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Abstract

Robot automation is generally welcomed for tasks that are dirty, dull, or dangerous,
but with expanding robotic capabilities, robots are entering domains that are safe
and enjoyable, such as creative industries. Although there is a widespread rejection
of automation in creative fields, many people, from amateurs to professionals, would
welcome supportive or collaborative creative tools. Supporting creative tasks is
challenging with real-world robotics because there are limited relevant datasets, creative
tasks are abstract and high-level, and real-world tools and materials are difficult to
model and predict. Learning-based robotic intelligence is a promising method for
creative support tools, but since the task is so complex, common approaches such
as learning from demonstration would require too many samples and reinforcement
learning may never converge. In this thesis, we introduce several self-supervised
learning techniques to enable a robot to teach itself to support humans in the act of
creativity.

We formalize robots that support people in the making of things from high-
level goals in the real world as a new field, Generative Robotics. We introduce an
approach for supporting 2D visual art-making with paintings and drawings along with
3D clay sculpture from a fixed perspective. Because there are no robotic datasets
for collaborative painting and sculpting, we designed our approach to learn from
small, self-generated datasets to learn real-world constraints and support collaborative
interactions. This thesis contributes (1) a Real2Sim2Real technique that enables a
robot to create complex dynamics models from small, self-generated datasets of actions,
(2) a method for planning robotic actions for long-horizon tasks in a semantically
aligned representation, and (3) a self-supervised learning framework to adapt pretrained
models to be compatible with robots and produce collaborative goals. We show how
self-supervised learning can enable model-based robot planning approaches to paint
collaboratively with humans using various painting mediums. Lastly, we generalize our
approach from the painting to the sculpting domain, demonstrating that our approach
generalizes to new materials, tools, action representations, and state representations.
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1 Introduction

“ Medicine, law, business, engineering, these are all noble pursuits and
necessary to sustain life.

But poetry, beauty, romance, love, these are what we stay alive for. ”
John Keating, Dead Poet’s Society, 1989

Robotic automation is excellent and welcome for tasks that are dirty, dangerous,
or dull, but what about creative acts which are fun and fulfilling? With a recent boom
in artificial intelligence (AI) capabilities such as text-to-image synthesis, artists fear
losing employment and art viewers fear a degradation in quality of work [1]. This
thesis concerns tasks where robots making things, however, we do not argue that
robots should automate these tasks. Instead, robots can support artists in their work
through collaboration, inspiration, and motivation, which many artists desire [2]. In
the process of developing systems for artistic tasks, we uncover extraordinarily difficult
technical challenges for robotics. In this thesis we introduce self-supervised learning
techniques to tackle some fundamental challenges in robotics while working in the
painting and sculpting domains.

1.1 Generative Robotics
The domain of this thesis is Generative Robotics; a field that is not necessarily

novel, but we formalize in this document. Generative robots are robots that can
support the making of things from high-level goals of a human user in the real world.
There are three components of Generative Robotics that separate it from existing
fields, such as manufacturing or Generative AI: Real-world constraints, high-level
goals, and human-robot collaboration.
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Figure 1.1: Aspects of Generative Robotics. There are three aspects of Generative
Robotics that define it as a field and distinguish it from other robotics fields such as
manufacturing or Generative AI.

Definition 1.1.1 (Generative Robotics). Robots that can support the making of
things from a human user’s high-level goals in the real world.

1.1.1 Real World Constraints
The real world is full of constraints and challenges that make it difficult to physically

make things. Materials are noisy and unpredictable, tools are challenging to control,
and skillsets may be too limited to craft something complex. In most manufacturing
settings with robotics, these real-world factors are controlled as much as possible. For
example, a printer uses precise lasers with ink that flows through super controlled
channels and paper that is cut into regular shapes and is completely blank. This is
in contrast to a painter who uses paint that is challenging to mix into desired colors,
brushes that have limited precision for small details, and may be working from a
partially completed painting rather than blank canvas. If robots are to truly support
people in the real world, these factors should be embraced and incorporated into the
planning of the robot rather than finding work-arounds for them. In this thesis, we
show that real-world constraints can be learned through self-generated actions to
improve the accuracy of dynamics models, which enables model-based planning to be
realistic.
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1.1.2 High Level Goals
Users of a Generative Robotics system may have a limited skillset, meaning they

may need high-level interfaces for interacting with the system. Whereas a low-level
goal may require familiarity with complex software such as Computer-Aided Design
systems, a high-level goal may be specified using common skills, such as natural
language and decision making. While high-level goals may enable easier interface
for users, they require more complex intelligence on the robot’s side. Fortunately,
technology has vastly improved in recent years at the making of things especially
from high-level goals (Definition 1.1.3). Text-to-Image generators [3, 4] are capable
of generating high-quality images that fit natural language descriptions, and work
has even improved in generating 3D meshes [5, 6, 7] and videos 1 from text prompt
inputs. We call these systems Generative AI. While powerful on computer interfaces,
Generative AI systems cannot directly make things in the real world.

Definition 1.1.2 (Low-level goal). A low-level goal is a near-exact specification of
a completion state for a given task. There is very little room for interpretation in
whether the complete state of a task is similar to the low-level goal.

Definition 1.1.3 (High-level goal). A high-level goal is an abstract specification of
the completion state for a given task (1) that leaves room for multiple interpretations
on how to complete the task and (2) there are multiple instances of the completion
state that satisfy the given goal.

Since there are multiple interpretations of high-level goals, generative robots fill
in gaps in the specified goal when making things. Beyond being able to comprehend
these high-level goals, generative robots must also use other high-level reasoning about
the things that they are making. For example, a robot must understand the cultural
context of what it is creating so as not to create something offensive. Additionally
the robot needs to have understandings of other high-level concepts like aesthetics or
ethics.

1.1.3 Supportive, Human-Robot Co-Creativity
Creativity is something that people enjoy and generally do not want automated [2],

and arguably computers cannot be creative at all [8]. It is therefore important that
robots are designed to support human creativity, rather than replace or automate it.
We theorize that robots can support creativity through at least three mechanisms:
acting as a collaborator, inspiring new ideas, and motivating a person to create. We
show that a robot can teach itself to collaborate with painting through self-supervised
learning.

1https://openai.com/index/sora/
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1.2 Creativity and Art
This thesis presents fundamental scientific contributions of robotics that are

developed and evaluated in artistic and creative domains. In this section, we briefly
comment on art and creativity to align readers with our definitions and positions on
these matters.

Creativity

Margaret Boden defined a creative idea as being novel, surprising, and valuable.
We simplify this definition to just novelty and value. Novelty means that the idea is
new to a single person or to all people. Value is subjective and can mean many things
to different people. For example, some people may value the provocativeness of an
idea, and another may value the beauty of it.

AI is trained on data which often represent valuable, past solutions, so, models are
able to predict solutions that fall into the distribution of previous valuable solutions.
For example, a person values images of calico cats, creates a dataset of these images,
and then trains an AI model to generate more pictures of calico cats. The model
will be very good at producing these valuable solutions with sufficient training data.
However, in terms of creativity, the model will likely lack novelty. The generated
solutions will be derivative of the past training data. For example, if the calico cat
image generator is fit well, it will never produce an image of a different cat that could
surprise and wow the viewer.

This rhetorical argument shows that data-driven AI will lack the novelty needed to
be creative. Furthermore, the more strong the model is fit to the data, the less likely
that surprising novel samples will be created. Therefore, in this thesis, we pursue
AI as a support tool for human creativity.

Art

It is perhaps impossible to properly define art, and any prior attempts to nail it
down have been met with challenges by the finest artistic minds. For example, Marcel
Duchamp’s Fountain (1917) challenged the prominent ideas that art must have fine
craftsmanship or beauty. This notion was again challenged with Maurizio Cattelan’s
Comedian in 2019 in response to an elitist art market.

Properly defining or debating what is and is not art is rarely a productive conver-
sation. Deciding what can be considered “art” is either too broad a question or serves
as gate-keeping to only allow a select few to engage in art as a practice. Rather than
asking “is it art?”, we encourage readers to consider questions that are deeper and
can result in interesting debate, such as “Is the story the piece is telling compelling or
relatable?”, “What do you think about the colors used in this piece”, or “Have you
ever seen something like this” [9].
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A large part of existing debates about what can be considered art is the distinguish-
ing of art versus craftsmanship. Aaron Hertzmann points out the paradox of common
opinions that craftsmanship may only be considered art once it reaches a certain level
of technical expertise, but it cannot be considered art if it is purely technical skill and
lacks emotion, intent, or other aspects that people associate with art [10].

This thesis makes fundamental robotics scientific contributions and is not intended
to be an art project. However, we hope that the contributions in the open-
source systems presented here could be used to support someone expressing
themselves by being inspired to make more artwork using this technology.

1.3 Learning-Based Robot Intelligence
To tackle Generative Robotics, the domain of this thesis, we propose to use

learning-enabled robot intelligence. There is a long history of robot planning ap-
proaches, including search, rule-based systems, expert systems, and control theoretical
approaches. However, recent approaches tend to plan by modeling data, piggybacking
on recent developments in neural networks and the capability to predict complex
patterns from huge datasets or exploration in simulation. These approaches can learn
complex patterns from the data. Since creative acts are so complex, we choose to use
learning-based robot intelligence.

There are two primary methods for learning-based robot intelligence: learning
from demonstration and reinforcement learning. Learning from demonstration, also
known as behavior cloning, is a supervised learning problem in which a neural network
models a set of demonstrations of a robot performing a task. These demonstrations
are often provided through teleoperation or kinesthetic teaching. This process can
be very tedious as it may require thousands of demonstrations to learn a task such
that it can be reproduced under out-of-domain circumstances. Furthermore, if the
robot embodiment, tools, or materials change, the demonstrations may need to be
completely recollected.

In reinforcement learning (RL), a robot learns a policy by exploring an environment
with a given reward function. The robot tries different things and determines how to
get take actions to gain reward over periods of time. This can result in discovering
interesting strategies, but it may require too much compute time for a system to
discover these rare strategies. Generally, reinforcement learning agents are learning in
a simulated environment, so these agents struggle to generalize to the real world as
many things like deformable materials or liquids are challenging to simulate accurately.
A final downside to using reinforcement learning is that it is challenging to write
reward functions such that the agent will be able to learn efficiently. Often, reward
is given only after taking many actions, and because the reward is so sparse in the
explorations of the robot, it may not converge on a good policy. This is exacerbated
when reward functions are very complex, such as the ones that would capture the
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high-level aspects of Generative Robotics.
Model predictive control (MPC) involves optimizing a set of actions given a current

state, dynamics model, and objective function. Since MPC simply finds a single
solution at a time rather than RL which learns a whole policy, it generally can
converge with more complex goals and dynamics. The downsides to using MPC
for Generative Robotics are that it requires an accurate dynamics model, complex
objective functions must be designed, and the goals are not complex or supportive out
of the box. In this thesis, we introduce three self-supervised learning techniques to
enable MPC to work for Generative Robotics.

1.4 Thesis Statement
In this thesis, we explore our proposed field of Generative Robotics (Sec. 1.1) using

learning-based robotic intelligence approaches (Sec. 1.3). The primary limitations
of using learning-based robotic intelligence for Generative Robotics are data related.
Learning from demonstration requires too many samples to learn complex tasks and
does not generalize to new tools, materials or actions. If text-to-image synthesis models
like Stable Diffusion [4] required hundreds of millions of text-image pairs to train
end-to-end, wouldn’t a robot painter require as many text-painting demonstrations?
Reinforcement learning also struggles to learn complex tasks and reward functions.
In this thesis, we propose an approach to adapt model-predictive control to perform
Generative Robotics tasks without excessive human demonstrations or infeasible
numbers of simulations. Instead, our approach self-generates data to learn about
its abilities and constraints in a process called self-supervised learning. We test our
thesis statement in two Generative Robotics domains: Painting and sculpting. We
demonstrate that our approach is able to collaboratively create paintings with human
users and sculpt various deformable materials while planning in a visually aligned
representation.

Thesis Statement
Self-supervised learning can enable model-based planning to understand real-world
constraints, adapt to high-level goals, and support human-robot collaboration in

Generative Robotics tasks.

1.5 Intellectual Merit and Contributions
This thesis introduces a generalizable self-supervision framework which contributes

to the robotics research community at large. These techniques successfully enable
model predictive control to perform Generative Robotics tasks.
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Real2Sim2Real Dynamics Model We introduce a technique for self-generating
actions to model the dynamics of complex materials using deep neural networks in a
sample efficient way.

Planning in Semantic Representations We demonstrate a method for planning
in semantic representations which can increase alignment between a person’s goal for
a robot and the robot execution.

Collaborative Goal Creation Generative Robotics have complex high-level goals,
such as adding a tree to the background of a painting. We introduce a self-supervised
learning technique to ground pretrained foundation models with the capabilities of
the robot and ensure that generated goals are aligned with collaboration.

We first demonstrate these techniques in the robot painting domain, then prove
that they can generalize to different action representations, state representations, tools,
and materials with robotic sculpting.
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2 Background

2.1 Related Work: Generative Robotics
This thesis attempts to formulate and solve a novel problem, Generative Robotics,

which is distinct from Generative AI and Real-World Robotics problems in that it
creates things from high-level goal inputs and in the real world, Figure 2.1.

2.1.1 Real-World Robotics
We consider systems as Real-World Robotics but not Generative Robotics if they

do not have high-level goal inputs. Since low-level goal inputs are concrete and almost
fully specified, it is more straight forward to develop an approach to making them.
When systems can be highly engineered for a task, though, this can make things more
straight forward as with printers and 3D printers. However, using more unpredictable

Made in the 
Real-World

Generative 

AI

Real-World

Robotics

Generative 

Robotics

High-Level 
Goal Inputs

Figure 2.1: Generative Robotics merges the real-world capabilities of robotics with the
powerful, high-level goal input capabilities of computer-based Generative AI.
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materials and noisy tools creates a bigger challenge.
In the sculpture space, works like RoPotter [11] create clay pots using a pottery

wheel and a rigid finger end-effector, RoboCraft [12] shapes clay into a discrete set of
shapes with a robot gripper, and MonumentalLabs1 is a company which can create
stone sculptures by removing stone with a robot arm with a milling bit attachment.
In 2D, many artists, such as Licia He [13], use XY plotting machines to create
artworks with real world materials such as water colors or pens. GTGraffiti [14] uses
real spray paint to create large artworks with a cable-driven parallel robot. Robot
painting systems [15, 16, 17, 18] paint using real paint on canvas from image inputs.
While these works are impressive due to their usage conventional tools and/or non-
standardized materials, they do not have high-level goal inputs separating them from
Generative Robotics: GTGraffiti and RoPotter create only the artwork demonstrated
by a human, many robot painting works only work from image inputs [15, 16, 17, 18],
and MonumentalLabs and plotter art systems create work using 3D modeling software
or a complex network of vectorized curves. Beyond visual art, robots have been used
for tending gardens [19, 20], sports arts like soccer [21], and dancing [22, 23].

2.1.2 Generative AI
While Real-World Robotics require highly-specified inputs, on computer-screen

interfaces, there has been a recent boom in works that generate from more abstract
inputs. We call systems that create artifacts on computer interfaces from high-level
goal inputs, Generative AI. These include systems for text-to-image or text-to-3D
where human users can give natural language descriptions of what they would like
the system to generate. Recent developments in large-scale internet datasets, such as
LAION [24] and Objaverse [25], and algorithms, such as Diffusion Models [4], have
enabled generation from very flexible inputs. However, these systems do not generate
real-world artifacts.

2.1.3 Generative Robotics
The most simple forms of Generative Robotics systems simply connect Generative

AI and Real-World Robotics systems out of the box together. As an example, “Edmond
de Balamy” is a famous AI generated image that was printed and sold for hundreds of
thousands of dollars [26]. More complex systems can use more interesting materials
and tools than an inkjet printer, such as Karimov et al. 2023 [27] who created
reproductions of images generated from text inputs using Midjourney’s 2 AI tools with
a robot that paints. More intelligent systems integrate the challenges of the real-world
into the planning of what the robot creates. DreamPainter [28] is a system that takes
human speech input and produces marker drawings. The system plans to match

1https://www.monumentallabs.co/ourwork
2https://www.midjourney.com/home
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the text from the speech to the marker strokes in a simulation, fully integrating the
input to the action planning. This system worked well because there was an existing
simulation that worked similarly to the robots abilities to use markers, however, would
not generalize to other materials. Thus forms the holy grail of Generative Robotics,
a system which can satisfy the user’s high-level input using any materials and tools
where the real-world influences what and how the robot creates things.

Recent developments in Large-Language Models (LLMs) have enabled high-level
planning for robotics. For general robot manipulation, many works use LLMs or train
Vision-Language-Action models to manipulate objects using language prompts [29].
Towards making objects, Blox-net [30] uses an LLM to plan actions which are simulated
in a physics simulator. The planner picks robust plans for the simulation and runs
them on a real robotic system. Blox-net is capable of creating real-world sculptures of
blocks in a variety of shapes specified through natural language.

2.2 Related Work: Robot Learning for Making
Things

There is a rich history and diversity to planning algorithms for robotics from
search to expert systems to vision-language-action models. This section serves to
introduce broad learning-based robotic intelligence planners methodology to help the
reader understand how existing methodology could or would fall short of working
for Generative Robotics tasks, such as painting and sculpting. We will go over
several major categories of robot learning paradigms: imitation learning, reinforcement
learning, and model-predictive control.

2.2.1 Imitation Learning & Learning from Demonstration
Imitation learning, a type of learning from demonstration [31], is a robot learning

paradigm where a model learns how to predict actions that match the decisions
of an expert demonstration. The expert demonstrations may be specified in a few
different ways. In RoPotter [11], a human teleoperates a robot with a hand held
controller to provide demonstrations for pottery making. Virtual reality is another
method for demonstrating that has been successfully used for manipulation tasks [32].
Kinesthetic teaching can be useful when a robot’s end-effector differs greatly from a
human hand [33].

Imitation learning does not require any explicit modeling of materials. Instead,
the dynamics and tool interactions are all modeled implicitly through the expert
demonstrations. This has led to complex materials being used, such as clay [11, 34, 35].

