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Abstract
This thesis revisits long-range, image-space planning for off-road naviga-
tion and modernizes the classical first-person view (FPV) paradigm by
building upon recent advances in perception. It introduces a lightweight
depth calibration scheme, analytic configuration-space (C-space) trans-
forms, interpretable frontier selection, and a pixel-space A* planner with
validated heuristic soundness. Concretely, we (i) make monocular depth
metrically usable at test time via an affine, log-domain calibration with
sparse LiDAR; (ii) derive and implement a depth-aware FPV C-space in-
flation that projects vehicle width/length analytically and realizes it with
separable row/column sliding-maximum filters augmented by per-pixel
depth consistency checks; (iii) propose transparent, angular-sector fron-
tiering that reasons jointly about traversability cost and minimal lethal
depth, alongside goal-aware revalidation; and (iv) preserve A∗ admissi-
bility/consistency in image space through a simple cost renormalization
that avoids silent suboptimality in low-cost free space.

We evaluate the resulting, modular sub-stack in the high-fidelity Falcon
simulator [1] under a shared ROS graph. Using a common perception
front-end and planning back-end, we compare three frontiering strate-
gies – (1) a LAGR-style row-wise baseline, (2) an LRN-inspired openness
heuristic adapted to operate with explicit depth and cost, and (3) an An-
gular Cost & Depth (ACD) variant that couples average cost with a min-
imum lethal-depth constraint. Across diverse courses (e.g., farm, desert,
mixed terrain), the calibrated monocular depth reduces error versus raw
monocular predictions, and both LRN-inspired and ACD frontiering tend
to outperform the purely row-wise baseline on longer traverses. We view
these as encouraging indications rather than definitive claims: all results
are in simulation, with performance subject to perception quality, cali-
bration coverage, and environment diversity.

Scope and limitations are explicit. The work was conducted over a short
project window (May 2025–present) and prioritized stabilizing the pro-
posed sub-stack in conjunction with a core FieldAI [2] stack through the
high-fidelity Falcon simulator [2] and ROS1 into a reliable, end-to-end
testing framework. No real-world deployments were performed. Nev-
ertheless, the design is intentionally modular and auditable to make it
relatively straightforward to integrate the sub-stack into existing off-road
autonomy stacks lacking explicit long-range planning. Such integration
might enable better autonomy by offering a practical bridge between clas-
sical image-space efficiency and metric-world robustness.
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Chapter 1

Introduction

Autonomous navigation in unstructured, off-road environments remains a demanding
problem at the intersection of perception, planning, and control. Long-range decision
making is especially challenging when the robot must reason beyond the near field. In
these far-field regions, sparse geometry and viewpoint changes reduce the reliability
of map-centric pipelines.

A complementary line of work, image-space planning [11, 20], seeks to plan directly
on a fixed-size first-person view (FPV), pixel-grid derived from the camera view. By
keeping the planning domain constant in size (i.e. a fixed-resolution FPV pixel grid
regardless of the physical extent of the world), and tightly coupled to perceptual
measurements-based direct predictions without hallucination, such methods can be
efficient and responsive at far range. However, they require careful handling of ge-
ometry, footprint inflation, and frontier selection to be dependable in practice. Thus,
we adopt this perspective and modernize it with lightweight depth calibration, an-
alytic FPV configuration-space (C-space) transforms, interpretable frontiering, and
a validation of pixel-space A∗ heuristic soundness via a simple cost renormalization
that preserves admissibility and consistency. The objective is a practical, modu-
lar navigation sub-system (henceforth, the FPV sub-stack) for long-range, off-road
navigation.
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1. Introduction

Motivation and Perspective

This work aims to describe every component from the first principles, tracing the full
reasoning chain from perception to long-range frontiering and planning, except for
the use of off-the-shelf deep learning models in the perception stage. In spirit, the
thesis represents a rejuvenation of the image-space planning paradigm first explored
in the DARPA LAGR [11, 12] program, now reinterpreted through the lens of modern
advances in perception algorithms and compute capabilities. Whereas early systems
faced limited resolution, sparse computation, and rigid geometric models, current
platforms benefit from high-resolution cameras, learned depth priors, and real-time
dense computation on inexpensive hardware. The nomenclature of this thesis reflects
this continuity – a modern take on long-range navigation grounded in image-space
reasoning, but freed from the heavy constraints that once limited its reach.

Problem Setting and Goals

We consider a robot operating off road with a forward-facing RGB camera, access
to sparse LiDAR, and a high-level waypoint or goal. Our objective is to choose long-
range image-space frontiers and generate FPV plans that respect traversability while
remaining simple enough for real-time use. The design emphasizes (i) modularity:
each block can be replaced without retraining the rest of the stack; and (ii) inter-
pretability: frontier choices and footprint inflation are explicit and auditable. We
focus on consistency with established planning guarantees wherever possible (e.g.,
heuristic soundness for A* after cost renormalization) while keeping the overall ap-
proach lightweight.
Throughout the thesis, we use a few recurring system-level properties. By efficient,
we mean that computation scales primarily with the fixed FPV image size (rather
than world size) and that all core modules – depth calibration, C-space inflation,
frontiering, and planning can run in real time in Falcon. By modular, we mean that
perception, configuration-space transformation, frontier selection, and planning are
encapsulated as ROS nodes with clear interfaces, so that any one component can be
swapped or upgraded without retraining or rederiving the others. By interpretable
or auditable, we mean that the decisions of the system (e.g., sector statistics, frontier
selection, heuristic values) are expressed in terms of explicit geometric quantities and
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1. Introduction

scalar summaries that can be inspected and debugged offline.

Notations and Conventions

We consider a robot state x ∈ X evolving in a workspace W ⊂ R3 with a navigation
goal g ∈ W (typically specified as a high-level waypoint). At each time step, the
robot acquires an undistorted, forward-facing RGB image I ∈ RH×W ×3 and a cor-
responding depth map D ∈ RH×W , where H and W denote the image height and
width, respectively. We use (u, v) (or equivalently (c, r)) to denote pixel coordinates,
with u/c increasing to the right, v/r increasing downward, and the origin at the
top-left of the image.
From (I, D) we construct an FPV traversability costmap C ∈ RH×W in image space
and a configuration-space costmap Ccsp ∈ RH×W after footprint inflation. Unless
otherwise stated, for simplicity of notation, we use C to refer to both the FPV and
C-space costmaps, the intended meaning should be evident from context. Goals
projected into the image are written as pixel coordinates (ug, vg), and frontiers are
selected as pixels (uf , vf ) on Ccsp. The navigation problem, in this notation, is to
compute a collision-free path γ in the FPV image (and its corresponding 3D repro-
jection) that connects the current state x to a neighborhood of g while respecting
traversability encoded by Ccsp.

Approach Overview

The system processes undistorted RGB and sparse LiDAR to predict an FPV traversabil-
ity costmap, projects a goal into the image, inflates obstacles in FPV to approximate
the robot’s footprint, selects a frontier using angular sector statistics, and runs A*
on the pixel grid. The resulting image-space plan is reprojected into 3D for the
downstream local planner and controller. All components run within a ROS graph
and were evaluated in the high-fidelity Falcon simulator [1].

More concretely, we combine four ingredients (Figure 3.1, described later in detail):
1. Test-time depth calibration: An affine, log-domain correction that makes

monocular depth metrically usable using only sparse LiDAR, with no network
updates at inference.

3



1. Introduction

2. Depth-aware FPV C-space: An analytic projection of vehicle width/length
onto FPV, realized via separable row/column sliding-max filters with per-pixel
depth consistency checks for efficiency and robustness.

3. Interpretable frontiering: Reasoning jointly about cost and minimal lethal
depth based on angular sector statistics, yielding transparent choices that can be
revalidated against the goal sector.

4. Pixel-space A*: Search on the FPV grid with a simple cost renormalization
C ′(p) = 1 + C(p) to preserve admissibility/consistency of the Euclidean heuristic.

These choices aim to bridge the efficiency of classical image-space planning with the
robustness benefits of explicit geometry, while keeping complexity modest.

Positioning with Respect to Prior Work

Classical image-space planning (e.g., LAGR [11]) demonstrated that planning on
a fixed FPV grid can reduce compute and avoid far-range 3D fusion issues, but
highlighted sensitivity to projection error and the need for robust C-space inflation.
We retain the FPV planning benefits while addressing footprint handling analytically
and enforcing depth consistency in inflation.

More recent frontier learning approaches (e.g., LRN [20]) argue that long-range nav-
igation is chiefly about selecting a good direction early. In contrast to the LRN
formulations that assume no reliable depth and thus operate only in angular coordi-
nates, we make monocular depth reliably usable via sparse-LiDAR calibration, and
incorporate it directly into frontier selection and footprint handling. The result keeps
frontiering simple and explainable while enabling metric reasoning when it matters.

Complementary to these FPV frontier methods, FITAM [6] learns from historical
navigation data to predict metric costs for distant terrain directly from RGB im-
ages. It uses far-field visual features to guide navigation through a costmap defined
in the metric workspace, without relying on dense range sensing or explicit depth
calibration at inference. Our work shares FITAM’s goal of exploiting far-field vi-
sual cues for metric decision making, but takes a more geometric and depth-centric
route. We retain a single FPV grid tied to the current camera view, and rely on
calibrated monocular depth and analytic C-space transforms instead of training a
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1. Introduction

far-field traversability network. In environments where sparse LiDAR is available,
this calibration yields more metrically consistent depth in the mid/far field, which
in turn simplifies footprint inflation and frontier evaluation while keeping the overall
stack lightweight and auditable.

Contributions

This thesis makes the following contributions:
• A lightweight, test-time mono–LiDAR depth calibration that improves mid/far-

range depth without retraining, enabling metric use of monocular depth in FPV.
• An analytic, depth-aware FPV C-space transform using separable sliding-max

with depth gating to approximate footprint inflation in real time.
• Angular frontier selection with cost and depth statistics, including goal-aware

revalidation, that remains interpretable and modular.
• Heuristic-consistent FPV A∗ via cost renormalization, preserving the usual guar-

antees while keeping implementation simple.

Scope and Caution

Experiments are conducted in the Falcon simulator under a shared ROS-Noetic graph,
comparing three frontiering strategies (LAGR-style row-wise, LRN-inspired openness,
and an Angular Cost & Depth (ACD) variant) with the same perception and planning
stack. The ACD strategy is generally competitive, especially on earlier segments,
and both ACD and LRN improve over the purely row-wise LAGR baseline on longer
traverses. We view these as encouraging indications rather than definitive claims.
The results quantify the behavior only in simulation.

Due to the limited project duration (May 2025–present), the Falcon [1] simulator had
to be brought into a stable configuration for end-to-end testing, leaving insufficient
time to perform real-world deployments. In future work, we envision this long-range
image-space sub-stack augmenting a physical off-road stack, such as Velociraptor
[23], to provide valuable insight into the system’s robustness under varying traction,
lighting, and perceptual conditions.

5



1. Introduction

Organization of the Thesis

Chapter 2 (Related Works) positions the approach relative to image-space planning,
frontier learning, and traversability estimation. Chapter 3 (Pipeline) details the
ROS nodes and data flow. Chapter 4 (Test-Time Depth Calibration) presents the
formulation and algorithm for test-time mono depth calibration with sparse LiDAR.
Chapter 5 (Frontier Selection) derives the C-space transform and angular sector
based frontier selection strategies. Chapter 6 (Planning) describes FPV A* and
path simplification. Chapter 7 (Experiments) reports quantitative and qualitative
results. Chapter 8 concludes with limitations and directions for further work.
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Chapter 2

Related Works

Long-range navigation in unstructured, off-road environments sits at the intersection
of vision-based traversability estimation, frontier-driven long-horizon reasoning, and
planners that operate either in the metric map or directly in the image (pixel) plane.
We review the evolution from classical image-space planning (LAGR) [11] to recent
frontier affordance learning (LRN) [20], and situate our contributions within this
landscape – depth-calibrated FPV C-space inflation, angular frontier selection with
depth-and-cost criteria, and A* with heuristic-normalized costs.

Image-Space Planning Lineage

A central line of work relevant to this thesis is the decision to plan directly in image
space using a cost image and a projection of the goal into the camera frame. The
DARPA LAGR [11] introduced a practical pipeline that (i) learns a color-to-cost
mapping from near-range labels; (ii) applies a pseudo C-space transform in the image
plane to account for robot width (i.e. row-wise dilation that grows toward the bottom
of the image); (iii) projects the GPS goal into the image (with robust handling near
the frame boundary); and (iv) runs A* on the pixel grid with admissible heuristics
to produce a path, which is then handed to the local Cartesian stack as a subgoal
just beyond near-range perception. The appeal is twofold: (1) constant state size
(fixed number of pixels) decouples runtime from world size, and (2) bypassing explicit
3D fusion avoids misalignment and sparsity pitfalls of far-range mapping. Trade-offs
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2. Related Works

include lack of true metric guarantees in the far field, sensitivity to projection errors,
and the need for robust pixel-space C-space inflation.

The LAGR rationale motivates our own FPV-first design, but we depart in several
key ways. First, our FPV C-space transform is depth-aware via analytic projection
of vehicle width and length as a function of image row. We implement it efficiently
using separable, deque-optimized sliding maxima with a per-pixel depth-consistency
test. Second, we modernize the perception front-end (foundation-model features and
learned monocular depth with test-time LiDAR calibration). Third, we introduce
angular frontier selection with explicit lethal-depth checks and average-cost statistics
before A* planning in the pixel C-space.

Learning Frontiers for Long-Range Decisions

While LAGR shows that pixel-space planning can break myopia without building
large metric maps, Long Range Navigator (LRN) [20] reframes the problem. Instead
of building a full long-range map, it learns affordable frontiers from egocentric RGB
and pick the heading that aligns with the distant goal. LRN trains a goal-agnostic
affordance backbone to produce image-space hotspot heatmaps, projects them into
angular bins, then uses a goal-conditioned head with temporal smoothing to choose
the best heading. Labels are obtained largely from unlabeled videos via point track-
ing and hotspot mining, thereby scaling supervision. Empirically LRN reduces inter-
ventions in off-road courses by helping the stack commit to a good direction earlier
than short-horizon heuristics.

