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Abstract

Modeling human motion is a fundamental topic in computer vision and
robotics. Humans interact with the 3D physical world in complex ways,
involving both changes in position (global motion) and body deformation
and articulation (local motion). This thesis explores human motion in
interactions with other humans, environments, and manipulated objects.
We focus on the tasks of estimating and generating human motions,
emphasizing the integration of diverse knowledge sources such as video,
motion capture, and physics simulation.

We begin by examining human-human interactions. Using widely
available video data, we study implicit interactions where individuals
navigate toward goals while avoiding collisions. Initially, we address multi-
object tracking and then progress to trajectory generation, exploring
both estimation and generation perspectives. For tracking, we start
with learning-based methods and revisit classic parametric filtering. To
generate socially aware trajectories, we combine parametric priors with
generative models to leverage inductive biases from data.

The second part of the thesis investigates human-scene interactions.
As people frequently bend and articulate their bodies for daily tasks, we
examine both local and global body motion. We utilize motion capture
data to ensure visual realism in motion generation and employ physics
simulation to enforce physical realism. We begin by validating the use
of physics-based imitators for diverse motions. Subsequently, we place
a human agent in a static scene and develop a reinforcement learning
policy to generate physically grounded interactions guided by language
instructions.

In the third part, we extend our study to human motion during object
manipulation in dynamic environments. Due to limited human-object
motion capture data, we focus on generating static hand-object grasps
that generalize to a wide range of object shapes using large-scale object
shape datasets. These grasps then guide a reinforcement learning policy
that enables full-body motion for transporting an object in hand within a
simulation.

Building on insights from earlier chapters, we observe the effective-
ness and flexibility of generative models for both motion estimation and
generation. This motivates us to explore a unified model. We propose
a diffusion model for human motion, where conditioning the denoising
process allows the model to perform estimation as well. When conditioned
on video, the model achieves motion estimation performance comparable
to specialized estimation models.
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Chapter 1

Introduction

1.1 Background

From autonomous driving and surveillance to motion capture and robotics, many

tasks in computer vision and robotics rely on accurate modeling of human motion.

Typically, human motion can be divided into two categories: (1) Global motion, which

refers to changes in a person’s position (translation) within a given environment; and

(2) Local motion, which involves the articulation and deformation of the human body

as a non-rigid structure.

Research in human motion modeling generally focuses on one or both of the

following aspects: (1) Motion estimation, which involves recovering a human’s global

position or local body movements from sensory data such as videos or point clouds;

and (2) Motion generation, which aims to synthesize global or local motion sequences

that appear both visually natural and physically plausible.

Previous work often isolates these aspects. For example, in motion estimation,

multi-object tracking and person re-identification concentrate on tracking a person’s

position over time using keypoints or bounding boxes, without modeling body defor-

mation. In contrast, video-based human pose estimation captures local motion by

predicting skeletal or surface representations over time. On the generation side, trajec-

tory prediction usually focuses on global motion, while imitation learning and motion

synthesis also consider detailed joint movements and body surface deformations.

In this thesis, we address a variety of tasks across this broader spectrum and
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1. Introduction

explore how shared representations and learned knowledge can connect previously

disjoint areas of human motion understanding and generation. We tackle the problem

of multi-object tracking from the vision side to estimate the human motion when

implicitly interacting with other humans. Then, we use the generation tools for

the human motion patterns in interacting with humans, objects or environments.

We extend the research from vision techniques on videos to motion capture data in

3D and further physics simulation for a more comprehensive study of the topic of

estimating and generating human motions.

1.2 Challenges and Contributions

To investigate human motion patterns, we began with video-based motion estimation,

focusing on multi-human tracking from monocular videos. At this stage, we set

aside local body motion and concentrated on accurately estimating individuals’

positions when multiple people are moving simultaneously, leading to occlusions and

identity switches. This is a challenging task: when bounding boxes are used for

localization, pixels from overlapping subjects can significantly degrade the performance

of conventional appearance-based matching methods.

We first tackled this problem by designing new architectures for appearance

feature extraction, processing, and matching. These improvements enhanced tracking

performance in crowded scenes but still struggled when individuals had visually

similar appearances. Motivated by this limitation, we turned to parametric motion

modeling using filtering techniques. Building on the classical Kalman filter [173]

and its application in multi-object tracking [28], we identified typical failure cases

in crowded scenes and proposed a new filter-based model. This approach improved

tracking robustness while maintaining computational speed and online inference

capability.