When the number of demonstrations approaches massive proportions, these mod-
els are often referred to as vision-language-action (VLA) models. With so many
demonstrations, these models can achieve very general behavior with very high-level
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inputs, such as natural language. VLAs [29, 36, 37] have very general capabilities,
such as performing pick-and-place, because of their massive training datasets. But
as task complexity increases and goals push outside of training scenarios, the VLAs
performance drops significantly [38]. Painting is a complex task where artists are
constantly trying to make new, out-of-distribution samples. Imitation learning as a
framework for painting may not be able to capture the complexity and creativity of
the task no matter how large the dataset size. Training text-to-image models, such as
Stable Diffusion [39], required hundreds of millions of text-image pairs. How many
text-painting-demonstrations would be required to training an imitation learning
model for painting? This would be quite infeasible. Additionally, the robot would
need new demonstrations when new paint brushes or artistic settings are changed.
Instead, for Generative Robotics tasks, we push for a model or simulation that can be
used to maximize objectives rather than learning purely from demonstrations.

2.2.2 Reinforcement Learning
Reinforcement learning (RL) is a paradigm in which an agent explores a simulation

or model and tries to learn a policy to maximize a learnt value function. It possible
that the RL agent is exploring the real world, however, this usually is too slow to
learn complex policies or tasks. In simulation, RL agents can explore thousands of
options simultaneously [40]. A simulation can be replaced with a dynamics model or
world model for gradient accelerated learning which can help with complex tasks [41].
The agents learn to maximize future rewards which can be specified by a user or can
be inferred using complex models such as video prediction models [42] or LLMs [43].

RL has been used for Generative Robotics tasks before, such as painting [44],
however these policies often have trouble transferring into the real world [45]. This
sim2real gap is a common issue when using RL. A policy becomes so finely tuned to
the model or simulation that it is unable to perform well in the real world. This is
particularly challenging with materials that are difficult to model such as paint or
clay [12].

An additional challenge of RL is that learning policies for complex tasks requires a
great effort to enable the model to learn [46]. In theory, if an RL policy has enough
time to explore, it can learn anything. However, in practice, training can be unstable
and stall. Especially with complex objectives over long horizons with sparse rewards,
an RL agent may never learn a policy. Common techniques to remedy this are to
scaffold simpler rewards to help the agent learn via a curriculum [47]. Still, a complex
task like painting may never converge. Past work in RL for painting has used highly
unrealistic simulators that do not transfer well into the real world [48]. Our prior work
adapted this environment to be more realistic, however, the RL policy could barely
learn without scaffolding [45]. The FRIDA dynamics model is even more complex and
our experiments with training RL policies using it were unsuccessful due to a lack of
convergence.
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2.2.3 Model Predictive Control
Model predictive control (MPC) uses a dynamics model, just as many variants of

RL do; however, rather than learning a whole policy, MPC generates one solution at a
time. A set of actions are optimized through a dynamics model to achieve an objective
at each time step to determine what actions to take next. The model can be specified
through hand designed physics, but since many dynamics are complex and the real
world has variables that are challenging to capture, models are often learned through
data [49] potentially with deep neural networks for model flexibility [50]. While these
approaches can learn powerful dynamics models, they can be prone to overfitting
due to the differences in training data and number of parameters. In this thesis, we
introduce techniques to avoid overfitting while allowing a model to learn with minimal
amounts of data.

The goal state for MPC can be specified by a human user or baked into a cost
function. Generally, the goal states are simple, for example, a position and orientation
in space. In Generative Robotics, though, the goal states are highly complex in
contrast. For example, in collaborative painting, a goal may be to add a tree to the
background of an existing painting. MPC algorithms do not have these collaborative
and complex goals by default. In this thesis, we introduce a self-supervision technique
to create a goal generator model.

The objective or cost function compares the goal state and the predicted state
from the dynamics model. Generally in MPC, this is a simple comparison using
mean-squared error or similar distance metrics. However, this will fail when the robot
cannot exactly achieve the goal state. In painting, a user may want the robot to
draw from a goal color photograph using just a black sharpie. To make more complex
comparisons, an objective function can be learnt in Inverse Model Predictive Control
or Model Predictive Actor-Critic but this requires training data or a proxy goal. In
this work, we propose to perform comparisons in the objective function in a more
semantic representation of states. For example, in painting, we compare deep features
extracted from the image states using pretrained neural networks. This allows the
robot to draw from color photographs even if it just has a black Sharpie marker
because it is drawing the semantic content, rather than the individual pixels.
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3 Overview

3.1 Generalized Approach to Generative Robotics
We outline a generalized depiction of our approach to Generative Robotics in

Figure 3.1. The inputs are the desires of the human user and the current state of
material. A planner, we call the Supportive Goal Planner, produces a target state
that matches the desires of the user and is achievable with the real-world constraints
of the robot. This target state is akin to a preview of the final output.

To generate the actions to create this goal state in the real world, the robot uses the
Low-Level Action Planner. In this planner, the effect of the robot’s actions on the state
can be simulated using a dynamics model. A set of actions are randomly initialized
and then optimized using gradient descent to decrease the semantic difference between
the predicted and goal states. The semantic difference is a comparison made between
the predicted and goal states in a more semantically aligned representation.

3.2 FRIDA Overview
In this document, we first show how our approach is applied to collaborative

robot painting. We call this system FRIDA, A Framework and Robotics Initiative
for Developing Arts. We depict the approach in Figure 3.2. The states for this
implementation are RGB images. This is in comparison to our sculpting approach
which represents state in depth maps.
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Figure 3.1: Generalized Approach Overview. In our system, input by a human is
given along with the current state. The Supportive Goal Planner (Part III) creates a goal
state that collaboratively uses the human input make changes to the current state. This goal
is designed to be supportive to the user and achievable for the robot. The Low-Level Action
Planner (Part II) iteratively optimizes a randomly initialized set of actions such that the
dynamics model prediction of the effect of the actions matches the goal state in a semantic
representation. After optimizing the actions according to the semantic objective, the actions
are executed by the robot to produce the next real state.
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Figure 3.2: FRIDA Overview. FRIDA is a system for 2D Generative Robotics which
can paint given human input. The Supportive Goal Planner produces an image of what the
robot should paint, and the Low-Level Action Planner uses a dynamics model and semantic
loss to optimize a set of actions to determine how the robot should paint it.
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4 Dynamics Model and
Semantic Planning for

Robot Painting

4.1 Introduction
In this chapter, we introduce our self-supervised learning techniques for dynamics

modeling and semantic planning for robot painting. These are used in the FRIDA
robotic painting frameworks Low-Level Planner to plan actions to recreate the content
of given images using paint brushes and paint. The goal of the Low-Level Planner
is to take an image input and determine what actions the robot needs to take to
accurately reproduce it given the current canvas state and the tools and materials
it has available (FRIDA’s embodiment can be seen in Figure 4.2). Reproducing an
image with paint is challenging because of limitations in the tools, materials, and
robotic actions may not be able to accurately represent the given image. Besides, it’s
challenging to properly define what it means to “accurately reproduce” a given image.
For example, a pencil sketch of a color photograph may be considered an abstract,
but accurate reproduction even though the low-level features of the two images are
incredibly different.

Robot planning is often performed in a simulator. In order to reproduce an image,
the transferring of a painting plan generated within a simulator into the real world
must have a very small difference, or Sim2Real gap. This is particularly challenging
in painting, as brushes and liquid paint behave very unpredictably.

So we need a simulator that can (1) have a small Sim2Real gap and (2) be used
to plan abstractly such that a painting plan can be produced even if the tools and
materials are unable to reproduce an input image with pixel-perfect accuracy. To solve
this, we introduce a Painting Dynamics Model which uses real robot data to create a
simulation environment, known as Real2Sim2Real methodology [54]. We ensure that
the Painting Dynamics Model is differentiable, such that we can use neural networks
within the planning algorithm to abstractly compare the current painting plan to the
target image rather than comparing pixel-to-pixel.
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Target Image Simulated Plan Real-World Output

Figure 4.1: FRIDA’s Low-Level Planner is capable of planning of reproducing images. FRIDA is
able to plan in simulation to reproduce an image even if it is not possible to be pixel-perfect due to
limitations in the robot’s tools. The Sim2Real gap is decreased by using real robot data to inform
the simulator. Target image sources: [51, 52, 53].

4.2 Related Work

4.2.1 Simulated Painting
Stroke-Based Rendering (SBR) recreates a given target image using a set of

primitive elements that usually resemble brush strokes of paint. Procedural SBR
methods generally use rules and heuristics to generate the stroke plan [55, 56]. Planning-
based SBR methods use search, optimization, or learning models such as Reinforcement
Learning or Recurrent Neural Networks to generate a stroke plan with an objective of
replicating an input image [44, 57].

Recent SBR methods expands the input space to incorporate high-level goals to
generate brush stroke simulated paintings based on language descriptions and/or
style specification [58, 59, 60]. While these methods present appreciable results in
simulation, technical challenges specific to transitioning from simulation to real robots
have not been addressed.

4.2.2 Robot Painting
There have been numerous robot-created paintings including notable works that

had competed in an annual competition in 2016–2018 [17], but technical details of most
works have not been published. Based on published works, existing robot painting
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Figure 4.2: FRIDA’s embodiments and workspaces - (Left) Ufactory Xarm Lite6
with a spring-loaded marker holder. (Center) Franka Emika FR3 with a small brush. (Right)
Rethink Sawyer with a large brush.

approaches can roughly be categorized into two groups: engineered systems and
learning-enabled systems.

Engineered robotic painting systems

Engineered robotic painting systems use well measured equipment to ensure that
the planning environment is accurate to the real environment and use rules and
heuristics for planning. The Dark Factory portraits [15] utilize a highly accurate
robotic arm with known models of brush shape and size. They plan a full sequence
of actions a priori such that the plan can be blindly executed. E-David [16] uses
a simulated environment constructed to be similar to its painting equipment then
draws strokes perpendicular to gradients in the target image. Harold Cohen’s AARON
system creates content to draw and paint based on stochasticity and rules he created
and draws using a highly tuned engineered system. In general, the engineered systems
are capable of high-fidelity reproductions of input images as they meticulously engineer
to minimize the sim2real gap in their setup; however, they are not generalizable to
different equipment or settings. Furthermore, these approaches generally do not
support more than replicating a given image.

Learning-enabled robotic painting systems

Learning-enabled robotic painting systems generally use simulation environments
to plan brush strokes and then execute the plan using a physical robot. Due to a huge
sim2real gap, brush stroke plans based directly on simulation methods [58, 59] produce
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poor-quality paintings or are even infeasible on real robot systems. It has been shown
that additional constraints help reducing the sim2real gap to enable robots to paint
according to a generated plan [28, 61], but such rigid constraints sometimes result in
vague or imprecise outcomes. In line-drawing, [62] used reinforcement learning to learn
both the SBR instructions and the low level robot instructions for the reproduction
of sketches. Their approach is designed to plan once and execute a given plan as is
without observation feedback in the loop. In painting, however, visual feedback is
crucial as painting is a continuously evolving process [63].

4.2.3 Brush Stroke Modeling
Brush strokes can be represented using a height map and a color map as in [64]

where Generative Adversarial Networks are used to map a user input trajectory into a
synthesized brush stroke. In their work, both training and testing were done using data
synthesized using a volumetric oil painting simulator based on WetBrush [65]. While
the outputs appear impressive in simulation, the challenge still remains unanswered
how such a simulated input can be translated into a real painting, for example, by a
robot.

Wang et al. [66] use brush parameters such as the width, drag, and offset of the
brush’s bristles to create a very accurate brush stroke model. They use pseudospectral
optimal control to optimize trajectories of brush strokes to fit the target calligraphy
character, which works well with calligraphy where an initial path is given in a
reasonably accurate form and the brush strokes are clearly separated by white space.
In the painting domain, however, a more generalizable approach is needed due to
the fact that the shapes of brush strokes used in painting are highly flexible and
unconstrained and that brush strokes frequently overlap with previous ones.

4.3 Approach

4.3.1 Brush Stroke Action Parameters
Inspired by [66], we parameterize the space of brush strokes using three parameters

as shown in Figure 4.3. In addition to brush shape attributes, i.e., the length l of the
stroke, and the amount b that the stroke bends up or down, the thickness h of the
stroke specifies how far the brush is pressed proportionally to the canvas. A brush
stroke is parameterized by its shape, denoted by (h, l, b), the location coordinates on
a canvas (x, y), orientation θ, and color ρ in the RGB format. The stroke trajectory
can then be represented by a cubic Bézier curve where the horizontal coordinates are
a linear interpolation between 0 and l, and the vertical coordinates are 0 at the end
points and b in the center points.
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Figure 4.3: Our brush shape model has three parameters: thickness (h), bend (b), and
length (l).

4.3.2 Real Data to Simulation
Whereas existing models such as [66] use only shape features of the rendered

images that would require some model of a brush tool for a robot control interface,
our definition of thickness connects the parameter space with a brush tool and a
robot. During the calibration phase, we generate random brush strokes to train the
param2stroke model, a Neural Network comprised of two linear layers followed by
two convolutional layers and an bilinear upscaler, that translates a brush stroke shape
tuple directly into the appearance map of the brush stroke. The brush stroke shape
tuple can deterministically be translated into control inputs for a real robot.

A rudimentary approach to creating a differentiable, simulated robot painting
environment would be to allow the robot to paint randomly and continuously to collect
a large enough dataset of paired robot actions to the effects on the canvas to model this
relationship. While this method works well in simulated environments [44, 60, 61, 64],
where thousands of brush strokes can be produced on the order of seconds, generating
a similarly large-sized real dataset is impractical. Painting in real life is slow, and if the
brush or other materials were altered, the entire process would need to be restarted.
Instead, we augment the dataset using existing differentiable functions, such as rigid
transformations for positioning and orienting strokes and stamping methodology for
rendering individual brush strokes onto an existing canvas, to allow our painting
environment to be simulated with a reasonably small number of real brush strokes for
modeling.

4.3.3 Differentiable Simulated Painting Environment
The stroke rendering process in our simulation is depicted in Figure 4.4: the

param2stroke network translates the thickness, bend, and length parameters into a
2d magnitude map of the brush stroke’s predicted appearance. This magnitude map
is then padded such that it is the size of a full canvas. Then the map is translated and
rotated to the specified orientation and location. The magnitude map is converted into
an RGBA image, and then the stroke is applied to a given existing canvas. Strokes can
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be layered upon each other to create a complete simulated painting. They can also be
rendered onto a photograph of the real canvas for planning throughout the painting
process. The whole rendering process is differentiable, meaning that the loss value
computed using the rendered canvas can be differentiated, back-propagated through
the simulator, and a Stochastic Gradient Descent algorithm updates the brush stroke
parameters such that the parameters minimize the loss function.

param2stroke

Add

Predicted 𝚫
(constant pose)

Predicted 𝚫

Predicted 

Next Canvas

h, l, b x, y, 𝜽, ρ

Current CanvasShape 

Parameters

Pose & Color 

Parameters

Inputs

Colorize 

Predicted 𝚫
(magnitude)

Rotate, 

Translate

(pressure, length, bend) (pose, color)

Figure 4.4: Paint Dynamics Model: The process of rendering a stroke, given its
parameters, onto an existing canvas in our differentiable simulated painting environment.

4.3.4 Objective Functions
The enable the robot to create paintings from images even when it cannot reproduce

it with pixel-level accuracy due to its tool and material limitations, we design objective
functions to have semantic guidance, rather than pixel-level guidance. To test the
differentiability and other capabilities of the renderer, we also employ a variety of
objective functions from recent image synthesis literature. Each objective function has
a loss function that compares the plan (p), which consists of a list of brush strokes
parameterized by values in Sec. 4.3.1, to the target input (t) which may be language
or an image. A plan pnext for the next time step is rendered into a raster image using
a differentiable simulated environment (r). These objective functions can be used in
different combinations to achieve high-level, artistic tasks, e.g., painting from language
description with or without a specified style, painting images conceptually, or painting
from a sketch.
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l1 = ltext = cos(CLIPimg(r(p)), CLIPtext(t)) (4.1)
l2 = lstyle = EMD(V GG(r(p)) − V GG(t)) (4.2)
l3 = lprint = ||r(p) − t||22 (4.3)
l4 = lsemantic = ||CLIPconv(r(p)) − CLIPconv(t)||22 (4.4)

pnext = min
p

4∑
i=1

(wili), wi ∈ {0, 1} (4.5)

Image-Text Similarity Objective

(Eq. 4.1) This objective optimizes the brush stroke plan (p) such that the cosine
distance between the CLIP [67] embeddings of both the painting and the language
description (t) is minimized, guiding the painting to resemble the content of the text,
as is common in recent CLIP-guided text-to-image synthesis methods [58, 59, 68, 69].

Style Objective

(Eq. 4.2) Given an example style image, the style objective guides the painting to
resemble the colors, shapes, textures, and other style features of the given image. This
objective was created for style transfer methodology [70, 71]. The style objective min-
imizes the Earth Mover’s Distance (EMD) between style features that are extracted
using a pretrained object detection model (V GG [72]), from the brush stroke plan (p)
and the style image (t).

Simple Replication Objective

(Eq. 4.3) Image replication is not considered a high-level goal. Instead, it is a
straightforward minimization of the L2 distance between the rendered brush stroke
plan and the target image (t).

Semantic Replication Objective

(Eq. 4.4) Following [73], features can be extracted from the convolutional layers of
CLIP which are rich in both semantic and geometric information. For a high-level
semantic replication objective, we minimize the L2 difference of features extracted from
the target image and painting from the last convolutional layer of CLIP (CLIPconv).

4.3.5 Planning Algorithm
We depict the painting planning algorithm in Figure 4.5. At the start of the

painting process, a user gives inputs and decides which loss functions to use. For
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Figure 4.5: Painting Execution Algorithm - An initial plan is made by randomly
initializing brush strokes. A loss value is chosen (lprint is displayed), then gradient descent
is used to optimize the brush stroke parameters to decrease the loss. After optimization, the
colors of the painting are clustered and displayed for the user to mix. The robot paints a
set amount of brush strokes. The robot takes a picture of the partially complete painting,
overlays the remaining strokes, then optimizes the strokes once again to account for prior
noise and error in execution. This process repeats until all strokes are executed.

example, they may give a style image and use lstyle and a language description with ltext.
They also decide how many brush strokes to use in the painting. Our painting action
space is comprised of discrete brush strokes, each parameterized by values described
in Sec. 4.3.1. A plan is made up of an ordered list of brush strokes. Brush strokes are
randomly initialized by sampling uniformly over the brush stroke parameters.

