-time software. In Intelligent Robots and Systems 95.’Human Robot
Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference
on, volume 1, pages 465–470. IEEE, 1995.

[179] Kartik Talamadupula, Gordon Briggs, Tathagata Chakraborti, Matthias Scheutz, and Sub-
barao Kambhampati. Coordination in human-robot teams using mental modeling and plan
recognition. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 2957–2962. IEEE, 2014.

[180] Milind Tambe. Towards flexible teamwork. arXiv preprint cs/9709101, 1997.

[181] Kimmo Tarkkanen, Pekka Reijonen, Franck Tétard, and Ville Harkke. Back to user-centered
usability testing. In Human Factors in Computing and Informatics, pages 91–106. Springer,
2013.

[182] Paul Taylor and Amy Isard. Ssml: A speech synthesis markup language. Speech communi-
cation, 21(1-2):123–133, 1997.

[183] Christopher Tomaszewski, Abhinav Valada, and Paul Scerri. Planning efficient paths through
dynamic flow fields in real world domains. In Oceans-San Diego, 2013, pages 1–5. IEEE, 2013.

[184] Craig Tovey, Michail G Lagoudakis, Sonal Jain, and Sven Koenig. The generation of bid-
ding rules for auction-based robot coordination. In Multi-Robot Systems. From Swarms to
Intelligent Automata Volume III, pages 3–14. Springer, 2005.

[185] Patrick Ulam, Yoichiro Endo, Alan Wagner, and Ronald Arkin. Integrated mission spec-
ification and task allocation for robot teams-design and implementation. In Robotics and
Automation, 2007 IEEE International Conference on, pages 4428–4435. IEEE, 2007.

[186] Abhinav Valada, Christopher Tomaszewski, Balajee Kannan, Prasanna Velagapudi, George
Kantor, and Paul Scerri. An intelligent approach to hysteresis compensation while sampling
using a fleet of autonomous watercraft. In Intelligent Robotics and Applications, pages 472–
485. Springer, 2012.

[187] Abhinav Valada, Prasanna Velagapudi, Balajee Kannan, Christopher Tomaszewski, George
Kantor, and Paul Scerri. Development of a low cost multi-robot autonomous marine surface
platform. In Field and Service Robotics, pages 643–658. Springer, 2014.

[188] MW van de Nes. Coverability and extended petri nets. B.s. thesis, Universiteit Leiden, 2013.

[189] Lovekesh Vig and Julie A Adams. Market-based multi-robot coalition formation. Distributed
Autonomous Robotic Systems 7, pages 227–236, 2006.

[190] Petcharat Viriyakattiyaporn and Gail C Murphy. Challenges in the user interface design of
an ide tool recommender. In Proceedings of the 2009 ICSE Workshop on Cooperative and
Human Aspects on Software Engineering, pages 104–107. IEEE Computer Society, 2009.

172



[191] Alan Wagner, Yoichiro Endo, Patrick Ulam, and Ronald Arkin. Multi-robot user interface
modeling. Distributed Autonomous Robotic Systems 7, pages 237–248, 2006.

[192] Fei-Yue Wang, Yanqing Gao, and MengChu Zhou. A modified reachability tree approach to
analysis of unbounded petri nets. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 34(1):303–308, 2004.

[193] Huadong Wang, Andreas Kolling, Nathan Brooks, Sean Owens, Shafiq Abedin, Paul Scerri,
Pei-ju Lee, Shih-Yi Chien, Michael Lewis, and Katia Sycara. Scalable target detection for
large robot teams. In Proceedings of the 6th international conference on Human-robot inter-
action, pages 363–370. ACM, 2011.

[194] Huadong Wang, Michael Lewis, Prasanna Velagapudi, Paul Scerri, and Katia Sycara. How
search and its subtasks scale in n robots. In Human-Robot Interaction (HRI), 2009 4th
ACM/IEEE International Conference on, pages 141–147. IEEE, 2009.