This thesis shares LRN’s thesis that long-range planning chiefly requires choosing a
good frontier. However, while LRN demonstrates impressive long-horizon reasoning
in image space, it explicitly assumes that no reliable depth estimate is available, pro-
jecting frontiers along camera rays using intrinsics only. This design choice simplifies
perception allowing monocular RGB inputs and learned affordance maps but also
restricts geometric reasoning – all decisions are made in angular image coordinates,
and distances along rays remain unknown. Consequently, LRN can reason about
which direction to travel but not how far obstacles actually lie, which limits precise
footprint handling or configuration-space inflation.

8
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Our approach departs fundamentally from this depth-free paradigm. We make
monocular depth reliable and metrically usable by performing a test-time calibration
with sparse LiDARs. This enables us to perform depth-aware configuration-space in-
flation and lethal-depth frontier evaluation. In contrast to LRN’s assumption of
unreliable depth, our pipeline leverages calibrated monocular depth to combine long-
range visual reasoning with explicit geometric safety margins, effectively bridging
image-space planning with metric-world robustness.

Hence, we bridge LAGR’s pixel-planning machinery with LRN’s long-horizon frontier
insight by injecting explicit depth and cost statistics into frontier choice, rather than
learning depth-free affordances end-to-end.

Traversability Estimation

Classic outdoor traversability pipelines use near-range geometry (stereo, LiDAR)
to self-supervise a color/texture classifier for far range [3, 8, 14]. LAGR variants
explored superpixels and learned color models in dynamic lighting [13], and polar or
nonuniform map parameterizations to bias angular resolution toward horizons [3].

Early deep learning based methods, such as TerrainNet [16], presents a camera-only
BEV semantic and geometric terrain model for high-speed off-road driving, using
stereo self-supervised depth completion and multi-view fusion. Its multi-headed rep-
resentation highlights the need for terrain semantics and geometry for navigation.
RoadRunner M&M [19] predicts multi-range, multi-resolution traversability and el-
evation maps through multi-modal fusion (RGB + LiDAR voxel grids) and dense
supervision from satellite DEMs and hindsight traversability estimators. Although
BEV-based and fully supervised, RoadRunner emphasizes the increasing importance
of far-range map prediction for high-speed off-road navigation.

FROLL [22] is a major precursor to modern learning-based traversability estima-
tion based on self-supervision. Their scoped-learning model integrates reliable near-
range LADAR features with sparse far-range overhead imagery or low-density sensor
returns to predict terrain cost at extended ranges. This demonstrated that far-
field cues could be exploited through self-supervised regression, anticipating later
appearance-based long-range estimators.

9
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HDIF [4] learns to predict traversability costmaps by combining exteroceptive vi-
sual and geometric data with proprioceptive IMU feedback. It defines a continuous
traversability cost as the bandpower of the vertical acceleration signal, capturing
how rough the terrain feels to the vehicle. Unlike occupancy or semantic methods,
HDIF learns the nuanced relationship between appearance, geometry, and vehicle
velocity, producing smooth continuous costmaps suitable for control optimization.
Its velocity-conditioned learning architecture allows a single network to capture dy-
namic interactions between vehicle speed and perceived roughness, outperforming
hand-engineered geometric roughness metrics.

SALON [21] extends this paradigm towards adaptive perception. It introduces a self-
supervised online adaptation loop that fuses visual foundation model (VFM) features,
proprioceptive roughness signals, and Gaussian process regression to learn risk-aware
cost and speed maps. Unlike offline-trained systems, SALON updates its traversabil-
ity predictions within seconds of new experience, avoiding out-of-distribution terrain
through uncertainty reasoning. By mapping VFM features into a Bird’s-Eye View
(BEV) grid, it generalizes across multiple robot platforms and sensing modalities.

Beyond SALON, other contemporary approaches, such as Velociraptor [23] and WVN
[15] demonstrate the value of using pretrained visual foundation models for dense ter-
rain reasoning. These methods motivate our integration of off-the-shelf traversability
estimation methods based on such generalizable foundation model features, replacing
brittle semantic segmentation with generalizable visual embeddings.

Configuration-Space Transformation in FPV

Inflating obstacles by the robot footprint directly in the image is nontrivial because
the pixel footprint is depth-varying and nonaxis-aligned. LAGR proposed a practical
surrogate – row-wise max filtering with row-dependent widths (larger near the bot-
tom), optionally combined with goal-row heuristics in A* [11]. We derive closed-form
expressions for projected width and the horizon row from calibrated intrinsics, cam-
era pitch, and height; then implement separable row/column sliding maxima with
deque optimizations and a per-pixel depth-consistency gate. This preserves LAGR’s
computational benefits while increasing geometric fidelity for turning maneuvers and
mixed-depth scenes.
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Frontier-Based Navigation and Angular Sectoring

Classic frontier-based exploration selects boundaries between known and unknown
regions to guide expansion [25]. In off-road long-range planning, a similar idea ap-
pears as choosing goal-aligned or affordable headings. LRN discretizes headings and
scores them by affordance and goal proximity [20]. We instead compute angular sec-
tor statistics over the FPV C-space: mean cost, minimum lethal depth, and validity;
then select either (i) the safest (max lethal depth) sector or (ii) the lowest-average-
cost sector that satisfies minimal lethal depth. This keeps the frontier selection
interpretable, geometry-aware, and explainable.

Planning on Pixel Grids

Search-based planning in image space uses grid neighborhoods and admissible heuris-
tics. LAGR’s A* introduced a simple admissible heuristic tied to a baseline per-step
cost, plus move-direction restrictions that encouraged monotone progress [11]. Our
planner normalizes the per-step cost as C ′(p) = 1+C(p) so that it upper-bounds Eu-
clidean distance, restoring admissibility/consistency of the Euclidean heuristic and
avoiding silent suboptimality in low-cost free space. We also implement staged mo-
tion primitives to regulate curvature near the vehicle (dynamic rollouts) and a greedy
line-of-sight simplifier to reduce pixel zig-zag before reprojection.

From LAGR and LRN to This Thesis

Why image space? Following LAGR, constant-size FPV grids amortize compute
and improve far-range responsiveness.

Why frontier selection? Following LRN, long-range decisions are mostly about
choosing where to aim, not mapping everything.

Our stance We replace learned affordances with explicit, calibrated FPV geometry,
foundation-model traversability, analytic FPV footprint inflation, and interpretable
angular-sector frontiers. This yields a modular stack that can be audited and tuned
per site while retaining LRN’s horizon benefits.
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Overall, we identify three gaps this thesis targets as follows:
1. Depth-aware FPV C-space: Prior row-wise dilations lacked explicit per-row

length handling and per-pixel depth consistency; we provide closed-form projec-
tion and separable, real-time inflation.

2. Interpretable long-range frontiering: Between LAGR (row sweep) and LRN
(learned affordances), we add angular depth & cost angular statistics with goal-
aware revalidation.

3. Heuristic soundness for A*: We explain why conventional cost range ([0, 1])
breaks consistency and provide a simple renormalization that restores A* guaran-
tees in pixel space.

12



Chapter 3

Pipeline

RGB

Depth (Camera)

Costmap (FPV)

Depth (Mono)

C-Space (FPV)
Frontier Selection C-Space Planner Path Projector 3D

Input from Falcon

RGB Undistorted

LiDAR Simulated

Figure 3.1: ROS pipeline for long-range image-space planning in Falcon [1]: The pipeline
integrates simulated perception and planning components for off-road navigation. Raw RGB and
sparse LiDAR inputs are processed through an undistortion and depth-estimation sequence to
form a traversability-aware costmap in first-person view (FPV). The frontier_selector identi-
fies a frontier in configuration space (C-space), while the planner computes a feasible image-space
trajectory guided by curvature and traversability costs. The path_projector reprojects the re-
sulting pixel-space plan into the 3D inertial frame for execution by the local planner.

Figure 3.1 illustrates the overall ROS-based perception–planning pipeline designed
for long-range image-space navigation within the Falcon [1] simulation environment.
The architecture modularizes depth perception, costmap generation, frontier selec-
tion, planning, and path projection to operate cohesively in real time. Each node
in the pipeline fulfills a distinct role in synthesizing information from the simulated
sensor suite and generating navigable trajectories in both image and 3-D inertial
coordinates. Below we briefly describe the role of each node, excluding the standard
Falcon base stack provided by our sponsor FieldAI [2]. The nodes developed and an-

13
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alyzed in detail as part of this thesis are also discussed extensively in the subsequent
chapters.

lidar_sim — Lightweight LiDAR Simulation

This node emulates LiDAR measurements by applying a precomputed LiDAR mask
derived from the projection statistics of the LiDAR sensors in the Falcon simula-
tor using classical image-processing techniques. This approach bypasses the compu-
tationally expensive ray-casting process of the Falcon LiDAR scanners, improving
simulation speed by over 15× while maintaining a comparable level of measurement
sparsity. Further details can be found in Appendix B.

undistorter — Camera Model Rectification and Intrinsics Update

The undistorter node standardizes the input imagery to match the physical camera
parameters used in real deployments. It crops and rescales the RGB feed to align
with the real sensor’s aspect ratio and field of view. The node also republishes the ad-
justed camera intrinsics (focal length, principal point) to downstream components to
ensure consistent geometric projection between simulated and real image coordinates.
In the real vehicle configuration, the node also performs additional undistortion to
compensate for lens distortions in the raw camera feed.

mono_depth — Monocular Depth Prediction and Sparse Correction

This node produces a dense depth map from the undistorted RGB image using a
learned monocular depth estimation model. We employ the off-the-shelf MoGe-2 [24]
to predict metric depth from a single monocular image. At test time, sparse LiDAR
samples from lidar_sim are used to correct scale drift and local inconsistencies,
further refining depth accuracy. Details of the test-time calibration with sparse
LiDAR are elaborated in Chapter 4.

costmap — First-Person View Costmap Prediction

The costmap node fuses RGB imagery with LiDAR-corrected depth to predict dense
per-pixel costmap in the image (FPV) plane. To convert visual inputs into a traversability-
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aware costmap, we leverage SALON [21], which projects visual foundation model fea-
tures into a bird’s-eye-view (BEV) map and learns to associate these features with
IMU-based roughness experienced by the vehicle. This pairing enables the system to
infer local traversability and to identify objects or regions that are significantly out of
distribution. This BEV traversability map (costmap) is then projected into the FPV
space, which is subsequently used for downstream long-range planning tasks. The vi-
sual features are extracted using DINOv2 [18], whose output is originally 14× lower
in spatial resolution. They are additionally upsampled via LoftUp [10] to recover
high-resolution feature maps, allowing finer geometric detail at greater distances.

frontier_selector — Goal Projection, C-Space Transform, and Frontier
Selection

The frontier_selector node first projects the navigation goal from the inertial
3-D coordinate frame into the image coordinate frame to align with perception out-
puts. Simultaneously, it converts the costmap produced by the costmap node into
a configuration-space (C-space) cost representation. Using the projected goal as a
spatial reference, the node then identifies a frontier pixel on the C-space costmap.
Frontier selection is guided by heuristics based on local cost statistics and global
objectives such as reachability and clearance. The selected frontier is subsequently
published to the mid-range, image-space planner, which uses it to generate a refer-
ence plan for the local planner inside the FieldAI stack. A more detailed description
is presented in Chapter 5.

planner — Image-Space Path Generation

The planner node computes a candidate path directly in the C-space FPV costmap
produced by the frontier_selector. Internally, it employs an A∗-based search al-
gorithm operating over the C-space costmap, where each pixel encodes traversability
and curvature constraints, and constructs feasible paths by minimizing a composite
cost that accounts for both geometric smoothness and terrain safety. The result-
ing image-space trajectory captures the globally optimal route toward the selected
frontier within the available field of view. A detailed discussion of the planner’s
internal formulation, including its cost term composition, curvature constraints, and
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heuristic, is provided separately in Chapter 6.

path_projector — Back-Projection to 3D Inertial Frame

The path_projector maps the 2-D image-space trajectory back into the 3-D iner-
tial coordinate frame using the predicted monocular depth. Each waypoint in the
image plane is re-projected into metric world coordinates. The resulting 3D path is
subscribed by the local planner to be used as a reference.

meters — Odometry-Based Benchmarking and Runtime Metrics

This node continuously monitors the vehicle’s odometry and goal updates to com-
pute both cumulative and per-goal travel distances in real time. Each time a new
navigation goal is issued, the node logs the distance covered toward the previous
goal and resets its local distance accumulator. The measurements provided by this
metric are used for benchmarking in the Experiments section (Section 7.2).
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Chapter 4

Test-Time Depth Calibration

Monocular depth estimation networks suffer from range-dependent bias and scale in-
consistency, particularly in outdoor or off-road environments where the depth range
spans several orders of magnitude. To mitigate this, we apply a lightweight test-time
depth calibration that aligns the dense monocular depth predictions with sparse
LiDAR measurements. This calibration is non-parametric at training time, and per-
formed entirely during inference, requiring no network retraining or gradient updates.

Formulation

Let D̂mono(u, v) denote the raw monocular depth prediction at pixel (u, v), and
Dlidar(u, v) the corresponding projected LiDAR depth. Denote their validity masks
as Mmono and Mlidar, respectively. We consider only the intersection region

M =Mmono ∧Mlidar,

where both modalities have valid projections.

The calibration seeks a function fθ(·) that best maps the monocular predictions to
the LiDAR depth:

Dlidar(u, v) ≈ fθ

(
D̂mono(u, v)

)
, (u, v) ∈M.
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4. Test-Time Depth Calibration

We model fθ(·) as an n-th order polynomial:

fθ(x) = a0 + a1x + a2x
2 + · · ·+ anxn

Empirically, we find that a first-order (affine) model suffices for calibration in our
deployment setting, since most of the systematic bias manifests as a global scale and
offset rather than higher-order nonlinearity.

Log-Domain Equalization

To ensure that both short- and long-range depths contribute comparably to the
regression, e.g., 1 m and 200 m regions, we perform the least-squares fit in the
log-depth domain. This logarithmic transformation compresses the dynamic range
of depth values and prevents the regression from being dominated by large-distance
pixels. In other words, the log transform enforces approximately uniform weighting
across distance scales.

x′
i = log D̂mono(ui, vi), y′

i = log Dlidar(ui, vi), (ui, vi) ∈M.