The goal of our painting algorithm is to find a plan that minimizes the weighted
sum of the user specified loss functions, Eq. 4.5. Because the rendering pipeline is
differentiable, we can compute the derivative of the loss values with respect to each of
the brush stroke parameter’s values. We use Adam, a variant of Gradient Descent, to
update the brush stroke parameters given this derivative to decrease the loss values.
The actions are optimized for a specified number of iterations. After 50% of the
iterations are complete, the color parameters are discretized to 12 colors using k-means
clustering (Figure 4.6). We only performed this after 50% of the optimization so that
the colors can naturally find optimal values before being binned. The strokes are also
sorted from lightest color to darkest color to avoid bleeding of dark colors into areas of
the painting that should be light. After the set number of optimization iterations, the
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Any Paint Colors Clustered to 12 Colors

Figure 4.6: Discretizing Colors. Left – Our robots plans with arbitrary colors for each
stroke. Right – After using k-means clustering to discretize the colors to just 12.

12 colors must be mixed by hand by referencing a rendering of them on a computer
screen and provided to the robot.

The robot begins to execute brush strokes from the initial plan. After painting
a set number of brush strokes (we use 20 in practice), the robot takes a photo of
the canvas and then updates the remaining brush strokes in the plan. The update
process uses the same objective function as before, but now only the remaining brush
strokes are optimized and they are rendered onto the photo of the current canvas.
This process is repeated until all brush strokes from the plan are executed.

4.4 Robot Setup Details
We used a Rethink Sawyer robot [74] as a machine to test our approach. Any

Robotics Operating System (ROS) compatible machine with a similar morphology
to the Sawyer could feasibly be adapted to execute our approach with only minimal
changes to the robot interface code.

A photograph of our painting equipment and setup can be seen in Figure 4.2.
We use a Canon EOS Rebel T7 to perceive the canvas. For all examples in this
paper, we used 11 × 14 inch canvas board as painting surfaces. Premixed acrylic
paints are provided to the robot in palette trays with up to 12 color options available.
Alternatively, from an initial painting in simulation, the colors are discretized to
a user-specified number using K-Means cluster; palette preparation is performed
accordingly by a human. A rag and water are provided for the robot to clean paint off
of the brush, which is performed when switching colors. The brush is rigidly attached
to the robot’s end effector and is always held perpendicular to the canvas. Indirect,
diffused lighting is necessary, since direct lighting can cause too much glare from the
wet paint into the camera. The locations of all the painting materials (canvas, paint,
water rag) with respect to the robot are explicitly programmed. We use a machine
with an NVIDIA Quadro GPU that has 8Gb of CUDA memory for planning. A
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painting with 1000 strokes takes roughly 3 hours to complete comprised of 30 minutes
of calibration, 15 minutes for the initial painting plan, 15 minutes for paint mixing,
and 2 hours of the robot actually painting.

4.5 Results

Figure 4.7: Depictions of interpolating between minimum and maximum values of each of
the three stroke shape parameters with the trained param2stroke model.

Figure 4.8: We compare using DiffVG [75] and FRIDA’s param2stroke model for modeling
brush stroke shapes. The average L1 distance computed on 50 samples between the modeled
and real brush strokes is displayed at the bottom.
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4.5.1 Simulated Painting Environment
The trained param2stroke model produced strokes with continuous parameter

values as seen in Figure4.7. Figure 4.8 shows the difference between real brush strokes
and FRIDA’s modeled brush strokes using the same input parameters. We also
compared these strokes to DiffVG [75] which was used for brush stroke planning in [28].
The average L1 loss between the modeled and real strokes was significantly (p-value
< .01) less for FRIDA’s stroke model than DiffVG.

We qualitatively compared our approach to Huang et al. 2019 [44] and Schalden-
brand & Oh 2021 [61]. Figure 4.9 compares the brush strokes in early stages of
painting simulation where we can observe drastic differences.

Figure 4.10 shows the comparison in terms of the sim2real gap for entire paintings.
In simulation, Huang et al. 2019’s Reinforcement Learning (RL) model was able to
almost perfectly replicate a given image due to their unconstrained stroke model, e.g.,
allowing strokes that are huge in size and have varying opacity; however, when we fed
the strokes to a painting robot, the produced painting was vastly dissimilar to both the
simulation and target image. Schaldenbrand & Oh 2021 constrained the brush stroke
parameters (length, width, color, and opacity) such that a robot was more capable
of executing the strokes; however, the constraints made it challenging for their RL
model to accurately replicate a target image. For the proposed approach, we used our
simulation to recreate the target image using the Simple Replication Objective (Eq.
4.3) and did not re-plan with perception for fair comparison. Our proposed approach
showed clearly visible improvement in recreation both in simulation and real painting.

Huang et 

al. 2019

Target Image10 Strokes 30 Strokes 100 Strokes 750 Strokes

Schaldenbrand 

& Oh 2021

FRIDA

Figure 4.9: Stroke Shape Feasibility - Comparing the simulation environments of three
painting methods painting with various numbers of brush strokes. Top to bottom: Huang et
al. 2019 [44], Schaldenbrand & Oh 2021 [61], and the FRIDA Low-Level Planner.
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Figure 4.10: Sim2Real Gap - We compare the Sim2Real gap between FRIDA and two
existing methods. The MSE between the simulated plan and the real painting is displayed
below each pair.

# Brush Strokes Performed

Dynamic

No Replanning

Figure 4.11: FRIDA painting with text input “Albert Einstein Dancing” in the style of
van Gogh’s The Starry Night with and without replanning. The left most images are the
initial plan followed by the plan after 200 brush strokes performed until the last column
which is completely real paint. Below, the mean squared error between the current plan
versus the initial plan is plotted.
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Figure 4.12: Painting from Style and Text Inputs with the Low-Level Planner
- FRIDA’s Low-Level Planner is capable of planning from text and style inputs seen in
combinations above by optimizing brush stroke parameters to create a painting that matches
CLIP and Style features of the inputs.

4.5.2 Dynamic Planning and Adaptation
We painted with and without FRIDA’s dynamic replanning system and plotted

the deviation from the initial plan in Figure 4.11. Without replanning, the difference
between the current and initial plan grew linearly as the plan is executed from
simulation to reality stroke by stroke. With replanning, the plan changed more
significantly from the initial plan as the algorithm adapted to the stochastic execution
of the plan, resembling the creative process of human artists [63].

4.5.3 Planning in a Semantic Representation

Painting from Language Description with Specified Style

We painted from language descriptions and given examples tyle images by concert-
edly optimizing the Style Objective (Eq. 4.2) and the Image-Text Similarity Objective
(Eq. 4.1). Results can be seen in Figure 4.12.

To retain the style image’s composition, we do an initial optimization to replicate
the style image. The initial brush stroke plan is now in a local minimum which will
be adapted with the full style and text objectives. Figure 4.12 shows that faces and
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colors appear where they were initially located in the content image thereby providing
a method of transferring compositional elements of style.

Painting Images Conceptually

We compare painting using the Simple and Semantic Replication Objectives in
Figure 4.13. We hypothesized that the Semantic Replication Objective would better
capture high-level content of the target image. To test this quantitatively, we recruited
103 Amazon Mechanical Turk participants to (1) “select the painting that looks the
most like the target image” and (2) “select the painting that captures the high-level
ideas of the reference image’s scene better” and to explain how they made their decision.
We refer to these surveys as the replication and high-level questions, respectively,
and they were conducted separately. Simulated paintings were used to avoid noise
generated by human error in palette preparation of which six pairs were generated
with 10 evaluators for each question, painting pair. 73.3% and 68.3% of participants
selected Semantic Replication Objective paintings for the replication and high-level
questions, respectively. These two averages were both significantly larger than 50%
at a p-value of 0.01 and were not statistically distinct using a t-test. While the two
questions were different, we noticed that participants claimed to use many of the
same features to make their decisions for each question which included colors, shapes,
and particular details such as grass and clouds. A breakdown of selections for each
painting pair is in Figure 4.14.

\ref{eq:clip_conv_loss}

Target Image
Simple Replication 

Objective Eq. 4.3

Semantic Replication 

Objective Eq. 4.4

Figure 4.13: FRIDA’s paintings using the Simple Replication Objective (Eq. 4.3) versus
the High-Level Semantic Replication Objective (Eq. 4.4).
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Figure 4.14: Reproduction Ability Study - Results from two surveys assessing how
well paintings replicated the target image and how well they retained the high-level content.
Percentages shown are preferences for Semantic Loss (Eq. 4.4) paintings. Bolded numbers
show when the Semantic Loss was more commonly chosen over the Simple Loss. In most
examples, the Semantic Loss produced paintings that more closely resembled the target
image in both exact replication and high-level reproduction.

Sketching

What if the robot only has a black marker? We adapt the Painting Dynamics
Model to only use black as a color and not optimize over the color parameter. In
Figure 4.1, an example of a drawing from a photograph can be seen. This was
performed with the Semantic Replication Objective. It is especially important to use
the Semantic Replication Objective because the painting (drawing in this case) will look
so significantly different from the input photograph. We show the differences between
using the Semantic and Simple Replication Objective with drawings in Figure 4.15.
The Simple Replication Objective is unable to produce a drawing that captures the
likeness of Frida Kahlo from the target image.

4.6 Limitations
Our dynamics model makes some simplifying assumptions that create some limita-

tions. First, the dynamics model assumes that brush strokes are independent, which
means that there is no modeling of wet painting mixing on the canvas. This could
potentially be fixed by including an input of current state into the dynamics model,
however, wet paint mixing is a complicated interaction. In our previous work, we
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Target Image FRIDA’s Tool lprint lsemantic

Figure 4.15: Drawing with Black Marker: With only a black marker and a limited
number of strokes we compare using FRIDA’s Low-Level Planner with the Simple (lprint) vs
Semantic Replication Objective (lsemantic).

developed some techniques to model multi-colored paint mixing [76]; however, more
work needs to be performed to streamline this into a dynamics model.

While our proposed approach greatly reduced it, there is still a Sim2Real gap in our
dynamics model. Some reasons for this imperfection are the real stroke dataset being
too small, noise and inconsistent control on the robot performing the brush stroke,
and limitations in the neural network trained to predict the appearance. Additionally,
in this chapter we only test with Bèzier curve action representations which are not
very expressive compared to the stroke trajectories of human artists.

There are also limitations on our planning algorithm side. It is susceptible to being
stuck in poor local minima of the loss functions. For instance, if the initialized brush
stroke plan does not have many strokes in a highly-detailed region of the painting,
then the algorithm likely will not be able to move the positions of the strokes to that
region to properly capture all of the details.

Lastly, the planning algorithm is slow. Paintings, such as those seen in Figures 4.1
and 4.12, which contain a few hundred brush stroke actions, require roughly 15 minutes
to optimize for 1000 iterations on an NVIDIA Quadro GPU.

4.7 Conclusions
In this section, we presented FRIDA’s Low-Level Planner for robot painting which

includes our dynamics modeling and semantic planning techniques.

4.7.1 Self-Supervised Learning for Brush Stroke Dynamics
Modeling

When performing model-based planning in robotics, it is common to use an off-the-
shelf simulator which uses hand designed physics formulations to model the dynamics
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of actions and states. Off-the-shelf simulators often need to be grounded and altered
to better fit a robotic system. In our experiments (reported in Figures 4.10 and 4.8),
the off-the-shelf simulators had huge Sim2Real gaps. Our attempts to alter it by
hand with rules decreased this gap, but it was still very inaccurate (Figure 4.10).
Using real robot data to completely train a dynamics model resulted in a very small
Sim2Real gap (Figure 4.10). Although we are not the first to use data to tune a
simulator [49, 54] or to train a neural network for dynamics [12], the techniques we
introduce allow the model to be accurate without reducing the dimensionality of the
states and with fewer than 100 self-generated actions for training.

4.7.2 Planning in a Semantic Representation
In robotics, it is crucial that the goals of the robot align with the goals of the

human user. In this chapter, we showed that when humans want to paint from an
image, they want to paint the content of that image rather than making a pixel-perfect
reproduction. We supported this by planning in a semantically aligned representation
(visual features extracted using pretrained neural networks) rather than just the
pixel-space. In our study (Figure 4.14), we observed that participants thought the
images planned in a semantic representation looked more like the source materials
than the pixel representation even though the pixel representation was more similar
in mean squared error.

Planning in a visual latent space is technically challenging because the neural
network that extracts the features (CLIP [67]) is deep and complicated. It is a challenge
to optimize a set of robotic brush stroke actions to fit the semantic representation
objective. We were able to achieve this using gradient-based optimization, which was
possible because the dynamics model we created was fully differentiable. Otherwise,
optimization would be infeasible with techniques, such as evolutionary strategies,
random sampling, or training a policy with reinforcement learning.
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5 Brush Stroke Diversity
through Demonstration

“The ‘same’ content represented in a different form—in a different medium
or mode or style or language—is not the same: what is the same through
all variations of the form is only a tenuous abstraction, a précis of the full
content.”

—— Duncan Robertson, The Dichotomy of Form and Content [77]

In this chapter, we describe how learning from demonstration can be used to
improve the action representation of the FRIDA robot painting system. FRIDA
uses parameterized Bézier curves which are relatively unnatural and do not reflect
the diversity of human actions in drawing and painting. In this chapter, we collect
human-made brush strokes using motion capture. We modeled the trajectories with a
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Figure 5.1: Spline-FRIDA’s flexible brush stroke shapes allow for details like the
person’s glasses to be captured with a few defining strokes compared to the limited Bézier
curves of the other methods.
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variational auto-encoder, but also found that the existing FRIDA dynamics model
cannot properly represent such diverse strokes. In this chapter, we introduce Spline-
FRIDA which presents a novel brush stroke dynamics model which can model diverse,
human-like strokes with only a few dozen, self-generated samples.

Figure 5.2: Spline-FRIDA drawings and paintings in different styles. These are
two pairs of artworks of made by our system. The left paintings use longer, zig-zagging
strokes, while the right ones are composed of small circles and dots. While each pair depicts
the same content, the stroke style vastly changes the appearance and vibe of each work.

This work was led by Lawrence Chen during his Master of Computer
Science degree.

5.1 Introduction
Paintings and drawings are used to convey messages of emotion, cultural values,

and shared experiences. While these aspects can be conveyed by the objects or subjects
within the painting, style is perhaps just as important to expressing those messages
[59, 77]. In the visual art space, there is evidence that people find the style of an
image to be even more crucial than its content when interpreting the meaning of
a generated image [59]. In particular, patterns in the shapes of individual strokes
within a painting can contribute to the overall style and aesthetic of an artwork. Some
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examples can be seen in Figure 5.2, with the left drawings using long strokes and the
right drawings using small, circular ones. In both cases, the stroke shapes are crucial
for defining the painting’s style and therefore the expression of the message that the
artist intends to convey.

Furthermore, if robots are to support humans in the creation of artwork, it is
important for the robot to have flexible styles of strokes for the user to specify either
through choice or demonstration. Many artists do not wish to automate the artistic
process [1, 78], but some are open to co-creative assistants [2, 79, 80, 81]. The work
operates on the assumption that giving more creative control to a user co-creating
with a robot over the style of the image, allows them to feel more ownership over the
artwork that they create with the robot.

Prior work has mostly focused on planning paintings using basic stroke represen-
tations such as Bézier curves [44, 82] and only fixating on the style of the overall
image [59, 60]. In this paper, we focus on how intra-stroke style control can be
implemented.

Our work uses motion capture to record human drawings with real-world brushes
and markers on paper. We model these recorded trajectories with an autoencoder,
TrajVAE. We also introduce a novel brush stroke dynamics model, Traj2Stroke, which
predicts the 2d outline of stroke given its trajectory.

5.2 Related Work
Stroke-Based Rendering (SBR) involves arranging primitive shapes to create an

image, often with the goal of replicating some target image. Some recent works use
forward prediction methods, in which a neural network learns to output the next
stroke to add [45, 48, 83], while others use optimization-based methods, where stroke
parameters are passed through a differentiable rendering pipeline and optimized via
backpropagation [82, 84, 85].

5.2.1 Stroke Primitives
Most SBR research is focused on global planning and propose new algorithms

to arrange stroke primitives. On the other hand, there has been little research into
how the stroke primitives themselves should be defined. Some works use definitions
that would be difficult to replicate on a physical robot. For instance, Learning to
Paint defines strokes as translucent Bézier curves with arbitrary thicknesses [48].
Schaldenbrand et al. found that when their system was restricted to outputting more
realistic brush strokes by making them opaque and limiting the sizes, the quality
of generated images suffered [45]. Paint Transformer uses a mask of a brush stroke
that can be transformed, resized, and recolored [83]. This arbitrary sizing of strokes
without loss of precision would be very difficult to implement in hardware.
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Based on human art, many drawing tools, such as markers or brushes, can inherently
be versatile and adaptable enough to produce a wide range of stroke styles. Specifically,
altering the paths of individual strokes can result in diverse styles. This has been
observed and researched extensively in the context of human handwriting replication
[86, 87], but only to a lesser extent for drawings. We hope to further explore how to
define stroke primitives by explicitly modeling the style of stroke trajectories used in
a drawing.

5.2.2 Differentiable Rendering
In SBR, differentiable renderers are modules that take in stroke parameters and

output a rendered image. They differ from traditional renderers in that gradients of
the image with respect to the parameters can be obtained. Having access to such a
module is a crucial assumption of many modern SBR planners.

Learning to Paint [48] takes a reinforcement learning (RL) approach to SBR.
Despite the fact that RL does not inherently require a differentiable environment, they
found that using a differentiable renderer greatly boosted the system’s performance
and convergence rate compared to a model-free method. This is mainly because
differentiable environment allows for end-to-end training of the RL agent. Paint
Transformer [83] also makes use of differentiable rendering so that a loss can be
backpropagated from the output image all the way back to its stroke predictor. These
examples show that differentiable rendering can be useful even in methods that are
not optimization-based.

DiffVG [88] is a popular library for differentiable 2D rasterization that has been
used in many optimization-based SBR methods [89, 90, 91]. It supports rendering
arbitrary parametric curves, either open or closed, including polygons, ellipses, and
polylines. Due to its popularity, we also considered using DiffVG to model Sharpie
marker strokes for this work. However, we discovered that out of the box, the DiffVG
library does not support rendering polylines that are differentiable with respect to
stroke thickness. DiffVG lines are only differentiable with respect to the control points.
Furthermore, DiffVG decouples strokes into a boundary shape and a fill color, which we
found to be too restrictive because it does not allow us to model the gradual dropoff in
darkness from the center of a stroke to the outside. Thus, we choose to implement our
own differentiable renderer, Traj2Stroke, which is specialized for rendering polylines.

