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Abstract

Touch is an essential sensing modality for making autonomous robots
more dexterous and allowing them to work collaboratively with humans.
In particular, the advent of vision-based tactile sensors has resulted
in efforts to design such sensors that can be easily incorporated into
various robot structures for different robotic manipulation tasks, to
increase robustness, precision, and reliability. However, this design task
remains a challenging problem. This is for two reasons: first, the design
of the sensor itself requires the compact integration of multiple optical
elements to improve optical signal fidelity during interaction with the
environment; second, the successful integration of vision-based tactile
sensors into robotic manipulation tasks requires the codesign of both
the sensors and the robot structure itself.

This thesis aims to alleviate these two challenges by creating a general
design framework that allows a roboticist to quickly iterate on the design
and evaluation of vision-based tactile sensors for designated robotic
manipulation tasks. The framework comprises three core elements.

First, our framework uses an optical simulator that can accurately and
efficiently generate the images captured by arbitrary sensor designs. Our
simulator leverages physics-based rendering techniques from computer
graphics and enables the generation of realistic tactile images for any
given sensor design. To create this simulator, we performed detailed
real-to-sim experiments to calibrate our simulation models. We show
that the resulting simulator can qualitatively and quantitatively match
real-world measurements for GelSight-like sensors with flat and curved
sensing surfaces.

Second, our framework proposes computational techniques for procedu-
ral sensor generation and automatic sensor design evaluation techniques.
In the context of curved tactile sensors, our generator takes as input a 2D
curve and uses CAD primitives to generate from it the full sensor shape.
The procedural sensor generation allows for the automatic placement
of different optical components, given their corresponding reference
geometry. We introduce three objective functions: RGB2Norm, NormDiff,
and As-orthographic-as-possible. These objective functions quantify sen-
sor design’s tactile signal perception and enable automatic parameter
selection.
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Third, our framework introduces an interactive design toolbox, Op-
tiSense Studio, that functionalizes our design pipeline into a useful tool
for novice users. We introduce general design modules for the rapid pro-
totyping of GelSight-like tactile sensors. The toolbox allows interactive
feedback through optical simulation while designing the sensor without
deep expertise. The obtained design is automatically parameterized
through our toolbox and can be optimized using our proposed objective
functions.

We have successfully applied this framework for the design of vision-
based tactile sensors that used curved surfaces to emulate human fin-
gertips. We have also applied our interactive framework for rapidly
creating optimized variants of existing tactile sensors, GelSight Mini,
GelSight360, and GelSight Svelte. Finally, we are able to create a new
sensor, GelBelt, for a different robotic application completely virtually
and optimize its illumination settings using our toolbox.

Through this thesis, we demonstrate the utility of our design framework
for the co-design of vision-based tactile sensors and soft robots. More
broadly, we hope to create a new point of convergence between disparate
communities such as computer graphics (physics-based rendering and
simulation), optics (optical lens and material design), and robotics, and
foster new research directions within and across these communities.
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7.1

7.2

GelSight Svelte issues: We compare the simulated image against
the real-world prototype tactile images. The simulated images are
a close match to the real images. The top and bottom row shows
images with setscrew and ideal sphere indenters at different sensing
surface locations. As can be seen from the bottom row, the distortion
depends on the indentation location. In the bottom row, the ideal
sphere is "smeared" or distorted substantially, and is hard to perceive
physical shape properties like sphere radius. . . . . ... ... ...

GelSight Svelte shape optimization results: We show the shape
optimization results for the GelSight Svelte sensor. (A) shows the
AOAP function score during the CMAES optimization procedure.
(B) shows the initial and optimized larger mirror surface mesh in red
and green respectively. We also simulated tactile images for the two
designs. The optimized design has significantly reduced distortion
as compared to the initial design. (C) We manufactured sensor
prototypes to compare the improvement in real world for initial and
optimized design. The left visual shows our prototype. We show
the tactile images from the real world prototypes and their zoomed-
in view. The real and simulated images of the initial design both
show significant distortion of the lego block. The issue is resolved
completely in real and simulated images for optimized design. . . .

Rendering failures with PointLight: The figure shows tactile im-
ages for the GelSight Mini sensor generated using PSSMLT rendering
technique. The rows contain tactile images with different coating
materials: Diffuse and Specular with very high roughness 0.99. The
columns contain tactile images with different light types: AreaLight
and PointLight. As can be seen in the right column, PSSMLT pro-
duces noise with PointLight for both BSDF cases. This result is an
unexpected failurecase. . ... ... ... ... ... L.

Rendering failures between algorithms: The figure shows tactile
images for GelSight Mini sensor generated with PointLight and two
different BSDF settings: Diffuse and Specular with high roughness
0.99 The top row shows that SPPM algorithm is able to generate rea-
sonable tactile image with PointLight and Diffuse BSDF as compared
to PSSMLT, which produces noise. However, SPPM fails catastrophi-
cally with PointLight and specular BSDF with high roughness, while
PSSMLT generates almost noise image. . . . . . .. ... .......
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Component library in OptiSense Studio: This figure shows the
various components present in the library provided with our design
interface. These components cover the design space of the GelSight
sensor family and provide relevant design spaces to develop new
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Chapter 1

Introduction

1.1 Motivation

Currently, robots have limited ability to perform dexterous manipulation and work
collaboratively with humans. Tactile sensing provides critical information, such as
perception of object properties and rich contact information for robotic manipu-
lation. Due to this, we have seen the development of tactile sensors with various
transduction methods [35, 70, 108, 111], sensor shapes [19, 73, 101, 107], and output
modalities [23, 50, 104]. Vision-based tactile sensors (VBTS) have specifically be-
come popular in the robotics community because of their high resolution, low cost,
and ability to measure multiple contact information. GelSight [107] is a specific
VBTS that uses color information to encode tactile signals. Figure 1.1 shows the
various contact information that is obtained using GelSight-like tactile sensors.
Due to high-resolution sensing, VBTS is also useful for perception tasks with
fine features, such as detecting skin diseases and detecting fine defects on aerospace
parts. Figure 1.2 shows the perception of skin dryness using tactile images. The
visual pattern allows quantification of the dryness of the skin and therefore can be
used to automatically monitor eczema, which is a chronic health condition. The
perception of depth continuities on metallic surfaces is another big challenge in
aerospace parts. The commonly used vision-based methods for defect detection
are not robust for metallic parts [5]. As shown in Figure 1.3 the inspection of

aircraft requires perception of a large surface with orders of magnitude small
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Marker motion Normal force

Tactile image Depth

Figure 1.1: Vision-based tactile sensing modalities: As shown in [91], GelSight-
like tactile sensors measure high-resolution tactile images that can, then be post-
processed to output rich contact information - surface depth, marker motion and
normal force.

defects with depth of 50 ym. The use of GelSight can enable quantification and
automatic detection of these defects.

Unlike other sensing modalities, such as cameras, tactile sensors offer unique
challenges as they have to be integrated into the robot morphology for perception.
The design of vision-based tactile sensors is a challenging problem, as it requires
the complex interaction of various optical elements (lights, material, and camera)
to obtain contact information. There has been tremendous progress in the design of
VBTS hardware, especially GelSight-like tactile sensors, in the last decade. However,
to build increasingly complex, functional and integrated robotic structures with tac-
tile sensing, we also need to create design tools, that allow users to efficiently explore
a design space that incorporates shape, material, and illumination. Furthermore,
to empower more people to create sensors for their own personalized use cases,
we also need to develop tools that are more accessible to users with little design

experience.

The central question driving this thesis is:
Can we design GelSight-like tactile sensors for arbitrary use cases in simulation and optimize

various optical parameters?
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with eczema tactile images

Figure 1.2: GelSight applications in biomedical sensing: The left half shows
a human hand with various dry skin patches due to eczema. The skin pattern
changes due to increased dryness level. This change in pattern can be clearly seen
and quantified in GelSight tactile images shown on the right.

1.2 Approach and Contributions

The goal of this thesis is to democratize the process of GelSight-like tactile sensor
design and make tactile sensors ubiquitous in robotics. We specifically focus on
design iteration using simulation and computational techniques. The methods
developed in this thesis allow for the automatic evaluation of a novel sensor design.
We aim to make the design process for new end-effectors or robots with integrated
vision-based tactile sensing semiautomatic and reduce the time taken to optimize

the sensor parameters.

In this thesis, we introduce a computational GelSight-like vision-based tactile
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Figure 1.3: Aerospace defect detection: An aircraft (50 m long ) requires inspection
of surfaces after each flight. It may contain defects that are orders of magnitude
(1x1077) smaller than the aircraft. The bottom left shows a visual image containing
multiple defects that are almost invisible in an RGB image. However, the defect is
detectable in the GelSight tactile image on the bottom right.

sensor design framework with a physically accurate light transport simulation. Our
framework consists of three main parts—optical simulation, computational tech-
niques including sensor evaluation objective functions, and an interactive design
toolbox. Our contributions are as follows:

Optical tactile simulation. We develop an optical tactile simulation framework
using physically based rendering (PBR) techniques for accurately simulating vision-
based tactile sensors. We perform real-to-sim experiments to calibrate key simula-
tion models for accurately generating tactile images of novel tactile sensor designs.
Our study shows that our framework can generate simulated tactile images that
match the tactile images produced by a range of vision-based tactile sensors, for
example, GelSight with an almost flat sensing surface; GelSight Mini with refractive

4
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layers; a human-like fingertip curved tactile sensor; GelSight FinRay which uses
fluorescent lighting and mirrors; as shown in Figure 2.1. (Chapter 3, Agarwal et al.

[3,4])

Computational design framework. We develop a design framework for GelSight-
like vision-based tactile sensors, with two key novel elements—a low-dimensional
sensor shape parameterization, and a design evaluation procedure. Our low-
dimensional parameterization allows the procedural generation of varied sensor
shapes and makes the design optimization tractable. We systematically characterize
the effect of various design spaces using our design objective function, RGB2Normal,
to identify the best designs. Our computational framework enables, for the first
time, the design of a curved vision-based tactile sensor completely in simulation
and optimization of shape parameters for better 3D reconstruction than human-

expert design. (Chapter 4, Agarwal et al. [3])

Interactive design toolbox. We introduce a modular design framework for novice
users to democratize the sensor design and provide an interactive toolbox, Op-
tiSense Studio that functionalizes the techniques for rapid design iteration. We also
introduce two new objective functions, NormDiff and As-orthographic-as-possible
(AOAP), that optimize for 3D reconstruction and reduce sensing area distortion.
We investigate faster but approximate rendering algorithms for interactive opti-
cal simulation. The interactive design interface with simulation feedback enables
novice users to modify existing sensors and mechanical engineers to design new
VBTS sensor form factors completely in the virtual domain. (Chapter 6, Agarwal
etal. [2])

1.2.1 Thesis outline

In Chapter 3, we introduce the optical simulation framework that allows the genera-
tion of physically accurate tactile images. In Section 3.2 and Section 3.3 we describe
tactile sensors and their real-to-sim experiments to calibrate the simulation mod-
els. We further evaluate the accuracy of the simulation results by comparing the

simulated tactile images with the tactile images captured from real-world sensor
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Figure 1.4: Tactile sensors discussed in this thesis are GelSight hexagon sensor,
human fingertip-like sensor, commercial GelSight Mini, new GelBelt, GelSight
Svelte [115], and GelSight360 [94]. The sensors considered are useful for robotic
manipulation and contact perception.
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prototypes.

In Chapter 4, we introduce our sensor design framework and apply it to design
a curved vision-based tactile sensor. We further show the performance of the
optimized sensor design in simulation and by manufacturing a real-world prototype.
Our optimized sensor design performs approximately 5x better at robotic surface
inspection compared to a human expert design.

In Chapter 6, we introduce our modular and interactive design pipeline. We
introduce various sensor modeling modules and parameterization of optical com-
ponents to enable optimization. We also propose two new objective functions:
NormDiff and As-orthographic-as-possible for design improvement. Using the pro-
posed framework, we show multiple case studies to optimize the shape of optical
components, material properties, and light type. We also design a new tactile
sensor, GelBelt, from concept to fully optimized design.
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Chapter 2

Background and Related Work

2.1 Vision-based tactile sensor designs

In this section, we discuss various vision-based tactile sensor designs and proba-
ble reasoning behind those choices to highlight the trade-off between perception,
function, and compactness.

Yuan et al. [107] choose the elastomer material based on transparency and
mechanical considerations. The sensing surface coating layer is chosen to have
matte or semi-specular reflectance. Johnson et al. [44] placed six LED light sources
along the periphery of the elastomeric surface. Johnson and Adelson [43] used
three colored LED arrays at an elevation angle of 30 degrees for best illumination. Li
etal. [51] used four colored LED arrays and used acrylic guiding plates to illuminate
the sensing surface. Dong et al. [21] proposed a new design with three colored
LED arrays with collimating lens and are placed at an angle of 71° with respect to
the sensing surface. They added a translucent surface in front of the LEDs to make
the outgoing illumination more diffuse. Donlon et al. [23] used an ideal mirror to
indirectly view the sensing surface using the camera. They derived a trigonometric
relationship between the mirror angle and the sensing surface coverage. They
designed the acrylic guiding plate surface to be a parabolic to allow light paths
from LEDs placed near camera to be directed towards the sensing surface. Note
that all the above approaches were based on human intuition and trial-and-error

for generating new designs and estimating their parameters.



2. Background and Related Work

We review the main GelSight-like tactile designs in Table 2.1. The designs are
characterized on the basis of illumination design, camera viewport, and application
features. The key illumination features are light piping, coating material is semi-
specular or diffuse, and the number of light groups (collection of light of the
same color). The key camera viewport features are if the design uses mirrors to
change the positioning of the camera and the number of cameras used to cover
the sensing surface. The key features that are added to aid target application
(dexterous manipulation) are if the sensing surface is curved and contains markers.
We consider sensors with focus on parallel-jaw grippers, omnidirectional sensing,
functional moving parts, highly compliant sensing surface and full human-like
finger sensor shapes.

Table 2.1: Review of GelSight-like tactile sensor: A comparison between state-of-
the-art GelSight-like tactile sensors.

Name ‘ Illumination Viewport Application features
Light Semi- Num. Mirrors  Num. Curved
piping specular light cam-

groups eras

GelSight Hexagon [107] no no 6 no 1 no

GelSight RoundTip [77] yes yes 3 no 1 yes

GelSight Mini yes no 3 no 1 no

DIGIT [47] no no 3 no 1 no

GelSlim 1.0 [23] yes no 1 yes 1 no

GelSlim 3.0 [90] yes no 3 no 1 no

Omnidirectional

GelSight360 [94] yes yes 3 no 1 yes

RainbowSight [95] yes yes — no 1 yes

DenseTact 2.0 [20] yes yes 3 no 1 yes

Omnitact [73] no no 11 no 5 yes

GelTip [27] yes yes 3 no 1 yes

MinSight [8] yes no 6 no 1 yes

Functional Designs

RoTip [42] yes no 3 no 1 yes

Roller Grasper [105] no no 3 yes 1 yes

GelLink [65] yes no 6 yes 1 no

Highly compliant

GelSight Fin Ray [55] no yes 3 no 1 no

GelSight Baby Fin Ray [58] no no 3 yes 1 no

Fingers

Exoskeleton Soft Finger [82] | no yes 1 no 1 yes

GelSight EndoFlex [59] no no 3 no 2 yes

GelFinger [53] yes yes 6 no 1 yes

GelSight Svelte [115] no no 2 yes 1 yes
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Figure 2.1: Various types of GelSight sensor designs (Pictures adapted from
[19,22,47,51,53,55,77,91,94, 115]): Researchers have designed GelSight sensors
with varied optical systems to fit robot fingers with either flat or curved surfaces.
The performance of the sensors also varies and is affected by a number of the optical
system parameters. Our work aims to bridge the knowledge gap between expert
sensor designers and novice users, thereby simplifying and expediting the sensor
design process.

