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Abstract

Humans are incredibly dexterous. We interact with and manipulate tools
effortlessly, leveraging touch without a second thought. Yet, replicating
this level of dexterity in robots is a major challenge. While the robotics
community, recognizing the importance of touch in fine manipulation, has
developed a wide variety of tactile sensors, how best to leverage these
sensors for both perception and manipulation is unclear. In this thesis,
we address how to efficiently integrate tactile sensing for robot perception
and dexterous manipulation.

Specifically, we turn to self-supervised learning (SSL) to train tactile
representations that can generalize across sensors, standardize usage
across downstream tactile tasks, and further alleviate the need to collect
labeled task data which is often impractical to collect for tasks such as
uncalibrated force field estimation. To this end, we discuss Sparsh and
Sparsh-skin, a family of SSL. models for vision and magnetic-skin based
tactile sensors respectively. Sparsh and Sparsh-skin are trained via self-
distillation for full-hand tactile sensors in downstream tasks. We find that
both Sparsh and Sparsh-skin not only outperform task and sensor-specific
end-to-end models by a large margin, but also that they are data efficient
for downstream task training.

Second, we note that existing work often overlooks the multimodal aspects
of human touch, such as vibration and heat sensing. We discuss Sparsh-X,
a compact tactile representation fusing image, pressure, audio and inertial
measurements from the DIGIT360 sensor. With Sparsh-X we demonstrate
that multimodal sensing improves both passive perception tasks as well
as dexterous manipulation tasks such as in-hand rotation.

Finally, we present privileged tactile latent distillation (PTLD), a novel
method to imbue tactile sensing in dexterous manipulation policies trained
via reinforcement learning. PTLD avoids simulating tactile sensors and
uses privileged sensors to bridge the sim-to-real gap. With PTLD, we first
show that one can improve existing RL trained policies such as in-hand
rotation and then that it can enable learning more challenging tasks such
as in-hand reorientation.

Jointly these contributions provide a path to leverage tactile sensing in
both imitation and reinforcement learning based robot manipulation.
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Chapter 1

Introduction

As humans, we are incredibly dexterous, we are able to use our sense of touch and
proprioception effortlessly in multiple ways without giving it a second thought. We
are able to coordinate our fingers to use complex tools such as scissors. We also have
an implicit understanding of pressure we apply on different objects, which enables us
to perform careful controlled maneuvers such as scraping a horse nail as visualized
in fig. 1.1. In fact, our sense of touch is so ingrained that we also sense the tiny
bumps on the road and the weight of the steering wheel, when driving a car through
indirect contact. When this ‘sense of touch’ is lost, our ability to maintain grasp of

objects becomes inaccurate and uncontrolled [185].

Figure 1.1. Humans are incredibly dexterous and are capable of impressive dexterous
manipulation.
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The robotics community — of course — recognizes the importance of touch, and
over the past decade has developed a plethora of tactile sensors [116] in hopes of
replicating the dexterity displayed by humans. However, even though there has been
significant progress in robot learning, we are yet to see effortless robotic dexterous
manipulation skills.

In contrast to general robot manipulation, dexterous manipulation is typically
defined from an object centric point of view where multiple manipulators or fingers
coordinate to grasp and manipulate an object [130]. Therefore, dexterous manipula-
tion in principle assumes the use of a multi-fingered robot hand, instead of simpler
manipulators such as parallel-jaw grippers. Multi-fingered robot hands are difficult to
control due to a higher degree of freedom, and large action space, however they offer
the versatility to study fine manipulation and promise true generality in terms of
robotic tool use [25, , | and functional object grasping [159] without needing
specific environment orchestration. When dealing with such contact-rich tasks with
multi-fingered dexterous hands, the role of tactile-sensing is clear: Tactile sensing of-
fers high observability into the state of the system, when other observation modalities
such as vision experience high-occlusion.

Initial attempts in incorporating tactile sensing for robot learning leveraged tactile
sensors for passive perception tasks such as pose estimation, reconstruction, object
classification, property estimation, grasp stability classification and slip detection
among others [20, 88 , , ]. A common theme across these approaches has
been to leverage supervised learning with custom datasets and architectures to tailor
a solution specific to the type of tactile sensor being used in the work. Once the
perception output is obtained, the hope is to then use these outputs in robot policies
in a modular manner. However, such an approach with supervised learning is not
scalable. Collecting labeled tactile data is expensive not only because it requires
interactions in the real world like other embodied data, but also because obtaining
ground truth labels for tactile tasks is challenging. In many cases such as shear
estimation over a contact area, obtaining labels is even infeasible due to a lack of
sensors to obtain the labels. The scalability is further exacerbated by the fact that
one needs to further tailor and repeat data collection for every different type of tactile
sensor that is being used.

Several other approaches have also leveraged tactile sensors in learning manipu-
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lation directly. There are two paradigms primarily in robot learning: a) Learning
from demonstrations and b) Learning from experience (in simulation). For learning
from demonstrations, the primary challenge is in obtaining tactile demonstration
data for learning robot skills. Collecting data via tele-operation is impractical for
multi-fingered robot hands as we do not yet have reliable techniques to tele-operate
the robot without haptic feedback. On the other hand, kinesthetic teaching can
produce some dexterous behaviors, but controlling multiple fingers with two human
hands is quite challenging. For learning from simulation, several works attempt
incorporating tactile sensing in learning dexterous skills such as in-hand rotation,
and reorientation [25, , , ], however most of these approaches end up sim-
plifying tactile sensing to binary contact or single point of contact models to simplify
simulation. Tactile simulation requires soft-body simulation which is quite slow and
not yet amenable to RL based policy learning.

In this thesis, we therefore explore the natural question of how can one minimize
the effort in obtaining tactile data to learn robot dexterity. Specifically, we explore
several ways to efficiently incorporate tactile sensing in both robot perception as well
as robot dexterous manipulation. To this end, we provide answers to the following

questions:

1. Can we improve sample efficiency for downstream tactile tasks by learning from

play data?
2. What kind of self-supervised objectives are suitable for tactile sensors?

3. If tactile simulation is difficult, can we learn tactile dexterous policies in the

real world from proxy sources?

1.1 Organization

This thesis can be divided into three major parts (see fig. 1.2).

In Part 1, we turn to self-supervised learning to train tactile representations that
can generalize across sensors, and standardize the usage across downstream tactile
tasks. Here, in chapter 2 we will introduce Sparsh — which means ‘to touch’ in
Sanskrit / Hindi. Sparsh is a family of representation models for vision-based tactile

sensors that works across three different commonly used visuo-tactile sensors. Then in
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Figure 1.2. This thesis is divided into three parts: Part 1 includes Sparsh and Sparsh-skin,
which explore different self-supervised objectives that are suitable for tactile sensors. Part
2 includes Sparsh-X, where we extend self-supervised learning to multisensory touch, and
finally in Part 3, we introduce PTLD which is a novel method to learn tactile dexterous
manipulation in the real world without having to simulate tactile sensors.

chapter 3 we present self-supervised representation learning for full-hand magnetic
skin based tactile sensors, which cover the rest of the robot hand. Both of these
works demonstrate the power of learning self-supervision from play data, particularly
showing significant improvements in various downstream tasks, including both robot
perception tasks as well as manipulation.

In Part 2, we recognize that existing tactile sensors are largely unimodal and do
not consider the multisensory nature of touch, unlike humans, who sense pressure,
vibrations, proprioception and surface deformation as part of touch. To this end, in
chapter 4 we introduce Sparsh-X which learns multi-sensory tactile representations
for a tactile sensor such as DIGIT360, and we demonstrate that unifying disparate
modalities such as tactile images, audio, IMU and pressure, together is beneficial. In
Sparsh-X we also present a novel method to improve dexterous manipulation policies
via tactile adaptation in ther real world.

Finally, in Part 3, we present privileged tactile latent distillation ( chapter 5),

where we show that we can learn dexterous tactile policies using simulation, but do

4



1. Introduction

not really have to simulate tactile sensors. With Privileged tactile latent distillation,
we learn tactile encoders by distilling the latent representations from privileged sensor
policies being deployed in the real world, using an instrumented cell as the bridge

between sim-to-real.
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Chapter 2

Sparsh: Self-supervised touch
representations for vision based

tactile sensing

In this work, we introduce general purpose touch representations for the increasingly
accessible class of vision-based tactile sensors. Such sensors have led to many recent
advances in robot manipulation as they markedly complement vision, yet solutions
today often rely on task and sensor specific handcrafted perception models. Collecting
real data at scale with task centric ground truth labels, like contact forces and slip,
is a challenge further compounded by sensors of various form factor differing in
aspects like lighting and gel markings. To tackle this we turn to self-supervised
learning (SSL) that has demonstrated remarkable performance in computer vision.
We present Sparsh, a family of SSL models that can support various vision-based
tactile sensors, alleviating the need for custom labels through pre-training on 460k-+
tactile images with masking and self-distillation in pixel and latent spaces. We also
build TacBench, to facilitate standardized benchmarking across sensors and models,
comprising of six tasks ranging from comprehending tactile properties to enabling
physical perception and manipulation planning. In evaluations, we find that SSL
pre-training for touch representation outperforms task and sensor-specific end-to-end
training by 95.1% on average over TacBench, and Sparsh (DINO) and Sparsh (IJEPA)

are the most competitive, indicating the merits of learning in latent space for tactile

7
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Figure 2.1. We present Sparsh, a family of general touch representations, and TacBench, a
standardized benchmark of six touch-centric tasks ([T1]-[T6]) covering prominent problems
in vision-based tactile sensing. We find Sparsh pre-trained with self-supervision on a
dataset of 460k+ tactile images can generalize across many tasks (right) and sensors (left)
outperforming task and sensor specific models (E2E). Performance in the plot (middle) is
with task decoders using 33% labeled data (except [T6] that uses 50%).

2.1 Introduction

Touch comes before sight, before speech. In today’s Al landscape, this Margaret
Atwood quote is playing out in reverse despite touch being a crucial modality for
humans to physically interact with the world. Touch provides a direct window into
information like forces and contact during hand-object interactions, enabling dexterity.
Vision-based tactile sensors [15, 100, 105, 207] have emerged as the leading form factor
capable of capturing images of physical interactions at the sensor-object-environment
interface, often inaccessible through vision. These images contain properties such
as contact geometry, texture, and forces and have been leveraged across tasks like
insertion [43, 81], pushing [I 14], grasping [19], localization [163], and pose and shape
estimation [13, 164].

The prevailing approach to incorporating vision-based tactile sensors in robot tasks
is to train custom models using labeled data [35, 81, 111, 191] to estimate useful states.
However, this can be inefficient and results in repeated effort across different type of
sensors like GelSight 2017 [207] (with markers) and DIGIT [100] (without markers)

or different variety of tasks. For example, feature extractors trained on GelSight
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with markers may not transfer to other sensors, and encoders optimized for texture
recognition [212] may not be suitable for tasks that require reasoning about forces or
slip [206]. Supervision for building large general models is prohibitive as collecting
large scale real world data with ground truth labels is challenging. For instance,
properties like forces [115] and slip [17] require careful and expensive instrumentation
in lab settings, while other properties like tracking deformations [19] or extrinsic
contact [¢1] can be infeasible. To address this fragmentation in the literature across
custom solutions, there is a need for touch representations that are broadly applicable
to many tasks and many sensors, along with a benchmark of standardized tasks
useful in measuring progress. Taking inspiration from self-supervised learning (SSL)
methods in computer vision, we extend these approaches to the tactile sensing domain

and build a benchmark for evaluation (Figure 2.1).

In this work, we introduce a family of touch representations for vision-based tactile
sensors trained with SSL. Specifically, we provide a recipe to adapt masking-based
objectives from computer vision to the tactile domain, and train general-purpose touch
encoders by curating a new Touch-Slide dataset and existing datasets of tactile images
(Figure 2.2), namely YCB-Slide [163], Touch-and-Go [196], and ObjectFolder [60].
Pulling together additional unlabeled data points from the existing datasets we train
our models on a total of 460k+ tactile images. Finally, we construct TacBench,
a benchmark consisting of six touch-centric tasks that cover the space of relevant
problems on tactile properties such as force estimation and slip detection, on perception
such as pose estimation and grasp stability, and on robot manipulation such as policies

for solving a bead maze. Our contributions are as follows:

1. General touch representations, Sparsh pre-trained with SSL on 460k+ tactile
images,
2. TacBench a benchmark of standardized tasks to evaluate touch representations

and models, and

3. Curation of new & existing datasets, unlabeled for SSL and labeled for bench-

marking.

In evaluations on TacBench, we find that Sparsh with SSL pre-training yield
on average 95.1% improvement over task and sensor specific end-to-end models
under limited labeled data budget (33%-50% of the collected amount) for any task.

9
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Additionally, we find Sparsh (DINO) and Sparsh (IJEPA) to be the most competitive
outperforming Sparsh (MAE), indicating the merits of learning in latent space over

pixel space for tactile images.

2.2 Related work

Self-Supervised Learning with its success in natural language processing and computer
vision, has become the new learning paradigm. In the last three years, a variety of
general-purpose frameworks [20, 29, 67, 78] have been proposed for learning represen-
tations. We refer to [3, 132] for a comprehensive survey on SSL frameworks and their
categorization based on pretext tasks and learning algorithms. In Appendix 2.10.1,
we expand on Masked Image Modeling (MIM), self-distillation, and Joint-Embedding
Predictive Architecture (JEPA), as we explore them in this study.

Traditionally, tactile sensing has relied on preprocessing tools like marker track-
ing and finite element method models to extract contact properties, such as shear
forces [170, 206], dense normal estimation [1 17, 170], and contact area prediction [101].
From a learning perspective, a trend is to use custom encoder architectures tailored
for specific tasks and sensors, which are either pre-trained or trained end-to-end
[30, 35, 75, 81, , , |. Nevertheless, there is an increasing interest in rep-
resentation learning for vision-based tactile sensors. For instance, MAE has shown
effectiveness at material classification and texture recognition [21]. Fine-tuning con-

volutional encoders for BioTac, RoboSkin, and GelSight performs well on fabric

decomposition tasks [212]. Even nearest-neighbor retrieval over pretrained repre-
sentations, for the XELA [174] uskin sensor, can enable some success in dexterous
manipulation [70]. Crucially, the current state of standardization in learning touch

representations and the wide variety of tactile sensors available, has made it challeng-
ing to develop and share pre-trained models across the research community in this
domain.

Another direction is exploring the alignment of visual and tactile modalities in
latent space using multimodal datasets [19, 51, 59, 61, 62, | and techniques like
contrastive coding and cross-sensory retrieval [39, , |, vielding promising results
in tasks like material classification, grasp stability, and tactile-driven image stylization.

However, current approaches [39, 18, 95, | primarily focus on texture and visual

10
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Figure 2.2. (a) We curate new and existing datasets of vision-based tactile sensors to
train touch representations by adapting state-of-the-art SSL vision methods to the tactile
domain, namely (b) Masked Autoencoder (MAE) [7%], (¢) DINO/DINOv2 [22, 131], and
(d) Image/Video Joint-Embedding Predictive Architecture (JEPA) [4, 11]. *Without need
for labels we can sample more images than reported in Touch-and-Go [196] and Object
Folder [60].

properties and overlook physical contact properties, such as forces, slippage, and

poses, which are essential for dexterous manipulation.

The works closest and concurrent to ours are T3 [215] and UniT [193]. T3 trains
sensor-specific encoders to capture shared latent information through a shared trunk,
using both the MAE objective and labeled task-specific data as supervision. UniT is
a VQGAN [177] model with a patch-based discriminator for representation learning
only for GelSight Mini (markers). On the other hand, we introduce a family of
models trained with the latest SSL algorithms for the three most commonly used
families of tactile sensors: DIGIT, GelSight 2017, and GelSight Mini. Similar to T3
and UniT, we evaluate touch representations for policy learning, however we also
introduce a standardized benchmark to comprehensively evaluate representations
and their ability to solve several relevant touch-centric tasks along tactile properties,

physical perception, and manipulation planning.

11
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2.3 Touch representations via self-supervision

Current approaches incorporating vision-based tactile sensors in robotic tasks lean on
custom task and sensor specific solutions. As highlighted in the introduction, this can
be inefficient, and there is a growing need for general-purpose touch representations
that can be more broadly useful. We envision the following guiding principles for
such general touch representations: (i) provide performance benefits across many
tasks including real-time robot manipulation, (ii) generalize across multiple types of
sensors built on a similar operating principle, like vision-based tactile sensors, and (iii)
improve performance by leveraging computation and diverse data at scale without
the need for manual labels. Self-supervised learning (SSL) is promising in this regard,
as it offers data-agnostic objectives based on wide-reaching concepts such as analysis-
by-synthesis to train generalist models. This motivates the question of whether vision
techniques such as masked image modeling (MIM) [4, 78] and self-distillation [22, 131]
can be extended to the domain of vision-based tactile sensors.

To this end, inspired from advances in self-supervised learning (SSL) in computer
vision, we introduce Sparsh, a family of touch representation trained with SSL
across multiple sensors such as DIGIT [100], GelSight 2017 (with markers [207]),
and GelSight Mini (without markers). The tactile domain, however, imposes several
challenges that impede a straightforward application of SSL approaches from vision
towards touch representations.

Tactile sensors inherently provide local information; thus, images can be ambiguous
when observed independently and can vary across grasp forces, materials, and shapes.
Therefore, we investigate the optimal space for training SSL encoders. Specifically,
we are interested in the efficiency of pixel reconstruction, latent reconstruction, or
clustering approaches to learning representations in the presence of aforementioned
ambiguities. We hypothesize that latent reconstruction and clustering could be more
efficient in learning representations, as they focus model capacity away from fine
reconstruction details [103]. Tactile images contain distractors, such as markers and
light placement variations, which can significantly vary due to manufacturing discrep-
ancies. To increase robustness to distractors, we perform background subtraction for
both DIGIT and GelSight Mini (markerless). This process provides the model with a

reference to no-contact, which conveys static shear information when a perpendicular

12
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force is applied to the elastomer. We find empirically that background subtraction
helps models generalize across the same type of sensor.

To address the scarcity of labeled and even unlabeled data in the tactile domain
that limits the training of large encoder models, we curate together new and existing
vision-based tactile sensor datasets [0, , |, totaling ~661k images as illustrated
in Figure 2.2. 70% or 462.7k images are used for SSL pre-training which is an order
of magnitude larger than any prior work on touch representations [21, 18, ] (the
rest are held out for monitoring training using online probes).

Tokenizing tactile images appropriately for SSL is important because many tasks
such as slip detection and relative pose estimation require temporal reasoning. For SSL
methods that operate on images, we concatenate two tactile images with a temporal

Rh>*wx6  For g

stride of 5 samples across the channel dimension, I, ® I;_5 — = €
sensor operating at 60FPS, this corresponds to an inference window of approximately
80 ms, the reaction time that humans need to adjust the grip force when detecting
partial slip [213]. For SSL methods that operate on video (e.g. V-JEPA), we generate
clips with 4 frames at [t,t — 2,t — 4,t — 6] € R¥>"%X3 corresponding to an inference
window of ~ 100 ms. Currently Sparsh is limited by data streaming rates, and not by
inference time, as the models support inference rates of upto 112FPS (measured on an
Nvidia RTX3080). See Appendix 2.10.2 for additional details on model architectures

and training.

2.4 TacBench: Tactile sensing benchmark

We introduce TacBench, a collection of touch-centric tasks, and labeled datasets for
standardized evaluation for vision-based tactile sensing. We compile data for all tasks
from various sensors to evaluate the generalization of representations. These tasks
are categorized under three main questions.

1. Do the representations comprehend tactile properties? Tactile sensing
informs finger-object contact interaction properties like forces and slip that are
crucial for robot manipulation. In Section 2.5, we evaluate learned representation on
estimating instantaneous normal and shear forces [T1] and visualizing force fields
[T1A] [115, 117, 170, 206], and detecting slip [T2] [17, 41, 179, 200].

2. Do the representations enable perception? Tracking and accumulating slip

13
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states is essential for tasks like finger-gaiting and in-hand reorientation [141, . In
Section 2.6, we evaluate the ability of the representations to track SE(2) pose changes
of the object relative to the sensor [T3] [I3], prediction of the stability of a grasp
[T4] [19], and textile recognition [T5] [209].

3. Do the representations enable manipulation planning? Pre-trained
representations can provide tactile features to a manipulation policy, improving
training efficiency and test performance by eliminating the need to extract the states
from raw sensor data. In Section 2.7, we design a bead maze [T6] manipulation
problem as illustrated in Figure 2.3 (c), where the robot using tactile sensing is tasked
to move a bead along a curved wire.

Evaluation protocol. We adopt a frozen evaluation procedure with an encoder-
decoder architecture. Specifically, we freeze the pre-trained Sparsh encoder weights
and train the parameters of an attentive decoder [11, 28] to assess what touch
representations have captured from self-supervised pre-training alone. All tasks in
the benchmark, except force field visualization and policy learning, train an attentive
decoder containing a cross-attention module and a two-layer MLP using labeled
datasets from Table 3.3. We also include an end-to-end (E2E) baseline with identical
model capacity where the same encoder and decoder probe are initialized with random
weights and all the parameters (both encoder and decoder) are trained. Further, we
train downstream decoders with different amounts of labeled data to evaluate task
performance under progressively low labeled data regimes.

In the following sections, we describe the design, metrics and results of each task
in TacBench. Additional details are provided in Appendix 2.10.3, and ablations with
unfrozen Sparsh encoder, encoder model sizes, and few-shot cross-sensor transfer are

provided in Appendix 2.10.4.

2.5 Comprehending tactile properties

2.5.1 [T1] Force estimation

Task. Force estimation is defined as the prediction of 3-axis normal and shear forces
applied on the sensor’s elastomer. Figure 2.3(a) shows our data collection setup. We
use three different indenter shapes to collect force-labeled data: hemisphere, sharp,

and flat. Our dataset contains 75k time-aligned samples of 3-axis force measurements,
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end-effector poses, and tactile images from DIGIT at 60fps and GelSight at 25fps.
We train the decoder using normalized force measurements scaled between [—1, 1],
supervised using Ly loss and optimized using Adam until convergence. We compare
performance using the average root mean squared error (RMSE) across all three axes.

Results. GelSight Mini images are of higher resolution (HD) compared to DIGIT
(320 x 240) resulting in smaller contact regions against the background. For this
reason, we observe that when sufficient supervised data is available for DIGIT, it is
possible to train a model from scratch to achieve high accuracy, but for GelSight Mini
the end-to-end model does not perform well. Figure 2.4 (i)-(ii) shows across the board
that our frozen Sparsh representations can estimate forces with low error. Specifically,
we find Sparsh (DINO) to be robust even when access to labeled data is sparse, a

common scenario in tactile sensing. Additional details are in Appendix 2.10.3.