Least-Squares Estimation

We construct the polynomial design matrix

X =


x′

1 (x′
1)2 · · · (x′

1)n 1
x′

2 (x′
2)2 · · · (x′

2)n 1
... ... . . . ... ...

x′
m (x′

m)2 · · · (x′
m)n 1

 ∈ Rm×(n+1), Y =


y′

1

y′
2
...

y′
m

 ∈ Rm

The least-squares solution minimizing ∥Y −XA∥2
2 is given in closed form by

A = (X⊤X)−1X⊤Y

This coefficient vector is then used to predict calibrated depths for all valid monocular
pixels. Finally, the outputs are exponentiated to revert to metric depth:

D̂calib(u, v) = exp
(
fθ(log D̂mono(u, v))

)
, (u, v) ∈Mmono.
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Algorithm 1 Least-Squares Mono–LiDAR Calibration
Require: Monocular depth D̂mono, LiDAR depth Dlidar, masksMmono,Mlidar, poly-

nomial order n (default 1)
Ensure: Calibrated depth map D̂calib

1: M←Mmono ∧Mlidar
2: X ← [ D̂mono(u, v) : (u, v) ∈M ]
3: Y ← [ Dlidar(u, v) : (u, v) ∈M ]
4: X← [log(X), (log(X))2, . . . , (log(X))n, 1]
5: Y← log(Y )
6: A = (X⊤X)−1X⊤Y ▷ least-squares coefficients
7: Build Xtest from D̂mono on Mmono
8: Xtest ← [log(D̂mono), . . . , 1]
9: Ŷ ← AXtest

10: D̂calib(u, v)← exp(Ŷ ) for (u, v) ∈Mmono, else 0
11: return D̂calib

Algorithmic Summary

Algorithm 1 summarizes the calibration procedure. It constructs polynomial fea-
tures, performs least-squares fitting in the log-depth domain, and applies the fitted
transformation to obtain a globally calibrated depth map.
As shown later in Section 7.1, the proposed log-linear calibration substantially re-
duces depth bias for different depth ranges across diverse off-road environments.
Note that the calibration itself is performed using only sparse simulated LiDAR
measurements, whereas the evaluation is carried out using the dense ground truth
depth maps from the depth camera, which are never seen by the calibration procedure.
This is to further validate the generalization capability of the proposed test-time
calibration beyond the sparse calibration samples.
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Chapter 5

Frontier Selection

5.1 Goal Projection

To enable reasoning in FPV, the high-level navigation goal originally expressed in
the global coordinate frame is first projected into the FPV frame of the camera.

Transformation and Projection

Each goal pose is first transformed into the camera coordinate frame using the cor-
responding TF transform. Let the goal position in the camera frame be (Xc, Yc, Zc).
Using the camera intrinsic matrix K, the homogeneous image-plane projection is
written compactly as


u′

v′

w′

 = K


Xc/Zc

Yc/Zc

1

 =


fx 0 cx

0 fy cy

0 0 1



Xc/Zc

Yc/Zc

1

 , (u, v) =
(

u′

w′ ,
v′

w′

)

If Zc ≤ 0, the goal lies behind the optical plane, and direct projection becomes
invalid; such cases are handled separately as discussed later.
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Clipping to the Visible Region

When the projected pixel (u, v) falls outside the image boundaries [0, W )× [0, H)
due to large range or off-axis placement, we compute the intersection of the goal
line with the image border. The line joining the start point (x0, y0) and the raw
projected goal (x1, y1) is parameterized as p(t) = p0 + t(p1 − p0), and the smallest
positive intersection with the border rectangle defines the clipped goal. This step
guarantees that the visual target remains inside the camera view, as illustrated in
Fig. 5.1, where the red segment shows the original out-of-view projection and the
green segment shows the final clipped line within the valid FPV region.

Figure 5.1: Goal projection and clipping. The red line indicates the original pro-
jected goal extending beyond the image border, while the green line (superimposed
on red) shows the clipped goal within the visible FPV region. The blue marker de-
notes the starting pixel, and the green marker the adjusted in-view goal. The black
border represents the boundary of the FPV image.

Handling Goals Behind the Camera

If Zc ≤ 0, the goal is geometrically behind the camera. Rather than discarding such
goals, we intentionally assign a directional pseudo-goal on the visible border of the
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image. This is to ensure that the vehicle first reorients itself by turning toward the
appropriate side to bring the original goal into the visible FPV region.

The pseudo-goal is chosen along the border corresponding to the lateral direction of
the true goal (left/right) with a fixed fraction rf forward along the vertical axis:

ygoal = max(y0 − rfH, 0), xgoal =

0, x1 ≤ x0,

W − 1, otherwise.
(5.1)

Here, rf ∈ (0, 1]. We choose rf = 0.5 to place the pseudogoal approximately halfway
up the visible region, encouraging a forward-turning maneuver that realigns the
camera towards the original behind-the-vehicle direction.

Algorithmic Overview

Algorithm 2 summarizes the complete procedure, combining TF transformation, pro-
jection, clipping, and pseudo-goal handling. All outputs are guaranteed to lie within
the FPV frame. The projected goal becomes the anchor for C-space frontier selection.

Algorithm 2 Goal Projection and Clipping in FPV Image Space
Require: Goal pose pg in global frame; intrinsics K; image size (W, H); transform

buffer T ; start pixel p0 = (x0, y0)
Ensure: Projected or pseudo-goal pixel pgoal

1: pc = Tcgpg ▷ Transform to camera frame
2: if Zc ≤ 0 then ▷ Goal behind camera
3: xgoal = 0 or W−1 (from sign of Xc)
4: ygoal = max(y0 − rfH, 0)
5: return (xgoal, ygoal)
6: end if
7: Homogeneous projection: (u′, v′, w′) = K(Xc/Zc, Yc/Zc, 1), (u, v) =

(
u′

w′ ,
v′

w′

)
8: if 0 ≤ u < W and 0 ≤ v < H then
9: return (u, v)

10: end if
11: Parameterize line p(t) = p0 + t(p1 − p0), p1 = (u, v)
12: Compute intersections with {x = 0, x = W − 1, y = 0, y = H − 1}
13: t∗ = min{t > 0}; pgoal = p(t∗)
14: return pgoal
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5.2 Configuration Space Transform

The costmap generated from a first-person view (FPV) camera captures obstacle
information at the pixel level. However, to enable effective motion planning and
collision avoidance, it is necessary to account for the physical footprint of the robot.
This is accomplished by generating a configuration space (C-space) costmap, where
the robot is abstracted as a point, and each cell is inflated to reflect the area that
the robot’s body would occupy if it were centered on that cell.

5.2.1 Derivation

We derive a method to project the real-world vehicle width and length onto image
coordinates, based on the geometry of a forward-facing camera mounted on a vehicle.
Given:

• Vehicle width in real-world coordinates: wr (in meters)
• Camera intrinsics: focal lengths fx, fy and principal point (cx, cy)
• Camera height above ground: h (in meters)
• Camera pitch angle downward from the horizontal: θ (in radians)
• Target pixel row in the image: y

We derive:

1. A mapping from image row y to real-world ground-plane depth Z(y)

2. The projected width wp(y) and length lp(y) of the vehicle in pixels at row y.

Pinhole Camera Model

The standard pinhole camera projection for a 3D point Pc = [X, Y, Z]T in the camera
coordinate frame is:


x

y

1

 = 1
Z


fx 0 cx

0 fy cy

0 0 1



X

Y

Z

 ⇒

y = fy · Y
Z

+ cy

x = fx · X
Z

+ cx

(5.2)
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Coordinate System and Camera Pose

The world coordinate system is defined such that:
• The positive (X, Y, Z) is (right, bottom, forward).
• The ground plane lies at Y = h.
• The camera is mounted at height h above the ground, thus camera is at Y = 0.
• The camera is facing downward by angle θ

Let a point on the ground plane in world coordinates be Pw = (Xw, 0, Zw)T .
The camera translation vector is T = (0,−h, 0)T , and the rotation matrix for a pitch
angle θ about the X-axis is:

R =


1 0 0
0 cos θ − sin θ

0 sin θ cos θ


Thus, the point Pw in camera coordinates is given by

Pc = R(Pw − T ) =


1 0 0
0 cos θ − sin θ

0 sin θ cos θ



Xw

h

Zw

 =


Xw

h cos θ − Zw sin θ

h sin θ + Zw cos θ

 (5.3)

Ground Plane Depth Estimation

Substituting Y and Z from Equation 5.3 into the pinhole vertical coordinate in
Equation 5.2, we get

y = fy ·
h cos θ − Zw sin θ

h sin θ + Zw cos θ
+ cy

⇒ y − cy = fy ·
h cos θ − Zw sin θ

h sin θ + Zw cos θ

⇒ (y − cy)(h sin θ + Zw cos θ) = fy(h cos θ − Zw sin θ)

⇒ (y − cy)h sin θ + (y − cy)Zw cos θ = fyh cos θ − fyZw sin θ

⇒ (y − cy)Zw cos θ + fyZw sin θ = fyh cos θ − (y − cy)h sin θ

⇒ Zw [(y − cy) cos θ + fy sin θ] = h [fy cos θ − (y − cy) sin θ]
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Thus, the ground depth Z(y) corresponding to image row y is:

Z(y) = h [fy cos θ − (y − cy) sin θ]
(y − cy) cos θ + fy sin θ

(5.4)

Small-Angle Approximation For small pitch angles (θ ≪ 1), sin θ ≈ θ and
cos θ ≈ 1. This leads to

Z(y) ≈ hfy

(y − cy) + fyθ

Since the resolution of the FPV image and camera parameters remain fixed, we
can precompute the ground depth once at the start of the mission. Therefore, the
small-angle approximation is not needed in our case.

Projected Vehicle Width

At any depth Z, a vehicle of width wr (in meters) spans X = ±wr/2 in the real
world. These 3D points in camera coordinates project to image u coordinates as:

u = fx ·
X

Z
+ cx

Here, the left and right edges are given by

uL = fx ·
−wr/2

Z
+ cx, uR = fx ·

wr/2
Z

+ cx

Thus, the projected pixel width at row y based on ground depth estimate Z(y) is:

wp(y) = uR − uL = fx ·
wr

Z(y) = fx · wr

h
· (y − cy) cos θ + fy sin θ

−(y − cy) sin θ + fy cos θ
(5.5)

Note that wp(y) is a nonlinear rational function of the form wp(y) = A(y − cy) + B

C(y − cy) + D
for θ ̸= 0. Only when the camera is level (θ = 0), it becomes linear, i.e. wp(y) =
fx wr

h fy

(y−cy), meaning the projected width increases steadily with image row without
any nonlinear bending. As the camera tilts more up or down, the envelope of the
vehicle width bends more sharply.
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Horizon Row

In the camera frame, the optical axis (aligned with the Z-axis) is rotated downward
by pitch θ, resulting in a unit direction vector d = (0, − sin θ, cos θ)T . This vector
points in the direction the camera is looking, i.e. parallel to the ground plane.
Substituting d into the pinhole model for vertical projection in Equation 5.2, we get

yhorizon = fy ·
− sin θ

cos θ
+ cy

⇒ yhorizon = cy − fy · tan(θ) (5.6)

In general, the vertical position of the horizon row as a function of the camera pitch
angle θ can be summarized as follows:
• (θ = 0): the camera looks straight ahead and yhorizon = cy

• (θ > 0): the camera is pitched downward, and the horizon appears above the
principal point: yhorizon < cy. This is the case for us.

• (θ < 0): the camera is pitched upward, and the horizon moves below the principal
point.

Projected Vehicle Length

Estimating the projected length of the vehicle in pixels along the vertical axis requires
calculating the vertical pixel distance corresponding to the real-world vehicle length
lr at depth Z(y) as follows:

1. For a given image row yrear corresponding to the rear of the vehicle, the depth is:

Zrear = Z(yrear)

2. Assuming the vehicle lies along the depth axis of the camera, the depth of the
front of the vehicle along the optical axis is:

Zfront = Zrear + lr

3. To find the image row yfront corresponding to Zfront, we invert the ground depth
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function Z(y) in Equation 5.4 to obtain:

y(Z) = fy (h cos θ − Z sin θ)
Z cos θ + h sin θ

+ cy

4. The projected length in pixels at the current row lp(y = yrear) is then the vertical
pixel distance between y = yrear and yfront:

lp(y) = y − y(Zfront) (5.7)

Figure 5.2 shows projected vehicle width, half-length, and horizon row along the
image row based on the parameters mentioned in the caption of the figure.

Figure 5.2: Projected vehicle width and half-length, along with the horizon row
(Equations 5.5, 5.7, 5.6), calculated fx = fy = 960, cx = 960, cy = 540, image
resolution of 1080× 1980, pitch angle of 23◦, and camera height, vehicle width, and
vehicle length of 1.5, 2.0, and 4.5 meters, respectively.

5.2.2 Implementation

Having established all the necessary components for the C-space transformation, we
will now turn to the question of efficient implementation. As derived in Section
5.2.1, under a pinhole projection model, a 3D point (X, Y, Z) maps to the image
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coordinates (x, y) via x = fX/Z and y = fY/Z, where f is the focal length. The
same physical width w varies nonlinearly appearing larger near the bottom of the
image (small Z), and smaller higher up (large Z), resulting in a slanted quadrilateral
footprint in image space.

To achieve approximate collision avoidance via projected vehicle-dimension infla-
tion in the FPV costmap, first, we employ a row-wise maximum filter inspired by
LAGR [11]. The key insight underlying this approach is that the robot width corre-
sponding to the horizontal dimension in image space is the critical factor for collision
avoidance. Forward motion of the robot maps to vertical displacement in the image,
where the inaccuracies due to row-wise filtering effects compress the robot length.
Consequently, we apply horizontal filtering exclusively, using row-dependent kernel
sizes that approximate the projected robot width.

However, we empirically find horizontal filtering alone to be insufficient. In particular,
during turning maneuvers in front of obstacles, the robot may still collide if no
vertical or column-wise inflation is applied. To address this, we additionally perform
column-wise inflation using a smaller fraction of the projected vehicle length, thereby
accounting for potential collisions during rotational motion and ensuring a more
robust obstacle avoidance strategy.

Variable-Sized Sliding Window Maximum

Let I ∈ RH×W denote the FPV costmap of height H and width W . For each
row i and each column j, we compute I ′

i,j = maxv∈[j−ki, j+ki]∩[0,W −1] Ii,v, where ki

is a row-dependent half-window size based on the estimated ground-plane depth
Z(i) following Equation 5.5. Thus, our row-wise C-space transformation essentially
reduces to solving a sliding window maximum problem efficiently for each row.