2.2 Contact simulation for tactile sensors

Previous approaches for modeling and simulating contact between the sensor
surface and the object can be categorized into a) modeling the deformation of
the tactile sensor surface and b) modeling low-dimensional features used in a
particular sensing technology. [71] simulated BioTac [26], which is a finger-shaped
sensor with a fluid-coupled electrode array and measures impedances. In their
simulation, BioTac is modeled using the Finite Element Method (FEM), which
outputs the quasistatic nodal displacement under applied force over a known
contact area. Vision-based tactile sensors such as TacTip [101] and [80], which
track the motion of dots, either on the sensor surface or embedded in fluid, have
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2. Background and Related Work

also been simulated. [18] modeled TacTip as a set of pin positions(similar to those
found in the real sensor) which deform using an elastic push-pull force based on
contact with objects in the scene. [81] simulated their sensor [80] using the neural
network, trained using a data set generated by Finite Element(FEM) simulation.
Their simulation is able to predict the position and force distribution. They decouple
camera parameters from Neural Network training to allow adaptation to various
cameras. This system could be used to simulate surface deformations and low-
dimensional tactile features. However, the above methods do not work well for
GelSight because of the complex light system. [112] simulated the tactile sensor by
finding the intersection surface between the object mesh and the robot hand; and
sampled points along that surface to simulate the tactile sensation for force closure.

Tactile optical simulation. There have been some recent works that simulate the
image formation process for GelSight-like vision-based tactile sensors. [88] and
[28] use directional lights, with phong material and diffuse material respectively,
to simulate images formed by the tactile sensors. The assumption of directional
light breaks down if the physical lights are very close to the scene(sensor surface
in this case)[54]. Our work uses a general image formation process that takes
multiple bounces of light into account, together with a physically accurate light
model and material surface. This allows us to capture the spatial variation in color

and intensity distribution in the simulated image.

2.3 Virtual robotic design and Sim2Real

In this section, we cover related work that leverages simulation for sensor design
and other Sim2Real works that focus on robotic manipulation.

[91] is the most similar to our work. In this paper, the authors redesigned
GelSlim [23] to optimally recover the surface geometry, similar to GelSight. They
used raytracing simulation software to design a shaping lens and LED light position.
Their simulation-driven approach was useful for coming up with a nontrivial lens
shape. Although the authors used simulation, the output modality (radiant flux)
was different than the tactile image (camera image). The raytracing software used
by the authors is more focused on professional optical designers and requires

detailed models of optical components, which can be overwhelming for roboticists.
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Moreover, their design tool did not provide any guidance on how to generate tactile
sensors or provide any objectives for automatic parameter selection. Therefore, it
is unclear whether their approach can be extended to an end-to-end approach for
tactile sensor design.

In [113], the authors analyze the common design pipelines of camera-based sen-
sors and propose a dictionary-based process flow design approach. Their approach
is useful for mixing and matching various workflows for sensor manufacturing.
Although useful, their work does not provide any feedback on the validity or
sensing ability of the design. Our work is the first to provide simulation-driven
interactive feedback on the validity and perception capabilities of sensor design.
Moreover, their work does not consider any optimization-based parameter selection
techniques.

In [87], authors use efficient tactile simulation to train a grasp stability model
completely in simulation and show zero-shot transfer to real robots. This approach
depends on Taxim [86] which requires data from the real-sensor prototype for
simulation. Since our focus is on creating a new sensor completely in simulation,

this simulation approach is not applicable to our problem.

24 Robot design optimization

In this section, we cover related work that leverages digital design to optimize the
design of complex robotic structures. This topic is broad and we cover only a few
papers that served as inspiration or guidance for our work.

In [31], the authors introduced a design pipeline for truss-based structures, best
known for structural stability and shape complexity. Their pipeline allows the cre-
ation of complex shape-changing truss structures with reconfigurable constraints.
They also created a design tool that provides interactive preview and truss design
modules and output control code. Their human study found that their tool "em-
powers users to design and build truss structures with a wide range of shapes and
various functional motions. In [79], the authors introduced a system that allows
the interactive exploration and optimization of parametric CAD data. They used
precomputation and a new interpolation scheme on the CAD parameters. In [118],

authors proposed an integrated design pipeline for robotic gripper generation with
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integrated tactile sensing. They used knitted tactile sensors to put on the designed
robotic grippers using grammar rules. It is unclear how to extend their work to
incorporate the GelSight sensor family. Also, their work can only be tested after
manufacturing the generated prototype, as they do not have any simulation step or
optimization to select parameters.

14



Chapter 3

Optical Simulation Framework

Simulation is a critical tool in the development of robotic systems. It is widely used
for hardware design, control, and planning. Simulations are useful not only at the
start of the development process but also for debugging and rapid iteration of the
design when a new design objective emerges. Due to the above advantages, we
have seen the development of a number of rigid body simulators like ODE [89],
SimBody [85], MuJoCo [96], Dart [48] and, particle-based simulators like Nvidia
FleX [67] and SOFA[7]. Tactile sensing is a cornerstone for complex robotic manip-
ulation together with advanced control algorithms and hardware design. However,

most modern simulators have limited tactile sensing simulation.

In this thesis, we are specifically interested in simulating vision-based tactile
sensors due to their high resolution. Vision-based tactile sensor simulation has
two major components, namely optical simulation and dynamics simulation. In this
work, we focus on an optical simulation system using physics-based rendering
(PBR) [76] techniques. PBR focuses on accurately modeling the physics of light
scattering. PBR allows generating physically accurate images after specifying the
physical location of optical elements like cameras and lights; the deformable surface
geometry; the material properties of the sensor surface. Since our system is based
on accurate simulation of light, given the sensor setup, it can be used as a tool for
generating accurate tactile images for novel sensor designs, without the need for

ever manufacturing that design.
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3.1 Optical simulation framework

Simulation algorithms and simulation models of various tactile sensor components
are the two key ingredients to generate realistic tactile images using PBR techniques.
In this section, we first motivate the need to do PBR, followed by the basics of
PBR, and then talk about the specific method that we use for simulation in our
work. We introduce the real-to-sim techniques for calibrating simulation models
for individual tactile sensors in Section 3.2 and Section 3.3.

3.1.1 Simulation challenges

Viewport Blender EEVEE  Blender Cycles Our Simulation Real prototype
(rasterizer) (pathtracer)

Figure 3.1: Full vision-based tactile sensor comparison: (A) Simulation scene:
the camera, vision-based tactile sensor, and indenter, which we used to analyze
our designs. (B) and (C) show the images simulated using Blender EEVEE and
Blender Cycles renderer respectively. (D) HDR image simulated by our framework
using calibrated simulation models. Our simulated results are a close match to the
physical prototype as we are able to reproduce a)Bright light stripes due to focused
LEDs b) Light piping of red color from the right to illuminate the spheres on the left
and similarly for blue color. (E) HDR image captured with our real-world tactile
sensor prototype, when the sensor is indented with a set of spheres.

The key motivation of our work is to do tactile sensor design by exploring design
spaces. Traditional simulation techniques such as rasterization (Blender EEVEE)
fail to generate any image (Figure 3.1B) and unidirectional path tracing (Blender
Cycles) ( Figure 3.1C) fail to match the real prototype image. Therefore, we build a
simulator of light that accounts for realistic light models, complex material proper-
ties such as Bidirectional Scattering Distribution Function (BSDF), and multiple
bounces of light by using physics-based rendering techniques (PBRT) [76]. PBRT
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allows us to generate unbiased RGB images efficiently.

Figure 3.16B shows an example path diagram of light as it travels from light
source to camera, in our sensor setup. Our sensor setup has 3 key challenges

A useful light path is generated after refraction through multiple rough surfaces
and reflecting of a highly glossy sensing surface to give information about the
outermost sensing surface. This length of such successful light path is greater
than 5. Light transport that requires multiple bounces on refractive and highly
glossy (specular) surfaces is known to be a challenging problem in computer
graphics [39, 109]. In our tactile sensor model, we have 3 key surfaces - 2 of which
are refractive and the outermost surface can be highly specular (experimentally
found to work better).

Another key challenge in our tactile sensor is that it is composed of curved sur-
faces, as it is supposedly human fingertip-like. Having curved surfaces is beneficial
for various robotic applications|77]. However, this poses a challenge for sampling

paths in the rendering algorithm[62].

A key component of various rendering(simulation) algorithms is a technique
called "Next Event Estimation"(NEE)[97]. This technique tries to find the light
received by each intermediate point, in the full light path, directly from the light
source. However, the effect of this technique in our sensor setting is limited due to

the light source not being directly visible through any point on the sensing surface.

3.2 Optical simulation for GelSight sensor

In this section, we use the optical simulation framework for simulation vision-based
tactile sensors like Gelsight [106], which have almost flat sensing surfaces. We
give a brief introduction of the sensor, real2sim experiments to calibrate simulation
models, and propose a cheap tactile sensor deformation simulation based on surface
convolution for almost flat sensing surface tactile sensors. We then evaluate our
simulation framework by comparing the tactile images generated by our simulation

framework with those of real sensor prototypes.
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Figure 3.2: GelSight sensor illustration: The key components which we model in
our work are gelcore, elastomer surface and LEDs.

3.2.1 GelSight description

These tactile sensors have multiple colored lights, soft deformable skin, and an
RGB camera. When an object interacts with the soft sensor skin, the deformed
skin shape interacts with light to form an image in the camera. The sensor uses
photometric stereo [9] to invert RGB color information to shape information. We
can obtain high-resolution shapes, multiaxis force, and friction information using
Gelsight. Figure 3.2 shows the illustration of the GelSight prototype used in our
study. The prototype is based on the sensor proposed in [106].

3.2.2 Real2sim simulation model calibration

This section describes the specific models of light, the material of the translucent
supporting structure (we denote it as gelcore), and the elastomer used to create the

GelSight sensor in simulation.

Light models

We use AreaLight model for our simulation system. The AreaLight is a good approx-
imation of diffuse illumination received on the deformable surface of our sensor.

This light model is fast to simulate and is a common choice for simulating natural
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Simulated

Figure 3.3: The comparison of a real GelSight sensor and a simulated GelSight
sensor, when a star-shaped object is contacting the sensor. Our model well simulated
the optical system in the sensor and therefore can generate a realistic tactile image
that indicates the object’s shape.
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B

LEDs off LEDs on AreaLlight

Figure 3.4: Light model comparison: The mesh model of the AreaLight model was
chosen to match the real LEDs array set as shown on the left. Our simulation model
matches closely in terms of spatially varying illumination obtained on the sensor
surface.

lighting [60] in computer graphics. The key parameters in AreaLight are mesh,
defining the geometry of the light and the three-dimensional intensity of each
color. Figure 3.4 shows the comparison of the physical LEDs used in our prototype
sensor and AreaLight model. We use the differentiable rendering ability available
in Mitsuba2 [72] to obtain the color intensity for each LEDs set used in our sim-
ulation. The final optimized values were [5.23, 0.00, 0.00], [0.17,6.73,0.00], and
[0.00,0.00,6.83] for red, green, and blue LEDs, respectively.

Gelcore model

Gelcore refers to the translucent supporting structure inside the sensor, as visualized
in Figure 3.6. The geometric model of the gelcore is exported from SolidWorks,
a 3D geometry modeling tool. The gelcore material is modeled as a dielectric
with roughness. The dielectric material model uses microfacet theory[99] with
normals chosen using GGX distribution. The model uses physically accurate fresnel
diffraction terms, which is essential for modeling scattering losses and roughness.
Figure 3.6 shows the comparison between real gelcore, rendered gelcore, and the
material visualization using a spherical ball. For more complex sensor design
materials, one can model the material as a linear combination of different microfacet
BRDFs using the isotropic GGX parametric model and its parameter could be
optimized using differentiable rendering, as shown in [84].
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Figure 3.5: Gelcore material: The real translucent gelcore in GelSight(left), the
simulated Gelcore(middle) with rough dielectric material model and preview of a
sphere(right).

Elastomer surface

In this section, we define the geometric and material model of the soft deformable
elastomer surface. We use a diffuse material model for the elastomer surface to
match the nature of the material’s reflectance. This material model is parameterized
by a 3-dimensional vector, which describes the ratio of light reflected to that of light
received at the surface. We used [0.50,0.39,0.45] and [0.26,0.23,0.38] for flat gel
surfaces and dome-shaped gel surfaces. Similar to the light intensities, we used

differentiable rendering for optimizing material parameters.

The 3D geometry of the deformable layer is modeled as a heightfield[92]. A
heightfield is a 2D matrix with each value representing height. This representation
allows modifying the geometry by performing image processing operations on the

matrix.

To obtain the deformed elastomer surface when an object is pressed against
the sensor, we subtract the height of the object from the height of the undeformed
elastomer surface. Note that because of the continuity of the elastomer material,
the deformation of the elastomer is a ‘smoothed-out’ shape of the object in contact.
We propose a simplified model of this ‘smoothing out” effect by convolving the
object’s geometry with a kernel to generate the heightfield of the elastomer surface.
The kernel is defined as
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Figure 3.6: Geometric smoothing for approximate surface deformation: Deforma-
tion kernel with p=1 and m=200 used to smooth the heightfield

m+1
k p—
(z,9) m + exp (r X p)

where r = /22 + g, 2,y € [~ M | M] (3.2)

p p

(3.1)

This is a simplified method to get material deformation around the edges. How-
ever, it is not exact and depends on the depth of the press against the sensor. For
our datasets, we found p = 1 and m = 200 work well by looking at the size of edges
in sharp objects. Figure 3.7 visualizes the 3D view of the undeformed heightfield
and deformed heightfield after convolution.

3.2.3 Results and Discussion

In the following section, we describe the data collection process and the experiments
to validate models of light. We then show the sensor simulation when objects of
various shapes contact the sensor at various locations. We used Mitsuba [40],
which is an open-source forward renderer with a rich library of material models
and light transport integrator methods for generating images with models proposed
in the paper. The key time-consuming raytracing components are implemented in
C++ with GPU acceleration in the Mitsuba renderer. We used Mitsuba’s Python
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3D view of elastomer Heightfield 3D view of heightfield
surface and shape

Figure 3.7: Heightfield visualization of sensing surface with an indenter: The
interaction of a star pressed against a sensor (left) and the deformed elastomer sur-
face can be represented using a heightfield image (middle) and the corresponding
3D view is shown on the right.

API for rendering all the images. The code is available at https://github.com/
CMURoboTouch/tactile_optical_simulation.

Data Collection

We constructed an optical benchtop setup using Thorlab parts. We mounted the
prototype GelSight sensor on a XY movable stage using custom-designed 3D printed
parts. We mounted the objects to be pressed against the sensor on a vertically
movable stage to control the depth of the press. Our experimental setup is shown
in Figure 3.3. The bench-top setup allows for precise control of the depth of press
against the sensor surface and makes static indentations. In the GelSight prototype,
we used a Raspberry Pi V1 camera, as it is compact and allows access to raw images
and jpeg images. We plugged the LEDs into a breadboard which allowed us to
control the individual color LEDs.

We collected 2 datasets of real images using our sensor setup. The first dataset
contains variation along elastomer surface geometry and indentation depth. The
second dataset has a variation on the location of contact on the elastomer surface.

We used a 4 mm diameter metal ball and two 3D-printed shapes as shown in
Figure 3.8 for pressing against the sensor. The first dataset contains 36 images in
total with 24 images using flat elastomer surfaces (3 shapes, 2 pressing heights, 4
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A %

5mm  5.8mm

Figure 3.8: 3D printed shapes for dataset collection: The image on the left shows
the shapes visualized in a blender and the image on the right shows the real shapes
placed beside a US quarter. These shapes are pressed against our sensor for data
collection.

elastomer surface locations) and 12 dome elastomer surfaces (3 shapes, 1 pressing
height, 4 elastomer surface locations). Dome-shaped elastomer surface was found
to have better light distribution and contact for tactile sensing[106]. This dataset
contains challenging simulation scenarios due to interreflection in a star shape,
sharp edges in a triangle and star, and unknown boundary in a metal ball. The
second dataset contains 16 images in total, and the flat elastomer surface contains
10 locations with the ball and 6 locations with a triangle. This dataset is used to
evaluate if the simulation is able to model the variation in light intensity and color
at different locations on the elastomer surface.