[195] David Wettergreen, Nathalie Cabrol, Vijayakumar Baskaran, Francisco Calderón, Stuart
Heys, Dominic Jonak, R Allan Luders, David Pane, Trey Smith, James Teza, et al. Sec-
ond experiments in the robotic investigation of life in the atacama desert of chile. In Proc.
8th International Symposium on Artificial Intelligence, Robotics and Automation in Space,
2005.

[196] Cathleen Wharton, John Rieman, Clayton Lewis, and Peter Polson. The cognitive walk-
through method: A practitioner’s guide. In Usability inspection methods, pages 105–140.
John Wiley & Sons, Inc., 1994.

[197] Dianxiang Xu, Richard Volz, Thomas Ioerger, and John Yen. Modeling and verifying multi-
agent behaviors using predicate/transition nets. In Proceedings of the 14th international
conference on Software engineering and knowledge engineering, pages 193–200. ACM, 2002.

[198] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. A survey and analysis of multi-robot
coordination. International Journal of Advanced Robotic Systems, 10(12):399, 2013.

[199] Tao Zhang and Julie A Adams. Evaluation of a geospatial annotation tool for unmanned
vehicle specialist interface. International Journal of Human-Computer Interaction, 28(6):361–
372, 2012.

[200] Anmin Zhu and Simon X Yang. A neural network approach to dynamic task assignment of
multirobots. IEEE transactions on neural networks, 17(5):1278–1287, 2006.

[201] Vittorio A Ziparo, Luca Iocchi, Pedro U Lima, Daniele Nardi, and Pier Francesco Palamara.
Petri net plans. Autonomous Agents and Multi-Agent Systems, 23(3):344–383, 2011.

173



Appendices

i



.1 Source code

Java source code for the SPN language and CRW simulator, sample plans, and GUI are available
on GitHub.
https://github.com/nbbrooks/sami-core

https://github.com/nbbrooks/sami-dreaam

https://github.com/nbbrooks/sami-crw

.2 CRW library

.2.1 Output event list

Name Description Fields
Uses
Proxy?

Uses
Task?

Proxy Directives

Proxy Set
Description

Set a description for the proxy
String
(description)

Y N

Proxy Execute
Path

Tell the proxy(ies) to follow a path
Map <Proxy,
Path >

Y N

Proxy Execute
Path and Block

Tell the proxy(ies) to follow a path and wait
Map <Proxy,
Path >

Y N

Proxy Goto Point
Tell the proxy(ies) to go directly (straight-line)
to a location

Map <Proxy,
Location >

Y N

Proxy Goto
Point and Block

Tell the proxy(ies) to go directly to a location
and wait

Map <Proxy,
Location >

Y N

Proxy Explore
Area

Tell the proxy(ies) to collaboratively explore an
area

Area2D,
double (Mapping
density)

Y N

Proxy Resend
Waypoints

Resend a proxy’s current waypoints - Y N

Connect Existing
Proxy

Connect to a boat server via IP address Y N

Connect Existing
Proxy ID

Connect to a boat server via ID Y N

Create Simulated
Proxy

Create and connect to a simulated boat Y N

Set Gains
Set the proxy(ies)’s PID gains for steering and
throttle

List¡double¿
(Gains)

Y N

Block Movement
Tell the proxy(ies) to wait for further instruction
from this mission

- Y N

ii

https://github.com/nbbrooks/sami-core
https://github.com/nbbrooks/sami-dreaam
https://github.com/nbbrooks/sami-crw


Name Description Fields
Uses
Proxy?

Uses
Task?

Proxy Goto
LatLon

Tell the proxy(ies) to go directly (straight-line)
to a location

Location Y N

Service Requests

Allocation
Request

Get possible allocations of a set of tasks to a set
of proxies

- Y Y

Path Request Get path from proxy’s location to a location
Map <Proxy,
Location >

Y N

Assemble
Location Request

Give each proxy a unique location near a
location

Location
(Central
location),
double (Spacing
density in m)

Y N

Proxy Compare
Distance Request

Compare proxy’s distance to a point

Location
(Comparison
location),
double (Distance
threshold in m)

Y N

Start System
Timer

System wide timer
int (Duration in
ms)

N N

Start Proxy
Timer

Proxy specific timer
int (Duration in
ms)

Y N

Get All Proxy
Tokens

Get all proxy tokens - N N

Battery Level
Subscription

Battery level subscription

int (Update rate
in s),
double (Low
battery %
threshold),
double (Critical
battery %
threshold)

Y N

UI Directives

Display Message GUI message Text Message N N

Operator
Allocation
Options

Select from allocations
List <Allocation
>

N N

Operator Path
Options

Select from paths
List <Map
<Proxy, Path
>>

N N

iii



Name Description Fields
Uses
Proxy?

