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Abstract

As humans, we are constantly interacting with and observing a three-dimensional
dynamic world. Building this spatiotemporal or 4D understanding in vision algorithms
is not straightforward as there is orders of magnitude less 4D data than 2D images
and videos. This underscores the need to find meaningful ways to exploit 2D data
to realize 4D tasks. Recent advancements in building “foundation models” – that
have learnt generative/structural priors in a data-driven manner from internet-scale
data – have allowed us access to these rich real-world priors for free. In this thesis, we
investigate how one can tune these priors for 4D perception tasks like amodal tracking
and completion, dynamic reconstruction and next-timestep prediction.

We pursue three complementary directions. First, in the absence of foundational priors,
we build these ourselves in a self-supervised manner via the task of next-timestep
prediction using sequences of 3D LiDAR sweeps of dynamic scenes. Importantly, we
show that bottlenecking next-timestep prediction with a 4D representation is crucial.
We find that such a forecasting model can be used for downstream motion planning
for autonomous vehicles, which helps reduce collision rates to a large extent.

Second, we capitalize on foundational priors in a zero-shot manner. We turn to large
reconstruction models that predict per pixel depth for images and videos. We use
these to solve two underconstrained tasks – (1) tracking objects across occlusions in
2.5D, and (2) reconstructing dynamic scenes from sparse-views. In both settings, we
find that one can do drastically better than prior state-of-the-art using additional
scene cues in the form of data-driven depth priors.

Third, we exploit foundational priors via finetuning. We specifically look at video
diffusion models and reformulate amodal perception and dynamic novel-view synthesis
into self-supervised tasks that video models are good at i.e. inpainting. We find that it
is surprisingly light-weight, in terms of data and compute, to finetune video diffusion
models. This suggests that concepts similar to human visual perception are embedded
in foundation models, which only have to be “controlled” to perform other tasks.

Together these contributions highlight how one can build, leverage and adapt foun-
dational priors for spatiotemporal perception in a scalable manner – the scale is
enabled by relying increasingly on internet-scale 2D data and carefully designing
self-supervised objectives for learning.
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Chapter 1

Introduction

1.1 Human perception and gaps in computer vision

Humans are able to safely interact with the three-dimensional world where things are constantly

in motion. Consider a real-world driving scene in Figure 1.1. When negotiating at a speed bump

as shown, the ego-car has to understand the dynamic structure of its environment – frequently

occluding objects that reappear, distance of other vehicles from the ego-car, estimation of where

each of these vehicles will move in the future, building a local map of the environment and so on.

Perhaps unsurprisingly, humans are able to navigate this complex scene with ease as they have

developed a sense of spatiotemporal reasoning over time [267]. Specifically, humans use concepts

like spatial cognition [58] and predictive coding [239] where a mental model of the world is

maintained in a reference frame and observations coming from the world are constantly compared

with predictions made by the mind using this mental model. In contrast, even state-of-the-art

vision algorithms struggle to emulate this four-dimensional (4D: 3D space + time) reasoning,

especially when faced with sparse, noisy, or incomplete sensory inputs.

1.2 Towards 4D perception with foundational priors

In this thesis, we want to take a step forward in enabling this spatiotemporal or four-dimensional

(4D) reasoning in present day vision algorithms. The gold standard for building such an algorithm

would be to exploit full supervision from four-dimensional groundtruth data and use physical

models that govern the process of this data generation. This means that for a given video

observation of a scene, we would need the 3D location of every pixel at every timestep. Upcoming

class of sensors like 4D LiDARs [153], synthetic data sources like simulators [59] or game engines

[119, 121], and classic multi-view capture setups [133, 206], are viable means of obtaining this data.
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1. Introduction

Figure 1.1. (top) We visualize an example of a real world driving scenario from the streets of Mumbai
in India, by showing two successive frames from this scene. (bottom) For interacting safely with a
complex dynamic world like this, we need to build the same spatiotemporal reasoning in vision algorithms
that humans have developed over time – depth perception from a monocular video stream [29], gestalt
psychology of observing partially visible objects but still understanding they are a whole [11, 317], and
ability to map environments and understand its novel viewpoints [239].

Physical forward models like volume rendering from inverse graphics, and sensor models may be

one way of also incorporating 4D priors into algorithms that learn from 4D data. Unfortunately,

this approach is not scalable as 4D data is not widely available, and is rather cumbersome to

curate. To put things into perspective, there is orders of magnitude difference between the 2D

image/video, 3D and 4D data available today (c.f. Fig.1.2).

Foundation models In recent years, large foundation models have become popular because of

how they are able to exploit and learn from internet-scale image [107] and video [21, 28] data

which is the most abundatly available. As a result, these methods show that physical properties

(such as 3D / 4D consistency) of the world “emerge” [28] upon foundational training, and are

encoded in the models as “foundational priors”. Foundation models have been developed for

various discriminative and generative tasks.

For spatiotemporal perception, two classes of models are particularly relevant. Monocular

image and video depth estimation models exploit vast unlabeled datasets and implicit geometric

priors to infer dense scene structure from a single viewpoint, supporting applications in robotics,

AR/VR, and autonomous driving. Likewise, video diffusion models extend diffusion-based

2



1. Introduction

Figure 1.2. We visualize the magnitude of difference in the amount of 2D, 3D and 4D data available
today, by logarithmically scaling the radius of each circle by the amount of data, normalized to a
maximum range of 100. It is readily apparent that there is order of magnitudes difference in the scale
of image/video, static 3D and dynamic 3D datasets that exist today. Building 4D models that learn
only from 4D data is not a scalable approach. Instead, in this thesis we argue that one must utilize
internet-scale 2D video data to realize 4D tasks.

generative frameworks to the temporal domain, producing high-fidelity and temporally coherent

video predictions or completions from sparse or noisy inputs. Beyond these, foundation models

encompass large vision–language architectures, Gaussian-splatting–based scene representations,

and spatiotemporal transformers. Together, these models reveal that rich physical and structural

properties of the world can emerge purely from data-driven training at internet scale, offering

powerful priors that can be built, leveraged, and adapted for scalable 4D perception. My thesis

builds upon this observation and is concretely organized into three main parts as shown in Fig.

1.3 which I also detail next.

1.3 Part I: Training in-house 4D models from scratch

In the absence of pretrained priors, we construct them ourselves using explicit 4D supervision

from the largest such source of data – self-driving fleets.

• Chapter 2: We introduce a self-supervised next-timestep prediction framework for sequences

of 3D LiDAR sweeps of dynamic scenes.

Predicting how the world can evolve in the future is crucial for motion planning in au-

3



1. Introduction

Figure 1.3. This thesis is divided into three main parts. (left) In the first part, we train foundation
models from scratch using explicit 4D supervision. (middle) We then leverage large reconstruction
models trained on internet-scale 2D data to solve underconstrained 4D tasks without finetuning. (right)
Finally, we adapt foundation models more directly through lightweight finetuning.

tonomous systems. Classical methods are limited because they rely on costly human

annotations in the form of semantic class labels, bounding boxes, and tracks or HD maps

of cities to plan their motion — and thus are difficult to scale to large unlabeled datasets.

One promising self-supervised task is 3D point cloud forecasting from unannotated LiDAR

sequences. We show that this task requires algorithms to implicitly capture (1) sensor

extrinsics (i.e., the egomotion of the autonomous vehicle), (2) sensor intrinsics (i.e., the

sampling pattern specific to the particular LiDAR sensor), and (3) the shape and motion

of other objects in the scene. But autonomous systems should make predictions about

the world and not their sensors! To this end, we factor out (1) and (2) by recasting the

task as one of spacetime (4D) occupancy forecasting. But because it is expensive to obtain

ground-truth 4D occupancy, we “render” point cloud data from 4D occupancy predictions

given sensor extrinsics and intrinsics, allowing one to train and test occupancy algorithms

with unannotated LiDAR sequences. This also allows one to evaluate and compare point

cloud forecasting algorithms across diverse datasets, sensors, and vehicles.

4



1. Introduction

• Chapter 3: We apply these forecasts to downstream motion planning for autonomous

vehicles, showing that such learned representations substantially reduce collision rates.

Motion planning for safe autonomous driving requires learning how the environment around

an ego-vehicle evolves with time. Ego-centric perception of driveable regions in a scene not

only changes with the motion of actors in the environment, but also with the movement of

the ego-vehicle itself. Self-supervised representations proposed for large-scale planning, such

as ego-centric freespace, confound these two motions, making the representation difficult

to use for downstream motion planners. In this paper, we use geometric occupancy as a

natural alternative to view-dependent representations such as freespace. Occupancy maps

naturally disentagle the motion of the environment from the motion of the ego-vehicle.

However, one cannot directly observe the full 3D occupancy of a scene (due to occlusion),

making it difficult to use as a signal for learning. Our key insight is to use differentiable

raycasting to “render” future occupancy predictions into future LiDAR sweep predictions,

which can be compared with ground-truth sweeps for self-supervised learning. The use of

differentiable raycasting allows occupancy to emerge as an internal representation within the

forecasting network. In the absence of groundtruth occupancy, we quantitatively evaluate

the forecasting of raycasted LiDAR sweeps and show improvements of upto 15 F1 points.

For downstream motion planners, where emergent occupancy can be directly used to guide

non-driveable regions, this representation relatively reduces the number of collisions with

objects by up to 17% as compared to freespace-centric motion planners.

Overall, we find that enforcing a 4D representation as a bottleneck that can disentangle scene

motion from camera motion is essential for robust forecasting.

1.4 Part II: Using foundational priors zero-shot

Here, we leverage large reconstruction models trained on internet-scale 2D data to solve under-

constrained 4D tasks without finetuning.

• Chapter 4: We use monocular image and video depth estimation models to track objects

across occlusions in 2.5D, exploiting their learned geometric priors.

Monocular object detection and tracking have improved drastically in recent years, but

rely on a key assumption: that objects are visible to the camera. Many offline tracking

approaches reason about occluded objects post-hoc, by linking together tracklets after

the object re-appears, making use of reidentification (ReID). However, online tracking

5



1. Introduction

in embodied robotic agents (such as a self-driving vehicle) fundamentally requires object

permanence, which is the ability to reason about occluded objects before they re-appear.

In this work, we re-purpose tracking benchmarks and propose new metrics for the task

of detecting invisible objects, focusing on the illustrative case of people. We demonstrate

that current detection and tracking systems perform dramatically worse on this task. We

introduce two key innovations to recover much of this performance drop. We treat occluded

object detection in temporal sequences as a short-term forecasting challenge, bringing to bear

tools from dynamic sequence prediction. Second, we build dynamic models that explicitly

reason in 3D from monocular videos without calibration, using observations produced by

monocular depth estimators. To our knowledge, ours is the first work to demonstrate the

effectiveness of monocular depth estimation for the task of tracking and detecting occluded

objects. Our approach strongly improves by 11.4% over the baseline in ablations and by

5.0% over the state-of-the-art in F1 score.

• Chapter 5: We extend this to reconstructing dynamic scenes and novel-view synthesis from

sparse inputs.

We address the problem of dynamic scene reconstruction from sparse-view videos. Prior

work often requires dense multi-view captures with hundreds of calibrated cameras (e.g.

Panoptic Studio). Such multi-view setups are prohibitively expensive to build and cannot

capture diverse scenes in-the-wild. In contrast, we aim to reconstruct dynamic human

behaviors, such as repairing a bike or dancing, from a small set of sparse-view cameras

with complete scene coverage (e.g. four equidistant inward-facing static cameras). We

find that dense multi-view reconstruction methods struggle to adapt to this sparse-view

setup due to limited overlap between viewpoints. To address these limitations, we carefully

align independent monocular reconstructions of each camera to produce time- and view-

consistent dynamic scene reconstructions. Extensive experiments on PanopticStudio and

Ego-Exo4D demonstrate that our method achieves higher quality reconstructions than prior

art, particularly when rendering novel views.

For both tasks, we find that one can do drastically better than prior state-of-the-art using

additional scene cues in the form of data-driven depth priors.

1.5 Part III: Exploiting foundational priors via finetuning

In the final part, we adapt foundation models more directly through lightweight finetuning.

6



1. Introduction

• Chapter 6: We reformulate amodal perception as a video inpainting task, using video

diffusion models to segment and complete about occluded dynamic objects.

Object permanence in humans is a fundamental cue that helps in understanding persistence

of objects, even when they are fully occluded in the scene. Present day methods in

object segmentation do not account for this amodal nature of the world, and only work

for segmentation of visible or modal objects. Few amodal methods exist; single-image

segmentation methods cannot handle high-levels of occlusions which are better inferred

using temporal information, and multi-frame methods have focused solely on segmenting

rigid objects. To this end, we propose to tackle video amodal segmentation by formulating

it as a conditional generation task, capitalizing on the foundational knowledge in video

generative models. Our method is simple; we repurpose these models to condition on a

sequence of modal mask frames of an object along with contextual pseudo-depth maps, to

learn which object boundary may be occluded and therefore, extended to hallucinate the

complete extent of an object. This is followed by a content completion stage which is able

to inpaint the occluded regions of an object. We benchmark our approach alongside a wide

array of state-of-the-art methods on four datasets and show a dramatic improvement of

upto 13% for amodal segmentation in an object’s occluded region.

• Chapter 7: We finetune a diffusion model to generate egocentric depth sequences of

dynamic scenes auto-regressively.

Our work explores the task of generating future sensor observations conditioned on the

past. We are motivated by ‘predictive coding’ concepts from neuroscience as well as robotic

applications such as self-driving vehicles. Predictive video modeling is challenging because

the future may be multi-modal and learning at scale remains computationally expensive for

video processing. To address both challenges, our key insight is to leverage the large-scale

pretraining of image diffusion models which can handle multi-modality. We repurpose image

models for video prediction by conditioning on new frame timestamps. Such models can be

trained with videos of both static and dynamic scenes. To allow them to be trained with

modestly-sized datasets, we introduce invariances by factoring out illumination and texture

by forcing the model to predict (pseudo) depth, readily obtained for in-the-wild videos via

off-the-shelf monocular depth networks. In fact, we show that simply modifying networks

to predict grayscale pixels already improves the accuracy of video prediction. Given the

extra controllability with timestamp conditioning, we propose sampling schedules that work

7



1. Introduction

better than the traditional autoregressive and hierarchical sampling strategies. Motivated

by probabilistic metrics from the object forecasting literature, we create a benchmark for

video prediction on a diverse set of videos spanning indoor and outdoor scenes and a large

vocabulary of objects. Our experiments illustrate the effectiveness of learning to condition

on timestamps, and show the importance of predicting the future with invariant modalities.

• Chapter 8: We reformulate dynamic novel-view synthesis as a structured inpainting task,

and finetune a video diffusion model for this inpainting.

We explore novel-view synthesis for dynamic scenes from monocular videos. Prior approaches

rely on costly test-time optimization of 4D representations or do not preserve scene geometry

when trained in a feed-forward manner. Our approach is based on three key insights: (1)

covisible pixels (that are visible in both the input and target views) can be rendered by first

reconstructing the dynamic 3D scene and rendering the reconstruction from the novel-views

and (2) hidden pixels in novel views can be “inpainted” with feed-forward 2D video diffusion

models. Notably, our video inpainting diffusion model (CogNVS) can be self-supervised

from 2D videos, allowing us to train it on a large corpus of in-the-wild videos. This in turn

allows for (3) CogNVS to be applied zero-shot to novel test videos via test-time finetuning.

We empirically verify that CogNVS outperforms almost all prior art for novel-view synthesis

of dynamic scenes from monocular videos.

In summary, we find that it is surprisingly light-weight, in terms of data and compute, to finetune

video diffusion models. This suggests that concepts similar to human visual perception are

embedded in foundation models, which only have to be “controlled” to perform other tasks.

Together these contributions highlight how one can build, leverage and adapt foundational priors

for spatiotemporal perception in a scalable manner – the scale is enabled by relying increasingly

on internet-scale 2D data and carefully designing self-supervised quasi-4D objectives for learning.

Finally, in the last part we discuss the findings from this thesis and related future avenues

for research in 4D perception. In order to keep the thesis short and scoped, I omit my prior

[10, 52, 113] work on semantic understanding of the 4D world.
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Training in-house 4D models from
scratch
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Chapter 2

Next timestep prediction for LiDAR
scans of dynamic scenes

Publication information

Khurana, T., Hu, P., Held, D. and Ramanan, D., 2023. Point cloud forecasting as a proxy

for 4d occupancy forecasting. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) pp. 1116-1124.

2.1 Introduction

Motion planning in a dynamic environment requires autonomous agents to predict the motion of

other objects. Standard solutions consist of perceptual modules such as mapping, object detection,

tracking, and trajectory forecasting. Such solutions often rely on human annotations in the form

of HD maps of cities, or semantic class labels, bounding boxes, and object tracks, and therefore

are difficult to scale to large unlabeled datasets. One promising self-supervised task is 3D point

cloud forecasting [202, 315, 316, 318]. Since points appear where lasers from the sensor and scene

intersect, the task of forecasting point clouds requires algorithms to implicitly capture (1) sensor

extrinsics (i.e., the ego-motion of the autonomous vehicle), (2) sensor intrinsics (i.e., the sampling

pattern specific to the LiDAR sensor), and (3) the shape and motion of other objects in the scene.

This task can be non-trivial even in a static scene (Fig. 2.1). We argue that autonomous systems

should focus on making predictions about the world and not themselves, since an ego-vehicle has
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2. Next timestep prediction for LiDAR scans of dynamic scenes

Figure 2.1. Points depend on the intersection of rays from the depth sensor and the environment.
Therefore, accurately predicting points requires accurately predicting sensor extrinsics (sensor egomotion)
and intrinsics (ray sampling pattern). But we want to understand dynamics of the environment, not our
LiDAR sensor!

access to its future motion plans (extrinsics) and calibrated sensor parameters (intrinsics).

We factor out these (1) sensor extrinsics and (2) intrinsics by recasting the task of point cloud

forecasting as one of spacetime (4D) occupancy forecasting. This disentangles and simplifies the

formulation of point cloud forecasting, which now focuses solely on forecasting the central quantity

of interest, the 4D occupancy. Because it is expensive to obtain ground-truth 4D occupancy, we

“render” point cloud data from 4D occupancy predictions given sensor extrinsics and intrinsics.

In some ways, our approach can be seen as the spacetime analog of novel-view synthesis from

volumetric models such as NeRFs [206]; rather than rendering images by querying a volumetric

model with rays from a known camera view, we render a LiDAR scan by querying a 4D model

with rays from known sensor intrinsics and extrinsics. This allows one to train and test 4D

occupancy forecasting algorithms with un-annotated LiDAR sequences. This also allows one to

evaluate and compare point cloud forecasting algorithms across diverse datasets, sensors, and

vehicles. We find that our approach to 4D occupancy forecasting, which can also render point

clouds, performs drastically better than SOTAs in point cloud forecasting, both quantitatively

(by up to 3.26m L1 error, Tab. 2.1) and qualitatively (Fig. 2.5). Our method beats prior art with

zero-shot cross-sensor generalization (Tab. 2.2). To our knowledge, these are first results that

generalize across train/test sensor rigs, illustrating the power of disentangling sensor motion from

scene motion.
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2.2 Related Work

Point Cloud Forecasting As one of the most promising self-supervised tasks that exploit

unannotated LiDAR sequences, point cloud forecasting [202, 315, 316, 318] provides the algorithm

past point clouds as input and asks it to predict future point clouds as output. Traditionally,

both the input and the output are defined in the sensor coordinate frame, which moves with time.

Although this simplifies preprocessing by eliminating the need for a local alignment, it forces

the algorithm to implicitly capture (1) sensor extrinsics (i.e., the egomotion of the autonomous

vehicle), (2) sensor intrinsics (i.e., the sampling pattern specific to the particular LiDAR sensor),

and (3) the shape and motion of other objects in the scene. We argue that autonomous systems

should make predictions about the world and not their sensors. In this paper, we reformulate

point cloud forecasting by factoring out sensor extrinsics and intrinsics. Concretely, the new setup

asks the algorithm to estimate the depth for rays from future timestamps. We show that one

could use it as a proxy for training and testing 4D occupancy forecasting algorithms. Moreover,

we demonstrate that one can evaluate existing point cloud forecasting methods under this setup,

allowing 4D occupancy forecasting algorithms to be compared with point cloud forecasting

algorithms.

Occupancy Forecasting Occupancy, as a predictive representation complementary to standard

object-centric representations in the context of supporting downstream motion planning, has

gained popularity over the last few years due to its efficiency in representing complex scenarios

and interactions. Most existing works on occupancy forecasting focus on semantic occupancy

grids from a bird’s-eye view (BEV) [35, 198, 257]. They choose to focus on 2D for a good reason

since most autonomous driving planners reason in a 2D BEV space. A downside is that it is

expensive to obtain ground-truth semantic BEV occupancy for training and testing algorithms.

[151] claim that if we reduce our goal from semantic occupancy to geometric occupancy, that

is knowing if a location is occupied without asking which type of object is occupying it, one

could learn to forecast geometric BEV occupancy from unannotated LiDAR sequences. In this

paper, we take the idea from [151] and go beyond BEV – we propose an approach to learning to

forecast 4D geometric occupancy from unannotated LiDAR sequences. We also propose a scalable

evaluation to this task that admits standard point cloud forecasting methods.
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Future 4D Occupancy Future Point CloudsHistorical LiDAR Sweeps Groundtruth Point Clouds

t = {-T ... 0} t = {1 ... T} t = {1 ... T} t = {1 ... T}

Learn Differentiably Render 

(using known extrinsics and intrinsics)

Self-supervise

Figure 2.2. High-level overview of the approach we follow, closely inspired by a prior work [151]. Instead
of directly predicting future point clouds by observing a set of historical point clouds, we take a geometric
perspective on this problem and instead forecast a generic intermediate 3D occupancy-like quantity
within a bounded volume. Known sensor extrinsics and intrinsics are an input to our method, which is
different from how classical point cloud forecasting is formulated. We argue that this factorization is
sensible as an autonomous agent plans its own motion and has access to sensor information. Please refer
to our supplement for architectural details.

Novel View Synthesis We have seen tremendous progress in novel view synthesis in the last

few years [190, 206, 211]. At its core, the differentiable nature of volumetric rendering allows

one to optimize the underlying 3D structure of the scene by fitting samples of observations

with known sensor poses without explicit 3D supervision. Our work can be thought of as novel

view synthesis, where we try to synthesize depth images from novel views at future timestamps.

Thanks to motion sensors (e.g., IMU), one can assume that relative LiDAR pose among frames

in a log can be reliably estimated. Our work also differs from common novel view synthesis

literatures in a few important aspects: (a) we use an efficient feed-forward network to predict

the spacetime occupancy volume instead of applying test-time optimization; (b) we optimize an

explicit volumetric scene representation (i.e., occupancy grid) instead of an implicit neural scene

representation; (c) our approach relies on shape and motion prior learned across diverse scenarios

in order to predict what happens next instead of reconstructing based on samples only from a

specific scenario.

14
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2.3 Method

Autonomous fleets log an abundance of unannotated sequences of LiDAR point clouds X−T ...T ,

where we also estimate the relative sensor location for each frame o−T :T . Suppose we split such a

sequence into a historic part X−T :0 and o−T :0 and a future part X1:T and o1:T .

Standard point cloud forecasting methods, denoted by function g, take the historical sequence

of point clouds X−T :0 as input and try to predict the future sequence of point clouds X̂1:T .

X̂1:T = g(X−T :0) (2.1)

To introduce our approach, we need to first re-parametrize a point from the future LiDAR

point cloud, say x ∈ Xt where t = 1 . . . T , as a ray that starts from the sensor location ot, travels

along the direction d, and reaches the end point x after a distance of λ:

x = ot + λd,x ∈ Xt (2.2)

Conceptually, our approach, denoted by function f , takes a ray from a future timestamp t

parametrized by its origin and direction (ot,d), and tries to predict the distance λ̂ the ray would

travel, based on historic sequence of point clouds X−T :0 and sensor locations o−T :0.

λ̂ = f(ot,d;X−T :0,o−T :0) (2.3)

Intuitively, Eq. (2.3) is similar to view synthesis in NERF [206] except we are computing

expected depth rather than expected color. Below, we introduce how we formulate the differentiable

volumetric rendering process and use it for learning to forecast 4D occupancy.

Spacetime (4D) occupancy We define spacetime occupancy as the occupied state of a 3D

location at a particular time instance. We use z to denote the true spacetime occupancy, which

may not be directly observable due to line-of-sight visibility constraints. Consider a bounded

spatialtemporal 4D volume, V, which is discretized into spacetime voxels v. We can use

z[v] ∈ {0, 1},v = (x, y, z, t),v ∈ V (2.4)

to represent the occupancy of voxel v in the spacetime voxel grid V, which can be occupied (1) or

free (0).

In practice, we learn an occupancy predictio network h (parametrized by w) to predict
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Figure 2.3. We illustrate the process of rendering depth for a given ray from the predicted occupancy
grid. We assume that rays only stop at the voxel boundary, which discretizes the output space into a
discrete set of events. We then compute the probability for a ray stopping at each boundary intersection.
Finally, we compute the expected stopping distance.

discretized spacetime 4D occupancy given historic sequence of point clouds and sensor locations,

ẑ = h(X−T :0,o−T :0;w) (2.5)

where

ẑ[v] ∈ R[0,1] (2.6)

represents the predicted occupancy of voxel v in the spacetime voxel grid V. Please refer to the

supplementary materials for network architecture details.

Depth rendering from occupancy Given a ray query x = o+ λd, our goal is to predict λ̂

as close to λ as possible. We first compute how it intersects with the occupancy grid by voxel

traversal [8] (Fig. 2.3). Suppose the ray intersects with a list of voxels {v1 . . .vn}. We discretize

the ray space by assuming that a ray can only stop at voxel boundaries or infinity. We interpret

occupancy of voxel vi as the conditional probability that a ray leaving voxel vi−1 would stop in

voxel vi. We can write

pi =
i−1
∏

j=1

(1− ẑ[vj])ẑ[vi] (2.7)
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Figure 2.4. Ray Clamping. First, we move the origin towards the end point until the origin touches
the volume or infinity. Then, we move the end point towards the origin until the end point touches the
volume or infinity. At all times, we make sure the end point stays ahead of the origin (like two rings on
a string). Being inside the volume counts as touching it.

where pi represents the probability that a ray stops in voxel vi. Now we can render the distance

by computing the stopping point in expectation.

λ̂ = f(o,d) =
n

∑

i=1

piλ̂i (2.8)

where λ̂i represents the stopping distance at voxel vi.

You may have noticed that Eq. (2.8) does not capture the case where the ray stops outside

the voxel grid, where the stopping distance is ill-defined (it will stop at infinity). During training,

we allow a virtual stopping point outside the grid at the ground-truth location, i.e.,

λ̂ = f(o,d) =
n

∑

i=1

piλ̂i +
n
∏

i=1

(1− pi)λ̂n+1 (2.9)

where λ̂n+1 = λ.

Loss function We can train the occupancy prediction network with a simple L1 loss between

the rendered depth λ̂ and the ground-truth depth λ.

L(w) =
∑

(o,λ,d)∈(X1:T ,o1:T )

|λ− f(o,d;X−T :0,o−T :0,w)| (2.10)

Evaluation

The golden standard for evaluating 4D occupancy forecasting would be to compare the predicted

occupancy with the ground-truth, but because it is extremely expensive to obtain ground-truth
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Ours (Occupancy)Ours (Point cloud)Groundtruth SPFNet S2Net

t = 0.5s

t = 2s

t = 3s

Ray tracing

Figure 2.5. Qualitative results. We compare the point cloud forecasts of S2Net [316], SPFNet [315]
and the raytracing baseline on the nuScenes dataset with our approach on three different sequences at
different time horizon. Our forecasts look significantly crisper than the SOTA. This demonstrates the
benefit of learning to forecast spacetime 4D occupancy with sensor intrinsics and extrinsics factored out.
We also visualize the forecasted 4D occupancy at the corresponding future timestamp. As compared to
simple aggregation-based raytracing, we are able to spacetime-complete 4D scenes. We highlight some
potential applications in Fig. 2.6 and Fig. 2.7. We visualize a render of the predicted occupancy and the
color encodes height along the z-axis.

4D occupancy, we “render” future point clouds from forecasted 4D occupancy with known sensor

intrinsics and extrinsics, use the quality of rendered future point clouds as a proxy for that of

forecasted 4D occupancy.

We introduce a new evaluation, where we factor out sensor intrinsics and extrinsics such that

algorithms can be evaluated solely based on how well it captures how the scene unfolds. We

provide future rays as queries and ask algorithms to provide a depth estimate for each query.

Given a query ray
−→
OQ, there is a prediction ray

−→
OP , where O represents the origin, Q

represents the ground-truth end point, and P represents the predicted end point.

−→
OQ = o+ λd (2.11)
−→
OP = o+ λ̂d (2.12)

Given such a pair of rays, we define the error ε:

ε = |−→OQ−−→OP | = |−→PQ| = |λ− λ̂| (2.13)
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Near-field error Since LiDAR rays only travel through freespace and terminate when reaching

occupied surface, there is a physical meaning behind the ε in Eq. (2.13). In practice, occupancy

and freespace prediction is only relevant in regions that are reachable by the autonomous

vehicle in planning’s time hoziron. To reflect the focus on the reachable regions, we propose an

operation to clamp any given ray
−−→
XY to the fixed volume V. We call it ray clamping, denoted as

ϕV :
−−→
XY → −−−→X ′Y ′ and illustrated in Fig. 2.4.

We define the near-field (bounded by volume V) prediction error εV as

εV = |ϕV(
−→
OQ)− ϕV(

−→
OP )| = |

−−→
O′Q′ −

−−→
O′P ′| = |

−−→
P ′Q′| (2.14)

Even though this metric penalizes disagreements of predicted depth along query rays within

the bounded volume, it does not capture the severity of a prediction error. In real-world, one

meter of an error close to the AV matters more. To this end, we also propose using a relative

near-field prediction error εrelV defined as,

εrelV =
|ϕV(
−→
OQ)− ϕV(

−→
OP )|

|−→OQ|
=
|−−→P ′Q′|
|−→OQ|

(2.15)

The proposed evaluation requires one predicted ray for every ground-truth ray (query). Any

algorithms that are capable of rendering depth for a given ray by design meets this requirement,

including 4D occupancy forecasting from Sec. 2.3. However, for point cloud forecasting algorithms,

the number of predicted points does not necessarily match the number of ground-truth rays,

plus there is no one-to-one mapping between predicted and ground-truth points. To resolve this

discrepancy, we propose to fit a surface to the predicted point clouds, on which we can query

each ground-truth ray, find its intersection with the fitted surface, and output the (clamped) ray

distance. In practice, we interpolate depth among the spherical projections of predicted rays.

We also consider vanilla chamfer distance d (2.16) and near-field chamfer distance dV (2.17)

d =
1

2N

∑

x∈X

min
x̂∈X̂
||x− x̂||22 +

1

2M

∑

x̂∈X̂

min
x∈X
||x− x̂||22 (2.16)

where X, X̂ represents the ground-truth, predicted point cloud; N and M are their respective

number of points.

dV =
1

2N ′

∑

x∈X̂V

min
x̂∈XV

||x− x̂||22 +
1

2M ′

∑

x∈XV

min
x̂∈X̂V

||x− x̂||22 (2.17)

where XV, X̂V represents the ground-truth point cloud and predicted point cloud within the
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bounding volume V; M ′, N ′ are their respective number of points.

2.4 Experiments

Datasets We perform experiments on nuScenes [30], KITTI-Odometry [15, 91] and ArgoVerse2.0

[318]. nuScenes [30] is a full-suite autonomous driving dataset with a total of 1,000 real-world

driving sequences of 15s each. KITTI [91] is also a multi-sensor dataset with 6 hours of diverse

driving data across freeways and urban areas. KITTI-Odometry is a subset of this KITTI

dataset where sequences have accurate sensor poses. ArgoVerse2.0 [318] contains the largest

set of unannotated LiDAR sequences. Please see the supplementary material for results on

ArgoVerse2.0.

Setup We consider a bounded area around the autonomous vehicle: -70m to 70m in the x-axis,

-70m to 70m in the y-axis and -4.5m to 4.5m in the z-axis in the nuScenes coordinate system.

This is our 4D volume V, described in Sec. 2.3. We follow the state-of-the-art in point cloud

forecasting and evaluate forecasting in a 1 second horizon and a 3 second horizon. We adopt the

same setup as prior methods [315, 316]. On nuScenes, for 1s forecasting,, we take 2 frames of

input and 2 frames of output at 2Hz; for 3s forecasting, we take 6 frames of input and 6 frames of

output at 2Hz. For all other datasets, we always take 5 frames of input and 5 frames of output

for both 1s and 3s forecasting.

Baselines First, we construct an aggregation-based raytracing baseline (similar to [202]).

Specifically, we populate a binary occupancy grid given the aligned LiDAR point clouds from

the past and present timesteps and use it for querying ground-truth rays. In addition to this,

we compare our 4D occupancy forecasting approach to state-of-the-arts (SOTAs) in point cloud

forecasting, including SPFNet [315] and S2Net [316] on the nuScenes dataset, and ST3DCNN [202]

on the KITTI-Odometry dataset. For SPFNet [315] and S2Net [316], we are able to obtain the

raw point cloud predictions from the authors and evaluate the results on the new metrics. For fair

comparison, the S2Net results are based on a single sample from their VAE. For ST3DCNN [202],

we retrain their models for 1s and 3s forecasting. In addition, the state-of-the-art approaches

(barring ST3DCNN) tend to predict a confidence score for each point, indicating how valid

the predicted point is; we evaluate the predicted point cloud both with and without confidence

filtering, with a recommended confidence threshold at 0.05 [315, 316]. Quantitative and qualitative

results with confidence filtering can be found in the supplement.
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Method Horizon L1 (m) AbsRel (%)
Chamfer Distance (m2)
Near-field Vanilla

S2Net [316]
1s 3.49 28.38 1.70 2.75
3s 4.78 30.15 2.06 3.47

SPFNet [315]
1s 4.58 34.87 2.24 4.17
3s 5.11 32.74 2.50 4.14

Ray tracing
1s 1.50 14.73 0.54 0.90
3s 2.44 26.86 1.66 3.59

Ours
1s 1.40 10.37 1.41 2.81
3s 1.71 13.48 1.40 4.31

Table 2.1. Results on nuScenes [30]. We see that the conclusions made from the proposed metrics are
more in line with the qualitative results in Fig. 2.5. This reiterates the need for metrics that intuitively
evaluate the underlying geometry of the scene instead of uncorrelated samples of the scene (e.g., points
in space).

Qualitative results on nuScenes We compare the forecasted point clouds from our 4D

occupancy forecasting approach to SOTA on point cloud forecasting in Fig. 2.5, where we see a

drastic difference in how the predicted point clouds look like. Our forecasts look significantly more

representative of the scene geometry compared to SOTA. This demonstrates the benefit of learning

to forecast spacetime 4D occupancy with sensor intrinsics and extrinsics factored out. Surprisingly,

we find that aggregation-based raytracing is a competitive baseline, qualitatively better than

the SOTA. However, in addition to this aggregation, our approach is also able to hallucinate or

spacetime-complete both the future motion of dynamic objects and the occluded parts of the

static world. We also visualize the 3D forecasted occupancy at corresponding timestamps that

our approach predicts “for free”. Please refer to the caption for more details.

Results on nuScenes with new metrics We compare our 4D occupancy forecasting to SOTA

on point cloud forecasting in terms of depth error along the future rays, following the evaluation

protocol outlined in Sec. 2.3. We find that the 4D occupancy forecasting approach outperforms

all baselines by significant margins in both 1s and 3s forecasting, reducing both the L1 and the

absolute relative error by more than half, compared to the state-of-the-art methods on point

cloud forecasting. The improvements here are consistent with the qualitative results in Fig. 2.5.

As noted before, the raytracing baseline performs better than SOTA.

Results on nuScenes with old metrics We also evaluate by both vanilla (2.16) and near-field

chamfer distance (2.17) following the protocol in Sec. 2.3. Our approach shines in terms of
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Method
Train

Horizon L1 (m) AbsRel (%)
Chamfer Dist. (m2)

set Near-field Vanilla

ST3DCNN [202] KITTI-O
1s 3.13 26.94 4.11 4.51
3s 3.25 28.58 4.19 4.83

Ours KITTI-O
1s 1.12 9.09 0.51 0.61
3s 1.45 12.23 0.96 1.50

Ray tracing -
1s 1.50 16.15 0.62 0.76
3s 2.82 29.67 4.01 5.92

Ours AV2
1s 1.71 14.85 2.52 3.18
3s 2.52 23.87 4.83 5.79

Ours KITTI-O20% 1s 1.25 9.69 1.95 2.27
3s 1.70 14.09 4.09 5.09

Ours
AV2 + 1s 1.19 9.30 0.54 0.64

KITTI-O20% 3s 1.67 13.40 1.24 1.80

Table 2.2. Performance as a function of the available target dataset (in this case, KITTI-Odometry).
With access to all of KITTI-O (top), our method outperforms the SOTA. With no access to KITTI-O
(i.e. zero-shot sensor generalization in the middle), our method trained on AV2 outperforms the ray
tracing baseline at 3s, though the baseline fares well at 1s. Note that both approaches still beat the
SOTA [202] by a large margin. Finally, with access to only 20% of KITTI-O (bottom), our method
fares quite well, particularly when trained on both AV2 and KITTI-O. Cross-dataset generalization and
training is made possible by disentangling sensor intrinsics/extrinsics from scene motion.

near-field chamfer distance. One contributing factor could be that our approach is specifically

optimized for capturing occupancy evolution in the near field. In addition, S2Net [316] outperforms

us in terms of vanilla chamfer distance, which is not surprising since we are incapable of deciding

where rays end outside the predefined voxel grid.

Results on KITTI-Odometry Next, we use KITTI-Odometry to test our method in different

settings with limited access to the target dataset. This mimics the setting where a next-generation

sensor platform may be gradually integrated into fleet operations. Tab. 2.2 shows that with access

to the full target dataset (KITTI-Odometry) for training, our method resoundingly outperforms

the SOTA ST3DCNN [202]. Next, if no samples from the target dataset are available, one can

employ either a non-learnable method such as our raytracing baseline, or one may pretrain on a

(large) dataset with a different sensor platform. To this end, we find that our method trained on

ArgoVerse2.0 outperforms the SOTA on KITTI-Odometry, while also outperforming raytracing

baseline for long-horizon (3s) forecasting. Finally, with access to only 20% of KITTI-Odometry,

our method pretrained on ArgoVerse2.0 and finetuned on KITTI-Odometry outperforms the
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Learnt Occupancy nuScenes LiDAR KITTI LiDAR ArgoVerse LiDAR

Figure 2.6. Novel intrinsic-view synthesis We show how to simulate different LiDAR ray patterns
on top of the same learned occupancy grid. In this case, the future occupancy is predicted with historic
LiDAR data scanned by nuScenes LiDAR (Velodyne HDL32E). First, we show the rendered point cloud
under the native setting. Then, we show the rendered point cloud for KITTI LiDAR (Velodyne HDL64E,
2x as many beams). Finally, we have the rendered point cloud for Argoverse 2.0 LiDAR (2 VLP-32C
stacked on top of each other). The fact that we can forecast occupancy on top of data captured by one
type of sensor and use it to simulate future data for different sensors shows how generic the forecasted
occupancy is as a representation. We support this generalization quantitatively in Tab. 2.2.