The collected datasets were hand-annotated for finding the object location w.r.t
to the sensor surface. We used the camera parameters to obtain the world coordi-
nates of the objects. The world coordinates of the objects were used to generate
heightfields and place the generated geometry into the simulation environment.

Lighting model

In this section, we evaluate the proposed light model and compare its intensity
and color at different locations by capturing light probe images[17]. The light probe

refers to a polished metal ball placed at the location where the image has to be
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Figure 3.9: Light probe comparisons to visualize illumination inside the sensor:
The first column shows the image from the camera viewpoint. The second column
compares cropped probe images seen from the camera in real and simulated cases.
The last column compares the environment map[17] of the corresponding image.
This image uses our light model without gelcore with optimized scene parameters.
The image shows a close match of simulated and real-world light patterns in terms
of shape and color.

Real

Simulated

simulated. The light probe image essentially means to capture an image of the
scene with only scene lights(sensor LEDs in our case) and the light probe placed at
the location where the model has to be tested. To capture light probe images from
the real sensor, we removed the elastomer surface and then inserted a metal ball at
the same height as the elastomer surface. Figure 3.9 shows a comparison between
real and simulated images for full camera image, cropped light probe image, and
the corresponding environment map (which represents the light received by the
metal ball in polar coordinates). The light probe images show a close match in the

shape of real and simulated light models.

Evaluation of Sensor simulation

In this section, we bring together the light model, the gelcore material model, and

the elastomer surface model to simulate the GelSight sensor when different objects
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sRGB Green Blue

Figure 3.10: Simulation-Real comparison for GelSight hexagon sensor: Compari-
son between real and simulated image along different color channels

Flat Elastomer Surface Dome Elastomer Surface

Real

Simulated

Real

Simulated

Real

Simulated

Figure 3.11: Comparison of tactile images with indenter at multiple spatial
locations on the sensing surface: The images in the odd row show zoomed-in
real sensor images and a small inset in the bottom right corner shows where the
indentation was made on the original sensor. In all cases, the indentation depth was
I mm. The even row shows images rendered using our system. The comparison
shows a close match in terms of color and intensity of the lighting variation at
different parts of the elastomer surface using our simulation system.
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are pressed against the sensor.

We compare against 2 previous approaches, [88] and [28], which used direc-
tional light and Phong material for elastomer surface to simulate GelSight; [106]
used directional light assumption and diffuse material for elastomer surface to
reconstruct the shape. We use Monte Carlo simulation for both methods as it gives
physically accurate results for material models used in the above approaches.

To find the light intensity of our simulation and comparative methods, we
took images with single-color LEDs switched on in GelSight and used the average
intensity in the middle of the camera image to scale the corresponding light intensity
in the simulation. For the elastomer reflectance color parameter, we used a single
image with a metal ball pressed in the middle of the sensor and manually tuned the
3-dim RGB reflectance vector. We used the mean squared error between the RGB
image to estimate the parameters. Note: In all our final comparisons, we used sRGB
images for visualization and linear images for quantitative evaluations. Linear
images represent the true radiance received by the sensor for each color channel.
sRGB images represent images that are post-processed for human visualization.

Per channel comparison: We considered a case when a triangle is pressed
against a flat elastomer surface at a depth of 1 mm. Figure 3.10 shows the comparison
of RGB channels between the real and the simulated sensor images. The figure
shows a close match in terms of light intensity in all the channels especially high
values on the right side in the Blue channel. Though, we note that the simulated
images have large shadows which are missing in real images. However, the edges
of shapes match closely in real and simulated images.

Spatial variation: For this experiment, we used dataset 2, which consists of
shapes pressed against sensors at multiple locations. As can be in Figure 3.11, our
simulation closely matches the colors and intensities for the smooth ball and sharp
triangles at various locations shown in the inset of the reference images.

Comparison against other methods: For this experiment, we used dataset 1,
which consists of variations along shapes, indentation depth, and elastomer surface
geometry. For qualitative comparison refer to Figure 3.12, we show balls pressed at
different locations in the first 3 columns. Our method closely matches the strong
red color in the 2nd column and the strong green color in the 3rd column. The

directional light model assumes that the light intensity remains constant across
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the elastomer surface. This effect is seen in columns 1-3, where the image remains
the same irrespective of where the ball was pressed on the sensor surface. In the
4th column, only our method shows correct colors at the edges of the star which
has strong interreflections between its edges. This case is only possible to simulate
using ray tracing which takes multiple bounces of light into account while the image
formation process. Columns 7-10 show the comparison of shapes pressed against a
dome-shaped elastomer surface. The dome shape is particularly challenging due to
the concave shape of the elastomer surface, which can have strong interreflections.
As can be seen, our method has correct colors at the edges and shows variation in
color when shapes are pressed at different locations at the sensor. We notice that
previous methods have large grayish ambient color. In a real sensor the intensity
of light increases if the location of contact is closer to a light source. However, the
previous method assumes constant lights and has failed to accurately capture the
color at locations close to light sources.

For quantitative comparison, we used traditional signal processing metrics
like Mean Squared Error (MSE), Signal-To-Noise Ratio (SNR), Symmetric mean
absolute percentage error (SMAPE), and a metric from image similarity literature
SSIM[37]. Since SSIM is insensitive to luminance change, contrast change, and
small geometric distortions. It produces a single number per pixel by finding the
mean, variance, and correlation per channel. To compare images, one can take the
mean over all the pixels to obtain a single number for the image known as Mean
SSIM, which we use in this paper. We used a cropped patch of 600 x 600 around the
indented shape for calculating metrics. Table 3.1 shows the average metric values
calculated using images from both datasets. We consistently outperform previous
methods in a range of image similarity metrics.

Figure 3.13 shows the qualitative comparison of larger and more complex 3D
shapes simulated using our system.

Timing and image quality trade-off

We use Monte Carlo process in our simulation which uses multiple samples per
pixel to obtain the color of that pixel. Therefore the total time taken to render each
image and its quality is a function of sample-per-pixel(spp), length of light path(1)
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Real Sensor

Diffuse
Shading[7]

Phong
Shading[9]

Our method

Dome Elastomer Surface

Flat Elastomer Surface

Figure 3.12: Qualitative comparison between different simulation methods: The
baseline methods are able to capture color and intensity around the center region.
However, only our method is able to capture the spatial variation and matches well
with the real sensor images for multiple object geometry and elastomer surface

geometry.

Simulated

Real

Figure 3.13: Simulation-Real comparisons for complex 3D shapes: Comparison
of simulated and real tactile images. Real images were collected by pressing the
objects 1 mm against the sensor surface
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Table 3.1: Comparison of the simulated tactile images and the real ones on different
metrics. The | arrow shows that a lower value is desired and vice-versa.

MSE | | SNR T | SMAPE | | SSIM 1
Diffuse surface | 0.004 2.705 0.839 0.387
+  Directional
Light[106]

Phong shading | 710.618 | -50.152 0.828 0.388
+  Directional
Light[28]

Our method 0.001 8.562 0.445 0.841

and size of the image(h x w). The quality of the rendered image and computation
time both increase if we increase any of the mentioned parameters. We found in our
experiments spp = 8,1 = 4 for rendering image size 600 x 600 leads to frame rates of
10Hz and is optimal. While keeping image size and | constant, the timings for spp
4,8, and 16 are 64 ms, 95ms, and 174 ms. Figure 3.14 shows the image comparison
with varying spp. While keeping spp and 1 constant, the timings for image sizes
128x128, 256x256, 512x512, and 1024x1024 are 33 ms, 36 ms, 55 ms, and 126 ms. These
runtimes were recorded using python3.7 timeit module on a 32 CPU core machine
with GeForce RTX 2080Ti for a scene with 318510 geometric faces.

spp 4 spp 8 spp 16

Figure 3.14: Rendering speed versus noise: Qualitative image comparison of
images rendered at different spp
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3.3 Optical simulation for advanced tactile sensors

A novel vision-based tactile sensor with a curved tactile sensing surface was intro-
duced in [77]. Since then, there have been numerous attempts to develop tactile
sensors with curved sensing surfaces [19, 73]. Curved sensing surfaces enable dex-
terous robotic manipulation [6] without the need for reorientation of the robotic
arm to perceive objects from multiple sides [77]. It also enables a large contact area
when the object is being manipulated without arm reorientation. Therefore, there
is a significant interest in developing curved tactile surfaces. Since our simulation
framework is general enough to allow the simulation of curved tactile sensors, we
can guide the design of the same. In the following section, we give an overview
of a human fingertip-like curved tactile sensor, propose real2sim simulated model

calibration methods, and compare full sensor simulation.

3.3.1 Human finger-like curved tactile sensor

Figure 3.15 shows the exploded view of the curved tactile sensor. The sensor
consists of a hard plastic shell, soft elastomer, and a coated external layer. The
sensor uses light piping through the hard plastic shell to allow light to reach all
parts of the tactile sensor. This allows for the recovery of surface normals using

Sensor illustration BWorking principle

color information.
@ @ @ @ 1) Bronze Metal Coating
2) Soft Elastomer Layer
n ) Epoxy Resin Shell
) Light Panel ﬁ
@ 5) Assembly Part 1
6) 160 FoV Camera
@ 7) Assembly Part 2
\ \\ Section View /

Figure 3.15: Curved tactile sensor: (A) shows the exploded view of the curved
tactile sensor. (B) shows the path diagram as light travels from light to camera.

)
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wAg
5 < > .
Light 1<

* Camera

A: Raytracing B: Path diagram

Figure 3.16: Path Tracing illustration:(A): image construction process in terms of
light paths starting from emitters, hitting single or multiple objects, and reaching
the camera film. (B) Path diagram in a curved tactile sensor

3.3.2 Optical simulation method

In this section, we review light transport simulation techniques and discuss the
specific algorithm Langevin Monte Carlo Rendering, which we use throughout this
work to simulate curved tactile sensors. For a detailed description of path tracing,
see Appendix A.

We leverage the Markov chain Monte Carlo light transport technique for simu-
lating light paths inside the sensor. Specifically, we use Langevin Monte Carlo [63]
to generate images as given out by the tactile sensor scene. We briefly describe
light transport integral; how to use Monte Carlo to estimate the integral; leverage
Markov chain Monte Carlo in the MC process; use Langevin Monte Carlo to gener-
ate samples in the MCMC process, which proposes general changes in light paths
by building a differentiable geometry local approximation.

Light transport can be expressed by the following path integral

= [ h@ @), (33)

where /; is the pixel value of the j-th pixel, € is the space of all possible light
paths. A light transport path z € Q is a collection of line segments in the world

that represent the trajectory of light traveling in the scene, with the first vertex on
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window

o

primary sample space

Figure 3.17: Path mutations in MCMC techniques: The figure is reproduced from
[45]. It shows path mutations in the path-space by changing the vertex locations
of the path shown in bold line style. The right side shows how these mutations
can be traced to mutations in the primary sample space (PSS) of random numbers.
PSSMLT and LMC techniques perform mutation in PSS.

a light source and the last vertex on a camera. Therefore, a path of length k can
be represented as a vector of k + 1 vertices = (o, ..., zx). The path contribution
function f gives the amount of light energy transported along the path z. h; is the
response of the pixel j and p is the measure associated with the path space Q2. The
path integral is solved using Monte Carlo integration as it is a high-dimensional
integral. Given some way to generate paths z; with probability p(z;), the Monte

Carlo integrator estimator is given as follows.

N

1= L3 b o

i=1 p

In Markov chain Monte Carlo light transport methods, i.e. Metropolis Light
Transport(MLT) [98], path generation occurs with a probability proportional to
the scalar luminosity of the light path contribution to the image f*(z) = lum(f(z)).

Therefore the resulting Monte Carlo estimator becomes

(I;) = ]js* 2; by (;“"()g(f) (3.5)
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where P is the number of pixels and the start-up weight 0* is calculated from
the set of initial samples generated by bidirectional path tracing techniques. In
the original MLT method, the authors proposed three local mutations and used
Metropolis-Hastings to select the proposed path. Kelemen et al. [45] proposed to
perform MCMC sampling in the space of random variables used to generate paths,
called Primary Sample Space (PSS). This led to a simple implementation and a simple
mutation that is effective at local exploration while improving global exploration as
well. Figure 3.17 shows the mutations in PSS. The Monte Carlo integration using
the PSS becomes

(3.6)

where C(u) = % for the mapping function m, such that m(u) = z.

For simulating curved tactile sensors, we use Langevin Monte Carlo(LMC) [62]
that uses differentials of the target function, instead of manually defined mutations,
to propose new mutations effective in local exploration. This technique has two
technical advantages: a) it can potentially propose better mutations as it takes
differential of geometry, illumination, and material property into account while
generating new proposals, b) it can lead to higher acceptance rates, thus reducing
the chance of a chain getting stuck in local minima. In practice, we found that
the algorithm is superior to all previous approaches for exploring highly curved
surface geometry with specular or glossy material. The finger-shaped tactile sensor
which we aim to build in this work has a highly curved geometry with light piping
through the refractive surface; hitting a glossy outer surface and refracting back to

the camera.

3.3.3 Real2sim simulation model characterization

Previous attempts at tactile sensor design are based on intuitively buying and testing
various components. Since our simulation framework is novel in the world of tactile
sensor design, we had to calibrate simulation models to accurately reproduce tactile

images as generated by our prototype.

34



3. Optical Simulation Framework

In this section, we will go over two simulation model calibration steps that were
essential to accurately render images using PBR - a) how to accurately model the
BRDF of the coating material used on the outermost sensing surface and b) how to

obtain an accurate light profile of LEDs used in our hardware prototype.

BRDF Characterization

[36, 56, 77] choose different coating materials made up of metal flakes of various
particle sizes and in various types of individual particles. However, these works
do not characterize the material or create a model in terms of BRDFs (useful for
generating novel designs in simulation), which can be easily shared to identify
the correct coating required or analyze the effect on tactile sensor performance.
Levin et al. [49] showed that the BRDFs for metal powder coating with varying
particle sizes are well approximated as a mixture of diffuse and specular BRDFs.
Motivated by this result, we model the BRDFs of 2 coating powders - a) Aluminium
Powder(1pm spherical particles) b) Bronze Powder (industrialspec.com 12um);
as a Blended BRDF of Diffuse and RoughConductor components. To calibrate this
model, we created a simple setup to capture BRDFs of these metal coating as shown
in Figure 3.18B. Our setup consists of a monochrome camera, color filter array,
collimated light source and cylinder whose front half(surface facing the camera)
is painted with the coating material. We perform High Dynamic Range(HDR)
process to capture images such that the pixel values are proportional to radiance.
We replicate the scene in simulation and fit parameters of our Blended BRDF
model to match the radiance along a horizontal strip on the cylinder as shown in
Figure 3.18C. Specifically, we fit 3 diffuse reflectance terms, 1 specular roughness
term, 6 complex index of refraction term and 1 mixture coefficient term. Through
our experiments, the coefficients for semi-specular Bronze coating are (diffuse
reflectance=(0.8, 0.5, 0.3), roughness=0.175, eta=(0.475 0.576 0.764), k=(0.877
0.811 0.631), mixture coefficient = 0.85) and coefficients for Aluminium powder
with spherical particles are (diffuse reflectance=(0.37, 0.4, 0.37), roughness=NA,
eta=NA, k=NA, mixture coefficient = 0.0).
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Figure 3.18: Simulation model characterization for illumination and surface
coating. (A) [llumination model characterization: i) Scene setup illustration con-
sists of a collocated camera, light source, and a diffuse plane; ii) Comparison of
radiance profile(across the yellow region) between the physical light source and
simulated light model; iii) Real image captured using our scene setup from a real
LED light source(OSRAM LRT64F); iv) Simulated image using the calibrated light
profile. (B) BRDF Acquisition Setup: The acquisition setup consists of the colli-
mated light beam (Prizmatix UHP HCRI+ 200 mm Nikon AF-S lens) shining on a
cylinder (fabricated using transparent PDMS mixture) with coating powder under
inspection and monochrome camera(Prosilica GX camera) with color filters of
wavelengths 450 nm, 53 nm, and 660 nm. (C) BRDF Characterization Results: (i)
and (iii) show HDR captured using our BRDF acquisition setup, shown in (B). (ii)
and (iv) show images obtained using our simulation framework with replicated
acquisition scene. In figure (v), we compare the measurements for Bronze coating
along a horizontal row (as shown in the red box), between the Real (i) and Simu-
lated (ii) image. We can closely match radiance measurements for all 3 color values.
We repeat the experiment for Aluminium coating and show obtain a good match in
tigure (vi). (D) Full vision-based tactile sensor comparison: (i) Shows the camera,
vision-based tactile sensor, and indenter scene setup, which we used to analyze
our designs. (ii) and (iii) show the images simulated using Blender EEVEE and
Blender Cycles renderer respectively. (iv) HDR image simulated by our framework
using calibrated simulation models. Our simulated results are a close match to the
physical prototype as we can reproduce a)Bright light stripes due to focused LEDs
and b) Light piping of red color from the right to illuminate the spheres on the left

fd similarly for blue color. (v) HDR image captured with our hardware tactile
sensor prototype, when the sensor is indented with a set of spheres.
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3.3.4 Light Model Characterization

Padmanabha et al. [73], Taylor et al. [90], Wang et al. [100] have used various
LED light sources with unknown near-field light profiles. The LED manufacturer
provides either very sparse or no data about the light profile for these LEDs.