5.3 Approach

5.3.1 Overview
Our approach to stroke modeling and rendering consists of (1) capturing and

processing human demonstration data using motion capture technology, (2) modeling
these trajectories by training an autoencoder, TrajVAE, (3) using Real2Sim2Real
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Figure 5.3: Traj2Stroke. The inputs are a latent vector z and an offset ∆. z is fed
through the decoder of a TrajVAE, generating a raw trajectory, which is then rotated and
translated according to ∆. We then process the trajectory segments independently, obtaining
darkness values for each. Finally, we take the max darkness over all segments.
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Figure 5.4: Mocap setup. We use a motion capture system to track the position of the
canvas and pen over time as an artist draws. Three mocap markers are placed along the
corners of the canvas, and four are mounted at the end of the pen. The trajectories of each
stroke are extracted, then rotated and translated such that the start of the trajectory is (0,
0) and the end point is on the x-axis.

methodology to fine-tune our novel rendering approach, Traj2Stroke, and (4) planning
using gradient descent to optimize a set of brush stroke parameters through our
dynamics model to decrease the feature-space loss between a given image and the
predicted painting.

5.3.2 Motion Capture Drawing Recording and Processing
We utilize a motion capture system consisting of OptiTrack cameras and Motive

software to capture human brushstroke trajectories. While the artist sketches, we
continuously track the positions and orientations of the canvas and pen. Using a
manual measurement of the length of the pen, we are able to calculate the position
of the pen tip and determine its distance from the canvas. If this value is below a
threshold, we consider the pen to be in contact with the paper. Consecutive positions
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where this is the case are merged into trajectories. Each trajectory is then standardized
by translating it to the origin and rotating it to be horizontal (ending at y = 0), as
seen in Figure 5.4, to reduce variation for sample-efficient modeling. It is worth noting
that this normalization has a tradeoff: it assumes trajectory style is not affected by
position/rotation on the canvas. We also resample each trajectory to have exactly n
points (in practice n = 32).

Thus, each human brushstroke trajectory is modeled as a polyline (piecewise
linear) going through n control points. This polyline is encoded as a n × 3 tensor.
The coordinates (x, y, h) of each control point are defined by x and y as horizontal
displacements (in the plane of the canvas) and h as vertical displacement (elevation of
the brush above the canvas).

5.3.3 TrajVAE
After collecting and processing the motion capture data, we train variational

autoencoders [92] to model these stroke trajectories. We name these TrajVAEs.
During training, a TrajVAE takes a trajectory as input, passes it through an MLP
encoder that compresses it to a latent vector of size 64, and then sends it through a
MLP decoder to turn it back into a trajectory. We minimize the mean squared error
between the input and output trajectories.

We typically record between 20 and 200 human-drawn trajectories per drawing, but
found that this is not enough data to robustly train a TrajVAE from scratch. Instead,
we pretrain each TrajVAE on trajectories aggregated from multiple recording sessions,
then fine-tune it on a single session to capture a more specific style. Each model
converges very fast (less than a minute) and only requires a few (<20) trajectories in
the fine-tuning dataset.

During the planning phase, only the VAE decoder is used. The design of the
overall pipeline is modular so that different VAEs can be swapped in, allowing us to
change the stroke style with no need for additional training.

Our motion capture device struggles to capture the vertical position of the drawing
utensil’s tip with enough precision. This is because a small height difference can
drastically affect the thickness of a stroke. Thus, rather than explicitly modeling the
height with TrajVAE, in practice we optimize it as separate stroke parameters during
the planning process.

5.3.4 Traj2Stroke Model
The TrajVAE model outputs a trajectory that the robot should draw, but to predict

the appearance of the stroke given this trajectory, we developed a novel rendering
approach that we call Traj2Stroke. Traj2Stroke takes a trajectory, as well as positional
and rotational offsets, and renders it as a grayscale image with height and width
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Figure 5.5: Planning a Painting. As described in Section 5.3.6, Spline-FRIDA plans a
painting by optimizing the brush stroke parameters through the dynamics model to decrease
a features space loss between a given image and the planned painting. Whereas FRIDA
models brush strokes as simple Bézier curves, Spline-FRIDA uses trajectories which enable
highly flexible brush strokes.

dimensions, H × W . Importantly, this process is differentiable so that the planning
process can backpropagate through it.

To train this model, we randomly sample trajectories from TrajVAE, execute them
on the robot, and take before/after pictures of the canvas for each stroke. Next, we
input the sampled trajectories into the Traj2Stroke model to get predicted stroke
masks. These masks are stamped onto the before-stroke pictures, and the resulting
prediction is compared to the after-stroke pictures. We minimize a weighted L1 loss
that places higher weight on pixels covered by the new stroke. In practice, collecting
the dataset (including setup and execution) takes around an hour, and training takes
around 20 minutes to converge on our single-GPU system.

A separate Traj2Stroke model must be trained for each drawing medium (marker/brush),
but is robust to out-of-distribution trajectories. This means that when we obtain a
new TrajVAE, we can almost always plug-and-play it into the system without needing
to collect new data and retraining Traj2Stroke. This is very convenient, as collecting
the Traj2Stroke dataset is usually the most time-consuming part of preparations.

After receiving a standardized trajectory [(x1, y1, h1), · · · , (xn, yn, hn)] and pose
offsets ∆ = (∆x, ∆y, ∆θ), the Traj2Stroke model begins by reorienting the trajectory
to be in the reference frame of the canvas (see Figure 5.3). To do this, it first rotates
the x and y components by ∆θ. Then, each rotated coordinate (x, y, h) is scaled and
translated to become

(mxx + bx + ∆x, myy + by + ∆y, h) .

mx, my, bx, and by are learnable parameters used to model any small affine error that
may occur during camera calibration. We expect that mx, my ≈ 1 and bx, by ≈ 0.

The trajectory has now been converted to canvas coordinates, and we denote it as

[(x′
1, y′

1, h1), · · · , (x′
n, y′

n, hn)].

We proceed by rendering each of its n − 1 segments separately. Fix an arbitrary k,
and note that segment k goes from (x′

k, y′
k, hk) to (x′

k+1, y′
k+1, hk+1).
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Our approach to rendering the segment is to first define a constant H × W × 2
tensor G of canvas coordinates, where H and W are the dimensions of the canvas.
One channel of this tensor contains the x coordinates, and the other contains the y

coordinates, as seen in Figure 5.3. For convenience, we also define u =
[
x′

k y′
k

]T
and

v =
[
x′

k+1 y′
k+1

]T
.

We compute a Distance Map that stores the distance of each coordinate in G to
the segment. This is computed with the following equation (note that the vector
operations involving G are done element-wise):

Distance Map = min(
∥∥∥(G − u) − projv−u(G − u)

∥∥∥ ,

∥G − u∥ , ∥G − v∥)).
(5.1)

The first term computes the distance from each point in G to the line through u and
v, and the last two terms calculate the distance to the endpoints. Thus, taking the
minimum of the three yields the distance of each pixel to the line from u to v.

We also compute a Height Map, which represents the height of the brush tip as
it moves over the segment. For each coordinate, we project it onto the segment and
compute the height by linear interpolation between hk and hk+1:

T = clamp[0,1]


∥∥∥projv−u(G − u)

∥∥∥
∥v − u∥

 (5.2)

Height Map = (1 − T ) · hk + T · hk+1. (5.3)
We approximate the relationship between the height of the brush tip and the

thickness of the stroke as affine. Thus, we introduce two learnable parameters α and
β, and obtain a Thickness Map like so:

Thickness Map = α · Height Map + β. (5.4)
If the distance between a coordinate and the segment is less than the stroke

thickness, then that coordinate should be affected by the stroke. We assume there is
a gradual dropoff in darkness as we get further from the center of the segment. This
reasoning motivates the following calculation for the darkness values:

Darkness =
[
clamp[0,1]

(
1 − Distance Map

Thickness Map

)]c

. (5.5)

Coordinates directly on the segment get a darkness value of 1, and coordinates that
are a stroke thickness away get a darkness value of 0. This also introduces another
learnable parameter c which determines how quickly the darkness values drop off as
they get further from the segment.

Finally, we take the max darkness values over all segments to obtain the rendered
stroke.

In total, the Traj2Stroke model has only 7 learnable parameters: mx, my, bx, by,
α, β, and c.
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5.3.5 Stroke Composition
We define each brush stroke action as a set of parameters: TrajVAE latent vector

z, pose offsets ∆, and RGB color ρ. Given z and ∆, Figure 5.3 illustrates how Spline-
FRIDA predicts the shape of a single stroke. Next, the rendered stroke is colorized by
duplicating it to 3-channels and multiplying each channel based on the stroke color as
seen in Figure 5.5. We can predict how this stroke s will appear once it is performed
on a canvas ct by stamping it via an alpha blending formula.

5.3.6 Painting and Drawing Planning
To plan a painting or drawing, we follow the FRIDA [82] planning algorithm which

plans paintings using an optimization loop, depicted in Figure 5.5. A user-specified
number of brush stroke actions are randomly initialized. At each optimization step,
the current canvas is compared to the user-specified target image forming a loss value.
In practice, features from the planned painting and target image are extracted using
pretrained neural networks (e.g., CLIP [67]) and compared using cosine similarity as
introduced in [73]. The loss is back-propagated through the dynamics model to the
brush stroke parameters which are updated using gradient descent.

If the robot is painting in color, the color parameters are optimized as continuous
RGB values during initial iterations. In the last 10% of optimization iterations, the
algorithm discretizes the colors to a user-specified number using K-Means clustering.
After optimizing for 2000 iterations, the system shows which colors of paint need to
be mixed in a graphical user-interface. The user mixes these paint colors, provides
them to the robot, then the robot can begin painting.

5.4 Results
Figure 5.6 shows an array of drawings produced by Spline-FRIDA. We hand-pick

five human drawings from members of our lab using the mocap system, each with
distinct stroke styles, which are presented in the top row. Each human drawing is used
to fine-tune a separate TrajVAE, resulting in five unique TrajVAEs. Each TrajVAE is
then used to plan a series of drawings with various objectives. These objectives are
displayed in the left column.

The individual styles of the drawing trajectories are preserved by the TrajVAEs.
For instance, the fourth human drawing exhibits tiny, curly lines, which are reproduced
in the drawings made using its corresponding TrajVAE. Similarly, the fifth human
drawing is composed of small circles, which is also true for the robot drawings in its
column.
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Figure 5.6: Example drawings made by Spline-FRIDA. Each column represents
a distinct trajectory style and each row uses a different objective. The top row contains
original drawings made by human artists on our mocap system. One VAE was fine-tuned on
each human drawing and used to plan the drawings in each column.

5.4.1 Human Evaluations
To what extent is Spline-FRIDA able to capture the stroke style of a drawing?

And, in general, are Spline-FRIDA’s drawings better than those made by FRIDA?
These questions are subjective and difficult to answer with automatic metrics. To
obtain quantitative results, we conducted a survey and released it to 100 participants
on Amazon Mechanical Turk.

For the first part of the survey, we asked participants to match Spline-FRIDA
drawings with human drawings that have the same stroke style. More specifically,
for each participant, we selected a random human drawing, along with five robot
drawings (a random row of Figure 5.6), and asked them to pick the robot drawing
that best matched the style of the human drawing. We told participants to “focus on
the characteristics of individual strokes, such as their trajectories, shapes, and curves.”
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FRIDA Spline-FRIDA
Which drawing looks more like it was drawn
by a human (rather than a robot)?

27 73

Which drawing looks better overall? 16 84
Which drawing better matches the reference
image?

16 84

Which drawing is more artistic? 18 82
Which drawing is more abstract? 40 60

Table 5.1: Opinions on FRIDA vs Spline-FRIDA. Each cell shows the number of
participants that chose the system for the given question. Overall, participants thought that
compared to the Bèzier curve representation of FRIDA, drawings made by Spline-FRIDA
were more human-like, higher quality, more true to the objective, and more artistic.

The results of this experiment are seen in Figure 5.7.
The high values of Figure 5.7 along the diagonal suggest that, in general, par-

ticipants were able to choose the correct human drawing used to style each robot
drawing. Style 5 seemed to be particularly distinguishable. Meanwhile, style 1 was
often confused with style 4, and style 2 was confused with style 3. Nevertheless, all
five encoded styles are most strongly associated with the correct human drawings.

The second part of the survey asked participants’ subjective opinions on Sharpie
drawings made by FRIDA vs. Spline-FRIDA. Each participant was shown an objective
image and two robot drawings of it, one from FRIDA and one from Spline-FRIDA.
Both robot drawings were executed on the physical robot so that any Sim2Real gap
comes into play. The questions and tallied responses are shown in Table 5.1.

Respondents believed that Spline-FRIDA’s drawings, in comparison to FRIDA’s,
appeared more human-made, had higher overall quality, better matched the reference
image, and were more artistic. Respondents also perceived the Spline-FRIDA drawings
as more “abstract”, although opinions on this were somewhat split.

5.4.2 Trajectory Distributions
In Figure 5.8, we visualize the latent space for our TrajVAE trained on multiple

drawing sessions. We encode all of the human trajectories into latent vectors, then
project them down to 2 dimensions using t-SNE [93]. We then draw each human
trajectory at its corresponding 2d coordinates. We observe human trajectories spread
throughout the space, forming several homogeneous clusters. This structured organi-
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Figure 5.7: Confusion matrix for matching task. The x-axis represents the index of
the specific TrajVAE used to generate the drawing, and the y-axis represents the index of
the human drawing participants thought was most similar. The five human drawings/styles
the same ones as in the top row of Figure 5.6, with the same order.

Figure 5.8: Mapping the latent space. We visualize the TrajVAE latent space by
drawing trajectories at their respective coordinates, projected down to 2 dimensions via
t-SNE. To generate this plot, we use a TrajVAE that is trained on multiple sessions of human
trajectory data.

zation indicates that TrajVAE effectively learns a correlation between trajectories and
latent vectors. Consequently, an optimization-based planning algorithm is likely to be
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effective.

5.4.3 Brush Stroke Dynamics Modeling Experiments
The purpose of a stroke dynamics model is to differentiably render trajectories.

We experiment with four different methods and evaluate them both quantitatively
and qualitatively in a controlled experiment.

CNN

Our baseline, a convolutional neural network starting with a fully connected layer
and followed by several transposed convolutions. This is analogous to FRIDA’s [82]
renderer architecture, but takes full trajectories rather than the parameterization
(length, bend, height) that FRIDA uses.

CNN with CoordConv

To render a trajectory, one subproblem the renderer must solve is mapping Cartesian
coordinates to one-hot pixel space. Liu et. al. [94] showed that traditional CNNs can
have difficulty with this, so we implement their suggestion of using CoordConv layers
instead of traditional convolutions. This means adding two additional channels to the
input of each convolution: one containing the x-coordinates of each pixel, and the
other containing the y-coordinates.

Traj2Stroke

This is our main method, with the rule-based transformations, that was described
in Section 5.3.4.

Traj2Stroke with U-Net

Our main method, but with an additional convolutional network attached after
the output layer. The goal of this additional network is to refine the Traj2Stroke
output by learning subtle effects such as texture and bristle drag. Its architecture
closely follows that of U-Net [95]. We freeze the U-Net weights during the first half of
the training and unfreeze them for the second half. The purpose of this is to train the
Traj2Stroke portion first and get it as close as possible to the ground truth, before
using the U-Net to refine it. Inspired by the success of ControlNet [96], the U-net is
initialized with a zero-convolution final transformation so that it initially performs
the identity function.

Since generating training strokes and training a new dynamics model for every
new stroke style is time consuming, the ability of the dynamics model to generalize to
unseen styles is important. In order to evaluate generalizability, we train and test the
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Medium CNN CNN
w/ CoordConv Traj2Stroke Traj2Stroke

w/ U-Net
Sharpie .00107 .00095 .00055 .00098
Brush .00162 .00163 .00158 .00153

Table 5.2: Quantitative comparison of stroke models. This table shows the average
L1 loss of each stroke model when predicting either sharpie or brush strokes (lower is better).
Loss is calculated on dataset B (out-of-distribution) trajectories only. Traj2Stroke achieves
the best results for sharpie strokes, and Traj2Stroke with U-Net is the best for brush strokes.

stroke model on trajectories from different distributions. More precisely, we create
two datasets, A and B. Both datasets contain (trajectory, stroke image) pairs. For
dataset A, the trajectories are sampled from a generic TrajVAE, trained on a session
that we judge to have good stroke diversity. For dataset B, we use trajectories from
more specialized TrajVAEs, trained on sessions with very unique styles. We train the
model using dataset A, and we evaluate generalizability by checking its performance
on dataset B.

We run the experiment twice, once for each of two drawing mediums: a sharpie and
a thin paintbrush. The experiment results can be seen in Table 5.2. The Traj2Stroke
architecture without U-Net achieves the lowest loss on sharpie strokes. Adding the U-
Net hurts performance on sharpie strokes, though it achieves the best results on brush
strokes. There is not a substantial increase in performance from using CoordConv
over traditional the pure CNN architecture.

Visually, example predictions generated by each model can be seen in Figure 5.9.
All examples are from dataset B, meaning that these trajectories are out of distribution
from the training set. The vanilla CNN with and without CoordConv fails to generalize
in certain cases. The Traj2Stroke model performs near-perfect for the sharpie strokes
and captures the general shape of the brush strokes. Adding the U-Net to Traj2Stroke
helped capture the texture of the brush strokes, but the added parameters hurt
generalization to very out-of-distribution strokes, such as the star example.

Based on these findings, we choose to implement the base Traj2Stroke model
(without U-Net) for Spline-FRIDA. As illustrated in Figure 5.10, the resulting Sim2Real
gap for Sharpie drawings is very low. This is a huge improvement compared to the
original FRIDA results depicted in Figure 5.10.
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Ground Truth CNN w/ CoordConv Traj2Stroke w/ U-Net

Figure 5.9: Visualizing the outputs of various stroke models. The first three rows
contain sharpie strokes, and the last three contain brush strokes all of which were made
from samples using TrajVAE models not used for training.

Plan Execution

Figure 5.10: Spline-FRIDA’s low Sim2Real gap. We compare a plan made by
Spline-FRIDA with its execution (physically drawn with a robot). The top row with a black
marker, and the bottom row with a paint brush.

