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Abstract

Touch is an essential sensing modality for making autonomous robots
more dexterous and allowing them towork collaborativelywith humans.
In particular, the advent of vision-based tactile sensors has resulted
in efforts to design such sensors that can be easily incorporated into
various robot structures for different robotic manipulation tasks, to
increase robustness, precision, and reliability. However, this design task
remains a challenging problem. This is for two reasons: first, the design
of the sensor itself requires the compact integration of multiple optical
elements to improve optical signal fidelity during interaction with the
environment; second, the successful integration of vision-based tactile
sensors into robotic manipulation tasks requires the codesign of both
the sensors and the robot structure itself.

This thesis aims to alleviate these two challenges by creating a general
design framework that allows a roboticist to quickly iterate on the design
and evaluation of vision-based tactile sensors for designated robotic
manipulation tasks. The framework comprises three core elements.

First, our framework uses an optical simulator that can accurately and
efficiently generate the images captured by arbitrary sensor designs. Our
simulator leverages physics-based rendering techniques from computer
graphics and enables the generation of realistic tactile images for any
given sensor design. To create this simulator, we performed detailed
real-to-sim experiments to calibrate our simulation models. We show
that the resulting simulator can qualitatively and quantitatively match
real-world measurements for GelSight-like sensors with flat and curved
sensing surfaces.

Second, our framework proposes computational techniques for procedu-
ral sensor generation and automatic sensor design evaluation techniques.
In the context of curved tactile sensors, our generator takes as input a 2D
curve and uses CAD primitives to generate from it the full sensor shape.
The procedural sensor generation allows for the automatic placement
of different optical components, given their corresponding reference
geometry. We introduce three objective functions: RGB2Norm, NormDiff,
and As-orthographic-as-possible. These objective functions quantify sen-
sor design’s tactile signal perception and enable automatic parameter
selection.
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Third, our framework introduces an interactive design toolbox, Op-
tiSense Studio, that functionalizes our design pipeline into a useful tool
for novice users. We introduce general designmodules for the rapid pro-
totyping of GelSight-like tactile sensors. The toolbox allows interactive
feedback through optical simulation while designing the sensor without
deep expertise. The obtained design is automatically parameterized
through our toolbox and can be optimized using our proposed objective
functions.

We have successfully applied this framework for the design of vision-
based tactile sensors that used curved surfaces to emulate human fin-
gertips. We have also applied our interactive framework for rapidly
creating optimized variants of existing tactile sensors, GelSight Mini,
GelSight360, and GelSight Svelte. Finally, we are able to create a new
sensor, GelBelt, for a different robotic application completely virtually
and optimize its illumination settings using our toolbox.

Through this thesis, we demonstrate the utility of our design framework
for the co-design of vision-based tactile sensors and soft robots. More
broadly, we hope to create a new point of convergence between disparate
communities such as computer graphics (physics-based rendering and
simulation), optics (optical lens and material design), and robotics, and
foster new research directions within and across these communities.
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Chapter 1

Introduction

1.1 Motivation

Currently, robots have limited ability to perform dexterous manipulation and work

collaboratively with humans. Tactile sensing provides critical information, such as

perception of object properties and rich contact information for robotic manipu-

lation. Due to this, we have seen the development of tactile sensors with various

transductionmethods [35, 70, 108, 111], sensor shapes [19, 73, 101, 107], and output

modalities [23, 50, 104]. Vision-based tactile sensors (VBTS) have specifically be-

come popular in the robotics community because of their high resolution, low cost,

and ability to measure multiple contact information. GelSight [107] is a specific

VBTS that uses color information to encode tactile signals. Figure 1.1 shows the

various contact information that is obtained using GelSight-like tactile sensors.

Due to high-resolution sensing, VBTS is also useful for perception tasks with

fine features, such as detecting skin diseases and detecting fine defects on aerospace

parts. Figure 1.2 shows the perception of skin dryness using tactile images. The

visual pattern allows quantification of the dryness of the skin and therefore can be

used to automatically monitor eczema, which is a chronic health condition. The

perception of depth continuities on metallic surfaces is another big challenge in

aerospace parts. The commonly used vision-based methods for defect detection

are not robust for metallic parts [5]. As shown in Figure 1.3 the inspection of

aircraft requires perception of a large surface with orders of magnitude small

1



1. Introduction

Figure 1.1: Vision-based tactile sensing modalities: As shown in [91], GelSight-
like tactile sensors measure high-resolution tactile images that can, then be post-
processed to output rich contact information - surface depth, marker motion and
normal force.

defects with depth of 50µm. The use of GelSight can enable quantification and

automatic detection of these defects.

Unlike other sensing modalities, such as cameras, tactile sensors offer unique

challenges as they have to be integrated into the robot morphology for perception.

The design of vision-based tactile sensors is a challenging problem, as it requires

the complex interaction of various optical elements (lights, material, and camera)

to obtain contact information. There has been tremendous progress in the design of

VBTS hardware, especially GelSight-like tactile sensors, in the last decade. However,

to build increasingly complex, functional and integrated robotic structures with tac-

tile sensing, we also need to create design tools, that allow users to efficiently explore

a design space that incorporates shape, material, and illumination. Furthermore,

to empower more people to create sensors for their own personalized use cases,

we also need to develop tools that are more accessible to users with little design

experience.

The central question driving this thesis is:

Canwe design GelSight-like tactile sensors for arbitrary use cases in simulation and optimize

various optical parameters?
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Figure 1.2: GelSight applications in biomedical sensing: The left half shows
a human hand with various dry skin patches due to eczema. The skin pattern
changes due to increased dryness level. This change in pattern can be clearly seen
and quantified in GelSight tactile images shown on the right.

1.2 Approach and Contributions

The goal of this thesis is to democratize the process of GelSight-like tactile sensor

design and make tactile sensors ubiquitous in robotics. We specifically focus on

design iteration using simulation and computational techniques. The methods

developed in this thesis allow for the automatic evaluation of a novel sensor design.

We aim to make the design process for new end-effectors or robots with integrated

vision-based tactile sensing semiautomatic and reduce the time taken to optimize

the sensor parameters.

In this thesis, we introduce a computational GelSight-like vision-based tactile
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Figure 1.3: Aerospace defect detection: An aircraft (50m long ) requires inspection
of surfaces after each flight. It may contain defects that are orders of magnitude
(1×10−7) smaller than the aircraft. The bottom left shows a visual image containing
multiple defects that are almost invisible in an RGB image. However, the defect is
detectable in the GelSight tactile image on the bottom right.

sensor design framework with a physically accurate light transport simulation. Our

framework consists of three main parts—optical simulation, computational tech-

niques including sensor evaluation objective functions, and an interactive design

toolbox. Our contributions are as follows:

Optical tactile simulation. We develop an optical tactile simulation framework

using physically based rendering (PBR) techniques for accurately simulating vision-

based tactile sensors. We perform real-to-sim experiments to calibrate key simula-

tion models for accurately generating tactile images of novel tactile sensor designs.

Our study shows that our framework can generate simulated tactile images that

match the tactile images produced by a range of vision-based tactile sensors, for

example, GelSight with an almost flat sensing surface; GelSight Mini with refractive
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layers; a human-like fingertip curved tactile sensor; GelSight FinRay which uses

fluorescent lighting and mirrors; as shown in Figure 2.1. (Chapter 3, Agarwal et al.

[3, 4])

Computational design framework. We develop a design framework for GelSight-

like vision-based tactile sensors, with two key novel elements—a low-dimensional

sensor shape parameterization, and a design evaluation procedure. Our low-

dimensional parameterization allows the procedural generation of varied sensor

shapes andmakes the design optimization tractable. We systematically characterize

the effect of various design spaces using our design objective function, RGB2Normal,

to identify the best designs. Our computational framework enables, for the first

time, the design of a curved vision-based tactile sensor completely in simulation

and optimization of shape parameters for better 3D reconstruction than human-

expert design. (Chapter 4, Agarwal et al. [3])

Interactive design toolbox. We introduce a modular design framework for novice

users to democratize the sensor design and provide an interactive toolbox, Op-

tiSense Studio that functionalizes the techniques for rapid design iteration. We also

introduce two new objective functions, NormDiff and As-orthographic-as-possible

(AOAP), that optimize for 3D reconstruction and reduce sensing area distortion.

We investigate faster but approximate rendering algorithms for interactive opti-

cal simulation. The interactive design interface with simulation feedback enables

novice users to modify existing sensors and mechanical engineers to design new

VBTS sensor form factors completely in the virtual domain. (Chapter 6, Agarwal

et al. [2])

1.2.1 Thesis outline

In Chapter 3, we introduce the optical simulation framework that allows the genera-

tion of physically accurate tactile images. In Section 3.2 and Section 3.3 we describe

tactile sensors and their real-to-sim experiments to calibrate the simulation mod-

els. We further evaluate the accuracy of the simulation results by comparing the

simulated tactile images with the tactile images captured from real-world sensor
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Figure 1.4: Tactile sensors discussed in this thesis are GelSight hexagon sensor,
human fingertip-like sensor, commercial GelSight Mini, new GelBelt, GelSight
Svelte [115], and GelSight360 [94]. The sensors considered are useful for robotic
manipulation and contact perception.
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prototypes.

In Chapter 4, we introduce our sensor design framework and apply it to design

a curved vision-based tactile sensor. We further show the performance of the

optimized sensor design in simulation and bymanufacturing a real-world prototype.

Our optimized sensor design performs approximately 5x better at robotic surface

inspection compared to a human expert design.

In Chapter 6, we introduce our modular and interactive design pipeline. We

introduce various sensor modeling modules and parameterization of optical com-

ponents to enable optimization. We also propose two new objective functions:

NormDiff and As-orthographic-as-possible for design improvement. Using the pro-

posed framework, we show multiple case studies to optimize the shape of optical

components, material properties, and light type. We also design a new tactile

sensor, GelBelt, from concept to fully optimized design.
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Chapter 2

Background and Related Work

2.1 Vision-based tactile sensor designs

In this section, we discuss various vision-based tactile sensor designs and proba-

ble reasoning behind those choices to highlight the trade-off between perception,

function, and compactness.

Yuan et al. [107] choose the elastomer material based on transparency and

mechanical considerations. The sensing surface coating layer is chosen to have

matte or semi-specular reflectance. Johnson et al. [44] placed six LED light sources

along the periphery of the elastomeric surface. Johnson and Adelson [43] used

three colored LED arrays at an elevation angle of 30 degrees for best illumination. Li

et al. [51] used four colored LED arrays and used acrylic guiding plates to illuminate

the sensing surface. Dong et al. [21] proposed a new design with three colored

LED arrays with collimating lens and are placed at an angle of 71◦ with respect to

the sensing surface. They added a translucent surface in front of the LEDs to make

the outgoing illumination more diffuse. Donlon et al. [23] used an ideal mirror to

indirectly view the sensing surface using the camera. They derived a trigonometric

relationship between the mirror angle and the sensing surface coverage. They

designed the acrylic guiding plate surface to be a parabolic to allow light paths

from LEDs placed near camera to be directed towards the sensing surface. Note

that all the above approaches were based on human intuition and trial-and-error

for generating new designs and estimating their parameters.
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We review the main GelSight-like tactile designs in Table 2.1. The designs are

characterized on the basis of illumination design, camera viewport, and application

features. The key illumination features are light piping, coating material is semi-

specular or diffuse, and the number of light groups (collection of light of the

same color). The key camera viewport features are if the design uses mirrors to

change the positioning of the camera and the number of cameras used to cover

the sensing surface. The key features that are added to aid target application

(dexterous manipulation) are if the sensing surface is curved and contains markers.

We consider sensors with focus on parallel-jaw grippers, omnidirectional sensing,

functional moving parts, highly compliant sensing surface and full human-like

finger sensor shapes.

Table 2.1: Review of GelSight-like tactile sensor: A comparison between state-of-
the-art GelSight-like tactile sensors.

Name Illumination Viewport Application features

Light
piping

Semi-
specular

Num.
light
groups

Mirrors Num.
cam-
eras

Curved

GelSight Hexagon [107] no no 6 no 1 no
GelSight RoundTip [77] yes yes 3 no 1 yes
GelSight Mini yes no 3 no 1 no
DIGIT [47] no no 3 no 1 no
GelSlim 1.0 [23] yes no 1 yes 1 no
GelSlim 3.0 [90] yes no 3 no 1 no
Omnidirectional
GelSight360 [94] yes yes 3 no 1 yes
RainbowSight [95] yes yes — no 1 yes
DenseTact 2.0 [20] yes yes 3 no 1 yes
Omnitact [73] no no 11 no 5 yes
GelTip [27] yes yes 3 no 1 yes
MinSight [8] yes no 6 no 1 yes
Functional Designs
RoTip [42] yes no 3 no 1 yes
Roller Grasper [105] no no 3 yes 1 yes
GelLink [65] yes no 6 yes 1 no
Highly compliant
GelSight Fin Ray [55] no yes 3 no 1 no
GelSight Baby Fin Ray [58] no no 3 yes 1 no
Fingers
Exoskeleton Soft Finger [82] no yes 1 no 1 yes
GelSight EndoFlex [59] no no 3 no 2 yes
GelFinger [53] yes yes 6 no 1 yes
GelSight Svelte [115] no no 2 yes 1 yes
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Figure 2.1: Various types of GelSight sensor designs (Pictures adapted from
[19, 22, 47, 51, 53, 55, 77, 91, 94, 115]): Researchers have designed GelSight sensors
with varied optical systems to fit robot fingers with either flat or curved surfaces.
The performance of the sensors also varies and is affected by a number of the optical
system parameters. Our work aims to bridge the knowledge gap between expert
sensor designers and novice users, thereby simplifying and expediting the sensor
design process.

2.2 Contact simulation for tactile sensors

Previous approaches for modeling and simulating contact between the sensor

surface and the object can be categorized into a) modeling the deformation of

the tactile sensor surface and b) modeling low-dimensional features used in a

particular sensing technology. [71] simulated BioTac [26], which is a finger-shaped

sensor with a fluid-coupled electrode array and measures impedances. In their

simulation, BioTac is modeled using the Finite Element Method (FEM), which

outputs the quasistatic nodal displacement under applied force over a known

contact area. Vision-based tactile sensors such as TacTip [101] and [80], which

track the motion of dots, either on the sensor surface or embedded in fluid, have
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also been simulated. [18] modeled TacTip as a set of pin positions(similar to those

found in the real sensor) which deform using an elastic push-pull force based on

contact with objects in the scene. [81] simulated their sensor [80] using the neural

network, trained using a data set generated by Finite Element(FEM) simulation.

Their simulation is able to predict the position and force distribution. They decouple

camera parameters from Neural Network training to allow adaptation to various

cameras. This system could be used to simulate surface deformations and low-

dimensional tactile features. However, the above methods do not work well for

GelSight because of the complex light system. [112] simulated the tactile sensor by

finding the intersection surface between the object mesh and the robot hand; and

sampled points along that surface to simulate the tactile sensation for force closure.

Tactile optical simulation. There have been some recent works that simulate the

image formation process for GelSight-like vision-based tactile sensors. [88] and

[28] use directional lights, with phong material and diffuse material respectively,

to simulate images formed by the tactile sensors. The assumption of directional

light breaks down if the physical lights are very close to the scene(sensor surface

in this case)[54]. Our work uses a general image formation process that takes

multiple bounces of light into account, together with a physically accurate light

model and material surface. This allows us to capture the spatial variation in color

and intensity distribution in the simulated image.

2.3 Virtual robotic design and Sim2Real

In this section, we cover related work that leverages simulation for sensor design

and other Sim2Real works that focus on robotic manipulation.