Uses
Task?

Operator Select
Boat

Select from proxy tokens - Y N

Operator Select
Boat List

Select from proxy tokens - Y N

Operator Select
Boat ID

Select from in scope boat IDs List <BoatID > N N

Operator Create
Area

Create area - N N

Operator
Approve

Grant approval - N N

Variables

Define Variables List of variables to define List¡Variable¿ N N

Redefine
Variables

Variable name to redefine VariableName N N

Select Variable
Returns list of in-scope variables of specified
class

VariableClass N N

Return Value Set’s sub-mission ”return” String value String N N

Abort

Send Abort
Mission

Tell proxy to send signal to abort current mission - Y N

Send Proxy
Abort All
Missions

Tell proxy to send signal to abort all missions - Y N

Send Proxy
Abort Future
Missions

Tell proxy to send signal to abort future missions - Y N

Proxy Abort
Mission

Proxy aborts actions related to mission - Y N

Tasks

Generate Tasks
Create a Send TaskStarted for each proxy’s
current task

List¡Location¿,
TaskClass

N Y

Refresh Tasks Send TaskStarted for each proxy’s current task - N Y

Task Complete Signal that the task is complete - N Y

Table 1: Summary of CRW output events

.2.2 Input event list
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Name Description Fields
Uses
RT?

Proxy

Proxy Path
Completed

Proxy has completed its path - Y

Proxy Created
Connection to boat has been established and a
proxy token has been created

- Y

Proxy Pose
Updated

Proxy has received a pose update from its boat - Y

Service Responses

Allocation
Response

Allocation algorithm has returned computed
allocation(s) for a set of tasks

List <Allocation > Y

Path Response
Path algorithm has returned computed path(s)
for a set of proxies

List <Map
<Proxy, Path >>

Y

Battery Nominal
Proxy’s battery level is at/above configured
”nominal” level

double (Battery %) Y

Battery Low
Proxy’s battery level is at/above configured
”low” level and below ”nominal” level

double (Battery %) Y

Battery Critical
Proxy’s battery level is below configured ”low”
level

double (Battery %) Y

Assemble Location
Response

Spaced out proxy locations have been computed
Map <Proxy,
Location >

Y

Timer Expired System timer has expired - N

Proxy Timer
Expired

Proxy’s timer has expired - Y

Tokens Returned A request for a set of tokens has been completed - Y

Quantity Greater The first of two quantities compared was greater - Y

Quantity Less
The second of two quantities compared was
greater

- Y

Quantity Equal The two quantities compared were equal - Y

Selection

Operator Accepted
Allocation

One of the presented allocation options was
accepted

Allocation Y

Operator Rejected
Allocation

The presented allocation options was rejected - Y

Operator Accepts
Path

One of the presented path options was accepted
Map <Proxy, Path
>

Y

Operator Rejects
Path

The presented path options was rejected - Y

Operator Selects
Boat

One of the presented proxies was selected - Y
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Name Description Fields
Uses
RT?