Arch. Horizon L1 (m) AbsRel (%)
Chamfer Distance (m2)
Near-field Vanilla

S
1s 1.28 9.27 1.03 3.41
3s 1.73 13.54 1.40 3.73

D
1s 1.40 10.37 1.41 2.81
3s 1.71 13.48 1.40 4.31

S+R
1s 1.34 9.73 1.00 3.20
3s 1.82 13.84 1.52 3.54

Table 2.3. We evaluate two variants of the proposed dynamic (D) architecture using the geometry
forecasting metrics - static (S) and residual (S+R). We find that the static variant is a powerful baseline
that beats our dynamic approach for 1s forecasting and by extension, the state-of-the-art.

alternatives. To our knowledge, these are the first results in sensor transfer/generalization that

illustrate the power of disentangling sensor extrinsics/intrinsics from scene motion. Please see

qualitative results in the supplement.

Architecture ablations

Here, we explore two other variants of our architecture: a static variant that predicts a single

voxel grid for all future timesteps, and a residual variant that predicts a single static voxel grid

with residual voxel grids for each output timestep. We evaluate these variants on nuScenes.

The main observation is that the static variant is a powerful baseline for short-horizon

forecasting. This is because a single voxel grid serves as a dense static map of the local region, and

since an extremely high majority of the world remains static, this is expected to be a reasonable

23



2. Next timestep prediction for LiDAR scans of dynamic scenes

t = 0.5s t = 2st = 0s

Figure 2.7. Novel extrinsic-view synthesis Dense depth maps rendered from the predicted future
4D occupancy from novel viewpoints. To render these depth maps, we take a novel future trajectory of
the egovehicle. Placing the camera at each of these locations, always facing forward into the voxel grid
(shown in the future dotted red trajectory on the left), gives us a camera coordinate system in which
we can shoot rays from the camera center to every pixel in the image, and further beyond into the 4D
occupancy volume. Every pixel represents the expected depth along its ray. The RGB image at t = 0s
is shown as reference and is not used in this rendering. For the depth maps, darker is closer, brighter
is farther. Depth on sky regions is untrustworthy as no returns are received for this region from the
LiDAR sensor.

baseline for short-horizon forecasting. Note that this variant is still stronger than the ray tracing

baseline in Tab. 2.1 because of its ability to hallucinate occluded parts of the world. On the

other hand, the proposed dynamic variant (which predicts one voxel grid per future timestep),

performs the best at long-horizon forecasting. With the residual variant, our hope was to separate

dynamic scene elements from static regions, but in practice this decomposition fails as there is

not enough regularization to force motion-based separation.

Since, the static variant outperforms the state-of-the-art on 1s forecasting, we analyse these

variants further in the supplement by using the segmentation annotations on nuScenes-LiDARSeg

[1] and computing the proposed metrics separately on foreground and background points. This

helps us understand which regions in the scene contribute the least to the performance of these

variants.

Applications

Generalization across sensors In Fig. 2.6 (captioned as new intrinsic-view synthesis), we

show how one can render point clouds as if they are captured by different LiDAR sensors from

the same predicted future occupancy. Typically, different LiDAR sensors exhibit different ray

patterns when sensing. For the case shown, the nuScenes LiDAR is an “in-domain” sensor, i.e., the

occupancy grid was predicted by a network learned over LiDAR sweeps captured by a nuScenes

LiDAR. The KITTI and ArgoVerse LiDARs are “out-of-domain”. We hope that learning of such
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a generic representation allows methods in sensor domain transfer [163, 348] to look at the task

from the perspective of spacetime 4D occupancy. The formulation we have laid out also makes it

easy to train across different datasets, making zero-shot cross-dataset transfer possible for LiDARs

[237, 238]. In the previous section and in Tab. 2.2, we highlight the first result in this direction,

where our method trained on the ArgoVerse2.0 dataset when tested on KITTI-Odometry beats

the prior art [202] on KITTI-Odometry. Furthermore, our proposed disentangling also allows for

multi-dataset training, for which we point the readers to the supplement.

Novel view synthesis In Fig. 2.7 (captioned as new-extrinsic view synthesis), we show dense

depth maps rendered from our learnt occupancy grid using novel ego-vehicle trajectories or

viewpoints. Such dense depth of a scene is not possible to get from existing LiDAR sensors

that return sparse observations of the world. Although classical depth completion [290] from

sparse LiDAR input exists as a single-frame (current timestep) task, here we note that with our

representation, it is possible to densify sparse LiDAR point clouds from the future, with such

rendered depth maps backprojected into 3D. This dense 360◦ depth is evaluated on sparse points

(with the help of future LiDAR returns) by our proposed ray-based evaluation metrics.

2.5 Discussion

In this paper, we propose looking at point cloud forecasting through the lens of geometric

occupancy forecasting, which is an emerging self-supervised task [151], originally set in the birds’-

eye-view but extended to full 3D through this work. We advocate that this shift in viewpoint

is necessary for two reasons. First, this shift helps algorithms focus on a generic intermediate

representation of the world, i.e. its spatiotemporal 4D occupancy, which has great potential for

downstream tasks. Second, this “renovates” how we formulate self-supervised LiDAR point cloud

forecasting [202, 315, 316] by factoring out sensor extrinsics and intrinsics from the learning of

shape and motion of different scene elements. In the end, we reiterate that the two tasks in

discussion are surprisingly connected. We propose an evaluation protocol, that unifies the two

worlds and focuses on a scalable evaluation for predicted geometry.

2.6 Appendix

In this appendix, we extend our discussion of the proposed reformulation of point cloud forecasting

into 4D occupancy forecasting. Specifically, we discuss details about the network architecture of
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the proposed approach in Sec. 2.6, further results on nuScenes, KITTI-Odometry and ArgoVerse2.0

in Sec. 2.6, and the quality of our forecasts separately on the foreground and background points

in Sec. 2.6. The code is available on GitHub, a video summary is available on YouTube, and an

overview of our work with the video versions of all figures is available at this webpage.

Network details

Architecture implementation We build on top of the encoder-decoder architecture first

proposed by Zeng et al. [358] for neural motion planning. We extend the version of this architecture

used by Khurana et al. [151] for forecasting occupancy in the birds’-eye-view. The only difference

between our setup and that used in prior work [151], is that we treat our 4D voxel grid (X x Y x Z

x T) as a reshaped 3D voxel grid (X x Y x ZT), where the Z or height dimension is incorporated

into the channel dimension of the input, allowing us to still make use of 2D convolutions on a 4D

voxel grid. This means that every channel in the input, represents a slice of the world through

the height and time dimensions.

Differentiable renderer We extend the differentiable raycaster developed by Khurana et

al. [151] to 3D and employ it as the differentiable voxel renderer in our approach. As in the prior

work, we define our set of rays using the position of the egovehicle in the global coordinate frame

as the origin, and all the LiDAR returns as the end points for the rays. The 4D voxel grid is

initialized with three labels - empty, occupied and unknown based on the returns in the LiDAR

sweeps. Each ray is traversed using a fast voxel traversal algorithm [8]. Given all the voxels and

their occupancies along a ray, we compute the expected distance the ray travels through the voxel

grid. This is same as volume rendering but in a discretized grid [206]. The gradient of the loss

between this expected distance and the groundtruth distance is backpropagated to all the voxels

traversed by the ray. Note that when a ray does not terminate within the voxel grid volume, we

put all the probability mass of occupancy at the boundary of the voxel grid, similar to Mildenhall

et al. [206]. This means that when a ray passes through occupancy regions that are empty (refer

occupancy visuals in the main draft and supplementary video), the rays results in a point at the

boundary of the voxel grid.

Dataset training and testing splits We use the official train and validation splits of nuScenes

and ArgoVerse2.0. Only when comparing results on KITTI-Odometry with ST3DCNN [202],
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we follow their dataset splits for training and testing. These dataset splits allow us to draw

apples-to-apples comparisons with state-of-the-art approaches.

Additional results

nuScenes

Results with confidence thresholding We supplement the results in the main paper by

evaluating the point cloud forecasts of SPFNet [315] and S2Net [316] by thresholding points at a

recommended confidence threshold of 0.05. Qualitatively in Fig. 2.8, we observe point clouds

from SOTA that only consist of high confidence LiDAR returns close to the ground plane, because

of which we perform quantitatively much better than these baselines on our ray-based metrics.

We summarise these results in Tab. 2.4.

Access to ground-truth egoposes during evaluation Note that in our proposed formulation

of 4D occupancy forecasting, we view the LiDAR point clouds used during training as just another

observation of the world, which in our case, happens to come from the view of the ego-vehicle. In

reality, this LiDAR measurement of occupancy could have also come from any other observer in

the world. Similarly, during evaluation, the only LiDAR measurement we have access to comes

from the view of the ego-vehicle, making this the only datapoint to evaluate our occupancy

forecasts against. This creates an apparent advantage for our method when comparing to point

cloud forecasting approaches because they do not have access to ground-truth egoposes from

the future. To alleviate this concern, first, we use the future ground-truth egoposes to align all

point cloud forecasts to a global coordinate frame. Only after doing this, all the reported metrics

are computed for the baselines. Second, we employ a simple motion planner based on linear

dynamics, and use these planned future egoposes for evaluating our own method. We see that the

metrics drop marginally, showing that the dependence of our method on ground-truth egoposes

from the future is not a concern. This is also true for the ray tracing baseline, results of which

are summarised in Tab. 2.5.

KITTI-Odometry

Qualitative results We supplement the quantitative results in the main paper with qualitative

results in Fig. 2.9. As noted before, the trends are similar to nuScenes.
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Ours (Occupancy)Ours (Point cloud)Groundtruth SPFNet S2Net

t = 0.5s

t = 2s

t = 3s

Ray tracing

Figure 2.8. Qualitative results on the nuScenes dataset on three different sequences at different time
horizons. We compare the point cloud forecasts of our approach with the aggregation-based ray tracing
baseline and S2Net [316], SPFNet [315] with confidence filtering, after applying a recommended confidence
threshold of 0.05 on the point clouds. Our forecasts look significantly crisper than the SOTA, however
we see that the ray tracing baseline is also a strong baseline. The rendered occupancy is colored by
height along z-axis.

Ours (Occupancy)Ours (Point cloud)Groundtruth ST3DCNN Raytracing

t = 0.6s

t = 1.8s

t = 3.0s

Figure 2.9. Qualitative results on KITTI-Odometry on three different sequences at different time horizons.
We compare the point cloud forecasts of ST3DCNN [202] and the ray tracing baseline. We see that this
SOTA is qualitatively more geometry-aware than the SOTA on nuScenes. However, our method is still
more reflective of the true rigid geometry of the underlying world. The rendered occupancy is colored by
height along z-axis.
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Method Horizon L1 (m) AbsRel (%)
Chamfer Distance (m2)
Near-field Vanilla

S2Net [316]
1s 2.88 20.57 4.61 11.77
3s 4.97 24.79 13.10 30.95

SPFNet [315]
1s 5.30 30.12 21.24 45.12
3s 5.70 28.65 20.99 44.71

Ray tracing
1s 1.50 14.73 0.54 0.90
3s 2.44 26.86 1.66 3.59

Ours
1s 1.40 10.37 1.41 2.81
3s 1.71 13.48 1.40 4.31

Table 2.4. Results on nuScenes [30] with confidence filtering on SPFNet and S2Net. As described in the
main paper we threshold the points at a recommended confidence threshold of 0.05. We see that the
conclusions made from the proposed metrics are more in line with the qualitative results in Fig. 2.8.
This once again reiterates the need for metrics that intuitively evaluate the underlying geometry of the
scene instead of uncorrelated samples of the scene (e.g., points in space).

Method GT Egoposes L1 (m) AbsRel (%)
Chamfer Distance (m2)
Near-field Vanilla

Ray tracing Yes 2.44 26.86 1.66 3.59
Ray tracing No 2.50 26.35 1.60 3.39

Ours Yes 1.71 13.48 1.40 4.31
Ours No 1.84 13.95 1.50 4.50

Table 2.5. We experiment with using a simple linear dynamics based motion planner that can replace the
ground-truth future egoposes used in our analysis. Our experiments prove that even in the absence of
access to ground-truth future egoposes – which are not a concern from the viewpoint of our formulation
but only a means to evaluate the occupancy predictions – simple linear dynamics models such as those
based on constant velocity, suffice.

ArgoVerse2.0

We benchmark ArgoVerse2.0 in Tab. 2.6 and compare the ray tracing baseline to our method.

We see that the ray tracing baseline is strong and performs better than our method in terms of

the Chamfer distance. Yet, our method is able to forecast better scene geometry in the near-field,

than the ray tracing baseline as suggested by the ray-based metrics.

Note that the high vanilla Chamfer distance for ArgoVerse2.0 is due to the fact that the its

LiDAR is long-range (up to 200m) and we focus on points only withing the bounded volume.

We also clarify that we always test cross-sensor generalization between KITTI-Odometry and

ArgoVerse2.0, with training on ArgoVerse2.0 because (1) both datasets have the same number of

LiDAR beams and point clouds are captured at the same frequency, and (2) ArgoVerse2.0 is a
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Method Horizon L1 (m) AbsRel (%)
Chamfer Distance (m2)
Near-field Vanilla

Ray tracing
1s 2.39 15.43 0.56 1.90
3s 3.72 25.24 2.50 11.59

Ours
1s 2.25 10.25 1.53 60.94
3s 2.86 14.62 2.20 69.81

Table 2.6. Quantitative results on the ArgoVerse2.0 [318] dataset. We compare our method trained on
the ArgoVerse2.0 dataset to the ray tracing baseline and find similar trends to nuScenes and KITTI-
Odometry.

Config Horizon
Pedestrians Vehicles All foreground Background

L1 AbsRel
Chamfer Dist.

L1 AbsRel
Chamfer Dist.

L1 AbsRel
Chamfer Dist.

L1 AbsRel
Chamfer Dist.

N.f. Vanilla N.f. Vanilla N.f. Vanilla N.f. Vanilla

Ray tracing 1s 6.09 37.18 61.30 66.79 3.53 28.82 16.92 21.19 3.72 34.47 16.09 19.45 1.39 12.51 0.49 0.85
Ours 1s 6.43 34.89 79.63 68.60 3.61 25.28 21.47 22.59 3.61 28.33 18.19 19.05 1.33 8.82 1.44 3.02

Raytracing 3s 7.84 46.42 92.86 92.97 5.29 44.25 26.99 38.22 5.52 51.48 25.66 35.32 2.27 23.50 1.60 3.48
Ours 3s 6.58 34.72 78.47 71.99 4.11 29.73 22.28 28.36 4.14 33.22 18.59 22.57 1.61 11.48 1.43 4.63

Table 2.7. We extend our metrics analysis to pedestrians, vehicles, movable foreground and static
background objects separately. Since, we are not able to compute these category-wise metrics for the
state-of-the-art [315, 316] due to historical reasons, we do this for the ray tracing baseline. In summary,
we find that our method outperforms this otherwise strong baseline at long-horizon forecasting. However,
in the short-horizon the ray tracing baseline is a strong one; sometimes doing better and other times
performing at par with our proposed method.

much larger and diverse dataset than KITTI-Odometry that is suitable for pretraining.

Foreground vs. background query rays

In order to further analyse the variants of our architecture, we separate the query rays as belonging

to foreground or background regions, using the labels from nuScenes’ LiDARSeg [1]. We evaluate

both the regions using both the new and old metrics in Table 2.8 and Table 2.9.

Poor performance on foreground objects Our main observation is that all the variants

perform poorly on the foreground objects (which includes moving or stationary foreground objects)

as compared to the background. This is because a large number of rays and voxels (more than

90%) belong to background regions and thus, the foreground objects are downweighted during

the training process. Even when the combined evaluation of foreground and background regions

is considered (Table 3 in main draft), we see that the poor performance on the foreground fails to

materialize in the metrics. This hints are improving the metrics and methods to focus more on
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Arch. Horizon L1 (m) AbsRel (%)
Chamfer Distance (m2)
Near-field Vanilla

S
1s 3.28 26.14 13.52 15.35
3s 4.10 32.25 19.25 23.05

D
1s 3.61 28.33 18.19 19.05
3s 4.14 33.22 18.59 22.57

S + R
1s 3.28 25.34 13.95 15.01
3s 4.11 31.65 19.91 25.29

Table 2.8. Performance analysis on foreground query rays on nuScenes [30] for the different architecture
variants introduced in the main draft, static (S), dynamic (D) and residual (S+R).

Arch. Horizon L1 (m) AbsRel (%)
Chamfer Distance (m2)
Near-field Vanilla

S
1s 1.22 7.89 1.10 3.74
3s 1.64 11.65 1.43 4.00

D
1s 1.33 8.82 1.44 3.02
3s 1.61 11.48 1.43 4.63

S + R
1s 1.29 8.48 1.07 3.52
3s 1.74 12.01 1.56 3.78

Table 2.9. Performance analysis on background query rays on nuScenes [30] for the different architecture
variants introduced in the main draft, static (S), dynamic (D) and residual (S+R).

the forecasting of foreground objects, especially those in motion.

Strengths of each variant Another observation stemming from the above fact is that even

with this disentangled evaluation on foreground, the static variant is the strongest baseline for

short-horizon forecasting (1s). On 3s forecasting, the dynamic variant shines on the ray-based

evaluation of background objects (some unseen background regions may only appear at future

timesteps) and the residual variant shines on the ray-based evaluation of foreground objects

(possibly decouples the foreground from background regions better).

Comparison to the ray tracing baseline Given the strength of the ray tracing baseline, we

investigate its performance on foreground and background objects in comparison to our approach

in Tab. 2.7. This time we further divide foreground objects into subcategories of pedestrains and

vehicles, while also reporting the metrics on all foreground objects. Note that the according to

the vocabulary of nuScenes, apart from different types of pedestrians and vehicles, miscellaneous

movable objects like traffic cones and barriers are included in the umbrella category of foreground

objects. We have the following findings:
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1. For long-horizon forecasting, our method consistently does better than the ray tracing

baseline, for both all types of foreground objects and background objects.

2. For short-horizon forecasting, the ray tracing baseline performs at par with our method

and sometimes even better (on most types of foreground objects), hence proving to be a

strong yet simple and non-learnable approach.
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Chapter 3

Application to evasive motion planning

Publication information

Khurana, T., Hu, P., Dave, A., Ziglar, J., Held, D. and Ramanan, D., 2022, October.

Differentiable raycasting for self-supervised occupancy forecasting. In European

Conference on Computer Vision (ECCV) pp. 353-369. Cham: Springer Nature

Switzerland.

3.1 Introduction

To navigate in complex and dynamic environments such as urban cores, autonomous vehicles need

to perceive actors and predict their future movements. Such knowledge is often represented in

some form of forecasted occupancy [257], which downstream motion planners rely on to produce

safe trajectories. When tackling the tasks of perception and prediction, standard solutions consist

of perceptual modules such as object detection, tracking, and trajectory forecasting, which require

a massive amount of object track labels. Such solutions do not scale given the speed that log

data is being collected by large fleets.

Freespace versus occupancy: To avoid the need for costly human annotations, and to

enable learning at scale, self-supervised representations such as ego-centric freespace [117] have

been proposed. However, such a representation couples the motion of the world with the motion

of the ego-vehicle (Fig. 3.1). Our key innovation in this paper is to learn an ego-pose independent

and explainable representation for safe motion planning, which we call emergent occupancy.

Emergent occupancy decouples ego motion and scene motion using differentiable raycasting: we
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(a) Sensor position !,  Scene " (b) New sensor position ! + Δ!,  Scene " (c) New sensor position ! + Δ!,  New scene " + Δ"

Figure 3.1. We propose emergent occupancy as a novel self-supervised representation for motion
planning. Occupancy is independent of changes in sensor pose ∆y, which is in contrast to prior work
on self-supervised learning from LiDAR [117, 207, 313, 318], specifically, ego-centric freespace [117],
which changes with (a-b) sensor pose motion ∆y and (b-c) scene motion ∆s. We use differentiable
raycasting to naturally decouple ego motion from scene motion, allowing us to learn to forecast occupancy
by self-supervision from pose-aligned LiDAR sweeps.

design a network that learns to “space-time complete” the future volumetric state of the world

(in a world-coordinate frame) given past LiDAR observations. Consider an ego-vehicle that moves

in a static scene. Here, LiDAR returns (even when aligned to a world-coordinate frame) will still

swim along the surfaces of the fixed scene (Fig. 3.2). This implies that even when the world is

static, most of what the ego-vehicle observes through the LiDAR sensor appears to move with

complex nonlinear motion, but in fact those observations can be fully explained by static geometry

and ego-motion (via raycasting). LiDAR forecasters need to implicitly predict this ego-motion

of the car to produce accurate future returns. However, we argue that such prediction doesn’t

make sense for autonomous agents that plan their future motion. Importantly, our differentiable

raycasting network has access to future camera ego-poses as input, both during training (since

they are available in archival logs) and testing (since state-of-the-art planners explicitly search

over candidate trajectories).

Self-supervision: Note that ground-truth future volumetric occupancy is largely unavailable

without human supervision, because the full 3D world is rarely observed; the ego-vehicle only

sees a limited number of future views as recorded in a single archival log. To this end, we apply a

differentiable raycaster that projects the forecasted volumetric occupancy into a LiDAR sweep, as

seen by the future ego-vehicle motion in the log. We then use the difference between the raycasted

sweep and actual sweep as a signal for self-supervised learning, allowing us to train models on

massive amounts of unannotated logs.

34



3. Application to evasive motion planning

! ! + Δ!

Figure 3.2. We pose-align two succesive LiDAR sweeps of a static scene s to a common world coordinate-
frame (using the notation of Fig. 3.1). Even though there is zero scene motion ∆s, points appear to
drift or swim across surfaces. This is due to the fact that points are obtained by intersecting rays from
a moving sensor ∆y with static scene geometry. This in turn implies that points can appear to move
since they are not tied to physical locations on a surface. This apparent movement (∆s̃) is in general a
complex nonlinear transformation, even when the sensor motion ∆y is a simple translation (as shown
above). Traditional methods for self-supervised LiDAR forecasting [117, 207, 313, 318] require predicting
the complex transformation ∆s̃ which depends on the unknown ∆y, while our differentiable-raycasting
framework assumes ∆y is an input, dramatically simplifying the task of the forecasting network. From a
planning perspective, we argue that the future (planned) change-in-pose should be an input rather than
an output.

Planning: Lastly, we show that such forecasted space-time occupancy can be jointly learned

with space-time costmaps for end-to-end motion planning. Owing to LiDAR self-supervision,

we are able to train on recent unsupervised LiDAR datasets [199] that are orders of magnitude

larger than their annotated counterparts, resulting in significant improvement in accuracy for

both forecasted occupancy and motion plans. Interestingly, as we increase the amount of archival

training data at the cost of zero additional human annotation, object shape, tracks, and multiple

futures “emerge” in the arbitrary quantities predicted by our model despite there being no direct

supervision on ground-truth occupancy.
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3.2 Related Work

Occupancy as a scene representation: Knowledge regarding what is around an autonomous

vehicle (AV) and what will happen next is captured in different representations throughout

the standard modular perception and prediction (P&P) pipeline [36, 162, 256, 311]. Instead of

separate optimization of these modules [208, 291], Sadat et al. [257] propose bird’s-eye view (BEV)

semantic occupancy that is end-to-end optimizable. As an alternative to semantic occupancy,

Hu et al. [116] propose BEV ego-centric freespace that can be self-supervised by raycasting on

aligned LiDAR sweeps. However, the ego-centric freespace entangles motion from other actors,

which is arguably more relevant for motion planning, with ego-motion. In this paper, we propose

emergent occupancy to isolate motion of other actors. While we focus on self-supervised learning

at scale, we acknowledge that for motion planning, some semantic labelling is required (e.g., state

of a traffic light) which can be incorporated via semi-supervised learning.

Differentiable raycasting: Differentiable raycasting has shown great promise in learning the

underlying scene structure given samples of observations for downstream novel view synthesis [206],

pose estimation [347], etc. In contrast, our application is best described as “space-time scene

completion”, where we learn a network to predict an explicit space-time occupancy volume.

Furthermore, our approach differs from existing approaches in the following ways. We use LiDAR

sequences as input and raycast LiDAR sweeps given future occupancy and sensor pose. We work

with explicit volumetric representations [190] for dynamic scenes with a feed-forward network

instead of test-time optimization [218].

Self-supervision: Standard P&P solutions do not scale given how fast log data is collected by

large fleets and how slow it is to curate object track labels. To enable learning on massive amount

of unlabeled logs, supervision from simulation [41, 49, 50, 59], auto labeling using multi-view

constraints [228], and self-supervision have been proposed. Notably, tasks that can be naturally

self-supervised by LiDAR sweeps e.g., scene flow [207] have the potential to generalize better as

they can leverage more data. More recently, LiDAR self-supervision has been explored in the

context of point cloud forecasting [312, 313, 318]. However, when predicting future sweeps given

the history, as stated before, past approaches often tend to couple motion of the world with the

motion of the ego-vehicle [312].

Motion Planning: An understanding of what is around an AV and what will happen

next [291] is crucial. This is typically done in the bird’s eye-view (BEV) space by building a

modular P&P pipeline. Although BEV motion planning does not precisely reflect planning in
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the 3D world, it is widely used as the highest-resolution and computation- and memory-efficient

representation [35, 257, 358]. However, training such modules often requires a massive amount of

data. End-to-end learned planners requiring less human annotation have emerged, with end-to-end

imitation learning (IL) methods showing particular promise [41, 49, 248]. Such methods often

learn a neural network to map sensor data to either action (known as behavior cloning) or

“action-ready” cost function (known as inverse optimal control) [214]. However, they are often

criticized for lack of explainable intermediate representations, making them less accountable

for safety-critical applications [224]. More recently, end-to-end learned but modular methods

producing explainable representations, e.g., neural motion planners [35, 257, 358] have been

proposed. However, these still require costly object track labels. Unlike them, our approach

learns explainable intermediate representations that are explainable quantities for safety-critical

motion planning without the need of track labels.

3.3 Method

Autonomous fleets provide an abundance of aligned sequences of LiDAR sweeps x and ego vehicle

trajectories y. How can we make use of such data to improve perception, prediction, and planning?

In the sections to follow, we first define occupancy. Then we describe a self-supervised approach

to predicting future occupancy. Finally, we describe an approach for integrating this forecasted

occupancy into neural motion planners. Note that in the text that follows, we use ego-centric

freespace and freespace interchangeably.

Occupancy

We define occupancy as the state of occupied space at a particular time instance. We use z to

denote the true occupancy, which may not be directly observable due to visibility constraints.

Let us write

z[u] ∈ {0, 1},u = (x, y, t),u ∈ U (3.1)

to denote the occupancy of a voxel u in the space-time voxel grid U, which can be occupied (1)

or free (0). The spatial index of u, i.e., (x, y) represents the spatial location from a bird’s-eye

view. Given a sequence of aligned sensor data and ego-vehicle trajectory (x,y), there may be

multiple plausible occupancy states z that “explain” the sensor measurements. We denote this

set of plausible occupancy states as Z.

Forecasting Occupancy. Suppose we split an aligned sequence of LiDAR sweeps and
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Emergent occupancy

Differentiable Raycasting

Ego-centric freespace

Figure 3.3. Differentiable procedure for estimating ego-centric freespace from volumetric occupancy,
necessary for computing the loss from (3.3). The left image depicts predicted emergent occupancy, on
which we perform a cumulative max along the LiDAR ray from known sensor poses (middle), which is
differentiable because it is essentially re-indexing. The result is then inverted to produce (soft) visible
ego-centric freespace estimates. To identify BEV pixels along the LiDAR ray, we perform fast voxel
traversal in 2D [8].

ego-vehicle trajectory (x,y) into a historic pair (x1,y1) and a future pair (x2,y2). Our goal is

to learn a function f that takes historical observations (x1,y1) as input and predicts emergent

future occupancy ẑ2. Formally,

ẑ2 = f(x1,y1), (3.2)

If the true occupancy z2 were observable, we could directly supervise our forecaster, f . Unfor-

tunately, in practice, we only observe LiDAR sweeps, x. We show in the next section how to

supervise f with LiDAR sweeps using differentiable raycasting techniques.

Raycasting

Given an occupancy estimate ẑ, sensor origin y and directional unit vectors for rays r, a

differentiable raycaster R can raycast LiDAR sweeps x̂. We use d̂ to represent the expected

distance these rays travel before hitting obstacles: d̂ = R(r; ẑ,y). Then we can reconstruct the

raycast LiDAR sweep x̂ as x̂ = y + d̂ ∗ r.

Learning to Forecast Occupancy

Given the predicted occupancy ẑ2 (Eq. 3.2), and the captured sensor pose y2, a differentiable

raycaster R can take rays r2 as input and produce d̂2 = R(r2; ẑ2,y2). Note that this formulation
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allows us to decouple the motion of the world captured by change in occupancy, ẑ2, and the

motion of the ego-vehicle captured by change in sensor origin, y2.

This also allows us to supervise ẑ2 using a loss function that measures the difference between

the raycast distance d̂2 and the ground-truth distance d2.

Lr = loss(d̂2,d2) (3.3)

Loss function: One natural loss function might be distance between the raycast depth and

measured depth along each ray. In practice, we care most about disagreements of freespace which

can inform safe motion plans. To emphasize such disagreements, we define voxels encountered

along the ray as having a free versus not-free binary label, and use a binary cross-entropy loss

(summed over all voxels encountered by each ray until the boundary of voxel grid, ref. Fig. 3.3).

We adopt an encoder-decoder architecture that predicts future emergent occupancy given historical

LiDAR sweeps, differentiably raycasts future LiDAR sweeps and self-supervises using archival

sweeps (ref. highlighted branch of Fig. 3.4 (a)).

Learning to Plan

The previous section described an approach for predicting future LiDAR returns via differentiable

raycasting of BEV space-time occupancy maps. We now show that such costmaps can be

integrated directly into an end-to-end motion planner that makes use of space-time costmaps for

scoring candidate trajectories. We follow [117], but modify their derivation to take into account

emergent occupancy.

Max-margin planning: We learn a model g to predict a space-time cost map, c2, over

future timestamps given past observations (x1,y1):

c2 = g(x1,y1), where c2[u] ∈ R,u ∈ U2 (3.4)

where U2 represents the space-time voxel grid over future timestamps. We define the cost of a

trajectory as the sum of costs at its space-time way-points. The best candidate future trajectory

according to the cost map is the one with the lowest cost:

ŷ∗
2 = arg min

ŷ∈Y2

C(ŷ; c2) = arg min
ŷ∈Y2

∑

u∈ŷ

c2[u] (3.5)

where Y2 represents the set of viable future trajectories.
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Loss function: We use a max-margin loss function, where the target cost of a candidate

trajectory (ŷ) is equal to the cost of the expert trajectory (y2) plus a margin. We can write the

objective as follows:

Lp =

[

C (y2; c2)−
(

min
ŷ∈Y2

C (ŷ; c2)−D (ŷ,y2)

)]

+

(3.6)

where [·]+ = max(·, 0) and D is a function that quantifies the desired margin between the cost of

a candidate trajectory and the cost of an expert trajectory. A common choice for D is Euclidean

distance between pairs of way-points:

D(ŷ2,y2) = ||ŷ2,y2||2 (3.7)

Learning cost maps that reflect such cost margins only requires expert demon-

strations, which are readily available in archival log data. However, sometimes

candidates trajectories that are equally distant from the expert one should bear

different costs. We provide an example (right) where the red trajectory should

cost more than blue in the presence of an obstacle despite both being equidistant

from the expert demonstration.

Guided planning: To further distinguish among candidate trajectories, one could introduce

extra penalty terms given additional supervision.

D(ŷ2,y2) = ||ŷ2,y2||2 + γ P (ŷ2) (3.8)

where P represents a penalty function and γ is a predefined scaling factor. Zeng et al. [358]

propose to define an additional penalty such that candidate trajectories that collide with object

boxes would cost an additional γ in addition to the deviation from the expert demonstration. We

refer to this approach as object-guided planning, which is effective but costly as it requires object

track labels.

More scalable alternatives to object supervision can be adopted, such as formulation of the

penalty term proposed by Hu et al. [117]. Concretely, candidate trajectories that reach outside

the freespace as observed by future LiDAR poses would incur an additional penalty. We refer to

this as freespace-guided planning.

Residual costmaps: Instead of directly predicting the cost map c2[u], we follow prior work

[117] and predict a residual cost map c̃2[u] that is added to the cost map from freespace estimate
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(b) Inference architecture.

Figure 3.4. Overview of our training and inference-time planning architectures. Highlighted network
branch in (a) is used to learn future emergent occupancy, which is augmented by the residual branch
that predicts residual cost maps, eventually used in computing a guided planning loss.

based on predicted emergent occupancy.

c2[u] = c̃2[u] + α proj(ẑ2;y2)[u], u ∈ ŷ2 (3.9)

where α is a predefined constant and c̃2 represents the predicted residual cost map. The operation

proj(ẑ2;y2) is illustrated in Fig. 3.3.

Multi-task planning (new): In addition to the raycasting loss in Fig. 3.4, we add Lp as

an additional planning loss. In other words, the emergent occupancy prediction architecture

is augmented with another decoder branch to predict the residual cost maps while sharing the

encoder features. Because of this, emergent occupancy forecasting becomes the auxiliary task for

the end-to-end motion planner. We illustrate the network architecture during training in Fig. 3.4

(a).

Test-time occupancy cost maps (new): At test time, to compute ego-centric freespace cost
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maps based on predicted emergent occupancy, for each candidate sample trajectory, one would

need to perform raycasting from its waypoints, which is prohibitively expensive. Fortunately,

this is exactly equivalent to directly accessing emergent occupancy on the waypoints along the

candidate trajectory (because of the cumulative max-operation used in deriving freespace from

occupancy - see Fig. 3.3), as formally expressed in Eq. (3.10).

proj(ẑ2; ŷ2)[u] = ẑ2[u], u ∈ ŷ2 (3.10)

The simplified test-time architecture is illustrated in Fig. 3.4 (b). When optimizing for future

trajectories, we restrict the search space of future trajectories to the ones with a smooth transition

from the past trajectory [117, 358]. Please refer to the supplement for other implementation

information such as detailed network architecture.

3.4 Experiments

Datasets: We evaluate occupancy forecasting and motion planning on two datasets: nuScenes [30]

and ONCE [199]. nuScenes features real-world driving data with 1,000 fully annotated 15 second

logs. ONCE is the largest driving dataset with 150 hours of real-world data including 1 million

LiDAR sweeps, collected in a range of diverse environments such as urban and suburban areas.

As annotation is expensive, only a small subset of logs in ONCE are fully annotated, making

it ideal for self-supervised learning. We include comparison against state-of-the-art forecasting

and planning approaches on both datasets. We also construct multiple baselines for all ablative

evaluation for bird’s eye-view motion planning. To understand how our occupancy forecasting

and motion planning performance scales to an increasing amount of training data, we randomly

curate different training sets of the datasets. Since only a small subset of 8K samples in ONCE is

labeled, we do this by progressively increasing the number of training samples by adding scenes

from both their labeled and unlabeled-small splits, which include 8K, and 86K training samples

respectively. Some of our analysis exists only on the combined labeled and unlabeled-small split

which totals to 94K samples. For nuScenes, we randomly sample scenes from their official training

set. For all experiments that follow, we take in a historical LiDAR stack of 2 seconds and forecast

for the next 3 seconds.
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Dataset Diff. Raycast |d−d̂|
d

(↓) BCE (↓) F1 (↑) AP (↑)

nuScenes
- [117] 0.297 0.221 0.665 0.769
✓ 0.242 0.140 0.777 0.863

ONCE
- [117] 0.371 0.143 0.635 0.732
✓ 0.243 0.097 0.787 0.827

Table 3.1. Indirect evaluation of emergent occupancy forecasting with respect to groundtruth LiDAR
sweeps. On both nuScenes and ONCE, we significantly improve forecasting accuracy across all metrics
by using differentiable raycasting for decoupling the scene and ego-motion, unlike Hu et al. [117].

(a) nuScenes (b) ONCE-labeled (c) ONCE-unlabeled

Figure 3.5. We highlight the merits of our self-supervised approach which can be given any amount of
unlabeled LiDAR data to train on, in the form of posed archival LiDAR sweeps, thereby increasing
the performance of emergent occupancy forecasting (evaluated using classification metrics such as
average-precision and F1). Please refer to the supplement for corresponding tables.

Emergent Occupancy Forecasting

Metrics: Since, the groundtruth for true occupancy is unavailable, we quantitatively evaluate the

LiDAR sweeps raycast from the emergent occupancy predictions. Specifically, our first evaluation

computes the absolute relative error between the groundtruth distance traveled by every ray

starting from the sensor origin, and the expected distance traveled by corresponding rays; where

the expected distance is obtained by casting rays through the forecasted occupancy. Second, we

score every BEV voxel traversed by a ray using its ‘free’ or ‘not-free’ state. This dense per-ray

evaluation is equivalent to evaluating the per-pixel binary classification of an ego-centric freespace

map with respect to its groundtruth, allowing us to compare to the baseline discussed below.

We compute the dense binary cross-entropy, average precision and the F1-score. All metrics are

averaged across all prediction timesteps (up to 3s).

Baseline: We re-implement the future-freespace architecture from [117] which directly forecasts
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[9]

Ours

t = 0s t = 3s

Figure 3.6. Future ego-centric freespace from [117] and our model, raycasted from predicted emergent
occupancy. Note how the presence of moving and parked cars on roadsides is captured well by our
approach even 3s in the future.

ego-centric freespace. For building our architecture, we adapt this network to predict an arbitrary

quantity which differentiably raycasts into ego-centric freespace given a sensor location. On

training this architecture in a self-supervised manner, the arbitrary quantity emerges into emergent

occupancy, an explainable intermediate representation for downstream motion planners.

Main results: We compare the performance of both approaches in Tab. 3.1. Note the drastic

improvement in all metrics on using differentiable raycasting to decouple the scene motion from

the ego-motion of the sensor on both nuScenes and ONCE. With increase of up to 15% F1

points, we highlight the high-quality of our predicted occupancy and the pronounced effect of

adding differentiable raycasting. Our results show that occupancy reasoning is an important

intermediate task, even if the end-goal is simply understanding freespace: Our method, which

predicts occupancy as an intermediate target, outperforms [117], which directly aims to predict

freespace. Fig. 3.6 visualizes predicted ego-centric freespace for a single scenario in ONCE using

[117] and our approach at t = 0, 3s in the future. In Fig. 3.5, we show how adding more training

samples to both datasets result in an upward trend in performance across all metrics. This

increasing generalizability and scaling of training data comes for free with our self-supervised

approach.