5.5 Conclusions
In Chapter4, we showed that our dynamics model was able to accurately model

brush strokes with zero prior information. This allowed the model to learn complex
details about the brush and paint without the hindrance of prior rules written by
designers. However, without a prior, in this chapter, we showed that dynamics cannot
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be modeled accurately with a feasible number of training examples when the action
representation becomes more expressive. Our Spline-FRIDA model adds a prior to
the rendering algorithm that allows it to learn the dynamics of strokes that are as
complex as human demonstrators can produce.

FRIDA is capable of learning to paint without any demonstrations or prior knowl-
edge of how humans paint. We argue that a learning from demonstration (LfD)
framework for painting would require millions of demonstrations to train, which is
infeasible. Although LfD would be infeasible to learn the entire painting task, it is
not necessarily useless for painting. In this chapter, we showed that LfD can be used
within the FRIDA framework to improve the action representation to make the brush
stroke trajectories more human-like. Our human evaluation study showed that the LfD
stroke shapes were more human-like than the Bézier curves. Interestingly, these more
human-like strokes helped make drawings that were perceived as better looking, more
artistic, and also more abstract. More experiments are needed to fully understand
what caused the improved appearance, but this work shows that having more natural
actions in a robot can improve its performance in a number of categories.
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6 Collaborative Goal
Creation for Robot

Painting

6.1 Introduction
In this chapter, we introduce the Supportive Goal Planner within the FRIDA

painting system. The goal of the Supportive Goal Planner is to plan what the robot
should generate. This can then be passed to the Low-Level Action Planner for the
robot to figure out how to paint it. In the context of painting and drawing, these
generated plans are RGB image previews of what the canvas should look like after
the robot is done. We adopt a collaborative form of support in this chapter, where
the robot takes turns with a person to add to a drawing or painting. The generated
plans should (1) fit the input text descriptions that the user gives, (2) use the current
canvas state without overwriting everything there already, and (3) be achievable by
the robot’s tools, materials, and actions. We call the task of satisfying these three
constraints co-painting defined as a form of human-robot co-creation where the robot
creates new content that engages with the existing content that the human drew or a
robot drew previously.

While there exist related image editing problems, such as in-painting, co-painting
is a new class of problems with unique challenges as it is undesirable in co-painting to
make radical changes to the image that would overwrite the human’s previous work.
In in-painting, the area for editing an image is coarsely specified by the user and
the model is expected to drastically change the content within that local region. By
contrast, with co-painting, the edit is expected to preserve and engage with the full
canvas rather than re-imagining a local region. Whereas in-painting is a localized edit
by definition, co-painting is a continuous, iterative completion, e.g., adding detail to
an existing human-drawn rough sketch.

Besides the challenges of co-painting, robotic image creation is difficult due to
real-world constraints, such as existing canvas state, limited abilities of the robot,
tools and materials available to the robot, and stochasticity in robot performance.
These robotic constraints vastly limit the content that is capable of being created,
as illustrated in the left side of Figure 6.8. With a large paintbrush, fine-details
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are not achievable, and with a single marker, multi-color images are not possible.
Multiple works address these constraints to decrease the Sim2Real gap, but only paint
from image inputs [15, 16, 61, 66]. Even fewer existing works use cameras to enable
co-creation of images [97].

Human Performed Robot Performed

Figure 6.1: Co-Painting with FRIDA. We show-
case how FRIDA with the High-Level Planner can col-
laboratively paint with artists. The process begins with
the artist sketching a table. Building on that foundation,
FRIDA adds to the canvas, guided by the artist’s initial
prompt: “A bulky robot arm on a table.” The artist
then iterates on the painting with additional strokes to
add detail to the robot arm, and provides a new text
prompt, “A robot arm with a hand.” FRIDA responds
by completing the painting to match this new descrip-
tion.

The Low-Level Action Plan-
ner presented in Chapter 4 is ca-
pable of planning paintings to
match text prompts and plan-
ning on an existing, non-blank
canvas. To paint from a lan-
guage input, the Low-Level Ac-
tion Planner uses CLIP [67] to
align language and image which
tends to generate noisy out-
put. To improve the quality of
paintings for FRIDA, we intro-
duce the Supportive Goal Plan-
ner which adapts powerful im-
age generators pre-trained us-
ing gigantic text-image paired
data, e.g., StableDiffusion [4] or
Instruct-Pix2Pix [98]. Because
such pre-trained image genera-
tors do not know the capabili-
ties of the robot, there is both
a large difference in pixel value
and semantic meaning between
the image generator output and
Low-Level Action Planner’s sim-
ulated plan. The former differ-
ence is a traditional Sim2Real
gap, whereas the latter is a con-
cept we introduce as the Seman-
tic Sim2Real Gap.

To reduce the Semantic
Sim2Real Gap, we propose a
Self-Supervised Fine-Tuning ap-
proach for the Supportive Goal
Planner. Self-Supervised Fine-
Tuning adapts a pre-trained im-
age generator to both generate
content within the abilities of the robot and perform co-painting to enable human-
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“A field”
“A dog running 
through a field”

“An astronaut 
on Mars”

FRIDA
w/ 
Supportive 
Goal Planner
(ours)

Instruct-
Pix2Pix

Sequence of 
user inputs

Figure 6.2: Co-Painting. We introduce Co-Painting as a task in which a robot must add
content to a painting that engages with the current content without destroying the existing
work. We demonstrate that existing models (Instruct-Pix2Pix, bottom row) often cannot
successfully add content without making unreasonably large edits to the canvas, overwriting
any prior work, while FRIDA (top row) adds content that harmonizes with the existing
work.

robot collaborative drawing from language guidance, e.g., in this paper, we use
Instruct-Pix2Pix [98] as our base text-image model. To adapt a pre-trained model
for co-painting and encode robotic constraints, first we create the self-supervised
fine-tuning dataset by using the Low-Level Action Planner to generate full drawings
or paintings of images from a text-image dataset. Strokes from the full paintings
are removed selectively to form partial paintings. We fine-tune Instruct-Pix2Pix by
retraining it with a low learning rate to predict the full painting from the partial
painting and text prompt.

The Supportive Goal Planner can successfully use an existing canvas state to
generate future actions towards a language goal without completely overwriting the
existing work as shown in Figure 6.2. Based on a survey on Amazon Mechanical Turk
(MTurk) of 24 participants, FRIDA with the Supportive Goal Planner’s completed
drawings from partial sketches were found to be substantially more similar to the
language goal when compared to those by the baselines.

6.2 Motivation
While recent breakthroughs in text-to-image synthesis technologies have ignited a

boom in digital content generation, using them to produce art with robots is still in
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Current Canvas

Option A:
User Draws

Option B:
User gives a 
text description Text

Canvas

Fine-Tuned
Instruct-
Pix2Pix

Supportive Goal Planner

Self-Supervised
Fine-Tuning

Low-Level
Action

Planner Actions

Simulated
Ilow

Updated Canvas

Repeat until user is satisfied

Ihigh

Figure 6.3: Method Overview. Offline, we fine-tune a pre-trained Instruct-Pix2Pix
model on our self-supervised data. Online, the user can either draw or give the robot a
text description. The Supportive Goal Planner takes as input the current canvas and text
description to generate a pixel prediction of how the robot should finish the painting using
the fine-tuned Instruct-Pix2Pix model. The Low-Level Action Planner predicts actions for
the robot to create this pixel image and produces a simulation. This process is repeated
until the user is satisfied.

its infancy due to a significant gap between simulated and real-world environments.
FRIDA with just the Low-Level Action Planner is capable of generating paintings
from image or text inputs, but its interaction is limited to the input stage after which
the robot paints without additional input by the user. While it is still debatable
whether such an autonomous creation is desired by humans practicing art [1], there is
strong evidence of the potential value of a co-creative agent [2, 78, 79, 80, 81, 99, 100]
specifically in the domain of art therapy [101, 102, 103, 104]. The benefits can be
further increased when paired with a physical embodiment of such an agent and
drawing in the real world [97, 105]. To invite users into the creative process and bring
the benefits of both co-creation and robotic embodiment, we build on the Low-Level
Action Planner to propose a Supportive Goal Planner into the FRIDA system which
can collaborate with a human, as illustrated in Figure 6.1.

6.3 Related Work

6.3.1 Computer-Based Image Co-Creation
Computer-based image co-creation generally involves turn taking between a human

and a computer in applying brush stroke primitives towards one of a discrete set of
goals, as in sketch-rnn [106] and Drawing Apprentice [79], or even towards natural
language goals [80, 99]. Computer-based studies have shown creativity augmentation
benefits of co-creation [79, 80, 99] since computer agents can add serendipity and
reformulate user’s original intentions leading to unexpected by enjoyable outputs [100].
However, Computer-based painting models do not transfer well out-of-the-box into

54



Ch. 6 – Collaborative Goal Creation for Robot Painting

the real world due to the Sim2Real gap [18, 61, 107].

6.3.2 Robotic Image Co-Creation
There exists many real-world methods for robot painting and drawing [15, 16, 28,

62], however, few systems have incorporated perception into their systems to enable
co-painting. Cobbie [97] is a co-drawing system that boosted ideation for novice
drawers, however, it is limited to drawing on blank areas of the paper rather than
engaging with the user drawn content. [104] created a robot arm that can draw
from speech inputs that are limited to simple objects found in the Quick, Draw!
dataset [108].

The Low-Level Action Planner (Part II) is capable of making paintings that
use the existing content conditioned on natural language goals by itself without the
Supportive Goal Planner. Figure 4.12 shows examples of text-conditioned paintings
using just the Low-Level Action Planner. While the Low-Level Action Planner can
plan based on current canvas state and language input, it uses CLIP and gradient
descent for planning which produces paintings that are very noisy and only loosely
resemble the input text.

6.4 Approach
Shown in Figure 6.3, our method for co-painting, FRIDA, is made up of three

primary components: (1) The Supportive Goal Planner, which produces images
illustrating how the robot should add content to an existing canvas given a text
description, (2) the Low-Level Action Planner, a robotic painting system for planning
actions from given images, and (3) a self-supervised method for creating training data
using the Low-Level Action Planner to fine-tune pre-trained models in the Supportive
Goal Planner.

6.4.1 Self-Supervised Data Creation
While there exist some supervised data of human-created co-paintings [109, 110],

they are only on the order of tens of examples and were not made using the same mate-
rials available to our robot. To support co-painting tasks, we propose a self-supervised
method for generating training data to train the Supportive Goal Planner. We simulate
paintings of images from the art subset of the CoCo image-text dataset [111] using
FRIDA with image-guidance loss (difference of CLIP embeddings of images). To create
partial paintings, strokes are removed selectively to support a variety of co-painting
tasks: remove all strokes, a random subset of strokes, strokes corresponding to a
salient region (defined with CLIP as in [73]) of the image, and strokes from a semantic
region (using Segment Anything [112]). Illustrative examples are shown in Figure 6.4.
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Input Image

(CoCo)

Simulated

Painting All

Simulated Partial Painting

Low-Level 

Planner

Random Strokes Salient Region Semantic Region

Figure 6.4: Self-Supervised Dataset Creation. We describe the process of generating
the self-supervised training data pairs for fine-tuning the Supportive Goal Planner. We
start with the input images from the CoCo dataset and convert them into simulated sketch
outputs with the Low-Level Action Planner’s simulator. Next, we create partial sketches
in four different ways: removing random strokes, removing the salient region, removing a
semantic region, and removing all strokes.

Some source images cannot be accurately represented with the robot’s abilities.
We filter out such images by removing instances that have a CLIPScore between the
simulated full paintings and the text less than 0.5.

We use this self-curated data to fine-tune a base text-to-image generation model to
be able to 1) continue to create content on an existing canvas and 2) generate images
that the target robot is capable of painting.

6.4.2 The Supportive Goal Planner
The goal of the Supportive Goal Planner (Figure 6.3) is to generate an image of how

the robot should complete the painting given a photograph of the current canvas and
a user given text description. The Supportive Goal Planner uses Instruct-Pix2Pix [98]
as a pre-trained model as it enables conditioning the output on an input canvas. The
pre-trained Instruct-Pix2Pix, however, has two shortcomings to be used for co-painting:
(1) the generated images do not reflect actual robotic constraints, and (2) the existing
canvas can sometimes be overwritten completely as shown in Figure 6.2. To overcome
these limitations, we fine-tune Instruct-Pix2Pix using the dataset of partial and full
drawings with their captions described in Sec. 6.4.1.
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FRIDA
(w/o Supportive Goal Planner)

FRIDA
(w/o fine-tuning)

FRIDA
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Updated Canvas

“A penguin 
standing on a 
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“A cat 
coming 

through a cat 
door”

“A shiny VW  
van parked 
on grass”

Current
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User
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Figure 6.5: Qualitative Comparison. We show a comparison between three methods of
performing text-based canvas updates: FRIDA without the Supportive Goal Planner (using
the text-based Low-Level Action Planner only), FRIDA without fine-tuning the Supportive
Goal Planner, and FRIDA with self-supervised fine-tuning (ours). FRIDA with just the
text-based Low-Level Action Planner uses a CLIP based optimization and generates outputs
that are noisy. FRIDA without fine-tuning, is not aware of the constraints of the robot and
generates an output that is difficult for the robot to execute and often does not satisfy the
text prompt specified by the user. In contrast, FRIDA outputs an updated canvas that
reflects the user prompt without being noisy.

Fine-tuning is performed using the Low-Level Action Planner’s simulated canvases
because (1) it would be infeasible to generate a large-scale dataset with the physical
robot, and (2) the Supportive Goal Planner output is eventually used with the
Low-Level Action Planner’s simulation.

6.5 Experiments

6.5.1 Baselines
We compare FRIDA with the Supportive Goal Planner versus FRIDA with just the

Low-Level Action Planner using the CLIP-guided text-to-painting method (FRIDA
w/o High Level Planner). We investigate the effects of our fine-tuning procedure on
Instruct-Pix2Pix in the Supportive Goal Planner by comparing our method (FRIDA)
with pre-trained Instruct-Pix2pix (FRIDA w/o fine-tuning).
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FRIDA w/ Supportive Goal Planner
FRIDA

w/o Supportive 
Goal Planner

FRIDA
w/o 

fine-tuning
Neither Both

Neither

0% 20% 40% 60% 80% 100%

Both

FRIDA w/ Supportive Goal Planner

Figure 6.6: User Preference Study. Results from two MTurk Surveys. Presented with
a text description, participants chose which of two drawings (FRIDA versus either FRIDA
without the High-Level Planner or FRIDA without fine-tuning) was more similar to the
text, neither, or both. See Fig. 6.5 for examples.

CLIPScore ↑ BLIPScore ↑ ∆pix ↓ ∆sem ↓

FRIDA
w/o Supportive Goal Planner 0.741 0.192 — —

FRIDA
w/o fine-tuning 0.595 0.162 0.195 0.241

FRIDA 0.624 0.178 0.052 0.035

Table 6.1: CLIPScores and BLIPScores computed on robot simulated drawings (See
Figure 6.5). Sim-to-real gap measurements, ∆pix and ∆sem, measure the difference between
the Supportive Goal Planner output and the simulated drawing of that image.

6.5.2 Different Painting Settings
The Low-Level Action Planner can paint and draw with various brushes and can

have different color constraints. We test FRIDA using three different painting settings
(1) acrylic painting using one brush and 12 colors which can differ from painting to
painting, (2) acrylic painting with a fixed 4-color palette, and (3) a black Sharpie
marker. Examples of these three settings are shown in Figure 6.4, 6.9, and 6.8 . The
robot can only be used in one of these settings at a time. However, users can paint
using any media of choice, leading to mixed media paintings in Figure 6.7.

6.5.3 Evaluation
Text-Image Alignment - Two automatic methods of comparing image and text

are CLIPScore [113] and BLIPScore [114], which measure the similarity between
images and text with a pre-trained image-text encoders. Because FRIDA’s Low-
Level Action Planner (FRIDA w/o Supportive Goal Planner in Table ??) with text
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guidance directly optimizes the CLIPScore to create images from text, this method is
unfairly advantaged when using CLIPScore. We use MTurk to achieve large-scale fair
evaluation of text-image alignment.

Semantic Sim2Real Gap - It is important that between the output of the
Supportive Goal Planner (Ihigh) and the Low-Level Action Planner’s simulation (Ilow)
there is little loss in semantic meaning. A naive approach at measuring this loss is the
mean-squared-error between the images’ pixels (Eq. 6.1). However, this is sensitive to
low-level variation in details such as color or tone differences which are tolerable as
long as the high-level content in the images is the same. To measure the high-level
difference, we propose to use the cosine distance between CLIP image embeddings,
∆sem, Eq. 6.2, referred to as the Semantic Sim2Real Gap.

∆pix = ||Ihigh − Ilow||22 (6.1)
∆sem = cos(CLIP (Ihigh), CLIP (Ilow)) (6.2)

A proper Sim2Real gap measurement would compare the output of the Supportive
Goal Planner to the real drawing, however, it is infeasible to generate a robust number
of real-world samples. Because the Sim2Real gap between the Low-Level Action
Planner’s simulation and the real drawing is the same across all tested methods, we
can fairly use the FRIDA simulations in lieu of the real drawings for comparing the
Sim2Real gaps of Supportive Goal Planner variations.

6.6 Results

6.6.1 Co-Painting
To test the ability of FRIDA to work with an existing canvas state, we focus on

Sharpie marker drawings where no erasing is possible, forcing the model to have to
adapt to and use the existing markings on the page. To create the partial drawing, we
generate an image with Stable Diffusion using prompts from the PartiPrompts [115]
dataset, then simulate the drawing with just 35 strokes as depicted in Figure 6.5. We
generated 40 images from different prompts per method. CLIPScore [113], BLIPScore,
and Sim2Real gap measures are reported in Table ??. Since the text-guided Low-Level
Action Planner maximizes CLIPScore, it was expected and confirmed that FRIDA
without the Supportive Goal Planner has the highest CLIPScore. BLIP is also expected
to correlate with CLIP, leading FRIDA without the Supportive Goal Planner to have
an artificially high BLIPScore.

To properly assess the image-text similarity of the drawings from partial sketches,
we conducted an MTurk survey summarized in Fig 6.6. 24 unique participants were
shown a language description then two images (one from ours and the other one of
the two baselines, in random order). Participants were instructed to choose which
image fits the given caption better, or to select neither or both. Each image pair was
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“A robot arm 
holding a pen in 
its robot hand 
and drawing a 

table.”

Current
Canvas

Updated
Canvas

“A dark city with 
an overgrown 

road with people 
walking.”

“A drawing of a 
turtle.”