[91] is the most similar to our work. In this paper, the authors redesigned

GelSlim [23] to optimally recover the surface geometry, similar to GelSight. They

used raytracing simulation software to design a shaping lens and LED light position.

Their simulation-driven approach was useful for coming up with a nontrivial lens

shape. Although the authors used simulation, the output modality (radiant flux)

was different than the tactile image (camera image). The raytracing software used

by the authors is more focused on professional optical designers and requires

detailed models of optical components, which can be overwhelming for roboticists.
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Moreover, their design tool did not provide any guidance on how to generate tactile

sensors or provide any objectives for automatic parameter selection. Therefore, it

is unclear whether their approach can be extended to an end-to-end approach for

tactile sensor design.

In [113], the authors analyze the common design pipelines of camera-based sen-

sors and propose a dictionary-based process flow design approach. Their approach

is useful for mixing and matching various workflows for sensor manufacturing.

Although useful, their work does not provide any feedback on the validity or

sensing ability of the design. Our work is the first to provide simulation-driven

interactive feedback on the validity and perception capabilities of sensor design.

Moreover, their work does not consider any optimization-based parameter selection

techniques.

In [87], authors use efficient tactile simulation to train a grasp stability model

completely in simulation and show zero-shot transfer to real robots. This approach

depends on Taxim [86] which requires data from the real-sensor prototype for

simulation. Since our focus is on creating a new sensor completely in simulation,

this simulation approach is not applicable to our problem.

2.4 Robot design optimization

In this section, we cover related work that leverages digital design to optimize the

design of complex robotic structures. This topic is broad and we cover only a few

papers that served as inspiration or guidance for our work.

In [31], the authors introduced a design pipeline for truss-based structures, best

known for structural stability and shape complexity. Their pipeline allows the cre-

ation of complex shape-changing truss structures with reconfigurable constraints.

They also created a design tool that provides interactive preview and truss design

modules and output control code. Their human study found that their tool "em-

powers users to design and build truss structures with a wide range of shapes and

various functional motions. In [79], the authors introduced a system that allows

the interactive exploration and optimization of parametric CAD data. They used

precomputation and a new interpolation scheme on the CAD parameters. In [118],

authors proposed an integrated design pipeline for robotic gripper generation with
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integrated tactile sensing. They used knitted tactile sensors to put on the designed

robotic grippers using grammar rules. It is unclear how to extend their work to

incorporate the GelSight sensor family. Also, their work can only be tested after

manufacturing the generated prototype, as they do not have any simulation step or

optimization to select parameters.
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Chapter 3

Optical Simulation Framework

Simulation is a critical tool in the development of robotic systems. It is widely used

for hardware design, control, and planning. Simulations are useful not only at the

start of the development process but also for debugging and rapid iteration of the

design when a new design objective emerges. Due to the above advantages, we

have seen the development of a number of rigid body simulators like ODE [89],

SimBody [85], MuJoCo [96], Dart [48] and, particle-based simulators like Nvidia

FleX [67] and SOFA[7]. Tactile sensing is a cornerstone for complex robotic manip-

ulation together with advanced control algorithms and hardware design. However,

most modern simulators have limited tactile sensing simulation.

In this thesis, we are specifically interested in simulating vision-based tactile

sensors due to their high resolution. Vision-based tactile sensor simulation has

two major components, namely optical simulation and dynamics simulation. In this

work, we focus on an optical simulation system using physics-based rendering

(PBR) [76] techniques. PBR focuses on accurately modeling the physics of light

scattering. PBR allows generating physically accurate images after specifying the

physical location of optical elements like cameras and lights; the deformable surface

geometry; the material properties of the sensor surface. Since our system is based

on accurate simulation of light, given the sensor setup, it can be used as a tool for

generating accurate tactile images for novel sensor designs, without the need for

ever manufacturing that design.
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3.1 Optical simulation framework

Simulation algorithms and simulation models of various tactile sensor components

are the two key ingredients to generate realistic tactile images using PBR techniques.

In this section, we first motivate the need to do PBR, followed by the basics of

PBR, and then talk about the specific method that we use for simulation in our

work. We introduce the real-to-sim techniques for calibrating simulation models

for individual tactile sensors in Section 3.2 and Section 3.3.

3.1.1 Simulation challenges

Figure 3.1: Full vision-based tactile sensor comparison: (A) Simulation scene:
the camera, vision-based tactile sensor, and indenter, which we used to analyze
our designs. (B) and (C) show the images simulated using Blender EEVEE and
Blender Cycles renderer respectively. (D)HDR image simulated by our framework
using calibrated simulation models. Our simulated results are a close match to the
physical prototype as we are able to reproduce a)Bright light stripes due to focused
LEDs b) Light piping of red color from the right to illuminate the spheres on the left
and similarly for blue color. (E) HDR image captured with our real-world tactile
sensor prototype, when the sensor is indented with a set of spheres.

The keymotivation of our work is to do tactile sensor design by exploring design

spaces. Traditional simulation techniques such as rasterization (Blender EEVEE)

fail to generate any image (Figure 3.1B) and unidirectional path tracing (Blender

Cycles) ( Figure 3.1C) fail to match the real prototype image. Therefore, we build a

simulator of light that accounts for realistic light models, complex material proper-

ties such as Bidirectional Scattering Distribution Function (BSDF), and multiple

bounces of light by using physics-based rendering techniques (PBRT) [76]. PBRT
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allows us to generate unbiased RGB images efficiently.

Figure 3.16B shows an example path diagram of light as it travels from light

source to camera, in our sensor setup. Our sensor setup has 3 key challenges

A useful light path is generated after refraction through multiple rough surfaces

and reflecting of a highly glossy sensing surface to give information about the

outermost sensing surface. This length of such successful light path is greater

than 5. Light transport that requires multiple bounces on refractive and highly

glossy (specular) surfaces is known to be a challenging problem in computer

graphics [39, 109]. In our tactile sensor model, we have 3 key surfaces - 2 of which

are refractive and the outermost surface can be highly specular (experimentally

found to work better).

Another key challenge in our tactile sensor is that it is composed of curved sur-

faces, as it is supposedly human fingertip-like. Having curved surfaces is beneficial

for various robotic applications[77]. However, this poses a challenge for sampling

paths in the rendering algorithm[62].

A key component of various rendering(simulation) algorithms is a technique

called "Next Event Estimation"(NEE)[97]. This technique tries to find the light

received by each intermediate point, in the full light path, directly from the light

source. However, the effect of this technique in our sensor setting is limited due to

the light source not being directly visible through any point on the sensing surface.

3.2 Optical simulation for GelSight sensor

In this section, we use the optical simulation framework for simulation vision-based

tactile sensors like Gelsight [106], which have almost flat sensing surfaces. We

give a brief introduction of the sensor, real2sim experiments to calibrate simulation

models, and propose a cheap tactile sensor deformation simulation based on surface

convolution for almost flat sensing surface tactile sensors. We then evaluate our

simulation framework by comparing the tactile images generated by our simulation

framework with those of real sensor prototypes.
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Figure 3.2: GelSight sensor illustration: The key components which we model in
our work are gelcore, elastomer surface and LEDs.

3.2.1 GelSight description

These tactile sensors have multiple colored lights, soft deformable skin, and an

RGB camera. When an object interacts with the soft sensor skin, the deformed

skin shape interacts with light to form an image in the camera. The sensor uses

photometric stereo [9] to invert RGB color information to shape information. We

can obtain high-resolution shapes, multiaxis force, and friction information using

Gelsight. Figure 3.2 shows the illustration of the GelSight prototype used in our

study. The prototype is based on the sensor proposed in [106].

3.2.2 Real2sim simulation model calibration

This section describes the specific models of light, the material of the translucent

supporting structure (we denote it as gelcore), and the elastomer used to create the

GelSight sensor in simulation.

Light models

We use AreaLight model for our simulation system. The AreaLight is a good approx-

imation of diffuse illumination received on the deformable surface of our sensor.

This light model is fast to simulate and is a common choice for simulating natural
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Figure 3.3: The comparison of a real GelSight sensor and a simulated GelSight
sensor, when a star-shaped object is contacting the sensor. Ourmodelwell simulated
the optical system in the sensor and therefore can generate a realistic tactile image
that indicates the object’s shape.
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Figure 3.4: Light model comparison: The mesh model of the AreaLight model was
chosen to match the real LEDs array set as shown on the left. Our simulation model
matches closely in terms of spatially varying illumination obtained on the sensor
surface.

lighting [60] in computer graphics. The key parameters in AreaLight are mesh,

defining the geometry of the light and the three-dimensional intensity of each

color. Figure 3.4 shows the comparison of the physical LEDs used in our prototype

sensor and AreaLight model. We use the differentiable rendering ability available

in Mitsuba2 [72] to obtain the color intensity for each LEDs set used in our sim-

ulation. The final optimized values were [5.23, 0.00, 0.00], [0.17,6.73,0.00], and

[0.00,0.00,6.83] for red, green, and blue LEDs, respectively.

Gelcore model

Gelcore refers to the translucent supporting structure inside the sensor, as visualized

in Figure 3.6. The geometric model of the gelcore is exported from SolidWorks,

a 3D geometry modeling tool. The gelcore material is modeled as a dielectric

with roughness. The dielectric material model uses microfacet theory[99] with

normals chosen using GGX distribution. The model uses physically accurate fresnel

diffraction terms, which is essential for modeling scattering losses and roughness.

Figure 3.6 shows the comparison between real gelcore, rendered gelcore, and the

material visualization using a spherical ball. For more complex sensor design

materials, one canmodel thematerial as a linear combination of different microfacet

BRDFs using the isotropic GGX parametric model and its parameter could be

optimized using differentiable rendering, as shown in [84].
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Figure 3.5: Gelcore material: The real translucent gelcore in GelSight(left), the
simulated Gelcore(middle) with rough dielectric material model and preview of a
sphere(right).

Elastomer surface

In this section, we define the geometric and material model of the soft deformable

elastomer surface. We use a diffuse material model for the elastomer surface to

match the nature of the material’s reflectance. This material model is parameterized

by a 3-dimensional vector, which describes the ratio of light reflected to that of light

received at the surface. We used [0.50,0.39,0.45] and [0.26,0.23,0.38] for flat gel

surfaces and dome-shaped gel surfaces. Similar to the light intensities, we used

differentiable rendering for optimizing material parameters.

The 3D geometry of the deformable layer is modeled as a heightfield[92]. A

heightfield is a 2D matrix with each value representing height. This representation

allows modifying the geometry by performing image processing operations on the

matrix.

To obtain the deformed elastomer surface when an object is pressed against

the sensor, we subtract the height of the object from the height of the undeformed

elastomer surface. Note that because of the continuity of the elastomer material,

the deformation of the elastomer is a ‘smoothed-out’ shape of the object in contact.

We propose a simplified model of this ‘smoothing out’ effect by convolving the

object’s geometry with a kernel to generate the heightfield of the elastomer surface.

The kernel is defined as

21



3. Optical Simulation Framework

Figure 3.6: Geometric smoothing for approximate surface deformation: Deforma-
tion kernel with p=1 and m=200 used to smooth the heightfield

k(x, y) =
m+ 1

m+ exp (r × p)
(3.1)

where r =
√

x2 + y2, x, y ∈ [−

⌈

6

p

⌉

,

⌈

6

p

⌉

] (3.2)

This is a simplified method to get material deformation around the edges. How-

ever, it is not exact and depends on the depth of the press against the sensor. For

our datasets, we found p = 1 andm = 200work well by looking at the size of edges

in sharp objects. Figure 3.7 visualizes the 3D view of the undeformed heightfield

and deformed heightfield after convolution.

3.2.3 Results and Discussion

In the following section, we describe the data collection process and the experiments

to validate models of light. We then show the sensor simulation when objects of

various shapes contact the sensor at various locations. We used Mitsuba [40],

which is an open-source forward renderer with a rich library of material models

and light transport integratormethods for generating imageswithmodels proposed

in the paper. The key time-consuming raytracing components are implemented in

C++ with GPU acceleration in the Mitsuba renderer. We used Mitsuba’s Python
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Figure 3.7: Heightfield visualization of sensing surface with an indenter: The
interaction of a star pressed against a sensor (left) and the deformed elastomer sur-
face can be represented using a heightfield image (middle) and the corresponding
3D view is shown on the right.

API for rendering all the images. The code is available at https://github.com/

CMURoboTouch/tactile_optical_simulation.

Data Collection

We constructed an optical benchtop setup using Thorlab parts. We mounted the

prototypeGelSight sensor on a XYmovable stage using custom-designed 3D printed

parts. We mounted the objects to be pressed against the sensor on a vertically

movable stage to control the depth of the press. Our experimental setup is shown

in Figure 3.3. The bench-top setup allows for precise control of the depth of press

against the sensor surface and makes static indentations. In the GelSight prototype,

we used a Raspberry Pi V1 camera, as it is compact and allows access to raw images

and jpeg images. We plugged the LEDs into a breadboard which allowed us to

control the individual color LEDs.

We collected 2 datasets of real images using our sensor setup. The first dataset

contains variation along elastomer surface geometry and indentation depth. The

second dataset has a variation on the location of contact on the elastomer surface.

We used a 4mm diameter metal ball and two 3D-printed shapes as shown in

Figure 3.8 for pressing against the sensor. The first dataset contains 36 images in

total with 24 images using flat elastomer surfaces (3 shapes, 2 pressing heights, 4
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Figure 3.8: 3D printed shapes for dataset collection: The image on the left shows
the shapes visualized in a blender and the image on the right shows the real shapes
placed beside a US quarter. These shapes are pressed against our sensor for data
collection.

elastomer surface locations) and 12 dome elastomer surfaces (3 shapes, 1 pressing

height, 4 elastomer surface locations). Dome-shaped elastomer surface was found

to have better light distribution and contact for tactile sensing[106]. This dataset

contains challenging simulation scenarios due to interreflection in a star shape,

sharp edges in a triangle and star, and unknown boundary in a metal ball. The

second dataset contains 16 images in total, and the flat elastomer surface contains

10 locations with the ball and 6 locations with a triangle. This dataset is used to

evaluate if the simulation is able to model the variation in light intensity and color

at different locations on the elastomer surface.

The collected datasets were hand-annotated for finding the object location w.r.t

to the sensor surface. We used the camera parameters to obtain the world coordi-

nates of the objects. The world coordinates of the objects were used to generate

heightfields and place the generated geometry into the simulation environment.

Lighting model

In this section, we evaluate the proposed light model and compare its intensity

and color at different locations by capturing light probe images[17]. The light probe

refers to a polished metal ball placed at the location where the image has to be
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Figure 3.9: Light probe comparisons to visualize illumination inside the sensor:
The first column shows the image from the camera viewpoint. The second column
compares cropped probe images seen from the camera in real and simulated cases.
The last column compares the environment map[17] of the corresponding image.
This image uses our light model without gelcore with optimized scene parameters.
The image shows a close match of simulated and real-world light patterns in terms
of shape and color.

simulated. The light probe image essentially means to capture an image of the

scene with only scene lights(sensor LEDs in our case) and the light probe placed at

the location where the model has to be tested. To capture light probe images from

the real sensor, we removed the elastomer surface and then inserted a metal ball at

the same height as the elastomer surface. Figure 3.9 shows a comparison between

real and simulated images for full camera image, cropped light probe image, and

the corresponding environment map(which represents the light received by the

metal ball in polar coordinates). The light probe images show a close match in the

shape of real and simulated light models.