To capture the near-field illumination through various physical light sources,
we developed a new light model with a finite area and Illuminating Engineering
Society (IES) profile for a point on that surface. The IES profile is an industry-
standard data format to specify radiance emitted along a direction distributed on a
unit sphere.

In this section, we present a simple calibration step for finding the IES profile for
the light sources. Our setup is as shown in Figure 3.18A. The setup consists of a collo-
cated Raspberry Pi camera(v1l), a light source under inspection, and a diffuse plane
(calibrated A4 white paper). We perform the HDR process for obtaining radiance
image and manually fit a function f(6, ¢) = 2 exp{ — (a tan # cos gb) S (b tan @ sin gb) i }
We reproduce the setup in simulation and render the same scene with the calibrated
light profile. The fitted light profile parameters for OSRAM LRT64F and OSRAM
LBT64F were (a,b) = (4,3.33) and (a, b) = (5, 2.5) respectively.

We found that if the LED has a flat lens, then AreaLight with the corresponding
physical dimension is a good enough model for the light. We specifically charac-
terized the Chanzon 5730 SMD LED using the AreaLight model. In Figure 3.19 we
show that using this analytical light model we are able to closely match the radiance
values in real and simulated images.

3.3.5 Fluorescent material characterization

GelSight FinRay sensors use fluorescent paint for illumination. Therefore, in this
section, we introduce the fluorescent material model and simplified fluorescent
simulation technique in PBR. In the first part, we will describe the simplified model
for fluorescent paint and its calibration process. In the second part, we will describe
the simplified simulation model of fluorescence lights in the PBR framework that
allows us to simulate the full sensor.
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Figure 3.19: Characterization of flat-lens LEDs: In this visual, we calibrate the

Chanzon 5730 SMD green LED using the AreaLight model. The radiance plot shows
a close match between the real and simulated images.



3. Optical Simulation Framework

Stokes' shift

450 nm
Laser

Absorption

300 Séﬂ 460 54:-0 Gi{) T(I}Cl 780 /’y '
A [nm] Color
filter X

Camera

Figure 3.20: Fluorescent model and calibration setup: (A) shows a canonical
fluorescent material model [38]. It consists of absorption and reemission spectra
whose peaks are separated by Stokes’ shift. (B) shows the imaging setup we created
to capture the reflectance at the excitation wavelength, A = 450nm for calibrating
fluorescent paints used in GelSight Fin Ray.

Fluorescent paint calibration For accurate simulation, we need to calibrate the
fluorescent paints used in the sensor. Our imaging setup consists of a CM3-U3-
13Y3C-CS 1/2" Chameleon color camera, 450 nm Blue Alignment Laser Diode Mod-
ule (Edmund Optics) and 8 color filters with central wavelengths — 405 nm, 450 nm,
500 nm, 532 nm, 560 nm, 600 nm, 630 nm, and 660 nm. We calibrated two fluorescent
paints (Liquitex BASICS Acrylic Paint Red Fluorescent ASIN BO7F48YGS5F and
Liquitex BASICS Acrylic Paint Green Fluorescent ASIN B07F48WZWL) made in a
flat sample. The calibration setup is shown in Figure 3.20. We assumed that the
fluorescent paint is diffuse in nature — for any incident direction, the amount of
outgoing light radiance remains the same.

A fluorescent material could be characterized by absorption and emission spec-
tra. The first defines which incident light wavelengths are absorbed and lead to
re-emissions. The second describes the amount of re-emission across all incident
wavelengths. The difference between the spectral positions of the band maxima
of absorption and re-emission is called a Stokes shift [69]. According to [117], if
the spectra are not very spiky, absorption and emission spectra can be modeled

by a 4-parameter analytic distribution, a variant of skew Cauchy distribution. The
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Figure 3.21: Fluorescent paint calibration: This shows the comparison of measured
emission spectra and simulated emission spectra using a 4D parametric model for
red fluorescent paint (left) and green fluorescent paint (right).

spectra value at wavelength ) is given by the function

h 1 w()\ - )\o) 1
f(A[Xo, v, w, h) = T = M) {; arctan {T] + 5} (3.7)

where )\ is the peak wavelength, h is height parameter, vy is width and w is the
skewness parameter. We manually fit the measured data and choose Stoke’s shift for
the paint to be 100 nm and 50 nm for red and green fluorescent respectively, based on
reflectance data. For calibrating the non-fluorescent reflectance, we collected images
in room light and matched them to the closest color in a traditional colorchecker.
We found that the non-fluorescent reflectance of the red and green fluorescent paint

is very similar to colorchecker Red and Green colors respectively.

Fluorescent simulation model We found that the fluorescent effect leads to a
reflectance of around 2% - 5% at the desired wavelength. In addition, it depends
on the incident excitation wavelength. For a fast approximate model, we created a
textured light source whose intensity is proportional to the distance from the center
of the blue light source. The color of the LED is chosen based on our calibration
model in the previous section. Pictorially, the fluorescent light source looks as

shown in Figure 3.20. Our components modeled in the optical simulation are
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Figure 3.22: Approximate rendering of fluorescent lights: This image shows the
visual of the efficient rendering of fluorescent paint lights using our parametric
reflectance model for simulating GelSight Fin Ray sensor.

shown in Figure 3.22. Thereafter, we use GPU path-tracing to generate all the

images.

3.3.6 Full sensor Renderings

Given the rendering algorithm and the calibration methods for simulation models,
we can reproduce the images which are a close match to the images collected from
our hardware prototype. Figure 3.23 compares the simulated tactile images with
real world prototype tactile images for human-finger tip sensor and GelSight FinRay
sensor. Figure 3.23A highlights 2 key feature matches a) bright stripes of LED light
in simulation and physical tactile sensor prototype b) Light piping of red color from

right to illuminate the spheres on the left and similarly for blue color.
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Figure 3.23: Sim2Real comparison of challenging variants of GelSight sensor:
(A) shows the comparison of simulated and real tactile images with and without
sphere indentation for human-finger tip sensor. (B) shows the comparison of
simulated and real tactile images with indentation for GelSight FinRay.
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Chapter 4

Sensor Design Framework

41 Introduction

In this chapter, we leverage our optical simulation framework to propose a sen-
sor design framework for vision-based tactile sensors. The design framework for
vision-based tactile sensors consists of three steps: sensor generation, physics-based
simulation, and automatic design score calculation, as shown in Figure 4.2. In the
following section, we present a discussion of design goals and present our frame-
work with a human fingertip-like sensor as a case study. We present a sensor
design space and an automated design solution using our framework for curved
sensor design. We then highlight the utility of our optimized design in 3D surface
reconstruction task in simulation and real-world tasks. We also present two robotic

applications, robotic grasping and robotic surface inspection.

4.2 Design Goals

A well-designed vision-based tactile sensor [90] can output 3D shape information
(geometry normal), detect incipient slip and estimate the spatial distribution of 3D
contact forces using simple image processing and calibration steps. The key princi-
ple used to obtain high-resolution shape is model-based photometric stereo [44].
This constrains the design space as it requires that at least three colors of light
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Figure 4.1: Curved sensor illustration and proposed design framework. (A) A
human hand and a robotic hand with tactile sensors manipulating an egg. The
right-most figure shows the zoomed-in version of the fingertip GelSight sensor. In
(B) shows the exploded view of the fingertip sensor and important optical compo-
nents. (C) illustrates a light path propagating inside the sensor and contributing
to the tactile image. (D) shows the design pipeline - we start with sensor shape
generation, using a low dimensional curve parameterization, selection of sensor
material properties, and illumination system design, to procedurally a new design.
##nally, in (E) we use gradient-free optimization to choose the best sensor shape,
illumination, and sensing surface coating material. We subsequently manufacture
the optimal sensor and test it on various robotic applications.
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Figure 4.2: Procedural sensor generation and design evaluation framework. (A)
(i) shows the assembled view of a virtual sensor, (ii) shows the exploded view of
the sensor, composed of 3 surfaces—Surface 1 (S1), Surface 2 (S2), and, Surface 3
(S3)—and (iii) shows procedural sensor mesh generation using low-dimensional
curve parameterization and CAD primitives. (B) Sensor design scoring using a
new RGB2Normal scoring function based on tactile images of surface indentation.
This scoring function correlates with 3D shape reconstruction of indentation on

tactile sensors.
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Figure 4.3: Cuved sensor design results: (A) shows the design of light type and
its corresponding objective score. (B) shows the 2D curve parameterization for
the sensor shape design. (C) shows the results of sensor shape optimization.
We outperform the initial design and human-expert design in terms of our novel
RGB2Normal objective score.

uniformly illuminate the sensing surface from directions, which do not lie on a
plane [9] - illumination constraint [90, 107].

This illumination constraint can be challenging to satisfy if light sources are not
placed appropriately. For example, DIGIT [47] was designed with the objective
of miniaturization and a repeatable manufacturing process. However, for easy
assembly designers placed light sources that are directly illuminating the sensing
surface. This leads to two problems, as can be seen in Figure 4.3A: a) cast shadows,
leading to shadow areas unusable for sensing [44] as shadows can not be directly
mapped to a surface normal, b) non-uniform illumination of the sensing surface.
Moreover, DIGIT offers a single flat tactile sensing surface as compared to a curved
tactile sensing surface. Similarly, OmniTact[73] was designed with the objective of
multi-directional sensing with a curved surface and small form factor. However,
illumination constraint was not a consideration. Therefore, to perform perception,
authors had to perform costly calibration steps using manually designed hardware
setup and neural network training. Moreover, the sensor is prohibitively expensive
due to the use of five endoscopic cameras.

Specifically, our design goals for the tactile sensors are as follows:

e Accurate 3D surface reconstruction: Ability to map RGB color information
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to surface normals allows multiple types of rich contact state feedback(shape
and force[64, 90]) at real-time speeds without large-scale data collection.

e Curved Sensing surface: Tactile sensing with a curved sensing area like a
human finger is highly desirable[77]. This allows for a larger contact area
without performing re-orientations of the robotic arm.

We choose our sensor design space to satisfy curved sensing surface design goal.

To satisty the design goal of performing 3D surface reconstruction, we designed a
novel objective function, termed as RGB2Normal score, for rating various designs
by considering indented locations. We used spherical indenters across the sensing
surface as shown in Figure 3.18D.i. Algorithm 1 describes the objective function
calculation. The key idea is that mapping between color and normal should be
linear in background subtracted RGB images at the indented locations. Intuitively,
this encodes that the sensor design generates images that will have efficient normal
recovery from RGB images and will lead to better 3D shape reconstruction. The
proposed metric is a good proxy for 3D surface reconstruction, as it is fast to calculate

and does not require any calibration step.

4.3 Design Space Overview

Given a simulation framework and an efficient objective function to evaluate sensor
design, we now explore a few design spaces and showcase how to improve tactile
sensor designs. Specifically, we show a) illumination design by user-guided varia-
tion of the light model and b) tactile sensor shape design using low-dimensional

sensor shape parameterization and using gradient-free optimization.

4.3.1 Illumination Design

We address the question - what is the best illumination profile of individual light sources?
The objective of the illumination parameter design is to obtain uniform illumination
on the sensing surface without any highlights or dark regions and to show a high
RGB2Normal score.

Light source type: In the past sensors[77][90], light sources with lenses have

been used for providing illumination inside the sensors. However, there are no
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Figure 4.4: RGB2Normal evaluation criteria method: In A, we show the linearity
fit calculation (P-value) for a single indenter location. We use the 6 value of surface
normals and dominant color for calculating the linearity score. We average the
score across multiple dominant directions (B). To account for spatial variation in
our evaluation criteria, we average the value across multiple contact locations one
by one. The final calculation is given in D.
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Algorithm 1 RGB2Normal Score calculation

Require: p: design parameters

N DD DN DN DNMNDNDNDNDNDRRRRBR R B R 93 3
N O UGB QN =R O W XN Ul W~ o

)
S

29:

30:
31:
32:
33:

34
35:
36:

37:
38:
39:

¢: threshold
/* Initialization */
Score = (;
numValidFits = 0;
/* Simulate background RGB image I and indented RGB image I.See Figure2B.iii */
I + SmuLATERGB(p)
I+ StmuLaTERGB(p, indenterPixelLoc)
Al T—1 > Calculate difference image
/* Generate background normals N and indented normals N. See Figure 2B.iii ~ */
N < SimuLATENORMALS(D)
N SmmuLaTENORMAL(p, indenterPixelLoc)

: AN < N - N > Calculate difference in surface normals
/* Calculate contact mask by checking the difference in surface normal */
: Mask <~ AN >0
/* Use image processing to extract contact regions. See Figure 2B.iv */
: (1,0, ..., Cy < rinDCoNTOURS(Mask)
: numContours « k
/* Fit a tight bounding box around the contact region. See Figure 2B.iv */
: fori =1,...,numContours do

. | B; = rrBounpinGBox(C;)
: 0, ¢ <— SPHERICALCOORDINATES(V)

: /* Extract ellipse center by maximizing the 0 field over indented location */
: sphereCenter = FINDCENTER (0)
. /* Iterate over all indenters and calculate local scores. See Figure 2B.vii */
: for j = 1,... , numContours do

/* Iterate over all directions. See Figure 2B.vi */

for all dir € {< N ,T, ., —,\y,, v} do

/* Get pixel coordinates of indented locations along the chosen direction from

the center */
(coordX, coordY) < extracTPixELLOCATIONS (sphereCenter, dir, Mask,
AI, N, ch, ¢)
/* Project 3D color information to 1D using Principle Component Analysis.
See Figure 2B.v */
ProjColorVec = PCA(RGB{coordX, coordY})
/* Obtain the fit parameters and goodness of line fit. See Figure 2B.v */

slope, rValue <+ LiNgFIT(ProjColorVec, #{coordX, coordY})

/* Add the rValue to the cumulative score if the line fit succeeded. See Figure
2B.v */

if IsvaLip(slope) then

numValidFits <+ numValidFits + 1;
L Score < Score + {rValue + A\(max (ProjColorVec)) — 49
| min (ProjColorVec))};
/* Take the mean over all line fit goodness scores */

Score + Score/numValidFits
return Score
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3

guidelines on what should be the profile of outgoing light rays. Therefore, in this
section, we experiment with 3 light profiles - a)calibrated IES light source b) spot
light source c) area light source; and discuss their effect on the sensor illumination.
Figure 4.3B shows RGB images generated with and without sphere indentations(as
shown in Figure 3.18D.i). We can clearly see that the area light source, which emits
light in all directions in the positive half of the hemisphere, is the best-performing
illumination design in Figure 4.3B.iii. It doesn’t have bright streaks of light and
has the highest RGB2Normal score of 0.973, as can be noted through the coloration
of spheres in the last column. We choose area lights entering both hard and soft
regions of the sensor for all the subsequent experiments and in the final prototype
for real-world experiments.