Motion Planning

Metrics: We follow prior works and compute three metrics for evaluating motion planning

performance, including (1) L2 error; (2) point collision rate; (3) box collision rate. The L2

distance measures how close the planned trajectory follows the expert trajectory at each future

timestamp. The point collision rate measures how often the planned waypoint is within the BEV
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nuScenes
Box Collision (%) L2 Error (m)

1s 2s 3s 1s 2s 3s

IL [240] 0.08 0.27 1.95 0.44 1.15 2.47
FF [117] 0.06 0.17 1.07 0.55 1.20 2.54
Ours 0.04 0.09 0.88 0.67 1.36 2.78

NMP [358] 0.04 0.12 0.87 0.53 1.25 2.67
P3 [257] 0.00 0.05 1.03 0.59 1.34 2.82

Table 3.2. We compare end-to-end state-of-the-art motion planners on nuScenes-val. NMP and P3 are
supervised approaches that have access to object tracking labels.

Figure 3.7. A vanilla spacetime trajectory with a lower L2 error wrt. expert, may collide into objects
unlike a proposed trajectory with larger L2 error but no collision.

boxes of other objects. The box collision rate measures how often the BEV box of the ego-vehicle

intersects with BEV boxes of other objects.

Model-driven Data-driven

Trajectory sampling: When evaluating performance on nuScenes,

we follow previous state-of-the-art approaches [117, 358] and sample a

combination of straight lines, circles, and clothoid curves as trajectory

samples. Owing to the scene diversity in ONCE, we notice that such

a sampling strategy does not capture the distribution of expert trajec-

tories on ONCE as they range widely in their velocities and directions.

Inspired by [35], we sample a data-driven trajectories to complement the

model-driven samples (right). The supplement provides more details

on our data-driven sampler.
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Freespace Multi Diff. Box Collision (%) Point Collision (%) L2 Error (m)

Guided Task Raycast 1s 2s 3s 1s 2s 3s 1s 2s 3s

(a) - - - 0.08 0.27 1.95 0.00 0.00 0.35 0.44 1.15 2.47
(b) ✓ - - 0.06 0.17 1.07 0.00 0.01 0.04 0.55 1.20 2.54
(c) - ✓ - 0.08 0.17 1.29 0.00 0.02 0.08 0.42 1.06 2.30
(d) ✓ ✓ - 0.02 0.10 1.10 0.00 0.00 0.08 0.52 1.22 2.64
(e) ✓ ✓ ✓ 0.04 0.09 0.88 0.00 0.01 0.03 0.67 1.36 2.78

Table 3.3. Ablation studies on nuScenes-val. Note that (a) is IL, (b) is FF, and (e) is Ours in Tab. 3.2.

Planning on nuScenes

Baselines: We compare our proposed approach to four baseline end-to-end motion planners.

First, we implement a pure imitation learning (IL) baseline, a max-margin neural motion planner

self-supervised by expert trajectories, as described in Eq. (3.7). Second, we re-implement future-

freespace-guided max-margin planner (FF) proposed by Hu et al. [117], as captured by Eq. (3.8).

Third, we re-implement a simplified neural motion planner (NMP) without modeling costs related

to map information and traffic light status as such information is unavailable on nuScenes. Last, we

re-implement a simplified version of perceive, predict, and plan (P3) where we do not distinguish

semantic occupancy of different classes. To ensure a fair comparison, we adopt the same neural

net architecture for the baselines and our approach.

Main results: As Tab. 3.2 shows, in terms of collision rates, our self-supervised approach

outperforms both self-supervised baselines (IL and FF) by a large margin. Moreover, our

approach achieves the same collision rate at 3s as the best of supervised baselines. We also

observe a commonly observed trade-off between L2 errors and collision rates [358]. For example,

pure imitation learning achieves the lowest L2 errors with the highest collision rates.

Ablation studies: We perform extensive ablation studies in Tab. 3.3 to understand where

improvements come from. There are three main observations:

• Differentiable raycasting reduces collision rate at further horizon (3s), as seen in (d) vs.

(e), suggesting decoupling motion of the world (space-time occupancy) from ego-motion is

helpful when learning long range cost maps.

• Multi-task learning further reduces collision rates, as seen in (a) vs. (c). Training max-

margin planners with an auxiliary self-supervised forecasting task significantly reduces the

collision rates without hurting L2.
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Input LiDAR sweep Predicted latent occupancy Residual cost map Final cost map &

predicted trajectory

Figure 3.8. Qualitative results of our learned model. From top to bottom, we visualize various scenarios,
including slowing down, speeding up, navigating an intersection and staying still. All columns after the
first one are visualized at future timestamp t=0.5s. We successfully forecast the motion of surrounding
objects, e.g. in third row, which results in safer planned trajectories.

• Freespace-guided cost margin is crucial to lowering collision rates, as seen in (a) vs. (b), (c)

vs. (d). However, there is a trade-off: the L2 errors tend to increase as being expert-like (at

all costs) is no longer the only objective. In Fig. 3.7, we show an example result describing

why L2 error is a misleading metric that doesn’t allow for alternate future plans that are

otherwise viable. Additionally, Casas et al. [35] show that collision rate is a more consistent

metric between evaluation in the open- and closed-loop setups.

Planning on ONCE

Baseline: ONCE offers a massive amount of unlabeled, diverse LiDAR sweeps paired with

ego-vehicle trajectories and a small fully labeled subset of about 8K samples. We train a re-

implemented neural motion planner as a supervised baseline on the fully labeled subset. We train
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Emergent occupancy (8K) Emergent occupancy (94K)

Figure 3.9. Evolution of estimated emergent future occupancy.

our self-supervised approach over a wide range of training sizes, from 2K to 94K.

Figure 3.10. Planning performance vs. larger
ONCE training set size.

Main results: Perhaps unsurprisingly, our first

observation is that the metrics on ONCE are inflated

as compared to nuScenes, because of the diverse

range of environments ONCE features, ranging from

straight highways to complex city road structures.

To show the scalability of our approach on such

a diverse and large dataset, we plot the L2 error

and (box) collision rate at 3s as a function of the

amount of training data in Fig. 3.10. Both the L2

error and the collision rate of our approach continue

to improve as we increase the size of the training

set. In comparison, the supervised neural motion

planner achieves an L2 error of 4.45m and a box

collision rate of 2.54% at a training size of 8K.

At 94K training samples, our self-supervised approach achieves a dramatically lower L2 error

of 2.9m and a lower collision rate of 2.47%. Importantly, such scalability for motion planning

comes for free as our approach is self-supervised. We show some qualitative results on the

ONCE dataset in Fig. 3.8 where our approach is able to deal with a number of varying driving

scenarios; decelerate and stop when necessary, predict long trajectories when unoccupied regions

are predicted ahead, avoid collisions with other vehicles while navigating an intersection, or

stay stationary. Please refer to our supplement for further quantitative evaluation, visualization

of future cost maps and more qualitative examples that feature failure cases (e.g., forecasted

occupancy diffuses over time).
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Evolution of occupancy estimates: Our model tends to produce better estimates of emergent

occupancy as we increase the amount of training data. The percent of semantic object pixels

recalled from the ground-truth semantic object labels in our predicted occupancy map increases

from 51% to 59% at t=0s when we increase the amount of training data from 8K to 94K.

Qualitatively, this can be seen in Fig. 3.9 where the shape of two cars in the right lane looks

more “space-time complete” for the model trained with increased data.

3.5 Discussion

We propose emergent occupancy as a self-supervised and explainable representation for motion

planning. Our novel differentiable raycasting procedure enables the learning of occupancy forecast-

ing under the self-supervised task of LiDAR sweep forecasting. The raycasting setup also allows

us to decouple ego motion from scene motion, making forecasting an easier task for the network

to learn. Experimental results suggest that such decoupling is also helpful for downstream motion

planning. Such training at scale allows object shape, tracks, and multiple futures to “emerge” in

the predicted emergent occupancy.

3.6 Appendix

In this supplement, we discuss more details of our experimental setup in Sec. 3.6, discuss

supplementary evaluation of occupancy forecasting in Sec. 3.6 and analyse the quantitative and

qualitative performance of our motion planning architecture further in Sec. 3.6.

Experimental Setup

Network Architecture

Architecture Implementation We use the same neural network architecture as proposed by

Zeng et al. [358] and developed on by Hu et al. [117]. Different from these two networks, we use

two decoders, one that predicts the emergent occupancy cost maps, and one that predicts the

residual cost maps. The differentiable raycaster proposed by us acts as a layer over the occupancy

cost maps, that produces raycast sweeps for 7 future timesteps (accounting for three seconds in

the future).

Freespace is computed from these sweeps and it is used in 3 places in the network: (1) in

computing a dense per-pixel classification loss with the groundtruth freespace, (2) in computing
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the final cost maps which are a sum of the freespace and the residual cost maps, and (3) in

computation of the cost margin for the planning loss.

Input and output We follow the same input and output BEV data format as that used in Hu

et al. [117] for nuScenes, except that we now take input from [-2s, 0s]. For nuScenes, this means

20 input timestamps and a stack of 704× 400× 20 size. For ONCE, since the LiDAR sweeps are

collected at 2Hz, this stack is of size 704× 400× 5 to accomodate 2s of input data. The output of

the network for both the datasets is of size 704× 400× 7 to account for 3s of forecasts at a 0.5s

interval, starting at the 0th timestep. Each pixel in the BEV map covers an area of 0.2m× 0.2m.

To compute groundtruth freespace cost maps, we apply ground segmentation [102, 117] to the

output LiDAR sweep and raycast as described in the main paper.

Differentiable raycaster First, we collect a set of rays, with origin as the position of the

ego-vehicle in the world coordinate frame and endpoints as the endpoints in a groundtruth LiDAR

sweep. For a given ray (origin and direction), we find the voxels that the ray travels in the BEV

LiDAR scan using a fast voxel traversal algorithm proposed by Amanatides et al.[8]. Given all the

voxels along a ray, we perform a soft raycast along the ray as follows: we sample occupancy states

given the predicted occupancy probabilities, raycast to get free vs occluded space, and average

the raycasts over all samples. In practice, we do this analytically by computing the expectation,

as done by many prior works based on volume rendering [206].

Data-driven sampler

Following prior work that uses data-driven trajectory sampling techniques for evaluating the

performance in mapless driving scenarios [35], we curate a dataset of expert trajectories by

binning the trajectories in the train set by their velocity. Once this dataset is curated during

preprocessing, we use retrieval based on the past timestep’s speed and direction profiles to index

into the appropriate bin in the dataset. When a velocity is not available in the set of data-driven

trajectories, we compute the nearest speed and angle from the set, for a given sample. From

this nearest bin, we randomly sample 200 valid trajectories and append them to our set of 2000

model-based trajectories.

This approach avoids arbitrary choice of steering profiles for the ONCE dataset, since this

information in unknown in ONCE (note that this is available for nuScenes with the CAN bus

data). This is useful because in comparison to nuScenes, the ONCE dataset is composed of
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Figure 3.11. Distribution of train trajectories in nuScenes (left) and ONCE (right).

a complementary set of trajectories, as shown in Fig. 3.11. Using this data-driven trajectory

sampler in conjunction with the standard trajectory sampler gives us a complete coverage of

possible future trajectories, including the ones that appear the most in the ONCE dataset.

Occupancy Forecasting

We supplement the evaluation of occupancy forecasting on ONCE and nuScenes in the main

paper by providing complete results of Fig. 7 in Tab. 3.4. The unlabeled subsets of ONCE do not

include samples from the labeled train set. As described, increasing the amount of training data

directly impacts the improvement in performance. It is worth noting the performance difference

between the 8k set of ONCE-labeled and ONCE-unlabeled. The higher metrics on the labeled set

indicates that the ONCE labeled set is much higher quality and falls in the same data distribution

as compared to the val set. nuScenes training subsets also show increasing performance with

increase in data.

Motion Planning

Planning on ONCE

Quantitative Analysis This section supplements our results on the ONCE dataset from the

main paper. We show the complete results of Fig. 12 in Tab. 3.7. Note that as the amount

of data is increased during training, the L2 error and box collision rate decreases dramatically.
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Dataset Size |d−d̂|
d

(↓) BCE (↓) F1 (↑) AP (↑)

ONCE
2,000 0.336 0.109 0.649 0.776
4,000 0.260 0.102 0.711 0.814
8,000 0.243 0.097 0.787 0.827

2,000 0.598 0.246 0.376 0.493
ONCE 4,000 0.589 0.236 0.384 0.502

(unlabeled) 8,000 0.553 0.200 0.460 0.553
22,000 0.536 0.200 0.466 0.576
86,000 0.513 0.174 0.495 0.607

2,000 0.299 0.184 0.726 0.804
4,000 0.280 0.169 0.749 0.826

nuScenes 8,000 0.261 0.157 0.761 0.843
16,000 0.244 0.148 0.774 0.859
22,000 0.242 0.140 0.777 0.863

Table 3.4. Supplementary table for the evaluation of occupancy forecasting on ONCE-val and nuScenes-
val with models trained on different subsets of the ONCE labeled, unlabeled and nuScenes train set.

Even though box collision rate is a stricter metric than point collision rate, we see a consistent

trend in it at the longest horizon. Our best model beats the neural motion planner [358] baseline

described in the main paper. Note that such a baseline can only be trained with the labeled

training set of ONCE (with 8K samples), whereas all the raw unlabelled LiDAR logs in ONCE

can be used by our method since it is self-supervised.

We also conduct an ablative study of our approach on the ONCE dataset in Tab. 3.6. Note

that since the hyperparameters are not tuned for the ONCE dataset, the best performing method

on the Box Collision metric at 3s horizon is by Hu et al. [117]. Intuitively, this difference in

performance shows that the trajectories selected by our planner pass close to the objects in the

environment, such that they incur a box collision but not point collision. This is expected as even

though we outperform Hu et al. [117] on occupancy forecasting, the guided planning loss used

optimizes for point collision by summing per way-point occupancy cost instead of box collision,

on which we outperform all other methods at 3s horizon.

Ablations on training architecture

While we compute the predicted cost margin in the main paper by summing the egocentric-

freespace cost maps with the residual cost maps for an apples-to-apples comparison with Hu et

al.[117], a more natural training architecture for motion planning would sum up the occupancy
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Training L2 Error (m) Point Collision (%) Box Collision (%)

size 1s 2s 3s 1s 2s 3s 1s 2s 3s

8,000 0.84 2.26 4.45 0.00 0.04 1.06 0.04 0.14 2.54

2,000 1.97 4.37 8.18 0.07 0.39 1.84 0.77 2.36 5.05
4,000 1.13 2.79 5.33 0.00 0.04 1.02 0.14 0.81 3.43
8,000 1.00 2.33 4.43 0.00 0.04 0.74 0.04 0.28 2.79
22,000 0.71 1.87 3.62 0.00 0.14 1.06 0.04 0.39 2.65
94,000 0.56 1.49 2.90 0.00 0.04 0.99 0.00 0.39 2.47

Table 3.5. Planning metrics at different amount of training data on ONCE-val. First row corresponds to
our reimplementation of the neural motion planner [358] baseline described in the main paper.

Cost Mid Diff. L2 Distance (m) Point Collision (%) Box Collision (%)

Margin Task Raycast 1s 2s 3s 1s 2s 3s 1s 2s 3s

(a) - - - 0.61 1.64 3.33 0.00 0.00 1.02 0.00 0.42 2.47
(b) ✓ - - 0.80 2.12 4.15 0.00 0.00 0.78 0.00 0.18 1.84
(c) - ✓ - 0.89 2.40 4.78 0.00 0.04 1.63 0.00 0.35 3.85
(d) ✓ ✓ - 0.90 2.49 4.99 0.00 0.04 1.10 0.07 0.25 2.61
(e) ✓ ✓ ✓ 1.00 2.33 4.43 0.00 0.04 0.74 0.04 0.28 2.79

Table 3.6. Ablation studies on ONCE. Note that (a) is IL, (b) is FF, and (e) is Ours.

and residual cost maps during training, similar to the test-time architecture. Such an architecture

would compute egocentric-freespace only for self-supervision with the multi-task loss and use the

occupancy cost maps for motion planning. In Tab. 3.7, we evaluate training with this ablated

architecture. Note that since the occupancy cost maps are now optimized directly during training,

the performance across all metrics increases.

Limitations

We highlight a few limitations of our work. First, our self-supervised emergent occupancy does

not offer semantics (e.g., traffic light and lane information) that is crucial for urban navigation.

Despite this, we show that learning to drive with future occupancy is a safe fallback option

in industrial autonomous driving. Second, BEV occupancy by itself does not handle overhead

structures (e.g., trees, overpass); this may be mitigated by learning which occupied voxels are

‘passable’ during differentiable raycasting. Third, we rely on open-loop evaluation, where the

world (incorrectly) unfolds in the same manner as the expert trajectory. Although this can be
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3. Application to evasive motion planning

Dataset
Training L2 Error (m) Point Collision (%) Box Collision (%)

size 1s 2s 3s 1s 2s 3s 1s 2s 3s

nuScenes - 0.76 1.61 3.23 0.00 0.00 0.15 0.04 0.15 0.98

2,000 2.10 4.39 7.74 0.00 0.25 1.45 0.32 1.94 4.80
4,000 1.09 2.73 5.15 0.00 0.04 0.99 0.07 0.53 3.28

ONCE 8,000 0.87 2.24 4.32 0.00 0.00 0.78 0.04 0.25 2.37
22,000 0.71 1.92 3.74 0.00 0.28 1.02 0.07 0.67 2.65
94,000 0.50 1.32 2.61 0.00 0.04 0.71 0.00 0.21 1.94

Table 3.7. Evaluation of planning metrics on nuScenes and ONCE by adding the occupancy cost maps
to residual cost maps during training.

corrected in a closed-loop setup, with our work we show that optimizing for collision metrics, with

or without L2 error, can act as a proxy for learning to drive safe in real-world. Fourth, our method

assumes accurate ego-motion during training but does not require it at test time. Finally, as the

supplementary video highlights, our occupancy estimates diffuse over time, capturing multiple

futures. However, we posit that future occupancy can be made more robust by constraining it

with scene flow.
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Using foundational priors zero-shot
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Chapter 4

Large reconstruction models for object
tracking across occlusions

Publication information

Khurana, T., Dave, A. and Ramanan, D., 2021. Detecting invisible people. In Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV) pp. 3174-3184.

4.1 Introduction

Object detection has seen immense progress, albeit under a seemingly harmless assumption: that

objects are visible to the camera in the image. However, objects that become fully occluded

(and thus, invisible) continue to exist and move in the world. Indeed, object permanence is a

fundamental visual cue exhibited by infants in as early as 3 months [11, 124]. Practical autonomous

systems must similarly reason about such objects that undergo complete occlusions to ensure

safe operation (Figure 4.1). Interestingly, existing work on object detection and tracking tends

to de-emphasize this capability, either choosing to completely ignore highly-occluded instances

for evaluation [67, 181, 255, 333], or simply downweighting them because they occur so rarely

that they fail to materially affect overall performance [204]. One reason that invisible-object

detection may have been under-emphasized in the tracking community is that for offline analysis,

one can post-hoc reason about the presence of an occluded object by relinking detections after it

reappears. This approach has spawned the large subfield of reidentification (ReID). However, in
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4. Large reconstruction models for object tracking across occlusions

t = 0 t = 10 t = 15 t = 20

Figure 4.1. We visualize an online tracking scenario from Argoverse [39] that requires tracking a
pedestrian through a complete occlusion. Such applications cannot wait for objects to re-appear (e.g., as
re-identification approaches do): autonomous agents must properly react during the occlusion. We treat
online detection of occluded people as a short-term forecasting challenge.

an online setting (such as an autonomous vehicle that must make decisions given the available

sensor information), intelligent agents must be able to instantaneously reason about occluded

objects before they re-appear.

Problem formulation: We begin by introducing benchmarks and metrics for evaluating

the task of detecting and tracking invisible people. To do so, we repurpose existing tracking

benchmarks and introduce metrics for evaluating this task that appropriately reward detection of

occluded people. To ensure benchmarks are online, we forbid algorithms from accessing future

frames when reporting object states for the current frame. Although this task requires reasoning

about object trajectories, it can be evaluated as both a detection and a tracking problem. For

the latter, we introduce extensions to tracking metrics in the supplement. When analyzing our

metrics, it becomes readily apparent that human annotation of ground-truth occluded objects is

challenging. We provide pilot human vision experiments in Section 4.4 that show annotators are

still consistent, but exhibit larger variation in labeling the pixel position of occluded instances.

This suggests that algorithms for occluded object detection should report distributions over object

locations rather than precise discrete (bounding box) locations. Inspired by metrics for evaluating

multimodal distributions in the forecasting literature [39], we explore probabilistic algorithms

that make k predictions which are evaluated by Top-k accuracy.

Analysis: Perhaps not surprisingly, our first observation is that performance of state-of-the-

art detectors and trackers plummets on occluded people, from 68.5% to 28.4%; it is far easier

to detect visible objects than invisible ones! This underscores the need for the community to

focus on this underexplored problem. We introduce two simple but key innovations for addressing
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this task, which improve performance from 28.4% to 39.8%. (a) We recast the problem of online

tracking of occluded objects as a short-term forecasting challenge. We explore state-of-the-art

deep forecasting networks, but find that classic linear dynamics models (Kalman filters) perform

quite well. (b) Because modeling occlusions is of central importance, we cast the problem as one

of 3D tracking given 2D image measurements.

Novelty: While there exists considerable classic work on 3D tracking from 2D [26, 48, 249, 272],

much focuses on 3D modeling of tracked objects. Instead, we find that the 3D structure of

scene occluders is important for understanding where tracked objects can “hide”. Typically such

dense 3D understanding requires calibrated multiview sensors [64, 291]. Instead, we show that

recent advances in uncalibrated monocular depth estimation provide “good enough” estimates

of relative depth that still enable dense freespace reasoning. This is crucial because monocular

depth has the potential to be far more scalable [303]. To our knowledge, ours is the first work to

use uncalibrated depth estimates for multi-object tracking and detection of occluded objects.

Overview: After reviewing related work, we present our core algorithmic contributions,

including straightforward but crucial extensions to classic linear dynamics models to (a) incorporate

putative depth observations from a monocular network and (b) forecast object state even during

occlusions. We conclude with extensive evaluations on three datasets [55, 204, 302] repurposed

for detecting occluded objects.

4.2 Related Work

Amodal object detection aims to segment the full extent of objects that may be partially

(but not fully) occluded. [374] introduces this task with a dataset labeled by multiple annotators,

which is later expanded by [375]. More recently, [229] introduces a larger dataset of amodal

annotations on the KITTI [91] dataset. Approaches in this setting largely rely on training variants

of standard detectors (e.g. [100]) on amodal annotations generated synthetically from modal

datasets [62, 170, 336, 367]. As this line of work addresses detection from a single image, it

requires objects to be at least partially visible. By contrast, we target fully occluded people, which

cannot be recovered from a single frame.

Multi-object tracking requires tracking across partial and full occlusions. Approaches for

this task address occlusions post-hoc in an offline manner, using appearance-based re-identification

models to identify occluded objects after they become visible. These appearance-based models can

be incorporated into tracking approaches, as part of a graph optimization problem [16, 222, 355]
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or online linking [17, 319]. In this work, we point out that some approaches internally maintain

online estimates of the position of occluded people [17, 19, 319], but explicitly choose not to report

these internal predictions, as they tend to be noisy and, thus, are penalized heavily by current

benchmarks. We provide two simple extensions to these internal predictions that significantly

improve detection of occluded people while preserving accuracy on visible people. [93] tracks

occluded objects using contextual ‘supporters’, but requires a user to initialize a single object

to track in uncluttered scenes; by contrast, we simultaneously detect and track people in large

crowds.

Other work shares our motivation of tracking in 3D but relies on additional depth sensors [88]

or stereo setups [38, 128]. Finally, many surveillance-based tracking systems explicity reason

about object occupancy and occlusion, but require calibrated cameras to compute ground plane

coordinates [2, 74, 126, 146, 154]. By contrast, our work emphasizes detection of occluded people

in uncalibrated, monocular videos. To do so, we use monocular depth estimators via technical

innovations that address noise in predicted depth estimates. Our method generalizes to arbitrary

videos, since estimating monocular depth is far more scalable than retrieving additional sensor

information for any video.

Forecasting approaches predict pedestrian trajectories in future, unobserved frames. These

approaches leverage social cues from nearby pedestrians or semantic scene information to better

model person trajectories [158, 165, 197, 219, 263, 334]. Recently, data-driven approaches have

also been proposed for learning social cues [7, 250]. We note that detection of fully occluded

people can be formulated as forecasting the trajectory of a visible person in future frames, where

the positions of the occluded person are unobserved, but the rest of the frame can be observed.

Some approaches do use forecasting to track objects [73, 196] but we use a constant-velocity model

to forecast trajectories along with depth cues from the observed frames, to improve detection

of occluded people. In Section 4.4, we show that while this approach can use a more powerful

forecasting model, the constant-velocity approximation is sufficient in our setting.

4.3 Method

We build an online approach for detecting invisible people starting with a simple tracker, using

estimated trajectories of visible people to forecast their location during occlusions. We describe

our tracking mechanism, building upon [320]. While such trackers internally forecast the location

of occluded people for improved tracking, these forecasts tend to be noisy and cannot directly
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localize occluded people. To address this, we incorporate depth cues from a monocular depth

estimator to reason about occlusions in 3D.

Background To detect people during occlusions, we build on a simple online tracker [320] that

estimates the trajectories of visible people. We briefly describe aspects relevant to our approach,

but refer the reader to [320] for a more detailed explanation. In the first frame, this tracker

instantiates a track for each detected person. The tracker adds each track to its “active” set,

representing people that have been seen so far. Each track maintains a Kalman Filter whose

state space encodes the position (x, y), aspect ratio (a), height (h), and corresponding velocities

(ẋ, ẏ, ȧ, ḣ) of the person.The filter’s process model assumes a constant velocity model with gaussian

noise (i.e., xt = xt−1 + ˙xt−1 + ϵx). At each successive frame, the tracker first runs the predict step

of the filter, using the process model to forecast the location of the track in the new frame. Next,

each detection in the current frame is matched to this set of active tracks based on appearance

features, and distance to the tracks’ forecasted location (as estimated by the filter). A new track

is created for all detections that are unmatched. If a track is matched to a detection, the detection

is used as a new observation to update the track’s filter, and the detection is reported as part

of the track. Importantly, if a track does not match to any detection, its forecasted box is not

reported. When a track is not matched to a detection for more than Nage frames, it is deleted.

Short-term forecasting across occlusions Although this tracker internally forecasts the

positions of all tracks at each step, its estimates are used only to improve the association of

tracks to detections, and are not reported externally. However, these internally forecasted track

locations are crucial as they may correspond to an occluded person. We show that naively

reporting these track locations leads to significant recall of occluded people, but the noise in

these estimates results in poor precision. Further, these noisy estimates lead to a small decrease

in overall accuracy, as standard benchmarks largely focus on visible people. We improve these

estimates by augmenting them with 3D information. Specifically, we use a monocular depth

estimator [173] to get per pixel depth estimates of the scene. We then augment our Kalman Filter

state space with the inverse depth. Inverse depth is a commonly used representation predicted by

depth estimators [164, 173] due to important benefits, including the ability to represent points at

infinity and ability to model uncertainty in pixel disparity space (commonly used for stereo-based

depth estimation [212]). Our state space thus additionally includes 1/z variable.
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Figure 4.2. (a) Frame t− 1 has active tracks {1, 2, 3, 4}, each with an internal state of its 2D position,
size, velocity, and depth (see text). (b) We forecast tracks in 3D for frame t. (c) Tracks are matched to
observed detections at t using spatial and appearance cues. Matched tracks are considered visible (e.g.
1, 3). Tracks which don’t match to a visible detection (e.g. 2, 4) may be occluded, or simply incorrectly
forecasted. (d) To resolve this ambiguity, we leverage depth cues from a monocular depth estimator, to
compute (e) the freespace horizon. The region between the camera and the horizon must be freespace,
while the area beyond it is unobserved, and so may contain occluded objects. Tracks lying beyond the
freespace horizon are reported as occluded (e.g. 2). Tracks within freespace (e.g. 4) should have been
visible, but did not match to any visible detections. Hence, we assume these tracks are incorrectly
forecasted, and we delete them.

Tracking in 3D camera coordinates using 2D image coordinates Equipped with depth

estimates, we formulate tracking with a constant velocity model in 3D using 2D measurements.

Unlike prior work which assumes linear dynamics in (projected) 2D image measurements, our

dynamics model operates in 3D using depth cues, resulting in far more realistic person trajectories.

We derive our uncalibrated tracker by demonstrating that the unknown camera focal length f

can be folded into a motion noise parameter that can be easily tuned on a training set. Hence

our final method runs without calibration on arbitrary videos.

Let us model objects as cylinders with centroids (Xt, Yt, Zt), height H and aspect ratio At. We

model object height as constant, but allow for varying aspect ratios because people are non-rigid.

We can then compute image-measured bounding boxes with centroid (xt, yt) and dimensions

(ht, at) as follows:

xt = f
Xt

Zt

, yt = f
Yt

Zt

, ht = f
H

Zt

, at = At (4.1)

We extend the commonly used constant velocity model with Gaussian noise from 2D [19, 319]

to 3D:

Xt = Xt−1 + Ẋt−1 + ϵX , ϵX ∼ N(0, σX), (4.2)
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where similar equations hold for Yt, Zt and At. Let the observed (inverse) depth from a depth

estimator associated with an object be 1/zt. Since image measurements are given by perspective

projection of real world coordinates, we have the following equations (assuming Gaussian image

noise):

xt = f
Xt

Zt

+ ϵx, ϵx ∼ N(0, σx) (4.3)

1

zt
=

1

Zt

+ ϵz, ϵz ∼ N(0, σz) (4.4)

with similar equations for yt, ht, and at. Note that inverse depth naturally assumes a large

uncertainty in far away regions, and a small uncertainty in nearby regions. Defining a 3D state

space leads us to a modified formulation, written as
(

f Xt

Zt
, f Yt

Zt
, 1
Zt
, At, f

H
Zt
, f Ẋt

Zt
, f Ẏt

Zt
, Ȧt

)

. We can

therefore rewrite Equation (4.2) as:

f
Xt

Zt

≈ f
Xt

Zt−1

= f
Xt−1

Zt−1

+ f
Ẋt−1

Zt−1

+ f
ϵX
Zt−1

(4.5)

xt ≈ xt−1 + ẋt−1 + f
ϵX
Zt−1

(4.6)

where the approximation holds if depths are smooth over time (Zt ≈ Zt−1). Technically, the

above is no longer a linear dynamics model since the noise depends on the state. But the equation

suggests that one can approximately apply a Kalman filter on 2D image measurements augmented

with a temporal noise model that is scaled by the estimated inverse-depth of the object. Intuitively,

this suggests that one should enforce smoother tracks for objects far away. Our approach

thus scales the process noise (ϵX) for far away objects, leading to more accurate predictions.

Algorithmically, [320] by default scales process and observation noise covariances according to the

person’s height; our approach instead multiplies the process covariance by the person’s estimated

depth, computed by aggregating past monocular depth observations and state estimates over

time.

Assumptions. Because we do not assume calibrated cameras, we do not know f . Rather,

we make use of training videos provided in standard tracking benchmarks and simply tune

scaled variances σ′
X = fσX directly on the training set. We make two additional assumptions:

that people move with constant velocity in 3D, and that depth estimates are smooth over time.

Although these do not always hold in real world scenarios, we empirically find that our method

generalizes to diverse scenarios.

Filtering estimates lying in freespace. Equipping our state space with depth information
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allows us to forecast 3D trajectories. Meanwhile, applying a monocular depth estimator allows us

to determine regions in 3D space that are occluded to the camera without requiring calibration.

Specifically, if our approach forecasts a person at a point Pf = (xf , yf , zf), we can determine

whether Pf should be visible to the camera by estimating whether Pf lies in the freespace [64]

between the camera and its nearest occluder. In the filter stage in Figure 4.2, we visualize one

slice of the “freespace horizon”: points beyond this horizon are occluded, while points between

the camera and horizon are visible.

Concretely, let zo be the (observed) depth of the horizon at (xf , yf ). If the forecasted depth

(zf) lies closer to the camera than the horizon depth (zo), as with person “4” in Figure 4.2 (e),

then the person must be in the freespace between the camera and its closest object, and therefore

visible. If we do not detect this person, then we assume the forecast is an error, and either suppress

the forecasted box for the current frame (in the case of small errors, when zf < αsuppzo) or delete

the track entirely (for large errors, when zf < αdeletezo). A key advantage of this approach is

the ability to reason about occlusions arising not only from interactions between tracked people,

but also from natural occluders such as trees or cars. Section 4.4 shows that this modification is

critical for improving the precision of our trajectory forecasts.

Camera motion. Camera motion is challenging, as our approach assumes linear dynamics

for trajectories. To address this, we follow prior work (e.g., [17]) in estimating a non-linear pixel

warp W between neighboring frames which maps pixel coordinates (xt−1, yt−1) in one frame to

the next (xt, yt). This warp is then used to align boxes forecasted using frames up to t− 1 with

frame t. Note that this alignment assumes the motion of dynamic objects is small relative to the

scene motion, allowing for the use of an image registration algorithm [66]. Despite the simplicity

of this modification, we show in the supplement that it helps considerably for the moving camera

sequences. We also detail our algorithm with pseudo-code in the supplement. We proceed to an

empirical analysis of the task and prior methods, showing the benefits of each component of our

proposed approach.

4.4 Experiments

We first describe our proposed benchmarks, including the datasets and our proposed metrics for

evaluating the task of detecting occluded people. Next, we conduct an oracle study in Section 4.4

to analyze how well existing approaches can detect occluded people. We then compare our

proposed approach to these state-of-the-art approaches in multiple settings in Section 4.4. Finally,
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Figure 4.3. We visualize bounding boxes labeled by multiple (4) in-house annotators (left). During
small occlusions, annotators strongly agree. During large occlusions (less than 10% visible, last frame),
annotators still agree to a fair extent (average IoU overlap of 60%, right), but require temporal video
context. We use these to justify our Top-k evaluation and motivate our probabilistic tracking approach.

we analyze each component of our approach with a detailed ablation study in Section 4.4.

Dataset. Evaluating our approach is challenging, as most datasets do not annotate occluded

objects. The MOT-17 [204], MOT-20 [55] and PANDA [302] datasets are key exceptions which

label both visible and occluded people, along with a visibility field indicating what portion of the

person is visible to the camera. We find that a majority of the annotations in these datasets (over

85% in each dataset) are people that are at least partially visible, leading standard evaluations

on these datasets to underemphasize occluded people. To address this, we separately evaluate

accuracy on the subset of fully occluded people (indicated by < 10% visibility). MOT-17 contains

7 sequences with publicly available groundtruth, and 7 test sequences with held-out groundtruth.

We evaluate on these 14 sequences. MOT-20 contains 8 sequences, of which 4 have held-out

groundtruth. PANDA officially releases a high-resolution 2FPS groundtruth for its 10 train and

5 test sequences. Because tracking and forecasting is challenging at such low frame rates, we

reached out to the authors who provided a high-frame rate (30FPS), low-resolution groundtruth

for 9 train videos. We report results on MOT-20 and PANDA train set without tuning our

pipeline on any of the videos in these datasets. From visual inspection, we found that visibility

labels in PANDA tend to be noisy (see the supplement), and so we define objects with up to

33% visibility as occluded. We carry out the analysis including oracle and ablation study on

MOT-17 train and report the final results on MOT-17 test, MOT-20 and PANDA datasets. In

all, these three datasets target a diverse set of application scenarios – static surveillance cameras,

car-mounted cameras, and hand-held cameras.

Metric. As most benchmarks consist primarily of visible people, existing metrics which

measure performance across all people underemphasize the accuracy of detecting occluded people.

We propose detection and tracking metrics (see supplement for latter) which evaluate accuracy
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Detections Tracks Occl Strat Online?
Top-5 Top-1 F1

Occl F1 Occl Prec Occl Rec All F1 Occl All

Groundtruth (vis.) Groundtruth Interpolate ✗ 87.3 ±0.1 83.8 ±0.2 91.1 ±0.1 98.0 ±0.0 79.8 96.8
Faster R-CNN Groundtruth Interpolate ✗ 46.4 ±0.1 65.5 ±0.1 35.9 ±0.1 70.5 ±0.0 34.4 68.1

Groundtruth (vis.) DeepSORT Interpolate ✗ 53.3 ±0.2 86.7 ±0.1 38.5 ±0.2 92.3 ±0.0 44.4 92.0
Faster R-CNN DeepSORT Interpolate ✗ 32.2 ±0.0 60.8 ±0.2 21.9 ±0.0 69.9 ±0.0 23.2 68.4

Faster R-CNN DeepSORT Forecast ✓ 29.8 ±0.2 29.5 ±0.4 30.2 ±0.1 69.4 ±0.0 20.9 66.5

Table 4.1. Oracle ablations on MOT-17 train reporting Top-5 F1 and Top-1 F1 for occluded and all
people, using Faster R-CNN detections. ‘Occl strat’ stands for Occlusion Strategy. We report the Top-5
mean and standard deviation for 3 runs.

on occluded people, as indicated by visibility < 10% and on all (visible and invisible) people.

Since localizing fully-occluded people involves higher positional uncertainty than visible people,

we allow algorithms to predict k potential locations for each person.

Top-k F1: We start by modifying the standard detection evaluation protocol [67, 181].

For every person, we allow methods to report k predictions, P = {p1, p2, . . . , pk}. We match

these predictions to all groundtruth boxes based on intersection-over-union (IoU). We define the

overlap between a groundtruth g and P as the maximum overlap with the predictions pi in P

— , IoU(g, P ) = maxiIoU(g, pi). We use this overlap definition and perform standard matching

between predictions and groundtruth, with a minimum overlap threshold of αIoU .

When evaluating accuracy across all people, matched groundtruth boxes are true positives

(TP), all unmatched groundtruth are false negatives (FNs, or misses), and unmatched detections

are false positives (FP). When evaluating accuracy on occluded people, only matched occluded

groundtruth boxes count as TPs, only unmatched occluded groundtruth boxes count as FNs, and

all unmatched detections count as FPs. Intuitively, when evaluating metrics for occluded people,

we do not penalize a detector for correctly detecting a visible person, but we do penalize it for

false positives that do not match any visible or occluded person.

We now describe how the k-vector of predictions is obtained: in addition to a state mean

(first sample), our probabilistic method maintains covariances for x and z state variables which

result in a 2D gaussian. Since these gaussians may extend incorrectly into freespace, we perform

rejection sampling to accumulate k-1 predictions which respect freespace constraints. This gives

us P . For baseline methods that are not probabilistic or do not have access to a depth map, we

artificially simulate this distribution by tuning two scale factors that control the size of gaussians

as a function of a bounding box’s height. We tune these scale factors on MOT-17 train and use
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them throughout experiments.

Top-1 F1: When k = 1, this metric is simply the standard F1 metric. We additionally

report this Top-1 F1 for occluded and all people. We do not use the standard ‘average precision’

(AP) metric as most detectors and trackers on the MOT and PANDA datasets do not report

confidences.

IDF1: To evaluate tracking, we report the standard IDF1 metric and also modify it for

evaluating occluded people. Specifically, we divide the groundtruth tracks into visible and occluded

segments, and perform matching only on the occluded segments. Once the tracks are matched,

we compute IDTP as the number of matched occluded boxes, IDFP as the number of unmatched

occluded or visible predictions, and IDFN as the number of unmatched occluded groundtruth

boxes. We similarly modify MOTA in the supplement.