Following this, we extended our research to trajectory generation. We developed

a normalizing flow-based method that enables diverse and controllable trajectory

synthesis. A key component of this approach is a data-driven model of motion intent:

by fitting a mixture of Gaussians to training data that captures common motion goals

(e.g., walking straight, turning), we enhanced the effectiveness and expressiveness

of the flow model without compromising generalizability. The explicit modeling of
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motion intentions also allows for behavior-conditioned generation of plausible future

trajectories.

Throughout the above work, we implicitly considered human-human interaction

in the context of multi-human motion and intention modeling. In the next stage of

the thesis, we began to model human-scene interaction explicitly—examining how the

environment shapes and constrains possible motions. Here, we addressed both global

position changes and local body articulation. While generative models trained on

motion capture data can produce visually appealing motion, they often lack physical

realism. To overcome this, we introduced physics-based constraints. By training a

physically plausible human controller, we demonstrated the ability to generate a wide

variety of motions that are both visually convincing and physically grounded. Our

method achieved 100

Building on this progress, we explored human motion in more realistic indoor

environments. We proposed a hybrid method that combines a large language model

(LLM)-based planner with a reinforcement learning controller. This system enables

the generation of seamless, physically valid human motion in simulated scenes based

on natural language instructions.

In the third part of this thesis, we investigated human-object interaction. To

generate whole-body motions that are both visually natural and physically plausible

when interacting with objects, we began with the generation of realistic hand-object

grasp configurations. By learning from large-scale 3D object datasets and a smaller

hand grasp motion capture dataset, we generated plausible grasps across a wide variety

of object shapes and sizes. These grasps serve as constraints for full-body motion

synthesis. We then trained a human agent in a physics simulator to transport objects

along predefined trajectories. By combining motion capture data, generative priors,

and reinforcement learning with physical constraints, we developed a generalizable

framework capable of handling a diverse set of objects with different geometries and

physical properties.

Throughout the research described above, we followed the prevailing practice of

separating motion estimation and motion generation. However, the flexibility and

power of modern generative models revealed the opportunity to unify these tasks

within a single framework. To that end, we developed a conditional diffusion model.

Trained on both 2D and 3D motion sequences, this model leverages motion capture
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and video data. Moreover, by using video as an optional conditioning input, the

model can generate motion that aligns closely with visual evidence—thus performing

estimation as well. This unified design shows promise in bridging the gap between

estimation and generation.

1.3 Thesis Overview

This thesis is divided into four parts. Each part addresses a different dimension of

human motion modeling, and together they form an integrated framework that spans

estimation, generation, and their unification.

1.3.1 Part I: Human Motion from Human-Human Interaction

DanceTrack: Multi-Object Tracking in Uniform Appearance In Chapter 2,

we propose DanceTrack, a new video dataset for multi-object (multi-human) tracking.

The dataset was motivated by the recognition of bias and limitations in existing multi-

object tracking benchmarks. Our goal is to study tracking performance in scenarios

where humans move in close proximity, wear similar clothing, and follow complex

motion trajectories. We benchmark existing tracking methods on DanceTrack and

observe that many of them fail significantly. This dataset reveals important gaps in

previous multi-object tracking research and provides a platform for more challenging

and realistic evaluation.

Appearance Matching for Multi-Human Tracking in Crowds With the rise

of deep learning and modern pixel feature descriptors, we present two methods for

appearance-based multi-object tracking in Chapter 3 and Chapter 4. In Chapter 3,

we combine spatio-temporal coordinates with visual features to create a hybrid

identification representation, which reduces the ambiguity of pure appearance-based

matching, especially under occlusion or visual similarity. In Chapter 4, we develop a

hierarchical, attention-based feature processing model. Compared to standard CNN

or transformer-based visual backbones, our model enhances the distinguishability of

target features while suppressing background noise and features from other targets.