4.3.2 Sensor shape design using parameterized curves

Changing the shape of a tactile sensor is a challenging problem. The shape of the
sensor has a significant impact on tactile perception by modifying the path of light
rays from the illumination source to the camera in a non-linear way. In previous
vision-based tactile sensing works [77] [73], either the sensing surface is kept flat
or chosen arbitrarily. However, there are no guiding principles to design the tactile
sensor shape if the sensor form factor has to be modified due to robotic constraints.
In this section, we present the first method to procedurally generate sensor designs
and use the proposed RGB2Normal objective function to automatically generate a
tactile sensor. Specifically, we set out to generate curved tactile sensors for a class
of tactile sensors proposed in [77], using a low-dimensional parameterization and
setup the sensor shape design as an optimization problem. Having a compact
representation for shape spaces allows one to design in a controllable manner[78].

We can compose the tactile sensor from 3 curved surfaces as shown in Fig-
ure 4.2A. The key idea is to generate a curved surface from 2D curves followed by
CAD primitives of extrusion and rotation about a given axis. The process is as shown
in Figure 4.2A. We chose 2 ways to generate 2D curves - a)composition of ellipse arc
and straight lines and b)collection of cubic B-splines. Both methods allow modeling
sensor shapes (geometries) that are C; continuous and can be manufactured using

accessible fabrication techniques.
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Formally, the sensor shape is given by 3 curved surfaces(shown in blue in Fig-
ure 4.2B) - Si(z), S2(z) and S3(z) , each of which is generated with a corresponding
2D curve Cy(x), Cy(x) and Cs(z).

With ellipse parameterization, the curve C; is composed of a half-ellipse with
parameters r{, r§ and add straight line segments with length h on both sides sym-
metrically, as shown in Figure 4.3C.i.

With cubic B-splines parameterization, the curve C; is composed of a group of
cubic B-splines passing through control points. For the curved sensor family used
in this paper, we generate a cubic B-Spline C}, by placing 7 control points with
locations {(p1,0), (p2,ps), (p5,p6), (0,p4), (—=p5,p6), (—p2,p3), (—p1,0)}, as shown
in Figure 4.3C.ii.

The 2D curve is then used to generate the outermost sensing surface S; by
extruding for length e along the z — axis(as shown in Figure 4.2A.ii) and the right
half of the curve (] is rotated about y — axis for 180° to obtain the top curved part
of the sensor(as shown in Figure 4.2A.iii). The process for generating the surface
Cy and (3 is similar with appropriate parameter values.

In all designs, we place the camera at the origin and place light sources along
the periphery of the shells, as shown in Figure 4.2A.iv. We use the extrusion length
e = 28mm in all the shapes in this paper.

Innermost surface optimization: We use the above parameterization to formu-
late the problem of the refractive epoxy surface design. This allows us to change
the optical properties of the sensor while keeping the mechanical tactile response
the same. We optimize for the innermost surface geometrySs; while keeping the S,
and S; the same. Formally, the optimization problem with ellipse sensor parame-

terization is defined as follows.

argmin RGB2Normal (generateSensor(r{,75)) (4.1)

T
For our experiments, we used a gradient-free evolutionary algorithm, CMAES[34],
for optimization of the refractive surface geometry. We consider 2 baselines, an
initial design that consists of a flat plane surface instead of a shell surface and a
human-expert design with parameters r{ = 8 and r§ = 8. The radius range is

manually chosen as (6, 10). The smallest radius was constrained by the camera
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dimensions and the largest radius was constrained by the soft-sensing PDMS vol-
ume. Our optimization resulted in the design with parameters r{ = 7.12 r§ = 6.02.
Figure 4.3C.ii shows the comparison of our optimized design with the initial design

and a human-expert design[77].

3D surface reconstruction evaluation in simulation

A key benefit of vision-based tactile sensors is their ability to provide high-resolution
3D shape information about the contact surface. Local 3D geometry of the object
is useful for various robotic tasks, e.g., object pose estimation[10, 83], force distri-
bution estimation [64], and object regrasping [11]. We highlight the utility of our
sensor shape design procedure in this task in simulation.

Surface reconstruction requires 2 steps: (a) creating a mapping from color to
surface normals; (b) integrating surface normals into surface depth information
to recover the point cloud. For calibration, we rendered a single image with 5mm
spheres indenting the sensor surface and fitted a tiny Neural Network to predict
surface normal from color information. We used perspective Poisson integration to
recover the surface depth from the predicted surface normal field.

Figure 4.5 compares the performance between the human-expert design and
the optimized sensor design for surface depth recovery. We indent the sensing
surface at multiple locations on the whole sensing surface. We notice that both
designs can perform well on surface normal recovery. However, the surface normal
error map shows that the human-expert design has a high value at non-edge pixels.
However, the optimized design has large surface normal errors only on the edges.
The probable reason for the high surface normal recovery error for both designs
on edge pixels is the sudden change in color values and less training data for edge
pixels.

Due to a better surface normal distribution in the optimized design, the surface
depth reconstructions are significantly better than the human-expert design. We
obtain 26.65% error on projected depth error metric as compared to 34.47% error by the
human-expert design on 3 different shapes - 5 mm sphere, natural texture(texture
1), and M4 screw. Figure 4.5 provides the description for all the shapes at multiple

sensing locations.
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Figure 4.5: 3D surface reconstruction in simulation: (A) and (B) shows the result
of 3D surface reconstruction for a sphere indenter and a texture indenter.
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4.3.3 3D surface reconstruction evaluation using manufactured

prototypes

We fabricated the designs discussed above to test on real objects. For details on
fabrication, please refer to Appendix D. We compare the performance of the two
designs qualitatively on surface reconstruction and quantitatively on normal recov-
ery on different parts of the sensing surface. For qualitative comparison, we used
3 objects - icosahedron, cloth texture, and US quarter coin. Figure 4.6 shows the
RGB images, the predicted surface normals, and the reconstructed surface depth.
For the icosahedron shape, the human-expert design has uneven background due
to saturation as compared to the optimized design, there is no error in the back-
ground. For the cloth texture, the fine-grained normals are hard to recover due
to color saturation along the bright regions. However, optimized design is able to
faithfully recover the cloth texture with subtle changes in the normals. For the US
quarter coin, we can clearly see the text in the optimized design as compared to
the human-expert design. Therefore, qualitatively our optimized sensor design

performs significantly better than the human-expert design.

For quantitative surface normal recovery comparisons, we plot predicted surface
normal vs. ground truth surface normals at the different parts of the sensing surface,

as shown in Figure 4.6.

4.4 Characterization of the parameter space

In this section, we use our framework to understand the effect of changing design
parameters on the RGB2Normal objective function and sensor perception. To this
end, we perform simulation while varying - a) the Thickness of the hard epoxy
shell, soft PDMS volume, and coating material of the sensing surface; b) refractive
indices(IOR) of the Epoxy surface and the interface between soft PMDS volume
and hard epoxy shell(as shown in Figure 4.2B). These experiments allow us to

derive high-level guidance on designing vision-based tactile sensors.
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Figure 4.6: Real world results 3D reconstruction results: (A) shows the qualitative
results for human-expert design and optimized sensor design. (B) shows the
surface normal recovery ability of human-expert design and optimized sensor
design. The optimized sensor design is able to recover the surface normal very well
on the off-center locations.

4.4.1 Effect of changing sensor thickness and surface coating

material

In this section, we vary the thickness of hard epoxy shell(#;) and soft PDMS
volume(t,) for 6 classes of coating materials. The thickness parameters (t1,t5)
is chosen from [1, 3] x [1, 3] with step-size of 0.5. In all the cases, we kept the sensing
surface profile to be fixed to a 2D curve generated using ellipse curve parameterization
with 7 = 14.5 and r; = 14.5. These parameters were chosen to be similar to a
human finger and be able to accommodate a Fish-eye lens camera. We use the
extrusion length e = 28mm in all the shapes. All the dimensions are in millimeters.
Figure 4.7B shows the regions affected by the thickness parameters. Figure 4.7A.ii
shows the effect of varying (¢1,¢,) with a material coating which is completely
diffuse(as used in [107]). Similarly, all the subfigures compare designs with a
specific coating material specularity for a range of thickness values. By comparing
all the subfigures, it is apparent that for a curved tactile sensor higher specularity
offers higher sensing performance. Figure 4.7C.ii and Figure 4.7C.v specifically
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show the performance of the sensors created using real material properties, diffuse
powder, and semi-specular metal powder, respectively. In the bottom row, we can
visually inspect the designs by using the simulated RGB images when they are
indented by a group of spheres. Note, that our RGB2Normal objective function
correctly identifies designs with better qualitative perception by showing higher
objective function value.

4.4.2 Effect of IOR

: For this experiment, we analyze the effect of changing the Index of Refraction(IOR)
of Hard Epoxy shell-Air interface 7epoxy (Figure 4.2B Epoxy Surface) and soft PDMS
volume-hard Epoxy shell interfacenppms (Figure 4.2A Interface Surface). The region
is also highlighted in Figure 4.7A. The IOR affects the direction and intensity of light
as it crosses the surface boundary between different materials. This experiment
is prohibitively expensive to perform in the real world. Generating transparent
materials with specific IOR requires experimenting with mixing coefficients in the
lab, which is very tedious. Thus, we modify the IOR pair and assess the sensing
performance in simulation. We vary the nppws from [1.4, 1.5] and 7epoxy from [1.5, 1.6].
The ranges represent the materials that we can physically manufacture in our lab.
We initialize the sensor shape with surfaces generated using 2D curve generated
using ellipse curve parameterization with r{ = 14.5, r§ = 14.5,t; = 4.4, t, = 1.69
and e = 28. The dimensions were chosen to match the physical prototype we
manufactured in the lab. All the dimensions are in millimeters. Figure 4.7B shows
the RGB2Normal objective function when IOR is varied in the above range. We
identify that for nppms = 1.46 and 7epoxy € [1.58,1.6] lead to high RGB2Normal
objective value = 0.81, for the chosen shape. The key observation is that the sensing
performance is low when the refractive indices, nppms and 7epoxy are close to each

other, according to Figure 4.7B rows 1ppms = 7epoxy-

4.5 Robotics Applications

To demonstrate the potential of our optimized design, we show 2 robotic tasks by

integrating our sensor on a robotic arm. The first task shows the ability to perceive
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Figure 4.7: Parameter Space Exploration: (A) shows the sensor illustration with
important parameters which we consider for exploration. For parameter space
visual, we plot the RGB2Normal objective score for a given design. (B) plots the
variation of refractive indices 7; and 7, for hard shell and soft elastomer region,
respectively. (C) plots the variation of elastomer thickness and hard shell thickness
for 6 sensing surface coating materials. We also show the tactile image with a
surface spherical surface indentation for some cases to qualitatively compare the
designs.
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and grasp various daily-use objects from the YCB dataset. The second task shows
the utility of a curved sensing surface in automatic robotic surface inspection. In
all the cases, we compare 2 designs - human expert design and optimized design.

The human expert design is referred to as Design A in the following text.

4.5.1 Robotic Grasping experiment

In this section, we show the grasping capability of the optimized sensor. Figure 4.8
shows the sensor mounted on a 5-degree-of-freedom robotic arm and Weiss parallel-
jaw gripper. We grasp 3 objects from YCB[12] dataset - a Yellow Mustard bottle, a
Lego piece, and a door lock key. These objects were chosen specifically to highlight
that even with a limited degree of freedom in the parallel jaw gripper, our tactile

sensor can sense and grasp these objects due to the curved sensing surface.

4.5.2 Robotic Surface Inspection

In this section, we perform the robotic surface inspection using our robotic setup.
Surface inspection of industrial parts is a fast-growing market [68]. Combining
vision and touch is the state-of-the-art approach[75] for surface inspection in high-
precision and extreme environments (e.g. in nuclear plants). In this experiment,
we press the tactile sensor on a 3D-printed surface that contain text bumps. We use
Google Image Recognition for identifying the text from RGB images captured by
each sensor.

Figure 4.9A shows the experiment setup which consists of 5 DoF robot arms,
a parallel jaw Weiss gripper, and our manufactured tactile sensor prototype. Fig-
ure 4.9C shows the experiment when specimens containing 3 different text heights
- 1.5mm, 1.25mm, and 1.0 mm are inspected by tactile sensors. Design A sensor’s
ability decreases to identify the text as the text height becomes goes from 1.5 mm
to 1.0 mm. However, the optimized sensor is able to identify most of the text in all
cases. We also tested the text recognition ability at different parts of the sensing
surface. For this experiment, we chose the text height of 1.0 mm. Design A com-
pletely fails to recognize text, if the text appears vertically due to bad illumination
design. However, the optimized sensor is able to identify most of the text at all the
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Figure 4.8: Robotic grasping: Due to the curved tactile sensor, we can manipulate
objects without reorienting the robotic arm. In this visual, we show the contact
signal when the robot, endowed by a tactile sensor, approaches objects from thre@
directions - front, side, and tip. In each part, we show the robot view, tactile image,
and 3D reconstruction for various approach directions. Part A shows the use of
GelSight Mini with a flat sensing surface. It is only able to perceive contact when
the robot approaches from the front direction. Part B shows our optimized sensor
giving a high-resolution contact signal from all robot approach directions.
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locations as shown in Figure 4.9D column 2. Therefore, our optimized sensor is

able to recognize small artifacts across the curved sensing surface.
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Figure 4.9: Robotic surface inspection: (A) shows the robotic setup for surface
inspection with a planar inspection specimen placed under the sensor. In (B)
we show the zoomed-in view of the text under inspection. In (C), we compare
the performance between human-expert design and optimized design for surface
inspection of various text sizes - 1.0 mm, 1.25 mm and 1.5 mm. Clearly, optimized
can recognize the text very well in all the cases, as shown in the zoomed-in view
and recognized text below each image. In (D), we compare the 2 sensor designs,
by indenting the sensor at all parts of the curved sensing surface and in various
orientations. Only the optimized sensor is able to recognize any texts when the
indentation is vertical and at non-central locations.
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Chapter 5

Objective functions for sensor

performance quantification

There has been a proliferation of VBTS designs aimed at robotics in the last decade.
However, it is unclear how to assess the performance of the sensor without testing
in the specific task. Researchers have shown improved performance with their
sensor design in specific robotic tasks, for which data on other sensors may not
be available. Therefore, there is a need to develop objective functions that can be
uniformly applied to all the sensor that have a common working principle, for
example, GelSight-like sensors.

We propose objective functions based on our experience in GelSight-like tactile
sensor design and applications. An objective function tries to encode a design
goal while being computationally efficient to calculate. In our experience, the
objective function design is a challenging problem because of the two reasons: (1)
the ultimate goal depends on the specific use-case of the tactile sensor and (2) it
is unclear which modality (image, depth or contact area) is the most relevant for
robotic manipulation.

We introduced an objective function in Section 4.2 to characterize the quality of
the mapping between color (RGB) and surface normal. In this chapter, we introduce
two new objective functions, NormDiff and As-orthographic-as-possible (AOAP), that
account for surface reconstruction quality in the presence camera noise and optical

distortion due to various optical elements. These objective functions give a single
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Figure 5.1: NormDiff objective function: (A) shows the tactile image with an
indentation; (B) shows the canonical example of color-normal plot. For a chosen
normal, n;, the color noise between [cz, ¢;]. This leads to confusion range in normal
to be [n1 — n2].

number for each design and allow us to rate the various designs.