To guide evaluation, we conduct a human vision experiment with 10 in-house annotators who

annotate 59 tracks with occlusions. Figure 4.3 shows that annotators have lower consistency when

labeling occluded people than visible people. To address this ambiguity in localizing occluded

people, we choose a low αIoU = 0.5 and k = 5 in our experiments.

Implementation details. We empirically set parameters in our approach on MOT-17 train

with Faster R-CNN [246] detections. The optimal thresholds for filtering forecasts on the train

set are αdelete = 0.88, αsupp = 1.061. During occlusion we treat a person as a point, freezing

its aspect ratio and height. We fix Nage to 30. The supplement presents further details of our

method, parameters and their tuning protocol, including improvements by tuning Nage. We tune

on MOT-17 train and apply these tuned parameters on MOT-17 test, MOT-20, and PANDA. We

find that our method and its hyperparameters tuned on the train set generalize well to the test

set. We use [173] for monocular depth estimates, which has been shown to work well in the wild.

While these estimates can be noisy, we qualitatively find that the relative depth orderings used in

our approach are fairly robust.

What is the impact of visible detection on occluded detection? We first evaluate

an offline approach which uses groundtruth detections and tracks for visible people to (linearly)

interpolate detections for occluded people in Table 4.10. As this method perfectly localizes visible

people, and most people in this benchmark are visible, it achieves a high overall Top-5 F1 of

98.0 (Table 4.10, row 1). Additionally, despite using simple linear interpolation, this oracle

also achieves a high Top-5 F1 of 87.3 for invisible people. This result indicates that although

1Note that αsupp > 1 allows the forecasted depth to be closer to the camera than the observed depth, accounting
for potential noise in the depth estimator to reduce the number of forecasts that are suppressed.
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long-term forecasting of pedestrian trajectories may require higher-level reasoning [165, 197, 263],

short-term occlusions may be modeled linearly.

Next, we evaluate the same approach with detections from a Faster R-CNN [246] model in

place of groundtruth (Table 4.10, row 2). This leads to a significant drop in both overall and

occluded accuracy, indicating that improvements in visible person detection can improve detection

for invisible people. Finally, although Occluded Top-5 F1 drops, it is significantly above chance,

suggesting that current detectors equipped with appropriate trackers can detect invisible people.

What is the impact of tracking on occluded detection? So far, we have assumed oracle

linking of detections, allowing for linear interpolation of bounding boxes to detect people through

occlusion. We now evaluate the impact of using an online tracker, equipped with re-identification,

on detecting occluded people. Removing the oracle results in a drastic drop in accuracy: the

Top-5 F1 score for occluded people drops by over 30 points (87.3 to 53.3, Table 4.10 row 3) using

groundtruth detections, and 14 points with Faster R-CNN detections (46.4 to 32.2, Table 4.10

row 4). Despite this significant drop in Occluded Top-5 F1, the overall Top-5 F1 is significantly

more stable (from 98.0 to 92.3 for groundtruth detections and 70.5 to 69.9 for Faster R-CNN),

showing that overall person detection and tracking underemphasizes the importance of detecting

occluded people.

Can online approaches work? These results indicate that in the offline setting, existing

visible-person detection and tracking approaches can detect invisible people via interpolation.

We now evaluate a simple online approach, which uses an off-the-shelf visible person detector

(Faster R-CNN), equipped with a tracker (DeepSORT) and linear (constant velocity) forecasting

for detecting invisible people (Table 4.10, row 5). Moving to an online setting results in a similar

Top-5 F1 score but significantly reduces the precision for occluded persons, from 60.8 to 29.5.

This is expected as even though linear forecasting recalls slightly more number of boxes than

offline interpolation (recall from 21.9 to 30.2), its naive nature results in many more false positives

resulting in a much lower precision and therefore, a similar F1 score. In Section 4.4, we present

simple modifications to this approach that recover much of this performance gap.

Comparison to Prior Work Next, we apply our approach to the output of existing methods

to evaluate its improvement over prior work. Table 4.11 shows results on the MOT-17 train set,

showing our approach improves significantly in Occluded Top-5 F1 ranging from 6.0 to 13.0 points,

while maintaining the overall F1. Detecting invisible people requires reliable amodal detectors

for visible people (ref. Section 4.4). For this reason, we use visible groundtruth detections from
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Top-5 F1 Top-1 F1

Occl All Occl All

M
O
T
-1
7

DPM [71] 17.2 46.7 13.2 46.5
+ Ours 24.6 (+7.4) 49.3 (+2.6) 17.4 48.4
FRCNN [246] 28.4 68.5 20.1 67.4
+ Ours 39.8 (+11.4) 70.5 (+2.0) 26.7 68.5
SDP [338] 45.2 80.5 35.8 79.8
+ Ours 51.2 (+6.0) 80.8 (+0.3) 38.5 79.4
Tracktor++ [17] 32.4 77.0 22.7 76.8
+ Ours 45.4 (+13.0) 77.2 (+0.2) 33.2 76.5
MIFT [123] 37.8 75.9 29.9 75.1
+ Ours 44.9 (+7.1) 75.6 (-0.3) 33.8 74.3
CTrack [372] 38.7 84.8 29.4 84.2
+ Ours 47.9 (+9.2) 84.4 (-0.4) 36.4 83.4

M
O
T
-2
0 FRCNN 42.5 71.2 27.5 70.7

+ Ours 46.1 (+3.6) 71.5 (+0.3) 28.6 70.9

P
A
N
D
A GT (visible) 45.5 90.6 30.5 90.5

+ Ours 49.5 (+4.0) 90.5 (-0.1) 34.1 90.3

Table 4.2. Results on MOT-17 [204], MOT-20 [55] and PANDA [302] train. We evaluate on public
detections provided with MOT-17 (DPM, FRCNN, SDP), two trackers that operate on public detections
(Tracktor++, MIFT), and CenterTrack which does not use public detections. We use (public FRCNN,
visible groundtruth) detections for (MOT-20, PANDA). Our method improves on occluded people across
all trackers.

PANDA, similar to the oracle experiments in Section 4.4, as no public set of amodal detections

come with PANDA (unlike MOT-17 or MOT-20). Table 4.11 shows that our method improves

the detection of occluded people by 4.0% on PANDA using groundtruth visible detections and

by 3.6% on MOT-20 using the Faster-RCNN public detections. We explicitly do not tune our

hyperparameters for these two datasets, showing that our method is robust to changes in video

data distribution. MOT-20 and PANDA contain a few sequences with top-down views, where

occlusions are rare. We disable our depth and occlusion reasoning on such sequences; please see

supplement.

As MOT-17 and MOT-20 test labels are held out, we worked with the MOTChallenge authors

to implement our metrics on the test server. Table 4.12 shows that MIFT2[123] and Tracktor++

[17] achieve the highest Occluded Top-5 F1 amongst prior online approaches on MOT-17 and

MOT-20 test respectively. Applying our approach on top of these methods improves results

2MIFT is referred to as ISE MOT17R on the MOT leaderboards
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Top-5 F1 Top-1 F1

Occl All Occl All

M
O
T
-1
7

Ours 43.4 76.8 31.4 75.6
MIFT [123] 38.4 77.3 29.7 76.7
UnsupTrack [137] 35.9 78.1 26.6 77.4
GNNMatch [217] 35.2 74.3 26.3 73.7
GSM Tracktor [188] 35.4 73.8 26.2 73.2
Tracktor++ [17] 33.3 73.3 24.8 73.0

M
O
T
-2
0 Ours 46.9 76.7 33.3 75.2

Tracktor++ [17] 44.2 76.0 34.2 75.3
UnsupTrack [137] 41.7 71.4 30.9 70.8
SORT20 [320] 38.5 65.2 27.3 63.6

Table 4.3. Results on MOT-17 and MOT-20 test set. The best, second-best and third-best methods are
highlighted.

significantly by 5.0% to 43.4 F1 and by 2.7% to 46.9 F1, leading to a new state-of-the-art for

occluded person detection on MOT-17 and MOT-20 test.

Table 4.11 shows that our method consistently improves occluded F1. However, it sometimes

results in a drop in overall accuracy. We attribute this to the increased number of false positives

introduced while tackling the challenging task of detecting invisible people. These false positives

for invisible people are counted as false positives for all people, whether visible or invisible.

This causes existing metrics to penalize methods for even trying to detect invisible people. In

safety critical applications, where worst-case accuracy may be more appropriate, our approach

significantly improves during complete occlusions by up to 13.0% on MOT-17, while mildly

decreasing average accuracy by 0.4%.

Ablation Study We now study the impact of each component of our approach in Table 4.4,

focusing on the Occluded Top-5 F1 metric using Faster R-CNN detections on the MOT-17 train

set. First, we show that the DeepSORT tracker, upon which our approach is built, results in

a 28.4 Occluded Top-5 F1. Reporting the internal, linear forecasts from the tracker increases

the score to 29.8, driven primarily by a 12.5% improvement in recall. Compensating for camera

motion provides another 2.4% improvement. Next, leveraging depth cues to incorporate freespace

constraints, as detailed in Section 4.3, improves accuracy by 3.5%, driven primarily by a 14.6%

jump in precision, indicating that this component drastically reduces false positives. Finally,

70



4. Large reconstruction models for object tracking across occlusions

Figure 4.4. Our probabilistic model reports a distribution over 3D location during occlusions. We visualize
(occluded, visible) detection with (outlined, filled-in) bounding boxes (top). We provide “birds-eye-view”
top-down visualizations of Gaussian distributions over 3D object centroids with covariance ellipses
(bottom). During occlusion, variance grows roughly linearly with the number of consecutively-occluded
frames. We are also able to correctly predict depth of occluded people in the top down view, e.g. in the
second last frame, which would not be possible with single-frame monocular depth estimates. During
evaluation, we truncate the uncertainty using our freespace estimates (not visualized). Please refer to
the supplement video.

we add depth-aware process noise to handle perspective transformations between 2D and 3D

coordinates, which leads to an improvement of 4.1%, resulting in a final score of 39.8. Only a 1.0%

improvement in F1 as compared to 4.1% with Top-5 F1 suggests that our uncertainty estimates

are significantly improved by the depth-aware process noise scaling. In all, our approach leads

to an improvement of 11.4% over the baseline. Figure 4.4 presents a sample result from our

approach, where the person in the green bounding box is detected throughout two full occlusion

phases, marked with an unfilled box.

One concern with our approach might be that the average depth inside a person’s bounding

box may contain pixels from the background or an occluder. To verify the impact of this, we

evaluate a variant where we use segmentation masks for all the bounding boxes in MOT-17’s

FRCNN public detections using MaskRCNN [100]. We initialize the z state variable in the model

with the average depth inside this mask. On doing so, the Top-1 occluded F1 increases from

26.7 to 27.3, indicating that masks can help with estimating the person’s depth, but boxes are

a reasonable approximation. We kindly refer the reader to our supplement for further ablative

analysis, including an analysis of more recent depth estimators, ablations on moving stationary

sequences, and failure cases (in supplementary video).

Forecasting: We evaluate replacing our linear forecaster with state-of-the-art forecasters. We
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Top-5 Top-1 F1

Occl F1 Occl Prec Occl Rec All F1 Occl All

DeepSORT 28.4 ±0.1 71.9 ±0.2 17.7 ±0.1 68.5 ±0.0 20.1 67.4
+ Forecast 29.8 ±0.2 29.5 ±0.4 30.2 ±0.1 69.4 ±0.0 20.9 66.5
+ Egomotion 32.2 ±0.2 33.1 ±0.3 31.3 ±0.1 70.4 ±0.0 23.2 67.9
+ Freespace 35.7 ±0.0 47.7 ±0.1 28.6 ±0.0 70.4 ±0.0 25.7 68.4
+ Dep. noise 39.8 ±0.2 52.6 ±0.6 32.0 ±0.0 70.5 ±0.1 26.7 68.5

Table 4.4. MOT-17 train ablations. Each row adds a component to the row above. ‘Dep. noise’ is
depth-aware noise.

supply these forecasters with a birds-eye-view representation of visible person trajectories. As these

forecasters forecast only the birds-eye-view (x, z) coordinates, we rely on our approach’s estimates

of the height, width, and y coordinate. We evaluate two trajectory forecasting approaches for

crowded scenes, Social GAN (SGAN) [98] and STGAT [125]. SGAN and STGAT result in

Occluded Top-5 F1 scores of 36.0 and 36.4 respectively. While this improves over the baseline

at 28.4, it underperforms our linear forecaster at 39.8. This suggests that simple linear models

suffice for short, frequent occlusions. We refer the reader to the supplement for more details and

analysis.

4.5 Discussion

We propose the task of detecting fully-occluded objects from uncalibrated monocular cameras in

an online manner. Our experiments show that current detection and tracking approaches struggle

to find occluded people, dropping in accuracy from 68% to 28% F1. Our oracle experiments

reveal that interpolating across tracklets in an offline setting noticeably improves F1, but the task

remains difficult because of large occlusions. We propose an online approach that forecasts the

trajectories of occluded people, exploiting depth estimates from a monocular depth estimator to

better reason about potential occlusions. Our approach can be applied to the output of existing

detectors and trackers, leading to significant accuracy gains of 11% over the baseline, and 5%

over state-of-the-art. We hope our problem definition and initial exploration of this safety-critical

task encourages others to do so as well.
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4.6 Appendix

In this supplement, we provide further analysis of our method and implementation details of our

experiments. We present additional ablation studies of our method and extend our detection

evaluation to tracking to use the popular IDF1 and MOTA (multi-object tracking accuracy)

metrics. We also provide details regarding our human vision experiment, which analyzes people’s

ability to detect and localize highly occluded objects and discuss the experimental setup for

PANDA and MOT-20 datasets, and Section 4.6 reports the runtime and presents pseudocode of

our final depth-aware tracking algorithm.

Ablation Study In this section, we analyze the impact of using different depth estimators

(Section 4.6), segmentation masks in place of bounding boxes for estimating average depth

(Section 4.6), more sophisticated forecasters (Section 4.6), the performance of our method on

moving stationary cameras (Section 4.6), and, finally, the importance of different hyperparameters

(Section 4.6).

Monocular Depth Estimators Our method relies on an off-the-shelf monocular depth es-

timator to enable occlusion reasoning in 3D. In our main paper, we used the MegaDepth [173]

estimator throughout our experiments. Here, we evaluate whether recent advances in monocular

depth estimation provide more reliable relative depth estimates of people as used by our method.

Specifically, we replace the MegaDepth estimator with the MannequinChallenge [174] and MI-

DAS [164] depth estimators in our method. We evaluate on MOT-17 using the Faster-RCNN

set of public detections, and set all hyperparameters in our pipeline to their default values and

disable the depth-aware noise scaling. This simple variant of our pipeline allows us to evaluate

the quality of depth estimates from each of the three methods. Table 4.5 shows that the per

frame depth estimator from Mannequin Challenge [174] does worse than MegaDepth [173] by

1.2 Top-5 F1 for invisible people and MIDAS [164] similarly does worse by 1.0 point. By the

standard Top-1 F1 metric, these estimators degrade accuracy by 1.2 and 0.2 points respectively.

As this simple variant of our pipeline is aimed at evaluating the relative depth orderings output

from the depth estimators, these results suggest that while these depth estimators have become

more accurate and generalizable over the years, the relative depth orderings of objects has not

significantly improved.
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Top-5 F1 Top-1 F1 IDF1

Depth est. Occl All Occl All Occl All

MegaDepth [173] 35.4±0.2 69.8±0.0 26.7 68.4 9.5 53.3
Mannequin [174] 34.2±0.2 69.4±0.0 25.5 68.0 8.5 53.3
MIDAS [164] 34.4±0.1 69.5±0.0 26.5 68.2 9.1 53.8

Table 4.5. Comparison of monocular depth estimators used in our pipeline. More recent depth estimators
do not seem to provide more reliable relative depth orderings, which are used by our method.

Top-5 F1 Top-1 F1 IDF1

Depth Res. Occl All Occl All Occl All

MIDAS 1x 34.4±0.1 69.5±0.0 26.5 68.2 9.1 53.8
MIDAS 2x 35.5±0.2 70.0±0.0 27.0 68.5 9.8 53.9
MIDAS 3x 37.5±0.2 69.9±0.0 27.0 68.2 10.8 53.9

Table 4.6. We evaluate a recent depth estimator, MIDAS [164], at varying input resolutions. At higher
resolutions (3x), the estimator improves Top-5 F1 by 3.1 points, suggesting higher resolutions can
improve depth estimates, likely by providing more reliable relative depths for faraway pedestrians.

Since monocular depth estimators can take as input images of varying sizes, we evaluate the

effect of using higher resolution images as input to the estimator. Using a higher resolution input

can increase the size of smaller objects in the scene (e.g., people far away), potentially allowing

depth estimators to output more precise depth estimates. We evaluate using higher resolutions as

input with the MIDAS [164] estimator in Table 4.6. By default, we resize images to a resolution

of 512×384 pixels (‘1x’, the resolution MIDAS is trained with) from their original resolution of

1920×1080. We evaluate MIDAS [164] at 2× and 3× this default resolution and find in that

doing so improves the Top-5 F1 for invisible peopleby 3.1%. We note here that this is not the

case with the other two depth estimators [173, 174] whose performance decreases or stagnates

with higher resolutions (not shown).

Boxes vs Masks

Our method estimates a person’s depth by taking the average of the depth estimates within

the person’s bounding box. However, these pixels may contain background regions, leading to

incorrect depth estimates. To address this, we evaluate a variant which uses an off-the-shelf

instance segmentation method to only compute the average depth within a predicted person mask.
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Top-5 F1 Top-1 F1 IDF1

Occl All Occl All Occl All

Boxes 39.8 ±0.2 70.5 ±0.1 26.7 68.5 10.5 54.8
Masks 40.6±0.3 71.3±0.0 27.3 69.1 11.0 54.7

Table 4.7. Replacing boxes by masks for getting mean depth of a person only helps by a small amount
suggesting that boxes can reasonably replace masks.

To do this, we pass the Faster R-CNN public detections from MOT-17 as proposals into the mask

head of Mask R-CNN [100]. Occasionally, this instance segmentation method may fail to produce

a reasonable mask for a person. We design a simple strategy for detecting a common failure case:

if the output segmentation mask covers less than 25% of the bounding box (in cases where the

people are too small or out-of-distribution), we discard the predicted mask and treat the full

bounding box as the mask. We do not use masks for the forecasted boxes of occluded people,

as these boxes cover unknown occluders. In Table 4.7, we find that masks modestly help our

method, increasing Top-5 and Top-1 F1 by 0.6 and 0.8 points for occluded people. Interestingly,

we also see an increase in overall F1 by the same amount.

Forecasting Approaches

As described in the main paper, we use a constant velocity forecaster in our probabilistic approach.

In Sec 4.3, we showed that replacing our our simple linear forecaster with more sophisticated

state-of-the-art forecasters that exploit social cues did not improve performance. Here, we provide

implementation details for these experiments, and analyze different variants. The approaches

discussed in the main paper, SGAN [98] and STGAT [125] are supplied the top-down views

from our algorithm. Both SGAN and STGAT forecast 20 samples and then choose the closest

trajectory to the groundtruth from these 20. This advantage is not feasible for an online approach

where groundtruth cannot be supplied to the algorithm. To simulate the online setting, we sample

the mean trajectory from these approaches by requesting the trajectory corresponding to the zero

noise vector. We calculate an approximate average scale factor of 20.0 between the trajectory

values learnt by these models and the trajectory values available for input from our method,

which we use to scale down our input values. Additionally, each of these methods has an 8- and

12-timestep forecasting model. In the main paper, we report the best of these models for both

approaches and report other models in Table 4.8. For STGAT, the 8- and 12-timestep models
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Top-5 F1 Top-1 F1 IDF1

Occl All Occl All Occl All

S
in
gl
e

SGAN-8 35.4±0.2 70.2±0.0 24.6 67.8 8.9 54.3
SGAN-12 35.0±0.1 70.1±0.0 24.2 67.7 8.7 54.2
STGAT-8 35.1±0.1 70.1±0.0 24.5 67.6 8.6 54.3
STGAT-12 35.6±0.2 70.3±0.0 24.7 67.9 9.1 54.4

M
u
lt
i

SGAN-8 36.0±0.2 70.3±0.0 24.8 67.9 9.2 54.4
SGAN-12 36.0±0.3 70.3±0.0 24.9 67.9 9.3 54.4
STGAT-8 36.2±0.3 70.3±0.0 24.5 67.8 8.8 54.3
STGAT-12 36.4±0.1 70.4±0.0 24.8 67.9 9.2 54.4

Table 4.8. MOT-17 train forecasting ablations with state-of-the-art social forecasting models.

used are trained on the ETH [219] dataset and for SGAN, the 8- and 12-timestep models are

trained on the ZARA1 [169] dataset. Each of these models is made to predict for 30-timesteps

by supplying the last 8 forecasted timesteps iteratively. The occlusion phase may not last 30

timesteps for all people. We therefore use the information from our pipeline about the number of

occluded timesteps and replace the x and z values from the output of our pipeline with SGAN

and STGAT’s forecasted x and z values. In Table 4.8, we additionally report the performance of

the methods when we provide past trajectories of multiple people as input, allowing the method

to leverage social cues. For the Top-5 evaluation, we use the blind baseline described in Sec. 4

of our main paper. The conclusion remains that simple linear models suffice for short, frequent

occlusions as our approach always performs better than any of the social forecasting settings of

SGAN and STGAT.

Moving vs Stationary Camera Sequences

In the MOT-17 dataset, 3 camera sequences are stationary and 4 are captured from a moving

camera. We separately study the effect of using different components of our pipeline on these

sets of camera sequences. Table 4.9 shows that compensating for camera egomotion and filtering

estimates lying in freespace helps the moving camera sequences by 4.5% and 4.0% Occluded

Top-5 F1 respectively while for the stationary camera sequences, enforcing smoother tracks for

faraway objects and filtering freespace estimates helps by 3.6% and 2.0% F1 respectively.
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Top-5 Top-1 F1 IDF1

Occl
F1

Occl
Prec

Occl
Rec

All
F1

Occl All Occl All

Moving sequences

DeepSORT 27.3 ±0.3 49.7 18.8 72.4 ±0.0 17.3 67.0 2.2 56.5
+ Forecast 21.3 ±0.1 15.4 34.6 68.4 ±0.1 13.3 63.6 5.6 50.2
+ Egomotion 25.8 ±0.0 19.4 38.7 71.3 ±0.0 17.1 66.9 8.7 53.2
+ Freespace 29.8 ±0.3 28.0 31.8 72.8 ±0.0 19.9 69.2 9.4 55.2
+ Dep. noise 34.3 ±0.1 32.8 35.9 73.3 ±0.1 20.2 69.4 9.8 55.9

Stationary sequences

DeepSORT 29.2 ±0.1 94.0 17.3 66.2 ±0.0 21.7 65.9 1.1 55.0
+ Forecast 39.1 ±0.4 62.2 28.5 70.2 ±0.0 28.7 68.6 10.1 55.4
+ Egomotion 38.0 ±0.1 60.2 27.8 69.8 ±0.0 28.5 68.5 9.6 55.3
+ Freespace 40.0 ±0.0 76.1 27.1 68.9 ±0.0 30.3 67.9 10.0 54.9
+ Dep. noise 43.6 ±0.3 78.7 30.2 68.8 ±0.0 31.4 67.9 11.2 54.1

Table 4.9. MOT-17 train ablations for moving stationary camera sequences.

Hyperparameter tuning We describe a few parameters of our approach and how to tune

them, in addition to the ones described in the paper. The Nage parameter in our pipeline controls

the number of frames that an occluded track is forecasted for before it is deleted. We show

in Figure 4.5 that the DeepSORT baseline is largely invariant to this parameter, as it does

not report its internal forecasts. Reporting these estimates, whether directly (corresponding to

‘DeepSORT+Forecast’) or with our approach (corresponding to ‘Our Pipeline’), highlights the

impact of the parameter. This behaviour results in a precision-recall ‘curvelet’ which shows that

by increasing Nage, we can trade-off the precision and recall for invisible people detection. The

difficulty of this task can be highlighted by the trend that increasing Nage hardly increases recall

beyond a point but instead decreases precision dramatically because of the introduction of many

false positive boxes in the scene. We use the number of frames as a surrogate for uncertainty, as

we find that this correlates well with the uncertainty estimated by the Kalman Filter, as shown

in Figure 4 in the main paper.

We use a hyperparameter fprocess to scale the process noise covariance (refer Section 3.3 in

the main paper). We additionally scale the observation noise covariance by fobservation to account

for the removal of default scaling by height of [320]. In our algorithm, we use fprocess = 900 and

fobservation = 600.
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Figure 4.5. Detecting occluded people is sensitive to the threshold used to declare a detection-under-
high-occlusion. We fix the number of Nage frames that a track is allowed to be in an occluded state.
By increasing Nage, we can tradeoff precision and recall in invisible-people-detection which results in a
“PR-curvelet”. The curvelets represent the experiments in rows 1, 2 and 5 of Table 4 in the main paper.

IDF1-Occluded & MOTA-Occluded In the main paper, we report detection results using

the probabilistic and standard F1 metrics. Here, we supplement these results with the IDF1 and

MOTA (Multi-Object Tracking Accuracy) tracking metrics [18]. To do this, we follow the strategy

in the main paper: We do not penalize tracks that match to visible people, but we reward only

tracks that match to occluded people.

IDF1: To evaluate tracking, we report the standard IDF1 metric and also modify it for

evaluating occluded people. Specifically, we divide the groundtruth tracks into visible and occluded

segments, and perform matching only on the occluded segments. Once the tracks are matched,

we compute IDTP as the number of matched occluded boxes, IDFP as the number of unmatched

occluded or visible predictions, and IDFN as the number of unmatched occluded groundtruth

boxes. In Tables 4.10, 4.11, 4.12, 4.13, we show that we improve the tracking of occluded

people by a large margin (upto 14.3%) while maintaining the overall tracking performance. The

conclusions in all cases remain the same as the detection metrics, except for the peculiar case of

PANDA where we see an 8.1% drop in the overall IDF1 metric. We attribute this to the small

size of people in PANDA and the top-down camera viewpoint which changes the distribution of

the depth estimates returned by the monocular depth estimator. By tuning noise parameters to
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Detections Tracks Occl Strat Online?
IDF1

Occl All

Groundtruth (vis.) Groundtruth Interpolate ✗ 77.8 96.7
Faster R-CNN Groundtruth Interpolate ✗ 20.5 67.4

Groundtruth (vis.) DeepSORT Interpolate ✗ 21.3 81.0
Faster R-CNN DeepSORT Interpolate ✗ 6.4 53.3

Faster R-CNN DeepSORT Forecast ✓ 7.6 53.3

Table 4.10. Supplementary oracle ablations on MOT-17 train.

adapt to this new distribution, we can recover 6.9% of this drop.

MOTA: In addition to reporting standard MOTA, we modify it for occluded tracks by counting

detections matched to occluded groundtruth as true positives (TP), unmatched detections as false

positives (FP), and unmatched groundtruth as false negatives (FN), and only count ID-switches

(IDS) for tracks corresponding to occluded groundtruth. Perhaps surprisingly, we find in Table 4.13

that the MOTA metric is negative for all ablations. To better understand this, we note that

MOTA is a simple combination of TP, FP, IDS, divided by the total number of groundtruth

boxes (GT):

MOTA = 1−
∑

t FPt + FNt + IDSt
∑

t GTt

Thus, a method which simply reports no tracks will achieve a MOTA of 0 (as FP = 0,FN =

GT, IDS = 0), seemingly outperforming all approaches in Table 4.13. This suggests MOTA

penalizes methods for even trying to detect occluded people. In general, if a tracker produces

more false positives than true positives, MOTA will always be negative! This indicates that

MOTA is not an appropriate metric for challenging tasks, such as detecting occluded people.

Human Vision Experiment In the main paper, we briefly described our human vision

experiment to understand the challenges in detecting occluded people, and to motivate our

evaluation and probabilistic approach. We provide further details here. We ask 10 in-house

annotators to label fully occluded people in the MOT-17 [204] training set. To focus annotation

effort on occluded people, we sampled track segments (1) containing at least 10 contiguous

occluded frames, preceded by (2) 10 frames where the person is visible (and at least one where

the person has > 70% visibility). Additionally, we avoid annotating small people (< 20 pixels on
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Table 4.11. Supplementary tracking results on MOT-17 [204], MOT-20 [55] and PANDA [302] train.

IDF1

Occl All

M
O
T
-1
7

DPM 2.9 36.9
+ Ours 7.2 36.8
FRCNN 1.5 55.6
+ Ours 10.5 54.8
SDP 10.9 64.6
+ Ours 17.0 64.7
Tracktor++ 1.3 65.1
+ Ours 15.6 66.8
MIFT 9.4 61.7
+ Ours 16.5 62.6
CTrack 5.4 65.0
+ Ours 16.2 70.2

M
O
T
-2
0 FRCNN 2.9 42.2

+ Ours 5.0 42.0

P
A
N
D
A GT (visible) 2.5 70.2

+ Ours 4.6 62.1

either side), and limit the number of total frames in a segment to 50.

Annotators labeled at 10 fps (every 3rd frame in a 30fps video) in a simulated online setup.

When an annotator is asked to label frame t, she has access to past frames (before t), but not

future frames > t. Once the annotator submits a label for t, she is shown the next frame to label,

and is no longer allowed to edit the annotation for frame t.

Overall, 10 people labeled a total of 113 tracks, 46 of which were unique. This resulted in

a total of 991 annotated boxes. Our key finding was that even for complete occlusions (less

than 10% visibility), annotators still agreed to a fair extent (60% IoU-agreement), making the

problem harder than localizing visible people, but still feasible for humans. To account for these

observations, we evaluate with our invisible-people detection metric at an IoU of 0.5.

PANDA and MOT-20 We first discuss the quality of visibility labels in PANDA followed by

the criteria we follow for disabling the depth and freespace reasoning in our method for a subset

of videos in PANDA [302] and MOT-20 [55].

PANDA classifies the visibility of people into 4 discrete classes – ‘without occlusion’, ‘partial

occlusion’, ‘heavy occlusion’ and ‘disappearing’. According to the dataset authors, these corre-
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IDF1

Occl All

M
O
T
-1
7

Ours 14.7 58.7
MIFT [123] 10.4 56.4
UnsupTrack [137] 9.7 62.6
GNNMatch [217] 6.9 56.1
GSM Tracktor [188] 7.4 57.8
Tracktor++ [17] 5.2 55.1

M
O
T
-2
0 Ours 11.2 51.1

Tracktor++ [17] 10.2 48.8
UnsupTrack [137] 9.6 50.6
SORT20 [320] 8.8 45.1

Table 4.12. Supplementary tracking results on MOT-17 and MOT-20 test set. The best, second-best
and third-best methods are highlighted.

spond to 100%, 66%, 33% and 0% visibility labels on a continuous 0-100 scale. On qualitative

inspection, we find that most 33% visible people in PANDA are fully-occluded (by our definition

of < 10% visibility). Though the visibility annotation protocol is not detailed in the paper, we

hypothesize that this anomaly exists because only those people are marked with 0% visibility

which strictly have 0 visible pixels. Some examples are shown in Figure 4.6. Owing to this, we

set the threshold of calling a person invisible in the PANDA dataset as 33% visibility.

Some sequences in PANDA and MOT-20 are top-down view videos where occlusions are

unlikely to occur. In such sequences, we revert to using the standard DeepSORT tracker. For

MOT-20, we disable our method on two sequences captured from a camera mounted at a high

height based on visual inspection. For the PANDA dataset, which specifies the building floor on

which the camera is mounted, we use DeepSORT for cameras mounted on or above the 8th floor.

We note that this decision can be easily made in the real world by practitioners based on the

height of the camera.

Runtime & Pseudo-code We precompute depth maps and detection features at 4.5 FPS and

11 FPS respectively. These are used in an online manner by our pipeline that runs at 4 FPS

without explicit optimization. In Algorithm 1, we present the pseudocode of our approach.
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Figure 4.6. ‘Heavy occlusion’ or 33% visibility labels in PANDA are closer to the < 10% visibility labels
in the MOT-17 and MOT-20 datasets. For this reason, we set the visibility threshold in the PANDA
dataset to 33%.

IDF1 MOTA

Occl All Occl All

DeepSORT 1.5 55.6 -11.9 49.4
+ Forecast 7.6 53.3 -85.7 42.0
+ Egomotion 9.1 54.5 -72.1 44.6
+ Freespace 9.7 55.0 -35.2 48.1
+ Dep. noise 10.5 54.8 -31.5 48.5

Table 4.13. Analysis of IDF1- and MOTA-occluded for the MOT-17 train ablations. Note that MOTA is
not useful for distinguishing trackers for difficult tasks, as it leads to negative values (while an approach
which reports no detections would achieve MOTA of 0).
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Algorithm 1 Invisible-people Kalman Tracker

Data: Detections D in current frame, fi ∈ F, the set of all frames
Result: Set of active tracks, T = {t1, . . . , tk} s.t. tj ∈ {Toccluded,Tvisible}

def update():
X, Y1, Y2, Z = match();
Update the tracks with the KF Update step for all pairs in X;
Initialise new tracks for Z;
Increase age of all tracks in Y1;
Add Y2 to Toccluded;

def match():
Compare forecasted depth, zf with horizon depth, zo;
If zf < αsuppzo, keep track in Tvisible but don’t output;
Else, trigger occluded state logic by adding track to Toccluded;
Bipartite-match detections to active tracks to based on last-known appearance;
Match unclaimed visible tracks to unclaimed detections using IoU;
Let X be matched tracks and detection;
Let Y be unclaimed tracks;
Let Z be unclaimed detections;
Separate Y into visible (Y1) and occluded (Y2) tracks;
for all tracks in Y2 do

If zf < αdeletezo, delete track;

end
Return X,Y1,Y2,Z;

def predict():
Find warp marix W between current and past frame;
for all active tracks do
Warp the mean of current tracker state with the warp matrix;
Assume a Constant Velocity Model;
If track is occluded, assume no velocity for a and h;
Else, assume constant velocity for a and h;
Assume temporal process noise for all state variables (e.g., process noise f ϵX

Z
for x);

Carry out the KF Predict step to get a new state from the warped state;
end

def main():
for every incoming frame do

predict new states for all tracks using predict();
update all tracks with detections from the current frame using update();
output all active tracks that are either currently occluded or visible;

end
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Chapter 5

Large reconstruction models for
novel-view synthesis from sparse-views

Publication information

Wang, Z., Tan, J., Khurana, T., Peri, N. and Ramanan, D., 2025. MonoFusion:

Sparse-View 4D Reconstruction via Monocular Fusion. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV).

5.1 Introduction

Accurately reconstructing dynamic 3D scenes from multi-view videos is of great interest to the

vision community, with applications in AR/VR [182, 269], autonomous driving [191], and robotics

[305, 370]. Prior work often studies this problem in the context of dense multi-view videos, which

require dedicated capture studios that are prohibitively expensive to build and are difficult to

scale to diverse scenes in-the-wild. In this paper, we aim to strike a balance between the ease

and informativeness of multi-view data collection by reconstructing skilled human behaviors (e.g.,

playing a piano and performing CPR) from four equidistant inward-facing static cameras (Fig.

5.1).

Problem setup. Despite recent advances in dynamic scene reconstruction [42, 81, 82, 83],

current approaches often require dozens of calibrated cameras [134, 194], are category specific [339],

or struggle to generate multi-view consistent geometry [177]. We study the problem of recon-
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5. Large reconstruction models for novel-view synthesis from sparse-views

Figure 5.1. Dynamic Scene Reconstruction from Sparse Views. MonoFusion reconstructs dynamic
human behaviors, such as playing the piano or performing CPR, from four equidistant inward-facing
static cameras. We visualize the RGB and depth renderings of a 45◦ novel view between two training
views. Training views are shown below for reference.

casual monocular captures dense multi-view studio capturessparse-view exocentric captures

Figure 5.2. Problem Setup. Our sparse-view setup (middle) strikes a balance between ill-posed
reconstructions from casual monocular captures [83, 225] and well-constrained reconstructions from dense
multi-view studio captures [134]. Unlike existing “sparse-view” datasets like DTU [129] and LLFF [205],
our setup is more challenging because input views are 90◦ apart with limited cross-view correspondences.

structing dynamic human behaviors from an in-the-wild capture studio: a small set of (4) portable

cameras with limited overlap but complete scene coverage, such as in the large-scale Ego-Exo4D

dataset [94]. We argue that sparse-view limited-overlap reconstruction presents unique challenges

not found in dense multi-view setups and typical “sparse view” captures with large covisibility

(Fig. 5.2). For dense multi-view captures, it is often sufficient to rely solely on geometric and

photometric cues for reconstruction, often making use of classic techniques from (non-rigid)

structure from motion [76]. As a result, these methods fail in sparse-view settings with limited

cross-view correspondences.
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Key insights. We find that initializing sparse-view reconstructions with monocular geometry

estimators like MoGe [300] produces higher quality results. However, naively merging independent

monocular geometry estimates often yields inconsistent geometry across views (e.g. duplicate

structures), resulting in a local minima during 3D optimization. Instead, we carefully align

monocular reconstructions (that are independently predicted for each view and time) to a global

reference frame that is learned from a static multi-view reconstructor (like DUSt3R [301]).

Furthermore, many challenges in inferring view-consistent and time-consistent depth become

dramatically simplified when working with fixed cameras with known poses (inherent to the in-

the-wild capture setup that we target). For example, temporally consistent background geometry

can be enforced by simply averaging predictions over time.

Contributions. We present three major contributions.

• We highlight the challenge of reconstructing skilled human behaviors in dynamic environ-

ments from sparse-view cameras in-the-wild.

• We demonstrate that monocular reconstruction methods can be extended to the sparse-view

setting by carefully incorporating monocular depth and foundational priors.

• We extensively ablate our design choices and show that we achieve state-of-the-art perfor-

mance on PanopticStudio and challenging sequences from Ego-Exo4D.

5.2 Related Work

Dynamics scene reconstruction. Dynamic scene reconstruction [42] has received significant

interest in recent years. While classical work [60, 210] often relies on RGB-D sensors, or

strong domain knowledge [33, 54], recent approaches [177] based on neural radiance fields [206]

have progressed towards reconstructing dynamic scenes in-the-wild from RGB video alone.

However, such methods are computationally heavy, can only reconstruct short video clips with

limited dynamic movement, and struggle with extreme novel view synthesis. Recently, 3D

Gaussian Splatting [143, 194] has accelerated radiance field training and rendering via an efficient

rasterization process. Follow-up works [179, 321, 345] repurpose 3DGS to reconstruct dynamic

scenes, often by optimizing a fixed set of Gaussians in canonical space and modeling their motion

with deformation fields. However, as Gao et al. [83] points out, such methods often struggle to

reconstruct realistic videos. Many works address this shortcoming by relying on 2D point tracking

priors [299], fusing Gaussians from many timesteps [168], modeling isotropic Gaussians [274],
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or exploiting domain knowledge such as human body priors [279]. However, these approaches

study the reconstruction problem in the monocular setting. As 4D reconstruction from a single

viewpoint is under-constrained, practical robotics setups for manipulation [147] and hand-object

interaction [70, 160, 296] adopt camera rigs where a sparse set of cameras capture the scene of

interest. Similarly, datasets like Ego-Exo4D [94], DROID [147] and H2O [160] explore sparse-view

capture for dynamic scenes in-the-wild.