2.5.2 [T1A] Force field visualization

We qualitatively evaluate the representations for rendering normal and shear force
fields to understand sensor-object interactions. Although obtaining a shear field for
sensors with markers nowadays is trivial via marker tracking [11], it is challenging and
underexplored for markerless sensors. We train a CNN decoder using the reassemble-
fusion approach for dense predictions [1441] unsupervised, since we do not have access
to ground truth for markerless sensors. We frame normal field estimation as depth
estimation [64] and shear field estimation as optical flow [90, 91, 112, 161]. Figure
2.4 (vi) shows visualizations for the top-performing model Sparsh (DINO) in [T1]
that provides directional information about the relative motion of the contact patch.
For instance, sliding motion (a, c, e, ), torsional slip (b), and divergence field upon
contact (d). Additional details are in Appendix 2.10.3.

2.5.3 [T2] Slip detection

Task. Shear and slip are closely related. Using the same setup as force estimation, we
collect strokes where a hemispherical probe slides over the sensor, producing trajecto-
ries with both sticking and slipping samples. Slip is labeled using the friction cone
model with an empirically estimated static friction coefficient (see Appendix 2.10.3).
The dataset, with a notable imbalance between no-slip and slip classes, contains 125k

samples with 13% slip instances. We train two decoders: one for slip detection and
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Figure 2.3. Real labeled data collection setup for TacBench tasks (a) [T1] Force estimation
and [T2] Slip detection, (b) [T3] Pose estimation, and (c) [T6] Bead maze.

another for normalized force changes (A) as we find that predicting the two correlated
quantities jointly enhances slip detection. The MLP decoders use cross-entropy for
slip detection and mean absolute error for A force regression, reserving 25k samples
for evaluation.

Results. We report F1 score instead of accuracy due to the imbalance in the slip
labels in the dataset. Figure 2.4 (iii)-(iv) illustrates the advantages of frozen Sparsh
features trained under a JEPA paradigm for slip detection, particularly challenging
for DIGIT sensor, even when using only 1% of the training dataset. In particular,
Sparsh (VJEPA) achieves the highest F1 score among the models. Although all models
detect slip from the 80 ms history of tactile data, Sparsh (VJEPA) benefits from a
detailed temporal perspective, as its encoder processes a video clip with four frames
spanning this window. Sparsh backbones also show better performance than the E2E
model when labeled training data is significantly reduced. Additional details are in
Appendix 2.10.3.

2.6 Enabling physical perception

2.6.1 [T3] Pose estimation

Task. Estimating object pose changes can help tasks such as tracking object drift
for in-hand translation [96], rotation [111, 198], and pushing [I11], among others.
Given that tactile images capture local changes between sensor-object, we evaluate
Sparsh representations to estimate SE(2) transformations of the object relative to
the sensor. Figure 2.3 (b) illustrates the data collection procedure. The dataset
consists of time-synchronized pairs of DIGIT observations z;, € R"***3 and object

poses T; € SE(3). T, are then preprocessed to produce relative pose changes on the
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sensor gel as SI™! 2 (Az, Ay, Af) € SE(2). We follow the regression-by-classification
paradigm for this task [13, 96]. Relative object poses are binned into a grid, capturing
translations with a resolution of +hmm and rotations with a resolution of £2°. For
each degree-of-freedom (DOF), we train a head to predict probability distribution

over the discretized grid using cross-entropy loss and Adam optimizer.

Results. Multiclass accuracy reveals that E2E approaches perform well with
ample data, but drastically decline when labeled data is reduced, as shown in Figure
2.4 (v). Small datasets make it difficult to distinguish between close categories, such
as orientation changes from [0.5°,1.0°] to [1.0°,2.0°]. Pre-trained representations,
however, maintain good performance even with only a third of the data. In low
data scenarios, decoders using tactile representations often revert to extreme values,
reducing estimation resolution and accuracy. Additional details and examples are

provided in Appendix 2.10.3.

2.6.2 [T4] Grasp stability

Task. Grasp stability is well-studied in the tactile sensing literature for parallel jaw
grippers [92, 97, , |. We evaluate whether representations aid in predicting
grasp success given a short history of tactile images from a single finger. Specifically,
we take inspiration from [19] and adapt the Feeling of Success dataset. Each sample
consists of a triplet of tactile images corresponding to ‘before’, ‘during’, and ‘after’
grasping a set of objects. The dataset consist of 64% successful grasps and 36%
failed grasps. We pass to the SSL model the ‘before” and ‘during’ as tactile history.
Since [19] does not specify an official train/test split, we create our randomized split
with all objects, using approximately 8k grasps for training and the remaining 1.3k

grasps for evaluation.

Results. Training with the full dataset, all models achieve similar accuracy.
Sparsh (IJEPA) or Sparsh (VJEPA) reach ~ 80% classification accuracy, surpassing
results from [19] that combined tactile and vision modalities as shown in Figure 2.4
(vii). Our model, relying solely on touch from a single finger, shows competitive
performance even with only 33% and 10% of the data. However, with just 80 training

samples, performance drops significantly. More details are in Appendix 2.10.3.
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Figure 2.4. Summary of results comparing Sparsh and E2E on [T1]-[T6] tasks in TacBench
across varying amounts of labeled data. Pre-training with SSL yields general touch repre-
sentations that work across several tasks and sensors outperforming task and sensor specific
models particularly under limited labeled data budget.

2.6.3 [T5] Textile recognition

Task. Vision-based tactile sensors are broadly used for material property recogni-
tion, since their compliant gel and high resolution cameras make them effective at
discriminating different materials by surface texture [54, 209]. Specifically, we take
the task definition from [209] and adapt the Clothing Dataset. The dataset consist
of 4467 short video clips (10-25 frames), of a robot with a GelSight 2017 (markers)
grasping several types of textile (20 classes), such as leather, cotton, polyester, etc.

We follow the train-test split provided in the metadata of the dataset.

Results. Training an E2E specialist model for textile recognition using the full
dataset can be challenging, as noted in [209]. By leveraging pre-trained touch repre-
sentations, as shown in Figure 2.4 (viii) the performance of the task can be significantly
improved, even when training with only 10% of the labeled data. Sparsh (MAE) is
particularly effective, as it heavily relies on pixel-level features (see Appendix 2.10.3).
Additionally, we evaluate the cross-sensory ability of the representations, finding that
with few samples (10-shot) Sparsh quickly adapts the downstream task to DIGIT
(see Appendix 2.10.4).
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2.7 Enabling manipulation planning

2.7.1 [T6] Bead maze

Task. The bead maze is a children’s toy to enhance fine motor skills. We adapt
this task to robot policy learning, where the goal is to guide a bead from one end to
another following the path of the wire (maze). Given a small history of tactile images
(...,241,2), and robot proprioception (..., q_1,q:), we train a policy to predict
changes in joint angles as actions a 2 (Ag,, Agiy1, ...); Ag € R7, to make progress on
this task. This task is fundamentally tactile-focused, as the robot needs to react to
resistance encountered by changes in the maze pattern and the subtle local movement
of the bead are difficult to perceive from vision even when not occluded by the hand.
A prior version of the bead maze task has been explored in robotics relying solely on
tactile feedback [35]. In our setup, illustrated in Figure 2.3 (c), we assume that the
robot starts with an initial stable grasp. We collect a dataset of 50 demonstrations
on different maze patterns with a mix of VR-based and manual kinesthetic-based
teleoperation, corresponding to a total of ~34k training pairs of tactile images and
robot joint angles. Since we are training policies with real data, we use diffusion
policy [32] for this task as it is one of the leading behavior cloning methods. For
tactile observation conditioning, we replace the vision encoder in Diffusion Policy
with the pre-trained Sparsh encoder.

Results. We evaluate Sparsh (DINO) and Sparsh (IJEPA) for policy learning, as
these representations exhibit the best performance across the rest of the benchmark.
For completeness, we also consider Sparsh (MAE), and E2E which trains a tactile encoder
and policy end-to-end. Due to covariate shift [151] in behavior cloning, prediction
errors can accumulate over time; therefore, we report position error between the
predicted trajectory and a demonstration trajectory from a held-out maze sequence
over small chunks of 3cm followed by the robot corresponding to 15 timesteps of
action predictions. Figure 2.4 (ix) shows the position error over access to different
number of demonstrations for training. We find that Sparsh (DINO) and Sparsh
(IJEPA) produce significantly (a difference of ~16%) lower trajectory errors compared
to training the policy E2E.

Additionally, we evaluate real rollouts of the learned policies (using all 50 demon-
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strations) over a set of 10 randomized novel starting locations on the maze. In
Figure 2.4 (ix) we report distance traversed (in cm) before failure. We find that
policies using Sparsh representations outperform E2E by ~20-53%. We note that
given the high precision nature of this task and the considerations for real system
deployment for the policy, none of the models succeeds in completing the full maze
on real robot rollouts. We expect that increasing the diversity of training data with
different maze patterns will highlight the generalist capabilities of touch represen-
tations, and that temporal ensembling will aid in improving the smoothness of the

policy [216]. Additional details are in Appendix 2.10.3.

2.8 Discussion

Summary. We present Sparsh, a family of general touch representations trained
with self-supervision for vision-based tactile sensors. We learn general-purpose,
cross-sensor representations from a curated, unlabeled dataset of 460k+ samples
from DIGIT, GelSight 2017, and GelSight Mini sensors. We evaluated five SSL
approaches (see Figure 2.2) comparing their performance against task and sensor
specific models through TacBench, a benchmark of six touch-centric tasks designed
to assess the content and quality of the representations. Our results indicate that
Sparsh representations are performant across various sensors and tasks capturing
tactile properties, and enhancing physical perception and manipulation planning.
Analysis. Overall Sparsh excels on all tasks. In particular, we find Sparsh (DINO)
is well suited for physics-based tasks like force and pose estimation, while Sparsh
(IJEPA) performs better at touch semantic understanding like slip state, stability of a
grasp, and textile recognition. On average Sparsh (DINO) outperforms Sparsh (IJEPA)
by 5.6% across the benchmark. Both models perform similarly in bead maze test
demonstrations, which require implicit knowledge of shear forces and slip. However,
this did not translate to real robot performance due to lack of force control and
system-level confounding variables not captured during training. These include the
high precision required to keep the bead in place, the impossibility of error recovery
once grip is lost, and trajectory drift due to local decision-making. Specialist policies
or models trained from scratch exhibiting better robot rollout performance is due to

the narrow task domain setting that leads to overfitting, a trend similarly observed
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when studying pre-trained vision models [32, 76, 216].

Learning touch representations in latent space is more advantageous than in pixel
space, as these representations can filter out and generalize over noise or lighting
differences. Tasks traditionally challenging for markerless sensors (like DIGIT and
GelSight Mini), such as shear force (and field) estimation and slip detection, become
solvable with our general touch representations. On average, Sparsh achieves a 95.1%
improvement compared to an end-to-end approach when all models have access to
only 33% — 50% of the labeled dataset per downstream task. Using as little as 10% or
1% of the labeled data for force estimation and slip detection still yields acceptable
results (e.g. force error below 0.1N with Sparsh (DINO)). Fine-tuning Sparsh encoders
is another method of assessing the quality of pre-trained representations. We provide
in Appendix 2.10.4 experiments with partial and full fine-tuning. Notably, models
pre-trained in latent space perform better in downstream tasks when fully fine-tuned,
especially in regression tasks like force and pose estimation. In contrast, partial
fine-tuning offers minor improvements, aligning closely with the performance of frozen
models. We also evaluate Sparsh decreasing the model capacity, finding the biggest
impact in performance for regression-like tasks when training with limited amount of
labeled data (see Appendix 2.10.4).

Sparsh is a significant step towards a general pre-trained backbone for vision-based
tactile sensors. Our aim is to enable efforts to compile larger tactile datasets that
include additional vision-based tactile sensors and leverage the benefits of scaling up
SSL backbones, as seen in computer vision and natural language processing. TacBench
serves as an initial benchmark for evaluating these representations, and additional
tasks can be incorporated based on the needs of the tactile sensing and manipulation
community. For instance, further exploration of pre-trained touch representations
in tactile policy learning, or tracking dynamic object properties like changing mass

during pouring.

2.9 Limitations.

Open-source tactile datasets we considered in this study predominantly feature discrete
contact interactions. We believe that incorporating data rich in shear interactions

can further improve the representations. We do not ablate the length of tactile image
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history for learning the representations. Such ablations could provide guidance on
improving their quality for downstream tasks. Our bead maze policies with pre-
trained touch representations deployed on the real robot are only able to complete the
maze partially before compounding error leads to the bead falling out of the fingers.
Further research is needed to understand how to effectively leverage pre-trained touch

representations in behavioral cloning for robot manipulation tasks.

2.10 Appendix
2.10.1 Broader related work

Self Supervised Learning. We detail recent developments in masking-based
self-supervised learning approaches.

Masked Image Modeling (MIM) is the strategy of corrupting a data sample by
significantly masking a portion of the sample and training a model to recover the
missing portion, conditioned on the corrupt sample. It has become a prominent
framework in SSL with the success of [78, 220]. An important design consideration
here is the output space of the model for supervision, which can be either raw pixels
[78, | or an alternative representation space [10, 57, , |. While training
Masked auto-encoders is simple, these models are comparatively sample inefficient
during training [1].

Self-distillation [31] is the idea of training two (usually identical) networks such
that a student network learns to predict the output representations of a teacher [169]
network via a small predictor network when observing augmentations of the same

data sample. It has been shown to improve performance significantly even in the

case of abundant data [189]. While degenerate constant representations is a concern,
a common strategy is to stop gradient backpropagation [29] through the teacher
network and employ momentum based weight updates [07]. A concrete instance

is DINO [22] utilizing ViTs [10] as the student & teacher encoder networks. More

recently DINOv2 [131] improved downstream performance significantly by combining
self-distillation and MIM.
Joint-Embedding Predictive Architectures (JEPA) [103] share similarities with

MIM, as both rely on masking. However, the JEPA framework conceptually prescribes

two key changes: a) information restoration in a latent representation space, rather
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than in input space (pixels or tokens) b) prediction of latent embedding conditioned
on the masking parameters. This framework has had success across various modalities,
including audio [7, 51], images [1, 12], and pointclouds [11&]. Notably, in this paper
we consider masking strategies from I-JEPA [1] and V-JEPA [I1]. I-JEPA utilizes a
spatial block-masking strategy and V-JEPA utilizes tube-masking [176] with varying
aspect ratios for learning representations efficiently in latent space circumventing
decoding unnecessary pixel-level details.

Representation learning in robotics. Pretraining models for multi-task
capability has become popular recently, especially after the success of self-supervised
learning (SSL) in computer vision tasks like object classification, segmentation, depth
estimation, and image generation. These tasks, while typically tested on computer
vision datasets, are also very common in robotics. The idea of using these pre-trained
representations for robot learning was initially explored in [134], showing that pre-
trained visual representations can sometimes even be better than using ground-truth
state representations for training control policies.

Generative SSL via masked image modeling (MIM) [112, 188] has shown successful
transfer of pre-trained representations from in-the-wild data to real-robot scenarios,
enabling basic motor skills such as reaching, pushing, and picking. Furthermore, many
other works investigate contrastive learning approaches to learning general visual
representations in robotics [95, , ]. These methods usually employ a pixel
reconstruction objective based on a time-contrastive objective or focus on contrasting
video clips leveraging natural language for video-language alignment.

The field has been moving towards finding general-purpose representations that
work well across a wide range of problems in robot manipulation learning. Voltron [93],
is a framework for language-driven visual representation learning for robotics that
combines both masked auto-encoding and contrastive learning techniques, focusing on
multi-task performance. This model is trained to learn representations that capture
both low-level spatial reasoning and high-level semantic understanding by using
language supervision from human videos.

Tactile sensor simulation. Multiple simulators have been proposed for vision-

based tactile sensors such as [31, 65, , , | with the hope of sim2real general-
ization of learned policies [27]. However, many of these methods are either limited
to marker-based tactile sensors [27], or narrow tasks [157, 219]. Certain other meth-
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ods [197] also leverage simulated data to train multi-modal representations. However,
in general we find that tactile simulators are still unable to model shadows, as well
as real-world per-sensor-instance discrepancies, hampering their potential use for

representation learning.

2.10.2 Touch representation and self-supervision details

To ensure fair evaluation of all models, our SSL algorithms are largely adapted from
official MAE, I-JEPA, V-JEPA, DINO, DINOv2 codebases.

Training details

We train all models on 8 Nvidia A-100 (80G) GPUs. In addition to training losses, to
monitor training progress, we rely on online probes. Specifically, we find that for joint
embedding predictive architectures, the training losses are not indicative of model
convergence during optimization; therefore, proxy metrics such as reconstruction
quality are helpful. For all methods, we utilize DPT [113] based decoders to decode
the tactile representations back into tactile images. See Figure 2.5 for some examples
of tactile reconstructions from Sparsh embeddings. All encoder models are trained for
150 epochs. We use AdamW optimizer and use a linear rampup followed by a cosine
schedule as the learning scheduler. Further, we find that tuning momentum value
as well as the weight decay factor was important in observing training convergence

without collapse. Additional information of hyperparameters is detailed in Table 3.2.

Arch. EMA decay LR Batch size

Sparsh (MAE) ViT-B/14 N/A le-4 100
Sparsh (DINO) ~ ViT-B/14  0.998 le-4 150
Sparsh (IJEPA) ViT-B/14 0.996 6.25e-4 150
Sparsh (VJEPA) ViT-B/14 0.996 6.25e-4 150

Table 2.1. Training hyperparameters for Sparsh models. All models run for 150
epochs with optimizer AdamW, a weight decay cosine schedule from 0.04 to 0.4, and a
learning rate warmup of 30 epochs.).

Sparsh (MAE) Sparsh (DINO) Sparsh (IJEPA) Sparsh (VJEPA)
N. parameters 86254848 86255616 86386944 86537472
FPS 104 112 112 60

Table 2.2. Number of parameters and inference time for Sparsh backbones
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Ground Truth Reconstruction Probe

Sparsh (DINO)  Sparsh (MAE)

Sparsh (IJEPA)

Sparsh (VJEPA)

Figure 2.5. Visualization of reconstructed tactile images using the online probe to monitor
SSL training of Sparsh models.

Architecture details

All encoder models are Vision Transformers (ViT) [16]. Although the main encoder
models use ViT-B/14 as the standard architecture, following [!] we use a small ViT
as the predictor network. All the models are pretrained without a [cls] token. For
DINO, which decodes the [cls] token into classes, we repurpose ViT registers [35]
to predict classes. In Table 2.2 we report the number of parameters for each encoder
and their respective inference times.

Tactile images with a stride of 5 i.e., I, @ I,_5 € R"*%*6 are concatenated along
the channel dimension before the background is removed and reshaped to 224 x 224
for ViT processing. We choose a stride of 5 as consecutive images are similar due
to high sensor sampling rates, and to match the slip detection window in humans.
Ablating the effect of the input image and patch resolution may be important for

better performance and is left for future work.

Dataset splits

We use three available datasets for training Sparsh, namely YCB-Slide [163], Touch-
and-Go [190] and Object Folder [59]. The YCB-Slide dataset consist of human sliding
interactions with 10 YCB objects. Each object has 5 trajectories, with around 3500
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S

Figure 2.6. Set of objects for collecting sliding contact trajectories in the Touch-Slide
dataset.

frames each from DIGIT sensors with different optical characteristics (180k frames in
total). For each object, we dedicate four trajectories for training and the last one
for validation. Touch-and-Go consists of discrete human contact interactions with
in-the-wild objects, using a GelSight sensor. It consist of 140 videoclips and plain
files with labels for the frames with a clear contact. We use all frames (220k) in the
videoclips since we do not rely on labeled data for SSL training, from which 70% is
used for training and the remaining for validation. The data used from ObjectFolder
consist of 81k frames of robot discrete contact interactions with objects in a controlled

setting. We also use a train/val split of 70/30.

To complement the dataset, we collected Touch-Slide with additional human
sliding interactions on toy-kitchen objects with the DIGIT sensor. We use 9 objects,
shown in Figure 2.6 and collected 5 trajectories for each, generating 180k frames in
total.

For all downstream tasks we use tactile data from real sensors/hardware (DIGIT,
GelSight17, and GelSight Mini) that were not seen during Sparsh SSL training. Under
our problem formulation, this allows us to investigate generalization of Sparsh to
new sensor instances (consider the case of swapping out a sensor from a robotic hand

due to wear-off).

Similarly, all objects used for downstream tasks were not used for SSL training.
For example, [T1] and [T2] tasks use a real robot arm to slide the sensor elastomer
(DIGIT, GelSight Mini) against an indenter to collect force-labeled data. [T4] uses
an open source dataset for grasp stability [4], which includes data from a real robot
grasping over 100 unique objects using an unseen GelSight17 with printed markers
during SSL training. Similarly, [T6] uses DIGIT data collected from real hardware,
a robot pulling and moving a bead along the wire. Note that none of the data used

for learning representations comes from this kind of object-robot hand interactions.
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Short summary of SSL methods
In this paper, we consider three SSL paradigms, namely Sparsh (MAE), Sparsh (DINO),
and Sparsh (IJEPA) & Sparsh (VJIEPA).

Sparsh (MAE) is based on the principle of masked image modeling, where an
encoder model is tasked with learning the contextual representations of substantially
masked images, such that it enables reconstruction of the masked regions via a
lightweight decoder. We use a ViT encoder and decoder for Sparsh, and the MAE

loss corresponds simply to a L2 reconstruction loss:

EMAE = HItarget - Irecon“% (21)

Sparsh (DINO) is based on the principle of self-distillation between two identical
networks, where a student network learns to track the output predictions of a EMA
teacher network. Cross-entropy loss is employed between the predictions of the
student and teacher network, both of which consume different crops of the same input.
Specifically, feature representations from each branch are passed through a MLP head,
producing probability vector over an arbitrarily chosen number of classes. These

scores are normalized to produce p, and p; for the student and teacher respectively.

Lpino = — Z p: log p, (2-2)

Sparsh (IJEPA) and Sparsh (VJEPA) share similarities with both masked image
modeling and self-distillation. Here, we employ two identical networks termed context
and target networks. The context network corresponds to a student network, which is
tasked to predict the features from a EMA target network (teacher network), through
a small predictor network. In this case, a Ly loss over features is used to enforce
similarity between the two branches. Specifically, the context network observes M
global masks of an image to produce contextual features, which are then passed
through a predictor to predict target network features of B; local crops of the same
image 8,.. On the other hand, the target network consumes local crops of the image

to produce s,

[’jepa = Z Z ”éyj - S?Jj”% (23)

€M jEB;
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Task Dataset Sensor Size  Collector Label

[T17 Force estimation ' Shear load DIGIT . 75k Robot 3—aX%s force
(indenter: sphere, flat, sharp) GelSight Mini 75k Robot 3-axis force

[T2] Slip detection Shear load (indenter: sphere) DIGIT 125k Robot Friction cone

[T3] Pose estimation Object sliding DIGIT 49k Human Object pose SE(2)

[T4] Grasp stability Feeling of Success GelSight 2017 9.3k Robot Success (yes/no)

[T5] Textile recognition Clothing Dataset GelSight 2017 120k  Robot Textile ID

[T6] Bead maze Demonstrations DIGIT 34k  Human Joint angles

Table 2.3. Datasets in TacBench for evaluating representations on downstream tasks.