Both methods significantly improve the accuracy of appearance-based tracking on

challenging benchmarks, including our DanceTrack dataset.
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Parametric Linear Filtering for Multi-Human Tracking in Crowds Recog-

nizing the inherent limitations of appearance-based methods, in Chapter 5, we revisit

classical filtering techniques. We use the Kalman filter to track people in crowded

videos based solely on their location. We enhance robustness against imperfect detec-

tions and occlusion by introducing a heuristic re-update mechanism that mitigates

accumulated parameter errors when no detections are available. This re-update occurs

only when a track is re-established after being temporarily lost. Importantly, our

method remains fast and online. It has inspired follow-up work—such as [238]—that

combines parametric filtering with appearance-based matching to advance the state

of the art in this field.

Mixed Gaussian Prior for Human Trajectory Generation In Chapter 6, we

transition from motion estimation to motion generation, specifically in the task of

human trajectory prediction. We are inspired by the simple yet powerful observation

that humans often move with specific intentions, such as walking straight or turning,

and that trajectories with similar intent tend to form clusters. This insight provides

an intuitive and effective inductive bias for learning more diverse and controllable

generative models. Based on this idea, we construct a mixed Gaussian prior by

clustering trajectories according to their intent. By replacing the commonly used

unimodal Gaussian prior with this data-driven mixture prior in our normalizing flow

model, we achieve notable improvements in motion diversity, interpretability, and

controllability.

1.3.2 Part II: Human Motion from Human-Scene Interaction

Physics-Based Human Motion Imitation In Chapter 7, we address the challenges

of modeling more complex interactions between humans and their environments.

Unlike earlier settings, we now need to model both global motion and local body

articulation and deformation. Physical plausibility becomes a major concern. Rather

than relying solely on generative models trained on motion capture datasets, we

integrate reinforcement learning within a physics simulator to ensure physically

grounded motion. We train policies to imitate large-scale motion capture data,

ensuring both realism and physical feasibility. Given the diversity and complexity

of these datasets, we propose a multi-step imitation framework, using specialized
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submodules for different motion genres. Our method achieves 100

Language-Guided Human Motion Generation in Simulated Scenes After

establishing a capable motion imitator, we proceed in Chapter 8 to generate mo-

tion in furnished indoor scenes with complex layouts. Compared to imitation in

empty spaces, moving in a cluttered environment requires higher precision and clearer

motion intent. To address this, we frame the problem in a language-guided set-

ting. We describe human-scene interaction as a sequence of body-scene contact

pairs—referred to as a chain-of-contacts. Given a language instruction, we use an

LLM-based planner to decompose the instruction into step-by-step motion intentions.

A reinforcement learning-trained controller then executes these steps by bending,

moving, and articulating the human body to complete the contact sequence.

1.3.3 Part III: Human Motion from Human-Object Interac-

tion

Static Hand-Object Grasp Generation In Chapter 9, we focus on generating

plausible hand-object grasps. While generative models such as diffusion and VAEs

have been applied to this task, their performance is often constrained by limited

dataset scale and object diversity. To improve generalization, we develop a multi-

modal diffusion model trained on large-scale object shape datasets like ShapeNet.

Our model learns an inclusive and generalizable object latent representation. By

unifying the object and hand pose latents into a shared space, we train a single model

for both conditional and unconditional grasp generation. This approach improves

performance across a broader range of object geometries.

Whole-Body Motion Generation in Physics with Object Interaction In Chap-

ter 10, we extend from static grasp generation to whole-body motion for object

interaction. While prior work provided us with a strong motion imitation model [233]

and a rich latent representation [232], directly training a whole-body policy for object

manipulation is inefficient due to the complexity of hand articulation. To resolve

this, we use grasp poses from the previous model as pre-grasp guidance. This reduces

the burden of hand articulation. We then introduce a set of task-specific rewards to

guide reaching, grasping, and transporting objects. Our final method, OmniGrasp,

enables a humanoid agent to perform physically realistic object manipulation along
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target trajectories.

1.3.4 Part IV: Unified Human Motion Estimation and Gen-

eration

In Chapter 11, we present a conditional diffusion framework for unifying human

motion estimation and generation. Beyond combining these two tasks in one model,

we also incorporate a variety of input modalities, such as 2D/3D skeletons, music,

camera viewpoints, and more. When video data is used as input, the model learns

diverse, in-the-wild motion patterns for generation. Trained with motion capture

data, the model provides temporally consistent and visually plausible estimation, even

under occlusion and blur. Extensive experiments show that the proposed approach

achieves strong performance across both estimation and generation tasks.
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Weng, Rawal Khirodkar, and Kris Kitani. Chapter 6 is based on joint work with