Novel-view synthesis from sparse views. Both NeRF and 3D Gaussian Splatting require

dense input view coverage, which hinders their real-world applicability. Recent works aim to

reduce the number of required input views by adding additional supervision and regularization,

such as depth [56] or semantics [351]. FSGS [376] builds on Gaussian splatting by producing

faithful static geometry from as few as three views by unpooling existing Gaussians and adopting

extra depth supervision. Recent studies such as [337], on the other hand, adds noise to Gaussian

attributes and relies on a pre-trained ControlNet [366] to repair low-quality rendered images.

Other works such as MVSplat [46] build a cost volume representation and predict Gaussian

attributes in a feed-forward manner. However, they can only synthesize novel views with small

deviations from the nearest training view. For methods that rely on learned priors, high-quality

novel view synthesis is often limited to images within the training distribution. Such methods

cannot handle diverse real-world geometry. Diffusion-based reconstruction methods [87, 325, 368]

try to generate additional views consistent with the sparse input views, but often produce artifacts.

In our case, four sparse view cameras are separated around 90◦ apart, posing unique challenges.

Feed-forward geometry estimation. Learning-based methods, such as monocular depth

networks, are able to reconstruct 3D objects and scenes by learning strong priors from training

data. While early works [63, 77] focus on in-domain depth estimation, recent works build

foundational depth models by scaling up training data [238, 300, 341], resolving metric ambiguity

from various camera models [115, 221], or relying on priors such as Stable Diffusion [78, 139, 251].

Unfortunately, monocular depth networks are not scale or view consistent, and often require

extensive alignment against ground-truth to produce meaningful metric outputs. To address

these shortcomings, DUSt3R [301] and MonST3R [363] propose the task of point map estimation,

which aims to recover scene geometry as well as camera intrinsics and extrinsics given a pair of

input images. These methods unify single-view and multi-view geometry estimation, and enable

consistent depth estimation across either time or space.
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sparse-view input feature-based motion bases
optimized scene representation 

& rasterized outputs

space-time consistent depth

Figure 5.3. Approach. Given sparse-view video sequences of a scene (left), we aim to optimize a 3D
gaussian representation over time. We begin by running DUSt3R [301], a static multi-view reconstruction
method, on the sparse views of a given reference timestamp. This generates a global reference frame
that connects all views. Next, we use MoGe [300] to independently predict depth maps for each camera.
Since these depth predictions are only defined up to an affine transformation, we must estimate a
scale and shift for each predicted depth map across all views and time instants. To achieve this, we
leverage the fact that background pixels remain static over time. Specifically, for each time instant
and each view, we align the background regions of each camera’s depth map to the global reference
frame by adjusting the scale and shift parameters accordingly (middle, top). This process requires a
foreground-background mask for all input videos (which can be obtained using off-the-shelf tools like
SAM 2 [241]). To reduce occlusions and noisy depth predictions, we concatenate all aligned background
depth points, and average corresponding background points (where correspondence across time is trivially
given by the 2D pixel index of the unprojected pointmap) across time. Lastly, we find that motion bases
constructed from feature-clustering form a more geometrically consistent set of bases (middle, bottom),
than those initialized by noisy 3D tracks [299]. Our optimization yields a 4D scene representation from
which we can rasterize RGB frames, depth maps, a foreground silhouette, and object features from novel
views (right).

5.3 Method

Given sparse-view (i.e. 3 – 4) videos from stationary cameras as input, our method recovers the

geometry and motion of a dynamic 3D scene (Fig. 5.3). We model the scene as canonical 3D

Gaussians (Sec. 5.3), which translate and rotate via a linear combination of motion bases. We

initialize consistent scene geometry by carefully aligning geometry predictions from multiple views

(Sec. 5.3), and initialize motion trajectories by clustering per-point 3D semantic features distilled

from 2D foundation models (Sec. 5.3). We formulate a joint optimization which simultaneously

recovers geometry and motion (Sec. 5.3).

89



5. Large reconstruction models for novel-view synthesis from sparse-views

3D Gaussian Scene Representation

We represent the geometry and appearance of dynamic 3D scenes using 3D Gaussian Splatting

[143], due to its efficient optimization and rendering. Each Gaussian in the canonical frame

t0 is parameterized by (x0,R0, s, α, c), where x0 ∈ R
3 is the Gaussian’s position in canonical

frame, R0 ∈ SO(3) is the orientation, s ∈ R
3 is the scale, α ∈ R is the opacity, and c ∈ R

3 is

the color. The position and orientation are time-dependent, while the scale, opacity, and color

are persistent over time. We additionally assign a semantic feature f ∈ R
N to each Gaussian

(Sec. 5.3), where N = 32 is an arbitrary number representing the embedding dimension of the

feature. Empirically, we find that fixing the color and opacity of Gaussians results in a better

performance. In summary, for the i-th 3D Gaussian, the optimizable attributes are given by

Θ(i) = {x(i)
0 ,R

(i)
0 , s(i), f (i)}. Following [371], the optimized Gaussians are rendered from a given

camera to produce an RGB image and a feature map using a tile-based rasterization procedure.

Space-Time Consistent Depth Initialization

Similar to recent methods [278, 299], we rely on data-driven monocular depth priors to initialize

the position and appearance of 3D Gaussians over time. Given the success of initializing 3DGS

with monocular depth in single-view settings [299], one might think to naturally extend this to

multi-view settings by independently initializing from monocular depth for each view. However,

this yields conflicting geometry signals, as monocular depth estimators commonly predict up to

an unknown scale and shift factor. Thus, the unprojected monocular depths from separate views

are often inconsistent, resulting in duplicated object parts.

Multi-view pointmap prediction. DUSt3R [301] predicts multi-view consistent pointmaps

across K input images by first inferring pairwise pointmaps, followed by a global 3D optimization

that searches for per-image pointmaps and pairwise similarity transforms (rotation, translation,

and scale) that best aligns all pointmaps with each other.

We run DUST3R on the multiview images at time t, but constrain the global optimization to

be consistent with the K known stationary camera extrinsics {Pk} and intrinsics {Kk}. This

produces per-image global pointmaps {χt
k} in metric coordinates. One can then compute a depth

map by simply projecting each pointmap back to each image with the known cameras

dtk(u, v)
[

u v 1
]T

= KkPkχ
t
k(u, v) (5.1)

This produces metric-scale multi-view consistent depth maps dtk(u, v), which are still not consistent
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over time.

Spatio-temporal alignment of monocular depth with multi-view consistent pointmaps.

In fact, even beyond temporally inconsistency, such multiview predictors tend to underperform on

humans since they are trained on multiview data where dynamic humans are treated as outliers.

Instead, we find monocular depth estimators such as MoGe [300] to be far more accurate, but

such predictions are not metric (since they are accurate only up to an affine transformation) and

are not guaranteed to be consistent across views or times. Instead, our strategy is to use the

multiview depth maps from DUST3R as a metric target to align monocular depth predictions,

which we write as mt
k(u, v). Specifically, we search for scale and shift factors atk and btk that

minimize the following error:

argmin
{at

k
,bt
k
}

T
∑

t=1

K
∑

k=1

∑

u,v∈BGt
k

∥

∥(atkm
t
k(u, v) + btk)− dtk(u, v)

∥

∥

2
(5.2)

where BGt
k refers to a pixelwise background mask for camera k at frame t. The above

uses metric background points as a target for aligning all monodepth predictions. The above

optimization can be solved quite efficiently since each time t and view k can be optimized

independently with a simple least-squares solver (implying our approach will easily scale to long

videos). However, the above optimization will still produce scale factors that are not temporally

consistent since the targets are temporally inconsistent as well. But we can exploit the constraint

that background points should be static across time for stationary cameras. To do so, we replace

dtk(u, v) with a static target dk(u, v) obtained by averaging depth maps over time or selecting a

canonical reference timestamp. The final set of scaled time- and view-consistent depthmaps are

then unprojected back to 3D pointmaps. Note that this tends to produce accurate predictions for

static background points, but the dynamic foreground may remain noisy because they cannot

be naively denoised by simple temporal averaging. Rather, we rely on motion-based 3DGS

optimization to enforce smoothness of the foreground, described next.

During our experiments, we identified two additional limitations that significantly impact

visual quality.

(1) Scale initialization: We observed that initializing 3D Gaussian scales with k-nearest neighbors

often results in poor appearance, such as extremely large Gaussians filling empty space and

blurring the background. To address this, we follow SplaTAM [142] and initialize each Gaussian

scale based on its projected pixel area: scale = d
0.5(fx+fy)

, where d is a pixel’s depth and fx, fy are
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Figure 5.4. Qualitative analysis of held-out view synthesis on ExoRecon. We show qualitative
results of held-out view synthesis (left) and a 5◦ deviation from the static camera position at the held-out
timestamp (right). As compared to other multi-view baselines, our method does dramatically better
at interpolating the motion of dynamic foreground (left), even from new camera views (right). We
posit that Dynamic 3DGS suffers because of lack of geometric constraints and MV-SOM has duplicate
foreground artifacts because of conflicting depth initialization from the four views.

focal lengths.

(2) Insufficient Gaussian density: Using only one Gaussian per input pixel fails to adequately cap-

ture fine details. We instead initialize 5 Gaussians per input pixel, providing better representation

of fine details.

Grouping-based Motion Initialization

Beyond initializing time- and view-consistent geometry in the canonical frame, we also aim to

initialize reasonable estimates of the scene motion. We model a dynamic 3D scene as a set of N

canonical 3D Gaussians, along with time-varying rigid transformations T0→t = [R0→tt0→t] ∈ SE(3)

that warp from canonical space to time t:

xt = R0→tx0 + t0→t Rt = R0→tR0 (5.3)

Motion bases. Similar to Shape of Motion [299], we make the observation that in most dynamic

scenes, the underlying 3D motion is often low-dimensional, and composed of simpler units of

rigid motion. For example, the forearms tend to move together as one rigid unit, despite being

composed of thousands of distinct 3D Gaussians. Rather than storing independent 3D motion

trajectories for each 3D Gaussian (i), we define a set of B learnable basis trajectories {T(i,b)
0→t}Bb=1.

The time-varying rigid transforms are written as a weighted combination of basis trajectories,
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using fixed per-point basis coefficients {w(i,b)}Bb=1:

T
(i)
0→t =

B
∑

b=1

w(i,b)T
(i,b)
0→t (5.4)

Motion bases via feature clustering. Unlike Shape of Motion which initializes motion bases

by clustering 3D tracks, our key insight is that semantically grouping similar scene parts together

can help regularize dynamic scene motion, without ever initializing trajectories from noisy 3D

track predictions. Inspired by the success of robust and universal feature descriptors [213], we

obtain pixel-level features for each input image by evaluating DINOv2 on an image pyramid. We

average features across pyramid levels and reduce the dimension to 32 via PCA [9]. We choose

the small DINOv2 model with registers, as it produces fewer peaky feature artifacts [51].

Given the consistent pixel-aligned pointmaps χ
(time+view)
t,k , we associate each pointmap with the

32-dim feature map ft,k computed from the corresponding image. We perform k-means clustering

on per-point features f to produce b initial clusters of 3D points. After initializing 3D Gaussians

from pointmaps, we set the motion basis weight w(i,b) to be the L2 distance between the cluster

center and 3D Gaussian center. We initialize the basis trajectories T
(b)
0→t to be identity, and

optimize them via differentiable rendering.

Optimization

As observed in prior work [82, 175], using photometric supervision alone is insufficient to avoid

bad local minima in a sparse-view setting. Our final optimization procedure is a combination of

photometric losses, data-driven priors, and regularizations on the learned geometry and motions.

During each training step, we sample a random timestep t and camera k. We render the image

Ît,k, mask M̂t,k, features F̂t,k, and depth D̂t,k. We compute reconstruction loss by comparing to

off-the-shelf estimates:

Lrecon =
∥

∥

∥
Î− I

∥

∥

∥

1
+ λm

∥

∥

∥
M̂−M

∥

∥

∥

1
+ λf

∥

∥

∥
F̂− F

∥

∥

∥

1
+ λd

∥

∥

∥
D̂−D

∥

∥

∥

1
(5.5)

We additionally enforce a rigidity loss between randomly sampled dynamic Gaussians and

their k nearest neighbors. Let X̂t denote the location of a 3D Gaussian at time t, and let X̂t′

denote its location at time t′. Over neighboring 3D Gaussians i, we define:

Lrigid =
∑

neighbors i

∥

∥

∥
X̂t − X̂

(i)
t

∥

∥

∥

2

2
−

∥

∥

∥
X̂t′ − X̂

(i)
t′

∥

∥

∥

2

2
(5.6)
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Dataset Method
Full Frame Dynamic Only

PSNR ↑ SSIM ↑ LPIPS ↓ AbsRel ↓ PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑
SOM [299] 17.86 0.687 0.460 0.491 18.75 0.701 0.236 0.358
Dyn3D-GS [194] 25.37 0.831 0.266 0.207 26.11 0.862 0.129 —Panoptic Studio
MV-SOM [299] 26.28 0.858 0.241 0.331 26.80 0.883 0.161 0.886
MonoFusion 28.01 0.899 0.117 0.149 27.52 0.944 0.022 0.965

SOM [299] 14.73 0.535 0.482 0.843 15.63 0.559 0.450 0.294
Dyn3D-GS [194] 24.28 0.692 0.539 0.612 24.61 0.673 0.384 —
MV-SOM-DS [299] 28.37 0.906 0.079 0.398 28.23 0.931 0.063 0.872ExoRecon
MV-SOM [299] 26.91 0.890 0.138 0.474 27.31 0.919 0.078 0.845
MonoFusion 30.43 0.927 0.061 0.290 29.71 0.947 0.017 0.963

Table 5.1. Quantitative analysis of held-out view synthesis. We benchmark our method against
state-of-the-art approaches by evaluating the novel-view rendering and geometric quality on both the
dynamic foreground region and the entire scene, across the held-out frames from input videos. MV-SOM
is a multi-view version of Shape-of-Motion [299] that we construct by instantiating four different instances
of single-view shape of motion, and optimize them together. On Panoptic Studio, groundtruth depth
for computing the AbsRel metric is obtained from 27-view optimization of the original Dynamic 3DGS,
and for ExoRecon, we project the released point clouds obtained via SLAM from Aria glasses. When
evaluating single-view baselines, SOM [299], we naively aggregate their predictions from the four views
and evaluate this aggregated prediction against the evaluation cameras.

5.4 Experiments

Implementation details. We optimize our representation with Adam [155]. We use 18k

gaussians for the foreground and 1.2M for the background. We fix the number of SE(3) motion

bases to 28 and obtain these from feature clustering (Sec. 5.3). For the depth alignment, we

use points above the confidence threshold of 95%. We show results on 7 10-sec long sequences

at 30fps with a resolution of 512 × 288. Training takes about 30 minutes on a single NVIDIA

A6000 GPU. Our rendering speed is about 30fps.

Datasets. We conduct qualitative and numerical evaluation on Panoptic Studio [134] and a

subset of Ego-Exo4D [94] which we call ExoRecon.

Panoptic Studio is a massively multi-view capture system which consists of 480 video streams

of humans performing skilled activities. Out of these 480 views, we manually select 4 camera

views, 90◦ apart to simulate the same exocentric camera setup as Ego-Exo4D. Given these 4

training view cameras, we find 4 other intermediate cameras 45◦ apart from the training views,

and use these for evaluating novel view synthesis from 45◦ camera views.

For in-the-wild evaluation of sparse-view reconstruction, we repurpose Ego-Exo4D [94], which
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5. Large reconstruction models for novel-view synthesis from sparse-views

Method PSNR ↑ SSIM ↑ LPIPS ↓ IOU ↑ AbsRel (↓)
SOM 16.73 0.554 0.491 0.287 0.578
Dyn3D-GS 23.31 0.776 0.316 — 0.273
MV-SOM 21.56 0.541 0.433 0.482 0.413
MonoFusion 25.73 0.847 0.158 0.943 0.188

Table 5.2. Quantitative analysis of 45◦ novel-view synthesis on Panoptic Studio. We benchmark
our method against state-of-the-art approaches by evaluating both the dynamic foreground region and
the entire scene. Notably, the evaluation is conducted on novel views where the cameras are at least
45◦ apart from all training views. We additionally evaluate the geometric reconstruction quality with
absolute relative (AbsRel) error in rendered depth.

includes sparse-view videos of skilled human activities. While many Ego-Exo4D scenarios are out

of scope for dynamic reconstruction with existing methods (due to fine-grained object motion,

specular surfaces, or excessive scene clutter), we find one scene each from the 6 different scenarios in

Ego-Exo4D with considerable object motion: dance, sports, bike repair, cooking, music, healthcare.

For each scene, we extract 300 frames of synchronized RGB video streams, captured from 4

different cameras with known parameters. We remove fisheye distortions from all RGB videos

and assume a simple pinhole camera model after undistortion. We call this subset ExoRecon,

and show results on these sequences. Please see the appendix for more visuals.

Metrics. We follow prior work [194, 340] in evaluating the perceptual and geometric quality of

our reconstructions using PSNR, SSIM, LPIPS and absolute relative (AbsRel) error in depth.

We compute these metrics on the entire image, and also on only the foreground region of interest.

We additionally evaluate the quality of the dynamic foreground silhouette by reporting mask IoU,

computed as (M̂&M)/(M̂||M). Similar to prior work [340], our evaluation views are a set of

held-out frames, subsampled from the input videos from 4 exocentric cameras, in both Panoptic

Studio and ExoRecon.

Note that since the cameras in our setup are stationary, above evaluation only analyses

the interpolation quality of different methods. More explicitly, we also benchmark novel-view

synthesis on Panoptic Studio with an evaluation camera placed 45◦ away from the training view

cameras. Since such a ground-truth evaluation camera is not available in ExoRecon, we only

show qualitative results.

Baselines. We compare our method with prior work on dynamic scene reconstruction from

single or multiple views. Among methods that operate on monocular videos, we run Shape of
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Figure 5.5. Qualitative results of 45◦ novel-view synthesis results on Panoptic Studio. We
show qualitative novel-view synthesis results of our method compared to baselines on the softball (left)
and tennis (right) sequences. We visualize the groundtruth RGB image for the 45◦ at the top. Our
rendered extreme novel-view RGB image closely matches ground truth. We find that all other baselines
struggle to generalize to extreme novel views.

Motion [299] on 8 scenes from Panoptic Studio following the setup of Dynamic 3D Gaussians

[194] and our curated dataset ExoRecon that covers 6 diverse scenes. Finally, we consider two

multi-view dynamic reconstruction baselines, Dynamic 3D Gaussians [194], and a naive multi-view

extension of Shape of Motion (MV-SOM). To construct the latter baseline, we simply concatenate

the Gaussians and motion bases from four independently-initialized instances of single-view

SOM, and optimize all four instances jointly. We also evaluate a variant of MV-SOM with

globally-consistent depth (denoted MV-SOM-DS), obtained by running per-frame DUSt3R on

the 4 input views and fixing camera poses to ground-truth during DUSt3R’s global alignment.

Despite using our same hyperparameters, MV-SOM-DS has more visual artifacts due to reduced

depth quality, suggesting the importance of our DUSt3R+MoGe design. In the appendix, we

verify that all baselines reconstruct reasonable training views.

Comparison to State-of-the-Art

Evaluation on held-out views. In Tab. 5.1, we compare our method to recent dynamic scene

reconstruction baselines [194, 299, 363], following evaluation protocols from prior work [299, 340].
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Figure 5.6. Qualitative results of 45◦ extreme novel view synthesis results on ExoRecon
(1/2). We visualize the rasterized RGB image and depth map from each method for 4 diverse EgoExo
sequences. Existing monocular methods (Row 2, “SOM”) and their extension to multi-view (Row 3,
“MV-SOM”) produce poor results rendered from a drastically different novel view. MV-SOM improves
upon SOM by optimizing a 4D scene representation with four view constraints, but it still suffers
from duplication artifacts. Our method’s careful point cloud initialization and feature-based motion
bases further improve on MV-SOM. Even after running MV-SOM with multi-view-consistent depth
from DUSt3R (Row 4, “MV-SOM-DS”), we find that it still fails due to reduced depth quality, often
caused by suboptimal pairwise depth predictions on humans. Please see the appendix for more baseline
comparisons: we find that multi-view diffusion methods contain additional hallucinations and imperfect
alignment between different input views, and per-frame sparse-view 3D reconstruction methods suffer
from temporal inconsistency, blurry reconstructions and missing details.

Our method beats prior art on both Panoptic Studio and ExoRecon (Fig. 5.4) datasets, when

evaluated on held-out views across photometric (PSNR, SSIM, LPIPS) and geometric error

(AbsRel) metrics. Note that when initializing Dynamic 3DGS [194] with 4 views we find that

COLMAP fails, and so the point cloud initialization for this baseline is from a 27-view COLMAP

optimization.

Interestingly, we find that although the monocular 4D reconstruction method Shape of Motion

(SOM) [299] often fails to output accurate metric depth, it is robust to a limited camera shift.

We hypothesize that the foundational priors of Shape of Motion allow it to produce reasonable

results in under-constrained scenarios, while test-time optimization methods, especially ones that

do not always rely on data-driven priors [194], can more easily fall into local optima (e.g. those

caused by poor initialization) which are difficult to optimize out of via rendering losses alone.

Evaluation on a 45◦ novel-view. On Panoptic Studio, we use the four evaluation cameras
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5. Large reconstruction models for novel-view synthesis from sparse-views

Method Lfeat dn T
(b)
0→t ↑PSNR ↑SSIM ↓LPIPS ↑IoU

Baseline ✗ ✗ ✗ 26.19 0.915 0.077 0.60
+ Lfeat ✓ ✗ ✗ 25.39 0.933 0.087 0.63
+ Our depth / no Lfeat ✗ ✓ ✗ 29.55 0.944 0.037 0.73
+ Our depth / Lfeat ✓ ✓ ✗ 29.31 0.941 0.041 0.75
+ Motion bases (Ours) ✓ ✓ ✓ 30.40 0.947 0.037 0.81

Table 5.3. Ablation study of pipeline components. We ablate our choice of feature-metric loss,
spacetime consistent depth, and feature-based motion bases. While the proposed depth and feature-based
motion bases considerably improve 4D reconstruction (evaluated by photometric errors), we find that
our feature loss helps learn better motion masks (evaluated by IoU).

(placed 45◦ apart from the training views) to evaluate our method’s novel-view rendering capability.

We also evaluate the novel-view rendered depth against a ‘pseudo-groundtruth’ depth obtained

from optimizing Dynamic 3DGS [194] with all 24 training views. In Tab. 5.2 and Fig. 5.5, we

find that our method outperforms all baselines, achieving state-of-the-art 45◦ novel-view synthesis.

Qualitative results on ExoRecon are in Fig. 5.6 & 5.7.

Ablation Study

We ablate the design decisions in our pipeline in Tab. 5.3. Our proposed space-time consistent

depth plays a crucial role in learning accurate scene geometry and appearance (yielding a 3.4

PSNR improvement, Row 1 vs 3). Next, we find that the feature-metric loss Lfeat =
∥

∥

∥
F̂− F

∥

∥

∥

provides a trade-off between learning photometric properties vs.learning foreground motion and

silhouette. Although the PSNR decreases, we see an increase in mask IoU (Row 1 vs 2 and Row

3 vs 4). Freezing the color of all Gaussians across frames aids learning the motion mask, as

measured by mask IoU. Finally, our motion bases from feature-clustering improve overall scene

optimization (final row).

Velocity-based vs. feature-based motion bases In the monocular setting, we empirically

found that both designs performed equally well. However, in our 4 camera sparse view setting,

we found that feature-based motion bases perform much better than velocity-based motion bases.

The reason is that for velocity-based motion bases, we infer 3D velocity by querying the 2D

tracking results plus depth per frame following Shape-of-Motion[299]. Thus, noisy foreground

depth estimates where the estimated depth of the person flickers between foreground and backward

will negatively influence the quality of velocity-based motion bases, causing rigid body parts to

move erratically. In contrast, feature-based motion bases, where features are initialized from
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Frames showed:

1. Dance – 
2. CPR – frame 47
3. Cook – frame 0
4. Piano – frame 0 
5. Football – cam2  frame 47
6. Bike – last cam last frame
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Figure 5.7. Qualitative results of 45◦ extreme novel view synthesis results on ExoRecon (2/2).
We show qualitative novel-view synthesis results of our method compared to baselines on challenging
sequence on ExoRecon: highly-dynamic, large scene with small foreground football (left) and complex,
highly-occluded scene bike repair (right). Notably MonoFusion significantly beats other baselines in
terms of quality.

more reliable image-level observations, are more robust to noisy 3D initialization and force

semantically-similar parts to move in similar ways. To validate our points, in Fig. 5.8 we use

PCA analysis to visualize the inferred features and find that they are consistent not only on

temporal axis but also across cameras.

Effect of different number of motion bases. When the number of motion bases is not

expressive enough (in our experience when the number of motion bases < 20), there are often

obvious flaws in the reconstruction, such as missing arms or the two legs joining together into

a single leg. In reality, we do not observe that increasing the number of motion bases further

hurts the performance. Empirically, the capacity of our design (which is 28 motion bases) can

effectively handle different scene dynamics.
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5. Large reconstruction models for novel-view synthesis from sparse-views

Figure 5.8. Spatial-Temporal Visualization of feature PCA. We perform PCA analysis and
transform the 32-dim features from section 5.3 down to 3 dimensions for visualization purposes. We find
that the features are consistent across views and across time. Notably, when the person turns around
between t0 and t1 in observations from cam1 and cam2, the feature remains robust and consistent. The
semantic consistency of features aids explainability, provides a strong visual clue for tracking, and gives
confidence in our feature-guided motion bases.

5.5 Discussion

We address the problem of sparse-view 4D reconstruction of dynamic scenes. Existing multi-view

4D reconstruction methods are designed for dense multi-view setups (e.g. Panoptic Studio). In

contrast, we aim to strike a balance between the ease and informativeness of multi-view data

capture by reconstructing skilled human behaviors from four equidistant inward-facing static

cameras. Our key insight is that carefully incorporating priors, in the form of monocular depth

and feature-based motion clustering, is crucial. Our empirical analysis shows that on challenging

scenes with object dynamics, we achieve state-of-the-art performance on novel space-time synthesis

compared to prior art.
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Exploiting foundational priors via
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Chapter 6

Starting point: 2.1D reasoning of
dynamic objects under occlusion

Publication information

Chen, K., Ramanan, D. and Khurana, T., 2025. Using Diffusion Priors for Video Amodal

Segmentation. In Proceedings of the Computer Vision and Pattern Recognition (CVPR)

pp. 22890-22900.

6.1 Introduction

Gestalt psychology [159] suggests that human perception inherently organizes visual elements into

cohesive wholes. When an object is occluded, humans can often infer the complete outline of the

object – an ability that is developed in humans in their early years [138, 215]. Additionally, object

permanence [11] suggests that with some temporal context, humans can perceive objects to persist

even when they undergo complete occlusions. Replicating these phenomena of gestalt psychology

and object permanence in object segmentation has traditionally been ignored, as the community

has focused largely on segmenting the visible or modal regions of objects (as exemplified by

models like SAM [157, 242]). Recent focus has shifted to include amodal segmentation [170, 375],

which involves segmenting an object’s full shape, including both visible and occluded parts.

This task has broad real-world applications, including safe navigation in robotic manipulation

and autonomous driving [230, 243], understanding occluder-occludee relationships in complex

scenes [362], and enhancing advanced image and video editing tools [216].
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6. Starting point: 2.1D reasoning of dynamic objects under occlusion

Figure 6.1. In this work, we tackle the problem of video amodal segmentation and inpainting: given a
modal (visible) object sequence in a video, we develop a two-stage method that generates its amodal
(visible + invisible) masks and RGB content. We capitalize on the shape and temporal consistency priors
baked into video foundation models because of their large-scale pretraining. Finetuning these models
enables us to infer complete shapes and RGB details of objects that undergo occlusion. Our method is
effectively able to handle severe occlusions and generalizes across diverse object categories, achieving
state-of-the-art results on synthetic and real-world datasets. We show one such example of an unseen
deformable object category ‘laptop’ that undergoes a complete occlusion in the highlighted frame.

Why is this hard? In a monocular setup, amodal perception is an ill-posed problem because

there are multiple plausible explanations for how an object boundary should be extended in an

occluded region. Recent innovations for amodal segmentation [216, 361] and inpainting [193, 223]

use diffusion frameworks for learning this multi-modal distribution, but they are not able to

handle scenarios where an object could be fully-occluded. This issue is exacerbated by the lack of

real-world datasets that have groundtruths for both amodal masks of objects, and their RGB

content.

Status quo. Despite this, current image-based amodal segmentation algorithms [85, 141,

216, 285, 286, 361, 362] have shown impressive performance. However, these approaches are

set in the single-frame setting, where they struggle with cases where objects are heavily or

completely occluded. A potential solution is to approach amodal segmentation in a multi-frame

setting [150] so as to infer complete occlusions with temporal context. However, existing video

amodal segmentation algorithms [68, 346] are typically limited to rigid objects, and are dependent

on additional inputs (like camera poses or optical flow) which hinders their scalability and

therefore, generalization to unseen data.

Key insight. To address these challenges, we propose repurposing a video diffusion model,

Stable Video Diffusion (SVD) [22], to achieve highly accurate and generalizable video amodal

104



6. Starting point: 2.1D reasoning of dynamic objects under occlusion

segmentation. One key insight is that foundational diffusion models trained to generate pixels

also bake-in strong priors on object shape. Such priors have been expoited by conditional image

generation [236, 259, 366] methods that condition on semantic maps and object boundaries. We

similarly exploit these priors for our task. But crucially, our multi-frame video setup allows us to

propagate object shape and content across time; e.g., one can infer the shape of a fully occluded

by object by looking at other frames where it is visible (Fig. 6.1).

Our proposed model achieves state-of-the-art performance across four synthetic and real-world

video datasets, compared to a wide-variety of single-frame and multi-frame amodal segmentation

baselines. We train on only synthetic data, but demonstrate strong zero-shot generalization to

real-world data.

Thanks to the multi-modal generation capability of diffusion models, our approach can provide

multiple plausible interpretations for the completion of occluded objects. We show that the

outputs of our approach can be used for downstream applications like 4D reconstruction, scene

manipulation, and pseudo-groundtruth generation.

6.2 Related Work

Image amodal segmentation. Most previous amodal segmentation research has concentrated on

image-based approaches. Some methods [75, 141, 170, 230, 285, 286, 327] adopt a similar strategy

to modal segmentation, where models are trained to take RGB images as input and directly output

amodal masks for all objects in the scene. Another line of methods [62, 183, 216, 332, 361, 362]

leverages existing modal masks, generated by modal segmentation models, to predict amodal

masks based on these and additional inputs like image frames. Besides inferring the complete

object shape, some approaches also hallucinate the RGB content in the occluded regions. Generic

inpainting methods [193, 223] often fail at this task, as they rely on surrounding context, which

often includes occluders. In contrast, content completion methods explicitly condition on the modal

content, either by directly generating the amodal content based on modal information [216, 332]

or by inpainting within the predicted amodal segmentation area [183, 362]. Due to the availability

of high-quality real-world amodal image datasets [200, 230, 375], image amodal segmentation

and content completion methods have shown strong performance by learning robust shape priors.

However, these methods frequently struggle with cases of significant occlusion and fail entirely for

fully occluded objects because the amodal cues cannot be inferred in a single-frame setting.

Video amodal segmentation. Recently, video amodal segmentation methods have emerged [68,
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Stage 1: Amodal Segmentation Stage 2: Content Completion

Predicted amodal content

Figure 6.2. Model pipeline for amodal segmentation and content completion. The first stage of our
pipeline generates amodal masks {Ât} for an object, given its modal masks {Mt} and pseudo-depth of
the scene {Dt} (which is obtained by running a monocular depth estimator on RGB video sequence {It}
). The predicted amodal masks from the first stage are then sent as input to the second stage, along
with the modal RGB content of the occluded object in consideration. The second stage then inpaints the
occluded region and outputs the amodal RGB content {Ĉt} for the occluded object. Both stages employ
a conditional latent diffusion framework with a 3D UNet backbone [22]. Conditionings are encoded via a
VAE encoder into latent space, concatenated, and processed by a 3D UNet with interleaved spatial and
temporal blocks. CLIP embeddings of {Mt} and the modal RGB content provide cross-attention cues for
the first and second stage respectively. Finally, the VAE decoder translates outputs back to pixel space.

85, 346]. These approaches integrate information from preceding and succeeding frames in a

video sequence, enabling temporally consistent predictions. However, the training and evalua-

tion of most of these algorithms are limited to synthetic datasets with rigid objects of similar

scale [90, 96, 230, 282]. Although these algorithms outperform image-based amodal segmentation

methods within synthetic datasets, their practical applications remain limited. In contrast, we

utilize both synthetic [96, 120] and real-world datasets [10, 52, 112], which include deformable

objects with diverse motions and scales, often mixed with complex camera movements. Moreover,

to our knowledge, this work is the first to explore video-level amodal content completion.

Real-world priors from diffusion models. Diffusion models have achieved significant

success in generative tasks within computer vision. Initially developed for unconditional image

generation [105], the scope of diffusion models has expanded in multiple directions. These

advancements include, but are not limited to, implementing conditional techniques for tasks like

style transfer [27, 366] and text-to-image synthesis [236], transitioning from pixel-space noise to
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latent-space noise [23, 253], developing various training and sampling strategies [105, 136, 270],

and extending their application from realistic image generation to video generation [22, 108, 201].

In addition, the successful adaptation of diffusion models for multiple downstream tasks, including

depth estimation [140], multi-view synthesis [189, 261], and scene reconstruction [184], underscores

their ability to capture object shape priors and understand potential 3D information [360]. While

recent image amodal segmentation methods have demonstrated initial success in incorporating

diffusion models [216, 286, 332, 361], our approach advances this progress by applying video

diffusion techniques to the domain of video amodal segmentation.

6.3 Method

Consider a video sequence {I1, I2, . . . , IT} with modal (or visible) segmentation masks {M1,M2, . . . ,MT}
for a target object. Such masks can be readily obtained by conventional modal segmentors, such

as Segment Anything v2 [242]. We first describe a (diffusion-based) model to generating amodal

masks {A1,A2, . . . ,AT} that capture the full extent of the target object, including occluded

portions. We then train a second stage (diffusion-based) model that uses the input video and

amodal masks to fill in (or inpaint) the RGB content of the occluded areas {C1,C2, · · · ,CT}.

Preliminary: diffusion framework

We make use of an open-source video latent diffusion model [23, 253] (Stable Video Diffusion

(SVD) [22]) and use the EDM framework [136] for both training and inference. Compared to

pixel-space diffusion, latent diffusion models reduce computational and memory demands by

encoding frames into compact latent representations while preserving both perceptual and region-

based alignment. The EDM framework further accelerates training convergence and reduces the

required number of denoising steps during inference without compromising generation quality.

Our diffusion model takes as input the latent representation z0 , additional conditioning c, a

noise scale σ following log σ ∼ N(Pmean, Pstd), and Gaussian noise ϵ ∼ N(0, σ2I). The training

objective is defined as:

min
θ

Eσ,z0,c,ϵ

[

λ||Dθ(z0 + ϵ; σ, c)− z0||22
]

(6.1)

Here, λ is a scalar related to σ, and Dθ = c1(z0+ ϵ)+ c2Fθ(z0+ ϵ; σ, c) represents the predicted

latent representation, which combines the noisy latent input with the v-prediction [260] output of

the diffusion backbone Fθ, using additional scalars c1 and c2 that also depends on σ.
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Modal masks in, amodal masks out

To train a high-quality amodal segmentor with limited data, one strategy is to leverage the shape

and content priors of video foundation models pretrained on large-scale datasets. For this, we lean

on the foundational knowledge in SVD, learnt by pretraining on the extensive LDM-F dataset [22]

with 152 million examples. However, as the vanilla SVD was designed for image-to-video tasks,

we adapt its structure and conditioning to suit our modal-to-amodal sequence generation task.

We describe this in detail in the supplement.

Additionally, we use CLIP embeddings [231] for the modal masks, and inject them into the

transformer layers for cross-attention. This provides temporal information about the visibility of

objects in surrounding frames.

Different from image-level amodal completion methods that cannot handle full occlusions or

maintain temporal consistency, our video diffusion model conditioned on modal masks overcomes

these challenges by leveraging temporal information through memory-efficient interleaving of

spatial and temporal layers. Specifically, temporal convolutions help in learning local features

across video frames, while temporal attention can capture long-range dependencies between frames,

e.g., propagate modal masks from frames where an object is visible to where it is occluded.

Conditioning on pseudo-depth

Till now, we described how SVD is modified to enable predicting amodal masks from modal masks.

We find that one can add more contextual cues about the object and scene in consideration

through different data modalities. A natural choice for conditioning is RGB frames, as used in

previous work [216, 362]. However, since occlusions of the target object are typically caused by

objects closer to the camera, we empirically find that pseudo-depth maps provide more implicit

clues about potential occluders than RGB frames, making them a more effective indicator for

determining regions to complete. We demonstrate the advantages of pseudo-depth over RGB

conditioning in our ablation study. To integrate this, we utilize the Depth Anything V2 monocular

depth estimator [341] to convert RGB images into pseudo-depth maps, which are then incorporated

into our video diffusion model as additional channels concatenated to the aforementioned input.

With the addition of pseudo-depth conditioning, the input latents for our 3D U-Net backbone

have the shape RT×3C×H
F
×W

F , requiring a new first convolutional layer in the 3D U-Net to

accommodate the increased channels. Rather than finetuning our model with both modal masks

and pseudo-depth conditionings directly, we find that it is more efficient to do a staged strategy,
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Figure 6.3. Modal-amodal RGB training pair for content completion. The left frame displays the
partially occluded modal RGB content, generated by overlaying amodal masks (black regions) onto the
amodal object to disrupt its visual integrity. The right frame shows the original, unoccluded amodal
RGB object.

where we finetune our mask conditioned model first and then use it to initialize the finetuning of

the mask-and-depth conditioned model. We call this approach two-stage finetuning, allowing the

model to adapt gradually to the new conditions.

Inspired by ControlNet [366], we retain the parameters of the first channels 2C in the input

layer from the previously trained model and initialize the newly added channels C to zero. This

zero convolution approach ensures the model retains its initial predictive capability during the first

few fine-tuning steps with the added pseudo-depth conditioning. We demonstrate the importance

of these training strategies in the ablation study.

Amodal content completion

Till now, we discussed the first stage of our pipeline which outputs amodal masks for occluded

objects. However, the RGB content in the occluded region is unknown. To inpaint these occluded

areas, we use a second SVD model with the same architecture but with different conditionings; the

first conditioning is the RGB content from an object’s modal region, and the second conditioning

is the predicted amodal mask from the first stage. We train this model to generate RGB content

across the entire amodal region.