Evaluation of Sensor simulation

In this section, we bring together the light model, the gelcore material model, and

the elastomer surface model to simulate the GelSight sensor when different objects
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Figure 3.10: Simulation-Real comparison for GelSight hexagon sensor: Compari-
son between real and simulated image along different color channels

Figure 3.11: Comparison of tactile images with indenter at multiple spatial
locations on the sensing surface: The images in the odd row show zoomed-in
real sensor images and a small inset in the bottom right corner shows where the
indentation was made on the original sensor. In all cases, the indentation depth was
1mm. The even row shows images rendered using our system. The comparison
shows a close match in terms of color and intensity of the lighting variation at
different parts of the elastomer surface using our simulation system.
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are pressed against the sensor.

We compare against 2 previous approaches, [88] and [28], which used direc-

tional light and Phong material for elastomer surface to simulate GelSight; [106]

used directional light assumption and diffuse material for elastomer surface to

reconstruct the shape. We use Monte Carlo simulation for both methods as it gives

physically accurate results for material models used in the above approaches.

To find the light intensity of our simulation and comparative methods, we

took images with single-color LEDs switched on in GelSight and used the average

intensity in themiddle of the camera image to scale the corresponding light intensity

in the simulation. For the elastomer reflectance color parameter, we used a single

image with a metal ball pressed in the middle of the sensor and manually tuned the

3-dim RGB reflectance vector. We used the mean squared error between the RGB

image to estimate the parameters. Note: In all our final comparisons, we used sRGB

images for visualization and linear images for quantitative evaluations. Linear

images represent the true radiance received by the sensor for each color channel.

sRGB images represent images that are post-processed for human visualization.

Per channel comparison: We considered a case when a triangle is pressed

against a flat elastomer surface at a depth of 1mm. Figure 3.10 shows the comparison

of RGB channels between the real and the simulated sensor images. The figure

shows a close match in terms of light intensity in all the channels especially high

values on the right side in the Blue channel. Though, we note that the simulated

images have large shadows which are missing in real images. However, the edges

of shapes match closely in real and simulated images.

Spatial variation: For this experiment, we used dataset 2, which consists of

shapes pressed against sensors at multiple locations. As can be in Figure 3.11, our

simulation closely matches the colors and intensities for the smooth ball and sharp

triangles at various locations shown in the inset of the reference images.

Comparison against other methods: For this experiment, we used dataset 1,

which consists of variations along shapes, indentation depth, and elastomer surface

geometry. For qualitative comparison refer to Figure 3.12, we show balls pressed at

different locations in the first 3 columns. Our method closely matches the strong

red color in the 2nd column and the strong green color in the 3rd column. The

directional light model assumes that the light intensity remains constant across
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the elastomer surface. This effect is seen in columns 1-3, where the image remains

the same irrespective of where the ball was pressed on the sensor surface. In the

4th column, only our method shows correct colors at the edges of the star which

has strong interreflections between its edges. This case is only possible to simulate

using ray tracingwhich takesmultiple bounces of light into account while the image

formation process. Columns 7-10 show the comparison of shapes pressed against a

dome-shaped elastomer surface. The dome shape is particularly challenging due to

the concave shape of the elastomer surface, which can have strong interreflections.

As can be seen, our method has correct colors at the edges and shows variation in

color when shapes are pressed at different locations at the sensor. We notice that

previous methods have large grayish ambient color. In a real sensor the intensity

of light increases if the location of contact is closer to a light source. However, the

previous method assumes constant lights and has failed to accurately capture the

color at locations close to light sources.

For quantitative comparison, we used traditional signal processing metrics

like Mean Squared Error (MSE), Signal-To-Noise Ratio (SNR), Symmetric mean

absolute percentage error (SMAPE), and a metric from image similarity literature

SSIM[37]. Since SSIM is insensitive to luminance change, contrast change, and

small geometric distortions. It produces a single number per pixel by finding the

mean, variance, and correlation per channel. To compare images, one can take the

mean over all the pixels to obtain a single number for the image known as Mean

SSIM, which we use in this paper. We used a cropped patch of 600× 600 around the

indented shape for calculating metrics. Table 3.1 shows the average metric values

calculated using images from both datasets. We consistently outperform previous

methods in a range of image similarity metrics.

Figure 3.13 shows the qualitative comparison of larger and more complex 3D

shapes simulated using our system.

Timing and image quality trade-off

We use Monte Carlo process in our simulation which uses multiple samples per

pixel to obtain the color of that pixel. Therefore the total time taken to render each

image and its quality is a function of sample-per-pixel(spp), length of light path(l)
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Figure 3.12: Qualitative comparison between different simulation methods: The
baseline methods are able to capture color and intensity around the center region.
However, only our method is able to capture the spatial variation and matches well
with the real sensor images for multiple object geometry and elastomer surface
geometry.

Figure 3.13: Simulation-Real comparisons for complex 3D shapes: Comparison
of simulated and real tactile images. Real images were collected by pressing the
objects 1mm against the sensor surface

29



3. Optical Simulation Framework

Table 3.1: Comparison of the simulated tactile images and the real ones on different
metrics. The ↓ arrow shows that a lower value is desired and vice-versa.

MSE ↓ SNR ↑ SMAPE ↓ SSIM ↑
Diffuse surface
+ Directional
Light[106]

0.004 2.705 0.839 0.387

Phong shading
+ Directional
Light[28]

710.618 -50.152 0.828 0.388

Our method 0.001 8.562 0.445 0.841

and size of the image(h x w). The quality of the rendered image and computation

time both increase if we increase any of the mentioned parameters. We found in our

experiments spp = 8, l = 4 for rendering image size 600 x 600 leads to frame rates of

10Hz and is optimal. While keeping image size and l constant, the timings for spp

4, 8, and 16 are 64ms, 95ms, and 174ms. Figure 3.14 shows the image comparison

with varying spp. While keeping spp and l constant, the timings for image sizes

128x128, 256x256, 512x512, and 1024x1024 are 33ms, 36ms, 55ms, and 126ms. These

runtimes were recorded using python3.7 timeit module on a 32 CPU core machine

with GeForce RTX 2080Ti for a scene with 318510 geometric faces.

Figure 3.14: Rendering speed versus noise: Qualitative image comparison of
images rendered at different spp
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3.3 Optical simulation for advanced tactile sensors

A novel vision-based tactile sensor with a curved tactile sensing surface was intro-

duced in [77]. Since then, there have been numerous attempts to develop tactile

sensors with curved sensing surfaces [19, 73]. Curved sensing surfaces enable dex-

terous robotic manipulation [6] without the need for reorientation of the robotic

arm to perceive objects from multiple sides [77]. It also enables a large contact area

when the object is being manipulated without arm reorientation. Therefore, there

is a significant interest in developing curved tactile surfaces. Since our simulation

framework is general enough to allow the simulation of curved tactile sensors, we

can guide the design of the same. In the following section, we give an overview

of a human fingertip-like curved tactile sensor, propose real2sim simulated model

calibration methods, and compare full sensor simulation.

3.3.1 Human finger-like curved tactile sensor

Figure 3.15 shows the exploded view of the curved tactile sensor. The sensor

consists of a hard plastic shell, soft elastomer, and a coated external layer. The

sensor uses light piping through the hard plastic shell to allow light to reach all

parts of the tactile sensor. This allows for the recovery of surface normals using

color information.

Figure 3.15: Curved tactile sensor: (A) shows the exploded view of the curved
tactile sensor. (B) shows the path diagram as light travels from light to camera.
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Figure 3.16: Path Tracing illustration:(A): image construction process in terms of
light paths starting from emitters, hitting single or multiple objects, and reaching
the camera film. (B) Path diagram in a curved tactile sensor

3.3.2 Optical simulation method

In this section, we review light transport simulation techniques and discuss the

specific algorithm Langevin Monte Carlo Rendering, which we use throughout this

work to simulate curved tactile sensors. For a detailed description of path tracing,

see Appendix A.

We leverage the Markov chain Monte Carlo light transport technique for simu-

lating light paths inside the sensor. Specifically, we use Langevin Monte Carlo [63]

to generate images as given out by the tactile sensor scene. We briefly describe

light transport integral; how to use Monte Carlo to estimate the integral; leverage

Markov chain Monte Carlo in the MC process; use Langevin Monte Carlo to gener-

ate samples in the MCMC process, which proposes general changes in light paths

by building a differentiable geometry local approximation.

Light transport can be expressed by the following path integral

Ij =

∫

Ω

hj(x̄)f(x̄)dµ(x̄), (3.3)

where Ij is the pixel value of the j-th pixel, Ω is the space of all possible light

paths. A light transport path x̄ ∈ Ω is a collection of line segments in the world

that represent the trajectory of light traveling in the scene, with the first vertex on
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Figure 3.17: Path mutations in MCMC techniques: The figure is reproduced from
[45]. It shows path mutations in the path-space by changing the vertex locations
of the path shown in bold line style. The right side shows how these mutations
can be traced to mutations in the primary sample space (PSS) of random numbers.
PSSMLT and LMC techniques perform mutation in PSS.

a light source and the last vertex on a camera. Therefore, a path of length k can

be represented as a vector of k + 1 vertices x̄ = (x0, . . . , xk). The path contribution

function f gives the amount of light energy transported along the path x̄. hj is the

response of the pixel j and µ is the measure associated with the path space Ω. The

path integral is solved using Monte Carlo integration as it is a high-dimensional

integral. Given some way to generate paths x̄i with probability p(x̄i), the Monte

Carlo integrator estimator is given as follows.

⟨Ij⟩ =
1

N

N
∑

i=1

hj(x̄i)f(x̄i)

p(x̄i)
(3.4)

In Markov chain Monte Carlo light transport methods, i.e. Metropolis Light

Transport(MLT) [98], path generation occurs with a probability proportional to

the scalar luminosity of the light path contribution to the image f ∗(x̄) = lum(f(x̄)).

Therefore the resulting Monte Carlo estimator becomes

⟨Ij⟩ =
Pb∗

N

N
∑

i=1

hj(x̄i)f(x̄i)

f ∗(x̄i)
, (3.5)
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where P is the number of pixels and the start-up weight b∗ is calculated from

the set of initial samples generated by bidirectional path tracing techniques. In

the original MLT method, the authors proposed three local mutations and used

Metropolis-Hastings to select the proposed path. Kelemen et al. [45] proposed to

perform MCMC sampling in the space of random variables used to generate paths,

called Primary Sample Space (PSS). This led to a simple implementation and a simple

mutation that is effective at local exploration while improving global exploration as

well. Figure 3.17 shows the mutations in PSS. The Monte Carlo integration using

the PSS becomes

⟨Ij⟩ =
Pb∗

N

N
∑

i=1

hj(m(ūi))C(ūi)

C∗(ūi)
, (3.6)

where C(ū) = fm(m(ū))
pm(m(ū))

for the mapping functionm, such that m(ū) = x̄.

For simulating curved tactile sensors, we use Langevin Monte Carlo(LMC) [62]

that uses differentials of the target function, instead of manually defined mutations,

to propose new mutations effective in local exploration. This technique has two

technical advantages: a) it can potentially propose better mutations as it takes

differential of geometry, illumination, and material property into account while

generating new proposals, b) it can lead to higher acceptance rates, thus reducing

the chance of a chain getting stuck in local minima. In practice, we found that

the algorithm is superior to all previous approaches for exploring highly curved

surface geometry with specular or glossy material. The finger-shaped tactile sensor

which we aim to build in this work has a highly curved geometry with light piping

through the refractive surface; hitting a glossy outer surface and refracting back to

the camera.

3.3.3 Real2sim simulation model characterization

Previous attempts at tactile sensor design are based on intuitively buying and testing

various components. Since our simulation framework is novel in the world of tactile

sensor design, we had to calibrate simulation models to accurately reproduce tactile

images as generated by our prototype.

34



3. Optical Simulation Framework

In this section, we will go over two simulation model calibration steps that were

essential to accurately render images using PBR - a) how to accurately model the

BRDF of the coating material used on the outermost sensing surface and b) how to

obtain an accurate light profile of LEDs used in our hardware prototype.

BRDF Characterization

[36, 56, 77] choose different coating materials made up of metal flakes of various

particle sizes and in various types of individual particles. However, these works

do not characterize the material or create a model in terms of BRDFs (useful for

generating novel designs in simulation), which can be easily shared to identify

the correct coating required or analyze the effect on tactile sensor performance.

Levin et al. [49] showed that the BRDFs for metal powder coating with varying

particle sizes are well approximated as a mixture of diffuse and specular BRDFs.

Motivated by this result, we model the BRDFs of 2 coating powders - a)Aluminium

Powder(1µm spherical particles) b) Bronze Powder (industrialspec.com 12µm);

as a Blended BRDF of Diffuse and RoughConductor components. To calibrate this

model, we created a simple setup to capture BRDFs of these metal coating as shown

in Figure 3.18B. Our setup consists of a monochrome camera, color filter array,

collimated light source and cylinder whose front half(surface facing the camera)

is painted with the coating material. We perform High Dynamic Range(HDR)

process to capture images such that the pixel values are proportional to radiance.

We replicate the scene in simulation and fit parameters of our Blended BRDF

model to match the radiance along a horizontal strip on the cylinder as shown in

Figure 3.18C. Specifically, we fit 3 diffuse reflectance terms, 1 specular roughness

term, 6 complex index of refraction term and 1 mixture coefficient term. Through

our experiments, the coefficients for semi-specular Bronze coating are (diffuse

reflectance=(0.8, 0.5, 0.3), roughness=0.175, eta=(0.475 0.576 0.764), k=(0.877

0.811 0.631), mixture coefficient = 0.85) and coefficients for Aluminium powder

with spherical particles are (diffuse reflectance=(0.37, 0.4, 0.37), roughness=NA,

eta=NA, k=NA, mixture coefficient = 0.0).
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Figure 3.18: Simulation model characterization for illumination and surface
coating. (A) Illumination model characterization: i) Scene setup illustration con-
sists of a collocated camera, light source, and a diffuse plane; ii) Comparison of
radiance profile(across the yellow region) between the physical light source and
simulated light model; iii) Real image captured using our scene setup from a real
LED light source(OSRAM LRT64F); iv) Simulated image using the calibrated light
profile. (B) BRDF Acquisition Setup: The acquisition setup consists of the colli-
mated light beam(Prizmatix UHP HCRI+ 200mm Nikon AF-S lens) shining on a
cylinder(fabricated using transparent PDMS mixture) with coating powder under
inspection and monochrome camera(Prosilica GX camera) with color filters of
wavelengths 450 nm, 53 nm, and 660 nm. (C) BRDF Characterization Results: (i)
and (iii) show HDR captured using our BRDF acquisition setup, shown in (B). (ii)
and (iv) show images obtained using our simulation framework with replicated
acquisition scene. In figure (v), we compare the measurements for Bronze coating
along a horizontal row(as shown in the red box), between the Real (i) and Simu-
lated (ii) image. We can closely match radiance measurements for all 3 color values.
We repeat the experiment for Aluminium coating and show obtain a good match in
figure (vi). (D) Full vision-based tactile sensor comparison: (i) Shows the camera,
vision-based tactile sensor, and indenter scene setup, which we used to analyze
our designs. (ii) and (iii) show the images simulated using Blender EEVEE and
Blender Cycles renderer respectively. (iv) HDR image simulated by our framework
using calibrated simulation models. Our simulated results are a close match to the
physical prototype as we can reproduce a)Bright light stripes due to focused LEDs
and b) Light piping of red color from the right to illuminate the spheres on the left
and similarly for blue color. (v) HDR image captured with our hardware tactile
sensor prototype, when the sensor is indented with a set of spheres.
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3.3.4 Light Model Characterization

Padmanabha et al. [73], Taylor et al. [90], Wang et al. [100] have used various

LED light sources with unknown near-field light profiles. The LED manufacturer

provides either very sparse or no data about the light profile for these LEDs.