Efficient C-Space Transformation

We realize an efficient deque-based implementation for C-space inflation here. Fur-
ther details on the deque and its necessity for efficient C-space transform are given
in Appendix A.

In addition to the row-wise sliding maximum operation based on the projected ve-
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hicle width, a per-pixel depth consistency check is introduced before adding a new
candidate into the deque. Pixels whose depth values differ by more than ∆Z from
the current center depth are ignored:

Include v only if |Zr,v − Zr,c| < ∆Z.

This effectively removes outliers corresponding to obstacles at different depth layers
or sudden terrain discontinuities, resulting in a geometrically valid inflation.

Algorithm 3 Row-Wise Sliding Maximum with Deque Optimization
Require: Input row Ir[0:W−1], depth row Zr (optional), window size wr, depth

tolerance ∆Z
Ensure: Output row I ′

r[0:W−1]
1: if wr ≤ 1 then
2: I ′

r ← Ir ▷ No filtering needed
3: return
4: end if
5: wr ← wr + 1 if wr is even ▷ Ensure odd window size
6: kr ← ⌊wr/2⌋
7: Initialize empty deque D
8: for c = 0 to W − 1 do
9: L← max(0, c− kr); R← min(W − 1, c + kr) ▷ Current window bounds

10: Remove elements from D where Dfront < L

11: Extend window:
12: s← (D is empty)?L : Dback + 1
13: for j = s to R do
14: if |Zr[j]− Zr[c]| > ∆Z then
15: continue ▷ Exclude inconsistent depth
16: end if
17: while D not empty and Ir[j] ≥ Ir[Dback] do
18: Pop back of D ▷ Remove smaller values
19: end while
20: Push j to back of D
21: end for
22: I ′

r[c]← Ir[Dfront] ▷ Current window maximum
23: end for
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Row-Wise Aggregation Across Image The full horizontal inflation for the en-
tire costmap is obtained by applying Algorithm 3 independently to each image row:

I ′(r, c) = RowMax
(
I(r, :), wr

)
, ∀r ∈ [0, H − 1].

The window size wr varies per row according to the projected vehicle width in Equa-
tion 5.5, which expands toward the image bottom (closer to the vehicle) and contracts
near the horizon.

Vertical (Column-Wise) Sliding Maximum Filtering The row-wise filtering
above expands the costmap laterally to represent the robot’s horizontal footprint
at each row. This is generally sufficient only if the robot experiences translational
forward motion. However, when the robot moves forward and rotate near obstacles,
it may get into collision unless the vertical (image row) direction is not inflated at
all. Thus, followed by the row-wise cost expansion, we also apply a column-wise
maximum filter with a fraction of the projected robot length in Equation 5.7 on the
row-filtered result I ′, producing the final C-space costmap I ′′:

I ′′
r,c = max

u∈[r−lr, r+lr]
I ′

u,c,

where lr = ⌊αLr/2⌋, where Lr represents the projected vehicle length (in pixels) at
image row r, as derived in Equation 5.7, and α ∈ (0, 1].

Conceptual Overview The column-wise sliding maximum filtering process is sum-
marized in Algorithm 4. It takes as input the horizontally inflated costmap and
produces a vertically expanded version, completing the separable C-space transfor-
mation. Each image column is processed independently. For each column index c,
the algorithm maintains a deque storing row indices corresponding to potential max-
ima within the current vertical window. As the window slides downward along the
column:
• The front of the deque always holds the index of the current maximum.
• Out-of-window indices are removed from the front.
• New indices are appended to the back while removing smaller values to preserve
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a monotonically decreasing sequence of pixel intensities.
This ensures that each row’s maximum can be computed in constant amortized time.

Algorithm 4 Column-Wise Sliding Maximum with Deque Optimization
Require: Input column I ′

c[0:H−1], vector of window lengths {Lr}H−1
r=0

Ensure: Output column I ′′
c [0:H−1]

1: Initialize empty deque D
2: for r = 0 to H − 1 do
3: lr ← Lr

4: if lr ≤ 1 then
5: I ′′

c [r]← I ′
c[r]

6: continue
7: end if
8: lr ← lr + 1 if lr is even ▷ Ensure symmetric window
9: kr ← ⌊lr/2⌋

10: T ← max(0, r − kr); B ← min(H − 1, r + kr) ▷ Vertical window bounds
11: Remove all indices from D where Dfront < T

12: Extend window:
13: s← (D is empty)? T : Dback + 1
14: for i = s to B do
15: while D not empty and I ′

c[i] ≥ I ′
c[Dback] do

16: Pop back of D
17: end while
18: Push i to back of D
19: end for
20: I ′′

c [r]← I ′
c[Dfront] ▷ Current maximum in window

21: end for

Two-Stage Separable Transformation By first performing the row-wise (hori-
zontal) filtering followed by the column-wise (vertical) filtering, we achieve a separable
approximation of the full 2D configuration-space dilation:

I ′′ =Mcol
(
Mrow(I)

)
,

whereMrow andMcol denote the row- and column-wise maximum filters, respectively.
This separable formulation allows the algorithm to approximate the nonlinear vehicle
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Figure 5.3: Sample illustration of C-space transformation. (Top-left) RGB image,
(bottom-left) LiDAR-calibrated depth map, (top-right) FPV predicted costmap, and
(bottom-right) C-space costmap.

footprint efficiently while retaining real-time performance characteristics. Figure 5.3
shows a sample C-space transformation.

Runtime The amortized runtime of our implementation is O(HWk) for the FPV
image of shape H ×W and k ≪ H. See Appendix A for details.
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5.3 Frontier Selection Strategies

Autonomous navigation in cluttered environments requires the robot to select suit-
able frontier points that balance goal-directed progress, obstacle avoidance, and path
length. Based on the goal projected into the FPV image following Section 5.1, in
this section, we present three progressively refined FPV frontier selection strategies.
They are ordered from simpler, row-wise selection strategies to more sophisticated
angular cost and depth-aware approaches.

1. LAGR: Inspired by the DARPA LAGR paper [11], this method performs a row-
wise frontier search from the goal row toward the origin row, explicitly encour-
aging forward (upward in the FPV image) motion towards the goal. We had to
customize it for our work, as LAGR does not explicitly describe any long-range
planner that repeatedly selects frontiers in the image space.

2. LRN: Following the LRN approach [20], this algorithm uses angular sector-wise
statistics to select the farthest valid frontier in the sector with the largest minimum
lethal depth, prioritizing generally more open directions. In our implementation,
we adapted it because the original LRN learns affordance and frontier jointly
without depth information, assuming no reliable depth is available. Instead, we
proxy affordance with our explicit dense costmap prediction model, and include
a reasonable, calibrated depth estimate as already mentioned in Chapter 4.

3. ACD: This strategy leverages angular sector-wise cost statistics to choose a sector
with lower average cost that also satisfies a minimum lethal depth. The farthest
valid point within the selected sector is then chosen as the frontier.

Note that we refer to the LAGR [11] and LRN [20] baselines using the shorthand
“LAGR” and “LRN”. However, these labels should be understood as LAGR-style and
LRN-inspired strategies rather than exact implementations of the original methods.
This is because they are adapted to our problem setting, and in several cases extended
beyond what the original papers explicitly describe (e.g., incorporation of explicit
depth estimates or repeated long-range frontier selection). We use the shorter names
purely for brevity and to clearly indicate the conceptual lineage of each strategy.
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5.3.1 LAGR
The LAGR algorithm, shown in Algorithm 5, identifies a valid frontier point along
the line of sight from the goal to the robot’s current position. First, the algorithm
checks if the goal itself is valid according to the costmap and collision threshold;
if so, it returns the goal as the frontier. Otherwise, a set of points along the line
connecting the origin and goal is sampled, and a row-wise search is performed for
valid frontier candidates. For each sampled row, the algorithm scans left and right
along the row to locate the nearest valid pixels whose cost is below the threshold. If
multiple candidates exist, the pixel closest to the sampled goal is selected; if only one
valid pixel exists, it is chosen. If no valid pixels are found across all sampled rows,
the algorithm returns a failure indicator. This row-wise strategy encourages forward
motion toward the goal while respecting collision constraints.

Algorithm 5 LAGR-Style, Row-Wise Frontier Selection
Require: Costmap C, mask M , depth map D, origin (ro, co), goal (rg, cg), maximum

cost Cmax, number of rows to sample n, column-wise step size ∆c

Ensure: Frontier (rf , cf )
1: Initialize (rf , cf )← (−1,−1)
2: if C(rg, cg) < Cmax then
3: return (rg, cg)
4: end if
5: Sample n points along the line from (rg, cg) to (ro, co) excluding (ro, co): {(ri, ci)}
6: Row-wise search for valid candidates relative to sampled goal point:
7: for each sampled point (r, c) do
8: cl ← Immediate left column ci from c with step ∆c with C(r, ci) < Cmax

9: cr ← Immediate right column ci from c with step ∆c with C(r, ci) < Cmax

10: if both (r, cr) and (ri, cl) exist then
11: return ((rf , cf ) = closest to sampled goal (r, c))
12: else if only one valid pixel exists then
13: return ((rf , cf ) = valid pixel)
14: end if
15: end for
16: return (rf , cf ) ▷ Failure

35



5. Frontier Selection

Angular Sector Computation

Before both the LRN and ACD algorithms are applied, we perform a common pre-
computation step to obtain angular sector-wise statistics (Algorithm 6). In this step,
the field of view is partitioned into discrete angular sectors, and for each sector, we
compute statistics such as average cost, minimum lethal depth, and a validity flag
based on collision and depth thresholds. These statistics form the basis for the sector-
level reasoning used by both algorithms to identify promising frontier directions.

More specifically, given the robot’s image-plane origin (ro, co) and allowable angular
field of view [θmin, θmax], the environment is partitioned into discrete angular sectors
of stride ∆θ. Each pixel (r, c) is assigned to its corresponding angular bin based on
its relative vector from the robot’s origin:

θr,c = tan−1
(
−r − ro

c− co

)
i =

⌊
θr,c − θmin

∆θ

⌋
.

For each sector index i, we accumulate pixel statistics (ignoring sky):

Si =
{
(r, c) | i = ⌊(θr,c − θmin)/∆θ⌋

}
,

and compute its average cost

C̄i = 1
|Si|

∑
(r,c)∈Si

Ir,c,

along with its maximum cost, pixel count, and closest lethal depth, if any. Sec-
tors containing lethal or near-lethal obstacles within a threshold distance dlethal are
marked as invalid and excluded from frontier consideration in ACD (Algorithm 8).

Goal-Aware Revalidation If a goal pixel (rg, cg) exists within the current field
of view, its angular index is computed as

ig =
⌊

θg − θmin

∆θ

⌋
, θg = tan−1

(
−rg − ro

cg − co

)
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Algorithm 6 AngularSectorStat: Computation of Angular Sector-wise Statistics
Require: Costmap I, depth map D, column threshold map Cth, angular range

[θmin, θmax], stride ∆θ, origin (ro, co), minimum angular stride ∆θmin, angular
step size ∆θstep, max allowable cost Imax

Ensure: Sector-wise statistics {Si} including average cost, min lethal depth, validity
1: Partition the field of view into angular sectors {Si} of stride ∆θ
2: for all pixels (r, c) above the origin do
3: Compute θr,c and assign to sector index i
4: if Ir,c > Imax and Dr,c < dlethal then
5: Mark Si as invalid and record/update minimal invalid depth for Si

6: end if
7: Accumulate count and cost statistics for Si

8: end for
9: Compute goal angle θg and index ig

10: if Sig is invalid and D(rg, cg) < dmin
invalid(Sig) then

11: Lift invalid flag for goal sector Sig ▷ (Goal depth < closest lethal depth)
12: end if
13: Count total invalid sectors Ninv ← |{i : Si invalid}|
14: if Ninv = Nθ then
15: while ∆θ > ∆θmin do
16: ∆θ ← ∆θ −∆θstep
17: success, {Si} ← AngularSectorStat(I, D, Cth, θmin, θmax, ∆θ)
18: if success then
19: return success, {Si}
20: end if
21: end while
22: return FALSE, {Si}
23: end if
24: Normalize accumulated costs C̄i by the count for all sectors
25: return TRUE, {Si}
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If the goal sector Sig is marked invalid but the goal’s depth dg = D(rg, cg) is lower
than the closest lethal pixel in that sector (i.e., dg < dmin

invalid), the invalid flag is lifted
to prevent false rejections when the goal lies in front of nearby but farther obstacles.

This step ensures that the planner does not ignore a reachable goal due to obstacle
pixels at greater depths within the same angular sector.

Algorithm 7 LRN-Style Frontier Selection
Require: Costmap I, depth map D, column threshold map Cth, angular range

[θmin, θmax], stride ∆θ, origin (ro, co), goal (rg, cg), minimum angular stride ∆θmin,
angular step size ∆θstep, max allowable cost Imax, lethal depth threshold dlethal

Ensure: Farthest valid frontier pixel (rf , cf )
Angular Sector-wise Computation: (Algorithm 6) Use min lethal depth

1: success, {Si} ← AngularSectorStat(I, D, Cth, θmin, θmax, ∆θ)
2: if not success then
3: return (−1,−1) ▷ Failure
4: end if

LRN Strategy: Prefers sectors with farthest lethal depth
5: Compute goal angle θg and index ig

6: Retrieve goal depth dg ← D(rg, cg)
7: if goal within the FPV field of view then
8: Check goal sector Sig first; if dinvalid

min (Sig) > D(rg, cg), select it.
9: Otherwise, expand search symmetrically about angular goal index ig:

10: Alternate left/right search w.r.t. ig until i is found dinvalid
min (Si) > D(rg, cg)

11: If both sides valid, choose the one with higher lethal depth (safer) dinvalid
min (Si).