“A rusty prius
under water. 

The city 
skyline in the 
background.”

Figure 6.7: Mixed-Media Paintings. FRIDA can use markers and paintbrushes to
co-paint with a human. Despite being fine-tuned with a single medium, FRIDA can still
perform co-painting when a user uses different media such as watercolors.

evaluated by 4 unique participants leading to 160 comparisons per baseline. While
many participants found neither image fit the text description (an indicator of the
challenging nature of co-painting), FRIDA was generally indicated as having clearer
content over FRIDA without the Supportive Goal Planner and FRIDA without our
fine-tuning.

In terms of the proposed Semantic Sim2Real Gap, FRIDA outperforms the baselines
indicating that our fine-tuning guided Instruct-Pix2Pix to produce images that were
less likely to change meaning when planned by the Low-Level Action Planner.

6.6.2 Multiple Turns
A co-painting system must be capable of accommodating multiple iterations of

human-robot interaction in which the robot adds content but does not completely
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In FRIDA, images are generated such that when they are painted, 
there is little loss in meaning. The image generating model learns the 
robot’s constraints and abilities during Self-Supervised Fine-Tuning.

Figure 6.8: Learning Robotic Constraints. We compare images generated by a pre-
trained Stable Diffusion model (left) to those generated by our proposed FRIDA’s High-Level
Planner (right) with the prompt “A dog and a cat sitting next to each other on the beach”
in three different painting settings (Sec.6.5.2). The top row shows the images generated by
each of the models and the bottom row shows the corresponding FRIDA Low-Level Planner
simulation.

overwrite the human’s prior work. We simulate this by having the robot create
sequences of modifications to a simulated painting with different text prompts in
Figure 6.2. The baseline methods tend to either avoid making changes or make huge
changes to the canvas, whereas FRIDA makes updates that are more reasonable for
the robot to achieve and integrate naturally with prior work.

6.6.3 Text Conditioned Paintings
The text-guided Low-Level Action Planner method relies on feedback through

CLIP which results in noisy, unclear imagery. We compare FRIDA with the Supportive
Goal Planner which uses a pre-trained generative model to text-guided Low-Level
Action Planner in Figure 6.9. The Supportive Goal Planner creates paintings which
are far more clear and capture the caption better than the text-guided Low-Level
Action Planner in various painting settings.

6.6.4 Real Paintings
We used FRIDA’s simulation to make large scale data creation and evaluation

feasible. Figure 6.7 displays multiple real-world examples of FRIDA’s drawings and
paintings. FRIDA is able to successfully use content on canvases that is out of
distribution from its fine-tuning training data as with the watercolor and marker
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Figure 6.9: Comparing FRIDA’s fine-tuned pre-trained image generator versus FRIDA’s
CLIP-guided method for generating paintings from the text “A sad, frog ballerina doing
an arabesque” in three painting settings. Comparing FRIDA with the Low-Level Action
Planner’s text-guided abilities versus FRIDA with the Supportive Goal Planner. All paintings
generated from the text input “A sad, frog ballerina doing an arabesque” in three painting
settings.

examples in Figure 6.7.

6.7 Robot Synesthesia

Figure 6.10: Robot Synesthesia - In this work,
we added speech and sound guidance into the FRIDA
system. Speech was decoupled into text and emotion.

To support richer interac-
tions with the robot than just
text inputs, in Robot Synesthe-
sia [116], we introduced sound
interactions to the FRIDA sys-
tem to guide the generated paint-
ing. We treated natural sounds
and speech separately. Natural
sounds such as a horse neighing
or laughter can guide the con-
tent of the painting (Figure 6.10).
There is so much nuance to
speech besides the words, so in
addition to the text transcribed
from speech audio, emotion pre-
dicted from the speech is also
used to guide the painting. In Figure 6.11, the effect of emotional guidance can be
seen. The motivation for this work was to design a robot that not only does what
the user wants it to do, but also hears them, understands their emotions, and assists
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them to express their ideas in visual art.

Figure 6.11: Speech is nuanced and more than just the words said. In Robot Synesthesia,
the emotion from a given speech input is also used to guide the painting. Emotion can also
be used with image inputs to add moods to existing content.

6.8 Discussion

6.8.1 Limitations and Ethical Considerations
FRIDA stands out as a successful collaborative painting system, but is limited

to discrete turn-taking interactions. While our self-supervised training data creation
method (Figure 6.4) was informed by real co-painting data, a more end-to-end approach
where the system learns how to form the partial paintings could result in even better
results.

FRIDA is subject to the biases of Stable Diffusion [4] and its training data [117],
and so we recommend the usage of FRIDA with caution and solely for research
purposes.

6.8.2 Learning Robotic Abilities
Our self-supervised fine-tuning procedure guided the pre-trained model to generate

images that, at a pixel-level, appeared similar to what FRIDA can paint, but is it
learning the actual robot constraints or just a low-level style transfer? We computed the
Sim2Real gap measurements between the CoCo images and their FRIDA simulations
(as seen in Figure 6.4) along with the CLIPScore of the simulation and text prompt.
We found that ∆pix had a small, insignificant Pearson correlation (−0.08, 0.08 p-value)
with the CLIPScore of the painting whereas ∆sem had a significant, negative correlation
(−0.48, 2.4e − 31 p-value). Because our Self-Supervised Fine-Tuning scheme greatly
decreases the ∆sem, this indicates that our fine-tuning technique is not solely changing
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the low-level appearance (akin to style-transfer) over the output of its base model.
It appears that Self-Supervised Fine-Tuning is encoding the robot’s abilities into
the image generator, as seen in Figure 6.8 where FRIDA’s Supportive Goal Planner
produces images with (1) very prominent and clear content, when the robot’s brush
is large (2) select and limited colors, when the robot paints with fixed palettes or
markers, and (3) sparse, concise drawings when the number of strokes is limited.

6.9 Conclusions
Robot capabilities need to meet the desires of humans who will use them and

be affected by them. Our research did not find any desire to automate the artistic
process [1], instead we found great evidence for the need for collaborative creative
tools [2]. Supporting collaborative painting (and many collaborative tasks in general)
is challenging because there are very few datasets that record this type of interaction.
In this chapter, we showed how to enable the robot to create its own training data
to train a collaborative goal creator. We train a foundation model base to (1) be
collaborative by using the existing state towards the user’s goal and (2) understand
the abilities and constraints of the robot. The methodology here can be used to make
a model predictive control system more collaborative by giving it a goal creation
module.
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7 Visual Sculpting

In Parts II and III, we showed our approach applied to the Generative Robotics task
of collaborative painting. To show that our approach generalizes to other Generative
Robotics tasks, in this part we apply our approach to robot sculpting. We show
that our approach generalizes to new state representations (depth maps), materials
(clay, foam, and sand), tools (grippers and end-effectors), and action representations
(pinches and pokes).

7.1 Introduction
Sculpting has a rich history of expressing artistic meanings through 3D forms that

captivate our sights, sense of touch, and emotions. Clay sculpting is a long-horizon,
dexterous task where an artist takes a sequence of actions to modify the clay until the
visual form is aligned with their underlying intentions. In this article, we formulate the

190 actions 250 actions 310 actions 370 actions 430 actions 490 actions0 actions

Figure 7.1: Long-Horizon. We tested our system’s ability to perform long-horizon
planning by sculpting the alphabet without resetting the clay between goals. The top row
displays the goal images followed by depth maps and photographs of the real sculpted clay
along with the total cumulative actions.
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Long-Horizon GoalsPlanning in Visual & 3D 
Representations

Various Tools Diverse Materials

>100 actions

Rigid or Compliant

Figure 7.2: Visual Robotic Sculpting. We propose an approach to robotic sculpting
that models deformable material dynamics in dense, high-resolution depth maps but plans
in both 3D and visually-aligned representations in order to more closely align with human
perception of 3D objects.

process of clay sculpting as a robotic planning problem; that is, given a user’s intended
goal, a robot takes a sequence of molding actions to create a sculpture matching the
goal.

In robotics, clay sculpting is related to deformable object manipulation where the
general goal is achieving a target 3D shape. Existing robotic sculpting approaches
stemmed from such a 3D shape matching view tend to ignore important visual
properties of sculpting, such as textures and shading due to lighting. For instance,
subtle changes in textures can create drastic effect for human visual perception of
sculptures, but it is hard to measure such an impact when using a 3D metric such as
Chamfer Distance on sparse point clouds. To capture such visual guidance as that
caused by lighting, we propose a robotic sculpting approach that plans in both a 3D
and visually-aligned representations.

Although many robotic clay sculpting methods focus on additive or subtractive
methods which do not model the dynamics or assume rigidity of the medium [118, 119,
120, 121, 122], there are works that model and embrace the softness and challenges of
deformable materials. Some of these works plan using learning from demonstrations [11,
34], but these require retraining policies and recollecting demonstrations for each new
goal and starting state. Avoiding this issue, other works model the clay dynamics and
plan using policies or Model Predictive Control (MPC) [12, 123, 124].

When looking at clay, people do not only see the 3D aspects of the state, they
perceive the way light hits the surface and the textures on the clay [125, 126]. Previous
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work in robotic sculpting model dynamics and plan with sparse (∼300) point clouds [12,
34] which lack a direct visual interpretation and do not capture important features such
as texture. We investigate whether a robot can plan to sculpt in both 3D and visually-
aligned representations. We use dense depth maps (512×512) as a 3D representation
and the spatial gradient of the depth map as a visually-aligned representation. Spatial
gradients capture low-level changes to 3D surfaces and are essential representations
used in rendering 3D objects into RGB images, as they are used to estimate the way a
given light source interacts and reflects off the surface of the material. Therefore, we
consider spatial gradients as a visually-aligned representation, with the assumption
that two similar spatial gradients will have similar visual properties.

Clay sculpting is a long-horizon task which may require moving large amounts of
material across the working area. Previous works in deformable object manipulation
use pinches as actions using a parallel jaw gripper with 3D printed end-effectors [12,
34, 123, 124] which are designed for efficient creation of shapes like alphabet letters.
Having two points of contact makes it challenging to make small details, and the
pinching motion is not well-suited for moving material across a working area. In
this work, we design our actions as simple pushes using a single end-effector to make
simple, controlled deformations and better support long-horizon sculpting tasks.

We present a full system for robotic sculpting with visual planning. We represent
actions as linear pokes along the surface of the material. We devise a self-supervised
data generation scheme and train a dynamics model to predict deformations to depth
maps of the material. The dynamics model predictions are differentiably converted to
visual representations for planning which is performed using MPC to fit the predicted
state to the target state. Comparisons are made both in 3D (e.g., chamfer distance)
as well as visual (e.g., mean-squared error of spatial gradients). We show that this
leads to sculptures that are not only accurate in 3D but visually similar to target
states. Our contributions:

1. A fully-integrated robotic sculpting system capable of adapting to diverse
materials and tools for performing long-horizon deformable manipulation.

2. A deformable material dynamics model that learns through limited self-
generated actions and adapts to diverse materials and end-effectors (both soft
and rigid).

3. The first robotic deformable object manipulation planning algorithm which
plans in both 3D and visually-aligned representations.

68



Ch. 7 – Visual Sculpting

7.2 Related Work

7.2.1 Deformable 3D Modeling
There have been exciting developments in computer-based 3D model generation

and manipulation stemming from the rise of large models trained on vast datasets.
Many works use 3D representations of Neural Rendering Fields [5], Gaussian Splatting,
Meshes, or Point Clouds. These works introduce powerful ways to generate 3D models
from images, text, or without condition. These methods provide very powerful tools,
such as Score-Distillation Sampling to optimize the shape of a 3D model to fit a given
text prompt [5], but they are not connected to real-world materials nor have relation to
the actions and capabilities of a robot. There are existing material simulators such as
PlasticineLab [127] which use methods such as the Material Point Method (MPM) to
estimate the properties of real-world materials, such as clay. Despite improvements in
these simulations, previous work has found that simulation methods such as MPM may
not perform as well as data-driven approaches (e.g., graph neural networks) [12, 123].

7.2.2 Robotic Sculpting
Many robotic sculpting works utilize variants of subtractive or additive actions.

Robots have used hot wires to cut through foam [119], loop tools to remove slices of
clay [121, 122, 128], and chisels to carve wood [120]. While these subtractive methods
are highly successful at recreating target 3D goals, this success in part comes from
the assumption that the materials behave non-deformably. Even subtractive works
using clay assume that the tool’s path through the clay cleanly removes pieces of clay
without creating deformations [121, 122, 128]. This assumption may work well for
hard clay or styrofoam with sharp or hot tools, but will not hold up for very soft
materials such as dough or sand.

Prior work has also created sculptures using robotics in an additive manner.
These approaches are similar to 3D printing, in which materials are extruded and
layered [118, 129]. These works do assume deformable properties of the materials,
but they heavily engineer the systems to account for this (e.g., extruding very small
amounts of clay at a time). These approaches are inherently additive, meaning that
they cannot plan to change the existing state of the materials.

7.2.3 Robotic Deformable Manipulation
Rather than assuming rigidity, there are robotic works that can plan with the

deformability of materials. Some works embrace deformability but do not explicitly
model dynamics using learning from demonstration [11, 34] or large language mod-
els [130, 131] for planning. Other works plan with dynamics models which have been
implemented using existing simulators, such as the material point method [12, 127], or
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by training neural networks for a data-driven dynamics modeling [12, 123, 124]. With
more diverse materials, works plan with deformable bags [132] and cloth [133, 134].
Although these dynamics models have decreased the Sim2Real gap, they represent
clay state as sparse point clouds which do not capture low-level, visual details of clay
such as textures.

Sculpting is long-horizon task; however, most deformable object manipulation
works are focused on sculpting simple shapes (e.g., alphabetical letters) from a top-
down view, which can be achieved in less than 10 actions. Prior works use parallel
jaw grippers with custom end-effectors and represent actions as pinches [12, 123, 124].
While the pinch action is highly compatible with the alphabetical letter creation task,
because of the multiple points of contact and large changes each action makes, it is
not suited for long-horizon, fine-grained sculpting such as making relief sculptures
with hundreds of actions. In RoPotter [11], a robot wielding a single end-effector was
able to make pots, a task that traditionally uses at least two points of contact. In this
work, we also use pushes with a single end-effector as actions to more closely align
with sculpting tasks more generally.

7.3 Approach

7.3.1 Hardware Setup
Displayed in Figure 7.2, we use the UFactory XArm 850 robot with various,

custom end-effectors. The sculpting surface is 12 × 12 inches with Aruco tags on the
corners. Suspended directly above the sculpting surface is a Zivid One+ structured
light RGB+Depth sensor.

7.3.2 Action Representation
Robot actions are parameterized as linear pushes with a starting coordinate (x, y);

a direction θ; a travel length l; and a depth component z, as depicted in Fig. 7.4. The
action depth is with respect to the surface depth, starting at just lightly touching the
surface then pushing z millimeters into the surface by the termination of the trajectory.
z and l have maximum values that are set as hyper-parameters.

7.3.3 End-Effectors
We tested our system with multiple end-effector sizes, shapes, and levels of com-

pliance (Fig. 7.3). We chose these end-effectors for their diversity. Our dynamics
modeling approach is data-driven, and therefore should adapt to many different shapes
and materials of end-effectors without needing prior information, such as 3D model.
We also tested a gripper with two custom 3D-printed end-effectors as a baseline
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RigidSoft Silicone

Figure 7.3: End-Effectors. - We test our robotic sculpting system with a variety of single
end-effectors of various shapes and levels of compliance and compare to a gripper which is
conventional in prior work.
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Figure 7.4: Dynamics Model. Given the action parameters and current state, our robot
can follow trajectories to make deformations along the surface of the material. We model
these deformations by training a neural network, param2deform, to predict the changes in
state at a constant pose.

comparable to prior works. When using the gripper, we replace the l action parameter
with the distance by which the gripper should be closed.

7.3.4 Dynamics Model
The goal of the dynamics model is to predict the change in the material’s state

given the current state and the action parameters. Our dynamics model is similar
to the robot painting system FRIDA [107] with notable differences: (1) instead of
brush strokes our actions are linear pushes along the material surface, (2) rather than
predicting RGB brush stroke appearances our model predict changes to depth maps,
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and (3) FRIDA assumes that brush stroke actions are independent of the current
state, which is not true in sculpting, so our dynamics model includes the current state
when predicting changes.

Fig. 7.4 shows a visual depiction of our dynamics model. At the core of the model is
a neural network, param2deform, which predicts the change in depth. param2deform
is comprised of 3 multilayer networks. The first takes the two shape parameter scalars,
l and z, feeds them through 3 linear layers, resizes them to a 2D matrix, then feeds
them through 3 convolutional layers. The current state is concatenated with its
spatial gradient, then encoded using 3 convolutional layers. Finally, the current state
features, current state, and encoding from the shape parameters are concatenated
then fed through 5 convolutional layers to predict the final change in state. This
network architecture was chosen for its simplicity and hyper-parameters (e.g., number
of convolutional layers and hidden layer sizes) were tuned by hand.

To reduce the training data needed to learn the model, param2deform predicts
all deformations in a constant pose, meaning the start of the action is always at the
same point and the action moves from left to right. This predicted deformation is
then translated into the desired position (incorporating the x, y, and θ parameters)
using perspective warps which do not require training data to perform and are fully
differentiable.

Dynamics Model Objectives

We sample random actions and capture scans of the depth of the materials before
(St) and after (St+1) forming training data for param2deform. Our dynamics model,
f , is designed to be both accurate in 3D and visual representations. We optimize
param2deform with two different objectives to achieve these goals. Our 3D loss
function, L3D (Eq. 7.1), is the mean-squared error between the actual depth map after
the action and the dynamics model prediction. To capture the visual features, we
form a visual loss function, Lviz (Eq. 7.2), which is the difference in spatial gradients
of the actual depth map after the action and the dynamics model prediction.

L3D = ||St+1 − f(St, a)|| (7.1)
Lviz = ||∇St+1 − ∇f(St, a)|| (7.2)

We can also convert the depth maps into point clouds and compute more standard
loss functions like Chamfer Distance (CD) and Earth-Mover’s Distance (EMD). Since
the depth maps are high-resolution (512×512), we must down-sample our point clouds
for computational purposes. We use voxel-grid down-sampling and the computations
of CD and EMD from [12].
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Figure 7.5: Planning. (Above) An image is specified by a user and is then converted to
depth. The depth map is altered to make it more feasible for the robot to create based on
the current state of the material forming a target state. (Below) Our planning algorithm
optimizes a set of randomly initialized actions such that the dynamics model predicted state
is both accurate in 3D and visual representations compared to the target state.