2.10.3 TacBench tasks and evaluation details

Labeled datasets
See Table 3.3 for details on labeled data curation for TacBench tasks.

Probe details

The parameters of the model updated via EMA (target encoder for Sparsh (IJEPA)
and Sparsh (VJEPA), teacher network for Sparsh (DINO) and Sparsh (DINOv2), encoder
from Sparsh (MAE)) are fixed and used for evaluation. The features are pooled via
attentive pooling for tasks that require global representations, such as slip detection,
resultant force estimation, and classification tasks. For tasks that require dense
reasoning, we use DPT decoders [113] to decode patch representations into full input
resolution quantities such as normal and shear force fields, and reconstructed tactile
images. See Figure 2.7 for a visual illustration of the probe architectures.

We follow attentive probing[l1, 28] to assess the capabilities of tactile representa-
tions on the benchmark, as this approach allows us to determine what representations
capture from self-supervision alone. For most tasks — except force field visualization
and policy learning — in the benchmark, we freeze Sparsh and train a cross-attention
module (hyperparameters in Table 2.4) followed by a light 2-layer MLP probe super-

vised, using the labeled dataset for each task.

[T1] Force estimation

After attentive pooling, the tactile features with 768 dimensions are passed to a
2-layer MLP with 192 and 3 units respectively, to get the 3-axis force estimations.
Two independent force decoders are trained using DIGIT and GelSight Mini data
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Figure 2.7. (a) Attentive probe architecture consists of a cross attention layer followed by
a linear layer to regress resultant output quantities such as resultant force or slip state
(b) Dense Prediction Transformer (DPT) [143] consists of multiple reassemble and fusion
layers to decode features from intermediate layers of the Sparsh backbones to produce dense
outputs such as normal and shear fields

respectively, using the sharp and sphere probe data during training and the flat
indenter data for testing. The target forces are normalized to be +1.0 and scaled
back after prediction. We train the force decoder using Adam optimizer with le-4

learning rate.

DIGIT. In Table 2.5 we report the average RMSE over 25k samples of unseen
DIGIT data for the force estimation task. We report metrics for each Sparsh model
and the E2E approach, under four different budgets of training data. We also provide

a 95% confidence interval to ground the error ranges of each model.

In Figure 2.8 we plot the friction cone from the test data, where the colormap
represents the error in mN for each axis. Note that E2E exhibit larger errors (around
500mN) for the tangential component and they are more predominant as the normal
force increases. In contrast, the top model Sparsh (DINOv2) estimates with low error

(< 100mN) in general across the whole range of tangential and normal forces.

GelSight. In Table 2.6 we report the average RMSE over 25k samples of unseen
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Parameter Setting
Embedding dimension 768
N heads 12
MLP ratio 4.0
Depth 1
Layer normalization Yes

Table 2.4. Attentive pooling hyperparameters used for evaluation protocol of representation

in downstream tasks.

Model Full dataset (50k)  1/3 dataset 1/10 dataset ~ 1/100 dataset

e 39.34 61.42 08.22 187.51

39.21,39.48]  [61.12,61.72]  [97.61, 98.84] [185.51, 188.51]
Sparsh (HAE) 36.61 45.96 58.55 115.39

P 36.51,36.71]  [45.80, 46.12]  [58.31, 58.79]  [114.69, 116.09]
36.09 44.03 51.89 97.95

sparsh (DINO) 1 1 "3617]  [43.87,44.19]  [51.69, 52.10]  [97.36, 98.52]
29.31 26.85 37.66 185.86

Sparsh (DINOV2) 199 14 99.46]  [26.70, 26.99] [37.45, 37.86] [184.94, 186.78]
40.27 60.04 86.57 130.37

Sparsh (LJEPA) 140 16, 40.38]  [50.72, 60.34]  [86.06, 87.08]  [129.59, 131.15]
39.38 56.34 76.11 130.83

Sparsh (VIEPA) 199 50 39 47] 56.07, 56.62]  [75.67, 76.55]  [130.29, 131.38]

Table 2.5. Root Mean Squared Error (mN) and 95% confidence interval for force estimation
with DIGIT data. All models were evaluated on flat indenter data over 25k test samples.

GelSight data and the corresponding 95% confidence interval. Notice from Figure 2.9
that the majority of errors are localized around the dynamic shear region. It is worth
noting that the errors associated with Sparsh (DINO) remain below 150mN, whereas

E2E exhibits higher errors, particularly in the estimation of normal forces.

[T1A] Force field visualization

Since rendering the force field is a dense prediction task, we do not apply the attentive
probing protocol. Instead, we follow DPT [I144], training a CNN encoder with
reassemble-fusion modules at layers 2,5,8,11 of the Sparsh encoder to progressively
upsample the representations to obtain a fine-grained prediction of the force field.
After the reassemble-fusion modules, we attach two task-specific task head, for normal

and shear field prediction.
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Figure 2.8. Friction cone of test data and RMSE (mN) for force estimation task with DIGIT
Sensor.
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Figure 2.9. Friction cone of test data and RMSE (mN) for force estimation task with
GelSight sensor.

Since for markerless vision-based sensors it is not trivial to get ground truth of the
force field, we turn to unsupervised learning. Depth estimation and optical flow are
analogous to the estimation of normal and shear force fields, areas where the computer

vision community has proposed several unsupervised methodologies [64, 90, 91, 112,
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Model Full dataset ~ 1/3 dataset  1/10 dataset 1/100 dataset
o 57.21 59.00 57.43 82.42

[56.44, 57.98] [38.15, 60.04] [56.44, 58.42]  [80.98, 83.86]
Sparsh (HAE) 22.72 23.28 33.56 78.98

22.27,23.17] [22.83,23.72] [33.04, 34.08]  [77.74, 80.21]
20.25 23.79 32.17 53.43

Sparsh (DINO) 10 s 90.65] [23.40, 24.18] [31.67, 32.67]  [52.69, 54.17]
37.30 37.79 45.86 105.95

Sparsh (DINOV2) a5 71 37 88]  [37.22, 88.37] [45.14, 46.59] [104.28, 107.62)
27.91 35.20 44.93 91.81

Sparsh (LJEPA) 107 a7 98.44] [24.57, 35.82] [44.13, 45.73]  [90.76, 92.86]
33.26 34.07 42.35 80.36

Sparsh (VIEPA) 109 7 33.84] [33.39, 34.75] [41.60, 43.10]  [79.26, 81.47]

Table 2.6. Root Mean Squared Error (mN) and 95% confidence interval for force estimation
with GelSight Mini data. All models were evaluated on flat indenter data over 25k test
samples.

]. We borrow ideas of unsupervised monocular depth estimation, where from two
tactile images I; and I;_,,, we learn a pose estimator for getting the transform between
frames. With the sensor intrinsic K, we map image I; from pixel space to camera
plane, translate estimated depth Dy, apply transform from ¢ to t — n, and transform
back to image plane to get I,—n. We supervised based on the reprojection error, MSE
between [;_,, and predicted ft_n. To reconstruct the shear field, we transfer ideas
from unsupervised optical flow, where we warp the features of image I; to I;_, based
on the estimated flow and compute a photometric consistency loss that encourages
the estimated flow(shear) to align image patches with a similar appearance. This loss
is a linear combination of the Charbonnier loss and the structural similarity (SSIM)
between I;_,, and ft_n. We also add a smoothness loss that acts as a regularization
term, encouraging the shear field to align the boundaries with the visual edges in
the tactile image. In Figure 2.10 we show snapshots of the normal and shear field
predictions during sliding trajectories of the DIGIT sensor on YCB and spherical
probe objects.

[T2] Slip detection
To collect labeled slip data we perform a normal/shear load test. Using a firmly

affixed hemispherical probe on a flat surface, a robot presses the DIGIT sensor toward
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Normal Force (normalized)

o

Normal Force (normalized)

efgh

=)

Figure 2.10. Normalized tactile flow (unitless) visualizations using Sparsh (DINO). Top row
shows predicted force field for four key-frames from a representative YCB-Slide trajectory
and bottom row shows interaction with the spherical probe. Arrows represent the tangential
forces, while the colors depict the normal forces. These visualizations provide directional
information about the relative motion of the contact patch. For instance (a) shows torsional
motion resulting from rotating along the edge, (b, ¢, d) show sliding on the edge, (e) shows
a diverging field when making contact with a spherical probe, and (f, g, h) show forces
produced by sliding the probe top-down.

the probe, applying random normal forces of up to 5N. Upon reaching the target
normal force, the robot slides the probe 2mm to a randomly selected position on the
sensor surface, allowing us to capture the shear profile with a F/T sensor. To label
slip, we rely on the friction cone to identify samples on the sticking and slippage

regions. A description of the procedure is illustrated in Figure 2.11.

As eluded to in Section 5.4, Sparsh’s inference window is approximately 80
milliseconds. This is appropriate since this duration matches the reaction time needed
by humans to adjust the grip force when detecting partial slip [213]. We train two
heads: one for slip detection and the other for the estimation of normalized force
change (A). We find empirically that training both heads simultaneously improves
slip detection, given their high correlation. The MLP probes are trained with cross-
entropy for slip detection and mean absolute error for A force regression as loss
functions. Our dataset comprises 125k samples, with only 13% corresponding to slip

instances. We reserve 25k samples for evaluating model performance.

Table 2.7 provides F1l-score metrics for all models under different amounts of
training data. Sparsh (VJEPA) outperforms all models, even when trained under low

data regimes. In Figure 2.12 we contrast the predictions over time for a sample
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Figure 2.11. (a) Data collection setup for [T1] Force Estimation and [T2] Slip Detection.
The Mecca Robot Arm with DIGIT / Gelsight is pressed against a static probe with random
normal force. The arm then slides the sensor over the probe which induces shear forces. (b)
Slip states over one representative stroke. When the sensor is pressed against the probe the
normal force increases. The gel sensor initially resists sliding due to friction, but gives in,
which results in a slight drop in normal force while the magnitude of shear force increases.
trajectory between Sparsh (VIEPA) and E2E models trained with 33% of the data.
Note that for Sparsh (VIJEPA) the errors are around the friction boundary, where the
probe is starting to slide. Also, it is worth noticing that a poor estimation of changes
in shear and normal forces is reflected in the accuracy of distinguishing between slip
and no-slip. In Figure 2.13, we illustrate a failure case for Sparsh (VJEPA), as its
results do not align with the ground truth. However, it is important to note that slip
labeling is prone to errors due to its reliance on an experimental coefficient of friction.
Despite the inaccuracies in the friction boundary for this trajectory, Sparsh (VIJEPA)

successfully detects the slip samples.

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset
E2E 0.767 0.238 0.299 0.214
Sparsh (MAE) 0.783 0.818 0.691 0.269
Sparsh (DINO) 0.685 0.561 0.548 0.489
Sparsh (DINOV2)  0.687 0.601 0.561 0.243
Sparsh (IJEPA) 0.776 0.791 0.775 0.726
Sparsh (VJEPA) 0.820 0.828 0.800 0.760

Table 2.7. Performance of models on slip detection task under different budgets of training
data. We use F1 score as metric, given that it ensures the model accurately identifies slip
events without favoring the majority class. A high F1 score indicates effective and reliable
slip detection.
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Figure 2.12. Contrast between Sparsh (VJEPA) and E2E for a test trajectory with a spherical
probe sliding on the DIGIT sensor. Sparsh (VJEPA), even though trained only on 33% of
the data, can detect slip accurately, which is correlated with its ability to estimate changes
in normal and shear forces.
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Figure 2.13. Failure case where the ground truth does not reflect slip since it relies on an
experimental coefficient of friction. Despite the inaccuracies in the friction boundary for
this trajectory, Sparsh (VJEPA) successfully detects slip samples.
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[T3] Pose estimation

We collect a dataset of trajectories with time-synchronized pairs of object pose
measurements and sensor observations using an Allegro hand equipped with DIGIT
sensors on each finger, mounted on a robot arm. The object was placed on a table
and with the palm facing downward, we pressed against it with the fingertips (see
Figure 2.3). We manually perturbed the object’s pose by sliding and rotating it under
the Allegro fingertips. The pose of the object was tracked using ArUco tags. Given
ground truth object pose measurements in the world frame, we preprocess them into
relative pose change (Az, Ay, Af) € SE(2) in the sensor frame.

Since we follow a regression-by-classification approach, we discretize the range
of motion for each degree of freedom into multiple intervals in Log-uniform space.
This allows us to achieve a better data distribution across all classes, as most pose
changes are concentrated around zero. The strategy of classification-regression is also
commonly explored for monocular depth estimation [151].

After attentive pooling, the features are passed to three heads, one for each degree
of freedom. Each head is an MLP with two layers, which outputs the probability
distribution over 11 classes (pose change bins). In Figure 2.14 we present the binning
as well as the confusion matrices on test data for each degree of freedom, comparing
E2E, Sparsh (DINO) and Sparsh (IJEPA) for pose estimation when trained on 33% of
the available labeled data. Note that Sparsh can accurate distinguish pose changes
in a low data regime, while a conventional task-specific approach struggles discerning
the differences between adjacent bins, and finally tends to default to zero or maximum
relative pose change, losing resolution in estimation.

Figure 2.15 shows a test trajectory over time with its ground truth labels. The
colors on the plot represent the class agreement between the pose decoders trained
with Sparsh (DINO) (using 33% of the data) and the ground truth. Darker colors
indicate no error, while brighter colors indicate greater misclassification. In Table 2.8
we report for each model accuracy in pose estimation over 630 test samples and 95%

confidence interval.

[T4] Grasp stability
We use the Feeling of Success dataset [19], which contains data from a pair of GelSight
sensors (with markers) attached to a jaw gripper (left and right fingers). The goal is
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Model Full dataset 1/3 dataset 1/10 dataset ~ 1/100 dataset
cor 0.812 0.245 0.162 0.162

0.811, 0.813]  [0.244, 0.247]  [0.160, 0.164]  [0.160, 0.164]
0.896 0.719 0.417 0.223

sparsh (MAE) 1) g6 0.807]  [0.718, 0.721]  [0.414, 0.420]  [0.221, 0.225]
0.913 0.834 0.460 0.242

Sparsh (DINO) 1 915 0.914] [0.832, 0.836] [0.457, 0.461] [0.240, 0.245]
0.665 0.565 0.411 0.210

Sparsh (DINOV2) 1 658 "0.673]  [0.559, 0.570]  [0.408, 0.415]  [0.209, 0.211]
0.851 0.601 0.323 0.212

Sparsh (LJEPA) 10 550 0.852]  [0.599, 0.603]  [0.321,0.325]  [0.210, 0.215]
0.856 0.648 0.368 0.228

Sparsh (VIEPA) 10 854, 0.857)  [0.646, 0.651]  [0.367, 0.370]  [0.225, 0.231]

Table 2.8. Accuracy and 95% confidence interval for pose estimation task following the
regression-by-classification paradigm. Relative pose between object and ring finger. Metrics
computed over 630 test samples.

to determine the success or the failure of the grasp attempt.

We pass to the SSL model the ‘before” and ‘during’ as tactile history. We create
our randomized split with all objects, using approximately 8k grasps for training and
the remaining 1.3k grasps for evaluation. Using attentive probing, we freeze Sparsh
and train a 2-layer MLP with two output units for grasp success classification.

In Table 2.9 report the accuracy for binary classification to compare the perfor-
mance of the models across different training budgets, including a 95% confidence
interval. Figure 2.16 shows the confusion matrices on test samples for E2E, Sparsh
(DINO) and Sparsh (IJEPA) trained on a 33% of labeled data.

[T5] Textile recognition

This tasks allows to study the capabilities of the representations for semantic under-
standing of the contact, as in recognizing the type of textile that is being touched by
the sensors. We use the task definition and the data set introduced in [209]. This
data set contains 4467 short video clips (10-25 frames), of a robot with a GelSight
(markers) mounted parallel gripper grasping several types of clothing, across 20 textile
classes, such as leather, cotton, polyester, etc.

We follow the train-test split provided in the metadata of the dataset. Using
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attentive probing, we freeze Sparsh and train a 2-layer MLP with 20 output units

for textile classification. In Table 2.10 and Figure 2.19(c) we report the accuracy

for multiclass classification, comparing the performance of the models in different

training budgets.

[T6] Bead maze

The goal in bead maze is to guide the bead along the wire, as shown in Figure 2.3.

We don’t rely on vision for hand-eye coordination, making the task fundamentally

tactile since forces in the fingers indicate whether the bead is moving smoothly or
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Figure 2.15. Ground truth relative pose classes for T, T}, and Yaw for a test trajectory. The
colormap represents the class agreements between the ground truth and the pose decoder,
with darker colors indicating no error and brighter colors indicating greater misclassification.
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Figure 2.16. Confusion matrix on test data for grasp stability, comparing E2E, Sparsh
(DINO) and Sparsh (IJEPA) trained on 33% of the available labeled data. The test dataset
consist of 1.3k grasps.

encountering resistance. In our setup, we use a Franka arm with a robotic hand
mounted on the wrist and DIGIT sensors on the fingers. To collect demonstrations

for training the policy, we start the task with the bead grasped between the thumb
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Model Full dataset 1/3 dataset 1/10 dataset ~ 1/100 dataset
o 0.784 0.725 0.682 0.478
0.783,0.785]  [0.722,0.728]  [0.680, 0.684]  [0.472, 0.482]
Sparsh (MAE) 0.815 0.696 0.764 0.466
0.813,0.817]  [0.691, 0.702]  [0.761, 0.768]  [0.461, 0.471]
0.780 0.706 0.773 0.473
sparsh (DINO) 1 720 0 789]  [0.702, 0.710]  [0.772, 0.775]  [0.467, 0.479)
0.770 0.770 0.699 0.543
Sparsh (DINOV2) v 767 .771] (0768, 0.772]  [0.697, 0.701]  [0.539, 0.546]
0.802 0.782 0.768 0.598
Sparsh (1JEPA) 1500, 0.804]  [0.779, 0.784] [0.766, 0.770] [0.597, 0.601]
0.809 0.702 0.743 0.523
sparsh (VIEPA) 16 05, 0.813]  [0.700, 0.704]  [0.740, 0.746]  [0.519, 0.527]

Table 2.9. Accuracy and 95% confidence interval for grasp stability classification over
different budget sizes of training data, using Feeling of Success dataset. Results over 1.3k
grasps.

and index fingers and move the arm to guide the bead along the wire. We collect
30 demonstrations on different maze patterns with mix of VR-based and manual
kinesthetic-based teleoperation, corresponding to a total of ~34k training pairs of
tactile images and robot joint angles.

For training the policy, we adapt Diffusion Policy [32] to our problem setting.
Given a small history of tactile images (...,z; 1,%;), and robot proprioception
(...,q-1,q), we train the policy to predict changes in joint angles as actions a =
(Aqy, Agyyq, -

Diffusion Policy, we use an observation horizon of 2 and an action prediction horizon

); Aq € R, instead of position control. Following the guidelines in

of 8. We adhere to the official implementation for policy architecture and training
hyper-parameters. For conditioning on tactile input, we modify the CNN encoder
from Diffusion Policy and replace it with Sparsh backbones with fixed parameters.
For training an end-to-end policy, the encoder corresponds to a ViT-Base encoder
with randomly initialized weights.

For each method, we evaluate the learned policies over a set of 10 randomized
novel starting locations on the maze and we measure distance traversed (in cm)
before failure. In Table 2.11, we report mean and variance of distance traversed

comparing Sparsh (pre-trained only and pre-trained then fully fine-tuned) against
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Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset
E2E 0.437 0.365 0.373 0.171
Sparsh (MAE) 0.599 0.588 0.527 0.330
Sparsh (DINO) 0.527 0.520 0.463 0.264
Sparsh (DINOv2) 0.544 0.536 0.469 0.288
Sparsh (IJEPA) 0.506 0.478 0.399 0.217
Sparsh (VJEPA) 0.580 0.545 0.507 0.285

Table 2.10. Accuracy for textile classification over 20 classes using GelSight with markers
dataset under different budget of labeled data. Results over 26k tactile images, where
accuracy of chance is 0.05.

E2E. All models use 50 demonstrations for training the policy via imitation learning.
We find that policies using Sparsh representations outperform E2E by ~ 20 — 53%.
Most failure cases across methods are due to the bead getting stuck on the maze or
the bead falling out of the robot hand. While prior work such as diffusion policy
suggest that frozen pre-trained models may hurt imitation learning due to domain
mismatch, we do not observe significant gains from fine-tuning in this application.
Leveraging pre-trained models in imitation learning is an active area of research,
however these results demonstrate the impact of Sparsh touch representations for

robot applications.
(cm) Sparsh (DINO) Sparsh (IJEPA) Sparsh (MAE) E2E
Pre-trained  10.80 4 3.68 94+3.1 10.24+£49 6.70 £1.67
Fine-tuned 8.45+ 3.21 10.02 + 5.37 11.25+3.85 6.70 £ 1.67

Table 2.11. Mean and variance of distance traversed (in cm) before failure for policies based
on Sparsh and E2E. Results over 10 randomized novel starting locations on the bead maze.

In Table 2.12 we report to position error of E2E, Sparsh (DINO) and Sparsh (IJEPA)
with respect to test demonstrations on an unseen maze, highlighting the fidelity of
Sparsh (DINO) and Sparsh (IJEPA) to follow a similar trajectory. Nevertheless,
this doesn’t necessarily transfer to real-world performance, since the locality of the
observations and predictions make the errors in the adjusted joint angles to compound
fast, which results in unforeseen collisions and the subsequent lose of the grasp. In an
overfitting setting, training a policy for a single maze, policies using Sparsh (DINO)
and Sparsh (IJEPA) are able to complete almost 30% of the maze on the real robot.
However, it is expected an specialist policy trained end-to-end to perform better in

the overfitting setting. Experimentally, we found than an E2E policy trained for a
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single maze is able to complete almost 80% of the maze running on the real robot.
In Table 2.13 we summarize the performance of Sparsh across the benchmark. We
find that with respect to an E2E approach, with Sparsh we can achieve an improvement
of 98.75% on average. Sparsh (DINO) and Sparsh (IJEPA) are in general the best
models across the board, showing the benefits of learning touch representations in
latent space. Sparsh (MAE), which relies on pixel space supervision, is still competitive,

although it was not evaluated on the policy task.