To capture the near-field illumination through various physical light sources,

we developed a new light model with a finite area and Illuminating Engineering

Society (IES) profile for a point on that surface. The IES profile is an industry-

standard data format to specify radiance emitted along a direction distributed on a

unit sphere.

In this section, we present a simple calibration step for finding the IES profile for

the light sources. Our setup is as shown in Figure 3.18A. The setup consists of a collo-

cated Raspberry Pi camera(v1), a light source under inspection, and a diffuse plane

(calibrated A4 white paper). We perform the HDR process for obtaining radiance

image andmanually fit a function f(θ, ϕ) = 2 exp
{

−
(

a tan θ cosϕ
)2

−
(

b tan θ sinϕ
)2}

.

We reproduce the setup in simulation and render the same scene with the calibrated

light profile. The fitted light profile parameters for OSRAM LRT64F and OSRAM

LBT64F were (a, b) = (4, 3.33) and (a, b) = (5, 2.5) respectively.

We found that if the LED has a flat lens, then AreaLight with the corresponding

physical dimension is a good enough model for the light. We specifically charac-

terized the Chanzon 5730 SMD LED using the AreaLight model. In Figure 3.19 we

show that using this analytical light model we are able to closely match the radiance

values in real and simulated images.

3.3.5 Fluorescent material characterization

GelSight FinRay sensors use fluorescent paint for illumination. Therefore, in this

section, we introduce the fluorescent material model and simplified fluorescent

simulation technique in PBR. In the first part, we will describe the simplified model

for fluorescent paint and its calibration process. In the second part, we will describe

the simplified simulation model of fluorescence lights in the PBR framework that

allows us to simulate the full sensor.
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Figure 3.19: Characterization of flat-lens LEDs: In this visual, we calibrate the
Chanzon 5730 SMD green LED using the AreaLightmodel. The radiance plot shows
a close match between the real and simulated images.
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Figure 3.20: Fluorescent model and calibration setup: (A) shows a canonical
fluorescent material model [38]. It consists of absorption and reemission spectra
whose peaks are separated by Stokes’ shift. (B) shows the imaging setup we created
to capture the reflectance at the excitation wavelength, λ = 450nm for calibrating
fluorescent paints used in GelSight Fin Ray.

Fluorescent paint calibration For accurate simulation, we need to calibrate the

fluorescent paints used in the sensor. Our imaging setup consists of a CM3-U3-

13Y3C-CS 1/2" Chameleon color camera, 450 nm Blue Alignment Laser Diode Mod-

ule (Edmund Optics) and 8 color filters with central wavelengths – 405 nm, 450 nm,

500 nm, 532 nm, 560 nm, 600 nm, 630 nm, and 660 nm. We calibrated two fluorescent

paints (Liquitex BASICS Acrylic Paint Red Fluorescent ASIN B07F48YG5F and

Liquitex BASICS Acrylic Paint Green Fluorescent ASIN B07F48WZWL) made in a

flat sample. The calibration setup is shown in Figure 3.20. We assumed that the

fluorescent paint is diffuse in nature – for any incident direction, the amount of

outgoing light radiance remains the same.

A fluorescent material could be characterized by absorption and emission spec-

tra. The first defines which incident light wavelengths are absorbed and lead to

re-emissions. The second describes the amount of re-emission across all incident

wavelengths. The difference between the spectral positions of the band maxima

of absorption and re-emission is called a Stokes shift [69]. According to [117], if

the spectra are not very spiky, absorption and emission spectra can be modeled

by a 4-parameter analytic distribution, a variant of skew Cauchy distribution. The
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Figure 3.21: Fluorescent paint calibration: This shows the comparison of measured
emission spectra and simulated emission spectra using a 4D parametric model for
red fluorescent paint (left) and green fluorescent paint (right).

spectra value at wavelength λ is given by the function

f(λ|λ0, γ, ω,h) =
h

[γ2 + (λ− λ0)2]

{

1

π
arctan

[

ω(λ− λ0)

γ

]

+
1

2

}

(3.7)

where λ0 is the peak wavelength, h is height parameter, γ is width and ω is the

skewness parameter. Wemanually fit themeasured data and choose Stoke’s shift for

the paint to be 100 nm and 50 nm for red and green fluorescent respectively, based on

reflectance data. For calibrating the non-fluorescent reflectance, we collected images

in room light and matched them to the closest color in a traditional colorchecker.

We found that the non-fluorescent reflectance of the red and green fluorescent paint

is very similar to colorchecker Red and Green colors respectively.

Fluorescent simulation model We found that the fluorescent effect leads to a

reflectance of around 2% - 5% at the desired wavelength. In addition, it depends

on the incident excitation wavelength. For a fast approximate model, we created a

textured light source whose intensity is proportional to the distance from the center

of the blue light source. The color of the LED is chosen based on our calibration

model in the previous section. Pictorially, the fluorescent light source looks as

shown in Figure 3.20. Our components modeled in the optical simulation are
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Figure 3.22: Approximate rendering of fluorescent lights: This image shows the
visual of the efficient rendering of fluorescent paint lights using our parametric
reflectance model for simulating GelSight Fin Ray sensor.

shown in Figure 3.22. Thereafter, we use GPU path-tracing to generate all the

images.

3.3.6 Full sensor Renderings

Given the rendering algorithm and the calibration methods for simulation models,

we can reproduce the images which are a close match to the images collected from

our hardware prototype. Figure 3.23 compares the simulated tactile images with

real world prototype tactile images for human-finger tip sensor and GelSight FinRay

sensor. Figure 3.23A highlights 2 key feature matches a) bright stripes of LED light

in simulation and physical tactile sensor prototype b) Light piping of red color from

right to illuminate the spheres on the left and similarly for blue color.
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Figure 3.23: Sim2Real comparison of challenging variants of GelSight sensor:
(A) shows the comparison of simulated and real tactile images with and without
sphere indentation for human-finger tip sensor. (B) shows the comparison of
simulated and real tactile images with indentation for GelSight FinRay.
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Chapter 4

Sensor Design Framework

4.1 Introduction

In this chapter, we leverage our optical simulation framework to propose a sen-

sor design framework for vision-based tactile sensors. The design framework for

vision-based tactile sensors consists of three steps: sensor generation, physics-based

simulation, and automatic design score calculation, as shown in Figure 4.2. In the

following section, we present a discussion of design goals and present our frame-

work with a human fingertip-like sensor as a case study. We present a sensor

design space and an automated design solution using our framework for curved

sensor design. We then highlight the utility of our optimized design in 3D surface

reconstruction task in simulation and real-world tasks. We also present two robotic

applications, robotic grasping and robotic surface inspection.

4.2 Design Goals

A well-designed vision-based tactile sensor [90] can output 3D shape information

(geometry normal), detect incipient slip and estimate the spatial distribution of 3D

contact forces using simple image processing and calibration steps. The key princi-

ple used to obtain high-resolution shape is model-based photometric stereo [44].

This constrains the design space as it requires that at least three colors of light

43



4. Sensor Design Framework

Figure 4.1: Curved sensor illustration and proposed design framework. (A) A
human hand and a robotic hand with tactile sensors manipulating an egg. The
right-most figure shows the zoomed-in version of the fingertip GelSight sensor. In
(B) shows the exploded view of the fingertip sensor and important optical compo-
nents. (C) illustrates a light path propagating inside the sensor and contributing
to the tactile image. (D) shows the design pipeline - we start with sensor shape
generation, using a low dimensional curve parameterization, selection of sensor
material properties, and illumination system design, to procedurally a new design.
Finally, in (E) we use gradient-free optimization to choose the best sensor shape,
illumination, and sensing surface coating material. We subsequently manufacture
the optimal sensor and test it on various robotic applications.
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Figure 4.2: Procedural sensor generation and design evaluation framework. (A)
(i) shows the assembled view of a virtual sensor, (ii) shows the exploded view of
the sensor, composed of 3 surfaces—Surface 1 (S1), Surface 2 (S2), and, Surface 3
(S3)—and (iii) shows procedural sensor mesh generation using low-dimensional
curve parameterization and CAD primitives. (B) Sensor design scoring using a
new RGB2Normal scoring function based on tactile images of surface indentation.
This scoring function correlates with 3D shape reconstruction of indentation on
tactile sensors.
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Figure 4.3: Cuved sensor design results: (A) shows the design of light type and
its corresponding objective score. (B) shows the 2D curve parameterization for
the sensor shape design. (C) shows the results of sensor shape optimization.
We outperform the initial design and human-expert design in terms of our novel
RGB2Normal objective score.

uniformly illuminate the sensing surface from directions, which do not lie on a

plane [9] - illumination constraint [90, 107].

This illumination constraint can be challenging to satisfy if light sources are not

placed appropriately. For example, DIGIT [47] was designed with the objective

of miniaturization and a repeatable manufacturing process. However, for easy

assembly designers placed light sources that are directly illuminating the sensing

surface. This leads to two problems, as can be seen in Figure 4.3A: a) cast shadows,

leading to shadow areas unusable for sensing [44] as shadows can not be directly

mapped to a surface normal, b) non-uniform illumination of the sensing surface.

Moreover, DIGIT offers a single flat tactile sensing surface as compared to a curved

tactile sensing surface. Similarly, OmniTact[73] was designed with the objective of

multi-directional sensing with a curved surface and small form factor. However,

illumination constraint was not a consideration. Therefore, to perform perception,

authors had to perform costly calibration steps using manually designed hardware

setup and neural network training. Moreover, the sensor is prohibitively expensive

due to the use of five endoscopic cameras.

Specifically, our design goals for the tactile sensors are as follows:

• Accurate 3D surface reconstruction: Ability to map RGB color information
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to surface normals allows multiple types of rich contact state feedback(shape

and force[64, 90]) at real-time speeds without large-scale data collection.

• Curved Sensing surface: Tactile sensing with a curved sensing area like a

human finger is highly desirable[77]. This allows for a larger contact area

without performing re-orientations of the robotic arm.

We choose our sensor design space to satisfy curved sensing surface design goal.

To satisfy the design goal of performing 3D surface reconstruction, we designed a

novel objective function, termed as RGB2Normal score, for rating various designs

by considering indented locations. We used spherical indenters across the sensing

surface as shown in Figure 3.18D.i. Algorithm 1 describes the objective function

calculation. The key idea is that mapping between color and normal should be

linear in background subtracted RGB images at the indented locations. Intuitively,

this encodes that the sensor design generates images that will have efficient normal

recovery from RGB images and will lead to better 3D shape reconstruction. The

proposedmetric is a goodproxy for 3D surface reconstruction, as it is fast to calculate

and does not require any calibration step.

4.3 Design Space Overview

Given a simulation framework and an efficient objective function to evaluate sensor

design, we now explore a few design spaces and showcase how to improve tactile

sensor designs. Specifically, we show a) illumination design by user-guided varia-

tion of the light model and b) tactile sensor shape design using low-dimensional

sensor shape parameterization and using gradient-free optimization.

4.3.1 Illumination Design

We address the question - what is the best illumination profile of individual light sources?

The objective of the illumination parameter design is to obtain uniform illumination

on the sensing surface without any highlights or dark regions and to show a high

RGB2Normal score.

Light source type: In the past sensors[77][90], light sources with lenses have

been used for providing illumination inside the sensors. However, there are no
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Figure 4.4: RGB2Normal evaluation criteria method: In A, we show the linearity
fit calculation (P-value) for a single indenter location. We use the θ value of surface
normals and dominant color for calculating the linearity score. We average the
score across multiple dominant directions (B). To account for spatial variation in
our evaluation criteria, we average the value across multiple contact locations one
by one. The final calculation is given in D.
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Algorithm 1 RGB2Normal Score calculation

Require: p̄: design parameters
ϕ: threshold

1: /* Initialization */
2: Score = 0;
3: numValidFits = 0;
4: /* Simulate background RGB image I and indented RGB image Î .SeeF igure2B.iii */
5: I ← SimulateRGB(p̄)
6: Î ← SimulateRGB(p̄, indenterPixelLoc)
7: ∆I ← I − Î ▷ Calculate difference image

8: /* Generate background normals N and indented normals N̂ . See Figure 2B.iii */
9: N ← SimulateNormals(p̄)
10: N̂ ← SimulateNormal(p̄, indenterPixelLoc)
11: ∆N ← N − N̂ ▷ Calculate difference in surface normals
12: /* Calculate contact mask by checking the difference in surface normal */
13: Mask← ∆N > 0
14: /* Use image processing to extract contact regions. See Figure 2B.iv */
15: C1, C2, . . . , Ck ← findContours(Mask)
16: numContours← k

17: /* Fit a tight bounding box around the contact region. See Figure 2B.iv */
18: for i = 1, . . . ,numContours do
19: Bi = fitBoundingBox(Ci)
20: θ, ϕ← SphericalCoordinates(N)
21: /* Extract ellipse center by maximizing the θ field over indented location */
22: sphereCenter = findCenter(θ)
23: /* Iterate over all indenters and calculate local scores. See Figure 2B.vii */
24: for j = 1, . . . ,numContours do
25: /* Iterate over all directions. See Figure 2B.vi */
26: for all dir ∈ {←,↖, ↑,↗,→,↘, ↓,↙} do
27: /* Get pixel coordinates of indented locations along the chosen direction from

the center */
28: (coordX, coordY)← extractPixelLocations(sphereCenter, dir,Mask,

∆I , N, ch, ϕ)
29: /* Project 3D color information to 1D using Principle Component Analysis.

See Figure 2B.v */
30: ProjColorVec = PCA(RGB{coordX, coordY})
31: /* Obtain the fit parameters and goodness of line fit. See Figure 2B.v */
32: slope, rValue← lineFit(ProjColorVec, θ{coordX, coordY})
33: /* Add the rValue to the cumulative score if the line fit succeeded. See Figure

2B.v */
34: if Isvalid(slope) then
35: numValidFits← numValidFits+ 1;
36: Score← Score+ {rV alue+ λ(max (ProjColorVec))−

min (ProjColorVec))};
37: /* Take the mean over all line fit goodness scores */
38: Score← Score/numValidFits
39: return Score
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guidelines on what should be the profile of outgoing light rays. Therefore, in this

section, we experiment with 3 light profiles - a)calibrated IES light source b) spot

light source c) area light source; and discuss their effect on the sensor illumination.

Figure 4.3B shows RGB images generated with and without sphere indentations(as

shown in Figure 3.18D.i). We can clearly see that the area light source, which emits

light in all directions in the positive half of the hemisphere, is the best-performing

illumination design in Figure 4.3B.iii. It doesn’t have bright streaks of light and

has the highest RGB2Normal score of 0.973, as can be noted through the coloration

of spheres in the last column. We choose area lights entering both hard and soft

regions of the sensor for all the subsequent experiments and in the final prototype

for real-world experiments.

4.3.2 Sensor shape design using parameterized curves

Changing the shape of a tactile sensor is a challenging problem. The shape of the

sensor has a significant impact on tactile perception by modifying the path of light

rays from the illumination source to the camera in a non-linear way. In previous

vision-based tactile sensing works [77] [73], either the sensing surface is kept flat

or chosen arbitrarily. However, there are no guiding principles to design the tactile

sensor shape if the sensor form factor has to be modified due to robotic constraints.

In this section, we present the first method to procedurally generate sensor designs

and use the proposed RGB2Normal objective function to automatically generate a

tactile sensor. Specifically, we set out to generate curved tactile sensors for a class

of tactile sensors proposed in [77], using a low-dimensional parameterization and

setup the sensor shape design as an optimization problem. Having a compact

representation for shape spaces allows one to design in a controllable manner[78].