5.1 NormDiff objective function

We introduce the NormDiff objective function as an alternative function to evaluate
the sensor’s capability to measure 3D shapes. The motivation of the function design
is the same as the RBG2Normal function design introduced in Section 4.2, but
here we do not use the constraint that the RGB vector is expected to be linear to
the surface normal value. Instead, we expect that the RGB value corresponding
to a specific surface normal vector should be very distinct from the ones of other
surface normal values. The level of “distinctiveness” is denoted by the measurement
uncertainty, and we calculate it based on the prominent camera noise models [74].
In this model, the RGB noise is proportional to the sensor response or the RGB
value at each pixel.

For an intuitive explanation with a canonical illustration, please refer to Fig-
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ure 5.1. In the canonical example, the color and normal are both represented as
1D quantities. The color-normal curve along with standard deviation is shown
in Figure 5.1B. At normal value n, the color values vary between ¢; and ¢,. For
color value ¢; and ¢y, the range of normal values is [n;, n1] and [n, n;] respectively.
Therefore, at normal value n;, the confusion in estimating normal is (n; — ny) and
NormDiff objective function value for an indenter is the negative of the confusion,

—(n1 — na).

In the original implementation, we use the lookup table (LUT) to create a
mapping between the RGB color values and (¢, ¢) surface normal coordinates, as
this is a common practice in GelSight sensors [107]. To calculate the confusion
value per indenter, we follow these steps.

1. We identify indented pixels by using the difference between surface normals
before and after indentation. For each pixel, we record the (7, g, by, O, ¢r)
tuple to create a dataset.

2. To assess the recovery quality for a surface normal, (6;, ¢;), we find the nearest
tuple in our dataset, R; = {p,},j = 1(1)U, among the indented pixels.

3. For each data-point, p;, we have the corresponding tuple, (r;, g;,b;,0;, ¢;). In
the color space, we obtain the range of color values by adding noise to the
RGB value, (r}, g;, b;). In our implementation, we added noise that was 30 %
of the RGB value. We find all the data points, N7 = {¢},k = 1(1)N, in the
color space within this RGB range.

4. Each data-point, ¢, has its corresponding normal value, (6y, ¢;.). We calculate
the maximum and minimum values of the # and ¢ values between all the
points in ;. The confusion for each data-point, p;, is then the weighted sum
of the range ¢ and the range ¢.

5. We take an average across all the data-point (p,) to obtain the confusion to
recover surface normal, (0;, ¢;).

6. We repeat Step 2-5 for other (6;, ¢;) pairs.

7. The final value of the objective function is negative of the average of the

confusion from the previous step.
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5.2 As-orthographic-as-possible objective function

GelSight-like tactile sensors are known to capture the high-resolution surface ge-
ometry of the indenting surface. However, the presence of refractive and reflective
optical elements can distort the sensing surface view. We introduce an objective
function to measure this distortion systematically. The key idea of this objective
function is that angle of incident of rays when they reach sensing surface should
be as close to zero as possible. If the sensing surface is a plane, then this condition
would make the rays as it they were shot from a orthographic camera. Therefore,
we name this objective function, as-orthographic-as-possible (AOAP). We also add a
regularizer term in this objective function to encourage sensing surface coverage to
avoid mode collapse. The calculation procedure is as follows:
1. Shoot rays from the cameras and perform ideal refraction and reflection on
surfaces until the rays hit the sensing surface or escape the sensor. Record the

hit position, hit triangle face index and incidence angle of all the rays.
2. Find unique sensing surface triangle faces, U, hit by all the camera rays. The
total number of triangle faces in sensing surface is given by T’

The final objective function is as given below
1 U
03 = Nzni'wi+klf

, where k; = 0.01 and N is equal to the number of pixels in our experiments.

5.3 Discussion

We provide a starting point for the sensor designers to optimize design parameters
using our objective functions. Our objective functions capture perceptual quality of
surface normal encoding without (Section 4.2) and with sensor noise (Section 5.1
and geometric quality by a measure of distortion Section 5.2. Some other design
goals that might be relevant for the new design of objectives include sensing surface
coverage and manufacturing constraints. We expect that this will provide some

guidance on how to design objective functions that are good proxies for ultimate
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Chapter 6

Modular and interactive design

framework

In this chapter, we describe our modular and objective-driven design framework for
GelSight-like tactile sensors. In Section 6.1, we describe sensor modeling through
our modular pipeline and introduce key modules used to generate initial sensor
design. In Section 6.2, we describe the optical component parameterization that

allows for easy customization and optimization for improving sensor performance.

6.1 GelSight sensor modularization

We decompose sensor modeling into five parts: Soft elastomer, Support structure,
Opaque coating, Light, and Camera. For each part, we introduce a design module
to create and optimize the corresponding part. Each part can be either modeled
from scratch or initialized from our component library. We distill common optical
components based on camera-based sensor literature into a component library (see
Appendix B). This enables novice users to model sensors without any experience
with VBTS sensors.

Figure 6.1 shows an illustration of how a GelSight Mini tactile sensor could be
decomposed into real-world components. These components are analogous to the
parts (modules) in our design framework. These modules can then be used to

create a digital design that can be subsequently optimized.
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Figure 6.1: Sensor modularization: This figure illustrates how a tactile sensor can
be modularized into our proposed modules. These modules can then be used to
create a digital design for further optimization.

The key elements of each module are the choice of reference surface for the shape
description, the selection of optical materials, and the choice of discrete elements
from the component library. For a short tutorial on the modules, see Appendix C.

6.2 Design component parameterization

Our design modules automatically parameterize various sensor components to
allow editing and automatic parameter selection. In this section, we describe the
parameterization of the key components. The choice of parameterization was made
on the basis of the authors” expertise in VBTS tactile sensor design.

Optical component shape. All the components in the sensor are represented
by triangle meshes. The number of triangles in a mesh can be arbitrarily large and
not amenable for optimization. Therefore, inspired by [103], we apply cage-based
deformation to parameterize the optical component, as shown in Figure 6.2. We
automatically generate a cuboidal cage with 27 cage vertices such that the cage
completely encloses the component. We can increase the resolution of the cage
interactively if more precise control is desired. The cage-based representation
can be applied to any surface mesh irrespective of how it was generated (B-Rep
representation) and bounds the dimensionality of the optimization problem for

automatically choosing component shape.
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Figure 6.2: Cage-based shape parameterization: The left column shows the Gel-
Sight Svelte tactile sensor optical components and cage-based shape representation
of mirror element, M1. The right column shows the user input Ciin and Cmax. We
show the deformed surface, 2D profile and the corresponding tactile image to
qualitatively represent the change in tactile signal by changing M1 mirror element
in the sensor. Therefore, shape optimization of M1 is critical to obtaining the best
sensing performance.
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For optimization, we require users to specify the minimum (Cmin) and the
maximum cage (Cmax) parameters for the component shape. Then the current
shape is given as

Ceurrent = (1 = A) - Conin + A * Cmax

, where each element in A, A; € [0, 1] is of the same dimension as Cyrrent. In shape

optimization experiments, we choose Ceysrent € R3L.

Optical material. Generally, optical material properties are characterized by a
Bidirectional scattering distribution function (BSDF), a 4-D function parameterized
by incoming and outgoing directions. However, specifying or measuring a full
BSDF model is extremely challenging [24]. Therefore, we leverage physically
motivated analytic BSDF models proposed in the computer graphics community
[41] for modeling the camera-based tactile sensors. The relevant optical material
models are RoughDielectric, RoughConductor, and Diffuse. We performed optical
experiments to calibrate these models for various surface materials (sensing surface
coating and transparent surfaces) in real sensors. For a detailed description of the

optical materials see Appendix B.

RoughDielectric can be used for all the refractive and transparent surfaces in
the sensor like elastomer and clear support structure. We use the RoughConductor
model for representing the sensing surface opaque coating material. This model
has seven relevant properties: RGB reflectance (3D), refractive index (n) (3D), and
specularity p (1D). We can synthesize all the relevant coatings used in the GelSight
family by varying the 1D specularity property of this model. Therefore, for material
optimization, we use RoughConductor optical model and vary the specularity (p)
value from [0, 1] to obtain the best coating material for the specific sensor design.

Light source. For light sources, we use modified PointLight and AreaLight model
from Mitsuba [40]. Specifically, for lights that have a spherical lens, we leverage the
IES light profile provided by the manufacturer and add it to PointLight to scale the
intensity value along a specific outgoing direction. For LEDs with a flat lens, we use
the dimensions provided by the manufacturer and scale the AreaLight accordingly
to provide an approximate model. For a detailed description of the light sources

see Appendix B.

For light design, we modify the location and orientation of the light group us-

72



6. Modular and interactive design framework

ing a forward design approach. We group lights based on their color. For light
optimization, we vary the light type for all lights in the design. Specifically, we
consider 3 types of variations: a) single light type (area vs. point) for all the lights
in the sensor model (number of parameters=1); b) single light type for all the lights
in a group (number of parameters=number of light groups; generally number
of light groups=3); c) change light type of each light individually (number of
parameters=number of lights in the sensor; can vary from 15 to 30).

Camera. We choose the perspective camera model in all designs. We allow
varying three parameters: height, width, and field-of-view (FoV) of the camera. For
a detailed description of the available cameras see Appendix B. For optimization, we
iterate through the list of available cameras in our library and set the corresponding

parameters to evaluate the sensor design.

6.3 OptiSense studio: design toolbox for digital

camera-based sensors

We implement our design framework in a simulation-driven design toolbox. We
describe the design interface in Section 6.3.1. Following the description, we give
the design guideline using the key steps followed to generate sensor designs in
Section 6.3.2 and describe specific design space parameterization available for
optimization in the toolbox in Section 6.3.4. The whole framework is shown in

Figure 6.3.

6.3.1 Design interface

Figure 6.4 shows an overview of the digital design interface. Our design envi-
ronment is built on top of Blender (version 4.1.0) [15] using its Python API for
scripting. The relevant elements of the interface are a 3D viewport to visualize the
design in 3D; a collection panel to group components used for modeling and optical
simulation; design component modules, a simulation module, and an optimization

module in the add-on panel.
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Figure 6.3: Modular sensor design framework for novice users: Given the user
shape input in A, we model the sensor design with multiple modules in simulation
as shown in B. We then evaluate the sensor performance based on the simulated
indentation test in C. This is then coupled with optimization methods to choose
the optimal light module and optical coating material for the sensor design.

6.3.2 Modeling the sensor

We modularize the design procedure into three steps and provide a library of
optical components to aid in design. The user workflow consists of the following
steps (see Figure 6.5).

The user starts with a sensor design idea or starts from a previous design. The
user provides sensing surface geometries, initial light location, and camera location
to the OptiSense Studio. Thereafter the users follow the given steps to generate an
optical sensor design which can be simulated and perform design optimization in
our software. For a brief tutorial, please refer to appendix Appendix C

Step 1: Setting reference geometry
Users can create sensors of arbitrary geometry by importing shape reference ge-
ometry as .obj surface meshes. We found that users prefer to choose their favorite
CAD tools (Solidworks, Autodesk Fusion 360, and OnShape) for shape design.
Specifically, users need to select Sensing surface reference, Camera reference, Light

reference, and Support structure reference. Users can also select multiple surfaces for
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Figure 6.4: OptiSense Studio Interface: The interface of OptiSense Studio, which
is built in Blender. The interface consists of a 3D viewport to visualize the model,
various panels to perform parameterized digital design and select from component
collections.
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Figure 6.5: Digital design guideline: the three steps of the interactive design
pipeline. i) Importing CAD shapes and setting them as reference geometries for
optical elements; ii) Assigning material properties to the component from the
component library or using user-defined materials; iii) Adding lights and the
camera using reference geometries. The lights and the camera are chosen from the
component library.

reference. Additionally, users can select Indenter reference, Blocking reference, Interface
reference, and multiple light references as optical elements.

Step 2: Selecting optical properties for surfaces
After the addition of key surfaces, the user needs to assign optical properties
to each surface. Based on the literature review of camera-based tactile sensors
we provide a library of optical materials, which support refraction with rough
interfaces, reflection with rough interfaces, and blocking of light paths. Specifically,
we provide diffuse coating material [22], semi-specular coating material [77], PDMS
refractive surface [22], and Epoxy rough refractive surface [107]. For a detailed
overview refer to the Appendix B. All the materials were obtained by performing
optical experiments in the lab and fitting analytical models available in the physics-
based rendering and material modeling literature.

Step 3: Adding light sources and camera
Next the user chooses the light reference surface from Reference collection and
selects the light type in the pop-up menu. Our library contains physically accurate
light models based on the data available from the LED manufacturers. We provide
point light sources with IES profiles sourced from manufacturers, spotlights with
cut-off angles sourced from LED datasheets, and area light sources with dimensions

sourced from LED datasheets. For a detailed overview refer to the Appendix B.
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This allows accurate simulation and accurate physical light placement such that
the sensor design preview is physically accurate.

For adding the camera, the process is similar to adding lights. Choose Camera
reference surface from the Reference collection, click on Add Camera button, and
select the desired camera. Our library provides commonly used Raspberry Pi
cameras with field-of-view ranging from 60° to 160°. For a detailed overview refer
to the Appendix B.

6.3.3 Interactive optical simulation

The optical simulation techniques discussed in Section 3.3 generate physically
correct tactile images. However, we found that in practice the rendering method
could take 30 min to 1hour for generating noise free images. For an interactive
framework, this can seriously affect the designer’s workflow due to time limits.
Another key issue is the noise pattern produced by the rendering algorithm. The
previously discussed rendering method uses MCMC techniques that produce
correlated noise in the image. These noise artifacts prevent intermediate results
from being useful for getting an initial idea of the sensing performance. Due to
the above issues, we experimented with Stochastic Progressive Photon Mapping
(SPPM) [32] and Image Denoising [1] for generating approximate tactile images
in significantly reduced rendering time.

SPPM algorithm starts with a highly smoothed version of the image and progres-
sively refines the image to produce noise-free and sharper features. This algorithm
is a bidirectional technique, i.e., it generates path from both, light and camera.
The bidirectional feature is specifically suited when the sensor contains point light
sources. Moreover, SPPM is suitable for GPU acceleration [16, 33].

Image denoising is a technique of reconstructing images from their noisy ver-
sions using Neural Networks. The technique is studied in the context of the Path
Tracing Appendix A rendering algorithm. The key idea is to learn a reconstruction
kernel that recovers the original image from a noisy image using neighborhood
noisy color values and extra features, such as normal and albedo. Though the
technique was developed for path tracing which generates uncorrelated noise, it

works well with the SPPM algorithm for our sensor setup.
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Therefore, our interactive optical simulation pipeline uses SPPM with spp=64
to generate image with small amount of noise and uses OIDN [1] to generate final

noise-free tactile image.

6.3.4 Design improvement: forward and inverse methods

Using the previous modules, the user has a digital design, simulation tool, and
evaluation criteria. These components can be combined to perform forward and
inverse design of the camera-based tactile sensors.

For the forward design process, the user can select any parameter, manually
change that parameter in OptiSense Studio, and evaluate the design. We found that
the light location setting is one parameter that can benefit from this approach. We
show experiments in Section 6.4.3 to optimize light location using this approach.

In the inverse design process, the user can perform an automated search over the
parameterized space, as discussed in Section 6.2. We show experiments to jointly
optimize light type and sensing surface material using this approach for GelSight
Mini, in the next section. We also show experiments to optimize the sensing surface
material for a new sensor, GelBelt, in the GelSight family in the next section.

6.4 Experiments

In this section, we leverage our design framework to model and optimize four
different types of GelSight sensors: commercial GelSight Mini [51], GelBelt with
rolling capability, omnidirectional GelSight360 [94], and mirror-based GelSight
Svelte [115]. These sensors have various simulation and design challenges. GelSight
Mini and GelSight360 use light piping for uniform illumination on the sensing
surface. GelSight360 and GelSight Svelte have curved sensing surfaces. In GelSight
Svelte, the camera view is guided through multiple mirror surfaces to cover a curved
finger-like sensing surface. We can simulate all sensors without any sensor-specific
calibration. The key objectives of our experiments are that through our design
framework users can easily edit previous sensor shapes (GelSight Mini), create
new sensors (GelBelt), explore the design space of existing sensors (GelSight360),
and optimize tactile perception by changing the shapes of optical components
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automatically (GelSight Svelte).