Model Full dataset 1/2 dataset 1/10 dataset
8.46 7.14 9.80
Sparsh-(E2E) 7.61,9.32]  [6.26, 8.05] [8.78, 10.82]
5.54 5.98 5.71
Sparsh-(DINO) [4.90,6.17)  [5.29, 6.67]  [5.13,6.29]
5.47 5.72 5.46

sparsh-(LJEPA) 1) 0 6.13]  [5.05, 6.40]  [4.82, 6.10]

Table 2.12. Position error (mm) and 95% confidence interval for the Bead Maze task. We
compare the ground truth trajectory from a test demonstration in an unseen maze against
the compounded trajectory from the predicted delta joint angles from each policy.

Task Best SSL vs E2E  DINO vs IJEPA MAE vs Best VJEPA vs Best
Force estimation (DIGIT) 28.31% 26.67% —4.38% —27.96%
Force estimation (GelSight) 59.74% 32.41% 1.72% —64.23%
Slip detection 242.70% 29.08% -1.21% 0.00%
Pose estimation 235.89% —37.91% -13.81% —22.33%
Grasp stability 5.14% 8.45% -10/17% —7.83%
Bead maze 19.72% —5.26% - -
Average 98.75% 8.91% —5.57% —24.47%

Table 2.13. Performance of Sparsh across TacBench and comparison between SSL ap-
proaches.

2.10.4 Sparsh ablations

TacBench evaluations via fine-tuning
Fine-tuning the Sparsh encoders is another method of assessing the quality of pre-
trained representations. Fine-tuning can potentially enhance performance in down-

stream tasks when the pre-trained model lacks task-relevant information.
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We evaluated both the full and partial fine-tuning of Sparsh on TacBench. In full
fine-tuning, all encoder parameters are updated through task supervision. In partial
fine-tuning, we update only the last transformer block of the encoder. Figure 2.19
shows the fine-tuning results in the benchmark with varying amounts of labeled data.
Notably, models pre-trained in latent space (DINO, I-JEPA, V-JEPA) perform better
in downstream tasks when fully fine-tuned, especially in regression tasks like force and
pose estimation. For example, Figure 2.19(a) illustrates that errors in force estimation
are significantly lower with full fine-tuning, even with only 33% and 10% labeled data.
Full fine-tuning also enhances performance in classification tasks such as slip detection,
grasp stability, and textile classification, as shown in Figures 2.19(b,c). Adding in-
domain data to the encoder reduces performance gaps in the benchmark between
Sparsh (DINO), Sparsh (IJEPA), and Sparsh (VJEPA). However, this method is less
effective for the Sparsh (MAE) model, which is trained in pixel space. We hypothesize
that MAE weights are potentially more brittle when compared to other SSL models
which enjoy a wider basin of minima due to weight updates via exponential moving
average. In contrast, partial fine-tuning offers minor improvements, aligning closely

with the performance of frozen models.

Sparsh ViT-small and performance

We train Sparsh for all SSL approaches decreasing the model capacity by using a
transformer ViT-small. This let us study the effect of the dimensionality of the touch
representations on downstream tasks, from 768 with ViTbase to 384 with ViTsmall.
We follow the same training procedure explained in Appendix 2.10.2.

We evaluate Sparsh-vitsmall across TacBench. In Figure 2.19 we report the
performance of each task for different budgets of labeled data following the attentive
probing protocol. Reducing the dimensionality of the representations do plays an
important role for some tasks. Regression-like tasks such as [T1] Force estimation
(see Figure 2.19a) exhibit a decrease in performance when reducing the capacity of the
encoders, specially when the downstream tasks needs to be trained under a limited
number of labeled data. For instance, Sparsh (DINO) increases the force estimation
error by 74% for DIGIT and 50.3% for GelSight Mini when using representations
from Sparsh-vitsmall and training the downstream tasks with 33% of labeled data.

The decrease in performance is also observe in regression-by-classification tasks, as
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in [T3] Pose estimation. With Sparsh-vitsmall all models perform very similar but
losing 20% accuracy even when training the downstream tasks with the full labeled
dataset. Nevertheless the performance is still better than an E2E model with a
vitbase encoder.

In general for classification tasks in the benchmark like [T2] Slip detection, [T4]
Grasp stability and [T5] Textile recognition, there is no major effect of reducing the
capacity of the encoder. The drop in performance is only significant when training

the downstream task with the lowest amount of training data, 1% in our experiments.

Sparsh and cross-sensory representation

Since Sparsh is trained on multiple GelSight-like data, we investigate whether SSL
training enables cross-sensory representations or if it helps downstream tasks trained
for one sensor quickly adapt to another. To study this, we use as a baseline the
decoder trained for [T5] Textile recognition, which was supervised with labeled data
from GelSight with markers.

We collect new data using a DIGIT sensor for 10 out of the 20 textiles. Our dataset
contains 11 samples for both training and testing. We load the trained decoders
for [T5] using Sparsh (DINO) and E2E and perform zero-shot evaluation as well as
1-shot, 5-shot, and 10-shot training and subsequent evaluation using the DIGIT
data. Table 2.14 reports accuracy on 110 samples of test data. Zero-shot evaluation
with DIGIT performs close to chance, while with very few samples (10-shot) Sparsh
(DINO) classifier quickly adapts and significantly outperforms E2E. This experiment

empirically demonstrates the value of cross-sensor representations.

zero-shot 1-shot 5-shot 10-shot
Sparsh (DINO) 9.1 19.1 282  61.8
E2E 3.6 0.0 15.5 10.9

Table 2.14. Accuracy of n-shot evaluation of [T5] Textile recognition on DIGIT data to
study how Sparsh facilitates cross-sensory adaptation to the dowsntream task.
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Figure 2.18. Additional evaluations for the perception tasks, T3 pose estimation (top), T4
grasp stability (middle) and T6 textile classification (bottom).

Figure 2.19. Additional evaluations of Sparsh representations on TacBench. We compare
frozen Sparsh ViT-base (most left), Sparsh fully and partially fine-tuned (middle) and
finally (most right) Sparsh ViT-small to gauge the effect of reducing the dimensionality of
the representations.
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Chapter 3

Sparsh-skin: self-supervised
representations for full-hand

magnetic tactile skin

Full hand tactile sensing is crucial for robot dexterity. Magnetic tactile skins offer
a flexible form factor for hand-wide coverage with fast response times, in contrast
to vision-based tactile sensors that are restricted to the fingertips and limited by
bandwidth. However, challenges with interpreting magnetic flux changes, calibration,
and the lack of general-purpose models have limited their adoption. In this work,
we present Sparsh-skin, a pre-trained encoder for magnetic skin sensors distributed
across the fingertips, phalanges, and palm of a dexterous robot hand. Given a
temporal history of kinematics and tactile sensing across a hand, the encoder outputs
a latent tactile embedding that can be used in any downstream task. Sparsh-skin is
self-supervised via self-distillation on a variety of unlabeled hand-object interactions
using an Allegro hand sensorized with Xela uSkin. We evaluate Sparsh-skin across
several benchmark tasks from state estimation to policy learning, and find that
pre-training results in significant improvements (~ 56.37%) in task performance and

labeled data efficiency when compared to end-to-end learning with task-specific data.
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Sparsh-skin

Tactile embedding )

Pretraining

Interaction at i + 1 Interaction at i + k

Downstream tasks

[T1] Force estimation [T2] Relative pose estimation [T3] Joystick control

Interaction at i

[T4] Insertion policy

Figure 3.1. We present Sparsh-skin a self-supervised approach to learning general represen-
tations for magnetic tactile skins covering dexterous robot hands. Sparsh-skin is trained
with a pretraining dataset (~ 4 hours) containing atomic in-hand interactions with a variety
of objects. It takes as input a brief history of tactile observations x; and 3D sensor positions
p; to produce performant full-hand contextual representations.
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3.1 Introduction

Although often overlooked, touch comes at the forefront in dexterous manipulation,
such as when playing guitar, or when vision is impaired, like plugging in a cord in
the dark. Consequently, the robotics community has leveraged touch to enhance
robot learning [82, , , |, but has so far largely limited their attention to
fingertip sensing via vision-based tactile sensors. Sensors such as the DIGIT [100],
GelSight [207], GelSlim [15] and others [115, 181], are popular due to their high-
resolution output, human-interpretable signals, and accessibility. Capturing touch as
images is attractive, as advances in computer vision can be leveraged with minimal
friction. Nevertheless, these sensors have limitations: they are slow compared to

human skin’s touch receptors, come in bulky form factors precluding large area sensing,

and are often custom-designed for specific manipulators [115], making reproducibility
a challenge. Magnetic skin-based sensors such as uSkin (Xela) [173, 175], ReSkin [11],
and others [15, |, offer an alternative for tactile feedback. They provide fast

response times (~ 100 Hz) and flexible form factors that can be adapted to complex
embodiments, such as multifinger robot hands. However, these sensors are difficult
to interpret, difficult to model due to hysteresis and other factors, and are primarily

hindered by a lack of infrastructure.

Self-supervised learning of general touch representations, offers a potential solution,
through efficient downstream task learning, by learning priors from unlabeled data.
However, while previous research [70), |, has leveraged this idea for tactile learning,
these approaches rely on choices from computer vision such as treating temporal
signals as images [70] and using the masked reconstruction objective [78, 1806] that

may not be apt for noisy magnetic flux signals.

To this end, we present Sparsh-skin, a pre-trained tactile encoder model trained
using self-supervised learning (SSL) for magnetic skin-like sensors covering a multifin-
ger robot hand (see Figure 5.1). Sparsh-skin directly learns in-hand contact priors
from tactile history and hand configuration using a robust classification objective.
Our tactile encoder simplifies downstream task use, by introducing standardized
magnetic time-series data, and reducing the need for real-world labeled data, which
is non-trivial to collect and oftentimes infeasible. For instance, we do not yet have

hardware to annotate spatially distributed ground truth force fields. By combining our
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representation learning algorithm, tactile signal tokenization, and a fully-sensorized
multi-fingered hand, we achieve state-of-the-art tactile representations for magnetic-
skin sensors, outperforming end-to-end training by ~ 56.37% in both performance
and sample efficiency for downstream tasks.

We evaluate our model’s understanding of dynamic contact through force pre-
diction, pose estimation, object state estimation, and its capability for downstream
policy learning via an insertion task. The main contributions of our work are:

1. Sparsh-skin a high-performance tactile representation model, trained via self-
distillation [131] for magnetic-skin based tactile sensors.

2. A thorough evaluation of the design choices including tokenization, and the learning
algorithm.

3. SSL dataset containing 4 hours of random play-data of the Allegro robot hand sen-
sorized with the Xela tactile sensors, labeled datasets, metrics, and task design that

cover relevant problems in tactile perception to evaluate learned representations.

3.2 Related work

3.2.1 Tactile sensors

Tactile sensors can be broadly categorized into vision-based (e.g. DIGIT [100], Gel-
Sight [207], GelSlim [15] and others [115, 181]), pressure-based (e.g. force sensitive
resistors), impedance-based (e.g. BioTac [53]), and magnetic-based (e.g. uSkin
(Xela) [173, 175], ReSkin [11], and others [15, 130]) sensors. Vision-based sensors

commonly used in robot manipulation capture finger-object-environment interactions
as images [100, |. However, their bulky form factor, low-frequency feedback and
high bandwidth requirement limit their application in tasks that require large areas
coverage. Impedance-based tactile sensors offer high temporal resolution, but are
difficult to interpret, and currently do not provide full-hand coverage solutions either.
Pressure-based sensors can offer a wide coverage area, but lacks capabilities in shear
force sensing. Magnetic tactile sensors, on the other hand, provide a thin skin-like
alternative with options such as ReSkin [14], AnySkin [15], and Xela [173, 175]
being popular choices. They provide low-dimensional but high-frequency signals.

However, when these sensor pads are distributed on all contact interfaces of a robot
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hand, the total output is high-dimensional. These sensors primarily use hall-effect
sensing for force measurement. Xela [173] in particular works by transducing dis-
placements of permanent magnets embedded in an elastomer arranged in a grid
pattern to magnetic flux changes, essentially capturing 3-axis shear and normal
forces. ReSkin and AnySkin [14, 15] magnetize the entire elastomer layer continu-
ously, instead of using discrete magnets. This sensing modality has been explored
for various contact-rich applications, including planar pushing [109], surface ma-

terial classification [184], grasp stability [70], and policy learning tasks [107, 135].

3.2.2 Tactile

representation learning

Representation learning for vision-based

tactile sensors has recently gained signif-
icant attention. Since the sensor out-
Figure 3.2. Illustration of Xela signal cor-
ruption via masking for SSL prediction task:
puter vision [78, | have been extended Once a 100(ms) window of tactile measure-
to tactile sensors. This is motivated by ments and sensor positions are tokenized,
block masking is applied to corrupt the sig-
nal, . For each data sample, the student
pretrained encoders that promise general- petwork receives k different masks, each
ization, with prior work leveraging mask- randomly retaining 10% to 40% of the data
denoted z;. The teacher network, in con-
trast receives 1-2 masks each retaining 40%
learning [39, 03, 197, 204], and state-of-the- 6 100% of the data denoted z;.

art methods like self-distillation and joint-

puts are images, techniques from com-

a move beyond task-specific encoders to

autoencoders (MAE) [21, 215], contrastive

embedding predictive architectures [32] to
learn tactile representations.

Research on learning representations for magnetic-based sensors remains relatively
underexplored. Since these sensors produce low-dimensional signals, the consensus
view is that representation learning is likely unnecessary. However, as we highlight
in our work, these signals in context of the full hand sensing, varying tactile signals
and hand poses over time, and physical properties of magnetic sensors are indeed
high-dimensional, and benefit from large-scale pretraining to compress information

into semantically rich representations, that improve downstream task performance.
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Recently, HyperTaxel [107] applied contrastive learning to learn representations for
the Xela sensor for the task of surface recognition but it did not show whether these
representations capture contact dynamics. Similarly [70, | propose representation
learning with self-supervised methods such as BYOL [67] and MAE [78]. While the
idea of representation learning is sound, the choice of meaningful image augmentations
without data corruption, is unclear for BY OL. Furthermore, by treating instantaneous
tactile measurements as images, these methods discard temporal information and

may therefore be suboptimal for tactile tasks that rely on contact dynamics.

3.3 Representations via self-supervised learning
for tactile skins

Dexterous manipulation has primarily focused on fingertip tactile sensing, which
provides crucial information for tasks like in-hand rotation [111, 198]. However, other
skills such as in-hand translation [199], power grasp, and palm-to-finger retrieval,
and maneuvers involved in tool use require the involvement of phalanges and the
palm. Magnetic skin sensors, such as Xela [173], offer a form-factor that allows
easy integration into dexterous hands to provide a full hand-object state with lower
dimensionality and higher frequency than vision-based sensors. Therefore, we propose
a self-supervised modeling approach to learn from random-play data, generalizable
tactile features for dexterous hands equipped with magnetic-skin tactile sensors. Our
method is designed for the Xela sensor but can be extended to any skin sensor with

3-axis time-series output signals.

3.3.1 Preliminaries

Self-distillation for representation learning Self-distillation [0, 67, |isa
powerful paradigm in self-supervised learning involving a pair of identical neural
networks, termed the student Ey and teacher network E;. The student network
receives a corrupted version of a data signal X that is to be encoded, while the teacher
network receives privileged information about the same data sample x. Then, the
student network is tasked with predicting through a small predictor network Py,

the data representation that the teacher produced. To prevent the teacher from
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producing degenerate representations — for instance, a constant representation for all
data — the teacher weights are not updated via back-propagation, but only through an
exponential moving average (EMA) of the student weights. Specifically, the following

objective is optimized:

argmin [Py (Ey (7)) — sg(E;(x))| (3.1)
where sg indicates stop gradient, and § £ EMA(9).
Since the teacher network is an exponential moving average (EMA) of the student

work, knowledge is self-distilled through the representation prediction task.

Robot setup and pretraining data Our setup consists of the Allegro hand
sensorized with Xela uSkin, attached to a Franka Panda robot arm. The Allegro
hand is equipped with 18 Xela uSkin sensing pads, consisting of 4 curved fingertip
sensors with 30 individual sensors, 11 4x4 grid sensors pads attached to the finger
phalanges, and 3 4x6 sensing pads attached to the palm, resulting in a total of 368

individual sensors.

Target ‘311%'11&1 Reconstructed mgnal Target signal Reconstructed signal

PercepSkin ~  MAE
— Fingertips \ Thumb

Finger
—Phalanges Palm

Radius indicates normal force

Arrow direction HldlCd,t
shear

Sensor location

Figure 3.3. Visualization of reconstructions from the reconstruction online probe. Here, we
show a comparison between MAE and Sparsh-skin. For Sparsh-skin we visualize a single
frame from the tactile window.
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We collected a dataset of the hand performing various atomic manipulation actions
with 14 household objects and toys, including squeeze, slide, rotation, pick-and-drop,
circumduction, pressing, wiping, and articulation. Using a VR-based teleoperation
system with Meta Quest 3, which builds on the inverse kinematics-based re-targeting
method proposed in [73], we recorded 11 sequences (approximately 2 minutes each)
for each object, totaling around 4 hours of varied interactions. The dataset includes
top/left camera views, Xela signals, and robot and hand joint states, covering a range

of rigid and deformable objects with diverse tactile properties (see Figure 3.4).

3.3.2 Architecture

Sparsh-skin uses a Transformer[l 78] as the student and teacher network for self-

distillation.

Sensor tokenization We perform baseline subtraction on Xela signals to account
for their uncalibrated nature and consistent biases. A single baseline signal is collected
with the Allegro hand in a resting configuration (palm up and flat) and used for all
downstream tasks, unlike prior work [14, |, which collects a new baseline signal
per training sequence. We also resample Xela signals to a consistent 100Hz frequency.
as the sensor data rate fluctuates between 80Hz to 100Hz, unlike prior work [70] that

subsamples data to match modalities at lower frequencies.

We note that for representation learning, tactile data can be temporally corre-
lated, and instantaneous signals cannot provide context for contact changes, there-
fore we choose to learn representations for chunks of 100ms of data. First, inputs
to Sparsh-skin are formatted corresponding to a brief history of 0.1 seconds of

the sensor signal x.o € R10*368%3

R10><368><3

concatenated with the history of sensor position
D110 € computed from the forward kinematics of the Allegro hand. Inputs
are then tokenized through a linear projection fijear to the dimension d of the repre-
sentation 2; = flinear(T1.10|P1:10) € R?*®*?. Finally, a learnable token is added to each
sensor according to the three types of Xela sensing pads (see 3.3.1) on the Allegro
hand. We do not add additional positional embedding and instead rely on the sensor

position to provide 3D positional information to the transformer network.
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SSL prediction task

While it is common in the image domain to crop and subsequently resize images
to perform signal corruption, this results in changing the shear profile for magnetic
flux readings. Therefore to avoid any untoward data augmentation that changes the
semantic meaning of the signal, we use block masking [5] to corrupt signals that
are input to the encoding networks. Specifically, input data is masked after sensor
tokenization in a cross-taxel manner i.e., given tokenized data from 368 sensors, we
mask sensor data from local contiguous blocks including from sensors from distinct
sensor islands by removing those sensors from the input (see Figure 3.2). The masked
sensor tokens are subsequently transformed through the student and teacher network
as Eg(%) and E;(2;) respectively.

For the prediction task, we use classification by defining a set of prototype classes
asin [22, 131], which is robust to sensor noise compared to masked auto-reconstruction.
The sensor tokens after transformation are converted into prototype logits through a
classification head f..ss as p; and p} respectively for the student and teacher networks.
We use both the class token and the patch level cross entropy objective between
the student and teacher logit predictions to enforce local-to-global correspondence

learning in the sensor representation. Additional details about the model architecture,

MAE reconstruction comparisons and training hyper-parameters are in the Appendix.

Online Probes

Unlike supervised learning (SL), where model performance is easily monitored through
training and validation losses, in self-supervised learning (SSL), prediction task losses
do not directly convey downstream task performance. In fact, in the presence of an
EMA teacher network, which acts as a moving target, the prediction task loss can
increase in tandem with the predictions of the teacher network. Therefore, we rely
on online probes to monitor downstream performance. During training, we evaluate
the tactile representation for a) reconstruction and b) the ability to identify objects
used in play data.

Figure 3.3 provides a qualitative visualization of the reconstruction performance
obtained by the decoder using representations computed by the student network Eq(Z).

In terms of object classification performance, we achieve approximately 95% accuracy
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Figure 3.4. UMAP visualization of representations colored by object in robot hand.
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across 14 classes, while both BYOL [70] and MAE [78] are limited to ~ 81% accuracy.
Additionally, Figure 3.4 presents a UMAP [122] visualization of the representations,

where sequences from each object are mapped to distinct, non-overlapping clusters.

3.4 Sparsh-skin evaluation

In this section, we assess the ability of Sparsh-skin to comprehend tactile proper-
ties, enhance perception, and enable policy learning for manipulation through four
downstream tasks spanning tasks studied in the tactile sensing literature: namely
Force estimation, Joystick state estimation, Pose estimation, and policy learning via

the Plug insertion task.

i - Attentive Probe :
@ -
o o . .
= |2 =ik
r|/J £ Co Cross f : z
— o . |———>| Attention [ & |—> |y| N
8 ;% — 5 : z
o 7 -
Skin Signal S 3 T T
<

Figure 3.5. Attentive probe: Attentive pooling 4+ small 2-layer MLP for regression tasks

3.4.1 Evaluation protocol

Downstream task decoders. The tasks we consider are of two types: a) requiring
instantaneous prediction, and b) requiring temporal reasoning over tactile data.
For tasks such as force estimation that require an instantaneous estimate, we use
attentive pooling(see Figure 3.5). For tasks such as pose estimation and joystick
state estimation, that require sequence reasoning, tactile observations are transformed
into tokens at the output frequency through a cascaded application of the backbone

network followed by attentive pooling as illustrated in Figure 3.6.
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Figure 3.6. Decoder for sequence to sequence prediction tasks

Model comparisons. For each of the downstream tasks, we explore multiple

variants of the Sparsh-skin encoder, along with additional baselines:

1.

Sparsh-skin (frozen), pretrained representation that uses tactile and hand config-
uration history.
Sparsh-skin (MAE), pretrained representation that uses tactile and hand config-

uration history trained using MAE supervision instead of self-distillation.

3. Sparsh-skin (finetuned), finetuning the pretrained encoder network

BYOL*, our reproduction of the BYOL [67] approach using our collected play data
and tactile data formatted as images, since the setup used in [70] does not contain
palm sensing and uses an older variant of the tactile sensor.

End-to-end, training the entire encoder-decoder network with same capacity using
only labeled task data

To measure performance, we generally use the average root mean squared error

(RMSE) for all tasks, and measure success rate (SR) across trials for the policy

learning task using plug insertion. Additionally for all supervised learning tasks, we

evaluate each method for sample efficiency by reducing the downstream labeled data

accessible during training.
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Figure 3.7. Hardware setup used for downstream tasks: (Left) shows the setup for force
estimation. We use 3D printed probes attached to a F/T sensor to indent onto the Xela
sensors. (Middle) shows the setup for pose estimation. We track an object mounted with
an ArUco marker to obtain ground truth pose estimates while randomly moving it under
the robot hand. (Right) shows the setup for plug insertion policy task. We collect tactile
measurements and camera observations from three third-person view cameras and a wrist
camera view.