We can compose the tactile sensor from 3 curved surfaces as shown in Fig-

ure 4.2A. The key idea is to generate a curved surface from 2D curves followed by

CAD primitives of extrusion and rotation about a given axis. The process is as shown

in Figure 4.2A. We chose 2 ways to generate 2D curves - a)composition of ellipse arc

and straight lines and b)collection of cubic B-splines. Both methods allowmodeling

sensor shapes (geometries) that are C1 continuous and can be manufactured using

accessible fabrication techniques.
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Formally, the sensor shape is given by 3 curved surfaces(shown in blue in Fig-

ure 4.2B) - S1(x), S2(x) and S3(x) , each of which is generated with a corresponding

2D curve C1(x), C2(x) and C3(x).

With ellipse parameterization, the curve C1 is composed of a half-ellipse with

parameters rd1 , r
d
2 and add straight line segments with length h on both sides sym-

metrically, as shown in Figure 4.3C.i.

With cubic B-splines parameterization, the curve C1 is composed of a group of

cubic B-splines passing through control points. For the curved sensor family used

in this paper, we generate a cubic B-Spline C1, by placing 7 control points with

locations {(p1, 0), (p2, p3), (p5, p6), (0, p4), (−p5, p6), (−p2, p3), (−p1, 0)}, as shown

in Figure 4.3C.ii.

The 2D curve is then used to generate the outermost sensing surface S1 by

extruding for length e along the z − axis(as shown in Figure 4.2A.ii) and the right

half of the curve C1 is rotated about y − axis for 180o to obtain the top curved part

of the sensor(as shown in Figure 4.2A.iii). The process for generating the surface

C2 and C3 is similar with appropriate parameter values.

In all designs, we place the camera at the origin and place light sources along

the periphery of the shells, as shown in Figure 4.2A.iv. We use the extrusion length

e = 28mm in all the shapes in this paper.

Innermost surface optimization: We use the above parameterization to formu-

late the problem of the refractive epoxy surface design. This allows us to change

the optical properties of the sensor while keeping the mechanical tactile response

the same. We optimize for the innermost surface geometryS3 while keeping the S2

and S1 the same. Formally, the optimization problem with ellipse sensor parame-

terization is defined as follows.

argmin
re
1
,re

2

RGB2Normal (generateSensor(re1, r
e
2)) (4.1)

For our experiments, we used a gradient-free evolutionary algorithm, CMAES[34],

for optimization of the refractive surface geometry. We consider 2 baselines, an

initial design that consists of a flat plane surface instead of a shell surface and a

human-expert design with parameters re1 = 8 and re2 = 8. The radius range is

manually chosen as (6, 10). The smallest radius was constrained by the camera
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dimensions and the largest radius was constrained by the soft-sensing PDMS vol-

ume. Our optimization resulted in the design with parameters re1 = 7.12 re2 = 6.02.

Figure 4.3C.ii shows the comparison of our optimized design with the initial design

and a human-expert design[77].

3D surface reconstruction evaluation in simulation

Akey benefit of vision-based tactile sensors is their ability to provide high-resolution

3D shape information about the contact surface. Local 3D geometry of the object

is useful for various robotic tasks, e.g., object pose estimation[10, 83], force distri-

bution estimation [64], and object regrasping [11]. We highlight the utility of our

sensor shape design procedure in this task in simulation.

Surface reconstruction requires 2 steps: (a) creating a mapping from color to

surface normals; (b) integrating surface normals into surface depth information

to recover the point cloud. For calibration, we rendered a single image with 5mm

spheres indenting the sensor surface and fitted a tiny Neural Network to predict

surface normal from color information. We used perspective Poisson integration to

recover the surface depth from the predicted surface normal field.

Figure 4.5 compares the performance between the human-expert design and

the optimized sensor design for surface depth recovery. We indent the sensing

surface at multiple locations on the whole sensing surface. We notice that both

designs can perform well on surface normal recovery. However, the surface normal

error map shows that the human-expert design has a high value at non-edge pixels.

However, the optimized design has large surface normal errors only on the edges.

The probable reason for the high surface normal recovery error for both designs

on edge pixels is the sudden change in color values and less training data for edge

pixels.

Due to a better surface normal distribution in the optimized design, the surface

depth reconstructions are significantly better than the human-expert design. We

obtain 26.65% error on projected depth error metric as compared to 34.47% error by the

human-expert design on 3 different shapes - 5mm sphere, natural texture(texture

1), and M4 screw. Figure 4.5 provides the description for all the shapes at multiple

sensing locations.
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Figure 4.5: 3D surface reconstruction in simulation: (A) and (B) shows the result
of 3D surface reconstruction for a sphere indenter and a texture indenter.
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4.3.3 3D surface reconstruction evaluation using manufactured

prototypes

We fabricated the designs discussed above to test on real objects. For details on

fabrication, please refer to Appendix D. We compare the performance of the two

designs qualitatively on surface reconstruction and quantitatively on normal recov-

ery on different parts of the sensing surface. For qualitative comparison, we used

3 objects - icosahedron, cloth texture, and US quarter coin. Figure 4.6 shows the

RGB images, the predicted surface normals, and the reconstructed surface depth.

For the icosahedron shape, the human-expert design has uneven background due

to saturation as compared to the optimized design, there is no error in the back-

ground. For the cloth texture, the fine-grained normals are hard to recover due

to color saturation along the bright regions. However, optimized design is able to

faithfully recover the cloth texture with subtle changes in the normals. For the US

quarter coin, we can clearly see the text in the optimized design as compared to

the human-expert design. Therefore, qualitatively our optimized sensor design

performs significantly better than the human-expert design.

For quantitative surface normal recovery comparisons, we plot predicted surface

normal vs. ground truth surface normals at the different parts of the sensing surface,

as shown in Figure 4.6.

4.4 Characterization of the parameter space

In this section, we use our framework to understand the effect of changing design

parameters on the RGB2Normal objective function and sensor perception. To this

end, we perform simulation while varying - a) the Thickness of the hard epoxy

shell, soft PDMS volume, and coating material of the sensing surface; b) refractive

indices(IOR) of the Epoxy surface and the interface between soft PMDS volume

and hard epoxy shell(as shown in Figure 4.2B). These experiments allow us to

derive high-level guidance on designing vision-based tactile sensors.
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Surface Normal RecoverySurface Depth Reconstruction
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Figure 4.6: Real world results 3D reconstruction results: (A) shows the qualitative
results for human-expert design and optimized sensor design. (B) shows the
surface normal recovery ability of human-expert design and optimized sensor
design. The optimized sensor design is able to recover the surface normal very well
on the off-center locations.

4.4.1 Effect of changing sensor thickness and surface coating

material

In this section, we vary the thickness of hard epoxy shell(t1) and soft PDMS

volume(t2) for 6 classes of coating materials. The thickness parameters (t1, t2)

is chosen from [1, 3]× [1, 3]with step-size of 0.5. In all the cases, we kept the sensing

surface profile to be fixed to a 2D curve generated using ellipse curve parameterization

with r1 = 14.5 and r2 = 14.5. These parameters were chosen to be similar to a

human finger and be able to accommodate a Fish-eye lens camera. We use the

extrusion length e = 28mm in all the shapes. All the dimensions are in millimeters.

Figure 4.7B shows the regions affected by the thickness parameters. Figure 4.7A.ii

shows the effect of varying (t1, t2) with a material coating which is completely

diffuse(as used in [107]). Similarly, all the subfigures compare designs with a

specific coating material specularity for a range of thickness values. By comparing

all the subfigures, it is apparent that for a curved tactile sensor higher specularity

offers higher sensing performance. Figure 4.7C.ii and Figure 4.7C.v specifically
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show the performance of the sensors created using real material properties, diffuse

powder, and semi-specular metal powder, respectively. In the bottom row, we can

visually inspect the designs by using the simulated RGB images when they are

indented by a group of spheres. Note, that our RGB2Normal objective function

correctly identifies designs with better qualitative perception by showing higher

objective function value.

4.4.2 Effect of IOR

: For this experiment, we analyze the effect of changing the Index of Refraction(IOR)

of Hard Epoxy shell-Air interface ηepoxy(Figure 4.2B Epoxy Surface) and soft PDMS

volume-hard Epoxy shell interfaceηPDMS(Figure 4.2A Interface Surface). The region

is also highlighted in Figure 4.7A. The IOR affects the direction and intensity of light

as it crosses the surface boundary between different materials. This experiment

is prohibitively expensive to perform in the real world. Generating transparent

materials with specific IOR requires experimenting with mixing coefficients in the

lab, which is very tedious. Thus, we modify the IOR pair and assess the sensing

performance in simulation. We vary the ηPDMS from [1.4, 1.5] and ηepoxy from [1.5, 1.6].

The ranges represent the materials that we can physically manufacture in our lab.

We initialize the sensor shape with surfaces generated using 2D curve generated

using ellipse curve parameterization with rd1 = 14.5, rd2 = 14.5, t1 = 4.4, t2 = 1.69

and e = 28. The dimensions were chosen to match the physical prototype we

manufactured in the lab. All the dimensions are in millimeters. Figure 4.7B shows

the RGB2Normal objective function when IOR is varied in the above range. We

identify that for ηPDMS = 1.46 and ηepoxy ∈ [1.58, 1.6] lead to high RGB2Normal

objective value = 0.81, for the chosen shape. The key observation is that the sensing

performance is low when the refractive indices, ηPDMS and ηepoxy are close to each

other, according to Figure 4.7B rows ηPDMS = ηepoxy.

4.5 Robotics Applications

To demonstrate the potential of our optimized design, we show 2 robotic tasks by

integrating our sensor on a robotic arm. The first task shows the ability to perceive
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Figure 4.7: Parameter Space Exploration: (A) shows the sensor illustration with
important parameters which we consider for exploration. For parameter space
visual, we plot the RGB2Normal objective score for a given design. (B) plots the
variation of refractive indices η1 and η2 for hard shell and soft elastomer region,
respectively. (C) plots the variation of elastomer thickness and hard shell thickness
for 6 sensing surface coating materials. We also show the tactile image with a
surface spherical surface indentation for some cases to qualitatively compare the
designs.
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and grasp various daily-use objects from the YCB dataset. The second task shows

the utility of a curved sensing surface in automatic robotic surface inspection. In

all the cases, we compare 2 designs - human expert design and optimized design.

The human expert design is referred to as Design A in the following text.

4.5.1 Robotic Grasping experiment

In this section, we show the grasping capability of the optimized sensor. Figure 4.8

shows the sensormounted on a 5-degree-of-freedom robotic arm andWeiss parallel-

jaw gripper. We grasp 3 objects from YCB[12] dataset - a Yellow Mustard bottle, a

Lego piece, and a door lock key. These objects were chosen specifically to highlight

that even with a limited degree of freedom in the parallel jaw gripper, our tactile

sensor can sense and grasp these objects due to the curved sensing surface.

4.5.2 Robotic Surface Inspection

In this section, we perform the robotic surface inspection using our robotic setup.

Surface inspection of industrial parts is a fast-growing market [68]. Combining

vision and touch is the state-of-the-art approach[75] for surface inspection in high-

precision and extreme environments (e.g. in nuclear plants). In this experiment,

we press the tactile sensor on a 3D-printed surface that contain text bumps. We use

Google Image Recognition for identifying the text from RGB images captured by

each sensor.

Figure 4.9A shows the experiment setup which consists of 5 DoF robot arms,

a parallel jaw Weiss gripper, and our manufactured tactile sensor prototype. Fig-

ure 4.9C shows the experiment when specimens containing 3 different text heights

- 1.5mm, 1.25mm, and 1.0mm are inspected by tactile sensors. Design A sensor’s

ability decreases to identify the text as the text height becomes goes from 1.5mm

to 1.0mm. However, the optimized sensor is able to identify most of the text in all

cases. We also tested the text recognition ability at different parts of the sensing

surface. For this experiment, we chose the text height of 1.0mm. Design A com-

pletely fails to recognize text, if the text appears vertically due to bad illumination

design. However, the optimized sensor is able to identify most of the text at all the
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Figure 4.8: Robotic grasping: Due to the curved tactile sensor, we can manipulate
objects without reorienting the robotic arm. In this visual, we show the contact
signal when the robot, endowed by a tactile sensor, approaches objects from three
directions - front, side, and tip. In each part, we show the robot view, tactile image,
and 3D reconstruction for various approach directions. Part A shows the use of
GelSight Mini with a flat sensing surface. It is only able to perceive contact when
the robot approaches from the front direction. Part B shows our optimized sensor
giving a high-resolution contact signal from all robot approach directions.
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locations as shown in Figure 4.9D column 2. Therefore, our optimized sensor is

able to recognize small artifacts across the curved sensing surface.
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Figure 4.9: Robotic surface inspection: (A) shows the robotic setup for surface
inspection with a planar inspection specimen placed under the sensor. In (B)
we show the zoomed-in view of the text under inspection. In (C), we compare
the performance between human-expert design and optimized design for surface
inspection of various text sizes - 1.0mm, 1.25mm and 1.5mm. Clearly, optimized
can recognize the text very well in all the cases, as shown in the zoomed-in view
and recognized text below each image. In (D), we compare the 2 sensor designs,
by indenting the sensor at all parts of the curved sensing surface and in various
orientations. Only the optimized sensor is able to recognize any texts when the
indentation is vertical and at non-central locations.
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Chapter 5

Objective functions for sensor

performance quantification

There has been a proliferation of VBTS designs aimed at robotics in the last decade.

However, it is unclear how to assess the performance of the sensor without testing

in the specific task. Researchers have shown improved performance with their

sensor design in specific robotic tasks, for which data on other sensors may not

be available. Therefore, there is a need to develop objective functions that can be

uniformly applied to all the sensor that have a common working principle, for

example, GelSight-like sensors.

We propose objective functions based on our experience in GelSight-like tactile

sensor design and applications. An objective function tries to encode a design

goal while being computationally efficient to calculate. In our experience, the

objective function design is a challenging problem because of the two reasons: (1)

the ultimate goal depends on the specific use-case of the tactile sensor and (2) it

is unclear which modality (image, depth or contact area) is the most relevant for

robotic manipulation.

We introduced an objective function in Section 4.2 to characterize the quality of

themapping between color (RGB) and surface normal. In this chapter, we introduce

two new objective functions, NormDiff and As-orthographic-as-possible (AOAP), that

account for surface reconstruction quality in the presence camera noise and optical

distortion due to various optical elements. These objective functions give a single
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5. Objective functions for sensor performance quantification

Figure 5.1: NormDiff objective function: (A) shows the tactile image with an
indentation; (B) shows the canonical example of color-normal plot. For a chosen
normal, ni, the color noise between [c2, c1]. This leads to confusion range in normal
to be [n1− n2].

number for each design and allow us to rate the various designs.

5.1 NormDiff objective function

We introduce the NormDiff objective function as an alternative function to evaluate

the sensor’s capability to measure 3D shapes. The motivation of the function design

is the same as the RBG2Normal function design introduced in Section 4.2, but

here we do not use the constraint that the RGB vector is expected to be linear to

the surface normal value. Instead, we expect that the RGB value corresponding

to a specific surface normal vector should be very distinct from the ones of other

surface normal values. The level of “distinctiveness” is denoted by themeasurement

uncertainty, and we calculate it based on the prominent camera noise models [74].

In this model, the RGB noise is proportional to the sensor response or the RGB

value at each pixel.

For an intuitive explanation with a canonical illustration, please refer to Fig-
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ure 5.1. In the canonical example, the color and normal are both represented as

1D quantities. The color-normal curve along with standard deviation is shown

in Figure 5.1B. At normal value ni the color values vary between c1 and c2. For

color value c1 and c2, the range of normal values is [ni, n1] and [n2, ni] respectively.