6.4.1 Sim2Real comparisons

In this section, we compare our simulated tactile images with real tactile images
for various sensors with different optics. Note that our simulation techniques are
based on first principles and do not require any sensor-specific calibration data.
Figure 6.7 shows the comparison for the GelSight Mini and GelBelt tactile sensors.

6.4.2 Case study I: Curved customizations of GelSight Mini

The GelSight Mini is one of the few commercially available tactile sensors and
is adapted from the sensor design introduced in [51]. The sensor is shown in
Figure 6.6Ai. It allows easy integration in robotic fingers that have a flat surface.
However, for general-purpose robots, there might be a need to make the sensing
surface non-planar. We show the design iteration of the nonplanar sensing surface of
GelSight Mini in this section. First, we assemble the initial design using our design
framework. Secondly, we modify the sensing surface shape using our cage-based
representation. Thirdly, we iterate on the optical material properties of the sensing
surface using our design. The simulation time to generate each GelSightMini tactile
image takes 6 seconds on a M2 MacBook Air.

Modeling GelSight Mini in OptiSense Studio. We take the CAD provided by
GelSight Inc. (original sensor vendor) and create an optical design as shown in
Figure 6.6A(iv). Due to the availability of design optical components in our library,
the optical design can be created in minutes, and a simulated tactile image can
be generated. In Figure 6.6, we show the real and simulated sensor images after
pressing the spherical indenter on the surface in parts (iii) and (v), respectively.
The simulated image closely matches the real one. The simulation time for GelBelt is
8.9 seconds. In Table 6.1, we show the quantitative comparison between simulated
tactile images and real-world prototype tactile images. Figure 6.7 compares the
default version GelSight Mini with the simulated model.

Editing sensing surface shape. We modify the shape of the sensing surface by
moving the control point of the cage-based representation, which is automatically
generated. To obtain the cylindrical surface, we moved the cage control points in
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Figure 6.6: Modeling and customization results of GelSight Mini: A) shows the
GelsightMini sensor (i) with default flat sensing surface (ii) and a real-world tactile
image with a sphere indenter; (iv) shows the digital design and (v) shows the
simulated image for this flat design. We created 2 curved variants—cylindrical and
spherical—in B) by editing the initial sensing shape and show optimization results.
For each new shape, we show the gelpad shape, coating material versus evaluation
score plot for two light types, optimized digital design, and simulated tactile image
with 9 spherical indenters.
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A. GelSight Mini B. GelBelt

Figure 6.7: Qualitative comparison between simulation and real-world tactile
images: We show image collected from the real-world prototype and simulation
models for a set of objects for default version of GelSight Mini and manufactured
GelBelt. Qualitatively, there are minor differences between the images for GelSight
Mini because of manufacturing defects in the real sensor. Our data processing
pipeline uses background-subtracted image (image/bg) for surface reconstruction.
Therefore, we also compare image minus background image, image/bg, for both
sensors. As can be seen in the last two columns, qualitatively the difference image
is very similar for both sensors.

the middle row along the z-axis by 6 mm (this parameter was arbitrarily chosen
to make the sensor cylindrical). To obtain the spherical surface, we moved the
cage control center point along the z-axis by 9 mm. (this parameter was arbitrarily
chosen to make the sensor cylindrical). This shows the ability of our shape editing

tool to create custom sensors with curved shapes for dexterous manipulation.

Optimizing coating material. After modifying the sensing surface shape, we
try to obtain the best optical coating material for the sensing surface, while keeping
the light locations fixed. We leverage the inverse design process to optimize the
material. In both cases, we plot the normalized evaluation criteria for the best

assessment.

For the cylindrical sensing surface, we find that the coating with specularity =
0.2 gives the best evaluation score, as shown in the first row of Figure 6.6 B.

For the spherical sensing surface, we find that the coating with specularity =

0.4 gives the best evaluation score, as shown in the second row of Figure 6.6 B.

In both cases, we identify the specific material for the curved sensing shapes and

are able to obtain sensing performance similar to the flat sensing surface design,
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Table 6.1: Comparison between simulated tactile images and the real ones on
different metrics. The | arrow shows that a lower value is desired and vice versa.

I GelSight Mini |
| Indenter | SSIM 1 | PSNR+ | MAE | |

square | 0.6602 | 21.1371 | 17.3402

corner | 0.6574 | 20.9745 | 17.4338
star 0.6659 | 21.0729 | 17.4395

GelBelt I
| Indenter | SSIM 1 | PSNR 1 | MAE | |

square | 0.8883 | 19.1918 | 20.4762

corner 0.8928 | 19.4044 | 20.0913
star 0.8862 | 19.1698 | 20.4846
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Figure 6.8: Light Type Optimization Settings: (A) shows Setting 1, in which we
change the light type of all the lights simultaneously; (B) shows Setting 2, in which
we change light type of all lights in a Light Group; (C) shows Setting 3, in which we
change the light type of each light individually.

optimized by tactile sensing experts using manual iteration.

Light improvement

For the optimization of light sources, we vary the light type. We consider 2 light
types: PointLight and AreaLight. These light models are representative of real light
sources present in our component library (Appendix B). Each light position and
orientation are kept fixed. GelSight-like VBTS sensors have two or three light
panels that contain lights of the same type. We call these similar lights collections a
light group. For light improvement, we consider three different settings, which are
described below.

Setting 1. In Figure 6.8A, we change the light type of all the lights in the
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tactile sensor at the same time and evaluate the designs. The number of possible
combinations will be equal to the number of light types available in the component
library, which is two (PointLight and AreaLight) for now.

Setting 2. In Figure 6.8B, we change the light type of lights in a single light group
independently and evaluate the designs. For example, in the GelSight Mini sensor,
there are three light groups and two types of light models available. Therefore, the
number of possible combinations is 2%, which is 8.

Setting 3. As shown in Figure 6.8C, we change the type of light individually
and evaluate each design. For example, in the GelSight Mini sensor, there are two
types of light models available and eleven lights in total. As a result, the number of
settings is equal to 2'!, which is 2048.

Results. After modifying the coating material, we choose the material settings
to be diffuse. We obtain the best illumination design for the sensor while keeping
the light locations and orientations fixed. We change the light type according to
three settings introduced Section 6.4.2. Table 6.2 shows the results for Setting 1 and
Setting 2.

Table 6.2: Comparison between different light optimization designs on different
metrics. In the table, "P" stands for PointLight and "A" stands for AreaLight.

I GelSightMini Cylindrical |
| Setting1 | RGB2Normal | NormDiff |

AreaLight 0 0.6643
PointLight 0 0.6621
| Setting 2 | RGB2Normal | NormDiff |
PPP 1 0.6622
PAA 0.7678 1
AAP 0.2769 0.9639

6.4.3 Case study II: Rapid design of GelBelt

The roller version of GelSight was first introduced in [13] to allow rapid perception
of large surfaces. The authors created a cylindrical casing and molded elastomer
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over the casing. By repositioning the sensor by simply rolling, the sensor reduced
the perception time while capturing consecutive images. We experiment with a
new design that combines the benefit of rolling with the excellent tactile perception
of a flat-sensing surface. The new design uses 2 rollers and a belt that rolls between
them. The design concept is visualized in Figure 6.9Ai. The new design decouples
the sensing surface design with the rolling phenomenon so that we can extend the
sensing area without a direct impact on the wheel size.

We show the forward design and inverse process using our design tool in
Figure 6.9. We consider variations in the choice of coating material.

A B Forward design - light location selection Inverse design
coating material
Light design 1 Light design 2 Light design 3 gre
[e] w1 0.75 : :
g § 0.50 HH
= E 3, H
(]é UE . E 0.25 | l : -:
] = 009000 025 050 075 100
= Specularity
5]
=]

Material optimization

i. CAD input
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Optimized design
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Figure 6.9: Designing a new GelSight-like sensor, GelBelt: We start with CAD
design in (A) and create an optical design in OptiSense Studio. In (B), we perform
forward design for the selection of light locations. A human manually places lights
at three plausible locations and uses simulation-driven evaluation criteria to select
the best light configuration. It is evident that the perception of spherical indenters
improves significantly with this approach. We also compare the images generated
using the physical prototypes of GelBelt with Light design 1 and Light design 3.
The simulated and real tactile images are shown in the middle and bottom rows.
We see a close match in the tactile images and that superiority of Light Design 3 in
real and simulated images. In (C), after selecting the best light configuration, we
optimize the coating material using the inverse design procedure.

Forward design process with light type and light locations.

Using the simulation toolbox, we investigate several configurations of the light
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locations and LED type to get the best design for the sensor, as shown in Figure 6.9B.
Initially, it is aimed to have the LEDs illuminating on the side of the acrylic to mimic
the GelSight mini light configuration. However, both in simulation and experiments
it is shown that light poorly reaches the sensing surface. This is because, unlike
GelSight sensors, the silicone is not cured or attached on top of the acrylic letting a
thin layer of air be trapped in between resulting in the total internal reflection of
the light in acrylic. To tackle this problem, we reconfigure the illumination system
and rerun the simulation. As shown in Figure 6.9B, lights are placed at different
locations. The best configuration for the blue and red lights is to have them on the
sides of the sensing surface but illuminating through silicone instead of acrylic.
This configuration cannot be used for the green light which limits its location to
be somewhere next to the acrylic. Several configurations are tested for the green
light. It was observed that having the green light illuminated at an angle through
the silicone showed acceptable results. Then, in an improved design, the silicone is
bent over a small roller to better guide the light through the sensing surface. In this
way, the green light can travel further on the sensing surface.

We manufactured the real-world prototypes of the Light design 1 and Light
design 3 to compare the light design tactile images. Figure 6.9B bottom row shows
the real prototype images for Light design 1 and Light design 3. We can clearly see
that improvement in perception of spherical indenters using virtual forward design
leads to direct improvements in real world prototypes. Therefore, our toolbox can
enable illumination design completely virtually.

Inverse design of sensing surface coating material. After optimizing the light
location, we try to obtain the best optical coating material for the sensing surface,
while keeping light locations fixed. We leverage the inverse design process to opti-
mize material. We plot the normalized evaluation criteria for the best assessment.
The results are visualized in Figure 6.9C. We identify specularity=1 to be the best
design using this process.

Real-world prototype of optimal GelBelt sensor.

To verify the results of the simulation, a prototype based on the optimal design
is fabricated. Figure 6.10 compares the output images of the proposed real-world
sensor with that of the simulation for the indentation of a screw, an electronic

breadboard, and a gear rack. It is observed that the simulation output of the
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Figure 6.10: GelBelt tactile image comparisons: The simulated and real output of
the optimized GelBelt sensor when contacting a screw, a breadboard, and a rack. It
is observed that the real sensor performance highly matches the simulation and
well shows the object geometries.

Figure 6.11: GelBelt sensor tactile images indented with daily-use objects: It is
observed that the optimized roller sensor can sense fine details of the objects and
surfaces.
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approximate geometry highly matches the images of the real sensor in all cases.
This similarity highly supports the validity of our design framework. That being
said, researchers and designers can benefit from using OpticSense Studio and
its modules to predict the outcomes and optimize their design before fabricating
the real-world sensor. The performance of the Gelbelt sensor while indented by
various small parts is shown in Figure 6.11. In Table 6.1, we show the quantitative
comparison between simulated tactile images and real-world prototype tactile
images. Similarly to previous results, the GelBelt sensor can sense fine texture on
the surface in a relatively extended area.

6.4.4 Case study III: Optical component shape variation and light
variation for GelSight360

In this section, we consider the GelSight360 sensor, which was introduced in [94].
The authors used light-piping and embedded lights to create a VBTS tactile sensor
that could provide sensing in the forward direction without any occlusion. In this
sensor, illumination design requires figuring the light color setting and surface
shape of multiple optical components for best perception. This makes the design
problem particularly challenging. We first discuss light color variation and then
discuss optical component shape variation using our objective functions.

Light type variation. In this experiment, we consider various light configuration
with RGB2Norm and NormDiff objective function. The vertical lights in the sensor
are divided into 8 light groups as shown in Figure 6.12B. Table 6.3 shows the
objective function values. According to the objective functions, GBBRRGGB has
the best mapping between RGB to normal with the highest robustness to camera
noise. Note that performing the light variation in the real-world requires designing
and manufacturing new LED boards and embedding them in the resin shell. The
manufacturing time for this experiment could be prohibitively and expensive for
designers.

Optical component shape variation. We keep the sensing surface the same as
the original design and change other optical components to show the effect. We
consider two experiment settings: (a) Setting 1- only change the innermost resin

surface; (b) Setting 2 - change the resin surface, interface surface between resin and
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Figure 6.12: GelSight360 shape and light variation description: (A) Original
GelSight360 sensor as introduce in [94]. (B) Top view is shown with first Light
Group (LG) shown as LG 1. We number the LG anti-clockwise starting from
LG 1. (C) shows the best light configuration in the combinations considered in
our experiments. (D) shows the rendered tactile images for original sensor, best
illumination setting, best resin shape design and best shape design in Setting 2
considered in our experiments. (E) shows the exploded view with labels and the
corresponding side view with key components marked. (F) shows the variations
in Setting 1 and Setting 2 considered in our experiments, namely, Half and Almost

flat.
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Table 6.3: GelSight360 light type variation: "R", "G" and "B" stands for red, green,
and blue light color respectively. This table notes the score of the sensor designs
with different illumination setting. Higher scores are better.

Light configuration | NormDiff | RGB2Norm ||

GRRGGRRG (original) | 0.3138 0
GBBRRGGB 0 0.0597
GRRBBGGR 0.5047 0.0228
RGBRGBRG 0.2664 0.0927
GBRBRGBR 0.8976 0.5205

Table 6.4: GelSight360 shape variation: This table notes the objective functions
scores for sensor designs with shape variations according to Setting 1 (only resin
surface change) and Setting 2 (resin, interface and vertical light shape change).
We observe that Almost flat setting performs best across different shapes choices.
Higher scores are better.

| Setting1 | NormDiff | RGB2Norm ||

Original 0.3138 0.0
Half 0.8649 0.5257
Almost flat 1 0.7922
| Setting2 | NormDiff | RGB2Norm ||
Original 0.3138 0.0
Half 0.5211 0.6494
Almost flat | 0.9687 1

elastomer, and light stripes embedded in the resin. We consider three settings in
each case: original shape, half shape, and making the biggest surface almost flat,
as shown in Figure 6.12F. Table 6.4 shows the objective function values. We notice
that Almost flat shape variation performs best in both settings with Setting 2 being
the optimal among all the designs considered for this sensor in our experiments.
As can be seen in Figure 6.12D bottom-most tactile image, perception of sphere

indenters has improved as compared to initial design.
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6.4.5 Case study IV: Sensor shape optimization for GelSight
Svelte

In this section, we consider the GelSight Svelte sensor, which was introduced in
[115]. The authors used multiple mirrors to route the camera view to the full
human-finger-shaped sensing surface. This allows sensing along the entire finger
instead of just the tip. The optics of the sensor was selected using 2D raytracing
simulations. However, the authors were unable to simulate the tactile images prior
to manufacturing. During our investigation, we noticed the "smearing" issue when
indenters are pressed on the sensing surface, as shown in Figure 6.13. The amount
of distortion depends on the indenting location on the sensing surface. This effect
is caused by the larger back mirror design. The original design only considered
sensing surface coverage in the 2D side view.

We consider the design of the back mirror surface to alleviate this issue and
improve sensing performance. We use As-orthographic-as-possible (AOAP) objec-
tive function in this experiment. To show a proof of concept, we first consider a
simplified sensing surface and focus on improving perception at the center of the
sensing surface. The key optical surfaces are shown in Figure 6.2A top. We consider
cage-based parameterization of the larger mirror surface, M1. This reduces the
search space by orders of magnitude from 22 680 to 81. We initialize the cage on the
original mirror shape. We choose optimization parameters, Cnin such that M1 is flat
and Cmax such that M1 has the largest curvature possible without intersecting with
the sensing surface. We use CMA-ES [34] for optimizing the shape parameters.