3.4.2 Downstream task performance

Force Estimation. This task involves regressing tactile signals to 3-axis normal
and shear forces on a robot hand’s palm. We collected force-labeled data using a robot
arm with an F /T probe to apply varying normal forces (0.25-5.0N) with hemispherical
and flat indenters (see Figure 3.7 (left)). The probe’s position was randomly sampled
across the sensor pad, including locations both on and between magnetometers,

differing from sensor characterization which only tests atop magnetometers.

Results (see Figure 3.8) While the end-to-end model is particularly worse at
predicting forces throughout the spectrum, in low data regimes — 3.3% to 10% of
the labeled data in this case — it is interesting to note that Sparsh-skin (finetuned)
and Sparsh-skin (frozen) do not see any significant loss in performance. To this end,
we test the models with even smaller number of downstream task data samples to
find that Sparsh-skin is able to predict forces at a reasonable accuracy (350 mN
in z) even with only ~ 100 samples. Additionally, we find Sparsh-skin (MAE) is
marginally worse at predicting forces highlighting that MAE may not be suitable
for noisy magnetic flux signals. Furthermore, BY OL* is competitive albeit slightly
worse with respect to Sparsh-skin (frozen) as this task tests for instantaneous force

decoding. We present additional results in the appendix.
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Figure 3.8. Force estimation (RMSE (] )): BYOL pre-training is less accurate at predicting
normal forces.

Joystick state estimation. We adapt this task from [16] (see Figure 5.1), as
a study of full-hand object state estimation. The task is a sequential problem of
predicting the joystick states (roll, pitch and yaw) given a short tactile history. In
addition to the comparison of Sparsh-skin with an end-to-end approach, we also
compute the RMSE results from the best reported model in HiSS [10] (denoted as
HiSS* in Figure 3.9). Additional data and pre-processing details are in the appendix.

Results Despite challenges from jittery teleoperation such as inconsistent touch
even with similar joystick maneuvers, our model (Sparsh-skin) matches baseline
performance using full data. Notably, Sparsh-skin (frozen) achieves similar perfor-
mance with only 3.3% of the data, demonstrating high sample efficiency. Sparsh-skin
consistently shows lower prediction error across data budgets (Figure 3.9). Further-
more, Sparsh-skin (finetuned) drastically speeds up training, reaching comparable
performance to an end-to-end approach in 12k optimization steps versus 220k (a 95%
speedup) when using a 33% data budget. An illustration is provided in the Appendix.

Pose estimation. This task tests the ability to track and accumulate slip
under the sensors to predict object pose changes (tf = (r,y,6)) € SE(2) using the
setup in Figure 3.7 (middle). We collect 120 trajectories (~ 30s each), by manually
sliding/rotating an object in a range of ~ (25cm, 25¢m, 100°) under the Allegro hand,
tracking ground truth object pose using ArUco tags. These poses in the camera
frame are transformed into the robot hand frame and then projected into SE(2).
We use the sequence decoder ( Figure 3.6) which processes 1-second windows of raw
tactile data (100Hz) and object pose (10Hz). In addition to RMSE, for this task,
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Figure 3.9. Joystick state estimation ({): Sparsh outperforms end-to-end overall and is
competitive with HiSS* even when it is given access to only 3.3% of dataset.
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Figure 3.10. Pose estimation error () and (d) Pose estimation accuracy (1): Sparsh (fine-
tuned) has a ~ 10% improvement over end-to-end for translation and ~ 20% improvement
for rotation.
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Model Success Rate (1)
VisuoSkin 0.66
\% 0.20
V+T End-to-end 0.4
V+T Probing 0.75
V+T Fine-tuning 0.7

Table 3.1. Success rate percentage reported over 20 trials, while ensuring identical initial
conditions during each trial for the tested policy variants. VisuoSkin results are obtained
from [135]

performance is measured via pose accuracy (proportion of predictions within 2cm
translation and 5° rotation error).

Results (see Figure 3.10) To evaluate sample efficiency, we train with data from
sequences ranging between 5 to 100 trajectories. All pre-trained representations
trained on play data achieve lower RMSE and higher pose prediction accuracy than
the traditional end-to-end approach. In particular for Sparsh-skin (finetuned) we find
a ~ 10% improvement over the end-to-end model with the full dataset for translation,
and ~ 20% improvement for rotation. Sparsh-skin (frozen), the MAE baseline
are on par with each other, while BYOL is worse at high-data regimes. Although
all models suffer in accuracy in low data regimes, pretrained Sparsh-skin models
maintain 70% accuracy rate for translation. This is explained by the correlation of
the displacement of the object and the displacement of the magnetometers on the
Xela sensors. However, tracking rotation is harder, as it involves torsion. Allowing in-
domain data to fine-tune the Sparsh-skin representations is advantageous, especially
for better tracking rotation of the object.

Policy learning (plug insertion). We train a transformer decoder policy
predicting action chunks [217] with Sparsh-skin representations as input for this
task. We adapt the insertion task [13, , | as it is fundamentally tactile
requiring touch feedback to observe the alignment state of the plug. The task involves
inserting a pre-grasped plug into a fixed socket using a 7-DOF Franka arm and Allegro
hand ( Figure 3.7 right) unlike [135] which used parallel jaw grippers. We collected
100 demonstrations via kinesthetic teleoperation, recording synchronized data: four
camera views (I .. .) Allegro tactile readings (z;), and robot joint states. The
arm’s initial position was randomized within a 0.05m x 0.05m x 0.02m volume ~ 10cm

above the socket, while the socket position is fixed. The policy predicts sequences of
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absolute end-effector poses (3D position + axis-angle orientation) a = (T;, Tiiq,...),
conditioned on visual and tactile observations but not proprioception (joint states). We
evaluate average success rate over 20 trials with randomized start positions, comparing
Sparsh-skin variants (V + Sparsh-skin (frozen), V + end-to-end, V + Sparsh-skin
(finetuned)) against a vision-only (V) baseline to assess tactile contribution. Further
details are in the Appendix

Results: (see Table 3.1) We find that policies conditioned on pretrained Sparsh-skin
features outperform the end-to-end model. In the appendix, we present snapshots
of real-world policy deployments for both vision-only and visuo-tactile Sparsh-skin
(frozen) policies. Without tactile modality (vision only), we find that the policy is
able to get close to the socket but indefinitely continues to search for it and does not
push the plug in, even when it is directly above the socket. Further, we find that this
policy tends to keep pushing the plug to the left of the socket. We note that this is
due to perceptual aliasing, where the plug incorrectly appears to be right above the
socket from the wrist camera. On the other hand, all model variants with access to
the tactile modality observe respectable success rates. In qualitative inspection, we
find that the policies using Sparsh-skin (V4T frozen) representations slides after
making contact with the extension board, while Sparsh-skin (V+T end-to-end) and
Sparsh-skin (V4T finetuned) tends to retry by lifting the plug, when mistakes occur.
As noted earlier, in comparison with [15, 135] which trains end-to-end visuo-tactile
policies, our setup uses a multifinger Allegro hand as the manipulator, where the plug
is grasped using three fingers; nevertheless, we find that policies trained with tactile

features from Sparsh-skin are competitive.

3.5 Conclusion

We present Sparsh-skin, a high-performance tactile representation model trained via
self supervision for magnetic skins on dexterous hands. Our model learns contact state
priors from an unlabeled dataset of contact-rich teleoperated hand interactions with
various household objects. We demonstrate the efficacy of our supervision objective,
tokenization, and masking strategies through evaluation across various tactile centric
tasks spanning force estimation, pose estimation, object state estimation and policy

learning, which indicate that our model is highly performant.
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3.6 Appendix
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Figure 3.11. Sparsh-skin block diagram for self-supervised learning of skin repre-
sentations. Our approach follows the student-teacher framework and loss functions used
in self-distillation. However, we adapt the transformer input tokenization to accommodate
time-series Xela data.

3.7 Sparsh-skin self-supervision details

3.7.1 Training details

We train Sparsh-skin on 8 Nvidia A-100 (80G) GPUs. To monitor learning, we use
reconstruction online probe and classification via linear probing. We use AdamW
optimizer and use a linear rampup followed by a cosine schedule as the learning
scheduler. Further, we find that tuning momentum value as well as the weight decay
factor was important in observing training convergence. Additional information of

hyperparameters is detailed in Table 3.2.
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Architecture ViT-Tiny (adapted)

Embedding dim 192
EMA decay [0.994, 1.0]
LR le-4
Batch size 64

Table 3.2. Training hyperparameters for Sparsh-skin. All models run for 500 epochs
with optimizer AdamW, a weight decay cosine schedule from 0.04 to 0.4, and a learning
rate warmup of 30 epochs.).

3.7.2 Architecture details

Our encoder model is a modified version of Vision Transformers [16]. Specifically, we
adapt the tokenization of the time-series Xela with sensor pose data. After flattening
the 3D-axis magnetic reading per magnetometer (368) and concatenating their
corresponding pose in chunks of 0.1 second, the inputs z € R10%368%6 gre tokenized
through a linear projection to the dimension d of the representation fjicqr () € R368%4,
We use a tiny model with d = 192. We add a learnable embedding to identify different
types of xela pads (palm, phalanges and fingertips). Then, we construct different
cropped view of the data, two global views and eight local views. We mask sensor
data from contiguous blocks by removing those sensors from the input. For the local
view we retain between 10% and 40% of the tactile signal, whereas for the global
views we retain 40% to 100%. An illustration of the masking and diagram block of the
pipeline for self-supervised learning of Xela representations is shown in Figure 3.11.

The student and teacher share the same encoder and projector head architecture,
both initialized with the same weights. The projector head corresponds to a 3-layer
MLP with an output dimension of £k = 65536. We use the projection head for
the proxy prediction task to distill knowledge to match output distributions over k
dimensions between student and teacher networks. The student network is updated
via back-propagation, while the teacher network is updated at a lower frequency via
exponential moving average (EMA) on the student weights. We pass the global and
local views to the student encoder, while the teacher only has access to the global
views. The register tokens from global /local views are passed through the projection
head. For the teacher only, the output is also centered and sharpened via softmax

normalization.
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3.8 Additional task details

We provide additional information about the decoder architectures for each task, as
well as additional results to highlight the performance on downstream tasks when
using frozen or fine-tuned Sparsh-skin representations. Also, please refer to Table 3.3

for details on labeled data curation for evaluation tasks.

Task Dataset Size Collector Label
. . Normal load 50k datapoints Robot 3-axis force
Force estimation .
(indenter: sphere, flat)
Pose estimation Object sliding 108 trajectories Human Object pose SE(2)
Joystick state estimation Joystick motion 817 trajectories Human Normalized roll, pitch, yaw
Plug insertion Demonstrations 100 trajectories Human Absolute EE pose

Table 3.3. Datasets for evaluating Sparsh representations on downstream tasks.

3.8.1 Force estimation

Sparsh-skin features are pooled via attentive pooling to obtain a full-hand represen-
tation zpgna € R The force decoder consist of shallow 2-layer MLP with 3 outputs
regressing to normalized force for each axis.

In Figure 3.14 we illustrate the data protocol followed for force estimation, which
we note is different from the protocol that is usually followed for force characterization
of tactile sensors. We note that we indent the tactile sensor pads at both, positions
on top of the sensor as well as positions in between magnetometer locations, while
choosing these positions randomly. This results in cases where the probe may slide
and present slightly uneven force outputs. Specifically, in figure 3.14(b) we note
that Sparsh-skin predicts the correct normal forces, while accumulation (mean) of
normal forces from the magnetometers over the sensor pad results in inconsistent
force outputs compared to ground truth.

In Figure 3.15, we present the correlation metrics between ground truth and
predicted forces on test data for decoders trained with a 33% data budget. The results
show that end-to-end training leads to overfitting, resulting in poor generalization
to unseen strokes and essentially random normal force predictions. In contrast,
using Sparsh-skin (frozen) representations yields better fitting, which can be further

improved by adapting these representations to in-domain data.
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In Figure 3.16, we present a comparison between ground-truth testing strokes
(normal loading sequences) and their reconstructed counterparts, obtained by passing
Xela data through the frozen force decoder to recreate the sequences. The forces
estimated via Sparsh-skin (frozen) are able to capture increasing/ decreasing changes
in the normal loading, as opposed to the end-to-end model. Shear from skin represen-
tations is not as accurate as normal force prediction, but the trend of the tangential

forces matches the ground truth.

3.8.2 Joystick state estimation

For this task, we highlight that when we train decoders using pretrained represen-
tations as the input, the convergence rate of the validation RMSE is significantly
higher (see Figure 3.17) than training the decoder using raw observations through
uninitialized models. Specifically observe that Sparsh-skin (fine-tuned) is able to
reach performance on par with end-to-end pretrained model within 12.9k optimization

steps.

3.8.3 Pose estimation

In this task, we aim to predict the object pose over 1-second trajectories. Xela
observations at 100Hz are converted into tactile representation tokens at the output
frequency using Sparsh-skin in a cascaded manner. Following attentive pooling, a
single-layer transformer block is applied to reason about the 1-second context window
of full-hand tactile features.

Figure 3.18 compares ground-truth test pose sequences with their reconstructed
counterparts, obtained from task models trained on 100% and 33% of the available
data. The results show that fine-tuning Sparsh-skin on the full dataset yields higher
accuracy in estimating object pose changes over time compared to traditional end-
to-end approaches. Moreover, even with a drastic reduction in labeled samples (to
33%), the model still achieves relatively good performance, particularly in tracking
translation changes. Furthermore, for this task, we also visualize that this tasks
requires full-hand sensing. For instance, in Figure 3.19, we observe that when we use
Sparsh-skin by removing palm sensing on the Xela hand results in > 10% drop in

pose tracking performance.
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3.8.4 Policy learning (plug insertion)

For this task, we use a transformer decoder to predict action sequences given camera
and tactile observations. Figure 3.20 illustrates the architecture of the transformer
decoder used in this work. Images are encoded using a Resnet18 CNN, which are
trained from scratch to produce image features, while the tactile observations are
processed through Sparsh-skin. Further, a learnable token (CLS / action) token
is also concatenated with the observation tokens. After processing through the
transformer, we extract the action token, which is then passed into a small 2-layer
MLP to predict a sequence of actions. For this task, follow an receding-horizon control
approach, where we choose a prediction action sequence length of 16, of which 8

actions are executed, given only the observations from the current timestep.
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loading with an indenter on Xela sensors.
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Figure 3.17. Validation RMSE convergence rates between Sparsh-skin fine-tuned and
Sparsh-skin end-to-end: We find that Sparsh-skin fine-tuned allows the model to generalize
and learn the patterns required to infer joystick states significantly faster during training.
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Chapter 4

Sparsh-X: Multisensory touch
representations for robot

manipulation

We present Sparsh-X, the first multisensory touch representations across four tactile
modalities: image, audio, motion, and pressure. Trained on ~1M contact-rich
interactions collected with the Digit 360 sensor, Sparsh-X captures complementary
touch signals at diverse temporal and spatial scales. By leveraging self-supervised
learning, Sparsh-X fuses these modalities into a unified representation that captures
physical properties useful for robot manipulation tasks. We study how to effectively
integrate real-world touch representations for both imitation learning and tactile
adaptation of sim-trained policies, showing that Sparsh-X boosts policy success rates
by 63% over an end-to-end model using tactile images and improves robustness by
90% in recovering object states from touch. Finally, we benchmark Sparsh-X’s ability
to make inferences about physical properties, such as object-action identification,
material-quantity estimation, and force estimation. Sparsh-X improves accuracy
in characterizing physical properties by 48% compared to end-to-end approaches,
demonstrating the advantages of multisensory pretraining for capturing features

essential for dexterous manipulation.
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Figure 4.1. Sparsh, Multisensory Touch Fusion Transformer for General-Purpose
Representations. Touch in robotics can be sensed through multiple modalities, including
tactile images, vibrations, motion, and pressure. Sparsh is a transformer-based backbone
that fuses these modalities from the Digit 360 sensor. We show its versatility across diverse
downstream tasks: manipulation via imitation learning (plug insertion), tactile adaptation
(in-hand object rotation), and benchmark tasks to probe the understanding of physical
properties.

4.1 Introduction

Touch is a rich and multifaceted sense that plays a central role in human dexterity.
Humans fluidly adapt their interactions to the physical properties of objects by
integrating a wide spectrum of touch signals that include skin deformation, vibrations,
motion, and pressure. This multisensory feedback enables us to distinguish between
a plastic and paper cup, twirl a pen between fingers with ease, and manipulate tools
under severe visual occlusion. Leveraging the multisensory nature of touch is desirable
for robust, fine-grained robot manipulation.

Despite its importance, multisensory touch remains significantly underutilized in
robotics. Most approaches rely on unimodal tactile sensing, such as GelSight-like
sensors [100, 104, 207], due to standardized hardware availability. However, advances
like Digit 360 [102] now enable capturing high-resolution images, vibrations, motion,
and pressure in a compact form, making multisensory touch accessible. Prior work on
using tactile modalities independently shows promise [123, 204], but a unified, scalable,
and easily integrable method to take advantage of these modalities is still lacking.
Representation learning offers a viable solution to integrating heterogeneous sensory
inputs from sensors like Digit 360 by fusing complementary contact information

from all modalities into a shared latent space. In addition, as has been shown
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for vision-based tactile sensors [69, 82, , | representation learning allows a
downstream task training to be more data-efficient and robust to noise or irrelevant
variations [11, 80, 94, ].

This paper introduces Sparsh-X, the first self-supervised backbone for multisensory
touch representation learning across four key tactile modalities: image, audio, motion,
and pressure. Trained on unlabeled data from diverse manipulation behaviors,
such as sliding, tapping, rotating, picking up, and dropping, Sparsh-X learns to fuse
heterogeneous tactile signals into compact and expressive contact embeddings. Beyond
Sparsh-X, this unlabeled dataset also facilitates research in representation learning
and benchmarking. Through supervised tasks, we show that Sparsh-X captures a
wide range of physical properties, including object-level characteristics (e.g., type and
mass), static contact properties (e.g., force and material), and dynamic interaction
cues (e.g., motion and impact). Representations that encode these physical properties
at the fingertip level are especially valuable for dexterous manipulation, as they enable
feedback of object and contact state directly in latent space.

Ultimately, tactile signals are valuable only when effectively used in policy learning.
This remains a challenge, particularly in reinforcement learning due to the sim-to-
real gap [111]. We demonstrate that Sparsh-X can be effectively applied in policy
training via two examples: (1) imitation learning, and (2) tactile adaptation of policies
trained in simulation with privileged access to contact information. Experiments
across manipulation tasks, including insertion and in-hand rotation, demonstrate
that integrating Sparsh-X leads to significantly improved real-world performance
over end-to-end tactile image baselines. By unifying multisensory touch in a shared
latent space, Sparsh-X takes a step toward foundation models for touch, enabling
scalable and data-efficient learning for fine-grained robotic manipulation. Our key
contributions are:

1. Sparsh-X, the first unified backbone for multisensory touch: fusing image, audio,
motion, and pressure signals into a general-purpose representation. Trained
on ~ 1M unlabeled samples from Digit 360, Sparsh-X enables scalable and

transferable touch perception.

2. The first Digit 360 dataset curated for benchmarking multisensory touch repre-
sentations, allowing interpretability analysis in terms of contact dynamics and

physical properties of the object.
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3. An empirical demonstration of Sparsh-X enhancing real-world policy learning

performance and robustness enabled by tactile adaptation for fine-grained manip-

ulation skills like insertion and in-hand rotation.

4.2 Related Work

Vision-based tactile sensors [11, 99, , | have been widely used in contact-rich
tasks, including material and volume prediction [63, 210], shape inference [58, 160],
localization [38, 165], insertion [43], and contour-following [3, 195] among others.

While tactile sensing has been primarily vision-based, other modalities such as audio
have also been used independently for capturing object properties [37, 55] and dynamic
behaviors [171], though audio alone may be insufficient for perceiving continuous
interactions such as forces, deformations, and motion. Subsequently, prior work has
also explored audio-visual learning [1 13, 123] as a natural extension. While audio and
vision modalities augment the tactile state complimentarily, additional modalities
such as fingertip motion and accumulated pressure can provide additional information
for detecting shear forces, recognizing object properties, and predicting object slip

and pose changes.

Self-supervised learning (SSL) has been effective for developing tactile image
representations [52, 69, 82, , ], allowing better performance and data-efficiency
in downstream tasks. Other approaches that use additional tactile modalities such
as audio, often rely on using task-specific data to fine-tune pre-trained encoders
(e.g. AST [66] and BYOL-A [129] for audio) or joint audio-visual encoders [121].
MULSA [106] introduced multimodal transformers integrating vision, tactile image,
and audio from contact microphones by treating all signals as RGB images, but suffers
from quadratic complexity of pairwise attention since it simply concatenates the tokens
from all modalities. MimicTouch [204] proposed unimodal SSL for tactile images
and audio separately, without explicit cross-modal fusion. In contrast, we propose
Sparsh-X, a multisensory framework that fuses image, audio, motion, and pressure
signals via bottleneck self-attention [127] into a shared latent space. This enables to
capture contact properties for downstream tasks, while also reducing computational

complexity compared to vanilla transformer-based concatenation strategies.
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The Digit 360 sensor. Digit 360 [102] offers multisensory touch sensing in a com-
pact fingertip form factor, making it well-suited for dexterous robotic hardware. Inside
a dome-shaped elastomer, it integrates a hyper-fisheye camera, contact microphones,
IMU, static pressure sensors, and more. While it marks a significant step toward
standardizing touch sensing, its unique form factor introduces new challenges. For
example, the soft hemispherical dome deforms and moves upon contact, complicating
shear force estimation. Additionally, the use of a hyper-fisheye lens and directional
lighting limits the applicability of photometric surface reconstruction methods like
Poisson integration [208]. Despite these limitations, learning touch representations

through scale pretraining offers a promising path to overcome such challenges.

4.3 Learning Multisensory Touch Representations

Fusing tactile modalities is crucial to discovering correlation between modes. For
instance high-frequency audio and tactile image can both indicate making/breaking
contact. However, traditional tactile sensing work has largely relied only on unimodal
approaches, i.e., on tactile images of elastomer deformations [99, ]. In cases, where
additional modalities are considered [106, 204], they have been treated independently.
In this section, we introduce Sparsh-X, a backbone for general multimodal touch
representations for the Digit 360 [102] sensor. Our model integrates four tactile
modalities: image, audio, accelerometer, and pressure. Through self-supervision
on ~ 1M unlabeled contact interactions, Sparsh-X compresses contact information
into a unified multimodal representation.