7.3.5 Planning
The goal of our planning algorithm is to recreate a given 3D model in both a 3D and

visual representation. The number of actions, starting state, and robot end-effector
choice are given. We employ a combination of random-sampling with Gradient Descent
for optimizing the action parameters to achieve this goal.

Goal Creation and Processing

Our planning algorithm requires a dense, depth map as the target state repre-
sentation, which can be given directly as a depth map from a 3D model or can be
extracted from a given image input by using the pre-trained image-to-depth model,
DepthAnythingV2 [135].

The input depth map is not calibrated to the given starting state, so, for example,
there may not be enough clay in the current state to recreate the target depth map.
We adjust the input target depth map (St) with the current state depth map (S0)
with an optimization of the surface. Shown in Eq. 7.3, we scale the target depth
map by α and β. Because it is difficult for our robot to work near the edges of the
working area, we ensure that the edges of the final target depth, Ŝ, are equal to the
current state using boolean map, M , which isolates the outer 10% of the working area.
Our optimization function, Eq. 7.4, optimizes scalars α and β such that the target
depth map, Ŝ, has (1) the same amount of material as the current state, (2) does not
have depth values larger than the table surface, dmax, and (3) has the most definition
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(defined as a large α value). These three terms are weighted (w0, w1, and w2) by
hand from experimenting with a few test cases.

Ŝ = S0[M ] + (αSt + β)[1 − M ] (7.3)
min
α,β

w0(ΣŜ − ΣS0) + w1ΣŜ[Ŝ > dmax] − w2α (7.4)

Planning Objectives

Similar to our dynamics model objectives, our planning objective is to recreate
both the 3D shape and visual attributes of a given shape model. We optimize the
action parameters, a, to achieve these objectives (Eq. 7.7). We compare the 3D
shape of the target shape, S ′, and our dynamics model prediction, f(S0, a), using
mean-squared error matching pixels of depth maps.

L3D = ||S ′ − f(S0, a)|| (7.5)
Lviz = ||∇S ′ − ∇f(S0, a)|| (7.6)
min

a
[w3DL3D + wvizLviz] (7.7)

Planning Algorithm

Our planning algorithm is a simple variant of MPC. A given number of actions are
initialized using greedy sampling. Actions are initialized one-by-one picking the action
that decreases the loss the most over a number of trials. These initialized actions can
then be optimized using gradient descent or cross-entropy method to decrease the
loss values. While the initialization is greedy, this optimization stage helps promote
long-horizon planning since all actions are influential in the objective. This forms
an initial plan. A small number of actions are performed, then the robot pauses to
update and optimize the remaining plan, to adjust for differences in the dynamics
model prediction and reality. This process is repeated until all of the actions in the
plan are performed.

7.4 Results

7.4.1 Dynamics Model

Qualitative & Quantitative Results

To test the accuracy of our dynamics model and investigate the effect of our
visual loss term, we train our dynamics model with various materials using the
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Figure 7.6: Out-of-Distribution Dynamics Modeling. We train our dynamics model
on one material and test on another. Reported above are Sim2Real gap values (lower is
better) computed as the MSE between predicted and true depth maps (Eq. 7.1).

same end-effector and show the performance on various metrics on a held-out set
of deformations in Table 7.1. Generally, the addition of the visual loss term, Lviz,
increased performance not only on the visual evaluation metric but also on the 3D
metrics.

For qualitative investigation of our dynamics model, we displayed sample predicted
deformations in Fig. 7.7. Overall, our model is able to capture the complex deforma-
tions in various materials in the local region but fails to predict small deformations
far away from the contact. Between the tested materials, foam hosted highly complex
deformations while sand had unpredictable deformations that depended greatly on
the gradient of the surface (sand rolling down a hill).

Generalization Across Materials

In Fig. 7.6, we evaluated our dynamics model trained on data from one material
and then tested data from another material. We found that some materials lead to
good generalization, as a model trained on foam and tested on dough performed only
slightly worse than that trained on dough itself. However, training on sand led to very
poor generalization to other materials. Overall, these results show that deformable
materials are nuanced and cannot be modeled by a single set of parameters.

Dynamics Model Sample Efficiency

We trained our dynamics model with varying numbers of training samples and
displayed the results in Fig. 7.8. Our model performs well with only roughly 100
samples, but performance increases with more samples.
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Figure 7.7: Qualitative Dynamics Model Results. The top rows show real deformations
made into various materials by our robot. Our dynamics model predictions given the current
state and action parameters are shown below the real deformations.

Table 7.1: Visual Dynamics Modeling. - Dynamics model performance on a held out
set of deformations with various materials while ablating the training objectives. Lower is
better for all metrics.

Objective(s) L3D Lviz CD EMD

Foam
L3D 0.138 0.025 0.26 0.16

L3D + Lviz 0.130 0.024 0.22 0.15

Sand
L3D 0.043 0.012 0.40 0.22

L3D + Lviz 0.047 0.011 0.40 0.22

Dough L3D 0.190 0.029 0.45 0.31
L3D + Lviz 0.187 0.028 0.41 0.30

Foam Pinch L3D + Lviz 0.624 0.043 0.50 0.30

76



Ch. 7 – Visual Sculpting

Figure 7.8: Dynamics Model Sample Efficiency - Our dynamics model is able to learn
an accurate transition model with as few as 100 actions.

7.4.2 Planning Results

Long-Horizon Planning

To test our method’s ability to handle long-horizon tasks, we create a series of
goals of alphabetic letters in serif font. The robot first sculpted an “A” from a starting
state, then morphed it into a “B” and so on. In Fig. 7.1, we report results to “F”,
showing the robot’s capability to plan over hundreds of actions that vastly altered the
material’s state.

Pinching versus Pushing

We compared our single end-effector pushing actions with a pinching action using
a gripper that is analogous to other deformable manipulation works [12, 34, 123, 124].
In Table 7.1, we reported the results of dynamics modeling which were worse for
the pinching actions, indicating that pinches produced less predictable deformations
than our pushing actions. This was supported by qualitative results in Fig. 7.7 which
showed that the pinches were complex and not modeled as accurately. In Fig. 7.11,
both visual and 3D losses decreased as many actions were taken using the single
end-effector pushes, however, only the 3D losses improved with the gripper pinches.
We found that the pinches produced choppy, messy sculptures over the course of many
actions.

Comparison with Other Dough Works

In Fig. 7.9, we compared our approach to existing deformable object manipulation
works. Since we were unable to replicate results from these works, the images of the
results were taken from the papers along with the metric results. We attempted to
use similar starting and goal states to the compared works. Although our approach
was designed for larger, long-horizon sculptures, this comparison served as preliminary
evidence that our approach is comparable on the task of making simple, small shapes
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to existing approaches [12, 34, 123]. However, because of the lack of control in this
experiment, we are unable to draw broader conclusions about the differences in results.
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Figure 7.9: Simple Shape Results - Our method has similar results with simple
shapes, such as letters and pyramids, to other play-doh manipulation works, RoboCraft [12],
RoboCook [123], and SculptDiff [34].

Goal Creation and Processing

In Fig. 7.10, we show two examples of the processing steps when receiving an
input modality to be used as a target shape. In the upper example, an RGB image
is generated by an image generator, then the depth is extracted using DepthAny-
thingV2 [135]. Using the current state, this extracted depth is adjusted according to
the optimization described in Sec. 7.3.5. The second example in Fig. 7.10, shows an
example where a 3D model downloaded from the Internet is converted to depth, then
adjusted according to Sec. 7.3.5.
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Figure 7.10: Goal Creation. Target depth maps are adjusted so that they are more
feasible for the robot to recreate. Details in Sec. 7.3.5

3D-Visio Planning

To observe our approach’s ability to improve 3D and visual accuracy over many
actions, we plotted the losses as actions were taken as the robot sculpted a large
“X” relief sculpture in Fig. 7.11. Our approach (with a single end-effector) is able to
decrease both the visual and 3D losses over many actions, though, it is worth noting
that the visual loss did not decrease steadily and leveled off before the 3D loss.

To investigate the effect of 3D and visual losses, we performed an ablation study of
the losses in the planning objective and reported the results in Fig. 7.12. We created a
simple case where the robot’s objective was to smooth out a thin line pinched into the
material. This example showed an extreme change in visual representation, whereas
the change in 3D was not as extreme because the line was very thin. When planning
with a point cloud representation and chamfer distance, the robot did not smooth
out the line well, whereas when planning with visual loss, most of the robot’s actions
worked to smooth the line. We attempted a more complex example in Fig. 7.12, where
the robot’s goal was to create a ripple in the sand. The effect of visual planning
did not appear very strong here, even though quantitatively the visual guidance was
supportive. We hypothesize that this was because it is very challenging to make
smooth surfaces on sand, as even the lightest touch with the end-effector tends to
make a strong visual indentation.
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GripperSingle End-Effector (EE)

Figure 7.11: Visual and 3D losses during long-horizon sculpting. The losses
were plotted after each of 50 actions taken by the robot using a single end-effector with
our pushing actions and compare to a gripper using pinch actions analagous to prior
works [12, 34, 123, 124]. Below, we show samples of photographs and depth scans of the
material after the actions were taken.

7.5 Discussions

7.5.1 Limitations
A large technical limitation of our approach stems from our RGB+D sensor which

is very expensive and fixed in a static location leading to a single perspective 3D view.
It would be possible to plan and model the dynamics of multiple perspectives to get a
truly 3D sculpting method if the sensor could move to additional positions. Another
limitation of our approach is the simple action parameters that are executed only
from the top down. For a more expressive approach with more 3D capabilities, more
complex actions could be designed.
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Figure 7.12: Sculpting in a Visual Representation. (Above) We isolate planning in
3D (minimizing Chamfer Distance) and visual (minimizing mean-squared error of spatial
gradients) representations. In both conditions, the robot performed 10 actions to smooth
out a line pinched in the clay. Planning in a visual space creates plans that properly align
with the task. (Below) When planning with more complex goals with sensitive materials
(sand), the effect of visual guidance was not as apparent.

7.5.2 The Sensitivity of Visual Guidance to Noise
In multiple experiments including dynamics modeling (Table 7.1), long-horizon

sculpting (Fig. 7.11), and smoothing surfaces (Fig. 7.12), we observed that our robot
is successfully able to use visual guidance, in addition to 3D guidance. However, this
visual guidance sometimes had little or no effect, as was seen with the sand example
in Fig. 7.12. We hypothesize that this is a result of the visually-aligned representation
being highly sensitive to noise and less unpredictable than 3D representations. In
Fig. 7.13, an action applied to a relatively flat surface had a simple change in depth,
with a large indentation surrounded by some displaced material. However, in the
ray-traced visual representation, this change is more complex.

We hypothesize that the Sim2Real gap has a more drastic effect on visually-aligned
representations compared to 3D representations. We can simulate a Sim2Real gap
by adding Gaussian noise to the action parameters of a planned, simulated sculpture.
In Fig. 7.14, the losses were plotted as the amount of noise added to the actions
increased. We also plotted the loss if zero actions were taken as horizontal, dashed
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Figure 7.13: Sensitivity of Visual Representations. Depth maps are shown before
and after an action is taken along with ray traced conversions of each. The changes in depth
appear less complex than the change in ray traced images (averaged over RGB channels).

lines. As expected, both the 3D and visual losses increased with additional added
noise. However, the visual loss reached a point where the robot is better off not taking
action with a smaller amount of noise than with 3D loss.

In Fig. 7.14, we measured the amount of noise as the MSE between the predicted
and the noised actions which is the same calculation as L3D in Table 7.1. The point
where the robot is better off not performing any actions with respect to visual loss is
roughly 0.2 in Fig. 7.14. As seen in Table 7.1, our Sim2Real gap is between 0.05 and
0.19, depending on the material, indicating that our method is barely able to perform
visual planning without the Sim2Real gap being too high. This experiment supports
our hypothesis that visual planning is very challenging due to the Sim2Real gap, but
it is just one experiment and more evidence is needed to make broader conclusions.

7.6 Conclusions

7.6.1 Generalization from Painting to Sculpting
This chapter of the thesis served to generalize our approach beyond 2D painting

settings. We showed that our approach to Generative Robotics can generalize from
2D states to 3D by representing clay materials as depth maps. Tested on clay, dough,
and sand, our approach was able to learn from self-generated actions the dynamics of
these materials with respect to actions. Sculpting action representations are similar to
painting actions but extended for a vertical component. With minimal adjustments,
our approach scaled from painting to sculpting.
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Target State Starting State Plan + 0 noise Plan + 2.1 noise Plan + 4.9 noise

Action Noise

Figure 7.14: Noise versus Visual and 3D Accuracy. Above, we plot the visual and 3D
losses as more Gaussian noise is added to planned action parameters, simulating real-world
noise. Samples of depth maps of plans with increasing noise added are shown below the plot.

7.6.2 Challenges in Robot Sculpting
While our sculpting approach improved upon existing approaches in many respects,

such as long-horizon planning and high-res dynamics modeling, the results are still
very poor compared to that of even an amateur sculptor. This is in stark comparison
to our painting results which arguably look similar to that of an artist with some skill.
Our results point to a few different reasons as to why our sculpting results are so poor
compared to our painting results.

Isolation of Actions. A brush stroke made to a dry canvas makes a highly-
localized modification to the state of the canvas, however, a small push on the surface
of clay can change the state globally in sculpting as seen in Figure 7.7. Because the
actions have such extreme effects, it makes it challenging to perform long-horizon
planning, especially if the dynamics model is not perfect. One way to improve upon
this would be to add some methods for planning with uncertainty to try to take safer
actions towards a goal [136].

Action Limitations. While our pushing actions improved long-horizon planning
compared to the pinches, as seen in Figure 7.11, these actions are still very limited in
their ability to make complex sculptures. A human sculptor may use many tools or
complicated, dexterous maneuvers to make desired shapes. Our approach could be
improved with more types of actions including some that are subtractive or additive.
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End-Effectors. The choice of end-effector has a great effect in what is possible to
create with the robot. Larger end-effectors obviously have trouble making small details.
Compliance turned out to be an important factor to consider. Softer end-effectors
were able to create smoother surfaces, while more rigid end-effectors created ridges
and texture with even the lightest touches. In future work, exploring more compliant
tools and perhaps tools with variable stiffness could improve sculpting accuracy.

Material Unpredictability - Changes to clay, sand, dough, and generally all
deformable materials are very challenging to predict. Our dynamics model is far from
perfect, but its also not clear what is the maximum performance it could get. One
way to work with unpredictable materials is to improve sensing. Our planning is
closed-loop, but our actions are conducted open-loop. If we were to sense and respond
during action execution we could try to control uncertain factors. For example, contact
estimation could be more precise with a force-torque sensor. Using tactile sensing like
GelSight could also help improve perception of the clay state [137].

7.6.3 Improvements to Robot Sculpting
Despite the shortcomings described in the previous subsection, our method was

able to improve upon the state of the art in multiple challenges of sculpting. Our
method was able to plan for hundreds of actions (Figure 7.1) compared to prior work
which plans with less than a dozen showing how are robot can robustly plan for
long-horizon tasks. Our state representation of depth maps of size 512 × 512 is far
richer than prior work that generally rely on sparse point clouds. Our insight that
pushed would be a more amenable action representation than pushes for long-horizon
sculpting proved to be true through our experiments. Lastly, our dynamics model
showed promise for improving state of the art prediction of deformations given actions.
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8 Conclusions

8.1 Discussions
This thesis touches on many areas of robotics and creativity. In this section we

discuss interesting questions that arrise when combining AI, robotics, and art.

What is the difference between a printer and a robot painter?
A 2D laser printing machine can recreate almost any image given to it using

specialized mechanical parts and ink. While a human painter is also creating images,
their occupation is quite different from a printer and a robot painter follows suit. We
identified two major differences between a painter and printer in this thesis. (1) The
tools and materials should affect what is created in painting. A robot working with
a single black Sharpie marker will necessarily create different content from a robot
with diverse oil paints. This is in contrast to a printer which can create anything and
does not change the content based on its mechanical parts or ink. (2) Painting is a
process. The goal may change drastically throughout the painting process as the artist
makes iterations, as opposed to a printer which simple takes the image and recreates
it without iteration.

These two differences between a painter and printer drive the technical challenges
of robotics in this thesis. The robot has to have an accurate understanding of its
real-world materials, tools, and abilities in order to let them influence what is created.
In robotics, this is challenging because art materials, such as paint and clay, are very
difficult to model in simulation. The robot also has to have flexible, high-level goals
and allow for changes through the process to support the iterative nature of art. This
is notoriously challenging in robotics because it requires high-level intelligence.

What does it mean for a robot to collaborate with someone when
creating?

Support can come in many forms during a creative process. For example, someone
may help proofread a paper you are writing or maybe they just provide you with some
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snacks as you write into the night during a deadline. Both are forms of support but
look very different. There is no one size-fits-all solution to supporting creative acts.
In this thesis, we explored collaboration as a form of support in painting. We also
observed during live demonstrations that the robot was able to support artists by
inspiring them and motivating them.

During demonstrations, participants would often not want to start a drawing
by themselves. Instead, they were more comfortable typing in a text prompt and
having the robot start it. After this, they felt more comfortable to start drawing.
While more proper experiments need to be run to find more general conclusions, we
theorize that robots can help motivate people to engage in art more. During these
same demonstrations, the robot would often draw something unexpected. While this
could potentially be frustrating if the participant wanted to draw something very
specific, when people had open minds, it helped inspire them to draw something new
and exciting. There are many possibilities for how a robot can support the creative
process, and we look forward to investigating these in future work.

How can a robot respond to changes in a creative process?

Generative Robotics tasks are process driven in nature, meaning that they can be
iterative and goals can change throughout the task. More generally in robotics, there
can be goal shifts and moving targets in many tasks. In this work, our robotic system
can respond to two different types of changes in the process. High-level goals may
change throughout the process. For example, a person may want to draw a simple
bucolic scene at first, but may want to change to a more sci-fi scene towards the end
of the painting, as scene in Figure 6.2. CoFRIDA is capable of responding to this
because our system self-generated training data to support this type of goal change.

Even though the performance of our dynamics model is good, it is not perfect.
There are Sim2Real gap errors that can pile up over a long-horizon painting task.
These are examples of low-level, stochastic changes that the robot needs to respond
to. In Figure 4.11, our robot planner responded to this change, adapting its plan to
account for it. Our fully-integrated system is able to perceive and re-plan accordingly.