Synthetic data curation A key challenge with this approach is the lack of ground-truth

RGB content in occluded regions, even in synthetic datasets like SAIL-VOS [120]. Inspired by

self-supervised training-pair construction used extensively in image amodal tasks [216, 362], we

extend this approach to video sequences. Figure 6.3 illustrates an example of a modal-amodal

RGB content training pair. To construct such a pair, we first select an object from the dataset

with near-complete visibility (above 95%). We then sequentially overlay random amodal mask

sequences onto this fully visible object until its visibility falls below a set threshold, thereby

simulating occlusion. This effectively generates ground-truth RGB data for the occluded regions.
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6.4 Experiments

Setup

Implementation details. For training, we load the official SVD-xt 1.1 pretrained checkpoint

and use the AdamW optimizer with β1=0.9, β2=0.999. The learning rates for the two-stage

fine-tuning are set to 3 · 10−5 and 3 · 10−6, for training without and with additional pseudo-depth

conditioning, respectively. In the case of SAIL-VOS, due to computational limitations, we set the

batch size to 8 and the frame size to 128×256. Training takes approximately 30 hours on 8 Nvidia

RTX 3090 GPUs. During inference, we set the EDM denoising step to 25, the guidance scale to

1.5, and use a higher frame size of 256× 512 to ensure more accurate pixel-level predictions. We

cover more implementation details in the appendix.

Datasets. Since amodal mask can be reliably annotated only in synthetic datasets or game

engines, our model is primarily trained and evaluated on synthetic datasets. We include a

zero-shot evaluation on a real-world dataset to assess its generalization ability. Among synthetic

datasets, SAIL-VOS [120] includes 210 long video sequences with 162 common object classes

generated from the photo-realistic game GTA-V, featuring frequent and significant occlusions.

We use PySceneDetect [25] to identify shot transitions within these long videos, selecting only

continuous scenes and segmenting them into 21,237 25-frame object sequences. MOVi-B and

MOVi-D, generated by Kubrics [96], feature rich annotations of simulated environments, rigid

objects, and camera motions. These datasets have been adapted as video amodal segmentation

benchmarks by previous studies [68, 85] and contain 13,997 and 12,010 sequences, each with

an approximate length of 25 frames. For real-world evaluation, we use TAO-Amodal [112], a

high-quality amodal tracking dataset comprising 993 video sequences in its validation set. Unlike

synthetic datasets, TAO-Amodal provides only amodal bounding box annotations, as annotating

amodal masks by humans is challenging. Similar to SAIL-VOS, we segment these videos into

1,392 object sequences.

Baselines. We compare our method against recent baselines for both image and video amodal

segmentation. For image-based amodal segmentation, our baselines include creating a convex hull

around a given modal mask [362], AISFormer [285], PCNet-M [362], and pix2gestalt [216]. For

video-based amodal segmentation, we evaluate against SaVos [346], Bi-LSTM [68, 95], EoRaS [68],

and C2F-Seg [85]. We discuss more details about these baselines in the appendix. Additionally,

to benchmark against regression approaches, we include transformer-based VideoMAE [284] and

SVD’s backbone 3D U-Net. We also evaluate the ground-truth modal masks.
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Table 6.1. Quantitative comparison on SAIL-VOS and TAO-Amodal. We compare our method
with image-based methods (top) and video-based methods (bottom). Our method outperforms all
methods on the synthetic SAIL-VOS dataset, achieving nearly a 13% improvement in Top-1 mIoUocc.
Additionally, when trained on SAIL-VOS, our method demonstrates strong generalization, outperforming
others in zero-shot evaluations on the real-world TAO-Amodal dataset. Bold values indicate the best
method, and underlined values indicate the second best.

Method
SAIL-VOS TAO-Amodal

mIoU mIoUocc AP25 AP50 AP75

Modal 67.89 - 93.73 82.22 63.12
Convex [362] 63.18 27.54 93.73 82.22 63.12
ConvexR [362] 71.21 34.27 93.73 82.22 63.12
PCNet-M [362] 74.2 42.52 94.89 85.11 65.97
AISFormer [285] 73.51 39.16 95.45 81.93 59.84
SDAmodal [361] 72.73 41.26 94.43 83.60 63.06
pix2gestalt (Top-1) [216] 54.83 26.59 80.73 57.50 28.95
pix2gestalt (Top-3) [216] 60.79 33.76 91.80 71.19 38.80

VideoMAE [284] 69.67 29.39 69.14 56.71 41.19
3D-UNet 72.79 39.54 94.59 83.83 64.33
Ours (Top-1) 77.07 55.12 97.28 89.25 71.99
Ours (Top-3) 79.23 59.69 98.31 92.46 77.48

Table 6.2. Quantitative Comparison on MOVi-B/D. Due to strong camera motion and higher
occlusions in these datasets, multi-frame methods generally outperform single-frame methods. Our
method surpasses all prior state-of-the-art, achieving over a 4% improvement in Top-1 mIoUocc across
both datasets.

Method
MOVi-B MOVi-D

mIoU mIoUocc mIoU mIoUocc

Modal 59.19 - 56.92 -
Convex [362] 64.21 18.42 60.18 16.48
PCNet-M [362] 65.79 24.02 64.35 27.31
AISFormer [285] 77.34 43.53 67.72 33.65

SaVos [346] 70.72 33.61 60.61 22.64
Bi-LSTM [68, 95] 77.93 46.21 68.43 36.00
EoRaS [68] 81.76 49.39 74.1 38.33
C2F-Seg [85] - - 71.67 36.13
VideoMAE [284] 78.74 42.86 70.93 32.78
3D-UNet 82.16 49.81 75.65 40.86
Ours (Top-1) 83.51 53.75 77.03 44.23
Ours (Top-3) 83.93 54.56 77.76 45.6
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Figure 6.4. Comparison across visibility levels on SAIL-VOS. Our method outperforms the second-
best image and video amodal segmentation methods across all visibility ranges (we use Top-1 metrics).
This highlights the ability of our method to handle heavy occlusions, and understand when an object is
not occluded.

Metrics. Following common practice in amodal segmentation [68, 85, 346], we use mIoU

and mIoUocc as evaluation metrics. Given a modal-amodal sequence pair in each frame, where

the ground-truth modal mask is Mi, and the predicted and ground-truth amodal masks are Âi

and Ai, respectively, we define IoU as Âi∩Ai

Âi∪Ai
and mIoUocc as

(Âi−Mi)∩(Ai−Mi)

(Âi−Mi)∪(Ai−Mi)
. We report the mean

values across all frames in the dataset as mIoU and mIoUocc. For TAO-Amodal, which uses

bounding box evaluation instead of masks, we adopt average precision metrics used in a recent

amodal tracking work [112] – AP25, AP50, and AP75, based on varying IoU thresholds calculated

over bounding box areas. Additionally, to account for the multimodal generation capability of

diffusion-based methods, we adopt a probabilistic evaluation with Top-K metrics [150], selecting

the best IoU or AP score in each frame from K predictions.

Comparison to state-of-the-art

Table 6.1 shows the quantitative comparisons on SAIL-VOS and TAO-Amodal, where our method

surpasses all baselines. Notably, it achieves nearly 13% improvement over the second-best method,

PCNet-M [362], in terms of mIoUocc, highlighting effective completion of occluded object regions.

Despite being trained exclusively on synthetic SAIL-VOS, a zero-shot evaluation on TAO-Amodal

highlights the strong generalization of our model. We posit that, in addition to leveraging

foundational knowledge and rich priors from the large-scale pretraining of SVD, our model is able

to learn temporal cues that help it amodally complete any unseen object classes from neighboring

frames. Figure 6.4 further illustrates our method’s consistent performance across all visibility
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Figure 6.5. Temporal consistency comparison with an image amodal segmentation method. We
highlight the lack of temporal coherence in a single-frame diffusion based method, pix2gestalt, for both
the predicted amodal segmentation mask and the RGB content for the occluded person in the example
shown. By leveraging temporal priors, our approach achieves significantly higher temporal consistency
across occlusions.

ranges on SAIL-VOS [120], indicating that our method can realistically hallucinate masks in

occluded regions, across the entire range of visibility levels.

We also compare with a single-frame diffusion-based method, pix2gestalt [216], in Table 6.1.

Perhaps unsurprisingly, pix2gestalt performs poorly on these video benchmarks, likely because

many objects undergo high degrees of occlusion. Since, pix2gestalt is a single-frame method, we

also find that its predictions vary significantly across frames and lack temporal coherence (c.f.

Figure 6.5).

In contrast, our method does drastically better because it can handle both, high occlusions

and temporal coherence across frames.

Table 6.2 provides quantitative comparisons on the MOVi-B/D datasets, where our method

beats the prior state-of-the-art. Despite strong camera motion in MOVi-B/D, our model adapts

well without access to camera extrinsics or optical flow (unlike some baselines [68, 346]). We

posit that our method is able to use the 3D priors from Stable Video Diffusion and is therefore,

successfully able to maintain consistent object shapes from different view-points. Notably, prior

works on MOVi-B/D are evaluated using a cropped modal bounding box enlarged by 2 times as

input; we adopt the same setting here for a fair comparison. However, we observed that using

the full, uncropped image as input can significantly enhance model performance, and we include

these results in the appendix.

Human evaluation. For content completion, due to the lack of ground truth and standardized
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Table 6.3. Ablation study for input conditioning. We study the effect of conditioning our model
on different input modalities. Results show that pseudo-depth conditioning yields greater performance
improvements than RGB conditioning across almost all metrics, as it provides an actionable cue for the
relative ordering of objects in the scene which helps decide which modal boundary to extend in order to
predict an amodal mask. We therefore drop RGB conditioning in the final method.

Conditions SAIL-VOS TAO-Amodal
mask RGB depth mIoU mIoUocc AP25 AP50 AP75

✓ ✗ ✗ 75.17 51.28 94.89 85.03 66.87
✓ ✓ ✗ 76.59 53.3 95.86 86.59 70.12
✓ ✗ ✓ 77.07 55.12 97.28 89.25 69.65
✓ ✓ ✓ 77.19 54.59 96.6 87.16 69.64

metrics, we conducted a user study on 20 randomly selected sequences from SAIL-VOS and

TAO-Amodal. In this user study, we did A/B testing and forced participants to choose between

our method and pix2gestalt. We found that users showed a preference of 85.6% for our method

over pix2gestalt.

Conditioning. Here we ablate our choice of modal mask and pseudo-depth conditioning.

We also examine the effect of additionally using RGB video frames as conditioning. As shown

in Table 6.3, adding RGB or pseudo-depth information improves model performance, with

pseudo-depth providing a more substantial enhancement. Although combining both RGB and

pseudo-depth yields a higher mIoU on SAIL-VOS, conditioning on pseudo-depth alone outperforms

across other metrics. This supports our claim that pseudo-depth is a more generalizable modality

that helps in deciding which modal boundary to extend in order to predict the amodal mask (see

supplement for more results), and the dependence on texture and appearance cues in fact hinders

generalization of our model to TAO-Amodal.

Training strategies. Table 6.4 shows the impact of our two-stage fine-tuning strategy

and use of zero convolutions. Compared to randomly initializing the new input convolution

layer in the 3D U-Net, we find that zero convolution significantly improves model performance.

Additionally, compared to training with both modal mask and pseudo-depth conditionings from

scratch, two-stage fine-tuning (where we train with modal masks first and then add pseudo-depth)

leads to further quantitative improvements. We also include an ablation study on the weights

initialization in the appendix.

Top-k evaluation. Like other diffusion models, ours also supports multimodal generation.

For instance, when parts of an object remain consistently occluded in a video (e.g., a person’s

legs), multiple plausible interpretations of the occluded area (e.g., standing, sitting) may exist,
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Figure 6.6. Qualitative comparison of amodal segmentation methods across diverse datasets. Our
method leverages strong shape priors, such as for humans, chairs, and teapots, to generate clean and
realistic object shapes. It also excels in handling heavy occlusions; even when objects are nearly
fully occluded (e.g., “chair” in the second row of SAIL-VOS), our method achieves high-fidelity shape
completion by utilizing temporal priors. Note that TAO-Amodal contains out-of-frame occlusions which
none of the methods are trained for, but our method is able to handle such cases.
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Figure 6.7. Qualitative results for content completion. Although our content completion module,
initialized from pretrained SVD weights, is finetuned solely on synthetic SAIL-VOS, it achieves pho-
torealistic, high-fidelity object inpainting even in real-world scenarios. Furthermore, our method can
complete unseen categories, such as giraffes and plastic bottle, likely due to its ability to transfer styles
and patterns from the visible parts of objects to occluded areas in the current or neighboring frames.
We show examples from TAO-Amodal (top) and in-the-wild YouTube videos (bottom).

Table 6.4. Ablation study for training strategies. We study the effect of two-stage finetuning for
segmentation. We find that zero convolution helps significantly, while two-stage fine-tuning gives us an
additional, moderate improvement.

Training strategies SAIL-VOS TAO-Amodal
2-stage ft. zero-conv mIoU mIoUocc AP25 AP50 AP75

✗ ✗ 73.73 41.35 96.27 85.93 66.45
✓ ✗ 72.72 32.23 95.38 86.1 68.74
✗ ✓ 76.92 54.25 96.58 87.64 69.34
✓ ✓ 77.07 55.12 97.28 89.25 71.99
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Figure 6.8. We show an example of multi-modal generation from our diffusion model. Since there are
multiple plausible explanations for the shape of the person in his occluded region, our model predicts
two such plausible amodal masks (with the person’s occluded legs in two different orientations).

1 2 3 4 5 6 7 8 9 10
Top-k

75

77

79

81

83

m
Io

U 
(%

)

mIoU and mIoUocc vs Top-k

55

57

59

61

63

m
Io

U o
cc

 (%
)

Figure 6.9. Ablation of Top-K on SAIL-VOS. We find that increasing the number of output samples
from our method, K, leads to improvements in both mIoU and mIoUocc; however, these improvements
gradually plateau as we increase K.

as illustrated in Figure 6.8. By setting different random seeds, our model generates varying

predictions for the same input, leading to different IoU values against the ground truth. Figure 6.9

reports the Top-10 mIoU and mIoUocc results for our model. As expected, performance improves

with the number of outputs, although the gains gradually diminish.

Our amodal segmentation masks and content completions can enable multiple downstream

applications. We touch on three such applications in the appendix – 4D reconstruction, scene

manipulation, and pseudo-groundtruth generation. First, we find that one can use monocular

video to multi-view generation methods like SV4D [330] to reconstruct dynamic objects across

space and time, even when they get fully occluded. Second, we show that once all objects in a

scene are de-occluded, they can be rearranged in the scene to simulate different object interactions

and realities. Third, we can generate amodal segmentation pseudo-groundtruth on real-world

datasets to fill in the gap for lack of real-world training data for video amodal segmentation.

6.5 Discussion

In this work, we focus on the problem of video amodal segmentation – segmenting objects to

their full extent even when they may be partially or fully occluded in videos. We lean on the
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large-scale pretraining of video foundation models and adapt Stable Video Diffusion [22] for the

task of video amodal segmentation. Given an object’s modal mask sequence, and pseudo-depth

maps of the scene, we aim to predict amodal masks of the occluded object. This amodal mask

is used by another model to inpaint the RGB content in the object’s occluded region. One of

the key insights of our work is that one can use the shape and temporal priors learnt by video

foundation models. More crucially, our multi-frame setup allows us to propagate mask and RGB

content from the frames where an object maybe fully visible to the frames of high occlusion. We

find that, our models can perform exceedingly well even for unseen categories, likely because of

their pretraining on foundational data.

Acknowledgments We thank Ege Ozguroglu, Achal Dave and Carl Vondrick for insightful

discussions and clarifications. Mosam Dabhi helped with demonstrating the application of our

work to 4D reconstruction.

In this appendix, we extend the discussion of our approach on video amodal segmentation. We

first discuss additional setup details for our method, and then cover more experimental analysis,

followed by examples of our method’s potential applications. We also show more qualitative

results from our method. Please see the project page for a video version of all figures.

6.6 Appendix

Stable Video Diffusion modifications

First, we replace the input conditioning c, originally an RGB image, with binary modal masks

of shape RT×1×H×W . By default, the variational autoencoder (VAE) [156] in SVD requires a

3-channel input. To address this mismatch in the number of channels, we replicate the binary

mask three times, following the approach for single-channel VAE inputs in a recent work [140].

After encoding each (replicated) mask seperately, we obtain a latent tensor of shape RT×C×H
F
×W

F .

This latent representation, concatenated with a noise image of the same shape, forms the input

to our backbone which is a spatio-temporal 3D U-Net [23, 254]. The final shape of this input

becomes RT×2C×H
F
×W

F . In contrast to the vanilla SVD, where the latent space of a single image is

duplicated T times to align with the 3D U-Net’s input requirements, our 3D U-Net gets as input

T unique frames of the modal mask sequence being used as conditioning.
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Inference details

During inference with our video diffusion model, we follow common practices [22] by employing

the stochastic sampler from EDM [136]. We simplify this process by omitting the second-order

correction and keeping the explicit Langevin-like “churn” factors constant. The denoising process

is performed over 25 steps. Specifically, when denoising the latents from zt to z0 for i ∈ {t, · · · , 1},
each denoising step can be expressed as:

ẑi−1 ← ẑi + (σi−1 − σi)
(ẑi −Dθ(ẑi; σi))

σi

(6.2)

Furthermore, we employ classifier-free guidance (CFG) [103] to balance the quality and

diversity of the generated samples. During training, we randomly set the conditioning to zero

with a probability of ρ = 0.1 to simulate the unconditional case. During inference, we combine

the conditional and unconditional predictions using a guidance scale of s = 1.5, as defined as:

F̃θ(z, c) = Fθ(z, ∅) + s(Fθ(z, c)− Fθ(z, ∅)) (6.3)

After denoising, the latent predictions are projected back into pixel space using the VAE

decoder, which yields three-channel representations. To convert these into single-channel binary

masks in the amodal segmentation stage, we sum the channel values (from 0 to 255) and binarize

the predictions by thresholding. The threshold is chosen as a per channel pixel-value of 200.

Finally, we take the union of the prediction with the input modal masks, ensuring modal masks

remain a subset of amodal masks and are properly reflected in the output.

Regarding inference time, our method takes approximately 0.95 seconds per frame on a single

RTX 3090 GPU, using around 8GB of VRAM with FP16 precision.

Baselines

In this section, we provide additional details of the image- and video-level amodal segmentation

methods used for comparison.

For image-level amodal segmentation, ‘Convex’ [362] generates the geometric convex hull

of modal masks, while ‘ConvexR’ [362] refines this by including only the convex hull within

occluded regions predicted by ‘PCNet-M’. ‘PCNet-M’ [362] is a self-supervised regression method

that recovers amodal masks within occluder areas based on frame-level object ordering recovery.

’AISFormer’ [285] employs a transformer-based head appended to a modal segmentation backbone

to directly predict all amodal bounding boxes and masks within an image. ‘pix2gestalt,’ [216] is
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an image diffusion-based method that generates amodal content conditioned on the RGB image

and modal masks of the objects.

For video-level amodal segmentation, ‘SaVos’ [346] employs a CNN-LSTM architecture that

processes RGB and modal mask patches, along with optical flow, to predict amodal masks

and motions. ‘EoRaS’ [68] proposes an object-attention encoder that incorporates Bird’s-Eye

View (BEV) 3D information, relying on having access to groundtruth camera parameters. ‘C2F-

Seg’ [85] leverages a vector-quantized latent space for coarse feature learning, refined with a

convolutional module; though designed for image-level tasks, it extends to video segmentation

using a spatial-temporal transformer block.

For generic video regression approaches, ‘VideoMAE’ [284] is a transformer-based autoencoder

that we adapt for our task by setting the masking ratio to zero, applying supervised training, and

using the decoder during inference. ‘3D-UNet’ [23], the backbone of our video diffusion model,

contains interleaved residual and transformer blocks with spatial and temporal modules but is

trained to perform one-step generation without any iterative denoising.

Additional experiments

Note that the video versions of all qualitative results in this and the following sections can be

found directly on the project page.

Improved results on MOVi-B/D. All results reported on MOVi-B/D follow prior work in

segmenting objects in a region which is defined as a 100% extension of the region enclosed by

the input modal mask. Therefore, all images are cropped to this region before being sent as

input to any method. This is different from the standard protocol used in other datasets, where

the entire image is sent as input (without any cropping). Here, we include results from training

our model with the entire image as input on the MOVi-B/D datasets. As shown in Table 6.5,

this fix significantly improves metrics, with our method achieving 4% and 6% gains in mIoU on

MOVi-B and MOVi-D, respectively. Regression methods also benefit notably from this setting.

We conclude that this is because MOVi-B/D include many instances of complete occlusions, for

which segmentation in a cropped region is not enough for predicting amodal mask.

Qualitative evidence for pseudo-depth conditioning. The quantitative advantage of

pseudo-depth conditioning was demonstrated in Table 3 of the main paper. Here, we provide

qualitative evidence to illustrate the source of this improvement. As shown in Figure 6.10, pseudo-
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Table 6.5. Quantitative results on MOVi-B/D with uncropped input. Enlarged modal region-
cropped input limits the model’s ability to predict an amodal mask when an object is fully occluded.
Using the entire image as input restores the model’s ability to complete amodal masks fully, especially
when the modal area is small. This results in substantial metric improvements compared to Table 2 in
the main paper. We copy over the results here for reference.

Input Method
MOVi-B MOVi-D

mIoU mIoUocc mIoU mIoUocc

Modal
cropped

VideoMAE [284] 78.74 42.86 70.93 32.78
3D-UNet 82.16 49.81 75.65 40.86

Ours (Top-1) 83.51 53.75 77.03 44.23
Ours (Top-3) 83.93 54.56 77.76 45.6

Uncropped

VideoMAE [284] 85.35 49.53 79.13 42.41
3D-UNet 84.24 46.17 76.90 36.69

Ours (Top-1) 87.8 53.69 82.97 47.86
Ours (Top-3) 88.43 54.64 84.04 49.43

Figure 6.10. We show how pseudo-depth aids amodal segmentation. Object’s surrounding regions
with lower depth values, i.e., closer to the camera, act as potential occluders. In the top row, the
occluders are the person and chair to the left of the object; in the bottom row, the occluder is the car
door below the person. Depth information implicitly guides our method to complete these occluded
regions.

depth conditioning encourages our method to segment areas closer to the camera, suggesting

that depth serves as an implicit indicator of potential occluders and therefore, gives information

about which occluded boundary to extend in order to predict the amodal mask.

Ablation on weights initialization. We leverage the real-world priors learnt by large-scale

diffusion models by utilizing pretrained SVD checkpoints [22]. Here, we evaluate the importance

of this initialization. In Table 6.6, we compare the performance of our model and the 3D U-Net

with and without pretrained weights. Results show that excluding the checkpoint leads to a

performance drop for both models, with a more pronounced decline for ours. These results

underscore the importance of the SVD priors.
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Figure 6.11. Comparison across diverse categories on TAO-Amodal. On a subset of the most
frequent super-categories, our method consistently outperforms others under the AP50 metric. The
overall trend is aligned with the quantitative results in Table 6.1. We attribute the strong generalization
ability of our model to the SVD priors and its effective utilization of temporal information.

Building an end-to-end segmentation and completion model. Unlike our two-stage

method, which first performs amodal segmentation and then inpaints content, the image diffusion-

based method pix2gestalt [216] adopts a one-stage approach to directly generate amodal content

and derive masks. A similar one-stage approach can be extended for our video setting. However,

as shown in Table 6.7, our two-stage method demonstrates clear advantages over the one-stage

approach. We attribute this low performance of the end-to-end method to the lack of data

available for training such a single-stage method. In contrast, the two-stage method benefits from

breaking down the pipeline into video amodal segmentation and content completion. For the

former, it is easy to find large-scale training data of modal-amodal mask pairs from synthetic

datasets. For the latter, since the content completion task reduces to video inpainting, less amount

of training data is sufficient for finetuning.

Generalizability across diverse categories. Our model demonstrates strong generalization

ability in a zero-shot setting on the real-world TAO-Amodal dataset, which includes many

previously unseen categories. TAO-Amodal is a collection of 7 different datasets, covering a wide

range of in-the-wild scenarios. Specifically, it consists of 833 object categories, out of which only

20 categories are seen during training in SAIL-VOS. For more clarity, we include a performance

breakdown on a subset of the most frequent super-categories in TAO-Amodal, as shown in Figure

6.11 . The results further highlight our model’s capacity to generalize across diverse categories.

Application to 4D reconstruction. Our method enables 4D reconstruction for occluded

objects when used in conjunction with off-the-shelf SV4D [330]. In Figure 6.12, we compare

122



6. Starting point: 2.1D reasoning of dynamic objects under occlusion

Table 6.6. Ablation of SVD priors. We study the effect of using pretrained SVD weights as
initialization for our training. We find that leveraging priors from large-scale pretraining of SVD
enhances both our method and the 3D UNet baseline, with particularly substantial improvements
observed for our method.

Method
pretrained

ckpt?
SAIL-VOS TAO-Amodal

mIoU mIoUocc AP25 AP50 AP75

Ours ✗ 68.89 26.96 93.73 79.45 57.87
Ours ✓ 75.17 51.28 94.89 85.03 66.87

3D UNet ✗ 70.85 32.66 94.88 83.81 59.75
3D UNet ✓ 72.79 39.54 94.59 83.83 64.33

Table 6.7. Ablation study on end-to-end amodal content completion. We train an end-to-end
version of our two-stage pipeline with a dataset of curated modal-amodal RGB training pairs from
SAIL-VOS, in a similar fashion to pix2gestalt [216]. Compared to the two-stage results in Table 1 of
the main paper, this approach shows a significant performance drop in both in-domain and zero-shot
evaluations, highlighting the superiority of the two-stage method.

Method
SAIL-VOS TAO-Amodal

mIoU mIoUocc AP25 AP50 AP75

Two-stage 77.07 55.12 97.28 89.25 71.99
One-stage 66.15 40.31 70.65 57.51 37.22

reconstructions with and without completion. Without completion, blank regions appear in

occluded areas, making it more difficult to hallucinate reasonable re-projections across different

views. In contrast, our method allows SV4D to produce consistent and clearer 4D reconstructions.

Application to Scene manipulation. With amodally completed objects in the scene, we can

change their orderings and positions without exposing previously occluded regions. Figure 6.13

shows examples of scene manipulation, where our method facilitates manual re-composition of

scenes by inpainting the occluded content of objects.

Pseudo-groudtruth for TAO-Amodal masks. TAO-Amodal [112] provides ground truth for

amodal bounding boxes but lacks annotations for amodal masks due to the challenges of manual

labeling of occluded objects in videos. We show that our method can be used to generate high-

quality pseudo-ground truth masks for this dataset by using the information about ground-truth

amodal bounding boxes, which define the extent of the amodal shape. We find that using the
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6. Starting point: 2.1D reasoning of dynamic objects under occlusion

Figure 6.12. 4D reconstruction results. Without amodal completion by our method, the 4D
reconstruction exhibits blank regions and unrealistic artifacts in occluded areas, such as the person’s
back and leg. The varying occluded portions over time confuse SV4D, disrupting its understanding of
the object’s 3D structure. In contrast, using completed objects from our method significantly improves
the reconstruction quality, producing more consistent and clear novel-views.

amodal bounding boxes to crop the input modal mask sequences, one can train a more accurate

video amodal segmentation method exclusively on SAIL-VOS. This way, our approach significantly

improves evaluation metrics and aligns precisely with the amodal bounding box extent, as shown

in Table 6.8. Figure 6.14 further illustrates the qualitative results of the pseudo-ground truth

masks which are high-fidelity across diverse object categories. Quantitatively, we find that

using the pseudo-groundtruths for finetuning baselines like VideoMAE (which have already been

pre-trained on SAIL-VOS), improves their performance on the TAO-Amodal dataset by around

25%, 25%, and 20% on AP25, AP50, and AP75 respectively. Apart from this, the generated

pseudo-groundtruths can be used to semi-automate the amodal mask annotation process as this

is a challenging and inherently ill-posed problem.

Note that we do not include this data point in the main paper as at inference we cannot

expect to have access to amodal bounding boxes but in order to produce pseudo-groundtruth,

one can adopt this approach.

We now present qualitative results from all datasets and additional, in-the-wild scenarios.

Figures 6.16, 6.17, 6.18, 6.19 and 6.20 compare our amodal segmentation method with more

baselines on SAIL-VOS, TAO-Amodal, and MOVi-B/D. Our method demonstrates superior

performance in generating high-fidelity shapes in the occluded regions of objects. Figure 6.21
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Figure 6.13. Scene manipulation examples. Using de-occluded objects from our method, we can
reposition and reorder them to create new scenes. In the top rows, the relationship between the person
and the soccer ball is altered, changing the scene from “the person is juggling” to “the person places the
soccer ball aside and practices a juggling posture.” In the bottom rows, the middle giraffe is moved to
the front and its position is adjusted.

showcases additional in-the-wild content completion results, highlighting the photo-realistic quality

and strong generalization capability of our method.

Failure cases. In Figure 6.15, we show four different kinds of failure cases. In the first case

with a person swimming, our method does not successfully complete the person’s amodal region.

This happens often if the object of interest is occluded throughout the extent of the video; our

model is not able to understand if this is a completely visible object or a consistently occluded

object. In the second case, the occluded object is a bow, which has never been seen before and is

completely out-of-distribution from the set of objects in SAIL-VOS. Our method fails in this case.

In the third and fourth case, our method incorrectly assumes the height of a completely visible

man to be greater than what it is, and predicts a sitting person to be standing. Therefore, our

method lacks contextual cues about what the scene is and how the modal region looks like in the

first-stage.
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Table 6.8. Pseudo-groundtruths on TAO-Amodal. We show that using the amodal bounding box
prior from the TAO-Amodal dataset to specify the extent of the output amodal segmentation mask, can
help improve the quality of video amodal segmentation. We use this version of our method to produce
‘pseudo-groundtruths’ for TAO-Amodal. We find that these pseudo-annotations can help improve the
quantitative performance of baselines like VideoMAE. See text for more details

Input setting
SAIL-VOS TAO-Amodal

mIoU mIoUocc AP25 AP50 AP75

Uncropped 77.07 55.12 97.28 89.25 71.99
Amodal cropped 87.44 69.81 99.59 99.59 99.48

Figure 6.14. Qualitative results for pseudo-ground truth of TAO-Amodal masks. Leveraging
the amodal bounding box as a strong prior, our method demonstrates versatility across diverse categories,
such as person, tractor, and bottles, and generalizes well to unseen categories like snowboards and horses.
This high-quality pseudo-ground truth can semi-automate the manual annotation of amodal masks in
real-world videos.

Figure 6.15. Qualitative analysis of failure cases of our method. See text for more details.
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Figure 6.16. Qualitative results on SAIL-VOS. (1/2)
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Figure 6.17. Qualitative results on SAIL-VOS. (2/2)

Figure 6.18. Qualitative results on TAO-Amodal. (1/2)
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Figure 6.19. Qualitative results on TAO-Amodal. (2/2)
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Figure 6.20. Qualitative results on MOVi-B/D.

Figure 6.21. Qualitative results for amodal content completion for in-the-wild scenarios.
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Chapter 7

Generating 2.5D egocentric depth
sequences of dynamic scenes

Technical report information

Khurana, T. and Ramanan, D., 2024. Predicting Long-horizon Futures by Conditioning

on Geometry and Time. arXiv preprint arXiv:2404.11554.

7.1 Introduction

Recent innovations in generative visual modeling have paved the way for a variety of applications.

In this work, we focus on the task of conditionally generating (or forecasting) the future from

past observations. Our motivation is from an embodied perspective. Evidence from neuroscience

suggests predictive coding to be a fundamental phenomena for biological processing of visual

streams [239]; specifically, biological agents process the future by first predicting what may occur

and then updating predictions based on actual observations (similar to classic dynamic models

such as kalman filters [135, 150]). Predictive modeling is the backbone of autonomous systems

such as self-driving vehicles that forecast environment motion for downstream applications like

motion planning [35, 151].

Why is this hard? One of the challenges in operationalizing such a predictive task is that

the future is inherently multi-modal; consider an outdoor scene of a busy intersection where cars

may continue straight or turn. Encoding such uncertainty has been a notorious challenge, but
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7. Generating 2.5D egocentric depth sequences of dynamic scenes

Input    Forecasts   Input    Forecasts   

Figure 7.1. Predicting long-horizon futures by conditioning on geometry and time. In this
work, we focus on the task of forecasting sensor observations given the past. Since the unobserved
future can unfold in multiple ways, we capitalize on the recent explosion in large-scale pretraining of
2D diffusion networks, which are able to model the multi-modal distribution of natural images. By
introducing invariances in data and additionally learning to condition on frame timestamps, we are able
to equip 2D diffusion models with the ability to perform predictive video modeling using moderately-sized
training data. Since we are able to query arbitrary timestamps, we find new sampling schedules that
perform better than traditional autoregressive / hierarchical sampling strategies. Here, we show two
pseudo-depth futures each, given the past pseudo-depth for four scenes, along with forecasts from
training with luminance.

recent generative modeling techniques such as diffusion networks provide an attractive formalism

for generating multiple samples from the multi-modal future. As such, our work follows a growing

body of work on video-based diffusion models [21, 28, 109, 331]. But crucially, rather than

generating video samples unconditionally or conditioned on textual prompts, we generate future

frames conditioned on past observations. However, this introduces a significant practical challenge

of satisfying compute demands that are required for learning from massive-scale video datasets.

Our approach relies on two key insights. First, we take the view that accurate video

prediction can be achieved by using recent 2D image diffusion models [252] alone. This is

because such models are trained on a massive scale of image data that (inevitably) contains

multiple stages or instances of temporal events (c.f. Fig. 7.2). We add a control mechanism to

image diffusion models in the form of timestamps that help build a temporal understanding,

and are fairly easy to obtain. Moreover, by training on videos with differing framerates, our
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timestamp-conditioned model can support a variety of video prediction tasks including short-

horizon forecasting, autoregressive long-horizon forecasting, and even frame interpolation (by

conditioning on fractional timestamps). This flexibility to sample an arbitrary timestamp in the

future lets us probe newer (and stronger) sampling schedules, other than just autoregressive and

heirarchical sampling that is most commonly used by prior work [99, 109, 293].

Modalites Our second key insight is motivated by embodied applications such as robotics /

self-driving vehicles. Oftentimes, we are not concerned with the photometric properties of the

future (e.g., “what will be the color of this car?”) but rather geometric properties (e.g.,“where

will this car be?”) [152]. Geometric processing of depth sensors is commmon in point cloud

processing [202, 314, 316] & occupancy forecasting [4, 148, 198] from 3D LiDAR sweeps, and

legged locomotion using only egocentric depth [3, 47]. However, such depth data is not as widely

as available as passive camera imagery. To leverage the latter, we show that one can use (pseudo)

depth, which can readily be obtained at-scale for videos by running recent monocular depth

estimators [20]. We show that simply choosing to forecast in grayscale rather than color already

simplifies the forecasting problem to a great degree. More importantly, introducing invariances

in data allows us to finetune image diffusion models with only 1000 videos in about 7 hours (11

hours for training them from scratch with same data)!

Contributions In summary, we present a video prediction diffusion network that can be

efficiently fine-tuned from foundational image networks by additionally conditioning on frame

timestamps. The flexibility in sampling an arbitrary future, allows us to propose stronger sampling

schedules than prior work. We also demonstrate that our design choices allow our model to be

trained on a modest but diverse set of ∼1000 videos from the TAO dataset [52], that encompasses

a variety of indoor and outdoor scenes, spanning a large vocabulary of objects. We use a variety of

baselines [53, 99, 293] (including nonlinear regression, constant and linear prediction) to illustrate

the effectiveness of different modalities. To illustrate the effectiveness of multi-modal forecasting,

we make use of probabilistic (top-K) metrics developed in the forecasting community [39].

7.2 Related work

Extracting priors from image diffusion models Denoising diffusion models [106, 271] have

emerged as an expressive and powerful class of text-to-image generative models. Because of the

massive scale of data used to train models like Stable Diffusion [252], Imagen [258] and DALL·E
[235], numerous follow-up works have investigated and built upon their rich representations.
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Specifically for novel-view synthesis, a few works [189, 261] aimed at extracting geometric, pose

priors from Stable Diffusion [252] for object or scene-level novel-view-synthesis. Other sparse-view

3D reconstruction works [283, 373, 377] also draw motivation from the same concept for distilling

the information from image diffusion into 3D models. A new paradigm of text/image-to-3D assets

emerged, where many works [226, 265, 276] iteratively enforced 3D consistency from the outputs

of image diffusion models, whereas others repurposed the image models for directly predicting

tri-plane representations [110]. In fact, a dedicated study was conducted for understanding the

3D priors learnt by image diffusion models [359].

Similarly for the task of video or motion diffusion, some works [268, 293, 323] have attempted

to “inflate” image diffusion models to suit video generation, with normalization tricks, a general

phenomenon that has appreared before for designing convolutional video understanding architec-

tures [34]. This also extends to the task of 3D motion generation, be it for humans [61] or object

trajectories [5, 97]. In a similar spirit, we address the task of video forecasting, emphasizing the

fact that in order to repurpose 2D diffusion models to suit the video-based task of forecasting

given the past, it is important to extract and control the axis of time, by explicit conditioning on

fractional timestamps.

Video diffusion models For video diffusion, algorithms have been built on top of recurrent or 3D

architectures, including 3D convolutions [109], and RNNs [342], usually coupled with large-scale

training datasets. Apart from these, there has been a meteoric rise in recent developments in

dedicated text-to-video diffusion models, ranging from industrial-scale pretraining [28, 92, 107, 171],

to multi-modality conditioning and generation networks [331]. Some of these methods are even

designed for extremely-long autoregressive video generation [99, 293, 349]. We instead explore

the setting where in addition to a moderately-sized data, only limited training resources are

available for building a model that conditions on an input timestamp, instead of text (therefore,

find the open-sourced Stable Video Diffusion [21] to be out of resource bounds). We also find

better sampling schedules than autoregressive and hierarchical sampling.

Training with masked-autoencoder objectives The ground-breaking findings from learning

self-supervisable representations with masked autoencoders [101], have recently been adopted

by image and video transformer architectures [122, 284, 297, 352, 353], and diffusion models

designed for a variety of tasks [308, 335]. Although we do not explicitly train in the fashion of

masked autoencoders, we touch upon a similar finding when designing the timestamp conditioning

mechanism for optimizing the forecasting performance at inference.

134



7. Generating 2.5D egocentric depth sequences of dynamic scenes

Forecasting for autonomous systems In robotics, an important precursor to motion planning

is forecasting what the scene and its agents will look like in the future [39, 114, 318]. In self-driving,

this spans the field of point cloud [314, 316], and recently, occupancy forecasting [4, 148, 198].

Forecasting videos of depth has a direct analogue to works that forecast range images of point

clouds from LiDAR sensors [202]. For the task of legged locomotion in quadrupeds, egocentric-

depth is increasingly becoming the sole modality that robots rely on [3, 47]. This is largely for

the reason that depth acts a low-level actionable cue that helps generalization across a vast set of

diverse environments for robot navigation. We are motivated by this, and explore forecasting

future geometries for use in autonomous systems.

7.3 Method

We lean on recent image-to-image diffusion architectures, specifically Zero-1-to-3 [189], trained for

changing the camera viewpoint of an object given its RGB image. We repurpose its image and

camera pose conditioning for the task of timestamp-conditioned video forecasting given multiple

past contexts.