Inputs and Model Architecture. Sparsh-X is a transformer-based back-
bone [17] (see Figure 4.2) where each input signal is first processed independently
for Ly layers through self-attention. Thereafter, we allow cross-modal information
flow via attention bottlenecks, as in [127]. Specifically, we concatenate B bottleneck
fusion tokens to each modality’s embedding for the subsequent L; blocks. After each
cross-modal update, the fusion tokens are averaged across modalities to promote
information sharing. Intuitively, the bottleneck tokens act as multimodal summarizers,
distilling and exchanging information between tactile modalities within each trans-
former block. Following experimental insights from [127], we set the total number of

transformer layers to L = Ly + Ly = 12, with L; = 8 layers for unimodal processing
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Figure 4.2. Sparsh-X, a multisensory touch transformer for general-purpose representations,
integrates four tactile inputs: image, audio, accelerometer, and pressure. Each modality
is processed independently in the first Ly layers, then fused using bottleneck tokens for
cross-modal attention in the final L; layers.

and L, = 4 fusion layers with B = 4 bottleneck tokens.

The inputs to Sparsh-X are image, audio, accelerometer, and pressure recorded
by the Digit 360 sensor. Since all modalities have different sampling frequencies and
data structures, we describe the steps for preprocessing and tokenization. Tactile
images are sampled at 30fps [32] and passed to the model with a temporal stride of 5
concatenated along the channel dimension. We crop to zoom-in the fish-eye image
and resize to 224 x 224 x 3. Image patches (16 x 16) are then tokenized to embeddings
of 768 dimensions through a linear projection layer. Audio comes from two contact
microphones sampled at 48kHz. A 0.55s window of audio signal is converted into a
log-mel spectogram of 128 channels computed from a 5ms Hamming window with hop
length 2.5ms. We concatenate the spectograms from both microphones, resulting into
an audio input of 224 x 256 which is further tokenized with a patch size of 16. IMU
data from the 3-axis accelerometer is sampled at 400Hz and combined in a window of
0.55s. The pressure signal is sampled at 200Hz and combined in a window of 1.1s

window. Both signals are tokenized resulting in 224 x 3 and 224 x 1 temporal signals.

SSL Training Pipeline. We train Sparsh-X using Self-Supervised Learning (SSL)

which offers several benefits, including the ability to learn general representations,
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Figure 4.3. Pretraining data collection setup using (a) Digit 360 and Allegro hand (b)
two-fingered manual picker.

robustness to distractors, and independence from labeled data. Our SSL training
dataset consists of ~ 1M samples generated from two primary sources: an Allegro hand
with Digit 360 sensors on the fingertips that performs random motions with objects
such as dipping into a tray filled with various items; and a manual picker [33, 150, 203]
with the same sensor adapted to the gripping mechanism, used to execute atomic
manipulation actions such as picking up, sliding, tapping, placing, and dropping
objects against diverse surfaces that vary in roughness, hardness, softness, friction, and
texture properties. We employ a teacher-student self-distillation approach [22, 131],
where both branches consist of an encoder and a predictor head. After tokenizing each
multisensory touch input, appending a register token, and adding sinusoidal positional
embeddings, we apply masking to the student input tokens per modality, retaining 10-
50% of the signal for local masks and 50-100% for global masks. We concatenate the
register tokens from global and local masks and pass them through their corresponding
prediction heads. As in [22], the prediction task involves clustering, where teacher
tokens serve as pseudo-labels for the student network, with centroids that adapt over
time as the model learns. We use cross-entropy between the softmax outputs of the
teacher and student networks as optimization objective. We train Sparsh-X for 200
epochs on 16 A-100 GPUs, with 128 batch size and AdamW optimizer with linear
rampup followed by a cosine schedule as the learning scheduler. Please refer to the

Appendix for further pretraining details.
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Figure 4.4. Performance of frozen Sparsh-X representations with different tactile inputs.
The synergy of multiple modalities improves object-action-surface identification (left) and
material-quantity estimation (middle), outperforming tactile image alone and showing data
efficiency over E2E. Combined modalities also enhance normal force estimation (right), a
task typically addressed with vision-based tactile sensing.

4.4 Integrating Multisensory Touch

Representations in Downstream Tasks

We propose a set of downstream tasks for evaluating the capability and generalization
of our representations on touch-centric tasks. Our study is driven by two central
research questions, first, what physical properties do our representations capture
from contact interactions?, and second how can real-world touch representations be

leveraged for manipulation policy learning?.

4.4.1 Inferring physical properties with Sparsh-X

We design supervised tasks to evaluate Sparsh-X representations’ ability to capture
physical properties for robotic manipulation. These tasks cover (1) object-level
characteristics (e.g., type and quantity), (2) static contact properties (e.g., force and
material), and (3) dynamic interaction cues (e.g., sliding, tapping). For each task,
we train a task-specific attentive decoder [28] in a supervised manner, using as input
Sparsh-X representations. Importantly, the encoder weights of Sparsh-X are frozen
to isolate and assess the quality of the representations learned from self-supervised
pretraining.

Object-Action-Surface Classification. We train the decoder on the subset of
the pre-training dataset that uses the manual picker to jointly classify the object being
grasped (golf ball, LEGO, or wood block), the action being performed (planar sliding,
circular sliding, or tapping), and the extrinsic surface in contact with the object

(plastic, fabric, grass, or formwork). This task probes whether the representations
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encode static contact properties like friction, stiffness, and roughness, as well as
dynamic cues that distinguish between different motion patterns. To assess the benefits
of multisensory touch, we ablate the input modalities to Sparsh-X and compare
performance against traditional end-to-end (encoder-decoder) models trained from
scratch. As shown in Figure 4.4 (left), combining tactile modalities significantly boosts
accuracy. For instance, pairing audio with IMU yields a 32% improvement, while using
all modalities together provides a 13% gain compared to using tactile images alone.
Pre-training further enhances performance when using all modalities, consistently
outperforming E2E models with task-specific embeddings, with a particularly notable

10% margin under the lowest data regime.

Material-Quantity Estimation. We evaluate the capacity of our model to
distinguish materials (both solids and liquids) and to provide a coarse mass estimation
through shaking motions [36, 87, , ]. We train an attentive decoder to jointly
classify material type and quantity by shaking 8oz bottles with a parallel gripper
equipped with Digit 360 sensors (see Figure 4.1). The dataset includes four solids
(corn kernels, lentils, vitamin pills, rice), two liquids with distinct viscosity (water, oil),
and three fill levels (full, half, quarter). As shown in Figure 4.4 (middle), Sparsh-X
representations from all modalities achieve the highest accuracy across all training
data budgets, outperforming end-to-end models trained on tactile images alone by
20.5%. Sparsh-X representations outperform end-to-end models across all sensory

inputs, demonstrating superior data efficiency and generalization.

Normal Force Estimation. Following the protocol from [$2], we use a hemi-
spherical probe to apply normal forces of up to 3.5N to the Digit 360 sensor by
indenting perpendicularly into the elastomer surface. An attentive regression head is
trained to estimate the applied normal force from frozen Sparsh-X representations
across various tactile sensory inputs. Evaluation is performed on samples with ran-
domized force magnitudes and indentation locations, using the same probe geometry.
As shown in Figure 4.4 (right), combining all tactile modalities leads to improvement
in force estimation accuracy, achieving an average error of 35mN, a 17% improvement

over using only tactile image.
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4.4.2 Sparsh-X for Policy learning

We investigate how manipulation policies can benefit from touch representations
that capture physical properties like friction, mass, and forces. We demonstrate
their effectiveness in real-world (a) imitation learning and (b) tactile adaptation of
sim-trained policies, evaluating on two contact-rich tasks: plug insertion and in-hand

rotation.

Plug-Insertion via Imitation Learning

Insertion is a fundamental skill in robot manipulation and has long served as a
benchmark task in the literature [13, 152, 168, 187]. We evaluate the utility of
multisensory touch representations in a plug-insertion task, where a robot equipped
with an Allegro hand and Digit 360 sensors must insert a pre-grasped plug into a
fixed socket. Using kinesthetic teleoperation, we collect 100 demonstrations with
randomized initial arm poses, recording joint states, wrist poses, camera images, and
tactile data.

Our policy architecture is adapted from ACT [218]. The inputs include wrist
camera embeddings, obtained by training a vision encoder, and Sparsh-X representa-
tions for the thumb, index, and middle fingers. These tactile features are aggregated
using an attentive pooling layer [28]. The model predicts a trajectory of absolute

end-effector poses over a horizon of H = 8.
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Figure 4.5. Left. Experimental setup for plug-insertion. Right. Success rate over 20
trials using different tactile sensory modes. Leveraging multimodal touch with Sparsh-X
improves performance by 500% over external-vision-only and 63% over E2E tactile-vision-
only policies.
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Evaluation. To evaluate the contribution of multisensory touch, we ablate the
policy by varying the combination of tactile sensory inputs used, always in conjunction
with the wrist camera. We also include a vision-only baseline without touch. Each
policy is evaluated over 20 trials, with randomized wrist starting positions.

As shown in Figure 4.5, multisensory touch is key for achieving high performance
in a tight-tolerance insertion task, with a 90% success rate. Pretraining plays a
crucial role, yielding a 90% performance boost compared to training representations
with all modalities from scratch jointly with the policy model on task-specific data.
These results highlight the benefits of both multimodality and pretraining. Access
to multiple sensing modalities enables better discrimination of subtle contact cues.
For example, audio can signal initial contact or collisions, while tactile images and
pressure provide information about normal and shear forces that are critical for
alignment and insertion.

Policies using tactile images outperform those relying solely on audio and motion
cues. Interestingly, for tactile images, end-to-end training outperforms using frozen
pretrained representations. The tactile image signal varies little between trials,
allowing a specialized encoder to focus on subtle changes in contact patch location and
size. It is worth noting, however, that these encoders are evaluated in-distribution,
suggesting that pretrained representations may still benefit from increased data
diversity and scale or fine-tuning. Notably, our results show a 63% improvement in
performance when using Sparsh-X with all modalities compared to an end-to-end
policy trained with tactile image alone. While pretrained tactile image encoders
may benefit from broader data diversity, combining touch modalities helps mitigate
such limitations, given their complementary nature. As a final remark, incorporating
touch significantly improves performance on this task. In particular, the wrist-only
policy often fails due to visual aliasing, where insufficient camera parallax results in
plug pegs incorrectly appearing directly on top of socket openings, leading to failed

msertions.

In-Hand rotation with sim-to-real tactile adaption

A common strategy for learning dexterous manipulation policies is to first train a base
policy using privileged information typically available only in simulation (e.g., object

physical properties like mass and friction, or contact signals like location and forces)
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and later distill the information into another model using inputs only accessible in the
real-world such as proprioception [98]. This raises a natural question: when richer
information becomes available in the real world, how can we bring policies trained in
simulation closer to the privileged information setting?

We explore sim-to-real tactile adaptation in the context of in-hand rotation. As
our base policy, we use Hora [110], a proprioception-only policy for rotating objects
along the z-axis. Hora is trained in simulation via rapid motor adaptation [9%],
leveraging privileged information such as object pose, shape, mass, friction, and other
properties that can be perceived through touch at the fingertips. Since Sparsh-X
captures physical properties, our goal is to do tactile adaptation on top of Hora,
improving stability during rotation by reducing slip.

We propose tactile adaptation via ControlNet [211], which allows the integration
of new control modalities without retraining the base model. Applied to policy
learning, ControlNet ensures that performance does not degrade below that of the
original Hora policy. As shown in Figure 4.6, we learn a tactile adaptation module
that connects to the frozen base policy through a zero-initialized convolutional layer,
enabling progressive integration of tactile information. Specifically, we feed to the
tactile adaptation module Sparsh-X representations of all four fingertips over the past
1.5 seconds, aligning with the proprioceptive history window used by the base policy.

Training. We rollout the baseline Hora policy (using the open-sourced policy

checkpoint) to collect real-world sequences, capturing proprioceptive joint states,
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target actions, and tactile data related to the in-hand rotation of cup-like objects.
For training, we select 50 successful trajectories in which the object remains stably
rotating along the z-axis for at least 30 seconds. The tactile adaptation module is
then optimized to minimize the L2 loss between the real-world joint angles and the
target action output from Hora with the ControlNet.

Evaluation. We compare the baseline Hora policy against two tactile adaptation
variants: Hora-+ControlNet(Sparsh-X), using pre-trained Sparsh-X representations
with different combinations of tactile modalities, and Hora+ControlNet(E2E), trained
end-to-end. To isolate the impact of tactile feedback over improvements from re-
jection sampling, we also evaluate against Hora fine-tuned on real-world data and
a proprioception-only imitation learning baseline. The primary goal is to improve
stability during in-hand rotation by reducing slip, where the object either shifts into
the palm or is completely dropped. We evaluate each policy based on vertical drift
and time-to-fall, performing 10 trials per policy with a maximum episode duration of
60 seconds.

Our ControlNet approach with Sparsh-X representations, reduced vertical trans-
lation by 90% (see Figure 4.7 (top)), using either all modalities or just tactile images.
While Hora+ControlNet(E2E) also improved stability a bit, it slowed rotation. Crit-
ically, our method outperformed both finetuned Hora and the proprioception-only
imitation learning baseline, demonstrating that the benefit stems from tactile feed-
back, not just good demonstrations. The imitation learning baseline was unreliable,
frequently failing due to out-of-distribution states as reflected in the lowest time-to-fall
metric.

We also evaluate model robustness to altering the physical properties of the object,
specifically friction and mass as shown in Figure 4.7 (middle). When friction is
reduced, Hora+ControlNet(Sparsh-X) outperforms all other policy variants. By using
a synergy of all tactile modes, it can maintain object stability without losing grasp. In
contrast, Hora+ControlNet(image) struggles, possibly indicating that changes in the
contact patch are too subtle to be captured by Sparsh-X from tactile images alone.
This result underscores the complementary strengths of multisensory touch. When the
object’s mass is increased, Hora+ControlNet(Sparsh-X) and Hora+ControlNet(image)
allow the baseline policy to adapt its finger gaiting to compensate for the added

weight. This adaptation is possible because the tactile properties of the object can
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Figure 4.7. Top. For object nominal properties, tactile adaptation with Sparsh-X reduces
vertical drift by 90% compared to Hora. Fine-tuning with successful rollouts does not yield
same performance, highlighting the effectiveness of tactile adaptation. Metrics from 10
trials (60s episodes). Middle. Under dynamical changes, tactile adaptation shows superior
stability than Hora variants. Metrics from 5 trials (60s episodes). Bottom. Snapshots of
policy rollouts with and without multisensory touch input as object mass increases.
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be captured by Sparsh-X and transferred to the privilege information embedding in

the latent space.

4.5 Discussion and Conclusion

We present Sparsh-X, a self-supervised backbone for general multisensory touch
representations. Through both policy learning and supervised tactile experiments,
we demonstrate that incorporating multisensory touch from Digit 360 and scale
pretraining over ~ 1M samples significantly enhances task performance compared to
using end-to-end approaches with tactile images alone.

Our study is driven by two central research questions. First, how can real-
world touch representations be leveraged for manipulation policy learning? Sparsh-X
pretraining enables better and more robust policies. We explore two approaches:
imitation learning (IL) and tactile adaptation of sim-trained policies. IL is naturally
suited as demonstrations capture rich tactile signals from all modalities provided by
Digit 360. For sim-policies, we propose tactile adaptation via ControlNet, enabling the
propagation of tactile information previously accessible only in simulation as privileged
information. We validate these approaches on two fundamental manipulation tasks:
plug insertion and in-hand object rotation. Notably, Sparsh-X enhances policy
performance by 63% over policies using tactile images alone and improves robustness
by 90% by using touch to recover object state during manipulation.

Second, what tactile properties do our representations capture? We find that
Sparsh-X representations effectively captures physical properties that allows to identify
objects, actions, surfaces, estimate intrinsics properties and forces from multisensory
touch signals. We evaluate Sparsh-X on a suite of supervised benchmark tasks
common in the literature: object-action recognition, material-quantity estimation,
and force prediction. We perform ablations over tactile input modalities and training
data budgets to assess the impact of pretraining and multisensory fusion. Our results
show that a synergy of touch from images, audio, IMU, and pressure, leads to higher
accuracy across all tasks even in low-data regimes. Compared to training end-to-end
with tactile images only, Sparsh-X achieves an average improvement of 48% across

all tasks, demonstrating the benefits of both pretraining and touch sensory fusion.
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Limitations

While our study highlights the benefits of multisensory touch and self-supervised
pretraining, some limitations remain. Each modality introduces its own challenges
in capturing a broad and diverse set of contact interactions at scale. In our pre-
training dataset, the tactile image modality from the Digit 360 sensor exhibits the
lowest diversity in terms of number of different devices used with their own optical
artifacts, potentially limiting its generalization in downstream performance. We
believe that as the community increasingly adopts multisensory tactile sensors like
the Digit 360, collaborative efforts can help build larger and more diverse datasets
to support scalable pretraining. Additionally, our experiments focus exclusively on
frozen Sparsh-X representations to understand the pure impact of pretraining on
generalization. However, allowing fine-tuning with task-specific data could further
improve performance and help compensate for modality-specific data limitations.
Finally, our evaluation of force sensing is limited to normal force estimation under
controlled contact conditions. Generalizing to varying contact geometries and multiple
simultaneous contacts remains an open area for future work. Moreover, we do not
consider shear force estimation in this study, as separating the effects of extrinsic
forces from the internal deformation of the elastomer presents non-trivial modeling

challenges.

4.6 Appendix

4.6.1 Datasets

Dataset for Sparsh-X SSL Pretraining

Our self-supervised learning (SSL) dataset is sourced from two platforms: an Allegro
hand equipped with Digit 360 sensors mounted on each fingertip, and a custom
mobile picker tool with sensors integrated into its gripping mechanism. Since SSL
representation learning does not require labeled data, we collect tactile data by having
the Allegro hand interact rummaging freely with a tray filled with LEGO blocks

and marbles. This setup enables the capture of rich, multi-contact interactions with
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Figure 4.8. Distribution of recorded Digit 360 data by platform. The dataset includes 18.6
hours of data collected using two platforms: the Allegro hand (4.5 hours) and the mobile
picker tool (14.1 hours).

objects that feature distinctive geometries, such as spherical shapes and sharp edges.

The mobile picker is used to gather tactile data from everyday manipulation
actions, including tapping and sliding, across surfaces with varying friction and
stiffness. This allows us to record both intrinsic and extrinsic contact interactions.
We collected eight sequences with the Allegro hand, each lasting approximately 8.5
minutes, recording data from all four fingers. From the mobile picker, we gathered
104 sequences with an average duration of 3 minutes, logging data from both sensors
on the gripper. For the subset of the dataset collected with the mobile picker, we
provide annotations indicating the object in grasp, the action performed, and the
surface in contact, to support downstream evaluation tasks. In total (see Figure 4.8),
our dataset spans 18.6 hours of tactile data collected from six different Digit 360

Sensors.

Sparsh-X processes temporal windows of data from each tactile modality. A

visualization of the input data is shown in Figure 4.9.

Images. We input pairs of tactile images sampled with a temporal stride of
5, concatenated along the channel dimension. These images are captured using a
hyperfisheye lens in Digit 360, allowing us to view the entire dome-shaped elastomer
surface. Unlike planar GelSight-like sensors, these images include reflections from
the surrounding LED light sources, visible near the center of the dome. While
these reflections act as useful markers, encoding meaningful information about gel

deformation upon contact, they also pose challenges for standard preprocessing
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Figure 4.9. Visualization of each of the tactile input modalities to Sparsh-X. Samples from
pretraining dataset.

techniques such as background subtraction or lighting augmentations, which risk
corrupting the contact signal.

Audio. Digit 360 sensor is equipped with two contact microphones that capture
vibrations, sampled at 48kHz. This signal is especially informative for detecting
changes in contact state, such as making and breaking contact. Sparsh-X processes
0.5sec windows of audio data from each microphone in the frequency domain. After
standardization and conversion to log-mel spectrograms, the audio is treated as a
single-channel image input to the model.

IMU and Pressure. We extract 0.5 second and 1 second windows of data from
the 3-axis accelerometer and the static pressure sensor embedded in the Digit 360.
Each window is standardized using the mean and standard deviation computed per

sequence to ensure consistency across variations in sensor signal amplitude.

Datasets for Downstream Tasks

For each experiment related to estimating physical properties with Sparsh-X (see
Section 4.4.1), we designed custom setups to collect training data tailored to each
task.

For Object-Action-Surface Classification, we repurpose the SSL pretraining
dataset collected with the manual picker. We annotate each data point with metadata
specifying the object being held (golf ball, wood block, LEGO block), the action

92



4. Sparsh-X: Multisensory touch representations for robot manipulation

Figure 4.10. Visualization of the experimental setup and tactile sensory inputs for the
material-quantity classification dataset. The setup involves shaking bottles filled with
different materials and quantities using the Franka’s gripper equipped with Digit 360
sensors.
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Figure 4.11. Top: Experimental setup and data distribution for the normal force regression
experiment. Bottom: Zoom-in on a single indentation stroke. Note that the pressure signal
from the Digit 360 sensor correlates well with the ground-truth normal force measured by
the force/torque sensor beneath the hemispherical probe. The mel spectrogram also reveals
the moment of contact between the probe and the elastomer.

Mel Spectrogram while indenting the elastomer

performed (tap, linear slide, circular slide), and the external surface in contact (grass,
fabric, plastic, foamwork). From the 104 available sequences, 69 are used for training
and the remaining 35 for testing the performance of the classifier. The dataset is

balanced in number of samples per label.

For Material-Quantity Estimation, we design a 3D-printed gripper attachment
to mount the Digit 360 sensors onto the Franka arm. The data collection protocol
involves shaking six different 8oz bottles containing various materials (lentils, rice,
corn kernels; vitamin pills, water, and oil) at different fill levels (full, half, quarter).

An illustration of this setup is provided in Figure 4.10. For shaking the bottles to
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create variation in the tactile signal, the Franka’s gripper is rotated left and right in
randomized motion patterns, including variation in the initial angle. We collect 20
trajectories for each material-quantity combination, using 15 sequences for training
and reserving the remaining 5 for evaluating the classifier.

For Normal Force Estimation, we fix a hemispherical probe to a force/torque
sensor and mount a Digit 360 sensor on the Meca arm, which is used to indent the
elastomer surface perpendicularly, applying controlled normal forces of up to 3.5N.
Figure 4.11 illustrates the experimental setup and the distribution of the collected
data. We observe that the pressure modality correlates strongly with both the
magnitude of the applied normal force and the location of the resulting deformation
on the elastomer. The audio modality captures discrete events, such as the initial

contact between the probe and the sensor surface.