Jiahe Chen, Jiangmiao Pang, and Kris Kitani. Chapter 7 is based on a project led by

Zhengyi Luo, in collaboration with Alexander Winkler, Kris Kitani, and Weipeng

Xu. Chapter 8 is based on a project led by Zeqi Xiao, involving collaboration with a

larger team. Chapter 9 is based on joint work with Jingyuan Liu, Kris Kitani, and

Yi Zhou. Chapter 10 is based on joint work with Zhengyi Luo, Sammy Christen,

Alexander Winkler, Kris Kitani, and Weipeng Xu. Chapter 11 is based on a joint

work with Jiefeng Li, Haotian Zhang, Davis Rempe, Jan Kautz, Umar Iqbal, and Ye
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1. Introduction

Yuan.

1.5 Excluded Research

Some of the author’s other research works, while related to the topics discussed in

this thesis, have been excluded for clarity and conciseness. They are listed here to

provide a complete record of the author’s Ph.D. research:

1. Combining parametric filters and appearance matching for multi-object track-

ing [238].

2. Cooperative human-object interaction with manipulated objects [107].

3. Universal humanoid motion representations for physics-based control [232].

4. A dataset for multi-human interaction with close body contact [177].

5. A dataset of humanoid motion collected from simulated environments [228].

8



Part I

Human Motion from

Human-Human Interaction

9





Chapter 2

DanceTrack: Multi-Object

Tracking in Uniform Appearance

1 3 4 5 6 3 42 5 912 87 2 9487 513 9487 53 12

Figure 2.1: Sample images from a video in DanceTrack. The shown images are 1,
66, 307 and 327 frames in DanceTrack0027 video. The emphasized properties of
this dataset are (1) uniform appearance: humans are in highly similar and almost
undistinguished appearance. (2) diverse motion: they are in complicated motion pat-
tern and interaction. The numbers below show their identification which experiences
frequent relative position switches and occlusion as well. We expect the combination
of uniform appearance and complicated motion pattern makes DanceTrack a platform
to encourage more comprehensive and intelligent multi-object tracking algorithms.

2.1 Introduction

Object tracking has been long studied and can be beneficial to applications such as

autonomous driving, video analysis, and robot planning [44, 305, 452]. Multi-object

tracking aims to localize and associate objects of interest over time. Interestingly, we
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observe recent developments in multi-object tracking heavily rely on a paradigm of

detection followed by re-ID, where mostly appearance cues are used to associate objects.

This trend in algorithmic development makes existing solutions fail catastrophically

in situations where objects share very similar appearance and inspires us to propose

a platform to encourage more comprehensive solutions by taking other cues into

modeling, such as object motion patterns and temporal dynamics.

As with many other areas of computer vision, the development of multi-object

tracking is influenced by benchmark datasets. Based on specified datasets [86, 112,

255, 454], data-driven methods are sometimes argued to be biased to certain data

distributions. In this work, we recognize the limitation of existing multi-object

tracking datasets and observe that many objects have distinct appearance and the

motion patterns of objects are very regular or even linear. Motivated by these dataset

properties, most recently developed multi-object tracking algorithms [23, 28, 270,

409, 415, 482, 483] highly rely on appearance matching to associate detected objects

while considering little other cues. The dominant paradigm will fail in situations out

of the biased distribution. This phenomenon is not what we expect if we aim to build

more general and intelligent tracking algorithms.

We also observe that appearance matching is not reliable when objects have similar

appearances or heavy occlusion. These properties cause catastrophic degradation of

current state-of-the-art multi-object tracking algorithms. To provide a new platform

for more comprehensive multi-object tracking studies, we propose a new dataset in this

paper. Because it mostly contains group dancing videos, we name it “DanceTrack”.

The dataset contains over 100K image frames (almost 10× the MOT17 dataset).

As shown in Figure 2.1, the emphasized properties of this dataset are (1) uniform

appearance: people in videos wear very similar or even the same clothes, making

their visual features hard to be distinguished by the re-ID model and (2) diverse

motion: people usually have very large-range motion and complex body gesture

variation, proposing higher requirements for motion modeling. The second property

also brings occlusion and crossover as a side-effect that the human body has a large

ratio of overlap with each other and their relative position exchanges frequently.