Problem formulation

Given a set of context frames c ∈ R
K×H×W×C from a video of a (static or dynamic) scene, our

goal is to generate a frame x ∈ R
1×H×W×C for the same scene but from a different point in time,

t. Let all timestamps in consideration be t ∈ R
K+1. Then, we want to learn a function g that

generates an estimate of the unobserved frame x given context frames c and timesteps t,

x̂ = g(c, t) (7.1)

Since, x̂ is unobserved, it inherently follows a multi-modal distribution, making its prediction

underconstrained. To this end, we exploit pretrained large diffusion models like Stable Diffusion

[166, 252] that can model and sample from such multi-modal distributions of natural images. We

can use single-frame 2D diffusion models for the task of video prediction, as their large-scale

pretraining likely covers the space of temporal events and the different stages of their unfolding.

In Fig. 7.2, we show different stages of two temporal events, prompted from Stable Diffusion v2.

However, such architectures are not straight-forward to use, as time-conditioned video prediction

demands for two new capabilities: first, the ability to generate a new frame that is consistent

with the historical context frames c, and second, the ability to listen to the continuous valued
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Figure 7.2. Using 2D diffusion models for video prediction As part of designing the video prediction
architecture, we make the important design choice of using image diffusion models. Owing to the scale
of data such models are trained on, we can expect them to understand indepedent stages of temporal

events such as ‘turning head from left to right’, and ‘flower bud opening up’. We show individual frames
prompted from Stable Diffusion v2. We propose to add a control knob to image models in the form of
timestamps that helps in temporal understanding.

timestamps, t.

Given the above, we formalize the task of video prediction in the context of diffusion models

as follows. Given a dataset of videos with a known FPS, we extract snippets of length K + 1 and

construct a training sample as {x, c, t}. Using this training data, we start from the natural scene-

level data distribution learnt by Stable Diffusion Image Variations [161, 166] and finetune it for

controlling both the conditioning with the context frames, and timestamp scalars. Architecturally

(ref. Fig. 7.3), we use a denoising UNet ϵθ [189], that looks at 64× 64 images. For any timestep

i ∼ [0, 1000], we train ϵθ with the well-adopted noise prediction objective for diffusion training,

min
θ

Ez∼x,i,ϵ∼N(0,1)||ϵ− ϵθ(zi, i, f(c, t))||22. (7.2)

where f(c, t) is the conditioning embedding discussed in the following subsections. At inference,

we start from pure gaussian noise, and iteratively denoise it, steering the denoised image in the

direction of the conditioning embedding.

Conditioning on context views

We use a two-stream image conditioning protocol from prior work [189] but modify it to suit our

multi-frame setting. For conditioning on low-level features of the input context frames (such as

depth, texture, and motion patterns of scene actors), we concatenate the K frames with the noisy

input image to the UNet. For conditioning on higher-level features of the input context frames
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Figure 7.3. High-level architecture We use a diffusion model that conditions on three video frames,
their corresponding timestamps and a query timestamp. It generates a single video frame for the query.
We adopt the two-stream conditioning from image-to-image models [189], and (1) channel-concatenate
the context frames with the noisy input to diffusion model, and (2) CLIP-encode the context frames for
cross-attention across the UNet layers. Context and query timestamps are positionally encoded and
concatenated with CLIP embeddings.

(such as the scene elements, contextual background, and observed camera trajectory), we pass

the context frames through the CLIP image encoder [232] to get their image embeddings. We

additionally construct a “residual” CLIP embedding for the target frame, by learning the weights

on K embeddings and taking their weighted average. Intuitively, this “guides” the target image

with a residual embedding that can be hooked onto, in order to generate the prediction.

Conditioning on timestamp scalars

In addition to building a conditioning mechanism for the context views, we also need to let the

denoising UNet know, which timestamps the context frames belonged to, and which timestamp we

are probing for. To accomplish this, we positionally encode the timestamp scalar with sinusoidal

embeddings,

γ(t) = (sin 20πt, cos 20πt, . . . , sin 2L−1πt, cos 2L−1πt) (7.3)

This ensures that even if every timestamp value is not seen during training, any high-frequency

variation of it can be approximated in the frequency domain at inference. We concatenate this

with CLIP embeddings, and cross-attend them at every residual block in the UNet architecture.

Even though at inference this method addresses forecasting, we train it for a ‘random
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timestamp prediction’ objective (i.e., the order of K frames and their timestamps can be

arbitrary), instead of the task of forecasting itself. We detail more results from this finding in

Sec. 7.4.

Stitching together a video from individual frames

At inference, we generate long-horizon forecasts by predicting one frame at-a-time, which means

that our model has to be queried more than once. Consider the case where we want to predict

depth maps for T timesteps in the future. Prior work for long-horizon generation tends to make use

of T sequential autoregressive next-frame predictions [99, 293], or log(T ) hierarchical [99, 109, 268]

predictions that first predict a low framerate future that is iteratively refined into 2× higher

framerate predictions (until T frames are generated). However, both sampling strategies have

their drawbacks; autoregressive prediction may suffer from “drift” as the historical window of

frames (to be conditioned on) will eventually contain only predicted frames rather than actual

ground-truth histories. On the other hand, hierarchical sampling may not exhibit enough temporal

coherence.

Interestingly, because our approach explicitly conditions on both input and output timestamps

when making predictions, our trained model can support both such sampling strategies in addition

to other more flexible approaches. We describe two such flexible approaches, which Sec. 7.4

shows perform better than the conventional sampling. First, given pairs of past frames and their

timestamps, {c−k:−1, t−k:−1}, one can directly jump to all futures t ∈ [1, T ] independently. We

term this Direct sampling. While this predicts more plausible futures because ‘real’ historical

frames are used for conditioning, generated frames aren’t temporally coherent (every frame might

be sampled from a different future).

To improve temporal consistency, we propose mixing forecasts from direct sampling (which

are accurate but temporally inconsistent) with forecasts from autoregressive sampling (which are

temporally consistent but not as accurate as they are conditioned on the previously-predicted

past, {ct−k:t−1, tt−k:t−1}). This means that for outputs xT
D and xT

A generated from direct and

autoregressive sampling respectively, we can linearly combine these two inference pathways during

the reverse diffusion process similar to classifier-free guidance [104],

xt
D = g(c−k:−1, t−k:−1) xt

A = g(ct−k:t−1, tt−k:t−1)

xt
M = xt

A + wm · (xt
D − xt

A) (7.4)
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where wm is the mixing guidance and g is a generative model. We term this sampling schedule,

Mixed sampling. Intuitively, this makes samples from direct inference more coherent, and samples

from autoregressive inference more plausible, as they now condition on a ‘real’ past. This also

curbs the tendency of autoregressive inference to blow up at longer horizons as the output sample

can now always fall back on predictions with direct inference.

Training details For all experiments in this work, K = 3, L = 160, wm = 2.0. We train our

architecture with classifier free guidance, i.e. we randomly remove the conditioning to generate

unconditional frames (which can be used as a guidance signal during inference [104]). During

training, the diffusion model predicts noise, and we set the probability of dropping the conditioning

for classifier free guidance to 10%. During inference, we use a guidance of 2.0 for all experiments,

with DDPM sampling for 40 iterative denoising steps. We do not perform diffusion in the latent

space, but train and evaluate on images of size 64 × 64 using the Stable Diffusion Image Variations

[161] UNet. To circumvent the use of VAE, we learn two new convolutional layers at the start and

end of the UNet that help the input image to adjust to the weights of the latent space diffusion

model, similar in spirit to prior works [203, 289] that also do not depend on the VAE. We learn

all new layers 10× faster than other layers, for training from scratch. We train the network with

a batch size of 12 for 10k iterations (which takes ∼7 hours on 8 NVIDIA RTX A6000s), using

AdamW with β1 = 0.95, β2 = 0.999, ϵ = 1e−8 and weight decay of 1e−6, with a learning rate of

1e−4.

7.4 Experiments

Benchmarking Setup

Datasets To cover a wide range of dynamic environments from a number of domains like activity

recognition and self-driving, we use the large-vocabulary diverse tracking dataset, TAO [52]. TAO

is a collection of seven different datasets that is originally used for multi-object tracking. For its

unconstrained dynamic nature of videos, we repurpose it for predictive modeling. For rigid scenes,

we also include video sequences from Common Objects in 3D (CO3Dv2) [244]. CO3Dv2 is a

collection of 19k video sequences spanning objects from 51 MS-COCO [181] categories, designed

for use in object-level 3D reconstruction and new-view synthesis of static scenes. We experiment

with three different modalities: RGB videos, their luminance channels and most importantly,

sequences of pseudo-depth, where the pseudo-depth is obtained from a single-frame monocular

depth estimator, ZoeDepth [20], that predicts metric depth for scenes. We randomly sample the
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input and output frames in a window of 8s across the entire length of a video and shuffle the

frame ordering for training. For dataset splits of TAO and using metric depth from CO3Dv2,

please see supplement.

Evaluation settings For benchmarking, we consider two settings. First, we evaluate single-frame

forecasting. Because this is a scalable evaluation, we benchmark all baselines discussed below and

do all ablations for the setting where methods are asked to generate a single prediction for either

the future +1s or +10s with input frames given at {-1.0, -0.5, 0}s. Note the forecasting windows

are motivated by and reminiscent of motion planning benchmarking [31, 152].

Second, we evaluate multi-frame forecasting for up to +10s long horizon. This setting allows

us to empirically evaluate the proposed direct and mixed sampling schedules. The input is still

provided at {-1.0, -0.5, 0}s and samplers generate predictions for future {+1, +2, +3, ..., +10s}.

Metrics For evaluating depth prediction across both TAO and CO3Dv2 datasets, we adopt

the scale and shift invariant L1 error on relative depth maps from monocular depth estimation

literature [164], where scale and shift are computed as a minimization of the following least

squares objective:

(s, t) = argmin
(s,t)

M
∑

i=1

(sdi + t− d∗
i )

2 (7.5)

Here, di is the set of per-pixel predicted depths, and d∗
i are the corresponding groundtruth values.

Using Eq. 4, the L1 error is computed as e = 1
M

∑M

i=1 |sdi+ t−d∗
i |. For evaluating both grayscale

and RGB modalities, we follow prior work in novel-view synthesis [206, 373] and compute the

peak-signal-to-noise ratio (PSNR), which measures mean color difference. We take motivation

from the forecasting literature in the autonomous driving domain [39] and use Top-k versions of

both L1 and PSNR metrics: we take k samples from the model and report the best L1 / PSNR

of k. When benchmarking multi-frame depth forecasting, we compute an average trajectory error

(ATE, i.e. L1 error across the entire predicted sequence), and compute the Top-k errors across a

set of k trajectories.

Baselines We compare to state-of-the-art video prediction architectures MCVD [293], FDM [99]

and RIVER [53] and construct three simple baselines for video prediction: (1) constant past which

predicts the current frame as the future, (2) linear extrapolation from the two temporally closest

context frames, and (3) non-linear regression, which is trained for the task of forecasting the

next +1.0s using our architecture but without cross-attention layers (therefore, no conditioning)
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input multimodal prediction groundtruth input groundtruth

-1.0s -0.5s 0.0s

multimodal prediction

+1.0s +1.0s +1.0s +1.0s -1.0s -0.5s 0.0s +1.0s +1.0s +1.0s +1.0s

Figure 7.4. Qualitative analysis of single-frame short horizon forecasting We show examples
of input-output-groundtruth triplets. Given 3 past frames as input, we show 3 different samples
of the future from our diffusion network, and the corresponding groundtruth. Prediction highlighted
in red is the closest to groundtruth. Despite learning from only 1000 videos and training for only 7
hours, our method learns to generate multiple realistic futures and listens to low-level details in the
historical context frames (e.g., scene structure, actors performing events, and overall camera motion).
For reference, the events across examples in row major form could be described as, ‘playing in field’,
‘crossing road’, ‘doing laundry’, ‘driving (front view)’, ‘exiting room while holding a box’, ‘picking up
from table’, ‘driving (side view)’, ‘biking’, ‘fidgeting’, ‘boating with camera zooming in’, ‘standing in
hallway’, ‘sailing’.

with an L2 loss on the predicted depth from diffusion model. We retrain MCVD [293], FDM [99]

and RIVER [53] on our TAO pseudo-depth dataset and use them at inference for single-frame

forecasting given three past frames. For MCVD, we use the ‘concat’ variant as it has lower

memory requirements.

Finally, in the setting where the scene is rigid but camera has a non-zero motion, like in

CO3Dv2, we compare to a state-of-the-art method for sparse (3-) view reconstruction, SparseFusion

[373], on the task of novel-view depth synthesis. Here, we evaluate on a randomly sampled set

of test sequences from the core subset proposed in a prior work [244]. This subset consists of
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10 object categories from CO3Dv2. All experiments, including qualitative analysis, on CO3Dv2

against SparseFusion can be found in the supplement.

Comparison to state-of-the-art

We begin the quantitative analysis by comparing our method to MCVD [293], FDM [99] and

RIVER [53] for future timestamp prediction in dynamic videos.

Short horizon forecasting We evaluate our method and all baselines for single-frame +1s

forecasting in Tab. 7.1. We find that our method outperforms state-of-the-art video prediction

methods, MCVD [293], FDM [99] and RIVER [53]. We posit that against MCVD, our randomized

frame prediction objective during training and additional conditioning on timestamps, helps in

learning better temporal coherence across frames. FDM, specifically, is not designed for scenes

that have dynamic actors, so may perform suboptimally when learning to handle dynamics.

RIVER’s bottleneck is video prediction in a significantly low dimensional latent space which

results in imprecise reconstructions at inference.

When comparing our method to simple baselines such as the (non-learned) constant past and

linear extrapolation, and the unimodal non-linear regression, it becomes readily apparent that,

(1) both constant past and linear extrapolation are strong baselines for scenes that are static and

have been captured by a stationary camera, and (2) regression, expectedly, stands out as an even

stronger baseline (often used by pioneering work in occupancy forecasting [152]) but regresses

to the mean of multi-modal distribution of possible futures. This mean-seeking behaviour still

suffices for most scenes and metrics (such as our mean Top-1 L1 error), but our method provides

the increased capability of sampling multiple futures which reduces the probabilistic Top-5 L1

further. An in-depth qualitative analysis of all baselines along with our method, and a training /

inference runtime analysis, can be found in the supplement.

Long horizon forecasting First, we evaluate the single-frame forecasting for +10s using

three different sampling schedules as discussed in Sec. 7.3. Note that in the single-frame case,

direct and hierarchical sampling are equivalent as the first lowest framerate layer of hierarchical

sampling generates the +10s frame directly from the given inputs. Compared to the baselines in

Tab. 7.2, we find that our proposed mixed sampling strategy performs the best at the probabilistic

L1, while surprisingly constant prediction suffices for the Top-1 metric.

Second, in Tab. 7.3, we benchmark different sampling schedules discussed for the multi-frame

forecasting case with Top-k ATE, where samplers predict a 1fps sequence up to 10s in the future.

First, we find that directly jumping to a future frame, performs better than the conventional
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Method Top-1 L1 Top-3 L1 Top-5 L1

Linear extrapolation 21.25 21.25 21.25
Non-linear regression 7.96 7.96 7.96
Constant past 7.15 7.15 7.15

RIVER [53] 10.82 10.32 10.17
MCVD [293] 10.54 7.83 7.12
FDM [99] 9.99 7.78 7.24

Ours 8.40 6.93 6.59

Table 7.1. Comparison to state-of-the-art We evaluate future depth prediction for +1s against
state-of-the-art video prediction methods by retraining them for pseudo-depth prediction, and against
other simple or non-learned baselines. We find that our method beats prior work with a substantial
margin.

Method Top-1 L1 Top-3 L1 Top-5 L1

Linear extrapolation 21.80 21.80 21.80
Non-linear regression 14.76 14.76 14.76
Constant past 11.61 11.61 11.61

Ours (autoreg.) 12.93 11.24 10.77
Ours (direct) 12.65 11.13 10.65
Ours (mixed) 12.39 10.97 10.51

Table 7.2. Single-frame long horizon forecasting We evaluate future depth prediction for +10s
against the discussed baselines. Given our timestamp conditioning, we are able to explore more flexible
sampling schedules like direct and mixed, which perform better than the widely used autoregressive
sampling.

autoregressive and hierarchical sampling schedules. Specifically, for autoregressive sampling, the

error in prediction starts adding up as the diffusion models starts conditioning on predicted

frames rather than the groundtruth past. For hierarchical sampling, the future is coarsely decided

by the first set of predictions. After this, intermediate frames can only be interpolated and the

future cannot be refined. Finally, for mixed sampling, we find that it produces more accurate and

coherent futures as it benefits from the advantages of both direct & autoregressive sampling (Fig.

7.5).

Comparison between different modalities

We also explore luminance and RGB modalities for single-frame +1s video prediction. Specifically,

instead of pseudo-depth, we train our model for luminance and RGB prediction under the short-
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-1.0s

-0.5s

-0.0s

+1.0s

+2.0s

+3.0s

+10.0s

A H M GTD A H M GTD A H M GTD

Figure 7.5. Comparison between sampling strategies We qualitatively analyse the predictions
from the four discussed sampling strategies given same past alongside the GroundTruth: Autoregressive
and Hierarchical [99, 109, 293], and Direct and Mixed, which are enabled by our timestamp conditioning.
As detailed in Sec. 7.3, we find that autoregressive sampling suffers from “drift”, and the performance
of hierarchical sampling is governed by its first layer of forecasts (i.e. lacks flexibility). While direct
sampling does better, it cannot produce coherent futures. Concretely, we propose mixed sampling,
which mixes both the coherence of autoregressive and the accuracy of direct samples. For reference, the
samples from left to right could be described as, ‘standing in hallway’, ‘interaction between two people’,
’side-view from a driving car’.

horizon forecasting setting. When evaluating RGB, we factor out the luminance channel from the

prediction and use that for benchmarking against our luminance prediction model. In Tab. 7.4,

we see that introducing invariances in the input data (such as learning from luminance rather

than a combination of color and texture), helps in making forecasting easier. Quantitatively, the

Top-5 PSNR increases by a large margin of ∼2.1 points.

We also compare our depth and RGB prediction models by running Stable Diffusion Depth2Img

on the predicted depth. We find that, (1) our depth is readily usable for downstream tasks, and
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Method
Top-1 Top-3 Top-5
ATE ATE ATE

Ours (autoreg.) 15.20 13.56 13.06
Ours (hierar.) 15.15 13.77 13.32
Ours (direct) 13.54 12.73 12.43
Ours (mixed) 12.16 11.73 11.58

Table 7.3. Multi-frame long horizon forecasting We evaluate multiple sampling strategies for
generating a sequence of future depths upto +10s. We evaluate with Top-k ATE and find that our
proposed mixed sampling, which is able to generate accurate and coherent futures, performs the best of
all.

Method Top-1 Top-3 Top-5 Evaluation

Ours-L 16.32 17.07 17.33
Luminance

Ours-RGB 12.16 14.47 15.24

Ours-D 16.28 16.44 16.50
Color

Ours-RGB 14.10 15.40 15.80

Ours-D 8.40 6.93 6.59
Pseudo-depthOurs-L 22.68 19.17 17.61

Ours-RGB 27.05 20.88 19.33

Table 7.4. Comparison between different modalities. We quantitatively enable a fair comparison
between modalities by evaluating them for either pseudo-depth, luminance, or RGB forecasting. We
consistently find that invariant modalities like depth and luminance perform drastically better than
RGB at video prediction. Luminance and Color models are evaluated with PSNR and Depth with L1.

(2) it is infact easier to do RGB prediction by learning to forecast scene depth first! For details

on the depth2img parameters and text prompts used, please see supplement.

Finally, we compare all three modalities for the task of pseudo-depth forecasting. This requires

running ZoeDepth [20] on our predictions from the luminance and RGB models. We once again

find that it is easier to directly learn to forecast depth, without depending on color or scene

texture.

Architecture ablations

We ablate our design decisions in Tab. 7.5 for +1s forecasting. For a fair comparison with MCVD,

FDM and RIVER and to see how much performance boost we get from the Stable Diffusion

Image Variations weights, we attempt to train from scratch. Surprisingly, this training does not

take much longer than finetuning (11 hours for training from scratch vs. 7 hours for finetuning),

and performs remarkably well (still better than the state-of-the-art). We further attempt to
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reduce the number of parameters in our network by removing 1 convolution block each from the

UNet encoder and decoder. This brings number of parameters closer to the state-of-the-art video

prediction models, and training the smaller model from scratch still beats all baselines. For exact

parameter counts, see supplement.

Next, we find that the CLIP embedding is essential to conditioning on the past context frames

and results in a drop of ∼1.4 points if ablated. Finally, we ablate the design decisions for the

timestamp conditioning.

Anchoring timestamps When designing the timestamp conditioning, we find that it helps to

condition on relative rather than absolute timestamps. This includes, “anchoring” timestamps to

a constant frame in the input such that that frame always occurs at t=0s. For our experiments,

we choose the third context frame as anchor, and this frame at timestamp +0s becomes the

‘current’ frame for the diffusion network. This practice has recently been adopted by methods

[295] that use diffusion models for conditioning on 3D cues such as camera pose.

Timestamp randomization One of our key insights is that training directly for the task of forecasting

is sub-optimal to training for a random frame prediction objective. Specifically, the drop in

performance is rather significant (∼1.8 Top-1 L1 points). This aligns with the insights from

masked autoencoder literature [101, 284, 297] where randomization in masking results in better

representations. Analogously, destroying structure in the data and making the final task harder

for the diffusion models, helps in building robust temporal understanding.

Applications

In Fig. 7.6, we show qualitative examples of different applications our approach can be used

for: (1) generating videos at varying framerates for different horizons given the same context

frames, (2) frame interpolation at fractional timestamps between the given context frames, and

(3) looking back in the past with negative timestamps given the future frames as context.

7.5 Discussion

We focus on the problem of predicting the future from past sensor observations, and take

motivation from the neuroscience literature on predictive coding. Since the future is multi-modal

and can therefore unfold in multiple ways, we lean on the explosive advancements in large-scale

pretraining of diffusion models, that can internally represent such multi-modal distributions.

With two key modifications to image diffusion networks, we come up with a method for predictive
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Method Top-1 Top-3 Top-5

Ours 8.40 6.93 6.59
- pretrained weights 7.89 7.04 6.78
- 2 × conv blocks 8.50 7.27 6.89
- CLIP embedding 9.19 8.25 7.95
- timestamp anchoring 9.00 7.08 6.62
- random timestamps 10.24 7.89 7.31

Table 7.5. Architecture ablations. We ablate our method under the single-frame +1s forecasting
setting with L1 error. We assess the benefits from using pretrained weights [161], a large model, and
CLIP embeddings for context frames. We additionally investigate the design choices in creating the
timestamp conditioning, by using relative timestamps and randomizing their order. Ablations indicate
that all design choices play a crucial role.

Figure 7.6. Video applications. We show examples of how the formulation of our method unlocks
multiple video applications: variable framerate forecasting (top row at 1FPS, second row at 5FPS),
(third row) frame interpolation given the frames in gray, and (last row) backcasting at 5FPS given
the future. For reference, events from top to bottom could be described as, ‘playing pool’, ‘jumping’,
‘walking on a busy street’.

video modeling. We find that for training with moderately-sized datasets, it helps to introduce

invariances in the data – such as forecasting only pseudo-depth or luminance of real-world images.

Physical quantities like pseudo-depth are readily usable by downstream tasks in robot autonomy

(locomotion and planning) as they represent the time-to-contact. We introduce a mechanism

for diffusion models to condition on a frame’s timestamp. This allows models to perform better

at the task of forecasting (especially when they are not trained for forecasting). Timestamp

conditioning also lets us come up with flexible sampling schedules for long-horizon forecasting.

We find that these new sampling schemes perform better than conventional autoregressive or
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hierarchical sampling strategies.

7.6 Appendix

In this appendix, we extend our discussion of the performance of our method on predicting diverse

future geometries, both qualitatively and quantitatively.

Dataset splits and evaluation

We use the diverse TAO [52] dataset for learning dynamism in unconstrained scenes. Since TAO

is a tracking benchmark, its training set is smaller than the validation or test sets. For this reason,

we train on the validation set of TAO (∼1000 videos) and report all results on one randomly

sampled subsequence each, from the train set (containing about 500 videos). The randomly

sampled set is fixed across all experiments for fair comparison.

In the case of evaluation on rigid scenes, we use CO3Dv2 [244]. Although CO3Dv2 has

groundtruth depth that is obtained from COLMAP [262], it is not dense. For this reason, we

still run ZoeDepth on CO3Dv2 and use those pseudo-depth maps for training our method, but

use the valid depths from groundtruth for computing the probabilistic L1 metric on CO3Dv2 for

both our method and the baseline, Sparsefusion [373]. In the following section, we analyse depth

forecasting on CO3Dv2 qualitatively and quantitatively.

Novel-view synthesis

We consider the case where a moving camera captures a static scene. In literature, this has been

studied under the umbrella of novel-view synthesis from dense [206] or sparse views [244, 373].

The setting we evaluate (context from {-1s, -0.5s, 0s} and prediction at +1s) falls under sparse

view reconstruction/synthesis. We use a variant of our model trained on CO3Dv2 alongside TAO.

Note that the state-of-the-art method, SparseFusion [373], which we use as a baseline has access to

future camera pose for rendering the novel-view from its reconstruction, whereas for our method,

the camera pose is unknown. Along with the scene, it is sampled from the timestamp-conditioned

diffusion model during inference. Despite this disadvantage, we find that our method predicts

plausible depths for the objects, in addition to the depth predictions for the object backgrounds,

which is ignored by SparseFusion. We cover some qualitative analysis in Fig. 7.7.

In Tab. 7.6, we formally evaluate the task of novel-view synthesis. Since CO3Dv2 has multi-

view object data captured in the form of videos, we structure this problem as, given frames at -1.0s,
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Method Donut Apple Hydrant Vase Cake Ball Bench Suitcase Teddybear Plant Overall

SparseFusion 11.54 28.94 19.04 14.29 26.28 27.64 75.89 34.32 40.04 71.53 34.95
Ours 7.22 19.23 30.39 21.82 19.57 20.65 91.83 33.56 38.44 75.23 35.79

Table 7.6. Novel-view synthesis results on Co3Dv2 core subset. We evaluate our method for the
task of novel-view depth synthesis with Top-1 L1 error on normalized depth, against a recent approach for
3-view reconstruction. Over the set of categories in the core subset of CO3Dv2, we see that SparseFusion
performs better overall. Unlike SparseFusion, our method does not have the access to future camera pose
or object mask. Despite this, it is able to generate plausible depth maps for object turn-table sequences
in Co3Dv2. We only compute the metric on valid groundtruth depths inside the given object mask in
CO3Dv2, without penalizing the background forecasts.

apple bench cake donut hydrant ball suitcase teddybear vase plant

Figure 7.7. Qualitative comparison to novel-view synthesis We train and qualitatively evaluate
our method on CO3Dv2. From the core subset [244] of 10 categories in CO3Dv2, we show novel-view
synthesis from both our method (top) and SparseFusion [373] (bottom). While SparseFusion has access
to the parameters of both the input and new (or future) view, these are implicitly estimated by our
method from the camera trajectory encoded in the past frames. Therefore, our method does not rely on
known camera poses! Qualitatively, our method performs favourably on the task of new-view synthesis
from 3 input views, while handling dynamics and backgrounds in general for a wide variety of scenes.

-0.5s, 0.0s, we want to predict the frame at +1.0s. For our method, only the future timestamp

is available. For SparseFusion, instead of future timestamp, future camera pose information is

available. Quantitatively, we find that our method performs better than SparseFusion on a few

categories (donut, apple, ball, suitcase, etc.) because of more smooth depth forecasts (ref.

Fig. 7.7). Other than that, for categories where camera viewpoint matters more (hydrant, bench,

plant etc.) for rendering the geometry, SparseFusion does better.

More importantly, the extension of our method for the task of novel-view synthesis coupled

with its performance on forecasting for dynamic scenes, we show that we can handle object

backgrounds, and dynamic video settings such as in TAO [52], unlike methods for sparse-view

static object/scene reconstruction like SparseFusion.

149



7. Generating 2.5D egocentric depth sequences of dynamic scenes

   Pseudo-depth forecasts      Luminance forecasts      RGB forecasts   

+0.5s +1.0s +1.5s +2.0s +0.5s +1.0s +1.5s +2.0s +0.5s +1.0s +1.5s +2.0s

Figure 7.8. With same training data/architecture/duration, a depth or luminance model learns better
temporal coherence than RGB.

Qualitative comparison with baselines

In Fig. 7.9-7.12, we qualitatively compare to all baselines discussed in Tab. 1. We see that

predicting the most recent past frame as the future serves as a strong baseline. Non-linear

regression, regresses to the mean of the future distribution. FDM [99], RIVER [53], MCVD [293]

and our method instead, sample modes of the future distribution. Linear extrapolation is not

shown but it serves as a strong baseline when the scene is static. Overall, we see that our method

produces more realistic and diverse outputs, as compared to MCVD [293] which usually does not

diverge much from the input views. RIVER [53] struggles to learn temporal coherence because

of its processing in the low-dimensional latent space, and FDM [99] is not able to learn precise

object boundaries likely because it is not designed to handle dynamic scenes.

Mean vs. mode-seeking behavior Fig. 7.9, row 1 shows how the non-linear regression

baseline hallucinates multiple possible futures, thereby introducing artifacts because of this

phenomenon (e.g., multiple people are visible in the output). In contrast to this, our method

and other state-of-the-art approaches are able to sample multiple futures separately, commonly

referred to as the mode-sampling or mode-seeking behavior.

Depth vs. luminance vs. RGB Fig. 7.8 shows a qualitative comparison between forecasts

from different modalities; we see that RGB forecasting tends to be noisy. Temporal coherence is

better learned with invariant modalities such as pseudo-depth or luminance. While many recent

works do show successful RGB video generation [114, 171], they typically train on far more data

than us (days of compute on 10 million videos vs 7 hours of compute on 1000 videos).

Comparison to state-of-the-art on long-horizon forecasting

In Tab. 7.7, we compare the performance of our method shown in the main paper, by retraining

FDM [99] and RIVER [53] for +10s forecasting. Note that this is not an apples-to-apples
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Method
L1 ATE

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

FDM [99] 16.05 13.15 12.29 16.57 14.38 13.79
RIVER [53] 13.21 11.71 11.26 13.34 12.28 11.93
Ours 12.39 10.97 10.51 12.16 11.73 11.58

Table 7.7. Long horizon forecasting We evaluate future depth prediction for +10s against FDM and
RIVER, two state-of-the-art methods for video generation in the single-frame (with L1) and multi-frame
(with ATE) settings. Given our timestamp conditioning, we are able to explore more flexible sampling
schedules like mixed sampling, which performs better than the widely used autoregressive sampling
strategies for FDM and RIVER.

comparison to our method, as even for the case where we want to predict just the +10s frame

with the baselines, they are forced to predict every intermediate (0s to 10s) frame because this is

the only way to reach the future +10s. On the other hand, when we evaluate our method for

single-frame +10s forecasting, we directly jump to that timestamp.

Quantitatively, (1) errors are higher when methods are used for predicting sequences of future

frames, rather than when evaluated for a single timestamp in future, and (2) across the discussed

settings, our method performs the best of all with the proposed mixed sampling.

Table 7.8. Resource requirements
of baselines for single-frame +1s
forecasting.

Params. Mem. Train Test

Method (M) (GB) (hrs.) (s)

RIVER [53] 236 12 32 6.90

MCVD [293] 565 19 66 12.50

FDM [99] 80 8 72 24.41

Ours 860 21 7 4.09

Ours (scratch) 860 21 11 4.09

Ours (small, scratch) 399 16 8 3.78

Memory requirements and speed In Tab. 7.8, we detail the

memory and speed requirements of our method and its variants

along with the state-of-the-art for the task of +1s single-frame

forecasting. First, we find that at inference, our method samples

the fastest from the diffusion model. Second, FDM [99] uses the

least amount of memory as it has the smallest model. RIVER

[53] also uses lesser memory for a lighter architecture since it

learns video generation in significantly low dimensional latent

space. While these methods allow for a smaller memory footprint,

as seen qualitatively and quantitatively, none of them is able to learn persistence and temporal

coherence of objects and scenes. For a fair comparison to baselines, we see that a variant of our

model that is not initialized with the Stable Diffusion Image Variations weights finishes training in

11 hours, still better than all baselines. Another variant of our model that has lesser parameters

and is more comparable to baselines, is much faster to both train and sample from.

All numbers are provided for batch size = 1. For RIVER, a VQ-GAN needs to be trained
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whose number of parameters (68M) are added to the RIVER parameters (168M). Note that all

our variants quantitatively perform better than the state-of-the-art as shown in the main paper,

and these differences in the training and inference resources are even more pronounced when the

state-of-the-art methods are used for multi-frame long-horizon future generation.

Stable Diffusion Depth2Img In the main paper, we show that given the same amount of

training resources, it is better to train a depth video prediction diffusion model and use this

‘temporally-aware’ depth in conjunction with a single-frame depth-to-image model (such as Stable

Diffusion Depth2Img [252]) than an RGB video prediction model. To get this RGB image for

every predicted future depth frame, we input the RGB image at timestamp t = 0s (which is the

last input timestamp), alongside every predicted depth frame from the future, into the Stable

Diffusion Depth2Img model one-at-a-time. We use the LLaVA [185] model to caption the RGB

image at t = 0s which is input as the text prompt for the depth-to-image generation. We use

‘ugly looking, bad quality, cartoonish’ as the negative text prompt. The guidance scale

is set to 5.0 and the conditioning strength is set to 0.3.

LLaVA prompting To get the text prompt from LLaVA, we use the HuggingFace llava-hf/

llava-1.5-7b-hf weights, and use the input prompt for LLaVA as, "<image>\nUSER: Caption the

image in one long sentence.\nASSISTANT:". All text returned after this prompt is used as

input to Stable Diffusion Depth2Img. The RGB images are resized at a 512 × 512 resolution,

and a max output length of 500 characters is used.

Limitations Our method suffers from two important limitations. First, our method is biased

towards hallucinating people and cars. For the other categories, the future is rather difficult to

forecast. This limitation arises from the fact that TAO, which is used for training, has ∼52% of

the objects as people, with the second most common category being cars. However, when even a

small finetuning set of varied objects from CO3Dv2 [244] are used, our method does perform well

on forecasting the future for those categories.

Second, we find the pseudo-depth produced by our method (and others) is low-fidelity, lacking

details that otherwise appear in inputs. We posit that this is because although neural networks

are universal function approximators, they struggle with modeling high-frequencies.
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  input  
constant 
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non-linear 
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MCVD ours groundtruthRIVER FDM

Figure 7.9. Qualitative comparison to baselines (1 of 4). We compare to all baselines for the task
of short-horizon forecasting on TAO-val set. Given inputs at -1.0, -0.5, 0.0s in gray, methods predict
future pseudo-depth at +1.0s. Lighter color is closer depth.
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  input  
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non-linear 
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MCVD ours groundtruthRIVER FDM

Figure 7.10. Qualitative comparison to baselines (2 of 4). We compare to all baselines for the task
of short-horizon forecasting on TAO-val set. Given inputs at -1.0, -0.5, 0.0s in gray, methods predict
future pseudo-depth at +1.0s. Lighter color is closer depth.
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MCVD ours groundtruthRIVER FDM

Figure 7.11. Qualitative comparison to baselines (3 of 4). We compare to all baselines for the task
of short-horizon forecasting on TAO-val set. Given inputs at -1.0, -0.5, 0.0s in gray, methods predict
future pseudo-depth at +1.0s. Lighter color is closer depth.
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non-linear 
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MCVD ours groundtruthRIVER FDM

Figure 7.12. Qualitative comparison to baselines (4 of 4). We compare to all baselines for the task
of short-horizon forecasting on TAO-val set. Given inputs at -1.0, -0.5, 0.0s in gray, methods predict
future pseudo-depth at +1.0s. Lighter color is closer depth.
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Chapter 8

Learning foundational 3D priors via
dynamic novel view synthesis

Publication information

Chen, K., Khurana, T., and Ramanan, D., 2025. Reconstruct, Inpaint, Finetune:

Dynamic Novel-view Synthesis from Monocular Videos. In Proceedings of Neural

Information Processing Systems (NeurIPS).

8.1 Introduction

Rapid advances in static 3D scene representations [144, 206] have paved the way for spacetime

understanding of the dynamic world. This has enabled photorealistic content creation and

immersive virtual reality applications. In this work, we focus on the problem of novel-view

synthesis from casually-captured monocular videos of dynamic scenes.

Why is this hard? Prior work on dynamic view synthesis addresses this task from two extremes.

The first class of methods “test-time” optimize a new 4D representation from scratch for every

new test video. While this ensures physically-plausible scene geometry, careful choices in modeling

scene motion – in the form of an independent deformation field, or learnable temporal offsets –

have to be made [176, 298, 322]. More importantly, it can take on the order of hours to optimize

and render a novel-view video. An attractive alternative is to train large feed-forward video

models directly for view synthesis [111, 364]. While inference on such models is dramatically

faster (on the order of milliseconds), the resulting renderings often are not as accurate as their
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Figure 8.1. We present CogNVS, a video diffusion model that enables novel-view synthesis of dynamic
scenes. Given an in-the-wild monocular video of a dynamic scene, we first reconstruct the scene, render
it from the target novel-view and inpaint any unobserved regions. Because CogNVS can be pre-trained
via self-supervision, it can also be test-time-finetuned on a given target video, enabling it to zero-shot
generalize to novel domains. Our simple pipeline outperforms almost all prior state-of-the-art for dynamic
novel-view synthesis. We show outputs from CogNVS from two unseen videos; a generated video above,
and a real-world video below.

test-time optimized counterparts. From a pragmatic perspective, such models need to be trained

on mega-scale multi-view training data, which is difficult to obtain for dynamic scenes.

Our method addresses the above challenges by decomposing the problem of dynamic view-

synthesis into three distinct stages. First, we lean on the success of non-rigid structure from

motion [178, 192, 363] approaches that produce reconstructions of visible scene regions, sometimes

known as “2.5D” reconstructions (since occluded regions are not reconstructed). We point out

that such reconstructions can be trivially produced for casual mobile videos captured with depth

sensors and egomotion [84]. When such reconstructions are rendered from a target novel view,

previously-hidden regions will not not be rendered. To “inpaint” these regions, we train a 2D

video-inpainter – CogNVS – by fine-tuning a video diffusion model (CogVideoX [344]) to condition

on the partially-observable novel-view pixels. Importantly, we allow CogNVS to also update the

appearance of previously-visible pixels, allowing our pipeline to model view-dependent (dynamic)
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scene effects.

The key insight of our work is that CogNVS can be trained on any 2D videos via self-

supervision. However, rather than training our inpainter with random 2D masks, we make use

of 3D multi-view supervision that better captures 3D scene visiblity, similar to prior art [307].

Specifically, given a 2D training video (ref. Fig. 8.1), we first reconstruct it (with an off-the-shelf

method such as MegaSAM) and then render the reconstruction from a random camera trajectory.