12: else
13: i∗ ← arg maxi dinvalid

min (Si) ▷ Goal outside FoV — pick safest sector
14: end if

Frontier Extraction:
15: Within sector Si∗ , find farthest valid pixel:

(rf , cf ) = arg max
(r,c)∈Si∗ , Ir,c<Cth(r,c)

[
(r − ro)2 + (c− co)2

]
16: return (rf , cf )
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5.3.2 LRN

Algorithm 7 is inspired by the Long-Range Navigation (LRN) approach [20]. It uses
the angular sector statistics to select the farthest valid frontier located within the
sector that has the largest minimum lethal depth, thereby preferring directions that
appear more open or safer for traversal. When the goal is visible within the field of
view, the algorithm first evaluates the goal-aligned sector; if it is invalid, a symmetric
search is performed left and right about the goal direction to find the nearest valid
sector. If the goal lies outside the field of view, the algorithm directly selects the
safest sector based on its lethal depth estimate. In our implementation, the original
LRN formulation is adapted to our context, since the original method jointly learns
affordance and frontier without using explicit depth information. Here, we proxy
affordance using our cost model and incorporate a reliable depth estimate for more
robust decision-making.

5.3.3 ACD

Our Angular Cost & Depth-Aware Frontier (ACD) algorithm (Algorithm 8)
extends the same framework by incorporating both average cost and lethal depth
information when selecting a frontier. Unlike LRN, which prioritizes openness (via
depth in our implementation), ACD favors sectors with lower average cost while
still satisfying a minimum lethal depth threshold. A symmetric search is performed
around the goal direction to locate the best valid (i.e. lethal pixels are not too close)
sector, and within that sector, the farthest valid pixel below the cost threshold is
chosen as the frontier.

In cluttered or densely obstructed environments, openness alone can be misleading, as
visually open regions may be difficult to identify due to occlusions and so on. Instead,
ACD leverages average cost statistics and lethal depth cues to navigate through such
challenging terrain. This formulation aims to generalize better across diverse off-
road environments, reducing bias toward open spaces and improving robustness in
difficult conditions.
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Farthest Valid Frontier Extraction Within a Sector

After determining the optimal sector index i∗ using either LRN (Algorithm 7) or
ACD (Algorithm 8), the next step is to extract a valid frontier within that sector.
The same procedure is applied for both approaches. The frontier pixel is defined as
the farthest valid point (i.e., with the maximum radial distance) within the selected
angular sector whose cost remains below the collision threshold map Cth:

(rf , cf ) = arg max
(r,c)∈Si∗

{
(r − ro)2 + (c− co)2

∣∣∣∣ Ir,c < Cth(r, c)
}

.

This yields the final depth-aware angular frontier, which is passed to the local motion
planner as a directional target.

Algorithm 8 ACD: Angular Cost&Depth-Aware Frontier Selection
Require: Costmap I, depth map D, column threshold map Cth, angular range

[θmin, θmax], stride ∆θ, origin (ro, co), optional goal (rg, cg), stuck flag bstuck, min-
imum angular stride ∆θmin, angular step size ∆θstep, max allowable cost Imax

Ensure: Farthest frontier pixel (rf , cf )
Angular Sector-wise Computation: (Algorithm 6) Use costs and validity

1: success, {Si} ← AngularSectorStat(I, D, Cth, θmin, θmax, ∆θ)
2: if not success then
3: return (−1,−1) ▷ Failure
4: end if

ACD: Prefers sectors with lower cost under a lethal depth threshold
5: Initialize optimal sector index: i∗ ← −1
6: Check goal sector Sig first; if valid and C̄ig is below threshold, select it.
7: Otherwise, expand search symmetrically about angular goal index ig:
8: Alternate left/right search relative to ig until a valid sector is found
9: If both sides valid, choose the one with the lower average cost C̄i.

Frontier Extraction:
10: Within Si∗ , find farthest pixel (r, c) satisfying Ir,c < Cth(r, c):

(rf , cf ) = arg max
(r,c)∈Sibest

[
(r − ro)2 + (c− co)2

]
11: return (rf , cf )
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Planning

Start Receive Frontier A* in FPV
C-space Success?

Path Simplification
(Optional)

Return Final Path

Select Midpoint
Frontier

Yes

No

Figure 6.1: Flowchart of the planning loop: A∗ planning towards the selected
frontier, optional path simplification upon success, and midpoint-frontier fallback
with replanning upon failure.
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6.1 A* Implementation

Figure 6.1 summarizes the planning loop used in our FPV C-space planner. Starting
from the vehicle’s current position (usually near the tip of the vehicle), the system
first receives a frontier goal (Section 5.3) and runs A∗ in the C-space costmap. If the
search succeeds, the resulting path may optionally undergo pixel-space simplification
before being returned for execution. If the search fails to reach the frontier, the
planner selects a midpoint frontier located approximately halfway between the start
and the original (or previous) frontier recursively in an attempt to make forward
progress.

Below, we highlight three aspects of our A∗ implementation that we believe are worth
mentioning for reproducibility.

6.1.1 Cost Renormalization for Heuristic Validation

Although A∗ is a classical and widely established search algorithm, its correct appli-
cation in unconventional domains such as FPV image-space planning is not entirely
straightforward. Even small numerical inconsistencies between the heuristic and
the cost formulation can silently break its optimality guarantees. In our case, the
costmap values were normalized to the range [0, 1], representing terrain traversability.
While this scaling is convenient for visualization and neural network outputs, it intro-
duces a subtle but important trap: in free-space regions, the local cost values become
so small that the heuristic may overestimate the true path cost. The planner still
produces visually plausible paths, but the search ceases to be theoretically optimal.
To prevent this, we introduced a constant offset to the costmap before planning:

C ′(p) = 1 + C(p),

ensuring that each step carries at least its geometric traversal cost. Below we pro-
vide the theoretical justification for this normalization and its relationship to the
admissibility and consistency properties of A∗.
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Foundations of A∗

At each iteration, A∗ expands the node n with the lowest total estimated cost

F (n) = G(n) + H(n),

where G(n) is the cumulative cost from the start node to n, and H(n) is the estimated
remaining cost to the goal.

For the algorithm to be both optimal, the heuristic H must satisfy two classical
properties [9]:

• Admissibility. The heuristic never overestimates the true remaining cost:

H(n) ≤ J∗(n), ∀n,

where J∗(n) is the minimal true cost from n to the goal. This ensures that F (n)
is a valid lower bound on the total path cost.

• Consistency (Monotonicity). For every edge (n, p), the heuristic must satisfy

H(n) ≤ c(n, p) + H(p),

ensuring that F -values are non-decreasing along any valid path. Consistency im-
plies admissibility and guarantees that A∗ never needs to re-expand closed nodes.

Cost model in the image-space planner

Each pixel in the FPV costmap represents a node p, with traversability C(p) ∈
[0, 1]. For our five-connected grid (up, up–{left/right}, left/right), the geometric
step lengths are

d(n, p) ∈ {1,
√

2}.

The raw transition cost is defined as

c(n, p) = d(n, p) C(p),
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and the heuristic is the Euclidean distance to the goal,

H(n) = ∥pn − pg∥2

Failure modes with an unshifted costmap

When C(p) is small in free-space regions, the step costs c(n, p) approach zero. Over
long paths, the total accumulated cost J∗(n) can then become far smaller than
the Euclidean distance H(n), which is measured in pixel units. This breaks the
admissibility condition:

H(n) > J∗(n),

meaning that the heuristic overestimates the true cost-to-go. The node expansions
are no longer guided by valid lower bounds, and A∗ may terminate with a suboptimal
path.

The same issue undermines consistency. For neighboring nodes n and p, the heuris-
tic difference satisfies H(n) − H(p) ≈ d(n, p), but the transition cost c(n, p) =
d(n, p) C(p) may be far smaller. Thus, the required inequality

H(n) ≤ c(n, p) + H(p)

fails, since c(n, p)≪ d(n, p).

Geometric interpretation via the triangle inequality

For Euclidean heuristics, consistency follows naturally from geometry. The triangle
inequality states that for any three points (pn, pp, pg),

∥pn − pg∥2 ≤ ∥pn − pp∥2 + ∥pp − pg∥2.

If the step cost equals or exceeds the geometric distance, i.e. c(n, p) ≥ ∥pn − pp∥2 =
d(n, p), then

H(n) ≤ d(n, p) + H(p) ≤ c(n, p) + H(p),

and the heuristic is guaranteed to be consistent. However, when c(n, p) is smaller
than the geometric distance, which is unavoidable with C(p) ∈ [0, 1].
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Restoring admissibility and consistency with an additive offset

To maintain the proper geometric relationship between cost and heuristic, we redefine
the costmap as

C ′(p) = 1 + C(p), c′(n, p) = d(n, p) C ′(p).

This guarantees that every move costs at least its Euclidean length:

c′(n, p) ≥ d(n, p).

With this scaling, the true path cost satisfies J∗(n) ≥ ∥pn − pg∥2, preserving admis-
sibility, and the triangle inequality ensures

H(n) ≤ d(n, p) + H(p) ≤ c′(n, p) + H(p),

which restores consistency. Under this formulation, F -values are strictly non-decreasing
along any path, and A∗ expansion is optimal. Conceptually, the adjustment ensures
that in free-space regions, where C(p)≈0, the algorithm still perceives a meaningful
geometric cost per step.

6.1.2 Dynamic Local Rollouts and Path Partiality

In our C++ implementation, we consider two distinct motion groups to regulate
local search behavior and curvature near the vehicle:
• Dynamic rollouts: Close to the vehicle, a restricted set of three pixel-level mo-

tion primitives {up, up-left, up-right} is used to prevent excessively sharp turns
that would violate the vehicle’s steering constraints or produce unrealistic lateral
motions in image space. These rollouts enforce a smoother initial curvature by
biasing the local expansion toward forward-facing directions and limiting the an-
gular deviation between consecutive moves. Beyond a predefined proximal region
(typically 20− 30% of the FPV height), the planner expands using the full set of
five motion primitives {up, up-left, up-right, left, right }, allowing broader lateral
exploration and global path coverage. This staged design preserves stability near
the vehicle while maintaining navigational flexibility farther ahead.

• Partial path extraction: When the full A∗ search cannot reach the projected
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goal satisfying a collision threshold, the planner seeks a partial path by selecting
a new frontier node that lies approximately halfway between the current explo-
ration frontier and the start position. This midpoint frontier serves as a stable
intermediate goal that represents meaningful forward progress.

6.2 Path Simplification in Pixel C-space

The discrete path generated by the A∗ planner typically contains redundant way-
points and high-frequency zig-zag patterns introduced by grid discretization. Al-
though each waypoint is individually valid, these artifacts lead to unnecessary cur-
vature and instability once the path is projected into 3D space for vehicle execution.
To mitigate this, we apply greedy simplification of the A∗ path.
Algorithm 9 depicts the greedy path simplification procedure applied in the pixel C-
space costmap. Starting from the initial waypoint, the algorithm iteratively seeks the
farthest subsequent point that can be connected without violating the traversability
constraint. For each current point pi, it tests candidate endpoints pj in reverse
order, from the end of the path toward pi+1, and uses Bresenham’s line algorithm
to enumerate the discrete pixels along the segment line(pi, pj). If the maximum cost
along this line is below the collision threshold Cmax, i.e.

max
x∈line(pi,pj)

C(x) < Cmax,

all intermediate waypoints between pi and pj are removed and pj is appended to the
simplified path. If no longer valid connection is found, the immediate next point pi+1

is retained to ensure forward progress. This greedy backward search preserves only
those points that are required for obstacle avoidance, resulting in a more compact
path in pixel space.
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Algorithm 9 Greedy Path Simplification in Pixel C-space
Require: Raw path P = [p1, p2, . . . , pN ], costmap C, threshold Cmax
Ensure: Simplified path P ′

1: P ′ ← [p1]
2: i← 1
3: while i < N do
4: j ← N
5: while j > i + 1 do
6: line← Bresenham(pi, pj)
7: if maxx∈line C(x) < Cmax then
8: Append pj to P ′

9: i← j
10: break
11: else
12: j ← j − 1
13: end if
14: end while
15: if j = i + 1 then
16: Append pj to P ′

17: i← j
18: end if
19: end while
20: return P ′
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Chapter 7

Experiments

In Section 7.1, we examine whether mono–LiDAR calibration reduces depth bias.
Section 7.2, compares different frontiering strategies in terms of distance traveled
across diverse Falcon simulator environments.

7.1 Test-Time Depth Calibration

In Chapter 4, we calibrated raw monocular predictions with sparse LiDAR using
first-order least-squares fits (no network updates). Two variants were evaluated in
practice: a direct affine fit in metric depth and a log-affine fit in the log-depth domain.
Qualitative examples for our three Falcon simulation environments, Star Rock Farm
(SR-Farm), Trabuco, and Desert, are shown in Figures 7.1, 7.2, and 7.3.

We evaluate mean absolute error (MAE) in meters over three disjoint ranges: [0, 50],
[50, 100], and [100, 200] m. Table 7.1 summarizes the numbers. Across all three
environments and all range bins, both the affine and log-affine calibrations substan-
tially reduce MAE relative to raw monocular predictions, particularly in the [50, 200]
m regime where scale drift is most harmful. The affine fit generally provides the
strongest far-range correction, while the log-affine fit offers more uniform improve-
ments across mid-range distances.

Note that the calibration is performed using only sparse simulated LiDAR measure-
ments, not dense ground-truth supervision. The evaluation, however, is carried out
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Table 7.1: Depth MAE (± std) in meters across ranges and environments

Environment Method
Mean Absolute Error (MAE) (± std)

[0− 50] m [50− 100] m [100− 200] m

SR-Farm
Mono depth estimate (MDE) 1.49 (2.88) 20.19 (16.13) 55.16 (28.28)

MDE + Affine calibration 1.82 (3.13) 10.15 (15.24) 22.61 (29.82)
MDE + Log-affine calibration 0.73 (1.92) 10.01 (14.29) 30.05 (31.77)

Trabuco
Mono depth estimate (MDE) 2.09 (4.24) 39.15 (15.10) 97.56 (26.89)

MDE + Affine calibration 2.35 (4.23) 9.19 (12.50) 18.07 (26.80)
MDE + Log-affine calibration 1.07 (2.52) 16.58 (16.34) 35.66 (43.75)

Desert
Mono depth estimate (MDE) 2.32 (4.38) 46.67 (14.33) 115.49 (26.95)

MDE + Affine calibration 2.10 (4.22) 11.26 (13.43) 39.12 (38.03)
MDE + Log-affine calibration 0.97 (2.35) 19.17 (14.89) 55.22 (51.11)

using the dense reference depth maps from depth camera, which are never seen by the
calibration procedure. Hence, the observed improvements validate the generalization
capability of both calibration variants beyond the sparse calibration samples.