With the proposed dataset, we build a new benchmark including existing pop-

ular multi-object tracking methods. The results prove that current state-of-the-art

algorithms fail to make satisfactory performance when they simply use appearance

12
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matching or linear motion models to associate objects across frames. Considering the

cases focused on in this dataset happen frequently in our real life, we believe it shows

the limitations of existing multi-object tracking algorithms on practical applications.

To provide potential guidelines for further research, we analyze a range of choices in

associating objects and achieve some beneficial conclusions: (1) fine-grained repre-

sentations of objects, e.g., segmentation and pose, exhibit better ability than coarse

bounding box; (2) depth information shows positive influence on associating objects,

though we are solving a 2D tracking task; (3) motion modeling of temporal dynamics

is important.

To conclude, the key contributions of our work to the object tracking community

are as follows:

1. We build a new large-scale multi-object tracking dataset, DanceTrack, cover-

ing the scenarios where tracking suffers from low distinguishability of object

appearance and diverse non-linear motion patterns.

2. We benchmark baseline methods on this newly built dataset with various

evaluation metrics, showing the limitation of existing multi-object tracking

algorithms.

3. We provide a comprehensive analysis to discover more cues for developing

multi-object trackers that are more robust in complicated real-life situations.

2.2 Related Works

Multi-object tracking datasets.. Many multi-object tracking datasets have been

proposed focusing on different scenarios. Similar to our proposed dataset, many

existing datasets focus on human tracking. PETS [100] dataset is one of the earliest

in this area. And the more recent MOT15 [191] dataset and the following MOT17 [255]

and MOT20 [86] datasets are all popular in this community. These datasets are

limited in some aspects we care about. For example, MOT contains only handful of

videos and scenarios. Even MOT20 increases the density of objects and emphasis the

occlusion among them, the movements of objects are very regular, and they still have

very distinguishable appearance. Association by pure appearance matching [270] also

makes success and we will show that given the perfect detector, the tracking problem
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can be solved by a very naive association strategy on these datasets.

Besides, many other datasets are proposed for diverse objectives, e.g., WILD-

TRACK [58] for multi-camera tracking and association, Youtube-VIS [428] and

MOTS [382] for pixel-wise tracking (Video Instance Segmentation). With the increas-

ing attraction of autonomous driving, some datasets are built focusing on it specifically.

KITTI [112] is one of the earliest large-scale multi-object tracking datasets for driving

scenarios where the objects of interest are vehicles and pedestrians. More recently,

BDD100K [454], Waymo [403] and KITTI360 [209] are made available to the public,

still focusing on autonomous driving problem but providing much larger scale data

than KITTI. The motion patterns of objects in these datasets are even more regular

than those focusing on only moving people with the limitation of lanes and traffic

rules. There are many datasets focusing on more diverse object categories than person

and vehicles. The ImageNet-Vid [88] benchmark provides trajectory annotations for

30 object categories in over 1000 videos and TAO [83] annotates even 833 object

categories to study object tracking on long-tailed distribution.

Tracking by matching appearance.. Compared to tracking-by-detection, recent

developments in multi-object tracking focus more on the joint-detection-and-tracking

genre where object localization and association are conducted at the same time.

And appearance similarity serves as the dominant cue in many popular multi-object

tracking methods. For example, QuasiDense (QDTrack) [270] designs a pairwise

training paradigm and dense localization for object detection and uses highly sensitive

appearance comparison to match objects across frames. JDE [402] and fairmot [482]

learn object localization and appearance embedding using a shared backbone which is

for better appearance representation. More recently, with the new focus of applying

transformers [380] in vision tasks, transtrack [353], TrackFormer [250] and motr [466]

made attempts to leverage the attention mechanism in tracking objects in videos. In

these works, the features of previous tracklets are passed to the following frames as

the query to associate the same objects across frames. The appearance information

contained in the query is also critical to keep tracklet consistency. Although the rise

of deep-learning model brings much powerful visual representations than ever before

making appearance matching more robust, we still witness the failure of matching

appearance in many real-world situations which are expected to be improved by

taking other cues into account.
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Figure 2.2: Some sampled scenes from the proposed DanceTrack dataset. (a) outdoor
scenes; (b) low-lighting and distant camera scenes; (c) large group of dancing people;
(d) gymnastics scene where the motion is usually even more diverse and people have
more aggressive deformation.