This rendering is used to identify co-visible pixels from the source video that remain visible in

the novel views. This original source video and its co-visible-only masked variant can now form

a training pair for 3D-consistent video inpainting. Importantly, because such a training pair

does not require ground-truth 3D supervision, CogNVS can be trained on diverse in-the-wild

2D videos. We use dynamic scenes from TAO [52], SA-V [241], Youtube-VOS [333], and DAVIS

[225]. Equally as important, we use the same paradigm to test-time finetune CogNVS on the test

video-of-interest. We show that this allows our pipeline to “zero-shot” generalize to test videos

that were never seen during training. We argue that our test-time finetuning of 2D diffusion

models can be seen as the “best-of-both-worlds”, by leveraging large-scale training data (for

data-driven robustness) and test-time optimization (for accuracy).

In summary, our contributions are as follows: (1) We decompose dynamic view synthesis into

three stages of reconstruction, inpainting and test-time finetuning, (2) we use a large corpus of

only 2D videos for training CogNVS, and (3) we do extensive zero-shot benchmarking on three

evaluation datasets against state-of-the-art methods and show improvements on dynamic view

synthesis.

8.2 Related Work

Novel-view synthesis has seen recent advancements with the rise of implicit scene representa-

tions like NeRFs [206] and Gaussian primitives [46, 144, 145]. We have seen widespread efforts

in scaling these representations to model larger scenes [280, 288, 326], making them faster to fit

[32, 40, 57, 69, 89, 144, 167, 209], anti-aliased [12, 13, 14, 118, 180], and extend to representing

dynamic scenes [86, 167, 227, 273]. The most popular paradigms have been the adoption of

dynamic NeRFs [206, 218, 227] and deformable Gaussian primitives [144, 195, 322, 343] for mod-

eling scene dynamics, apart from using voxel grids [151, 152] or learnable tokenzation [365]. Most

approaches need multi-view posed videos as input, and only recently monocular view synthesis

has gained traction [79, 168, 175, 298]. However, each of the aforementioned approaches have to
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(a) Training

CogNVS !

Loss

Renders for pre-training

(b) Zero-shot Testing

CogNVS !

Loss

Renders for test-time fine-tuning

CogNVS ❄

Renders for inference

Figure 8.2. CogNVS overview. During training (left), given a 2D source video (in blue) of a
dynamic scene, we first reconstruct the scene using off-the-shelf monocular reconstruction algorithms like
MegaSAM [178] to obtain the 3D scene geometry, Gsrc and camera odometry, csrc. We then sample a set of
arbitrary camera trajectories {c1, · · · , cN} to simulate plausible occluded geometries, {Gcov

src,1, · · · ,Gcov
src,N}

which when rendered from original camera trajectory, csrc produces a mask of source pixels that are
co-visible in the sampled trajectory (in orange). The source video and its masked variant produce a
self-supervised training pair for learning CogNVS, our video inpainting diffusion model (visualized in
Fig. 8.3). At inference (right), we finetune CogNVS on the given input sequence by similarly constructing
self-supervised training pairs. The final novel-view is then generated using the finetuned CogNVS in a
feed-forward manner.

be test-time optimized separately for every new test video, are slow to optimize and yet fail to

recover highly-detailed dynamic scene content [168]. Moreover, there is no focus on predicting the

unobservable scene content, which is exacerbated by benchmarking metrics that only evaluate

co-visible pixels [84] in training and inference views and therefore encourage benchmarking on

novel views that are not too far apart from the training views. Our approach instead reformulates

dynamic view synthesis as an inpainting task, which specifically focuses on generating parts of

the scene that were occluded from the training views, thereby facilitating extreme novel view

synthesis for dynamic scenes. Our large-scale pretraining for feed-forward novel-view inpainting

enables data-driven robustness.

Data-driven novel-view synthesis approaches have emerged [189, 247, 292, 324, 340, 354, 357]

which train for view synthesis in a feed-forward manner with large-scale data. One class of methods

is based on transformer architectures, more often than not trained with multi-view supervision and
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rendering in the loop [111, 131, 245, 310, 329, 364]. Another class of methods reformulate novel-

view synthesis as a conditional generation task and use diffusion-based generative architectures

[189, 264] for the same. Initially, the focus was on developing data-driven pipelines for static

novel-view synthesis [37, 186, 187, 189, 306, 310, 357, 364], or exploiting data-driven priors

[43, 149, 226, 233, 276, 281, 304, 350], using multi-view posed image inputs. However, the focus

is now shifting to dynamic view synthesis of casually captured videos in an unconstrained setting

[130, 172, 247, 292, 340, 354]. These approaches allow a greater level of hallucination of unseen

scene components which instills the capability of view synthesis for camera poses that are far

apart from the training views. We fit into this setting. While the data-driven learning provides

faster inference times and a broad generalization, it compromises on 3D geometric accuracy and

physical-plausibility which introduces unrealistic artifacts in the synthesized outputs (e.g., objects

suddenly exist or cease to exist) [354]. In this work, we highlight that test-time finetuning is

crucial to preserving the 3D geometry of the scene and reducing implausible artifacts.

Test-time finetuning is a long-standing paradigm to curb distribution shifts in machine

learning algorithms and improve their generalization. It’s origin lies in early-age algorithms for

optical character recognition [24] and text classification [132], where the algorithm adjusts itself

after observing the test data. A decade back, it popularly resurfaced for super-resolution [266]

where learning to super-resolve an image was achieved by downsampling and super-resolving the

test image. Domain generalization approaches for vision [44, 45, 80, 127, 277, 369] soon took

inspiration from this breakthrough and recently, chain-of-thought prompting [309] and general

LLM reasoning [6] in natural language processing adapted this paradigm. The most recent

adoption was seen in 4D reconstruction and tracking [72], and we similarly explore this paradigm

further in our work.

8.3 Method

Given a monocular video of a dynamic scene, Vsrc = {Vt
src}Tt=1, we want to generate a novel view

of the observed scene, Vnvs = {Vt
nvs}Tt=1 from a target camera pose. As discussed (c.f. Fig. 8.2),

we achieve this by decomposing the task into three distinct stages – (1) obtain an off-the-shelf

reconstruction of the observed scene over time, (2) render the scene from the novel views and

inpaint the non-co-visible regions, and (3) curb the train-test distribution shift with test-time

finetuning. We now descibe each of the stages in detail.

161



8. Learning foundational 3D priors via dynamic novel view synthesis

Dynamic view synthesis as structured inpainting

We use off-the-shelf SLAM frameworks, like MegaSAM [178], to obtain a reconstruction of the

given scene. Formally, let the underlying 3D structure of the world as observed by Vsrc be

represented by, Gsrc = {Xt
src}Tt=1, where Xt

src are the evolving 3D primitives (points, Gaussians,

etc.) across time, t. Any physical properties of the primitives are omitted from this discussion

for simplicity. Let the recovered camera poses from which Vsrc was observed be, csrc = {ctsrc}Tt=1,

where c denotes a camera pose and is formulated as, c = (R, t) ∈ SE(3) lie group. The source

video Vsrc can be obtained by using a rendering function R as,

Vsrc = R
(

Gsrc, csrc
)

Learning to inpaint novel views For obtaining Vnvs, we note that a subset of 3D primitives

that must be visible from csrc, are already available in the reconstructed scene geometry, Gsrc.

Therefore, a partial observation of the world in the form of co-visible pixels [84] from novel views,

cnvs = {ctnvs}Tt=1, can be rendered as follows,

Vcov
nvs = R

(

Gsrc, cnvs
)

At this point, the novel view synthesis is incomplete, and all missing regions have to be

generated. To this end, we train a conditional video diffusion model, CogNVS (denoted by ϵθ)

built on top of a recently proposed transformer-based video diffusion model [344]. CogNVS

takes in the partially observed novel view video and generates an inpainted novel-view of the

scene. The overall CogNVS pipeline first employs a 3D causal VAE to compress the conditioning

Vcov
nvs and target novel-view Vsrc into latent representations zcond = E(Vcov

nvs) and z0 = E(Vsrc)

respectively, enabling efficient training while preserving temporal coherence and photometric

fidelity. Here, E is the VAE encoder. Gaussian noise is then added to the target latent z0, and the

resulting noisy latent is concatenated with the conditional latent zcond. This joint representation

is passed through a self-attention transformer equipped with 3D rotary positional embeddings

(3D-RoPE) [275] and adaptive layer normalization, which predicts the added noise. The training

objective follows a score matching formulation:

min
θ

Ez0=E(Vsrc), zcond=E(Vcov
nvs),

k∼U{1,...,K}, ϵ∼N(0,I)

∥

∥ ϵθ(zk, k, zcond) − ϵ
∥

∥

2

2

Here, zk =
√
ᾱkz0 +

√
1− ᾱkϵ denotes the noisy latent at a uniformly sampled timestep k,

where ᾱk is the cumulative signal preserving factor. While CogVideoX was originally designed as
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Figure 8.3. Self-supervised training data generation. To curate a large training set for video
inpainting, we first reconstruct an input source 2D video (in blue) with an off-the-shelf monocular
SLAM system. After reconstruction, we randomly sample N pairs of ‘start’ and ‘end’ camera poses
around a spherical region, S of the estimated camera pose in the given 2D video. S is bounded by a
predefined deviation in the spherical coordinate axes, similar to a prior work [357]. We sample a SE(3)
camera trajectory that interpolates the start and end poses while looking at the center of the scene. We
render the reconstruction from this novel trajectory (in dotted-orange), and use the rendering to identify
co-visible pixels in the original source view (in orange). The source video and its masked variant are
used to produce a self-supervised training pair for training CogNVS, our ”3D-aware” video inpainting
diffusion model.

an image-to-video diffusion model that zero-pads conditional image patches to match the length

of the target video, we adapt it for a video-to-video setting, where the shapes of the conditional

and target inputs are inherently aligned and no padding is needed. In practice, CogNVS is trained

with datasets of 2D videos which are used to generate self-supervised training pairs. We discuss

this below.

Data generation for self-supervised training

We propose to train CogNVS in a self-supervised manner. This allows us to use a large corpus of

2D videos. For each casually captured monocular video Vsrc, we obtain its 3D reconstruction Gsrc

and odometry csrc from off-the-shelf SLAM frameworks [178]. As demonstrated in Fig. 8.3, we
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sample N arbitrary camera trajectories in order to create training pairs from 2D videos, described

as follows.

We first obtain the “center” of the scene by considering the pixel at the optical center in

the first frame of the given video, similar to a prior work [354]. We then construct a bounded

region S in spherical coordinates, around the camera center of c1src. Within this region, we

uniformly sample start and end spherical coordinates of each new camera trajectory, and then

again sample two intermediate camera locations between the start and end spherical coordinates

to ensure smoothness during interpolation. Camera poses are obtained by converting the spherical

coordinates into euclidean space to get translations, and camera rotations are obtained such

that the look-at vector always points to the center of the scene. Using the four sampled camera

poses, we do bicubic interpolation on the SE(3) manifold. This results in a set of smooth camera

trajectories, {cn}Nn=1 which are then used to construct the training pairs. With N trajectories,

we can obtain “partial” novel-view renderings as,

Vcov
n = R

(

Gsrc, cn
)

Between Vcov
n and Vsrc, only a subset of primitives from Gsrc are co-visible. Let this subset be

denoted by Gcov
src,n for the nth trajectory. Then, partial renderings of the source video are given by,

Vcov
src,n = R

(

Gcov
src,n, csrc

)

s.t. D = {(Vcov
src,n,Vsrc)}∀n ∈ [1, N ]

is the set of training pairs created by one monocular video. We repeat this for all 2D videos

considered.

Test-time finetuning for target domain adaptation

At test time, to reduce domain gap arising due to different scene properties (lighting, appearance,

motion) we use the source test video Vsrc to adjust the priors of CogNVS and create self-supervised

finetuning pairs, D as described above. We therefore adapt the model weights θ on-the-fly with

M gradient steps with η step size as follows,

θ ← θ − η ∇θ

∥

∥ ϵθ(zk, k, z
n
cond)− ϵ

∥

∥

2

2
,

where zncond is the latent of the nth self-supervised training pair input. At the end of finetuning,

we obtain the desired novel view Vnvs from CogNVS by using the partially observed novel-view,

R(Gsrc, cnvs) as the input conditioning, and running a reverse diffusion process.
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8.4 Experiments

Experimental setup

Datasets We train CogNVS on four in-the-wild video datasets, SA-V [241], TAO [52], Youtube-

VOS [333], and DAVIS [220]. We sample 3000, 3000, 4000 and 100 videos respectively from

each of the datasets, giving us a total training video pool of ≈ 10,000 videos. For pretraining,

we randomly select a new subsequence of 49-frames in every epoch and construct its training

pairs. For benchmarking, we follow prior work [168, 292] and use a combination of Kubric-4D,

ParallelDomain-4D [292] and Dycheck [84]. These have a held-out test set of 20, 20 and 5 videos

each. Note that our evaluation on Kubric-4D, ParallelDomain-4D and Dycheck is zero-shot as the

datasets are not seen during training. Since the Kubric-4D and ParallelDomain-4D are synthetic,

we use their groundtruth point clouds and odometry for a fair comparison to baselines. For

Dycheck, we use MegaSAM for reconstruction and align the estimated point cloud with the

groundtruth to solve for scale ambiguity.

Baselines For Kubric-4D, we consider GCD [292] and Gen3C [247], alongside a concurrent

work, TrajectoryCrafter [354]. For ParallelDomain-4D, we consider the same baselines except

Gen3C, which only evaluates on Kubric-4D, as there is no open-source implementation available

yet. For Dycheck, we consider recent work like Shape-of-Motion [298], MoSca [168], CAT4D

[324]. Note that we do not benchmark test-time optimization approaches on Kubric-4D and

ParallelDomain-4D, because their performance degrades catastrophically on novel views that are

far apart from training views. For more quantitative analysis of CAT4D, see appendix.

Metrics For pixel-wise photometric evaluation, we adopt the widely used PSNR, SSIM, and

LPIPS family of metrics for evaluating reconstruction quality via novel-view synthesis. We

additionally benchmark the generation quality with FID and KID. This is in line with the

benchmarking proposed in several diffusion-based view synthesis works [189, 247, 287, 292].

During pretraining, we load the official CogVideoX-5B-I2V checkpoint and fully finetune all

42 transformer blocks. We use the AdamW optimizer with β1 = 0.9, β2 = 0.95, and β3 = 0.98, a

learning rate of 2× 10e− 5, and a batch size of 8 for 12,000 steps. To fit within 48GB VRAM,

we employ DeepSpeed ZeRO-2 [234] to partition model states across 8 A6000 Ada GPUs in a

distributed setting. Pretraining completes in approximately 3 days.

During test-time finetuning, we maintain the same optimizer and learning rate but reduce
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the number of steps to 200 for shorter sequences (e.g., Kubric-4D) and 400 for longer ones (e.g.,

DyCheck). For all experiments, we use an input resolution of R49×480×720, set the classifier-free

guidance scale to 6, and run 50 inference steps. A single novel-view sequence generates in ∼5
mins on an A6000 Ada.

Training pair details To generate self-supervised training pairs, we randomly perturb the

source camera trajectory to create diverse camera paths. In the spherical coordinate system,

we sample random elevations from [-15◦, 15◦], azimuths from [-30◦, 30◦], and radius deviations

from [-0.15, 0.15], followed by bicubic interpolation. This procedure enables flexible generation

of training pairs across arbitrary camera trajectories. For pretraining, we use N = 2 camera

views per training videos. For test-time finetuning, we set N = 5 for DyCheck and N = 9 for

both Kubric-4D and ParallelDomain-4D, due to their wider novel-view gaps. When a video

sequence exceeds CogVideoX’s default input length of 49 frames, we randomly sample a 49-frame

subsequence in each epoch. On DyCheck, we additionally apply a noise injection strategy to

simulate real-world degradation on training pairs, as analyzed in Section B.

Evaluation protocol For Kubric-4D and ParallelDomain-4D, we follow the official GCD

evaluation protocol. On DyCheck, we consistently report evaluation metrics at an image resolution

of 360 (width) × 480 (height). We render dynamic Gaussian representations from Mosca and

Shape-of-Motion with a black background for fair comparison. Both methods optimize camera

poses using the ground-truth novel views to improve photometric metrics; we retain this step

to stay consistent with their original implementation. CAT4D, although diffusion-based, fits

a 4D-GS representation (with minor extensions) after synthesizing multi-view videos. When

evaluating CogNVS on MegaSAM renders, we append a static background extracted from the

full input video to better capture long-term context. The effectiveness of background stacking is

validated in Section B. Also note that Shape-of-Motion and MoSca optimize for evaluation camera

poses during evaluation using ground-truth novel view videos. Whether CAT4D adopts this

step is unknown. We do not do this camera pose optimization at test-time. Since the DyCheck

evaluation sequences are more than 49-frames in length, we isolate the static scene regions and

stack them in 3D across time. This accumulated background is then rendered onto each frame

which helps, to a large extent, “pre-inpaint” the static background regions using fused information

from multiple 49-frame length sequences.

166



8. Learning foundational 3D priors via dynamic novel view synthesis

Figure 8.4. We show a qualitative comparison with state-of-the-art approaches for dynamic novel-
view synthesis on Kubric-4D (top), ParallelDomain-4D (middle) and DyCheck (bottom). Note how
reconstruction alone, either by groundtruth depth, MegaSAM [178], Shape of Motion [298], or MoSca
[168] cannot synthesize a complete novel view. Optimization based approaches like Shape of Motion,
and MoSca, blur the dynamic regions when fitting 4D representations. CAT4D [324], whose visuals are
taken from its project page due to unavailable code, struggles to generalize. TrajectoryCrafter [354]
over-hallucinates the occluded regions and does not preserve geometry. GCD [292] performs well because
it was trained on Kubric-4D and ParallelDomain-4D. Our method can instead produce photorealistic
and 3D-consistent novel-views for the given scenes in a zero-shot manner with test-time finetuning, even
starting from point cloud renders that are incomplete and noisy (e.g., from MegaSAM for DyCheck). It
is consistently able to synthesize sharp dynamic objects, which the other baselines struggle with. Please
see the video in the appendix.
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Table 8.1. Comparison to state-of-the-art for dynamic view synthesis on Kubric-4D and ParallelDomain-
4D. We find that our method, that operates zero-shot unlike Gen3C and GCD, achieves state-of-the-art
performance across a majority of metrics. † Note that Gen3C only evaluates on Kubric-4D and there is
no open-source code that would allow us to benchmark it on ParallelDomain-4D.

Method
Kubric-4D ParallelDomain-4D

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

GT 15.12 0.671 0.328 175.01 0.063 18.79 0.499 0.409 197.99 0.129
GCD [292] 18.59 0.555 0.383 121.57 0.020 21.77 0.665 0.400 90.58 0.022
Gen3C† [247] 19.41 0.630 0.290 98.58 n/a n/a n/a n/a n/a n/a
TrajCrafter [354] 20.93 0.730 0.257 130.20 0.024 21.46 0.719 0.342 95.38 0.026

CogNVS 22.63 0.760 0.232 102.47 0.008 24.34 0.797 0.302 102.43 0.033

Table 8.2. Comparison to state-of-the-art for dynamic novel-view synthesis on Dycheck. First, we note
that our method can be run on top of any reconstruction approach and the better the reconstruction
(e.g., replacing MegaSAM with MoSca), the better the view synthesis. Second, we see that our method
can achieve state-of-the-art FID / KID scores because test-time optimization approaches [168, 178, 298]
result in blurry dynamic regions and cannot hallucinate new scene content, and completely feed-forward
approaches [354] cannot return precise geometry. Our method instead gets the “best of both worlds”.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

MegaSAM [178] 12.16 0.299 0.698 239.57 0.148
Shape-of-Motion [298] 15.30 0.476 0.494 164.29 0.073
MoSca [168] 16.22 0.472 0.586 148.18 0.063
TrajCrafter [354] 12.74 0.337 0.749 140.35 0.059

CogNVS (MegaSAM) 15.19 0.382 0.622 94.48 0.030
CogNVS (MoSca) 16.94 0.449 0.598 92.83 0.031

Comparison to state-of-the-art

Kubric-4D and ParallelDomain-4D We first do zero-shot benchmarking of CogNVS on

two synthetic datasets that come with high-fidelity dense depth and accurate camera odometry

annotations. For a fair comparison to all baselines, we use the depth and poses to backproject the

given scene into a canonical coordinate frame. Given this scene, we generate self-supervised pairs

for test-time finetuning. Upon inference (see Tab. 8.1), we find that CogNVS beats prior work on

photometric evaluation with PSNR, SSIM, LPIPS, even when baselines are not evaluated zero-shot

(GCD is trained on Kubric-4D and ParallelDomain-4D and Gen3C is trained on Kubric-4D).

In Fig. 8.4, we show the plausible and realistic novel-views predicted by our method on both

datasets as compared to the baselines. This is quantitatively demonstrated by better FID and

KID scores. A concurrent work, TrajectoryCrafter [328] performs competitively. We also evaluate
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Table 8.3. We ablate our design choices of large-scale pretraining and test-time finetuning on three
randomly chosen sequences from Kubric-4D test set. We find that no pretraining is detrimental to the
performance of CogNVS, so much so that the PSNR drops by 5 points, thereby devoiding CogNVS of
data-driven robustness. Test-time finetuning is also essential as without the adaptation of CogNVS to
the test video, the performance in terms of PSNR drops by ∼ 3 points.

Pretrain Finetune PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

✗ ✓ 18.62 0.691 0.318 201.29 0.051
✓ ✗ 20.06 0.662 0.284 185.48 0.038
✓ ✓ 23.29 0.779 0.240 158.98 0.036

the rendered visible scene structure from groundtruth depth, for establishing a lower bound on

dynamic-view synthesis.

DyCheck We evaluate the performance of our method on a real-world dataset of casually

captured iPhone videos in Tab. 8.7. First, note that since CogNVS can be applied on top of

reconstructions from any method, we show two variants. Better initial reconstruction (in this

case, with MoSca rather than MegaSAM) allows for better dynamic view synthesis. Second, of

all approaches, our method produces the most visually plausible novel views, as captured by

drastically better FID and KID. Third, note how TrajectoryCrafter [354], also based on video

diffusion which was the second-best method on Kubric-4D, is unable to handle the distribution

shift in Dycheck (shallow field-of-view, close-up videos of moving objects) and fails to generalize.

Whereas our method benefits from test-time finetuning and is able to adjust to any new data-

distribution at test-time. Other test-time optimization approaches (Shape-of-Motion, MoSca) do

better as long as evaluation views are close to training views, because there is only one distribution

they need to fit to.

Ablation studies

Effect of test-time finetuning We study the effectiveness of the test-time finetuning stage of

our method. Row 2 vs. 3 in Tab. 8.3 show that proposed self-supervised finetuning is crucial

for adaptation of CogNVS to a target video’s distribution at test-time. Once the self-supervised

test-time finetuning stage is completed, our method yields outputs with high fidelity, showcasing

improved precision, and more contextually and geometrically consistent 3D appearances, as shown

in Fig. 8.5.
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Input render No pretrain No finetune Pretrain + Finetune

Figure 8.5. We qualitatively analyze the effect of pretraining and test-time finetuning. We note that
without the data-driven robustness and generalization of pretraining (second column), CogNVS cannot
hallucinate missing regions properly (e.g., inpainted region in first row is still black in top left corner).
Finally, without test-time finetuning (third column), 3D consistency and adherence to scene lighting
and appearance properties cannot be ensured (e.g., overall darker scene in second row, and output off
by a few pixels at the bottom and right side of the image in first row, thereby inhibiting geometric
consistency).

Effect of large-scale pretraining We also study the usefulness of the large-scale pretraining

stage with 2D videos from 4 training datasets. In this case, test-time finetuning alone with a

self-supervised objective, cannot pull CogNVS out of the local minima it reaches without a good

initialization. This is a common failure mode of many test-time optimization approaches that

overfit to the training views but default to rendering artifacts such as blurry dynamic regions

[168]. We show in Tab. 8.3 (Row 1 vs. 3) and Fig. 8.5 that pretraining is essential for data-driven

robustness.

Effect of reconstruction quality Although we touch upon how the initial reconstruction

affects the quality of dynamic view synthesis, we describe in detail here. We create a pertubed

version of the Kubric-4D dataset, by obtaining reconstruction and odometry from MegaSAM and

aligning the reconstruction to groundtruth to solve for scale ambiguity. Quantitative results show

a ∼ 3 points drop on PSNR and a consistently worse performance on all metrics with sub-optimal

reconstructions and cameras. This also addresses the gap in the photometric performance (with

PSNR, SSIM, LPIPS) of MegaSAM-based CogNVS on DyCheck. For the quantitative and

qualitative analysis of this ablation, please see the appendix.
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Table 8.4. Effect of reconstruction quality on Kubric-4D. We quantitatively evaluate CogNVS’s per-
formance with the use of two different reconstructions for Kubric-4D. Groundtruth depth gives an
upperbound on view synthesis performance by CogNVS. Our first observation, perhaps unsurprisingly,
is that the quality of MegaSAM reconstruction is subpar to that of the groundtruth. This difference
is quality is also translated to the novel-view synthesis task with CogNVS, where CogNVS used with
groundtruth depth does 3 and 45 points better at PSNR and FID respectively as compared to CogNVS
used on top of MegaSAM.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

MegaSAM 12.73 0.299 0.644 280.62 0.164
GT 15.12 0.671 0.328 175.01 0.063

CogNVS (MegaSAM) 19.62 0.621 0.313 147.83 0.033
CogNVS (GT) 22.63 0.760 0.232 102.47 0.008

Figure 8.6. We show the effect of using different qualities of reconstruction. Note that the groundtruth
depth of the scene is perfect because it is derived synthetically. This re-rendered depth results in more
realistic object placements in the scene as compared to the predictions using the depth from MegaSAM.
This is because the MegaSAM depth is noisy at the object edges and therefore results in smeared objects
in the novel view predictions.

Figure 8.7. We illustrate the different masking strategies considered, as proposed by a prior work [284].
For random masking (left), the masked out patches are different in each frame of the input video. For
tube masking (center), a random set of patches is masked but this set is constant across multiple
frames of the video. For our structured masking (right), we derive the mask by rendering visible scene
reconstruction from the novel views.

Effect of reconstruction quality In Tab. 8.4, we show the effect of using different sources of

reconstructions on the entire Kubric-4D evaluation set. Specifically, we compare the structure

and odometry from MegaSAM [178] and the synthetic depth groundtruth from Kubric-4D [292].

We find that both quantitatively and qualitatively (c.f. Fig. 8.6), our pipeline benefits more

171



8. Learning foundational 3D priors via dynamic novel view synthesis

Table 8.5. Effect of masking strategy on Kubric-4D. We study the effect of building CogNVS as an
inpainting model using other masking strategies, specifically, random and tube masking [284]. We find
that random masking is the least optimal as it does not mimic the test-time scenario, tube masking does
better, but our structured masking strategy is the best for the proposed structured inpainting task.

Mask PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

Random 20.62 0.755 0.310 187.79 0.059
Tube 21.75 0.778 0.236 173.55 0.041
Ours 23.29 0.779 0.240 158.98 0.036

from better reconstructions. This is because the quality of reconstruction directly affects the

input to CogNVS, and if the input point cloud is noisy (e.g., smearing at the object borders), the

prediction of the novel view also becomes inaccurate.

Ablation on masking strategy Since CogNVS is an inpainting model, we ablate different

masking strategies to train CogNVS on three sequences from Kubric-4D, instead of the proposed

structured masking. In Tab. 8.5 and Fig. 8.7, we use random and tube masking from VideoMAE

[284] and apply them with a 50% masking ratio on the input video sequences divided into 16 × 16

patches. We find that random masking is the least optimal as it does not resemble the structured

inpainting task at test-time. Tube masking is more amenable to the test-time inpainting pattern,

which reflects as better photometric and generative metrics. Of all, our structured masking

obtained by rendering scene reconstructions into the novel views performs the best.

Ablation on test-time finetuning epochs Following the same data setup as above, we assess

how the length of test-time finetuning affects the final prediction from CogNVS. In Fig. 8.8 (left),

as expected we observe that the performance improvement in the first few epochs is high (both in

terms of PSNR and FID going from 0 to 50 epochs) and saturates as the number of epochs are

increased further (up to 200).

Top-K evaluation Following the same data setup as above, we compute probabilistic PSNR

and FID metrics for CogNVS’s performance on Kubric-4D in the form of Top-k metrics (where the

best of k number is reported) in Fig. 8.8 (right). As we sample multiple modes from CogNVS’s

learnt distribution, the Top-k metrics for PSNR and FID become better and start to saturate

near k=8.
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Figure 8.8. We conduct ablations on the number of epochs used for test-time finetuning (left) and
number of samples drawn from CogNVS for a probabilistic evaluation (right). Both experiments suggest
similar trends; performance improves with an increase in the number of finetuning epochs and increase
in the number of samples drawn from our diffusion model. Performance saturates once a threshold is
reached.

Ablation on background stacking and noise addition We conduct an ablation on the

MegaSAM reconstructions of DyCheck for the effect of static background stacking described in

the previous section. In Tab. 8.6 and Fig. 8.9, we see that stacking the background on DyCheck

provides a large in photometric performance. Secondly, we propose to add noise to dynamic object

depths during training, especially for out-of-distribution data. This is essential as our creation of

self-supervised training pairs only masks out certain pixels from the source video which leaves

no room for CogNVS to be able to see real-world noise. To simulate real noise, at say object

edges, we estimate the noise between (pseudo) groundtruth depth (coming from iPhone LiDARs

or a state-of-the-art depth estimator, say, MoGe) and the predicted depth (coming from a SLAM

framework like MegaSAM). This estimated noise for the source pixels, is added to the visible

scene reconstruction but in the ray direction of the pixels visible in the arbitrary cameras. This

results in noisy visuals that make CogNVS training more robust, especially to out-of-distribution

cases. In Tab. 8.6 and Fig. 8.9, we demonstrate the improvements in performance by training

CogNVS to inpaint in the presence of distracting noise artifacts.

Evaluation with masked metrics on DyCheck In addition to the metrics reported in the

main paper, we also report masked photometric errors as proposed by a prior work [84]. While

this metric only evaluates the visible scene content and how any view-dependent changes were

handled during novel-view synthesis, it does not encourage the generation of unseen scene regions.

On this metric, CogNVS performs competitively as compared to baselines.
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Table 8.6. We quantitatively evaluate the effect of static background stacking and noise addition
on DyCheck. Note that background stacking helps DyCheck because the video sequences are longer
than 49-frames that CogNVS can handle. This gives us 3 points performance boost in PSNR. Adding
real-world noise to dynamic objects helps make CogNVS robust to noise and therefore it reduces artifacts
like smeared object edges, reflected in a much lower FID metric.

Background stacking Noise addition PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

✗ ✗ 11.55 0.304 0.848 197.93 0.204
✓ ✗ 14.27 0.352 0.737 180.67 0.171
✓ ✓ 14.30 0.354 0.740 156.83 0.141

Figure 8.9. We visualize the ‘apple’ evaluation sequence from DyCheck for analysis of the effect of
background stacking over time and noise addition strategy during training to simulate realistic in-the-wild
scenarios. First (column 1 vs. 2), we see that for longer videos, stacking the static background from the
entire input video helps accumulate multi-view cues about the static background. Second (column 2 vs.
3), we see that due to the noise addition strategy during training, CogNVS is more robust to real-world
noise patterns like smearing across object (in this case, apple) edges.

8.5 Discussion

In this work, we focus on the problem of dynamic novel-view synthesis from monocular videos.

Contrary to prior state-of-the-art that approaches this task from two extremes (either test-time

optimization for every new video from scratch, or large-scale feed-forward novel view synthesis)

– we propose a simple setup that is the “best-of-both-worlds”. We reformulate dynamic view

synthesis as an inpainting task and lean on the success of reconstruction algorithms like MegaSAM

that can estimate the structure and geometry of in-the-wild videos. We first train a video inpainter,

CogNVS, on pairs of co-visible novel-view pixels and target novel-views via self-supervision on

only 2D videos. At test-time, we propose to finetune CogNVS, again via self-supervision, to

adjust to the target video distribution. The proposed setup provides data-driven robustness

with the large-scale pretraining of a video inpainting model, and enhances 3D accuracy of the
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Table 8.7. We report masked perceptual quality metrics as proposed by prior work [84]. This metric
only evaluates the visible regions of the scene and so does not encourage generation of unseen scene
components. Note that our method performs competitively as compared to the baselines which only
focus on modeling the visible scene content.

Method mPSNR ↑ mSSIM ↑ mLPIPS ↓

MegaSAM [178] 14.60 0.517 0.609
Shape-of-Motion [298] 16.47 0.639 0.409
MoSca [168] 17.82 0.635 0.507
CAT4D [324] 17.39 0.607 0.341
TrajCrafter [354] 13.60 0.518 0.663

CogNVS (MegaSAM) 15.35 0.549 0.557
CogNVS (MoSca) 17.33 0.607 0.530

predictions with test-time finetuning.

Limitations CogNVS does not currently take advantage of open-source 3D and 4D video

datasets and trains on a relatively small set of 2D videos. While the zero-shot evaluation can

achieve better photorealistic performance than prior state-of-the-art even with this unprivileged

training data, the model and its geometric inpainting capabilities can be enhanced by adding

more training data from all three – 2D, 3D and 4D data sources. Additionally, the performance of

CogNVS is dependent on the quality of dynamic scene reconstruction obtained from off-the-shelf

structure from motion algorithms. When groundtruth structure and odometry is available, such

as from ubiquitous depth sensors, CogNVS’s performance can be increased. A limitation of the

data generation pipeline is that the sampled arbitrary camera trajectories are not able to mimic

the diversity of camera trajectories that are encountered in real-life, which is a bottleneck to the

performance of CogNVS. A better strategy would be to create a “data-driven” trajectory sampler

that samples from a set of real-world trajectories observed in the training set.

We now cover more qualitative visuals from evaluation datasets and in-the-wild videos.
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Figure 8.10. We show supplementary qualitative comparison on Kubric-4D. Note that TrajectoryCrafter
is able to generate a reasonable background for the unseen scene regions, but is not able to inpaint the
shadows / masks created by foreground objects. GCD is trained on Kubric-4D so performs reasonably
well but struggles to preserve the precise geometry. CogNVS achieves better performance as compared
to baselines and is the closest is geometric consistency to the groundtruth novel view.
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Figure 8.11. We show supplementary qualitative comparison on DyCheck with CogNVS which surpasses
the performance of all prior state-of-the-art. Note that baselines either do not hallucinate the unseen
regions in the novel-view (Shape-of-Motion, MegaSAM), show blurry dynamic regions (MoSca, CAT4D),
or are not able to preserve the underlying geometry of the scene (TrajectoryCrafter).
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Figure 8.12. Qualitative results on in-the-wild examples. Part 1 of 2.
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Figure 8.13. Qualitative results on in-the-wild examples (static scenes included in last two rows). Part 2
of 2.
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Figure 8.14. Qualitative results on synthetic videos from SORA.
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Part IV

Conclusion and Future Work
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In this thesis, we focus on building, leveraging, and adapting foundational priors to achieve

scalable spatiotemporal (4D) perception. Our overarching goal is to bridge the gap between

abundant 2D visual data and the limited availability of 4D supervision, in order to build perception

algorithms for understanding the dynamic 3D structure and motion of everyday scenes.

In the first part of the thesis, by constructing foundational priors from scratch via next-

timestep prediction on LiDAR sequences, we show that explicit 4D bottlenecks are key to robust

dynamic scene forecasting and can directly benefit downstream applications such as motion

planning. In the second part, we show that learned depth priors from large reconstruction models

can be used to track objects even across occlusions, and reconstruct dynamic scenes from sparse

views, thereby significantly surpassing prior state-of-the-art. By the last chapter, we demonstrate

that meaningful 4D understanding can emerge with minimal finetuning (with less data and low

compute), by carefully reformulating existing perception tasks with self-supervised objectives.

Altogether, we highlight the importance of leveraging 2D priors from large-scale foundation

models to circumvent the need for fully supervised approaches for 4D perception tasks. A key

takeaway is that to unlock the full potential of these models, downstream objectives should

be aligned as closely as possible with their original pretext tasks. Doing so enables effective

adaptation with minimal curated data and low computational overhead.

The next step for a 4D perception stack is to be useful for downstream applications, for

instance, deployment in autonomous systems. Two important questions to ask in this regard are

(1) How can we make better foundation models? (2) Where should we use these foundational

priors? We discuss these future directions below.

1. How can we make better foundation models? In this thesis, we build upon existing

foundation model architectures trained at scale on 2D images and videos. Specifically,

we look at depth estimation and video generation models, where the heavylifting is done

primarily by pretrained DINO backbones or transformer architectures respectively. This

undoubtedly ensures scalability which is the first benchmark for building “better” foundation

models. More importantly, while being scalable, the next push must be toward building

efficient foundation models. Efficiency could mean building models that can train faster, or

can infer in real-time. One claim is that designing training objectives with soft inductive

biases will be key to enabling efficient training and inference. Take for instance, Genie 3

[65], which is speculated to be an autoregressive image diffusion model that conditions on

8 discrete controls (4 rotation, 4 translation), and Wan2.1-First Last Frame Video [294]

model that is learning to find correspondences between two input images by generating a
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video linking them. For both models, one could argue that the intermediate features are

3D-aware. Better features have been shown to speed up diffusion training [356]. Similarly,

3D-aware features could be used for 3D tasks outside the foundational framework during

inference, by learning lightweight modules on top of them.

2. Where should we use these foundational priors? In this thesis, we demonstrated the

use of foundational priors for various tasks such as amodal tracking and segmentation, and

novel-view synthesis from sparse or monocular inputs. Focusing on the generative formulation

of foundation models, their two key properties are compositionality (generating scenes that

never existed before by combining separate concepts) and multimodality (generating multiple

plausible scenes for, say, a single text prompt). One claim is that newer tasks must be

explored which can exploit these properties. For instance, to build a closed-loop simulator,

an effective reformulation is to do novel-view synthesis in a reactive manner —where the

world reacts to changes in the observer’s camera pose. Traditionally, it is difficult to

collect training data for this task, as it would require multiple observations of a dynamic

world starting from the same initial state—something only feasible in simulation. However,

leveraging the multimodal and compositional nature of diffusion models, it may be possible

to circumvent this need.
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limitations of behavior cloning for autonomous driving. In Proceedings of the IEEE
International Conference on Computer Vision, pages 9329–9338, 2019.

[51] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers
need registers, 2023.

[52] Achal Dave, Tarasha Khurana, Pavel Tokmakov, Cordelia Schmid, and Deva Ramanan.
Tao: A large-scale benchmark for tracking any object. In Computer Vision–ECCV 2020:

188



Bibliography

16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16,
pages 436–454. Springer, 2020.

[53] Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely
conditioned flow matching. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 23263–23274, 2023.

[54] Edilson de Aguiar, Carsten Stoll, Christian Theobalt, Naveed Ahmed, Hans-Peter Seidel,
and Sebastian Thrun. Performance capture from sparse multi-view video. SIGGRAPH,
2008.

[55] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian Reid,
Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. Mot20: A benchmark for multi
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[164] Katrin Lasinger, René Ranftl, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. arXiv
preprint arXiv:1907.01341, 2019.
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