Qualitatively, calibration mitigates the multiplicative bias visible in far-field terrain
while maintaining local smoothness useful for C-space inflation. Quantitatively, both
affine and log-affine fits yield consistent MAE reductions, with the later offering more
uniform improvements and the former providing stronger far-range correction.

In our experiments, we employ log-affine calibration. Although the affine fit achieves
the lowest error in [50, 200] m band, the log-affine variant provides lower error in
[0, 50] m, which is more critical for real-world execution of long-range image-space
plans. This is because near-range pixels correspond to regions the robot will traverse
within only a few planning cycles. Thus, errors in this regime directly affect footprint
inflation, angular-sector scoring, and the C-space trajectory executed by the local
planner. By contrast, far-range pixels primarily serve as coarse directional guidance.
Any depth at these distances is repeatedly re-estimated and re-planned as the robot
progresses. Hence, the operational importance of reduced near-range error outweighs
the far-range MAE reduction offered by the affine model. Technically, the log-domain
regression places approximately uniform weight across depth scales.
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Figure 7.1: (SR-Farm environment) Qualitative comparison of depth modalities: (top)
RGB image, (second) dense simulator depth, (third) monocular depth prediction, and (bot-
tom) LiDAR-calibrated (log-affine) monocular depth. Calibration mitigates mid/far-range
bias while preserving spatial smoothness. All depth values are normalized to the [0, 200]m
range and visualized using a jet-log colormap.
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Figure 7.2: (Trabuco environment) Qualitative comparison of depth modalities: (top)
RGB image, (second) dense simulator depth, (third) monocular depth prediction, and (bot-
tom) LiDAR-calibrated (log-affine) monocular depth. Calibration improves scale and reduces
slope-dependent error. All depth values are normalized to the [0, 200]m range and visualized
using a jet-log colormap.
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Figure 7.3: (Desert environment) Qualitative comparison of depth modalities: (top) RGB
image, (second) dense simulator depth, (third) monocular depth prediction, and (bottom)
LiDAR-calibrated (log-affine) monocular depth. Large far-field bias in raw monocular depth
is significantly corrected. All depth values are normalized to the [0, 200]m range and visualized
using a jet-log colormap.
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7.2 Navigation

7.2.1 Frontiering Strategies in a Simple Simulation

Before proceeding to full end-to-end autonomous simulation with other modules in
the high-fidelity Falcon simulator, we first conduct a comparative evaluation of long-
range frontiering strategies using a simplified 2D global costmap simulation (Fig-
ure 7.4). This setup enables direct visualization of frontier selection and exploration
patterns, which is nearly impossible in Falcon due to the interaction of perception
noise, local-planner dynamics, and vehicle motion. By isolating frontiering behavior,
the effect of the selection strategy can be examined independently of interactions with
cost prediction, depth estimation, and local planning, each of which can significantly
influence overall performance.

While these results provide useful insights into the intrinsic tendencies of each strat-
egy, they should be considered indicative rather than definitive. In integrated sys-
tems, sensor noise, planning dynamics, and module interactions can obscure the in-
dividual contribution of frontiering decisions. The simplified simulation thus serves
as a preliminary, controlled baseline that highlights the strengths and limitations
of each strategy before progressing to more realistic (simulation) environments and
fully autonomous evaluations.

Simple Simulation Workflow

Oriented local crop extraction At each iteration, the robot extracts an oriented
crop of the global costmap based on its current position and heading. Although the
real system reasons in FPV, the BEV crop serves as a convenient surrogate. It
preserves the finite forward visibility and directional bias of long-range planning
while allowing precise visual inspection of frontier choices. From this cropped region
we compute a distance transform, which operates as a geometric proxy for depth.
Pixels with large distances indicate extended free-space corridors, whereas shallow
regions emulate the effect of low predicted depth in FPV. Sample local oriented
cropping results are shown in Figure 7.5. Full 2D simulation results are available. 1

1See: 2D simulation results.
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Figure 7.4: Frontiering strategies in the simplified 2D global-costmap simulation. Each row
corresponds to a different (start, goal) pair (Row-1/Row-2/Row-3 in Table 7.2). For each
setup, the left pane shows the costmap with planned trajectories and the right pane shows the
corresponding obstacle map with the collision threshold of 0.5. Comparing three strategies
illustrates how row-wise search (LAGR), openness-based angular selection (LRN), and cost-
and-depth coupling (ACD) lead to distinct long-range exploration patterns.
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Figure 7.5: (Left: global costmap, middle: global obstacle map, right: local map).
Example of local oriented cropping, goal projection, and planning in the simple 2D
simulation. Here we show a single ACD rollout corresponding to the middle row
of Figure 7.4. The oriented crop, projected goal, selected frontier, and resulting A*
path together illustrate one iteration of the cropping→ frontiering→ planning loop
used in the global simulation.

Global goal projection The global goal is then projected into this cropped frame
using an SE(2) transformation, giving a goal pixel that anchors the frontier search.

Frontier selection Using the cropped costmap and its distance transform, we
evaluate the same three frontiering strategies later used in Falcon:
• LAGR: It favors direct progression toward the goal row using a row-wise search

starting from the goal row. As shown in the first row of Figure 7.4, for larger
obstacles this row-wise search tends to kiss the obstacle walls until it finds an
opening toward the goal direction.

• LRN: The key idea here is a lethal-free openness heuristic, which partitions the
crop into angular sectors and selects the sector with the farthest depth-valid reach.
In low-density scenes this tends to identify wide forward corridors, though it can
overcommit in cluttered regions where openness changes sharply, as shown in the
middle and bottom rows of Figure 7.4.

• ACD: It incorporates both sector cost smoothness and a minimal lethal-depth
criterion. This coupling mitigates the frontiering fluctuations of LRN, particularly
in cluttered scenarios (Figure 7.4).

In this simple setting, ACD generally achieves either the shortest or near-shortest
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Table 7.2: Frontiering results for the 2D global-costmap sim-
ulation. For each (start, goal) pair (Row-1/Row-2/Row-3,
matching Figure 7.4), we report the normalized path length
and total accumulated cost achieved by each strategy.

Course Metric LAGR LRN ACD

Row-1 (Figure 7.4)
Path Length† 2.66 2.26 2.02
Total Cost† 0.46 0.34 0.33

Row-2 (Figure 7.4)
Path Length 2.07 2.37 1.99
Total Cost 0.28 0.36 0.32

Row-3 (Figure 7.4)
Path Length 1.91 2.10 2.23
Total Cost 0.34 0.32 0.30

† Normalized by the straight-line distance from start to goal.

normalized path length while also maintaining the lowest or near-lowest accumulated
cost, especially in the first two layouts. By contrast, LAGR often incurs longer, wall-
hugging paths around large obstacles, and LRN can produce overextended detours
in cluttered regions when the openness heuristic overestimates a particular sector.

Planning After selecting a frontier pixel, we run A* from the robot’s position
to that frontier within the cropped map. If a complete collision-free path exists,
it is used; if not, the planner falls back to the partial-path procedure described in
Chapter 6, selecting an intermediate frontier to ensure forward progress.

Execution A percentage (here one-third) of the resulting A* path is executed
before replanning. This reflects the long-range behavior of the FPV pipeline, i.e.,
farther segments of the path are inherently less reliable due to limited visibility and
resolution uncertainty. In BEV simulation, a similar phenomenon occurs because
the crop has fixed extent. A promising frontier may lead into an unseen obstacle just
beyond the crop boundary. Executing only a fraction of the planned path avoids
unrealistic overcommitment while capturing the long-horizon nature of the process.

Repeat At the end of each executed segment, the robot is moved to the terminal
point of the executed path, its heading is updated, and a new oriented crop is ex-
tracted. The sequence of cropping, goal projection, frontiering, A* planning, and
execution then repeats until the robot either reaches the goal or gets trapped.
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7.2.2 Falcon Simulation Results

Table 7.3: Course definitions in the Falcon simulator. For each course and waypoint, we provide the
UTM coordinates along with the straight-line segment length from the previous waypoint (rounded).
The exact waypoint values are included to ensure reproducibility in Falcon.

Course
Waypoints

0 1 2 3

SR-Farm-0 95.56,-122.46,0/155† 80.89,-274.89,0/153† 60.71,-380.61,0/108 -402.79,-38.02,0/576

Trabuco-0 58.08,71.27,27/92 2.09,70.02,8/56 -136.70,94.80,-1/141 -120.48,-41.0,-6/137

Desert-0 18.45,51.99,0/55 31.59,137.45,0/86 28.19,283.6,0/146 160.19,247.6,0/137
† Straight-line distance (rounded) from the previous waypoint or initial position (0, 0, 0) for waypoint 0.

We evaluate in three Falcon simulator environments with predefined waypoint courses
defined in a UTM coordinate frame, centered relative to a known origin. Table 7.3
lists the course waypoints and straight-line separations from the previous waypoint
or initial position for waypoint 0. Each waypoint is specified by an index and its
(North, East, Altitude) position in meters, which fixes a common geometric reference
for comparing frontiering strategies in each environment.

Evaluation protocol We compare three frontier strategies, all using the same
perception and planner back-end:
1. LAGR (row-wise): Row scanning toward the goal row (Algorithm 5).

2. LRN-style (depth-aware openness): Angular sectoring and selection by the
farthest lethal-free sector. We proxy affordance with the explicit costmap and
inject calibrated depth (Algorithm 7).

3. ACD: Angular Cost & Depth-aware lowest average cost sector subject to a mini-
mal lethal-depth constraint (Algorithm 8).

For all methods we (i) use the same FPV C-space (separable row- and column-wise
inflation), and (ii) apply planner cost renormalization C ′(p) = 1 + C(p) to preserve
A* heuristic consistency in pixel space (Chapter 6).

A run is considered successful at a waypoint if the vehicle reaches within the goal
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radius of the 3D goal without collision. We report:
• Distance traveled to goal (m) per waypoint, or † when the goal is not reached;

in that case we also report percentage of the course completed with respect to
straight-line distance to the goal (rounded, ignoring collision), as shown in Ta-
ble 7.4.

• Qualitative trajectories for each environment in Figures 7.6, 7.7, and 7.8, along
with deviation and intervention views in Figures 7.9–7.16.

Table 7.4: Results for runs across environments. For each course and method,
we report the distance traveled to each waypoint. Red entries with † indicate
failures, along with the percentage of the course completed.

Course Method
Distance Traveled (meters) to Reach the Waypoint

0 1 2 3

SR-Farm-0
LAGR 150.09 184.15 79.59 (31 %)† -

LRN 151.24 163.26 105.52 513.28 (83 %)†

ACD 139.10 155.80 110.58 510.34 (83 %)†

Trabuco-0
LAGR 310.26 52.28 143.88 126.14 (49%)†

LRN 83.64 106.27 204.48 323.06

ACD 75.33 70.75 141.92 303.43

Desert-0
LAGR 76.62 68.72 69.96 (30%)† -

LRN 44.09 90.63 90.39 (39%)† -

ACD 43.49 91.96 157.89 115.97
† Distance traveled toward but failing to reach the goal.
† Percentage shows the course completed relative to the straight-line distance (ignoring

collision) to the goal; successful runs (black entries) implicitly achieve 100%.

Table 7.4 summarizes the distance-based performance across environments. Together
with the trajectory plots and deviation/intervention views, it reveals environment-
specific failure modes for each strategy.

Following are our observations across the three Falcon environments, which generally
echo the tendencies already seen in the simple 2D simulation.
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• SR-Farm: This environment contains long, uneven stretches with intermittent
vegetation and partially occluded obstacles. LAGR frequently follows near-row
alignments and therefore tends to clip obstacle boundaries, leading to early termi-
nations. LRN improves overall progress but occasionally overextends into open-
ings that later converge into tight corridors, reflecting its sensitivity to local
changes in apparent openness. ACD produces comparable or slightly more stable
progress by downweighting narrow, high-cost sectors while still exploiting depth-
valid forward corridors. These patterns are visible in the full-run trajectories in
Figure 7.6 and in the SR-Farm deviation and intervention views (Figures 7.9–
7.12).

• Trabuco: The Trabuco course contains rolling elevation changes and mixed open
grassland, leading to fluctuating costmap structure. LAGR’s row-wise progression
again results in large deviations as it tends to push forward in directions where
visibility and terrain constraints are poorly resolved. LRN can enter wide but
ultimately inefficient corridors when local openness momentarily increases. ACD
generally maintains more consistent headings and obtains the lowest or near-lowest
travel distances across waypoints, suggesting that cost averaging and depth gating
help avoid misleading shallow sectors. These trends are reflected in the trajectories
and intervention points in Figures 7.7, 7.13, 7.14, and 7.15.

• Desert: This course consists of broad open areas punctuated by medium-sized
rocks whose appearance is often visually similar to free space. The full-run and
intervention views in Figures 7.8 and 7.16 illustrate how row-wise search (LAGR)
and explicit openness (LRN) alone are more easily misled by costmap fluctuations,
whereas cost averaging (ACD) has a little stabilizing effect.

In general, the trajectory plots (Figures 7.6, 7.7, and 7.8) qualitatively reflect these
trends: LAGR (magenta) tends to sweep rows and zig-zag near lethal regions under
limited visibility, LRN (blue) tracks open headings but may select low-cost / low-
safety wedges in dense or ambiguous terrain, and ACD (orange) favors low-cost
sectors that also pass a depth threshold, yielding a somewhat more stable long-range
behavior.
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Figure 7.6: SR-Farm environment. Full-run trajectories for the three strategies: LAGR
(magenta), LRN (blue), and ACD (orange). The green straight lines connect the course
waypoints, and the green endpoints (start (s), waypoints 0–3) mark their positions in the
global map. These waypoint connections represent the ideal straight-line paths between
waypoints without considering collision or terrain obstacles. Deviations introduced by the
frontiering strategies (not the local planner) are highlighted in yellow (see also Figures 7.9
and 7.10), while the final intervention locations for each strategy are shown in red (also
Figures 7.11 and 7.12).