Therefore, at normal value ni, the confusion in estimating normal is (n1 − n2) and

NormDiff objective function value for an indenter is the negative of the confusion,

−(n1 − n2).

In the original implementation, we use the lookup table (LUT) to create a

mapping between the RGB color values and (θ, ϕ) surface normal coordinates, as

this is a common practice in GelSight sensors [107]. To calculate the confusion

value per indenter, we follow these steps.

1. We identify indented pixels by using the difference between surface normals

before and after indentation. For each pixel, we record the (rn, gn, bn, θn, ϕn)

tuple to create a dataset.

2. To assess the recovery quality for a surface normal, (θi, ϕi), we find the nearest

tuple in our dataset,R1 = {pj}, j = 1(1)U , among the indented pixels.

3. For each data-point, pj , we have the corresponding tuple, (rj, gj, bj, θj, ϕj). In

the color space, we obtain the range of color values by adding noise to the

RGB value, (rj, gj, bj). In our implementation, we added noise that was 30%

of the RGB value. We find all the data points, N1 = {qk}, k = 1(1)N , in the

color space within this RGB range.

4. Each data-point, qk, has its corresponding normal value, (θk, ϕk). We calculate

the maximum and minimum values of the θ and ϕ values between all the

points in N1. The confusion for each data-point, pj , is then the weighted sum

of the range θ and the range ϕ.

5. We take an average across all the data-point (pj) to obtain the confusion to

recover surface normal, (θi, ϕi).

6. We repeat Step 2-5 for other (θi, ϕi) pairs.

7. The final value of the objective function is negative of the average of the

confusion from the previous step.

65



5. Objective functions for sensor performance quantification

5.2 As-orthographic-as-possible objective function

GelSight-like tactile sensors are known to capture the high-resolution surface ge-

ometry of the indenting surface. However, the presence of refractive and reflective

optical elements can distort the sensing surface view. We introduce an objective

function to measure this distortion systematically. The key idea of this objective

function is that angle of incident of rays when they reach sensing surface should

be as close to zero as possible. If the sensing surface is a plane, then this condition

would make the rays as it they were shot from a orthographic camera. Therefore,

we name this objective function, as-orthographic-as-possible (AOAP). We also add a

regularizer term in this objective function to encourage sensing surface coverage to

avoid mode collapse. The calculation procedure is as follows:

1. Shoot rays from the cameras and perform ideal refraction and reflection on

surfaces until the rays hit the sensing surface or escape the sensor. Record the

hit position, hit triangle face index and incidence angle of all the rays.

2. Find unique sensing surface triangle faces, U , hit by all the camera rays. The

total number of triangle faces in sensing surface is given by T

The final objective function is as given below

O3 =
1

N

∑

i

ni · ωi + k1
U

T

, where k1 = 0.01 and N is equal to the number of pixels in our experiments.

5.3 Discussion

We provide a starting point for the sensor designers to optimize design parameters

using our objective functions. Our objective functions capture perceptual quality of

surface normal encoding without (Section 4.2) and with sensor noise (Section 5.1

and geometric quality by a measure of distortion Section 5.2. Some other design

goals that might be relevant for the new design of objectives include sensing surface

coverage and manufacturing constraints. We expect that this will provide some

guidance on how to design objective functions that are good proxies for ultimate

66



5. Objective functions for sensor performance quantification

tactile application.
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Chapter 6

Modular and interactive design

framework

In this chapter, we describe our modular and objective-driven design framework for

GelSight-like tactile sensors. In Section 6.1, we describe sensor modeling through

our modular pipeline and introduce key modules used to generate initial sensor

design. In Section 6.2, we describe the optical component parameterization that

allows for easy customization and optimization for improving sensor performance.

6.1 GelSight sensor modularization

We decompose sensor modeling into five parts: Soft elastomer, Support structure,

Opaque coating, Light, and Camera. For each part, we introduce a design module

to create and optimize the corresponding part. Each part can be either modeled

from scratch or initialized from our component library. We distill common optical

components based on camera-based sensor literature into a component library (see

Appendix B). This enables novice users to model sensors without any experience

with VBTS sensors.

Figure 6.1 shows an illustration of how a GelSight Mini tactile sensor could be

decomposed into real-world components. These components are analogous to the

parts (modules) in our design framework. These modules can then be used to

create a digital design that can be subsequently optimized.
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Figure 6.1: Sensor modularization: This figure illustrates how a tactile sensor can
be modularized into our proposed modules. These modules can then be used to
create a digital design for further optimization.

The key elements of eachmodule are the choice of reference surface for the shape

description, the selection of optical materials, and the choice of discrete elements

from the component library. For a short tutorial on the modules, see Appendix C.

6.2 Design component parameterization

Our design modules automatically parameterize various sensor components to

allow editing and automatic parameter selection. In this section, we describe the

parameterization of the key components. The choice of parameterization was made

on the basis of the authors’ expertise in VBTS tactile sensor design.

Optical component shape. All the components in the sensor are represented

by triangle meshes. The number of triangles in a mesh can be arbitrarily large and

not amenable for optimization. Therefore, inspired by [103], we apply cage-based

deformation to parameterize the optical component, as shown in Figure 6.2. We

automatically generate a cuboidal cage with 27 cage vertices such that the cage

completely encloses the component. We can increase the resolution of the cage

interactively if more precise control is desired. The cage-based representation

can be applied to any surface mesh irrespective of how it was generated (B-Rep

representation) and bounds the dimensionality of the optimization problem for

automatically choosing component shape.
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Figure 6.2: Cage-based shape parameterization: The left column shows the Gel-
Sight Svelte tactile sensor optical components and cage-based shape representation
of mirror element,M1. The right column shows the user input Cmin and Cmax. We
show the deformed surface, 2D profile and the corresponding tactile image to
qualitatively represent the change in tactile signal by changing M1 mirror element
in the sensor. Therefore, shape optimization ofM1 is critical to obtaining the best
sensing performance.
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For optimization, we require users to specify the minimum (Cmin) and the

maximum cage (Cmax) parameters for the component shape. Then the current

shape is given as

Ccurrent = (1− A) · Cmin +A · Cmax

, where each element in A, Ai ∈ [0, 1] is of the same dimension as Ccurrent. In shape

optimization experiments, we choose Ccurrent ∈ R81.

Optical material. Generally, optical material properties are characterized by a

Bidirectional scattering distribution function (BSDF), a 4-D function parameterized

by incoming and outgoing directions. However, specifying or measuring a full

BSDF model is extremely challenging [24]. Therefore, we leverage physically

motivated analytic BSDF models proposed in the computer graphics community

[41] for modeling the camera-based tactile sensors. The relevant optical material

models are RoughDielectric, RoughConductor, and Diffuse. We performed optical

experiments to calibrate these models for various surface materials (sensing surface

coating and transparent surfaces) in real sensors. For a detailed description of the

optical materials see Appendix B.

RoughDielectric can be used for all the refractive and transparent surfaces in

the sensor like elastomer and clear support structure. We use the RoughConductor

model for representing the sensing surface opaque coating material. This model

has seven relevant properties: RGB reflectance (3D), refractive index (η) (3D), and

specularity ρ (1D). We can synthesize all the relevant coatings used in the GelSight

family by varying the 1D specularity property of this model. Therefore, for material

optimization, we use RoughConductor optical model and vary the specularity (ρ)

value from [0, 1] to obtain the best coating material for the specific sensor design.

Light source. For light sources, we use modified PointLight and AreaLightmodel

fromMitsuba [40]. Specifically, for lights that have a spherical lens, we leverage the

IES light profile provided by the manufacturer and add it to PointLight to scale the

intensity value along a specific outgoing direction. For LEDs with a flat lens, we use

the dimensions provided by the manufacturer and scale the AreaLight accordingly

to provide an approximate model. For a detailed description of the light sources

see Appendix B.

For light design, we modify the location and orientation of the light group us-
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ing a forward design approach. We group lights based on their color. For light

optimization, we vary the light type for all lights in the design. Specifically, we

consider 3 types of variations: a) single light type (area vs. point) for all the lights

in the sensor model (number of parameters=1); b) single light type for all the lights

in a group (number of parameters=number of light groups; generally number

of light groups=3); c) change light type of each light individually (number of

parameters=number of lights in the sensor; can vary from 15 to 30).

Camera. We choose the perspective camera model in all designs. We allow

varying three parameters: height, width, and field-of-view (FoV) of the camera. For

a detailed description of the available cameras see Appendix B. For optimization, we

iterate through the list of available cameras in our library and set the corresponding

parameters to evaluate the sensor design.

6.3 OptiSense studio: design toolbox for digital

camera-based sensors

We implement our design framework in a simulation-driven design toolbox. We

describe the design interface in Section 6.3.1. Following the description, we give

the design guideline using the key steps followed to generate sensor designs in

Section 6.3.2 and describe specific design space parameterization available for

optimization in the toolbox in Section 6.3.4. The whole framework is shown in

Figure 6.3.

6.3.1 Design interface

Figure 6.4 shows an overview of the digital design interface. Our design envi-

ronment is built on top of Blender (version 4.1.0) [15] using its Python API for

scripting. The relevant elements of the interface are a 3D viewport to visualize the

design in 3D; a collection panel to group components used for modeling and optical

simulation; design component modules, a simulation module, and an optimization

module in the add-on panel.
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Figure 6.3: Modular sensor design framework for novice users: Given the user
shape input in A, we model the sensor design with multiple modules in simulation
as shown in B. We then evaluate the sensor performance based on the simulated
indentation test in C. This is then coupled with optimization methods to choose
the optimal light module and optical coating material for the sensor design.

6.3.2 Modeling the sensor

We modularize the design procedure into three steps and provide a library of

optical components to aid in design. The user workflow consists of the following

steps (see Figure 6.5).

The user starts with a sensor design idea or starts from a previous design. The

user provides sensing surface geometries, initial light location, and camera location

to the OptiSense Studio. Thereafter the users follow the given steps to generate an

optical sensor design which can be simulated and perform design optimization in

our software. For a brief tutorial, please refer to appendix Appendix C

Step 1: Setting reference geometry

Users can create sensors of arbitrary geometry by importing shape reference ge-

ometry as .obj surface meshes. We found that users prefer to choose their favorite

CAD tools (Solidworks, Autodesk Fusion 360, and OnShape) for shape design.

Specifically, users need to select Sensing surface reference, Camera reference, Light

reference, and Support structure reference. Users can also select multiple surfaces for
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Figure 6.4: OptiSense Studio Interface: The interface of OptiSense Studio, which
is built in Blender. The interface consists of a 3D viewport to visualize the model,
various panels to perform parameterized digital design and select from component
collections.
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Figure 6.5: Digital design guideline: the three steps of the interactive design
pipeline. i) Importing CAD shapes and setting them as reference geometries for
optical elements; ii) Assigning material properties to the component from the
component library or using user-defined materials; iii) Adding lights and the
camera using reference geometries. The lights and the camera are chosen from the
component library.

reference. Additionally, users can select Indenter reference, Blocking reference, Interface

reference, and multiple light references as optical elements.

Step 2: Selecting optical properties for surfaces

After the addition of key surfaces, the user needs to assign optical properties

to each surface. Based on the literature review of camera-based tactile sensors

we provide a library of optical materials, which support refraction with rough

interfaces, reflection with rough interfaces, and blocking of light paths. Specifically,

we provide diffuse coatingmaterial [22], semi-specular coatingmaterial [77], PDMS

refractive surface [22], and Epoxy rough refractive surface [107]. For a detailed

overview refer to the Appendix B. All the materials were obtained by performing

optical experiments in the lab and fitting analytical models available in the physics-

based rendering and material modeling literature.

Step 3: Adding light sources and camera

Next the user chooses the light reference surface from Reference collection and

selects the light type in the pop-up menu. Our library contains physically accurate

light models based on the data available from the LED manufacturers. We provide

point light sources with IES profiles sourced from manufacturers, spotlights with

cut-off angles sourced from LED datasheets, and area light sources with dimensions

sourced from LED datasheets. For a detailed overview refer to the Appendix B.
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This allows accurate simulation and accurate physical light placement such that

the sensor design preview is physically accurate.

For adding the camera, the process is similar to adding lights. Choose Camera

reference surface from the Reference collection, click on Add Camera button, and

select the desired camera. Our library provides commonly used Raspberry Pi

cameras with field-of-view ranging from 60◦ to 160◦. For a detailed overview refer

to the Appendix B.

6.3.3 Interactive optical simulation

The optical simulation techniques discussed in Section 3.3 generate physically

correct tactile images. However, we found that in practice the rendering method

could take 30min to 1 hour for generating noise free images. For an interactive

framework, this can seriously affect the designer’s workflow due to time limits.

Another key issue is the noise pattern produced by the rendering algorithm. The

previously discussed rendering method uses MCMC techniques that produce

correlated noise in the image. These noise artifacts prevent intermediate results

from being useful for getting an initial idea of the sensing performance. Due to

the above issues, we experimented with Stochastic Progressive Photon Mapping

(SPPM) [32] and Image Denoising [1] for generating approximate tactile images

in significantly reduced rendering time.

SPPM algorithm starts with a highly smoothed version of the image and progres-

sively refines the image to produce noise-free and sharper features. This algorithm

is a bidirectional technique, i.e., it generates path from both, light and camera.

The bidirectional feature is specifically suited when the sensor contains point light

sources. Moreover, SPPM is suitable for GPU acceleration [16, 33].

Image denoising is a technique of reconstructing images from their noisy ver-

sions using Neural Networks. The technique is studied in the context of the Path

Tracing Appendix A rendering algorithm. The key idea is to learn a reconstruction

kernel that recovers the original image from a noisy image using neighborhood

noisy color values and extra features, such as normal and albedo. Though the

technique was developed for path tracing which generates uncorrelated noise, it

works well with the SPPM algorithm for our sensor setup.
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Therefore, our interactive optical simulation pipeline uses SPPM with spp=64

to generate image with small amount of noise and uses OIDN [1] to generate final

noise-free tactile image.

6.3.4 Design improvement: forward and inverse methods

Using the previous modules, the user has a digital design, simulation tool, and

evaluation criteria. These components can be combined to perform forward and

inverse design of the camera-based tactile sensors.

For the forward design process, the user can select any parameter, manually

change that parameter in OptiSense Studio, and evaluate the design. We found that

the light location setting is one parameter that can benefit from this approach. We

show experiments in Section 6.4.3 to optimize light location using this approach.

In the inverse design process, the user can perform an automated search over the

parameterized space, as discussed in Section 6.2. We show experiments to jointly

optimize light type and sensing surface material using this approach for GelSight

Mini, in the next section. We also show experiments to optimize the sensing surface

material for a new sensor, GelBelt, in the GelSight family in the next section.

6.4 Experiments

In this section, we leverage our design framework to model and optimize four

different types of GelSight sensors: commercial GelSight Mini [51], GelBelt with

rolling capability, omnidirectional GelSight360 [94], and mirror-based GelSight

Svelte [115]. These sensors have various simulation and design challenges. GelSight

Mini and GelSight360 use light piping for uniform illumination on the sensing

surface. GelSight360 and GelSight Svelte have curved sensing surfaces. In GelSight

Svelte, the camera view is guided throughmultiplemirror surfaces to cover a curved

finger-like sensing surface. We can simulate all sensors without any sensor-specific

calibration. The key objectives of our experiments are that through our design

framework users can easily edit previous sensor shapes (GelSight Mini), create

new sensors (GelBelt), explore the design space of existing sensors (GelSight360),

and optimize tactile perception by changing the shapes of optical components
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automatically (GelSight Svelte).