How to make concrete plans for high-level goals?

A question arose while working on robot drawing: How can the robot draw from a
source color photograph if it only has a black Sharpie marker? The question gets at
ideas around robot goal aligment. In this case, the robot isn’t supposed to recreate the
image pixel-for-pixel. Instead, its goal should be to recreate the content of the image.
This inspired our approach for planning in a semantically aligned representation. With
semantic planning, the robot is able to draw portraits of people from color photographs
of them, as seen in Figure 4.15. In the painting space, we observed that people found
the paintings using semantic planning to look more like the source photograph than
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the ones planned with mean squared error even though they were less similar in a
pixel space (Figure 4.14).

In many manufacturing tasks, the goal is achievable by the robot because the
robot capabilities were exceptional and/or the goal was designed to be achievable by
the robot. In this thesis, we work on problems where the robot cannot create the
goal state exactly. For example, a brush is too large to make small details like tree
leaves (Figure 4.13). To help robots be more general purpose and work with diverse
materials, they need to be able to make things that align with the user’s goals. Our
planning in a semantic representation method proved helpful with increasing this
alignment in heavily constrained settings.

Can a robot teach itself about how its tools and materials interact?

Models of the world and how the robot can take actions in it can be helpful for
planning. One way to do this is through a simulation grounded in physics definitions,
however, if the simulation is not accurate, this can lead to large Sim2Real gaps. This
can be very apparent when a robot is using specialized, unique tools like a paint brush
or sculpting knife. Additionally, materials, such as deformable clays or paints, are
highly unpredictable. Many works will tune a few parameters of a simulation to try to
decrease this Sim2Real gap either by hand or with data. In our work, we train a neural
network from scratch using actions that were sampled randomly as training data and
found that it was more accurate than the hand tuned approach (Figure 4.10). While
this is not the first case of using neural networks as dynamics models, ours learns a
very complicated relationship (action parameters to brush stroke appearance) with
very few training samples needed because of our translation and rotation invariant
dynamics model. This generalizes to the 3D space in our sculpting work as well.

Our robot self-generates actions to train the dynamics model. In the painting
setting this works well because there is little variation in the current state that would
affect the appearance of the actions. In sculpting, however, the current state has a
huge influence on the action’s appearance. While our random sampling scheme worked
well for sculpting, a more intelligent sampler could lead to bigger improvements in the
dynamics modeling as it could find more unique cases for training.

To mimic a human or to find a new way?

For various reasons (e.g., embodiment differences or efficiency), a robot may
perform a task in a very different from a human. For example, a printer machine may
create an image working from top to bottom and left to right. This would be very
challenging for a human painter to do, instead, they may sketch with pencil, block in
large areas with a brush, then finally paint small details throughout. In this thesis,
the approach that the robot takes for sculpting and painting is shaped to some extent
by the definitions of its creators, but in large part the robot figures out how to paint
on its own. We defined the action representation leading to a set of possible brush
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stroke shapes as well as restrictions such as the number of paint colors. But the order
of the brush strokes and where to place them are all determined by the robot based
on its objective.

The final paintings may look similar to those made by humans, but the intermediate
stages look peculiar and strange. There are many works that try to model a human
painting process [138, 139]. Like no two people paint with the exact same process,
there is no need for a robot to perform similarly to a human. It only depends on the
needs of the user of the system and the desired effect.

What is success for creative tasks?

In many domains, a simple and intuitive definition of success can be computed
for internal or external evaluation. For example, in robot navigation, the distance
between the robot’s end position and goal position can be computed for understanding
success. But in creative acts, such as painting or sculpting, it is not as straightforward.
There is not a function or calculation that can determine if a painting that a robot
made is successful. Instead, in this thesis we create proxy goals that are designed to
align with the intentions of a human user. In CoFRIDA, a user wants the robot to
draw according to a text prompt and what is currently on the state. Our proxy goal in
this case, was a latent diffusion loss which guided the fine-tuning of a pretrained image
generator to generate collaborative additions to an existing painting. In sculpting, the
definition of success was the mean squared error between visual representations of
the the 3D state. These proxy goals allow a robot to optimize and plan, while being
aligned enough with a human user’s intentions and goals.

Can Generative Robots behave ethically?

As AI and robotics enter creative spaces at scale, huge questions about ethics have
arose. This topic is complex but important so we will comment briefly on it here.

Most large models were trained on huge datasets scraped from the internet, such
as the LAION [24] dataset. While most images in this dataset are innocuous, there
exists a significant amount of biased and terrible data [117]. The problems with the
data can carry over into the predicted images. In our prior work, we were able to
successfully mitigate some of the cultural biases of this data, but these systems could
still be offensive [140, 141]. Besides bias, some of the training data was collected
without the concent of the authors. This allows models to replicate styles which could
harm the reputation and well being of the original artist. Issues like this need to be
solved, however, to our knowledge there does not exist a solution beyond forbidding
the usage of the models.

Can a robot be creative?
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Although creativity is highly subjective and hard to define, there are generally
two components of creativity: novelty and value. Novelty simply means new which
could be new to a single person or globally (P-creativty versus H-creativity according
to Margaret Boden [142]). Value can mean many things, such as monetary value,
emotional provocation, colorful, or sentimental. For data-driven AI systems that learn
using maximum likelihood estimation, they can generate valuable solutions easily since
they are trained on many examples. For example, a generative adversarial network
learns to generate images of cats well, and if someone is looking for images of cats,
this is valuable. Where data-driven systems struggle to be creative is in novelty.

Data-driven systems can recognize outliers or out-of-distribution samples well,
but it has trouble evaluating them since there is little or no data to support this.
Creative samples are necessarily out-of-distribution since they are novel. Therefore,
we argue that data-drive robots cannot be truly creative. However, this argument
lacks concrete evidence and is based on strong assumptions. For example, Boden [142]
defines combinational creativity as the combination of familiar ideas. By this definition
of creativity, data-driven approaches appear to be very creative, as they can easily
mashup concepts. However, for Boden’s other types of creativity, exploratory and
transformative creativity, where sampeles need to be completely new and out of
distribution, data-driven approaches would be very unlikely to be creative.

Through our rhetorical argument, we state that a robot could not be creative on its
own, but there is evidence that robots can support and augment human creativity [143,
144, 145]. Fostering good human-robot collaboration is a more promising area for
future research than robot automated creativity.

8.2 Technical Merit
In this thesis, we show that self-supervised learning can adapt a model-predictive

control approach to robotics for creative tasks. Specifically, we introduce three self-
supervised learning techniques that use self-generated robot data to enable robots to
perform tasks, such as painting and sculpting.

Real2Sim2Real Dynamics Model

Modeling the world and the way a robot interacts with it is one of the biggest
challenges in robotics. In this thesis, we introduce a Real2Sim2Real, self-supervised
learning approach to dynamics modeling. There are many previous works that tune
parameters with real data to inform the model [49, 54]. Other works may train a
model from scratch [12] using neural networks, but they often need to lower the
dimensionality of the states or use simple models to avoid overfitting. In sculpting,
300 point clouds do not represent the visual qualities of the state. In our approach, we
are able to keep dimensionality high (512 × 512 depth maps) while avoiding overfitting
with our translation and rotation invariant dynamics modeling technique.
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Our approach models tiny changes to the world with high accuracy as opposed to
off-the-shelf simulators which have trouble modeling minute details. In this thesis, we
showed that our dynamics model worked well for painting and generalized to sculpting.
This shows promising results that the approach could be used to model the dynamics
for many more tasks.

Planning in a Semantic Representation

We showed that performing robot planning in a semantic representation can
increase goal alignment under constrained conditions. For example, planning in a visual
feature representation allows the robot to draw portraits from color photographs even
though the robot is constrained to only use a few black marker strokes (Figure 4.15).
Planning in semantic representations uncovers huge technical challenges in robotics
since these representations may be high-dimensional and complex. Because of these
challenges, reinforcement learning has difficulty converging with such complex state
representations. MPC provided a more feasible framework to converge; however,
this was only possible with a differentiable dynamics model to enable gradient-based
optimization for planning. This was another technical challenge, which was tackled
in this thesis by using differentiable operations and neural networks in our dynamics
model.

In conclusion, this thesis showed the importance of planning in a semantic represen-
tation and provided ingredients towards successfully generating plans: differentiable
dynamics models used in MPC style planning.

Human-Robot Collaboration

In many creative tasks, the usage of robotics is better suited for collaboration
rather than automation. Unfortunately, many of the largest datasets only support
automation since the represent the final product. For example, there are millions of
images of paintings, but very few samples of how the paintings were made or data
that supports collaborative painting. To solve this, we created a self-supervised data
creation technique to adapt pretrained models to be collaborative in this thesis. This
method was highly successful in the collaborative painting domain, and we are hopeful
it can extend to more collaborative robotics tasks, such as cooking.

8.3 Future Directions
The technical contributions of this work were developed for robot painting but

proved to scale to robot sculpting. The contributions of this thesis can help in a
number of Generative Robotics tasks ranging from creative industries to scientific
discovery.
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8.3.1 Mental Health Support
The World Health Organization has reported that practicing arts can help people

experiencing mental illness, support people with neurodevelopmental and neurological
disorders, support care-giving, and other well-being aspects [146]. Multiple prior works
have developed art robots to support well-being [101, 102, 103, 104]. Robot co-creative
assistants have been found to be motivating for people to engage in arts [97]. A robot
art installation at a hospital was found to reduce anxiety and boredom in patients and
patient visitors [105]. While there is no definitive evidence that Generative Robotics
necessarily improves well-being, this prior works suggests that it is a valuable area to
explore.

8.3.2 Personalized Touches in Mass-Manufacturing
Recent developments in systems that can generate images, videos, and text have

raised concerns from professional artists in fear of their livelihoods being replaced [1].
One potential area where Generative Robotics could potentially induce more creative
jobs is in mass-manufacturing. In mass-manufacturing, a small team of humans designs
a product that is reproduce many times. For each product, there is less than one
person who helped create it on average. In contrast, hand-made goods can often
have a 1-to-1 ratio of creators to products. Mass-manufacturing is performed because
cookie-cutter creation of products is inexpensive with current machines. Generative
Robotics could reduce the amount of time it takes a human to create goods while
maintaining their creative vision. With Generative Robotics at scale, you could have
the scale in inexpensiveness of mass-manufacturing, but where each product has
personalized touches by a human artist.

The technical challenges for personalize mass manufacturing lie primarily in how
to use custom materials and assemble them such that it satisfies the designer. This
thesis introduced a flexible dynamics model which can help the robot understand its
capabilities and how to use various materials. We also showed how to use higher-level
reasoning to fit the needs of a user with our semantic planning approach.

8.3.3 Upcycling & Recycling
Current mass-manufacturing practices rely on raw materials that were generated

for the purpose of manufacturing, such as standard sized wood boards or raw plastics.
Some materials, such as plastics, can be reclaimed and processed back into standardized
materials for manufacturing [147], but other materials, such as textiles, are more
challenging to reuse. Our Real2Sim2Real dynamics modeling approach could be
used to improve existing clothing simulators to improve manipulation of textiles.
Additionally, our self-supervised learning technique can ground foundation models in
a realistic understanding of clothing such that the model makes predictions of clothing
assemblies that the robot can actually perform.
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8.3.4 Scientific Discovery
Creativity and discovery are very similar. Both have balanced notions of novelty

and value. Whereas in creativity value may be defined as beauty or provocativeness,
in discovery value may more closely be aligned with utility or efficiency. Because of
the similarity of creativity and discovery, we argue that our approaches to creativity
support in this thesis can also contribute to scientific discovery.

Self-driving laboratories are fully autonomous robotic systems that can create
hypotheses and test them to attempt to discover new knowledge about the world.
For example, UC Berkeley’s A-Lab has discovered thousands of new materials au-
tonomously [148]. However, some recent research has argued that most of these
discovered compounds are not truly novel [149], and that a human expert in the loop
could improve the abilities of these systems to understand novel circumstances [150].
These findings are consistent with our argument that AI cannot be creative since it
struggles to find valuable solutions that are novel since there is no data to support
these predictions.

The FRIDA framework for robotics could be adapted for scientific discovery.
Instead of making paintings, the robot could be conducting experiments to create and
test new materials. Rather than showing collaborative previews of paintings, the robot
could suggest hypotheses that a human expert can decide if they are worth testing.

Serendipity is a cornerstone of scientific discovery. Penicillin was discovered by
accident while Alexander Fleming was researching other ideas. But because of his
human ingenuity and intuition, he caught this serendipitous result and followed up
on it. Would AI be able to catch such a surprising and novel result? We argue that
the FRIDA framework could detect anomalous experiments that can be reported
to a human expert for further investigation. This way, the robot can improve the
scale at which experiments are conducted, but valuable, surprising results will not go
unnoticed.
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A Artistic Merit

This thesis primarily presents scientific contributions to the field of robotics; however,
the domains (i.e. painting and sculpting) used for developing and evaluating these
contributions are inherently artistic. In this section, we discuss the artistic merits and
intentions of the pieces created during the process of this thesis.

A.1 Artistic Paintings

The material for the paintings was often chosen to showcase the abilities of the robot.
For example, in Figures 4.1 and 4.12, the inputs were selected to show the robot’s
capabilities. But in examples, such as 4.11, the text “Albert Einstein Dancing” was
selected because it is a challenging concept to draw and this would show the need
for dynamic re-planning throughout the painting process. Similarly, the collaborative
paintings in Figure 6.7 were intended to be challenging for the robot to complete
which could show in what was the robot is successful and where it struggles.

The paintings may sometimes involve personal decisions from the authors. For example,
“A sad frog ballerina doing an arabesque” was chosen as a text prompt for Figure 6.9
because of my interest in this concept. This was a fitting concept for some feelings I
wanted to express, but it was also a challenging prompt that showcased the abilities
of the system. It is also nice to pay tribute to artists of the past, such as Tina Turner
in Figure 6.10 and Andy Warhol 6.11.

Outside of the academic papers, we used the robots for more artistic purposes. We
wanted to combine the exhibition of the robots skills with timely topics to provoke
audiences. Following the United States Supreme Court overruling of Roe v Wade, we
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Figure A.1: Robot paintings in support of women’s rights in the United States
of America

made paintings in support of women’s rights, displayed in Figure A.1. These were
AI generated images which often showed biases against women. In the bottom left
example, the robot was prompted to depict supreme court justices, but only male
presenting people were generated. In the top middle example of Figure A.1, the AI
generated an image of “men oppressing women in America”, which created an image
of two women reaching out to each other, but their arms lacked hands and they were
not able to touch.

While the women’s rights paintings were not nearly as powerful as those made by
artists and activists who dedicate themselves to the message, they were fulfilling and
interesting ways to use research to try to make positive change. These paintings
involved AI-generated images. We continued to explore the understanding of the
image generators in Figure A.2, where the robot painted images from emotional text
prompts. Emotions are purely human, so the AI understanding could only come from
the expressions people have created. These paintings served to provoke viewers into an
uncanny emotional experience having the emotions of people processed and reflected
back at them.

There are many purposes of art in addition to conveying powerful messages or showing
technical abilities. Art can be fun and inspiring too. We have conducted dozens
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“A painting of fear”

“A painting of disgust” “A painting of love”

“A painting of sadness”

“A painting of surprise”

“A painting of happiness”

Figure A.2: Paintings of Emotions. In this series, we explored the emotional under-
standing of text-to-image models in 2021. The robot painted these generated images to
provoke an uncanny emotional connection with an AI agent.

of demonstrations of our robot at venues including conferences, grade schools, and
community events. Young children are especially inspired when they see a robot that
is painting. Students can envision that a career in STEM can touch upon subjects
that they love if they were not interested in many of the mainstream robotic domains.

A.2 Artistic Sculptures

In sculpting, many of the examples were chosen because of their ties to previous work.
I speculate that the examples, such as alphabetic letters and simple shapes, were
chosen by authors of previous work because they are very recognizable. Keeping this
tradition, I used the alphabet in Figure 7.1, but added a new twist by using serif font
letters. Prior work was simply trying to make a recognizable shape, but with our work
we wanted to showcase the details the robot could make in the letter script.

We wanted to make sculptures of detailed source materials, such as making sculptures
of people’s faces, to send powerful messages. In Figure A.3, we show some of our
attempts. The robot was able to sculpt objects that resembled faces or ears, but they
were not very recognizable, which limited what we were able to create.
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Figure A.3: Sculptures. The top row shows the source material and the bottom row is a
photograph of the sculpture the robot made into air-dry foam clay. The top left example
was an RGB image that was used as a source where as the right two examples were from 3D
model sources.

While faces can be represented well in 2D paintings, we were inspired to make sculptures
that had more inherent 3D properties. Inspired by heritage, we made Celtic knots
(left example in Figure A.3), which are intricate interwoven patterns that symbolize
unity and eternity. In contrast to a 3D printer could easily create a perfect looking
Celtic knot, our robot’s creation was imperfect and choppy looking. The continuous
lines of Celtic knots represent the endless cycle of life, death, and rebirth,
or the eternal nature of things like loyalty, faith, friendship, and love. The
robot’s imperfect lines symbolize the shortcoming of true friendship, love,
or loyalty that robots can provide.

A.3 Towards Professional, Museum-Worthy Paint-
ings

Art is something that anyone can engage in, since everyone is unique and has something
to say creatively. However, art is also an industry and a professional endeavor that
people dedicate their entire lives to. It is subjective, but it is safe to say that the
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quality of art that makes its way into museums and galleries is much higher than
that created by our robot. There is some interesting novelty with our robot painter
that separates it from human made work and previous painting projects, but the
novelty that human artists can create with their own hands while painting is much
better. Additionally, the content of our paintings is generally not very provocative or
interesting compared to that of contemporary artists.

Robot paintings have previously made their way into museums and galleries, such as
Harold Cohen’s AARON at the Whitney and “Power and Water” by Ken Goldberg
and Margaret Lazzari at the Fisher Gallery. In these cases, there were powerful
concepts being explored and/or great control over the robot such that the human
artist was able to convey their ideas. To enable our robot to help in the creation of
museum quality artwork, control adjustments would need to be made. People are
incredible at creating powerful messages, but in its current state, I believe it would be
challenging to use the robot to communicate these messages. With more interaction
and input abilities, the robot could be more controllable by a human artist. This
may involve the robot working with new materials, having more flexible actions (e.g.,
blending paint colors), and different types of inputs from the human.
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