Operator Selects
Boat List

One/more of the presented proxies was selected - Y

Operator Selects
Boat ID

One of the presented proxies IDs was selected BoatId Y

Operator Created
Area

Operator defined a 2D area Area2D N

Yes Option Operator responded ”yes” - N

No Option Operator responded ”no” - N

Variables

Defined Variables
Received

Operator defined the requested variables
Map <String,
Object >

N

Redefined
Variables Received

Operator redefined the requested variables
Map <String,
Object >

N

Variable Selected Operator selected one of the presented variables VariableReference N

Check Return Check sub-mission return value against a string

MissionPlanSpecification
(sub-mission),
String
(Comparison value)

N

Abort

Proxy Abort
Mission Received

The proxy signalled to abort this mission - Y

Operator Interrupt
Received

The operator triggered an interrupt
String (Interrupt
name)

N

Tasks

Task Delayed
This task has moved backwards in the assigned
proxy’s queue

- Y

Task Reassigned This task has been reassigned to another proxy - Y

Task Released This proxy is no longer responsible for this task - Y

Task Started This task has been started by its proxy - Y

Task Unassigned This task is not assigned to any proxy - Y

Table 2: Summary of CRW input events

.2.3 Markup list
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Name Description Options

Attention Attract the operator’s decision

Type {Highlight / Blink},
End {On Click},
Target {Component / All proxies / Relevant
proxies}

Default
Selection

Set a default option for a decision Selection {All / None}

Description
Add additional text information
to a decision

Source {Specify text},
Show plan name {Yes / No},
Show vertex name {Yes / No},
Show event name {Yes / No}

Filter
Filter to include/exclude certain
options in a decision

Source {Specify text},
Action {Include / Exclude}

Keyword
Attach a keyword for grouping
similar interactions

Source {Specify text}

Mixed
Initiative
Trigger

Customize MI strategy for this
decision

Trigger {Never / Immediately / Timer}

Selection
Options

Specify the number of solutions
that should be computed and
presentation style

Number {Specify number},
Format {Sequential / Stacked / Tabs}

Optimize
Provide hints for what algorithms
should optimize for

Criteria {Computation time / Execution time /
Execution safety / Execution efficiency}

Phase Branch
Indicate this vertex branches the
previous phase item into the next
phase item

Action name source {Specify text},
Actor {Operator / SAMI / Proxy / Task}

Phase Item
Indicate this vertex is a member
of the indicated phase

Phase name source {Specify text},
Actor {Operator / SAMI / Proxy / Task}

Priority
Specify a relative priority for this
interaction

Rank {Low / Medium / High / Critical}

Proxy Status
Specify the proxy’s status in this
mission

Status {Nominal, Warning, Severe}

Relevant Area
Specify an area relevant to this
interaction

Source {Specify Area, Specify point, All
proxies, Relevant proxies},
Modification {Expand / Reduce},
Map type {Satellite / Political}

Relevant
Information

Specify a data type relevant to
this interaction

Source {Select sensor},
Visuzalition {Heatmap, Contour, Threshold}

Relevant
Proxy

Specify proxy(ies) relevant to this
interaction

Proxy {Relevant proxies / All proxies},
Show path {Yes / No},
Show diagnostic {Yes / No}, Show data {Yes
/ No}
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Name Description Options

Sort Sort options by some criteria
Method {Alphabetical / Chronological},
Order {Increasing / Decreasing}

Table 3: Summary of CRW markups

.3 Field deployment data

(a) Boat GPS logs for December 13, 2015 (b) Boat GPS logs for December 15, 2015

(c) Boat GPS logs for December 17, 2015 (d) Boat GPS logs for December 19, 2015
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.4 User study material

.4.1 DREAMM Lesson Modes

Action L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

Edit label
Edit events
Delete
Edit sub-missions
Set/unset start
Set/unset end

Edit in/out tokens
Delete in/out edge

Blank place
Places
Blank transition
Transitions
Roles
Sub-missions

Save
Save As
Exit

Clear all
Edit Markup
Read variable name
Value
Write variable name
Editable

Clear all
Edit Markup
Write variable name

No edge requirement icon
Error counter
Warning counter

Visible
New mission
Rename
Delete

ix



Action L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

Visible

AnyProxy
AnyTask
Implied Generic
Generic
RelevantToken
TaskClass
None
LessThan
GreaterThanEqualTo

AnyProxy
AnyTask
Implied Generic
Generic
RelevantToken
TaskClass
All
Number
Take
Consume
Add

Save
Undo
Redo

Table 4: DREAMM lesson modes

.4.2 Tutorial Slides
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