6.4.1 Sim2Real comparisons

In this section, we compare our simulated tactile images with real tactile images

for various sensors with different optics. Note that our simulation techniques are

based on first principles and do not require any sensor-specific calibration data.

Figure 6.7 shows the comparison for the GelSight Mini and GelBelt tactile sensors.

6.4.2 Case study I: Curved customizations of GelSight Mini

The GelSight Mini is one of the few commercially available tactile sensors and

is adapted from the sensor design introduced in [51]. The sensor is shown in

Figure 6.6Ai. It allows easy integration in robotic fingers that have a flat surface.

However, for general-purpose robots, there might be a need to make the sensing

surface non-planar. We show the design iteration of the nonplanar sensing surface of

GelSight Mini in this section. First, we assemble the initial design using our design

framework. Secondly, we modify the sensing surface shape using our cage-based

representation. Thirdly, we iterate on the optical material properties of the sensing

surface using our design. The simulation time to generate each GelSightMini tactile

image takes 6 seconds on a M2 MacBook Air.

Modeling GelSight Mini in OptiSense Studio. We take the CAD provided by

GelSight Inc. (original sensor vendor) and create an optical design as shown in

Figure 6.6A(iv). Due to the availability of design optical components in our library,

the optical design can be created in minutes, and a simulated tactile image can

be generated. In Figure 6.6, we show the real and simulated sensor images after

pressing the spherical indenter on the surface in parts (iii) and (v), respectively.

The simulated image closelymatches the real one. The simulation time for GelBelt is

8.9 seconds. In Table 6.1, we show the quantitative comparison between simulated

tactile images and real-world prototype tactile images. Figure 6.7 compares the

default version GelSight Mini with the simulated model.

Editing sensing surface shape. We modify the shape of the sensing surface by

moving the control point of the cage-based representation, which is automatically

generated. To obtain the cylindrical surface, we moved the cage control points in
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Figure 6.6: Modeling and customization results of GelSight Mini: A) shows the
GelsightMini sensor (i) with default flat sensing surface (ii) and a real-world tactile
image with a sphere indenter; (iv) shows the digital design and (v) shows the
simulated image for this flat design. We created 2 curved variants—cylindrical and
spherical—in B) by editing the initial sensing shape and show optimization results.
For each new shape, we show the gelpad shape, coating material versus evaluation
score plot for two light types, optimized digital design, and simulated tactile image
with 9 spherical indenters.
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Figure 6.7: Qualitative comparison between simulation and real-world tactile
images: We show image collected from the real-world prototype and simulation
models for a set of objects for default version of GelSight Mini and manufactured
GelBelt. Qualitatively, there are minor differences between the images for GelSight
Mini because of manufacturing defects in the real sensor. Our data processing
pipeline uses background-subtracted image (image/bg) for surface reconstruction.
Therefore, we also compare image minus background image, image/bg, for both
sensors. As can be seen in the last two columns, qualitatively the difference image
is very similar for both sensors.

the middle row along the z-axis by 6mm (this parameter was arbitrarily chosen

to make the sensor cylindrical). To obtain the spherical surface, we moved the

cage control center point along the z-axis by 9mm. (this parameter was arbitrarily

chosen to make the sensor cylindrical). This shows the ability of our shape editing

tool to create custom sensors with curved shapes for dexterous manipulation.

Optimizing coating material. After modifying the sensing surface shape, we

try to obtain the best optical coating material for the sensing surface, while keeping

the light locations fixed. We leverage the inverse design process to optimize the

material. In both cases, we plot the normalized evaluation criteria for the best

assessment.

For the cylindrical sensing surface, we find that the coating with specularity =

0.2 gives the best evaluation score, as shown in the first row of Figure 6.6 B.

For the spherical sensing surface, we find that the coating with specularity =

0.4 gives the best evaluation score, as shown in the second row of Figure 6.6 B.

In both cases, we identify the specific material for the curved sensing shapes and

are able to obtain sensing performance similar to the flat sensing surface design,
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Table 6.1: Comparison between simulated tactile images and the real ones on
different metrics. The ↓ arrow shows that a lower value is desired and vice versa.

GelSight Mini

Indenter SSIM ↑ PSNR ↑ MAE ↓

square 0.6602 21.1371 17.3402
corner 0.6574 20.9745 17.4338
star 0.6659 21.0729 17.4395

GelBelt

Indenter SSIM ↑ PSNR ↑ MAE ↓

square 0.8883 19.1918 20.4762
corner 0.8928 19.4044 20.0913
star 0.8862 19.1698 20.4846

Figure 6.8: Light Type Optimization Settings: (A) shows Setting 1, in which we
change the light type of all the lights simultaneously; (B) shows Setting 2, in which
we change light type of all lights in a Light Group; (C) shows Setting 3, in which we
change the light type of each light individually.

optimized by tactile sensing experts using manual iteration.

Light improvement

For the optimization of light sources, we vary the light type. We consider 2 light

types: PointLight and AreaLight. These light models are representative of real light

sources present in our component library (Appendix B). Each light position and

orientation are kept fixed. GelSight-like VBTS sensors have two or three light

panels that contain lights of the same type. We call these similar lights collections a

light group. For light improvement, we consider three different settings, which are

described below.

Setting 1. In Figure 6.8A, we change the light type of all the lights in the
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tactile sensor at the same time and evaluate the designs. The number of possible

combinations will be equal to the number of light types available in the component

library, which is two (PointLight and AreaLight) for now.

Setting 2. In Figure 6.8B, we change the light type of lights in a single light group

independently and evaluate the designs. For example, in the GelSight Mini sensor,

there are three light groups and two types of light models available. Therefore, the

number of possible combinations is 23, which is 8.

Setting 3. As shown in Figure 6.8C, we change the type of light individually

and evaluate each design. For example, in the GelSight Mini sensor, there are two

types of light models available and eleven lights in total. As a result, the number of

settings is equal to 211, which is 2048.

Results. After modifying the coating material, we choose the material settings

to be diffuse. We obtain the best illumination design for the sensor while keeping

the light locations and orientations fixed. We change the light type according to

three settings introduced Section 6.4.2. Table 6.2 shows the results for Setting 1 and

Setting 2.

Table 6.2: Comparison between different light optimization designs on different
metrics. In the table, "P" stands for PointLight and "A" stands for AreaLight.

GelSightMini Cylindrical

Setting 1 RGB2Normal NormDiff

AreaLight 0 0.6643
PointLight 0 0.6621

Setting 2 RGB2Normal NormDiff

PPP 1 0.6622
PAA 0.7678 1
AAP 0.2769 0.9639

6.4.3 Case study II: Rapid design of GelBelt

The roller version of GelSight was first introduced in [13] to allow rapid perception

of large surfaces. The authors created a cylindrical casing and molded elastomer
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over the casing. By repositioning the sensor by simply rolling, the sensor reduced

the perception time while capturing consecutive images. We experiment with a

new design that combines the benefit of rolling with the excellent tactile perception

of a flat-sensing surface. The new design uses 2 rollers and a belt that rolls between

them. The design concept is visualized in Figure 6.9Ai. The new design decouples

the sensing surface design with the rolling phenomenon so that we can extend the

sensing area without a direct impact on the wheel size.

We show the forward design and inverse process using our design tool in

Figure 6.9. We consider variations in the choice of coating material.

Figure 6.9: Designing a new GelSight-like sensor, GelBelt: We start with CAD
design in (A) and create an optical design in OptiSense Studio. In (B), we perform
forward design for the selection of light locations. A human manually places lights
at three plausible locations and uses simulation-driven evaluation criteria to select
the best light configuration. It is evident that the perception of spherical indenters
improves significantly with this approach. We also compare the images generated
using the physical prototypes of GelBelt with Light design 1 and Light design 3.
The simulated and real tactile images are shown in the middle and bottom rows.
We see a close match in the tactile images and that superiority of Light Design 3 in
real and simulated images. In (C), after selecting the best light configuration, we
optimize the coating material using the inverse design procedure.

Forward design process with light type and light locations.

Using the simulation toolbox, we investigate several configurations of the light
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locations and LED type to get the best design for the sensor, as shown in Figure 6.9B.

Initially, it is aimed to have the LEDs illuminating on the side of the acrylic to mimic

the GelSight mini light configuration. However, both in simulation and experiments

it is shown that light poorly reaches the sensing surface. This is because, unlike

GelSight sensors, the silicone is not cured or attached on top of the acrylic letting a

thin layer of air be trapped in between resulting in the total internal reflection of

the light in acrylic. To tackle this problem, we reconfigure the illumination system

and rerun the simulation. As shown in Figure 6.9B, lights are placed at different

locations. The best configuration for the blue and red lights is to have them on the

sides of the sensing surface but illuminating through silicone instead of acrylic.

This configuration cannot be used for the green light which limits its location to

be somewhere next to the acrylic. Several configurations are tested for the green

light. It was observed that having the green light illuminated at an angle through

the silicone showed acceptable results. Then, in an improved design, the silicone is

bent over a small roller to better guide the light through the sensing surface. In this

way, the green light can travel further on the sensing surface.

We manufactured the real-world prototypes of the Light design 1 and Light

design 3 to compare the light design tactile images. Figure 6.9B bottom row shows

the real prototype images for Light design 1 and Light design 3. We can clearly see

that improvement in perception of spherical indenters using virtual forward design

leads to direct improvements in real world prototypes. Therefore, our toolbox can

enable illumination design completely virtually.

Inverse design of sensing surface coating material. After optimizing the light

location, we try to obtain the best optical coating material for the sensing surface,

while keeping light locations fixed. We leverage the inverse design process to opti-

mize material. We plot the normalized evaluation criteria for the best assessment.

The results are visualized in Figure 6.9C. We identify specularity=1 to be the best

design using this process.

Real-world prototype of optimal GelBelt sensor.

To verify the results of the simulation, a prototype based on the optimal design

is fabricated. Figure 6.10 compares the output images of the proposed real-world

sensor with that of the simulation for the indentation of a screw, an electronic

breadboard, and a gear rack. It is observed that the simulation output of the
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Figure 6.10: GelBelt tactile image comparisons: The simulated and real output of
the optimized GelBelt sensor when contacting a screw, a breadboard, and a rack. It
is observed that the real sensor performance highly matches the simulation and
well shows the object geometries.

Figure 6.11: GelBelt sensor tactile images indented with daily-use objects: It is
observed that the optimized roller sensor can sense fine details of the objects and
surfaces.

86



6. Modular and interactive design framework

approximate geometry highly matches the images of the real sensor in all cases.

This similarity highly supports the validity of our design framework. That being

said, researchers and designers can benefit from using OpticSense Studio and

its modules to predict the outcomes and optimize their design before fabricating

the real-world sensor. The performance of the Gelbelt sensor while indented by

various small parts is shown in Figure 6.11. In Table 6.1, we show the quantitative

comparison between simulated tactile images and real-world prototype tactile

images. Similarly to previous results, the GelBelt sensor can sense fine texture on

the surface in a relatively extended area.

6.4.4 Case study III: Optical component shape variation and light

variation for GelSight360

In this section, we consider the GelSight360 sensor, which was introduced in [94].

The authors used light-piping and embedded lights to create a VBTS tactile sensor

that could provide sensing in the forward direction without any occlusion. In this

sensor, illumination design requires figuring the light color setting and surface

shape of multiple optical components for best perception. This makes the design

problem particularly challenging. We first discuss light color variation and then

discuss optical component shape variation using our objective functions.

Light type variation. In this experiment, we consider various light configuration

with RGB2Norm and NormDiff objective function. The vertical lights in the sensor

are divided into 8 light groups as shown in Figure 6.12B. Table 6.3 shows the

objective function values. According to the objective functions, GBBRRGGB has

the best mapping between RGB to normal with the highest robustness to camera

noise. Note that performing the light variation in the real-world requires designing

and manufacturing new LED boards and embedding them in the resin shell. The

manufacturing time for this experiment could be prohibitively and expensive for

designers.

Optical component shape variation. We keep the sensing surface the same as

the original design and change other optical components to show the effect. We

consider two experiment settings: (a) Setting 1- only change the innermost resin

surface; (b) Setting 2 - change the resin surface, interface surface between resin and
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Figure 6.12: GelSight360 shape and light variation description: (A) Original
GelSight360 sensor as introduce in [94]. (B) Top view is shown with first Light
Group (LG) shown as LG 1. We number the LG anti-clockwise starting from
LG 1. (C) shows the best light configuration in the combinations considered in
our experiments. (D) shows the rendered tactile images for original sensor, best
illumination setting, best resin shape design and best shape design in Setting 2
considered in our experiments. (E) shows the exploded view with labels and the
corresponding side view with key components marked. (F) shows the variations
in Setting 1 and Setting 2 considered in our experiments, namely, Half and Almost
flat.
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Table 6.3: GelSight360 light type variation: "R", "G" and "B" stands for red, green,
and blue light color respectively. This table notes the score of the sensor designs
with different illumination setting. Higher scores are better.

Light configuration NormDiff RGB2Norm

GRRGGRRG (original) 0.3138 0
GBBRRGGB 0 0.0597
GRRBBGGR 0.5047 0.0228
RGBRGBRG 0.2664 0.0927
GBRBRGBR 0.8976 0.5205

Table 6.4: GelSight360 shape variation: This table notes the objective functions
scores for sensor designs with shape variations according to Setting 1 (only resin
surface change) and Setting 2 (resin, interface and vertical light shape change).
We observe that Almost flat setting performs best across different shapes choices.
Higher scores are better.

Setting 1 NormDiff RGB2Norm

Original 0.3138 0.0
Half 0.8649 0.5257

Almost flat 1 0.7922
Setting 2 NormDiff RGB2Norm

Original 0.3138 0.0
Half 0.5211 0.6494

Almost flat 0.9687 1

elastomer, and light stripes embedded in the resin. We consider three settings in

each case: original shape, half shape, and making the biggest surface almost flat,

as shown in Figure 6.12F. Table 6.4 shows the objective function values. We notice

that Almost flat shape variation performs best in both settings with Setting 2 being

the optimal among all the designs considered for this sensor in our experiments.

As can be seen in Figure 6.12D bottom-most tactile image, perception of sphere

indenters has improved as compared to initial design.
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6.4.5 Case study IV: Sensor shape optimization for GelSight

Svelte

In this section, we consider the GelSight Svelte sensor, which was introduced in

[115]. The authors used multiple mirrors to route the camera view to the full

human-finger-shaped sensing surface. This allows sensing along the entire finger

instead of just the tip. The optics of the sensor was selected using 2D raytracing

simulations. However, the authors were unable to simulate the tactile images prior

to manufacturing. During our investigation, we noticed the "smearing" issue when

indenters are pressed on the sensing surface, as shown in Figure 6.13. The amount

of distortion depends on the indenting location on the sensing surface. This effect

is caused by the larger back mirror design. The original design only considered

sensing surface coverage in the 2D side view.

We consider the design of the back mirror surface to alleviate this issue and

improve sensing performance. We use As-orthographic-as-possible (AOAP) objec-

tive function in this experiment. To show a proof of concept, we first consider a

simplified sensing surface and focus on improving perception at the center of the

sensing surface. The key optical surfaces are shown in Figure 6.2A top. We consider

cage-based parameterization of the larger mirror surface, M1. This reduces the

search space by orders of magnitude from 22 680 to 81. We initialize the cage on the

original mirror shape. We choose optimization parameters, Cmin such that M1 is flat

and Cmax such that M1 has the largest curvature possible without intersecting with

the sensing surface. We use CMA-ES [34] for optimizing the shape parameters.