Motion analysis in object tracking.. The displacement of objects-of-interest

provides important cues for object tracking. Tracking objects by estimating their

motion is thus a natural and intuitive idea and has inspired a line of researches. These

tracking algorithms mainly follow the tracking-by-detection paradigm. Sequential

analysis tools such as Particle filter [127, 168] and Kalman filter [173] are found

efficient in such applications. SORT [28] is developed on the Kalman motion model

and marks a milestone in using motion models for object tracking. Furthermore, as

deep networks bring the revolutionary ability to extract high-quality visual features,

DeepSORT [409] tries to combine deep visual features and motion models and gains

great success. Since then, motion-based object tracker has shown weak competitiveness

and many focuses are towards appearance cues. Even though motion analysis has

been used in object tracking for long [402, 482, 483], all these mentioned methods can

only handle simple linear motion pattern and provide limited help to multi-object

tracking in more complicated situations we focus on in this work. These factors

induce appearance-based tracking dominance in multi-object tracking. However, we

argue that a more comprehensive and intelligent tracking algorithm should pay more

attention to motion analysis since appearance is not always reliable.
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2.3 DanceTrack

DanceTrack is a benchmark for multi-object tracking for estimating the locations and

identities of objects in videos. The objective of proposing this dataset is to provide

scenes where objects have a uniform appearance and diverse motion.

2.3.1 Dataset Construction

Dataset design.. We focus on the scenarios where objects have similar or even

the same appearance and diverse motion patterns, including frequent crossover,

occlusion, and body deformation. The first property makes tracking by purely

comparing object appearance invalid because the extracted visual features are no

longer distinguishable for different objects. The second property further requires clues

rather than appearance in tracking, such as motion analysis and temporal dynamics.

We argue that focusing on “crowd” by simply increasing the density of objects of

interest is not what we expect. For example, MOT20 [86] contains videos where the

groups of pedestrians are very crowded. But as the pedestrians’ movement is very

regular and the relative position and occlusion area keep consistent, such “crowd” is

not building an obstacle for appearance matching. Therefore, we focus on situations

where multiple objects are moving in a “relatively” large range. The dynamically

changing occluded area and even crossover are what we are interested in. Such cases

are common in the real world but naive linear motion models can not handle them

anymore.

Video collection.. To achieve the design goals described above, we collected videos

including mostly group dancing from the Internet. As shown in Figure 2.2, the

dancers usually wear very similar or even the same clothes. They make a large-range

motion in the target situations. And their poses and relative positions change very

frequently. All these properties greatly satisfy our motivation to propose a new

multi-object tracking dataset. We collect the videos from different search engines

with query keywords like “street dance”, “hip-pop dance”, “cheerleading dance”,

“rhythmic gymnastics” and so on. The collection is only for publicly available videos

and under the permit of fair use of video resources.

Annotation.. We use a commercial tool to annotate the collected videos. The
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Table 2.1: The comparison of dataset meta-information between DanceTrack and
its closest benchmark for multi-human tracking, MOT17 and MOT20. DanceTrack
contains much more videos and images than MOT datasets.

Dataset MOT17 [255] MOT20 [86] DanceTrack

Videos 14 8 100
Avg. tracks 96 432 9
Total tracks 1342 3456 990
Avg. len. (s) 35.4 66.8 52.9
Total len. (s) 463 535 5292
FPS 30 25 20
Total images 11,235 13,410 105,855

annotated labels include bounding boxes and identifiers of each object. For a partly-

occluded object, a full-body box is annotated. For a fully-occluded object, we do not

annotate it; when it re-appears in the future frame, its identifier is kept as the same

as in the previous frame when it is visible.

To facilitate the annotation process, our tool can automatically propagate the

annotated boxes from the previous frame to the current frame, and the annotator

only needs to refine the boxes in the current frame. To build a high-quality dataset,

the annotations have been checked by another group of people and errors are reported

back to the annotators for re-annotation.

2.3.2 Dataset Statistic

We provide some analytical information of DanceTrack dataset and compare it

with existing multi-object tracking datasets. The statistical information helps to

understand the uniqueness of the proposed dataset and how we built it to make a

platform as we describe in the previous parts.

Dataset split.. We collected in total 100 videos in DanceTrack dataset, by default

using 40 videos as the training set, 25 as the validation set, and 35 as the test set.