4.6.2 Benchmarking Sparsh-X for physical properties

comprehension

Object-Action-Surface Classification. This task evaluates whether Sparsh-X
can capture tactile cues that enable the identification of objects through both intrinsic
and extrinsic contact interactions. The goal is to jointly classify the object being
grasped, the action performed, and the surface in contact. The selected objects and
surfaces span a range of properties, including texture, hardness, and friction.

We use representations from Sparsh-X to train a downstream classifier on the
dataset described in Appendix 4.6.1. Figure 4.12 shows confusion matrices on the
test set for two classifiers: one trained using frozen Sparsh-X representations with
all tactile modalities as input, and another trained end-to-end (E2E) using only
tactile images. Note that the classification task involves 36 classes, representing
all combinations of object, action, and surface. The results shown in the figure
correspond to training with 50% of the labeled training set.

The Sparsh-X-based classifier shows stronger diagonal alignment, indicating more
accurate predictions across the 36 joint object-action-surface classes. In contrast, the
E2E model suffers from greater confusion among similar classes, particularly those
with overlapping surface or action components (e.g., misclassifying ” Tap-Foamwork”
as " Tap-Fabric” or ”Slide-Plastic”). These results highlight the benefit of multimodal
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Figure 4.12. Confusion matrix for object-action-surface classification. We compare an
end-to-end classifier trained solely on tactile images with a classifier trained on frozen
Sparsh-X representations, under a 50% training data budget.
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Figure 4.13. Confusion matrix for material-quantity estimation. We compare an end-to-
end classifier trained solely on tactile images with a classifier trained on frozen Sparsh-X
representations, under a 33% training data budget.

tactile representations: incorporating audio, motion (IMU), and pressure modalities
helps disambiguate fine-grained contact dynamics that are challenging to capture

with images alone.

Material-Quantity Estimation. This task further evaluates Sparsh-X ’s ability
to comprehend physical properties. Specifically, we focus on distinguishing materials
based on their granularity and viscosity (e.g., solids and liquids), as well as estimating
mass through coarse volume classification. We train a classifier to predict one
of 18 joint classes, each representing a unique combination of material type and
quantity level. The classifier is trained either using frozen Sparsh-X representations
or end-to-end (E2E) from tactile images alone.

Figure 4.13 shows the confusion matrices for the material-quantity classification
task when trained with 33% of labeled data, comparing an end-to-end (E2E) clas-
sifier trained solely on tactile images with a classifier trained on frozen Sparsh-X
representations. The E2E model achieves 68.8% accuracy, while the Sparsh-X-based
classifier reaches 87.5%, highlighting the benefit of multimodal tactile representations.

In the E2E setting, we observe frequent confusion between different fill levels of the
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same material and between visually similar liquids such as oil and water. In contrast,
the TacX-based classifier exhibits strong diagonal alignment, suggesting accurate

identification across the 18 material-quantity classes.

4.6.3 Sparsh-X and Policy Learning

Real-World Sparsh-X and Policy Deployment

For real-world deployment of Sparsh-X, we use ROS2. We maintain circular buffers
of 5 seconds for each tactile modality per Digit 360 fingertip. For synchronization, we
use the timestamp of the image modality as the reference, selecting the closest-in-time
sample from the other modalities (audio, motion from accelerometer, and pressure).
Once inputs are processed, Sparsh-X can run inference at 50Hz on a GPU RTX 4090.
However, the construction of log-mel spectrograms remains the main computational
bottleneck for real-time processing. When processing all four Digit 360 sensors on
the Allegro hand, end-to-end inference with Sparsh-X runs at approximately 20Hz.

Figure 4.14 shows the deployment pipeline for policy experiments.

Plug-Insertion via Imitation Learning

Training details. The robot, equipped with an Allegro hand and sensorized with
Digit 360 fingertips, is tasked with inserting a pre-grasped plug into the first socket
of an extension power strip. In our experimental setup, the socket position remains
fixed, while the starting position of the robot arm is randomized within a 3D cuboid
of (5,5,2) em around the nominal starting pose.

The model inputs include an embedding of the wrist camera image and Sparsh-X
representations for thumb, index, and middle finger sensors, processed through an
attentive pooling layer [28]. We train a ResNet18 [77] in an end-to-end (E2E) fashion
to learn the wrist image embeddings. We append learnable action tokens, which are
processed by the transformer and subsequently decoded into a sequence of actions.
In our setup, the model predicts a sequence of absolute robot end-effector poses i.e.,
a2 (T, Ti,... Tyyny) with a prediction horizon of H = 8. An illustration of the

plug insertion architecture is shown in Figure 4.15.
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Figure 4.14. Real-world policy deployment architecture: We use ROS2 middleware for policy
deployment, and PyTorch for deep learning modules. In addition to the proprioceptive
states of the robot and optional third-person vision modality, downstream policies take as
input Sparsh-X representations from upto 4 fingertips of the Allegro hand. (a) illustrates
how the inputs are constructed for TacX, (b) illustrates policy deployment for the plug
insertion policy, and (c) illustrates the policy deployment for the in-hand rotation (Hora)
policy.
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Figure 4.15. Architecture overview of the plug insertion policy. A transformer decoder is
trained to generate action sequences based on Sparsh-X representations from three fingertips,
a wrist camera image capturing the current robot state, and a learnable latent action code.
All embeddings are concatenated and processed by a lightweight MLP to decode the next
end-effector action.

4.6.4 In-Hand rotation with sim-to-real tactile adaption

Training details. Hora [110] is a two-stage policy that rotates objects along the
z-axis. The first stage trains the policy using privileged information, which includes
the object’s state or pose, local shape, mass, friction, and other physical properties
that can be perceived by the fingertips. The second stage trains an adaptation module
to approximate the latent space of the privileged information from the discrepancy
between observed proprioception history and commanded actions, which implicitly
informs about contact.

Although the approximation of the privileged vector from proprioceptions transfers
to the real setup, it operates with incomplete information about the object’s state.
With multisensory touch sensing at the fingertip level, privileged information such as
changes in object pose, slip, and friction are now accessible in real-world scenarios,
albeit not directly. We can leverage Sparsh-X representations to fine-tune the real-
world approximation of the privileged information embedding. The goal is to do

tactile adaptation on top of the baseline policy to enhance stability during object
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rotation.

We pass to the tactile adaptation module frozen Sparsh-X representations for each
of the four fingers in the Allegro-hand, with a temporal stride of 0.19s, equating to 8
touch representations per finger over a 1.5s window, which matches the proprioception
state history consumed by the baseline Hora. Features for each finger are pooled using
attentive pooling to create a global representation, which is then concatenated along
the temporal dimension, resulting in a (¢ X n) x 768 input embeddings. The tactile
adaptation model to be trained is a shallow MLP followed by the zero-convolution
layer.

Our dataset consists of successful rollouts of the Hora policy, where the object
keeps rotating without touching the palm for at least 30 seconds. The data is serialized
into the lerobot dataset format [18], sampled at a control frequency of 20Hz. For
training the tactile adaptation module, our objective is to minimize the L2 loss
between the real-world hand joint angles and the target action given by the frozen

Hora policy under the tactile-informed privileged embedding.
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Chapter 5

PTLD: Sim-to-real Privileged
Tactile Latent Distillation for

dexterous manipulation

Tactile dexterous manipulation is key to automating complex household tasks, yet
acquiring effective control policies remains a challenge. While recent work has relied
on imitation learning, obtaining high quality demonstrations for multi-fingered hands
via robot teleoperation or kinesthetic teaching is prohibitive. Alternatively, with
reinforcement we can learn skills in simulation, but fast and realistic simulation
of tactile observations is challenging. To bridge this gap, we introduce PTLD: sim-
to-real Privileged Tactile Latent Distillation, a novel approach to learning tactile
manipulation skills without requiring tactile simulation. Instead of simulating tactile
sensors or relying purely on proprioceptive policies to transfer zero-shot sim-to-real,
our key idea is that to leverage privileged sensors in the real world to collect real-world
tactile policy data. This data is then used to distill a robust state estimator that
operates solely on tactile input. We demonstrate from our experiments that PTLD,
can be used to improve proprioceptive manipulation policies trained in simulation
significantly by incorporating tactile sensing. We also show that PTLD enables learning
the challenging task of tactile in-hand reorientation where we see a 57% improvement

in number of goals reached over using proprioception alone.
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Figure 5.1. PTLD: sim-to-real Privileged Tactile Latent Distillation is an approach to learn
tactile dexterous policies without simulating tactile sensors. First, Privileged sensor policies
are trained in simulation using Reinforcement learning which produces strong policies.
These policies are deployed in instrumented setups to collect tactile demonstrations. Finally,
a tactile state estimator is trained from tactile demonstrations to obtain robust real-world
deployable tactile policies. With PTLD, we demonstrate that in-hand rotation can be
robust to object property changes such as slip, mass, and wrist orientation changes, and
that performance for the challenging task of in-hand reorientation can be significantly
improved by over 57% with tactile sensing
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5.1 Introduction

Contact-rich dexterous manipulation with multi-fingered robot hands has remained
a grand goal in robotics for several decades. The potential to solve tasks with
human-like dexterity and use tools designed for humans paves a path towards physical
intelligence in areas like healthcare and household tasks. Recent work in learning from
demonstrations [32, 33, | provides a scalable recipe for learning new policies by
collecting a large set of on demonstration data obtained via robot teleoperation, using
hand-held grippers or kinesthetic teaching. However, such an approach is impractical
for multi-fingered dexterous hands due to a difficulty in teleoperating robot hardware
reliably for dexterous tasks like using a screwdriver, a wrench, or turn a door knob.
Kinesthetic teaching is equally challenging when more than two fingers are required
for a task such as reorienting an object in hand [23]. While hand-held grippers are
promising [33, |, they require designing an exoskeleton structure that balances
the flexibility (DoF's) and stability required for dexterous tasks, and recent successes
have largely been limited to simple tasks.

Sim-to-Real reinforcement learning (RL) offers an alternative to learn dexterous
tasks and has tremendous success in learning robot locomotion [137, 167]. However,
most existing approaches focus on blind proprioceptive only policies in both locomo-
tion [79, 108, 211] and manipulation [139, 110]. While a few works have shown success
with perceptive policies [1, 74, |, training visual perceptive policies in simulation
is relatively slow due to the added step of image rendering for simulating the image
modality. Furthermore, these policies are often challenged by a large sim-to-real gap.

Our focus in this work is on tactile dexterous manipulation, encompassing dynamic
tasks such as in-hand rotation, in-hand reorientation and pinch-to-power grasp
transitions [2, 83, , , 202]. The standard approach for these tasks today is to
learn policies through RL. However, akin to challenges in training visually perceptive
policies there exist several challenges for training tactile perceptive/sensorimotor
policies in simulation. First, simulating tactile sensors accurately is difficult. Therefore,
most existing works [198, | resort to simplified tactile sensing models such as single
point of contact or binary contact models. Second, even when one uses approximate
soft-body simulation for training the policies, there exists a large sim-to-real gap

which prevents straightforward deployment.
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In this paper, we present a new approach to learn tactile manipulation policies
without paying the cost of simulating tactile sensors. Our method takes inspiration
from privileged latent distillation — where the idea is to first train an oracle policy with
access to privileged state information (available in simulation) and then imitating
the oracle policy (in simulation) to a zero-shot deployable policy using a perceptive
state estimator that only has access to partially observations such as vision or
proprioception. This idea has been presented in the literature with several names
such as learning by cheating [24], data driven planning via imitation [34], or rapid
motor adaptation [93] and has achieved tremendous empirical success in robotics.

Here, we extend privileged latent distillation in two distinct ways: First, we extend
policy distillation in simulation to latent distillation in real world. Now to achieve
this latent distillation, one requires an executable oracle policy in the real world. To
this end, second, we treat properties such as object poses, object shape and the like
as privileged sensors, and deploy the privileged sensor policies in the real world by
instrumenting a real-world robot cell. Once we are able to execute the privileged
sensor policy in the real world, we distill its latent into a tactile policy through
supervised learning, by collecting a paired dataset of tactile sensor observations and
latents produced by the privileged sensor policy.

Privileged latent distillation [24, 34, 98] is typically implemented with a teacher-
student setup in simulation, requiring two stages of training. Stage 1, for oracle
policy training, and Stage 2, for distillation of the oracle policy into a proprioceptive
policy. Specifically, our method relaxes stage 2 distillation to leverage a few privileged
quantities, requiring another round of real-world distillation. This can be laborious.
Therefore, in this paper, we also present architectural advancements, demonstrating
that the two stage approach [98] can very well be replaced with an asymmetric actor
critic [138] training step requiring only a single round of training.

Finally, one might reasonably say that instrumenting a real-world robot cell for
sim-to-real tactile distillation is too much hassle only to learn deployable sensorimotor
tactile policies for the same task. Therefore, in addition to sim-to-real tactile distil-
lation for a deployable proprioception policy, in this paper we also show successful
results from a significantly harder task of tactile in-hand reorientation which cannot
be accomplished in simulation purely with proprioception history only.

In summary, our contributions in this paper are threefold:
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e We present a novel approach to learn sensorimotor tactile dexterous manipu-
lation policies without paying the cost of simulating tactile sensors. We use
privileged sensors as the interface between simulation and reality to perform

privileged latent distillation using real world data.

e We present architectural advances for training manipulation policies, simplifying

the two-stage distillation step in simulation into a single training step.

¢ Through our experiments we demonstrate that tactile policies trained through
our sim-to-real latent distillation approach consistently outperform propriocep-
tion policies as well as adaptation based tactile policies in both robustness and

performance.

5.2 Related work

5.2.1 Dexterous In-hand Manipulation

Dexterous in-hand manipulation has been an active area of research for decades [I,

, 72, , , |. It features the cooperative use of multiple fingers on a multi-
fingered hand to grasp and manipulate objects. While classical approaches need a
physical model of the object and robot geometry to plan robot finger motions [50, ],
recent approaches have had success with using RL directly to learn policies in a
model free manner [1, 2, 25, , 201]. However, RL approaches face the sim-to-real
gap i.e., it is challenging to reproduce real world sensor observation and physics in
simulation. Even for modalities such as vision where it is feasible to simulate the
sensor, the simulation model is physically inaccurate and does not describe the real
world sensors, therefore extensive visual domain randomization [74, 172] is crucial.
Our method, on the other hand trains in simulation with observations such as object
poses and object shape that do not suffer a large sim-to-real gap, but requires one to

forgo the zero-shot sim-to-real deployment assumption.

5.2.2 Privileged distillation

Partial observability is a significant challenge in RL. For dexterous in hand manipula-

tion of objects estimating precise contact dynamics is quite important as it determines
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the object motion and subsequently the requisite action. In the absence of sensors to
accurately estimate these properties, most existing approaches in the literature have
prominently used privileged distillation [21, 31, 98, , , 222] to learn dexterous
manipulation policies. As described in 5.3, first one trains an oracle policy that
has access to privileged information only available in simulation, then one distills it
into a deployable policy that produces probabilistic estimates of the privileged state
using a small history of sensor observations. Concretely, this is usually a history of

proprioceptive observations or visual observations.

5.2.3 Tactile sensing and Representation learning

The tactile modality has long been promised to be imperative for such contact-rich
dexterous manipulation. The last decade has seen a plethora of tactile sensors
introduced for manipulation ranging from vision-based tactile sensors such as the
GelSight [207] and DIGIT [100], magnetic-skin tactile sensors such as ReSkin [11]
and Xela [175], to resistive and capacitive sensing sensors [36]. Consequently, there
also exists a rich body of work that leverages tactile sensors for perception tasks and
simple manipulation tasks such as peg-insertion [12, 152], cable manipulation [153]
and planar pushing [162]. However, these tactile manipulation tasks in the literature
are chosen carefully to satisfy the following features: a) the task is often quasi-static
and b) the tasks are simple to demonstrate to make them amenable to behavior cloning
methods [32, ]. Recently, self supervised tactile representations [32, 83, , ]
address the lack of standardization in tactile sensors in robotics, demonstrating their
use in several manipulation tasks, although the tasks chosen are largely quasi-static.
Of these, [33] notably proposed a tactile adaptation algorithm to adapt RL trained
dexterous manipulation policies in the real world to use tactile sensing, along the
lines of policy finetuning [130] using real world data. However, these methods are
fundamentally limited section 5.6.3 and only gain from rejection sampling of successful
real-world trajectories, as the performance ceiling of the proprioceptive teacher policies

are limited. In contrast, PTLD produces quantitatively more robust policy behaviours.

106



5. PTLD: Sim-to-real Privileged Tactile Latent Distillation for dexterous
manipulation

Privileged Latent Distillation Asymmetric Actor Critic
Stage 1 :
Y H H H
a Adaptation module
Policy —a : > >
Mass, COM, o t o E Actor —>a
Friction, Pose | Privileged encoder ( : ) t5 At—1
Motor strength E -
Policy
Stage 2 : m
: Mass, COM, . Critic
ET Policy a Friction, Pose [ Privileged encoder »@» LAt
: |y Adaptation module n Motor strength E
Ty, ap—1

Trainable modules [_] Fixed modules

Figure 5.2. (left) Privileged latent distillation is a two stage approach to training policies
in simulation. An oracle policy with privileged information is trained in stage 1, then it
is distilled into a deployable policy in stage 2 (in simulation). (right) Asymmetric Actor
Critic is a single stage approach where two networks actor and critic respectively are trained
simultaneously. The critic is provided with privileged information and learns the value
function, while the actor is only given deployable partial sensor information

5.3 Background

5.3.1 Notation

We model the dexterous manipulation tasks we discuss in the paper as finite hori-
zon (N € N) Partially Observable Markov Decision Processes (POMDPs) M =
(S, A, X, P, R) where (S, A, X) € {S;, As, X}, denote the state, action and obser-
vation spaces over the finite horizon N respectively. P = {P; : S;_1 X A1 — S;}
denotes the transition dynamics, and R = {R; : S x Ay — [0, 1]} denotes the reward
function. Our goal is to learn policies 7 : X;_pi1.¢ X As_rs—1 — A; via Reinforcement
Learning (RL) to maximize the expected return G(7) = Zi\; o V' Ry over the horizon
as ° = argmax,_p- E[G(T)] .

Specifically, we choose to parameterize the policy with a neural network that is a
combination of an encoder E which encodes the observations X into a latent space L,
which is then consumed by the policy 7 to produce actions A. Typically, we employ
two encoders during training. First, we have E the privileged encoder which has
access to privileged observations in simulation, and E the adaptation encoder which

only has access to deployable observations. Then we have the policy as follows:

Ap ~ W(E(Xt—kﬂzt), At—k:t—l) (5-1)
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5.3.2 Privileged latent distillation

Privileged latent distillation is a two stage approach to learning deployable policies in
the real-world (see fig. 5.2). This requires that the simulation environment for the task
supports a) privileged state observations XP"" which are typically low dimensional
quantities such as object, robot and contact states and b) sensor observations XS
which can be realized in the real world such as proprioception and rendered camera.
First, an oracle policy is trained that is allowed to ‘cheat’ and observe the full
privileged state APV that describes the environment wholly. Then, a deployable
student policy is trained to imitate the oracle policy given only the sensor observations
Aemsor - Since the sensor observations only observe the state partially, most approaches
employ frame stacking where a history of sensor observations, and previous actions

are used as the observation.

The oracle policy is trained in simulation using an RL algorithm such as PPO [119],
while distillation is usually implemented as supervised learning. Implementations
typically use a) action imitation where the actions between the oracle and student
policies are matched or b) latent imitation where an encoded latent between the

oracle and student policies is supervised. Specifically, we have

FE(XP™), A) = m(BEX=), 4)| (5.2)

Eaction =

Liatent = HE(Xpriv> - E(Xsensor>

‘ . (5.3)

It must be noted that experience or observations collected for distillation is collected
by the deployable (student) policy, while the supervision signal comes from the oracle
encoder. This is importantly distinct from traditional offline imitation learning as
student distillation implements an on policy variant of DAgger [110]. Specifically,
since the student policy is supervised by the teacher on experience collected by the
student, the student observes a wider observation space during training, resulting in

a robust policy.
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Figure 5.3. A simplified illustration of PTLD. Once we have a privileged sensor policy trained
in simulation using AAC, first we collect demonstrations in the real world by deploying
the policy, and additionally collect deployment sensor observations. Then, we train a
deployment encoder (tactile encoder in this case) to recover the latents from the privileged
sensor policy using an offline dataset.

5.3.3 Asymmetric Actor Critic

J

Asymmetric Actor Critic (AAC) [138] is another approach which aims to learn
robust deployable policies by taking advantage of full-state observability in simulation.
Specifically, it employs an actor-critic framework, where the critic is provided with
the privileged state APV, while the actor is provided with X" sensor observations
(see fig. 5.2). In our approach, we employ learning policies with AAC, as opposed to

RMA [98] as it simplifies policy learning in simulation into a single training step.

5.4 PTLD: Privileged Tactile Latent Distillation

We now describe our method to train tactile manipulation policies using sim-to-real
tactile distillation along with architectural improvements that simplify training in

simulation.

5.4.1 Online distillation with Asymmetric Actor Critic

We employ an actor-critic framework for training manipulation policies in our work as
opposed to privileged latent distillation. As alluded to before, this simplifies training

into a single stage in simulation. Crucially, we find that our policy parameterization
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which separates the actor into an observation encoder E and policy 7 is beneficial. A
separate encoder allows one to learn general state representations. Therefore inspired
by self-distillation in representation learning [0, (67, 83, | approaches, we also
employ a self-distillation representation loss, between the latent representations learnt

by the critic (privileged) encoder and the actor (student) encoder:

A
ﬁlatent -

By — sg(B(a))| (5.4)

where sg denotes stop gradient. In our experiments (see section 5.6.2), we find
that this online latent distillation loss improves both reward achieved by the policy
in simulation. Futhermore, in simulation evaluation, this simple distillation loss
results in similar policy performance to privileged latent distillation, motivating
the simplification from two stage training in simulation to single stage training in
simulation.

As shown in fig. 5.2, these networks are trained in simulation simultaneously in
simulation, and we use the clip variant of proximal policy optimization (PPO) [119]

augmented with the online latent distillation loss:

Lppo 2 LSMP(E, 1) + ey Ly (B, V) 4 Lentropy (E, 7) (5.5)
L = ﬁPPO + Clatentﬁlatent (56>

where Cjatent 18 @ weighting factor. We optimize the total loss £ via backpropagation.

5.4.2 Privileged sensors for Sim-to-Real Tactile Distillation

The essence of our method relies on the observation that directly deploying policies
that take as input partial observations X*°" is suboptimal. However, most existing
works use simplified sensor observations for two primary reasons. First, they rely on
simple sensor observations such as proprioception, scan lines, or binary contact for
tactile sensor to simplify simulation training. Second, many methods aim for zero-shot
sim-to-real deployment, which necessitates using these simplified input sensor models.