Failure Analysis

Across environments, we observe that nearly all failures (to reach the goal – which
we call interventions) arise from perception-level limitations or local planner issues
rather than from the global frontiering logic itself. In SR-Farm, the most common
cause is the perception module failing to detect small trees, plants or thin vegetation,
so that costmaps underestimate the true obstacle extent (Figure 7.11, 7.12). In the
Desert course, medium-sized rocks often receive insufficiently high cost due to their
visual similarity to traversable terrain, leading frontiering and planning to treat them
as free space until a late collision (Figure 7.16). In Trabuco, open grasslands with
uneven elevation can induce cost imbalance, making some slopes appear artificially
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Figure 7.7: Trabuco environment. Full-run trajectories for three strategies: LAGR (ma-
genta), LRN (blue), and ACD (orange). The white straight lines connect the designated
waypoints, and the green endpoints (start (s), waypoints 0–3) mark their positions in the
global map. These straight connections indicate the nominal geometric path between way-
points, ignoring collisions and terrain constraints. Deviations introduced by the frontiering
strategies (not the local planner) are highlighted in yellow (see also Figures 7.13 and 7.14),
while the final interventions for each strategy are shown in red (also Figure 7.15).

attractive or unattractive (Figure 7.15).

We hypothesize that these errors primarily stem from two factors: (1) the inher-
ent sim-to-real-like gap between visual appearance and geometric traversability in
the Falcon assets, and (2) the lack of representative samples for such terrain struc-
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Figure 7.8: Desert environment. Full-run trajectories for three strategies: LAGR (ma-
genta), LRN (blue), and ACD (orange). The green lines connect the designated waypoints,
and the green endpoints (start (s), waypoints 0–3) mark the waypoint locations in the global
map. These lines illustrate the nominal straight-line connections between waypoints, drawn
without considering collision or terrain elevation. The final interventions for each strategy
are shown in red (also Figure 7.16).

tures in the training distribution of current foundation models. In some cases, the
naive primitive-based local planner from the FieldAI stack also contributes to de-
tours (Figure 7.9) even though the global frontiering strategy successfully identifies
collision-free long-range paths.

Overall, these findings suggest that improving the non-planning modules—particularly
perception and local planner components (both plug-and-play in our pipeline, Fig-
ure 3.1) will directly enhance overall navigation robustness and success rate. The
full-run videos in ROS and Falcon are available for further reference. 2

Runtime and implementation notes All results are generated within the same
ROS graph (Figure 3.1), with identical perception and planning nodes for all fron-

2See: Videos.
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Figure 7.9: SR-Farm – LAGR deviation. Example of LAGR deviating into clus-
ters of trees as a consequence of its row-wise forward-search behavior. The frontiering
strategy steers the vehicle along obstacle boundaries, and in combination with the
local planner this eventually drives the robot into dense vegetation.

Figure 7.10: SR-Farm – LRN deviation. Example of LRN deviating due to
the openness heuristic. The strategy selects an apparently open angular sector that
later narrows, illustrating how lethal-free reach alone can be misleading in dense
vegetation.
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Figure 7.11: SR-Farm – LAGR intervention. Row-wise frontiering drives the
vehicle into sharp turns around obstacles, causing the controller to saturate and
ultimately requiring intervention.

Figure 7.12: SR-Farm – LRN and ACD interventions. Both LRN and ACD
coincidentally fail on tiny undetected obstacles that are either underweighted in the
costmap by the perception modules, reflecting sim-to-real and distributional gaps.
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Figure 7.13: Trabuco – LAGR deviation. The row-wise forward movement con-
straint of LAGR is insufficient under limited visibility and slope variation, leading
the robot toward regions that are geometrically or dynamically unfavorable.

Figure 7.14: Trabuco – LRN deviation. The selected angular sector based on
openness heuristic appears promising locally but induces a large detour once the
terrain and visibility change.
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Figure 7.15: Trabuco – LAGR intervention. LAGR suggests an attempt to
climb a steep hill due to the lack of consideration of the terrain slope in our costmap
prediction module – a possible future work.

Figure 7.16: Desert – LAGR and LRN interventions. Both LAGR and LRN
are affected by costmap fluctuations induced by medium-sized rocks whose visual
appearance closely resembles traversable terrain. ACD’s cost averaging (and depth
gating – not shown) mitigate this issue to some extent.
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tier strategies. The LiDAR mask synthesis used to emulate sparse beams follows
Appendix B. End-to-end planning operates in real time on our workstation; deque-
based separable C-space filtering (row/column) is O(HWk) for k ≪ H, and A*
expands over the same grid for all methods.
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Chapter 8

Conclusion and Future Work

Summary

We present a modular, image-space approach to long-range navigation in unstruc-
tured, off-road environments. We combined (i) a lightweight test-time calibration
that makes monocular depth metrically usable with only sparse LiDAR, (ii) an ana-
lytic, depth-aware configuration-space (C-space) transform implemented as efficient
separable row/column sliding-max filters with depth consistency checks, (iii) a set of
interpretable frontier selection strategies in angular sectors that reasons jointly about
cost and depth, and (iv) an A* planner in FPV pixel space with a simple cost renor-
malization to preserve heuristic consistency. Together, these components provide
a practical alternative to fully depth-free affordance methods and to heavy-weight
mapping, while retaining the constant-size state benefits of image-space planning.

Test-time depth calibration Across three Falcon simulator environments (SR-
Farm, Trabuco, Desert), an affine log-domain calibration of monocular predictions
with sparse LiDAR reduced depth MAE in all tested distance bins, with the largest
gains in the 50–200 m range where raw monocular scale drift is most harmful (Ta-
ble 7.1). This improvement is obtained without any network updates and is validated
against dense reference depth that is never used during calibration.
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Navigation with angular frontiers Using a shared FPV C-space and planner,
we evaluated three frontier-selection strategies: (1) a LAGR-style row-wise search,
(2) an LRN-inspired sector selection that favors openness (proxied by calibrated
depth), and (3) an Angular Cost & Depth (ACD) strategy that prefers low average
cost under a minimum-lethal-depth constraint. On the reported courses, ACD was
competitive or better on earlier legs and remained comparable on longer segments,
benefiting from depth-aware, cost-sensitive sectoring. Both LRN and ACD improve
over LAGR on longer traverses.

Planning in pixel C-space We formulated A* directly on the FPV grid and
applied the normalization C ′(p) = 1 + C(p) so that the Euclidean heuristic remains
admissible and consistent. This renormalization preserves the optimality guarantees
while keeping the implementation simple and fast in image space.

Key Takeaways

• Reliable, light-weight depth at test time: A log-linear, LiDAR-anchored cor-
rection suffices to make monocular depth usable for mid/far range FPV reasoning
without retraining.

• Depth-aware FPV C-space is practical: Approximate, analytic footprint
inflation using separable row/column sliding maxima with depth gating can be
performed in real-time and is robust to mixed-depth scenes.

• Interpretable frontiering helps: Angular-sector statistics (average cost, mini-
mal lethal depth) provide a transparent alternative to purely learned affordances,
and combined depth & cost-aware criterion yields stable choices across courses.

• Heuristic soundness can be subtle: Simple cost renormalization avoided sub-
tle suboptimalities while preserving A* efficiency.

Limitations

• Simulator scope: All quantitative results are in the Falcon simulator; although
the stack uses realistic intrinsics and pitch, sim-to-real gaps (appearance, lidar
sparsity pattern, vibration, latency) remain.
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• Separable footprint approximation: The row/column max filters approxi-
mate a slanted quadrilateral footprint. This can be conservative in some geome-
tries and insufficiently conservative during sharp turns near obstacles.

• Frontier failure modes: The ACD/LRN sectoring may overvalue thin apertures
that look open in FPV but are inadmissible after reprojection, and can be sensitive
to small errors in goal projection near the FPV boundary.

• ROS1 dependency: The current implementation is integrated within ROS1
Noetic due to compatibility with the FieldAI (our sponsor) stack, which is also
ROS1 based. While Behavior Trees can, in principle, be implemented in any frame-
work, their support is much more mature and natively integrated within ROS2
(through libraries such as behavior_tree_cpp). Therefore, migrating to ROS2 in
the future would simplify the addition of structured decision-making and recov-
ery behaviors, improve modularity, and enable better real-time communication
between perception, planning, and control modules.

Future Work

• Confidence-aware planning: Propagate depth and costmap uncertainty through
the C-space transform and A* (e.g., risk-sensitive costs) with sector validity de-
cided on probabilistic lethal-depth estimates.

• Learned sector priors with geometric checks: Combine ACD’s interpretable
statistics with a lightweight policy that predicts sector preference priors from
features, but require hard depth/cost pass-fail gates to keep behavior explainable.

• Reverse motion and behavioral recovery: If the vehicle becomes stuck or
encounters an obstacle dead-end, the planner could initiate a controlled reverse mo-
tion and then use a high-level Behavior Tree (BT) to evaluate alternative strategies
such as reorienting, exploring adjacent sectors, or replanning from a new vantage
point. Although Behavior Trees are not exclusive to ROS2, their native toolchain
and lifecycle integration in ROS2 make them especially suitable for implementing
such structured, modular recovery logic.

• Topological memory for revisitation: To support these behaviors, a lightweight
topological graph can be maintained to record visited regions or angular sectors.
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This graph would require negligible memory (only a few kilobytes even for large
maps) but would provide strong contextual awareness to prevent cyclic failures,
aid backtracking, and guide exploration of previously unseen areas.

• ROS2 transition: Porting the current stack to ROS2 would naturally enable
more robust asynchronous processing, improved message transport, and native
use of Behavior Trees and hierarchical decision nodes.

• Real-world validation: Due to the limited project duration (May 2025 – present),
and the effort required to establish the Falcon simulator in a stable and repro-
ducible configuration for testing the long-range navigation pipeline, additional
real-world field testing could not be conducted within this timeframe. However,
the modular structure of the proposed system ensures that future team members
should find it relatively straightforward to integrate this sub-stack into the real
vehicle stack. The compartmentalized design, reliance on well-defined interfaces,
and limited dependency on simulator-specific modules significantly reduce integra-
tion overhead. In future, I would love to see the stack being evaluated on a physical
platform operating on graded slopes, vegetation, and mixed substrates. In partic-
ular, established off-road autonomy stacks, such as, Velociraptor [23], augmented
with our navigation sub-stack might enable more reliable autonomy in terms of
intervention rate, traversal pace, and energy efficiency in off-road environments.

• Closed-loop metrics: Complement waypoint-distance summaries with success
rate, time-to-goal (currently infeasible in Falcon due to some instability), and
uncertainty-aware safety margins.

• Interface with a better local planner: Tighter coupling to a more sophisti-
cated local planner used in off-road autonomy stacks [23].

Concluding Remarks

The work demonstrates that structured geometric reasoning can substantially im-
prove long-range FPV navigation without heavy learning or hallucination or dense
mapping. The addition of simple test-time calibration and interpretable depth-aware
frontiering already shows tangible improvements. Future extensions, such as inte-
grating recovery behaviors, reverse motion, and lightweight topological reasoning
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within a ROS2 Behavior Tree framework would make the system more autonomous,
fault-tolerant, and deployable in real-world unstructured environments. Moreover,
tighter coupling with more sophisticated local planners such as MPPI or other non-
linear MPC variants could further enhance motion smoothness, stability, and obstacle
clearance. Such coupling would bridge the gap between high-level FPV planning and
low-level control, thus completing a unified long-horizon navigation pipeline suitable
for robust and adaptive real-world deployment.
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Appendix A

On Efficient C-Space Transform

Why True 2D Dilation is Problematic A theoretically accurate C-space trans-
formation would apply a maximum filter over the projected quadrilateral at each
pixel. However, the filter window Wi,j at pixel (i, j) is non-rectangular, not axis-
aligned, and varies spatially. Therefore, the operation I ′

i,j = max(u,v)∈Wi,j
Iu,v cannot

be decomposed into a separable row-column formulation such as I ′ = maxcol(maxrow(I)).
This rules out efficient 1D sliding window algorithms and makes the operation com-
putationally intractable for real-time systems.

GPU Inefficiency of 2D Quadrilateral Max Filtering Such quadrilateral fil-
tering is also a poor fit for parallel architectures like CUDA. Since each pixel requires
a differently shaped and oriented window, threads in a warp would exhibit divergent
control flow and non-coalesced memory access with no shared memory tiling or reuse.
Unlike uniform rectangular filters, where local data can be preloaded and reused ef-
ficiently, each thread here would access disjoint global memory addresses, severely
degrading memory throughput and compute occupancy [17].

Naive 1D Implementation A straightforward approach to maximum filtering
iterates over each window and computes its maximum using a linear scan, resulting
in a time complexity of O(nw), where n is the number of pixels and w is the window
size. While conceptually simple, this method becomes computationally expensive for
large large window sizes, which is the case for us. The robot width near the bottom of
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the FPV image reaches roughly 1650 pixels, almost the full image width of 1920 while
the projected width decreases (non-)linearly towards the top. Consequently, the per-
row computation for each window nearly scales linearly with the image width, and
summing across all rows produces an effective complexity approaching O(n2). This
near-quadratic behavior renders the naive method unsuitable for per-frame maximum
filtering of the FPV costmap in real-time.

Efficient 1D Implementation Using Deque Given an input array (i.e. each
row) of real numbers and a fixed window size w, the objective is to determine the max-
imum value in each contiguous subarray (window) of size w as the window slides from
left to right by one element at a time. More specifically, Let nums = [a1, a2, . . . , an]
be a list of n reals and w ∈ Z+ such that k ≤ n. Ignoring edge padding, for each
index i in the range 0 ≤ i ≤ n− k, define a window Wi = [ai+1, ai+2, . . . , ai+k]. The
goal is to compute result[i] = max(Wi).

An efficient O(n) solution is possible using a double-ended queue (deque) [5] to
maintain candidate indices for the maximum in each window. The core idea is to
preserve a decreasing sequence of values (by index) in the deque such that the front
of the deque always corresponds to the index of the current maximum.

Algorithm
(1) Initialize an empty deque dq to store indices and a list result of size n.

(2) For each index i from 0 to n− 1:
• Define the window bounds as:

left = max(0, i− ⌊w/2⌋), right = min(n− 1, i + ⌊w/2⌋)

• Remove indices from the front of the deque if they are outside the current
window (i.e., less than left).

• For all new indices j in the range not yet covered in the deque and up to
right:

Remove all indices from the back of the deque if nums[j] ≥ nums[dq[-1]]
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Append j to the back of the deque.
• Set result[i] = nums[dq[0]], which is the maximum value in the current

(possibly partial) centered window.