The optimization curve is shown in Figure 6.14A. The AOAP score for the

initial and optimized design is 0.236 and 0.635. As can be seen from the rendered

tactile images in Figure 6.14B, the "smearing" effect or distortion is almost gone

in the optimized design. We created real-world sensor prototypes to validate our

simulation experiments. In Figure 6.14C, we show our sensor prototypes of initial

and optimized design. The corresponding tactile images and zoomed-in view

clearly shows that sim2real works well for GelSight Svelte sensors. Thus, our shape

optimization pipeline could be used to obtain the best optical component shapes to

reduce optical distortion and improved shape perception. Note that this approach

can be applied to any optical surface design.
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Figure 6.13: GelSight Svelte issues: We compare the simulated image against the
real-world prototype tactile images. The simulated images are a close match to the
real images. The top and bottom row shows images with setscrew and ideal sphere
indenters at different sensing surface locations. As can be seen from the bottom
row, the distortion depends on the indentation location. In the bottom row, the
ideal sphere is "smeared" or distorted substantially, and is hard to perceive physical
shape properties like sphere radius.
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Figure 6.14: GelSight Svelte shape optimization results: We show the shape opti-
mization results for the GelSight Svelte sensor. (A) shows the AOAP function score
during the CMAES optimization procedure. (B) shows the initial and optimized
larger mirror surface mesh in red and green respectively. We also simulated tactile
images for the two designs. The optimized design has significantly reduced distor-
tion as compared to the initial design. (C) We manufactured sensor prototypes
to compare the improvement in real world for initial and optimized design. The
left visual shows our prototype. We show the tactile images from the real world
prototypes and their zoomed-in view. The real and simulated images of the initial
design both show significant distortion of the lego block. The issue is resolved
completely in real and simulated images for optimized design.
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6.5 Discussion

We achieve four key objectives through the case studies. First, we show the ease of

use of OptiSense Studio by creating a digital twin of GelSight Mini, GelSight360,

and GelSight Svelte within minutes. Secondly, we are able to obtain parameterized

designs and show that our parameterization enables users to easily explore the

design space of various GelSight-like tactile sensors across various design axes:

illumination, coating material, and geometric shape of optical components. Thirdly,

we are able to perform design optimization for all the components of a sensor for

a range of GelSight-like sensors with complicated optics. Lastly, we are able to

convert a concept design of a new sensor (GelBelt), for a new application (large

area sensing), into a valid sensor design and perform different forward and inverse

design optimizations to obtain the best sensor design.
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Chapter 7

Conclusions and Future Research

In this thesis, we proposed the first objective-driven design tool for GelSight-like

tactile sensors. In doing so, we created an optical tactile simulator and a library

of calibrated sensor components. We also defined new efficient objective-driven

computational methods for automatic parameter selection of the complex optical

system. We proposed a modular design interface for interactive modeling and de-

sign space exploration, which is based on interactive rendering algorithms. Finally,

we show the utility of our framework for the design optimization of a range of

vision-based tactile sensors for robotic manipulation and tactile perception. We

manufactured the novel designs and investigated the performance boost between

virtual and real designs.

Although this thesis takes significant steps towards automatic GelSight-like

sensor design, there is a gap in enabling sensor design by novice users with no

knowledge of sensing. To design a complete GelSight-like tactile sensor, a user needs

a sequence of actions. Therefore, we need a framework that takes the operations

introduced in this thesis and generates a valid sequence of actions to compose a

full sensor. An approach in robotic structure design introduced in [114] might be a

good starting point towards that goal.

In the robotics community, the current approach is to first design robotics

structures such as robot hands and then add sensing to those structures. If the user

wants to incorporate VBTS into those structures, it requires a complete redesign of

the corresponding structure. Our framework does not offer any guidance for this
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workflow.

7.1 Future Directions

The work described in this thesis demonstrates how to rapidly prototype VBTS and

optimize their optical parameters, which can then be manufactured directly in the

real world. However, our results thus far are only the first steps toward applying

these concepts to computational design for sensing. Our work is closely related to

soft robotics design, as tactile sensors need to be embedded in the robotic structure

or co-designed for optimal performance. Since the advances in the co-design

of VBTS and robotic structures are relatively recent, the field of developing the

necessary design tools is still relatively new, with many interesting challenges and

open research problems. We outline some of the most important open challenges

that we think are crucial to pushing the field forward.

Combining marker simulation and physical simulation approximation with op-

tical simulation for design The tactile sensors have a soft surface as a contact layer

with the environment. It is useful to measure the deformation of the soft elastomer

during interaction. These deformations are helpful to measure the tangential force,

shear and torque signals. We presented a technique to simulate the sorting of edges

caused by the static indentation on the elastomer in Section 3.2.2. Subsequently, var-

ious researchers [29, 86] have proposed better approximate models for simulation

of the soft elastomer. These models propose a model of local movement of gelpad

nodes. [116] use similar idea to propose marker motion generation on the gelpad

surface. In our experiments, we found that these models fail to generalize for the

range of sensors with complex optics considered in this thesis. However, we believe

that incorporating these approximate models into our simulation framework could

enable sensor design for various other GelSight-like sensors with some extensions.

Combining physical simulation with optical simulation. Recently, researchers

have incorporated GelSight-like sensors in compliant structures [56, 57]. These

sensor structures are meant to be deformed substantially when they are interacting

with objects. These deformations can not be modeled with rigid body simulators

or by interpenetrating objects with sensing surfaces. Therefore, to generate valid

tactile images, we need to incorporate soft body deformations. We used Finite
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Element Methods (FEM) in [66] to simulate GelSight FinRay sensor deformations

before passing obtained shapes to our design pipeline. However, using interactive

and efficient soft body simulators is needed for design problems. We believe that

this could enable the co-design of soft robotics structures with high-resolution

tactile sensing for robot proprioception and contact sensing.

Expanding the design framework for other VBTS sensors. Although the pipeline

performed well for the design and simulation of the GelSight family of sensors,

we expect that our approach has the potential to incorporate optical components

required for other types of camera-based sensors. We hope to incorporate an

approximate model of fluorescent lighting as introduced in [55] to allow the design

of the FinRay GelSight family. Also, 9DTact [52] introduced absorption layers

which can be added as another optical material in our component library. Other

camera-based tactile sensors record a single color intensity [52] or a change in

intensity [101] to recover tactile signals (surface depth or force). For example, in

the 9DTact sensor family, the single-color intensity image is used to recover surface

normals. To extend our design toolbox for this sensor, users can add new evaluation

criteria. Users can use the general idea—to create a mapping between the measured

image signal and tactile signal—of the evaluation criteria proposed in this work.

Robotics-focused objective functions. In this thesis, we propose various objective

functions to improve the design. Those objective functions are focused on improv-

ing the tactile signal fidelity, especially color image and sensor coverage. This works

well if the application area for tactile sensing is in perception, for example, aircraft

inspection. However, for robotic applications, it is unclear what is the most impor-

tant tactile signal and what is the resolution required. In the literature, various

researchers have co-designed robots and their control strategies by using machine

learning. This enables direct optimization of the robot structure and control for

the robot application. Creating a pipeline to score VBTS designs directly for the

task (dexterous manipulation) by using machine learning might be an interesting

future direction.

Efficient optical simulation. Since optical simulation is at the heart of our frame-

work, it is critical to have an efficient and general optical tactile simulator. Although

we showed that it is possible to simulate complex optical illumination, such as light

piping and generate tactile images that interact with a range of sensors. We found
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that sometimes the optical framework fails in unintuitive ways. Figure 7.1 shows

the image of GelSight Mini with various settings: diffuse BSDF and specular BSDF

with very high roughness 0.99 in the top and bottom rows. The rendering algorithm

used for all the images is PSSMLT [46] implemented in Mitsuba1 [40]. With these

settings, all the images in Figure 7.1 should be similar. However, we notice that

the image with PointLight contains mainly noise for both the BSDF setting. The

issue disappears if we use the SPPM [32] rendering technique and diffuse BSDF

with point light, as shown in Figure 7.2. However, SPPM is not able to generate the

correct image for PointLight and specular BSDF.

Figure 7.1: Rendering failures with PointLight: The figure shows tactile images
for the GelSight Mini sensor generated using PSSMLT rendering technique. The
rows contain tactile images with different coating materials: Diffuse and Specular
with very high roughness 0.99. The columns contain tactile images with different
light types: AreaLight and PointLight. As can be seen in the right column, PSSMLT
produces noise with PointLight for both BSDF cases. This result is an unexpected
failure case.

This is because of two reasons: mismatch between optical properties of real and

virtual components; and high computational cost of finding valid light paths from

point light sources and a high number of refractive elements with delta BSDFs in

VBTS sensors. There has been recent progress [25, 30, 61] in finding paths through
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Figure 7.2: Rendering failures between algorithms: The figure shows tactile
images for GelSight Mini sensor generated with PointLight and two different BSDF
settings: Diffuse and Specular with high roughness 0.99 The top row shows that
SPPM algorithm is able to generate reasonable tactile image with PointLight and
Diffuse BSDF as compared to PSSMLT, which produces noise. However, SPPM fails
catastrophically with PointLight and specular BSDF with high roughness, while
PSSMLT generates almost noise image.

refractive surfaces efficiently. However, those techniques fail if the light is a delta

light source.

Fabrication errors and constraints The fabrication process of these sensor requires

multiple steps like 3D printing, molding, spray-coating and assembly. Each of

these steps can impose various constraints on the sensor design. Moreover, each

of these manufacturing steps can introduce a margin of error, for example, the 3

printed surface shape may be within 10% of the optimized surface shape. Our

design framework does not incorporate these errors into the objective functions.

We tried to tackle this issue by performing a sensitivity analysis on various design

parameters in Section 4.4. However, incorporating these errors more explicitly into

the design process can enable better designs. One way to formally consider sensor

performance as a stochastic function is to use Bayesian optimization [93].
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7.2 Lessons learned

Firstly, we have learned that there is a need to balance automation and user input. In

addition to the well-known conflict between ease of use and design freedom, such

balance is important in the development of efficient design tools. User preference

can provide us with good design initialization to prune the search space of the

optimization algorithm. This is specifically true for the shape design of the free-

forming optical components in the sensors.

Secondly, approximate and quick simulation is better than very accurate and

slow simulation for tactile sensor design. Since the design space of the VBTS tactile

sensor is relatively large. It is essential to allow users to decide which design spaces

are most important to optimize. We found that in most of the VBTS sensors we

do not have reflective sharp caustics. Therefore, techniques like path-guiding or

photon mapping can generate approximate tactile images. Moreover, it might be

interesting to incorporate new denoising methods [14, 110] to further improve the

efficiency of these techniques.
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Path tracing

Consider the scene shown in Figure 3.16. The light radiance received at point p0 is

L(p, ω0) = Le(p, ω0) +

∫

S2

f(p, ω0, ωi)

L(t(p, ωi),−ωi)|cosθi|dωi

where Le(p, ω0) is light emitted by point p towards direction ω0; f(p, ω0, ωi) is the

material model, which gives the fraction of light emitted in direction ω0, when

receiving light from direction ωi; t(p, ωi) is the point in the light path visited prior

to hitting point p at an angle ωi; |cosθi| is the Jacobian of the solid angle Ω w.r.t.

polar coordinates. On a high level, the first term represents light emitted at p0 and

the second term represents light emitted by all the points in the scene towards p0
sampled according to some probability distribution. The rendering equation can

not be solved analytically, as it is a recursive equation (as term L(p, ω) appears on

both side of the equation) in high dimension for a generic scene. To solve it, path
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integral formulation of the above equation is considered, which is as following:

L(p1 → p0) = Le(p1 → p0) (A.1)

+

∫

A

L(p2 → p1)h(p2 → p1 → p0)dA(p2) (A.2)

+

∫

A

∫

A

L(p3 → p2)h(p3 → p2 → p1)dA(p3)dA(p2) (A.3)

+ . . . (A.4)

According to the above equation, we need to generate all the paths starting from light

sources, hitting different objects in the scene and reaching the camera. In practice,

we just need some paths which carry most of the power from light sources to the

points on the camera film and probabilistically terminate the computation. Each

integral in the above equation in itself is solved through Monte Carlo integration

with sampling probabilities biased towards points pi, which will have more light

contribution.

On a high level, the rendering involves following steps:

• Sample point on the camera film based on the camera model

• Sample points on the objects in the scene using some probability distribution

• Try to connect the object point to the light source

• Collect the light contribution of that path multiplied by the probability of that

path

• Probabilistically terminate paths after certain max length based on some

criteria

102



Appendix B

Component library

We provide 7 optical materials, obtained 6 light models and 6 camera types as

shown in Figure B.1.
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Figure B.1: Component library in OptiSense Studio: This figure shows the various
components present in the library provided with our design interface. These
components cover the design space of the GelSight sensor family and provide
relevant design spaces to develop new sensors.
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Design tutorial with our design

interface

In this section, we give a short tutorial to setup a camera-based sensor design, using

GelSight Mini as an example.

Step 1: Adding shapes

To add shapes click on the Add .obj mesh button and assign them as reference

geometry by clicking on the Set as reference button.

Users can edit the surface shape using cage-based representation [102]. To

create a cage around the shape, select the shape and click the Create a new cage

button. To edit the shape, click the Edit shape button, select the cage vertices to

move, and then move the vertices to change the shape of the surface. As noted in

[102], the cage-based representation is differentiable and in the future is amenable

to differentiable sensor shape design.

Step 2: Assign optimal material property

To assign the optical material, the user selects the desired optical surface from

the OpticalSystem collection, selects the desired material from the library and then

clicks on Apply To Selected button. The user can also preview the material before

assigning it by selecting the material and clicking the Preview Material button.

Step 3: Add light and camera

For adding the lights, choose Light reference surface from theReference collection, click

on Add Light button, and select the desired light. Our library provides commonly
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used LEDs with flat and spherical lenses, commonly used in camera-based sensors.

For a detailed overview refer to the Appendix B.

To add the camera, the process is similar to adding lights. Choose Camera

reference surface from the Reference collection, click on Add Camera button, and

select the desired camera. Our library provides commonly used Raspberry Pi

cameras with field of view ranging from 60◦ to 160◦. For a detailed overview, refer

to Appendix B.
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Fabrication of the optimized curved

VBTS sensor

After obtaining the best design for GelBelt using our digital design framework,

we manufactured a real-world prototype and tested its feasibility. PLA was used

to 3D print the frame of the sensor and the handles. Wheels were 3D printed by

Form 3+ printer in Black Resin Material to have a smoother print surface. The

Acrylic part of the sensor was laser-cut to the shape and fixed in its housing using

thin double-sided tape. The belt is made of Silicone XP565 (Silicone Inc.) while

coated with Aluminum powder on the contact surface. Silicone itself cannot slide

on the acrylic due to the high frictional force between two surfaces, therefore, an

intermediate layer is required to complete the task of sliding. For this purpose, wide

clear tape is attached to the inner side of the belt as it showed acceptable stickiness

to silicone on the glue side while having a small friction with acrylic on the other

side. To make the prototype of the sensor, The belt was fabricated by having a flat

mold. It should be mentioned that the belt could be fabricated using a circular mold

to have continuous rolling over the surface which will be considered in the future.

After Silicone was cured and coated with aluminum powder, the belt was removed

from the mold and wide tape was attached to the uncoated side of it. To have the

complete belt, the belt was bent all over the rollers and then attached together using

the wide tape. Regarding the lights, several SMD 3528 LEDs were linearly arranged

for each of the red, green, and blue lights. The lights were soldered on a PCB and
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then fixed on the frame of the sensor using screws.
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