In this work, first we note that when we allow the actor to access privileged sensors
such as object pose and object shape that provide higher observability into the state,

the trained policy can qualitatively learn different behaviors in addition to improved
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performance in simulation. Now that the upper performance bound of the privileged
sensor policy is higher, we wish to distill this policy into a final policy. However,
such a policy cannot be directly deployed in the real world. Therefore, we instrument
a real world cell, for instance with multiple cameras and object markers to provide
(noisy) object poses T} € SE(3) as the real world privileged sensor, and additionally
also sensorize the multi-fingered robot hand with tactile sensors. Then we deploy
the privileged sensor policy in the cell and collect an offline dataset of on policy
demonstrations and record both the latent representations produced by the policy
as well as the associated tactile sensor observations (fig. 5.3). Finally, we train an
observation encoder that takes as input both tactile sensor data and proprioception
data to match the latents from the privileged sensor policy. Formally, as illustrated
in fig. 5.3 we distill the privileged sensor policy into a tactile policy and use the MSE

loss for supervision.

Since we perform distillation using real world data, and do not have access to
a simulator to effectively train the student encoder using its own experience, we
employ DAgger [116], where we iteratively train the student tactile encoder with an
aggregated dataset where experience is collected by the policy using intermediate

trained tactile encoders.

5.4.3 Self supervised learning with PTLD

In addition to the online latent distillation loss, we use self supervised objectives to
regularize the latent representation to capture the requisite information and improve
sample efficiency during RL training. Specifically, we implement a reconstruction
decoder D which takes in the privileged encoder latent and reconstructs the privileged
sensor information, which in our instantiation is relative object orientation RI™" €
SO(3) denoting the orientation of the object from the current timestep ¢ to the first
timestep of the horizon t—N. We use the MSE loss between the 6D representation [221]

of object orientation and the predicted object orientation as Lpose = || D(2) — REY].

Then our final RL training loss is:

'C é 'CPPO + Clatent'clatent + Cposeﬁpose (57)
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Figure 5.4. Visualization of tactile observations and the latents changing over the first 1
second of privileged sensor policy deployment. Here we visualize only the tactile data at
the robot fingertip for simplicity, however the tactile encoder takes as input all observations
from the hand.

5.5 The privileged tactile manipulation system

5.5.1 Real world privileged sensor cell

Robot Setup For all experiments, we use the Allegro hand sensorized with Xela
uSkin [175], attached to a Franka Panda robot arm. There are a total of 18 Xela
uSkin sensing pads on the Allegro hand amounting to a total of 368 individual
sensors. We use the continuous 3-axis raw tactile sensor measurements from the Xela
sensor, over the processed force measurements as we find that those measurements
contain significant hysteresis and lag. A baseline signal with no contact is additionally
collected (over 2 minutes) and subtracted from the raw tactile measurements before

data collection each time.

Privileged Sensors Setup To deploy the privileged sensor policies for latent
dataset collection, we instrument the real world robot cell with 4 Realsense D4351/D435
RGBD cameras which view the in-hand manipulation area. These cameras are cali-
brated jointly and track an Aruco marker attached to the object being manipulated to
produce reliable multi-view pose estimate that is refined via Pose Graph Optimization

(PGO) [10]. We assume known shapes of the objects that are being deployed.
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5.5.2 Manipulation task I: In hand rotation

We choose the task of in-hand rotation [110, , 198] about the z-axis for our
experiments. In this task the robot hand is required to rotate an object along a
specified axis, ensuring that the object does not drop and remains held by the robot
fingers. We demonstrate that task performance on this task can be vastly improved
by incorporating rich tactile information as part of the policy observation. For state

observation and reward details for this task, we refer the reader to [110].

Tactile encoder For the tactile encoder (fig. 5.5 (a)), we concatenate the tactile
observations A'tactile ¢ R368x3 " and the tactile sensor positions computed from the
Allegro joint states using forward kinematics A'sensor-pos ¢ R368%3 a5 the input X =
cat(Atactile] Jsensor-pos) ¢ R368x6 - The tactile observations are produced at 100Hz,
and we use a history of 0.5s of tactile data as input to the encoder. Specifically, our
tactile encoder uses a combination of MLP and 1D temporal convolution as follows:

(X — MLP — Temporal conv — MLP — z), where z is the predicted latent.

5.5.3 Manipulation task II: In hand reorientation

We also develop an in-hand general purpose re-orientation task designed as a goal
orientation reaching problem. We wish to demonstrate that PTLD can not only be used
to improve existing policies that can be deployed in the real world with proprioception,
but that we can also learn more difficult policies which require additional information
to be encoded. Specifically, in this task, we randomly sample goal orientations
R € SO(3) of an object, and the robot is tasked to manipulate the object held
by the fingers, such that it’s pose R reaches within a set threshold angular
distance (0 = 0.25 rad ~ 14.5°) of the goal orientation (see fig. 5.1). However, due to
limitations in our hardware in the real robot cell (i.e., the four cameras are placed
above the manipulation area), we sample goal orientations in the upper hemisphere
within # = 40° about the z-axis. We use the asymmetric actor critic framework
trained with PPO to solve this task as well.

State The state observation input to the adaptation module E in simulation

includes the Allegro hand joint states ¢, € R'®, previous joint targets ¢, € R, noisy
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Figure 5.5. Tactile encoders for manipulation tasks: a) For in-hand rotation, we concatenate
a history of tactile signals and sensor positions, and encode them using a 1D temporal
convolution network to predict the tactile latents. b) For in-hand reorientation, we concate-
nate, tactile signals, proprioception, goal orientations and past latents and embed them
with a causal transformer to produce future tactile latents.

object position p; € R?, noisy object orientation R; € SO(3), and goal orientation
R € SO(3). All orientations use the the 6-D [221] rotation representation. We
also concatenate the relative difference between the goal and current object pose to
the goal pose, to facilitate learning. Since a single observation maybe insufficient, we
employ frame stacking and provide the actor with a 30-step history (~ 1.5s for a
control rate of 20Hz) of these observations. On the other hand, the privileged encoder

E is also provided with object linear and angular velocity, fingertip states (position,

orientation and velocities.) in addition to the inputs of E.

Reward We train the policy with a mixture of rewards to ensure that the robot
not only succeeds in reaching goal poses, but also employs natural realizable finger
gaits. The reward (table 5.1) contains three main terms (rgoal, Tsuccess, Istreak)s Which
includes the rotational distance reward, success bonus and a streak bonus to encourage
the agent to reach multiple goals one after another. We also encourage the policy

to maintain contact with the fingertips and keep the object in the center using
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(Tcontact, T'position)- 11 addition to the positive rewards, we also use motion penalties
and energy penalties to obtain smooth motions. Crucially, we find that penalizing
Tfinger_pose the Tobot finger motion from the initial finger pose is useful in generating a
finger gait. Without this penalty, the policy learns to curl the fingers along with the
object, resulting in unrecoverable hand configurations. We detail other motion and

energy penalties for reward shaping in the Appendix.

Reset Since we expect the policy to reach several goals in an episode, we design
the reset strategy accordingly. We start the episode with a stable grasp sampled from
a grasp set as commonly implemented, and reset the goal orientations multiple times
within an episode when the object orientation reaches the goal orientation (< §).
Additionally, we use a z-height threshold to reset the episode when the policy drops
the object from its fingers. Finally, we also use the standard episode reset after a

fixed number of simulation steps.

Reward Scale

A 1
rgoal - d(R?bjECt,Rfoal)+e 20

Tsuccess £ (1 if d<R?bjeCt, Rgoal> < 0 else 0) 5.0

Fotroak = Frorecss— 2.0
Teontact = Zl(cz > Ocontact) 0.1
T'position £ lpe — pol| 0.05
Tfinger_pose S gt — o —1.0
Tfingertip_object = ZZ ||pﬁngertipi - pt” —0.2

Table 5.1. Reward function for any target in-hand reorientation

Tactile encoder Since the in-hand reorientation task is significantly more complex,
and requires the policy to change gait according to the relative difference between
current object pose R and the goal pose R, for this task we use a recursive
state estimator as the tactile encoder. This estimator reasons about the full sequence
of tactile observations, proprioception, and goal orientations of the object. To this end,
we use a Transformer network (see fig. 5.5) to auto-regressively predict the current

latent given the history of observations and latents. Specifically, we embed each input,
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tactile observations Afctle ¢ R38x3 proprioception input AP e R32, the goal
orientations R&* € SO(3) and the previous latent z € R® individually using 2-layer
MLP networks. We subsequently concatenate all the embeddings, linearly project it
and add positional encodings to produce the input embedding to the transformer.
Finally, the embeddings are processed by a decoder (causal) transformer, from which

we select the next predicted latent z;; during inference.

5.6 Experiments

In this section, we first demonstrate in section 5.6.2 that the in-hand rotation task
can be improved in simulation using privileged sensors and additionally that the
in-hand rotation task typically trained using a two stage RMA [98, | approach
can very well be replaced by AAC by using our online latent distillation loss. Then,
in section 5.6.3, we present results of in-hand-rotation now improved by PTLD to
incorporate tactile information, compared against other baseline methods. We then
investigate decoding object orientations from tactile latents in section 5.6.4, and

finally, we showcase the in-hand reorientation task in section 5.6.5.

5.6.1 Implementation details

We train the policies using PPO [119], and use IsaacGym [119] as our simulator. Once
an offline dataset is collected in the real world cell, we train the tactile encoder via
supervised learning. For optimizing the tactile encoder, we use AdamW optimizer,
with a learning rate of le—4. We use ROS2 for communication between the different

robot processes, and achieve a real-time policy deployment rate of ~ 20Hz.

5.6.2 Privileged sensors improve performance in simulation

In fig. 5.6, we show that reward achieved by the policy in the distillation step is
significantly higher when compared to the policy that only has access to proprioception
to recover the latents from the stage 1 oracle policy. Further as shown in table 5.2,
here we also evaluate the policy performance in simulation where we randomize object

properties, and evaluate policy quality metrics introduced in [110] such as (1) rotation
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Figure 5.6. Policy performance for stage 2 distillation step in simulation improves signifi-
cantly when object pose information is provided in addition to proprioception input
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Figure 5.7. Asymmetric actor critic (blue) trained in a single stage in simulation outperforms
the RMA distillation approach which requires two stage training in simulation
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Z-axis
Method Input modalities RotR 1 TTF 1 RotP |
Oracle 159.4 0.89 31.86

Latent distillation (RMA)  Proprioception  139.0 0.79  28.53

Latent distillation (RMA) + Pose  153.1 0.86  31.09
AAC Proprioception  129.89 0.76  27.83
AAC + Pose 151.24 0.83  26.51
AAC (no distillation) + Pose 134 0.78  29.74

Table 5.2. We compare the performance improvement over various baselines on z-axis in
hand rotation, under the same training setting in simulation. Specifically, compared to [1410],
we first demonstrate that Asymmetric Actor critic with latent supervision (AAC) improves
performance in simulation significantly. Further, we demonstrate that additional input
modalities such as object shape and pose produce significant improvements in simulation,
which is a pre-requisite for tactile distillation to outperform the baselines.

reward: which measures the reward achieved by the policy for rotating the object,
(2) time to fall, which measures the amount of time as a fraction of the episode that
the policy rotates the object before dropping it, and (3) undesired rotation penalty,
which measures any off-axis rotation. Specifically, as expected, the stage 2 policy

with object pose information improves in all metrics in simulation.

Similarly, in fig. 5.7, we observe that while the RMA stage 2 distillation step
learns much quicker at the beginning of training, the AAC approach, and more
specifically the AAC variant which uses the online latent distillation (see section 5.4.1)
outperforms RMA eventually and leads to policies with better behaviors in the real
world. Finally, in table 5.2 we also see that the AAC policy with pose as the privileged
sensor given as input to the actor encoder, performs similarly to the RMA policy.
This motivates our choice to simplify training in simulation to a single AAC training

stage.
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5.6.3 PTLD improves policy robustness in the real world

We compare PTLD against several baselines that include proprioception, as well as
both proprioception and tactile information, to demonstrate the effectiveness of our
method. First, for proprioception baselines, we compare against RMA [110] which
implements the two stage distillation approach in simulation and AAC, which is
our single stage variant where the encoder gets only a small history proprioception
and action. We also implement our privileged distillation approach but purely with
proprioception as a third baseline, to demonstrate that tactile signals do indeed help
in recovering information from the privileged sensor, and that PTLD does not simply
finetune the encoders with more data. Finally, we also implement a baseline taking
tactile information as input. Here, we implement the tactile adaptation approach
presented in [33], but modify it for the Xela sensors, and use the Sparsh-Skin [152]
representation.

We compute metrics over 10 trials and run trials with three different cylinder
shaped objects. Specifically, we compute total rotation which measures the rotation
about the z-axis in radians, the time to fall, which measures the time in seconds
the policy rotates the object before it is dropped, and wvertical drift which measures
slip along the z-axis, and indirectly the instability of rotating an object. Here,
from fig. 5.8 we see that PTLD outperforms all baselines by an order of magnitude.
Specifically, in total rotation and time to fall, PTLD is significantly better than both
privileged distillation with proprioception and tactile adaptation. Here, we note
that our approach overcomes the main limitation of tactile adaptation, because
with PTLD the teacher data is sourced from a significantly better privileged sensor
policy, which results in significantly improved metrics. Similarly, when compared
against privileged distillation with proprioception only, we note that in the absence
of additional deployment sensors such as tactile sensors, distillation in the real world

manifests as policy finetuning, which can only result in modest policy improvements.

5.6.4 Tactile information improves object state estimation

So far, we have demonstrated that PTLD with tactile information improves policy
robustness. In this section, we investigate the reason. Specifically, we evaluate the

ability of the learned encoders to recover object orientation information. We train an
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Figure 5.8. Real world comparison of in-hand rotation policy performance over 10 trials
with three cylinder like objects. PTLD can

object pose decoder from the distilled real world encoder. We use the 6D rotation
representation and use the MSE loss to supervise the object pose decoder using real
world tactile policy rollouts as the dataset. We evaluate the performance of object
orientation estimation on held out rollout trajectories. In table 5.3, we compare
the object pose estimation error accumulated over 100 prediction between encoders
observing only proprioception or proprioception and tactile. We consider different
pose parameterization as input and output of the tactile encoder: a) Absolute object
pose R}V denotes the pose of the object at time ¢ with respect to the hand coordinate
frame, b) Relative object pose R~ denotes the pose of the object with respect to the
start of the temporal window. Here in both cases, we find that the addition of tactile
information improves the rotation prediction errors. For object rotation, the decoder
only needs to predict the angular rotation about the axis (z-axis). While we expect
that proprioception and tactile only capture relative information, we hypothesize
that with absolute object pose, the decoder is able to learn a fixed transform, given
sufficient data, as the hand is kept fixed during policy deployment for this dataset.
Further, the inferior performance of proprioception with relative object pose input
and output, can be explained as multi-modal problem, since the input proprioception
patterns for a finger gait can be similar, while the outputs can be substantially different
due to slippage or sliding. A qualitative visualization of object pose estimation from
the tactile encoder (with absolute object pose parameterization) is also visualized
in fig. 5.9
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Figure 5.9. Visualization of object pose reconstruction from tactile latent decoder: The red
transparent cylinder denotes the predicted object pose prediction, while the gray translucent
cylinder denotes the true object pose recorded from the instrumented cell during deployment.
Specifically, we compose the predictions over each second to visualize the cumulative tactile
object pose reconstruction over time.

Avg. Rotation error over 100 steps

Pose parameterization Distillation modality Rad ()
Absolute object pose  Proprioception 0.28+0.06
Absolute object pose  Proprioception + Tactile 0.25:10.09
Relative object pose  Proprioception 0.4520.04
Relative object pose  Proprioception + Tactile 0.22:0.04

Table 5.3. Average cumulative rotation error over 20 seconds (100 inference steps) for a
decoder trained to recover object orientation from latents learned after real-world distillation.
We freeze the proprioception / tactile encoder and only train the decoder.

5.6.5 Tactile object In-hand reorientation

As described in section 5.5.3, we train an in-hand reorientation task with privileged
information access to object pose and goal poses in simulation, which is then deployed
in the real world in the instrumented cell. We present this task as a showcase task to
demonstrate that PTLD can be used to train difficult in-hand reorientation policies
which require more precise object state estimation to achieve success in this task.
Furthermore, as alluded to before, we note that for this task, a simple temporal
convolution based tactile encoder does not suffice. Specifically, we find that with
such an encoder, the encoder latches onto a single finger gaiting mode resulting in
rotation of the object in hand in one direction. Therefore, in table 5.4 we measure

the performance of in-hand reorientation using an Autoregressive transformer based
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In-hand reorientation

Method Ngoals reached (T) TTF (S) (T)
Autoregressive Transformer (proprio) 2. 14214 10.99+10.15
Autoregressive Transformer (tactile4proprio) 3.3:1.55 13.42:10.18

Table 5.4. In-hand reorientation performance significantly drops in the absence of tactile
information. Metrics are computed over 10 trials, and each episode is run until the object
is dropped out of the robot hand.

encoder. We use number of goals reached (Ngoals reached) and Time to Fall (TTF (s))
as the metric. As expected, we find that when we remove the tactile information
from the transformer encoder, the number of goals reached by the policy on average
significantly drops. Qualitatively we find that tactile information helps the policy to

be robust when there are object slippages during reorientation.

5.7 Conclusion

In this paper, we presented PTLD as a method to learn dexterous policies with tactile
sensing, without having to simulate tactile sensors. Our key idea was to disregard the
zero-shot sim-to-real requirement in deploying policies, and instead rollout policies
in instrumented setups with privileged sensors. Then the key idea was to learn
tactile policies from these policy rollouts by matching implicit state latents between
the privileged sensor policy and tactile policies. We demonstrated PTLD on in-hand
rotation and in-hand reorientation, demonstrating performance improvements in both
tasks. We note that while we use tactile sensing as the deployment sensor, our method
is general and can be used to learn perception policies with other modalities such as

vision as well.

5.8 Limitations

While PTLD provides a straightforward and novel way to train dexterous policies with

sensing modalities that are otherwise difficult or infeasible to simulate, we recognize

122



5. PTLD: Sim-to-real Privileged Tactile Latent Distillation for dexterous
manipulation

certain limitations in our work that need to be considered.
¢ Modality overlap: Since PTLD relies on distillation from a privileged sensor
policy deployed in the real world, one must consider the overlap in information
between the deployment and privileged sensor. For instance, noisy object
pose as a privileged sensor only recovers the kinematic information from the
simulator, while the deployment sensor (tactile sensor) can ideally leverage
additional dynamics information such as contact forces and contact direction.
This implies that the choice of privileged sensor plays a role in minimizing the

information lost in sim-to-real distillation

¢ Noise in privileged sensors We note that sensing observations inherently
contain noise in the real world, and that the simulation policy must be trained
accounting for such noise. Noise in object pose estimation limits the upper ceiling
of the policy on real-world deployment. In the case of object pose estimation,

one could use a motion capture setup to get more accurate observations.
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Chapter 6

Conclusions

In this thesis, we developed techniques to efficiently leverage tactile sensing for robot
perception and dexterous manipulation.

In particular, we first explored using self-supervised representation learning to
unify several visuo-tactile sensors that have been introduced in the community. With
Sparsh, we first evaluated self-supervision algorithms for visuo-tactile sensors and
developed a recipe to learn general purpose tactile representations that work across
three different visuo-tactile sensors. When compared against end-to-end training for
downstream tasks, we demonstrated that self-supervised representations offer increased
sample efficiency thereby making downstream labeled data collection cheaper.

Then, with Sparsh-skin, we demonstrated that learning self-supervised represen-
tations for magnetic skin-based tactile sensors is also equally useful, even though it
might appear that the signals are low-dimensional. For Sparsh-skin we considered
tactile skins that cover the full multi-fingered dexterous hand, and learned tactile
representations that are also conditioned on the hand configurations. Sparsh-skin
improved both performance and sample efficiency in downstream tasks requiring
labeled data.

Third, with Sparsh-X, we present the first multisensory tactile representations
that unifies four different tactile modalities including tactile image, tactile audio,
IMU and pressure signals available from the DIGIT360 sensor. With Sparsh-X we
demonstrated not only the sample efficiency, but also the utility of unifying the

multiple tactile sensing modalities.
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Finally, we also presented PTLD in this thesis, where we explored learning improved
dexterous policies in the real world that leverage tactile sensing, by distilling from
privileged sensor policies in the real world, and therefore avoiding the difficulty of
simulating tactile sensors.

This thesis presents several promising approaches toward incorporating tactile
sensing for robot dexterous manipulation more efficiently. The next step toward
general robotic manipulation would be to incorporate tactile sensing more tightly for
several downstream tasks. There are several open challenges as well as avenues that
can benefit with using tactile sensing as well as self-supervised tactile representations.

First, learning dexterous manipulation from human demonstration is particularly
exciting. Most work that tackles learning from human demonstrations does so
from the viewpoint of re-targeting human demonstrations to the robot embodiment
kinematically [71, 73, 120]. This is sufficient for simple robotics tasks such as pick and
place, however with dexterous tasks such as in-hand manipulation of objects, kinematic
retargeting can result in implausible object and robot motions [133]. Several works
have tackled the challenges of kinematic retargeting for dexterous manipulation via
rejection sampling based filtering using simulation [133] or by learning manipulation
priors in simulation for real-world dexterous tele-operation [202]. Nevertheless, all of
the approaches cite the lack of tactile sensing as a major drawback. Primarily, tactile
sensing can provide additional observability into the human-object interaction system,
to provide actual contact state with objects, specific contact patches with object
surfaces, as well as forces applied on these objects, which can be retargeted to the
robot embodiment to produce smooth realizable robot trajectories. These realizable
trajectories can then be used to learn policies using learning from demonstration
techniques. In fact recent advances in hardware such as OSMO [200] can be used to
collect such human demonstrations with tactile sensing. An auxiliary question that
presents itself with the advent of such hardware is, what changes to data collection
for robot manipulation is needed?

A second such avenue is multi-modal world models for robotics. With PTLD we
enabled learning tactile latent representations specific to certain dexterous tasks.
Similarly with Sparsh, Sparsh-skin, and Sparsh-X we learned tactile latent represen-
tations using self-supervised learning to improve several downstream tasks. Can we

learn general purpose environment encoders from multiple sensing modalities jointly?
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6. Conclusions

Much recent progress in robotics has been enabled by vision-language models [29)]
and more recently video models [9] as the backbone for robotics models. These
models provide strong visual priors enabling visual generalization with robot poli-
cies. Standardizing tactile sensing across robot hardware (and tactile sensing human
gloves) and subsequently learning dynamics models using human demonstrations,
holds promise in enabling general dexterous intelligence in robots. There are several
plausible approaches toward incorporating tactile sensing via human demonstrations:
a) Tactile sensors can be directly incorporated via reconstruction and next-step
latent prediction objectives in existing vision-language or video models and b) Tactile
sensing can be used to learn value functions for dexterous tasks, where we can learn

the 'goodness’ of certain hand-object states from tactile observations.
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