Analysis The deque maintains at most w indices at any time. All elements smaller
than the current are pruned since they will never be the maximum as long as the
current value remains in the window. The maximum for each window is always at
the front, making retrieval efficient. Each element is inserted and removed from the
deque at most once, leading to an overall time complexity of O(n). The deque stores
at most w elements, resulting in O(w) auxiliary space.

Complexity Analysis of Complete C-Space Transform Let the grid have
dimensions H ×W , and let the sliding windows along rows and columns have sizes
wi and li for row i and column i, respectively.

For each row i, the sliding window considers wi elements per column. Using a deque-
based implementation, each element is pushed and popped at most once, so the
operations for row i are amortized linear O(W ) in the number of columns. Across
all rows, the total row-wise computation is O(HW ).

After computing the row-wise maxima, we perform a column-wise sliding window
with effective length li (fraction of projected length) per row. In general, H < W .
Let k ≪ H denote the effective amortized number of operations per row in the
column, accounting for deque push/pop behavior. Each column then costs O(Hk),
and across all W columns, the total column-wise step is O(HWk), which is also the
total amortized runtime for our C-space transformation.
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Appendix B

LiDAR Mask Synthesis

The Falcon simulator’s native LiDAR is computationally heavy for real-time experi-
ments. To approximate a single LiDAR scan while preserving the scanner’s projection
characteristics, we aggregate historical per-frame binary projections of the simulated
LiDAR into a mask prior, and then compress this dense mask into a sparse, scan-like
set of sample points. This derived mask is used by the lidar_sim node to publish
lightweight, LiDAR-like observations in the ROS pipeline (Sec. ??). The high-level
steps are as follows:

• Aggregate dense envelope: We process all the frames in the trajectories to
generate a binary dense mask, indicating every pixel that has been hit by the
Falcon LiDAR scanners. This results in a dense mask, as shown in Figure B.1,
with approximately 130K hits for the FPV mask at a resolution of 1080× 1920.

• Component-wise singleton selection: Next, we compute the connected com-
ponents on the dense mask and choose one representative pixel per component.
For simplicity, we select the midpoint of the pixel list within each component, al-
though any consistent selection method would work. The resulting image, shown
in Figure B.2, contains approximately 16.5K nonzero points.

• Patch-level deduplication: To avoid clusters of nearby points, we apply a
sliding k× k patch (with k = 25 in our implementation for the FPV resolution of
1080× 1920) and retain only one point per patch, specifically the pixel closest to
the center. This step produces the final sparse mask (Figure B.3), which resembles
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a sparse LiDAR scan. The number of nonzero points in this final mask is about 5K,
which aligns with the projected 3.5 − 5K points typically found in each Falcon
LiDAR scan. During runtime, the mask is applied to sample from the dense
depth data provided by the depth camera, generating a simulated LiDAR output.
Thus, it provides a lightweight alternative to real-time ray casting done by the
Falcon LiDAR sensors, while still maintaining the LiDAR projection envelope in
the simulator.

Algorithm 10 provides a concise high-level description of the LiDAR mask synthesis
process.

Figure B.1: Accumulated per-frame masks from the Falcon LiDAR sensors showing
the history of the projection envelope.
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Figure B.2: Connected component singleton picking yielding a coarse sampling of
the envelope in Figure B.1.

Figure B.3: Non-maximal suppression of Figure B.2 over k × k patches retains at
most one point per patch, ensuring each nonzero point is visited only once. This
produces a scan-like sparsity suitable for real-time use.
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Algorithm 10 LiDAR Mask Synthesis
Require: Directory of binary masks D; patch size k (odd, e.g., 25)
Ensure: Sparse mask M emulating a single LiDAR scan

1: Mdense ← 0
2: for each file f ∈ D do
3: I ← ReadBinary(f)
4: Mdense ←Mdense ∨ I

5: end for
6: {Ci} ← ConnectedComponents(Mdense)
7: Mpt ← 0
8: for each component Ci do
9: P ← PixelList(Ci)

10: idx← ⌊|P |/2⌋ ▷ choose a representative (midpoint rule)
11: Mpt[P [idx]]← 1
12: end for
13: M ← 0; Processed← 0
14: for each point (y, x) where Mpt(y, x) = 1 do
15: if Processed(y, x) = 0 then
16: (y1:y2, x1:x2)← k × k patch around (y, x) within bounds
17: Q← PixelList(Mpt[y1:y2, x1:x2])
18: choose q⋆ ∈ Q closest to patch center
19: M [q⋆]← 1; Processed[y1:y2, x1:x2]← 1
20: end if
21: end for
22: return M
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Matrix Class for Interfacing

Many computational modules of the proposed planning framework are written in
C++ for performance, while higher-level orchestration and visualization are per-
formed in Python. To allow zero-copy data transfer between the two environments,
a lightweight Matrix4 abstraction inspired by the Eigen library [7] was implemented.
This class enables direct access to NumPy’s C-contiguous buffers through pybind11,
without intermediate data conversion or redundant allocation.

Matrix4 Implementation

Listing C.1 shows the full implementation of the Matrix4 class. It is included in its
entirety for completeness and reproducibility. Note that this is a minimal implemen-
tation to serve as a multidimensional array wrapper for external memory provided by
NumPy through pybind11. The layout is fully contiguous in row-major order, which
matches default NumPy default memory convention. Moreover, the destructor does
not deallocate memory, ensuring that ownership remains with the Python runtime
and avoiding double-free errors.

1 #ifndef MATRIX_4D_H

2 #define MATRIX_4D_H

3

4 #include <iostream >

5 #include <memory >

6 #include <cassert >
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7 #include <limits >

8

9 #if defined(_MSC_VER)

10 #define FORCE_INLINE __forceinline

11 #elif defined(__GNUC__) || defined(__clang__)

12 #define FORCE_INLINE inline __attribute__ (( always_inline))

13 #else

14 #define FORCE_INLINE inline

15 #endif

16

17 template <typename T>

18 class Matrix4 {

19 private:

20 size_t depth , rows , cols , layers;

21 size_t dims;

22 T * data;

23

24 public:

25 Matrix4 () : depth (0), rows (0), cols (0), layers (0), dims (0),

data(nullptr) {}

26

27 // 3d-multi -layer (full)

28 void init(size_t d, size_t r, size_t c, size_t l, T* data) {

29 depth = d; rows = r; cols = c; layers = l; dims = 4;

30 this ->data = data;

31 }

32

33 // 2d-multi -layer

34 void init(size_t r, size_t c, size_t l, T* data) {

35 depth = 1; rows = r; cols = c; layers = l; dims = 3;

36 this ->data = data;

37 }

38

39 // 2d

40 void init(size_t r, size_t c, T * data) {

41 depth = 1; rows = r; cols = c; layers = 1; dims = 2;

42 this ->data = data;

43 }

44
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45 FORCE_INLINE size_t size() const {

46 return depth * rows * cols * layers;

47 }

48

49 FORCE_INLINE T min() const {

50 T min_ = std:: numeric_limits <T>::max();

51 for (size_t i=0; i<this ->size(); ++i) {

52 min_ = (data[i] < min_) ? data[i] : min_;

53 }

54

55 return min_;

56 }

57

58 FORCE_INLINE T max() const {

59 T max_ = std:: numeric_limits <T>::min();

60 for (size_t i=0; i<this ->size(); ++i) {

61 max_ = (data[i] > max_) ? data[i] : max_;

62 }

63

64 return max_;

65 }

66

67 FORCE_INLINE T& operator ()(size_t d, size_t i, size_t j, size_t

l) {

68 return data[d * rows * cols * layers + i * cols * layers +

j * layers + l];

69 }

70

71 FORCE_INLINE T& operator ()(size_t i, size_t j, size_t l) {

72 assert (dims <= 3);

73 return data[i * cols * layers + j * layers + l];

74 }

75

76 FORCE_INLINE T& operator ()(size_t i, size_t j) {

77 assert (dims == 2);

78 return data[i * cols + j];

79 }

80

81 FORCE_INLINE T operator ()(size_t d, size_t i, size_t j, size_t
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l) const {

82 return data[d * rows * cols * layers + i * cols * layers +

j * layers + l];

83 }

84

85 FORCE_INLINE T operator ()(size_t i, size_t j, size_t l) const {

86 return data[i * cols * layers + j * layers + l];

87 }

88

89 FORCE_INLINE T operator ()(size_t i, size_t j) const {

90 return data[i * cols + j];

91 }

92

93 // 3d, should not index over the layers (same point)

94 FORCE_INLINE size_t indexSpatial(size_t d, size_t i, size_t j)

const {

95 return d * rows * cols * layers + i * cols * layers + j *

layers;

96 }

97

98 // 2d, should not index over the layers (same point)

99 FORCE_INLINE size_t indexSpatial(size_t i, size_t j) const {

100 assert ((depth == 1) && (dims <= 3));

101 return i * cols * layers + j * layers;

102 }

103

104 FORCE_INLINE size_t numDepth () const { return depth; }

105 FORCE_INLINE size_t numRows () const { return rows; }

106 FORCE_INLINE size_t numCols () const { return cols; }

107 FORCE_INLINE size_t numLayers () const { return layers; }

108 FORCE_INLINE size_t numDimensions () const { return dims; }

109

110 void printShape () const {

111 std::cout << "(" << depth << " x ";

112 std::cout << rows << " x ";

113 std::cout << cols << " x ";

114 std::cout << layers << ")" << std::endl;

115 }

116
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117 };

118

119 #endif

Listing C.1: Complete implementation of the Eigen-inspired Matrix4 class used as
the foundation for all C++ modules in this thesis.

Minimal Example of Usage

Below we show how we perform C-space transformation, for example, using the
Matrix4 class shown above.

1 #include <pybind11/pybind11.h>

2 #include <pybind11/numpy.h>

3 #include <pybind11/stl.h>

4

5 #include "cspace.hpp"

6

7 template <typename T>

8 void cspace_separable_depth_aware(

9 pybind11 ::array_t <T> py_grid_costmap ,

10 pybind11 ::array_t <T> py_grid_costmap_cspace ,

11 pybind11 ::array_t <T> py_grid_depthmap ,

12 T depth_tol ,

13 const std::vector <int > & robot_width_l ,

14 const std::vector <int > & robot_length_l

15 ) {

16

17 pybind11 :: buffer_info grid_info_costmap =

py_grid_costmap.request ();

18 pybind11 :: buffer_info grid_info_costmap_cspace =

py_grid_costmap_cspace.request ();

19 pybind11 :: buffer_info grid_info_depthmap =

py_grid_depthmap.request ();

20

21 // currently only works for 2d

22 assert(grid_info_costmap.shape.size() == 2);

23 assert(grid_info_costmap_cspace.shape.size() == 2);

24 assert(grid_info_depthmap.shape.size() == 2);
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25

26 auto grid_ptr_costmap = static_cast <T *>

(grid_info_costmap.ptr);

27 auto grid_ptr_costmap_cspace = static_cast <T *>

(grid_info_costmap_cspace.ptr);

28 auto grid_ptr_depthmap = static_cast <T *>

(grid_info_depthmap.ptr);

29

30 // configuration space transform

31 Matrix4 <T> grid_costmap , grid_costmap_cspace , grid_depthmap;

32 grid_costmap.init(

33 grid_info_costmap.shape[0],

34 grid_info_costmap.shape[1],

35 grid_ptr_costmap

36 );

37 grid_costmap_cspace.init(

38 grid_info_costmap_cspace.shape[0],

39 grid_info_costmap_cspace.shape[1],

40 grid_ptr_costmap_cspace

41 );

42 grid_depthmap.init(

43 grid_info_depthmap.shape[0],

44 grid_info_depthmap.shape[1],

45 grid_ptr_depthmap

46 );

47

48 sliding_window_max_separable_depth_aware <T>(

49 grid_costmap , grid_costmap_cspace ,

50 grid_depthmap , depth_tol ,

51 robot_width_l , robot_length_l);

52 }

53

54 void bind_cspace(pybind11 :: module &m) {

55 m.def("cspace_separable_depth_aware_f32",

56 &cspace_separable_depth_aware <float >,

57 pybind11 ::arg("py_grid_costmap"),

58 pybind11 ::arg("py_grid_costmap_cspace"),

59 pybind11 ::arg("py_grid_depthmap"),

60 pybind11 ::arg("depth_tol"),
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61 pybind11 ::arg("robot_width_l"),

62 pybind11 ::arg("robot_length_l"),

63 "Cspace (separable row/col , depth -aware) <float > transform."

64 );

65

66 m.def("cspace_separable_depth_aware_f64",

67 &cspace_separable_depth_aware <double >,

68 pybind11 ::arg("py_grid_costmap"),

69 pybind11 ::arg("py_grid_costmap_cspace"),

70 pybind11 ::arg("py_grid_depthmap"),

71 pybind11 ::arg("depth_tol"),

72 pybind11 ::arg("robot_width_l"),

73 pybind11 ::arg("robot_length_l"),

74 "Cspace (separable row/col , depth -aware) <double >

transform."

75 );

76 }

77

78 PYBIND11_MODULE(planning , m) {

79 m.doc() = "pybind11 planning plugin";

80 bind_cspace(m);

81 // other bindings ...

82 }

Listing C.2: Minimal pybind11 bridge using Matrix4 class as a C++ view over
NumPy arrays.

On the Python side, arrays are explicitly converted to contiguous memory before
being passed to C++. This ensures that all arrays passed to C++ use a flat, row-
major (C-style) memory layout compatible with the internal pointer arithmetic of
the Matrix4 class. Listing C.3 shows how to call the pybind11 bridge from Python
for the C-space transformation.

1 # ...

2

3 def make_contiguous(x: np.ndarray) -> np.ndarray:

4 x = np.ascontiguousarray(x, dtype=x.dtype)

5 assert x.flags[’C_CONTIGUOUS’], "Failed to make numpy array C contiguous"

6 return x
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7

8 # ...

9

10 planning.cspace_separable_depth_aware_f32(

11 make_contiguous(costmap),

12 make_contiguous(costmap_csp),

13 make_contiguous(depth),

14 depth_tol=depth_tol,

15 robot_width_l=robot_width_l,

16 robot_length_l=robot_length_l,

17 )

Listing C.3: Python bridge for contiguous NumPy array preparation.
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