The optimization curve is shown in Figure 6.14A. The AOAP score for the
initial and optimized design is 0.236 and 0.635. As can be seen from the rendered
tactile images in Figure 6.14B, the "smearing" effect or distortion is almost gone
in the optimized design. We created real-world sensor prototypes to validate our
simulation experiments. In Figure 6.14C, we show our sensor prototypes of initial
and optimized design. The corresponding tactile images and zoomed-in view
clearly shows that sim2real works well for GelSight Svelte sensors. Thus, our shape
optimization pipeline could be used to obtain the best optical component shapes to
reduce optical distortion and improved shape perception. Note that this approach

can be applied to any optical surface design.
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Figure 6.13: GelSight Svelte issues: We compare the simulated image against the
real-world prototype tactile images. The simulated images are a close match to the
real images. The top and bottom row shows images with setscrew and ideal sphere
indenters at different sensing surface locations. As can be seen from the bottom
row, the distortion depends on the indentation location. In the bottom row, the
ideal sphere is "smeared" or distorted substantially, and is hard to perceive physical
shape properties like sphere radius.
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Figure 6.14: GelSight Svelte shape optimization results: We show the shape opti-
mization results for the GelSight Svelte sensor. (A) shows the AOAP function score
during the CMAES optimization procedure. (B) shows the initial and optimized
larger mirror surface mesh in red and green respectively. We also simulated tactile
images for the two designs. The optimized design has significantly reduced distor-
tion as compared to the initial design. (C) We manufactured sensor prototypes
to compare the improvement in real world for initial and optimized design. The
left visual shows our prototype. We show the tactile images from the real world
prototypes and their zoomed-in view. The real and simulated images of the initial
d2sign both show significant distortion of the lego block. The issue is resolved
completely in real and simulated images for optimized design.
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6.5 Discussion

We achieve four key objectives through the case studies. First, we show the ease of
use of OptiSense Studio by creating a digital twin of GelSight Mini, GelSight360,
and GelSight Svelte within minutes. Secondly, we are able to obtain parameterized
designs and show that our parameterization enables users to easily explore the
design space of various GelSight-like tactile sensors across various design axes:
illumination, coating material, and geometric shape of optical components. Thirdly,
we are able to perform design optimization for all the components of a sensor for
a range of GelSight-like sensors with complicated optics. Lastly, we are able to
convert a concept design of a new sensor (GelBelt), for a new application (large
area sensing), into a valid sensor design and perform different forward and inverse

design optimizations to obtain the best sensor design.
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Chapter 7

Conclusions and Future Research

In this thesis, we proposed the first objective-driven design tool for GelSight-like
tactile sensors. In doing so, we created an optical tactile simulator and a library
of calibrated sensor components. We also defined new efficient objective-driven
computational methods for automatic parameter selection of the complex optical
system. We proposed a modular design interface for interactive modeling and de-
sign space exploration, which is based on interactive rendering algorithms. Finally,
we show the utility of our framework for the design optimization of a range of
vision-based tactile sensors for robotic manipulation and tactile perception. We
manufactured the novel designs and investigated the performance boost between
virtual and real designs.

Although this thesis takes significant steps towards automatic GelSight-like
sensor design, there is a gap in enabling sensor design by novice users with no
knowledge of sensing. To design a complete GelSight-like tactile sensor, a user needs
a sequence of actions. Therefore, we need a framework that takes the operations
introduced in this thesis and generates a valid sequence of actions to compose a
full sensor. An approach in robotic structure design introduced in [114] might be a
good starting point towards that goal.

In the robotics community, the current approach is to first design robotics
structures such as robot hands and then add sensing to those structures. If the user
wants to incorporate VBTS into those structures, it requires a complete redesign of

the corresponding structure. Our framework does not offer any guidance for this
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workflow.

7.1 Future Directions

The work described in this thesis demonstrates how to rapidly prototype VBTS and
optimize their optical parameters, which can then be manufactured directly in the
real world. However, our results thus far are only the first steps toward applying
these concepts to computational design for sensing. Our work is closely related to
soft robotics design, as tactile sensors need to be embedded in the robotic structure
or co-designed for optimal performance. Since the advances in the co-design
of VBTS and robotic structures are relatively recent, the field of developing the
necessary design tools is still relatively new, with many interesting challenges and
open research problems. We outline some of the most important open challenges
that we think are crucial to pushing the field forward.

Combining marker simulation and physical simulation approximation with op-
tical simulation for design The tactile sensors have a soft surface as a contact layer
with the environment. It is useful to measure the deformation of the soft elastomer
during interaction. These deformations are helpful to measure the tangential force,
shear and torque signals. We presented a technique to simulate the sorting of edges
caused by the static indentation on the elastomer in Section 3.2.2. Subsequently, var-
ious researchers [29, 86 ] have proposed better approximate models for simulation
of the soft elastomer. These models propose a model of local movement of gelpad
nodes. [116] use similar idea to propose marker motion generation on the gelpad
surface. In our experiments, we found that these models fail to generalize for the
range of sensors with complex optics considered in this thesis. However, we believe
that incorporating these approximate models into our simulation framework could
enable sensor design for various other GelSight-like sensors with some extensions.
Combining physical simulation with optical simulation. Recently, researchers
have incorporated GelSight-like sensors in compliant structures [56, 57]. These
sensor structures are meant to be deformed substantially when they are interacting
with objects. These deformations can not be modeled with rigid body simulators
or by interpenetrating objects with sensing surfaces. Therefore, to generate valid

tactile images, we need to incorporate soft body deformations. We used Finite
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Element Methods (FEM) in [66] to simulate GelSight FinRay sensor deformations
before passing obtained shapes to our design pipeline. However, using interactive
and efficient soft body simulators is needed for design problems. We believe that
this could enable the co-design of soft robotics structures with high-resolution
tactile sensing for robot proprioception and contact sensing.

Expanding the design framework for other VBTS sensors. Although the pipeline
performed well for the design and simulation of the GelSight family of sensors,
we expect that our approach has the potential to incorporate optical components
required for other types of camera-based sensors. We hope to incorporate an
approximate model of fluorescent lighting as introduced in [55] to allow the design
of the FinRay GelSight family. Also, 9DTact [52] introduced absorption layers
which can be added as another optical material in our component library. Other
camera-based tactile sensors record a single color intensity [52] or a change in
intensity [101] to recover tactile signals (surface depth or force). For example, in
the 9DTact sensor family, the single-color intensity image is used to recover surface
normals. To extend our design toolbox for this sensor, users can add new evaluation
criteria. Users can use the general idea—to create a mapping between the measured
image signal and tactile signal—of the evaluation criteria proposed in this work.
Robotics-focused objective functions. In this thesis, we propose various objective
functions to improve the design. Those objective functions are focused on improv-
ing the tactile signal fidelity, especially color image and sensor coverage. This works
well if the application area for tactile sensing is in perception, for example, aircraft
inspection. However, for robotic applications, it is unclear what is the most impor-
tant tactile signal and what is the resolution required. In the literature, various
researchers have co-designed robots and their control strategies by using machine
learning. This enables direct optimization of the robot structure and control for
the robot application. Creating a pipeline to score VBTS designs directly for the
task (dexterous manipulation) by using machine learning might be an interesting
future direction.

Efficient optical simulation. Since optical simulation is at the heart of our frame-
work, it is critical to have an efficient and general optical tactile simulator. Although
we showed that it is possible to simulate complex optical illumination, such as light
piping and generate tactile images that interact with a range of sensors. We found
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that sometimes the optical framework fails in unintuitive ways. Figure 7.1 shows
the image of GelSight Mini with various settings: diffuse BSDF and specular BSDF
with very high roughness 0.99 in the top and bottom rows. The rendering algorithm
used for all the images is PSSMLT [46] implemented in Mitsubal [40]. With these
settings, all the images in Figure 7.1 should be similar. However, we notice that
the image with PointLight contains mainly noise for both the BSDF setting. The
issue disappears if we use the SPPM [32] rendering technique and diffuse BSDF
with point light, as shown in Figure 7.2. However, SPPM is not able to generate the
correct image for PointLight and specular BSDF.

4dSd °snyid

Jasg remoads

Arealight PointLight

Figure 7.1: Rendering failures with PointLight: The figure shows tactile images
for the GelSight Mini sensor generated using PSSMLT rendering technique. The
rows contain tactile images with different coating materials: Diffuse and Specular
with very high roughness 0.99. The columns contain tactile images with different
light types: AreaLight and PointLight. As can be seen in the right column, PSSMLT
produces noise with PointLight for both BSDF cases. This result is an unexpected
tailure case.

This is because of two reasons: mismatch between optical properties of real and
virtual components; and high computational cost of finding valid light paths from
point light sources and a high number of refractive elements with delta BSDFs in
VBTS sensors. There has been recent progress [25, 30, 61] in finding paths through
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Figure 7.2: Rendering failures between algorithms: The figure shows tactile
images for GelSight Mini sensor generated with PointLight and two different BSDF
settings: Diffuse and Specular with high roughness 0.99 The top row shows that
SPPM algorithm is able to generate reasonable tactile image with PointLight and
Diffuse BSDF as compared to PSSMLT, which produces noise. However, SPPM fails
catastrophically with PointLight and specular BSDF with high roughness, while
PSSMLT generates almost noise image.

refractive surfaces efficiently. However, those techniques fail if the light is a delta
light source.

Fabrication errors and constraints The fabrication process of these sensor requires
multiple steps like 3D printing, molding, spray-coating and assembly. Each of
these steps can impose various constraints on the sensor design. Moreover, each
of these manufacturing steps can introduce a margin of error, for example, the 3
printed surface shape may be within 10 % of the optimized surface shape. Our
design framework does not incorporate these errors into the objective functions.
We tried to tackle this issue by performing a sensitivity analysis on various design
parameters in Section 4.4. However, incorporating these errors more explicitly into
the design process can enable better designs. One way to formally consider sensor
performance as a stochastic function is to use Bayesian optimization [93].
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7.2 Lessons learned

Firstly, we have learned that there is a need to balance automation and user input. In
addition to the well-known conflict between ease of use and design freedom, such
balance is important in the development of efficient design tools. User preference
can provide us with good design initialization to prune the search space of the
optimization algorithm. This is specifically true for the shape design of the free-
forming optical components in the sensors.

Secondly, approximate and quick simulation is better than very accurate and
slow simulation for tactile sensor design. Since the design space of the VBTS tactile
sensor is relatively large. It is essential to allow users to decide which design spaces
are most important to optimize. We found that in most of the VBTS sensors we
do not have reflective sharp caustics. Therefore, techniques like path-guiding or
photon mapping can generate approximate tactile images. Moreover, it might be
interesting to incorporate new denoising methods [14, 110] to further improve the
efficiency of these techniques.
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Path tracing

Consider the scene shown in Figure 3.16. The light radiance received at point p, is

L(pron) = Le(pron) + | 1(pwoi0)

L(t(p,w;), —w;)|cosb;|dw;

where L.(p,wp) is light emitted by point p towards direction wy; f(p, wo, w;) is the
material model, which gives the fraction of light emitted in direction wy, when
receiving light from direction w;; t(p, w;) is the point in the light path visited prior
to hitting point p at an angle w;; |cost;| is the Jacobian of the solid angle 2 w.r.t.
polar coordinates. On a high level, the first term represents light emitted at p, and
the second term represents light emitted by all the points in the scene towards py
sampled according to some probability distribution. The rendering equation can
not be solved analytically, as it is a recursive equation (as term L(p,w) appears on

both side of the equation) in high dimension for a generic scene. To solve it, path
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integral formulation of the above equation is considered, which is as following:

L(p1 = po) = Le(p1 — po) (A.1)
+ /AL(p2 — p1)h(ps — p1 — po)dA(p2) (A.2)
T /A /A L(ps = p2)(ps — ps — pr)dA(ps)dA(p2) (A3)
4o (A4)

According to the above equation, we need to generate all the paths starting from light
sources, hitting different objects in the scene and reaching the camera. In practice,
we just need some paths which carry most of the power from light sources to the
points on the camera film and probabilistically terminate the computation. Each
integral in the above equation in itself is solved through Monte Carlo integration
with sampling probabilities biased towards points p;, which will have more light
contribution.
On a high level, the rendering involves following steps:

e Sample point on the camera film based on the camera model
e Sample points on the objects in the scene using some probability distribution
e Try to connect the object point to the light source

e Collect the light contribution of that path multiplied by the probability of that
path

e Probabilistically terminate paths after certain max length based on some

criteria
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Appendix B

Component library

We provide 7 optical materials, obtained 6 light models and 6 camera types as

shown in Figure B.1.
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B. Component library
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Figure B.1: Component library in OptiSense Studio: This figure shows the various
components present in the library provided with our design interface. These
components cover the design space of the GelSight sensor family and provide

relevant design spaces to develop new sensors.
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Appendix C

Design tutorial with our design

interface

In this section, we give a short tutorial to setup a camera-based sensor design, using
GelSight Mini as an example.

Step 1: Adding shapes
To add shapes click on the Add .obj mesh button and assign them as reference
geometry by clicking on the Set as reference button.

Users can edit the surface shape using cage-based representation [102]. To
create a cage around the shape, select the shape and click the Create a new cage
button. To edit the shape, click the Edit shape button, select the cage vertices to
move, and then move the vertices to change the shape of the surface. As noted in
[102], the cage-based representation is differentiable and in the future is amenable
to differentiable sensor shape design.

Step 2: Assign optimal material property
To assign the optical material, the user selects the desired optical surface from
the OpticalSystem collection, selects the desired material from the library and then
clicks on Apply To Selected button. The user can also preview the material before
assigning it by selecting the material and clicking the Preview Material button.

Step 3: Add light and camera
For adding the lights, choose Light reference surface from the Reference collection, click
on Add Light button, and select the desired light. Our library provides commonly
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C. Design tutorial with our design interface

used LEDs with flat and spherical lenses, commonly used in camera-based sensors.
For a detailed overview refer to the Appendix B.

To add the camera, the process is similar to adding lights. Choose Camera
reference surface from the Reference collection, click on Add Camera button, and
select the desired camera. Our library provides commonly used Raspberry Pi
cameras with field of view ranging from 60° to 160°. For a detailed overview, refer
to Appendix B.
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Appendix D

Fabrication of the optimized curved
VBTS sensor

After obtaining the best design for GelBelt using our digital design framework,
we manufactured a real-world prototype and tested its feasibility. PLA was used
to 3D print the frame of the sensor and the handles. Wheels were 3D printed by
Form 3+ printer in Black Resin Material to have a smoother print surface. The
Acrylic part of the sensor was laser-cut to the shape and fixed in its housing using
thin double-sided tape. The belt is made of Silicone XP565 (Silicone Inc.) while
coated with Aluminum powder on the contact surface. Silicone itself cannot slide
on the acrylic due to the high frictional force between two surfaces, therefore, an
intermediate layer is required to complete the task of sliding. For this purpose, wide
clear tape is attached to the inner side of the belt as it showed acceptable stickiness
to silicone on the glue side while having a small friction with acrylic on the other
side. To make the prototype of the sensor, The belt was fabricated by having a flat
mold. It should be mentioned that the belt could be fabricated using a circular mold
to have continuous rolling over the surface which will be considered in the future.
After Silicone was cured and coated with aluminum powder, the belt was removed
from the mold and wide tape was attached to the uncoated side of it. To have the
complete belt, the belt was bent all over the rollers and then attached together using
the wide tape. Regarding the lights, several SMD 3528 LEDs were linearly arranged
for each of the red, green, and blue lights. The lights were soldered on a PCB and
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D. Fabrication of the optimized curved VBTS sensor

then fixed on the frame of the sensor using screws.
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