During splitting, we keep the distribution of subsets close in terms of average length,

average bounding box number, included scenes and motion diversity. We make the

annotation of the training set and validation set public while keeping the testing

set annotation private for competition use. Some basic information of DanceTrack
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is shown in Table 2.1. Compared with MOT datasets, DanceTrack has a much

larger volume (10x more images and 10x more videos). MOT20 focuses on very

crowded scenes, so it has more tracks but as the appearance of objects inside is

very distinguishable and their motion is regular, as a consequence, the association

on MOT20 still requires little motion estimation when reliable detection results are

given.

Scene diversity.. DanceTrack contains very diverse scenes. Some samples are

provided in Figure 2.2. One main common point for all videos is that the instances

of people in a video usually have very similar appearances. This is designed on

purpose to avoid the shortcut of tracking by pure appearance matching. DanceTrack

contains multiple genres of dance, such as street dance, pop dance, classical dance

(ballet, tango, etc.), and large groups of people’ dancing. It also contains some sports

scenarios such as gymnastics, Chinese Kung Fu and cheerleader dancing. Figure 2.2(a)

shows outdoor scenes though most included videos are indoor. Figure 2.2(b) shows

some especially hard cases, such as low lighting and distant camera. Figure 2.2(c) and

(d) show a large group of people dancing, including at most 40 people, and gymnastics

where people show extremely diverse body gestures, frequent pose variation and

complicated motion pattern.

Appearance similarity.. We make a quantitative analysis about how appearance-

only matching is not reliable anymore on DanceTrack. We will prove this by measuring

the appearance similarity among objects. To be precise, we use a pre-trained re-ID

model [279] to extract the appearance features F (Bt
i) of the object Bi on a frame t,

then we compute the sum of cosine distance of the re-ID features among objects in

the video as

V =
1

T

T∑
t=1

1

N2
t

Nt∑
i

Nt∑
j ̸=i

(1− cos < F (Bt
i), F (Bt

j) >), (2.1)

where T is the number of frames in the video sequence, Nt is the number of objects

on the frame t and <·> is the angle between two vectors.

We compare the object appearance similarity in DanceTrack to that in MOT17

dataset, as shown in Figure 2.3(a), each bin represents one video sequence. It is

obvious that the cosine distance of re-ID features of DanceTrack is lower than that
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Figure 2.3: (a) The cosine distance of re-ID features of DanceTrack is lower than
that of MOT17, in other words, the appearance similarity between different objects is
higher. The dashed lines are for the average cosine distance similarity. (b) Compared
to MOT17 and MOT20, DanceTrack has a similar score. It means that the frame
rate and object motion speed are still reasonable in DanceTrack. (c) This metric
measures the frequency of crossover and is highly related to the occlusion between
objects. DanceTrack has much more frequent relative position switches than other
pedestrian tracking datasets.
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of MOT17, in other words, the appearance similarity among co-existing objects is

higher. This quantitative analysis shows the challenge of DanceTrack to current

popular trackers using appearance matching for association.

Motion pattern.. We introduce two metrics to analyze the motion pattern in

DanceTrack dataset and compare that to other multi-object tracking datasets.

IoU on adjacent frames: a natural measurement of object movement range is its

bounding-box-IoU (Intersection-over-Union) on two adjacent frames. A low IoU

indicates fast-moving objects or the low frame rate of videos. Given a video with N

objects and T frames, we denote the i-th object’s box on the t-th frame as Bt
i , then

the averaged IoU on adjacent frames for this video is

U =
1

N(T − 1)

N∑
i

T−1∑
t=1

IoU(Bt
i , B

t+1
i ). (2.2)

Frequency of Relative Position Switch: a metric to measure the diversity of objects’

motion in a global view is the frequency for two objects to switch their relative

position. This could happen between leftward and rightward or between upward

and downward. On the contrary, movement with consistent velocity tends to cause

a lower chance of relative position switch. Given a video, the average frequency of

relative position switch is defined as

S =

∑N
i

∑N
j ̸=i
∑T−1

t=1 sw(Bt
i , B

t
j, B

t+1
i , Bt+1

j )

2N(T − 1)(N − 1)
, (2.3)

where sw is an indicator function, where sw(·)=1 if the two objects swap their left-

right relative position or top-down relative position on the adjacent frames, sw(·)=0

if there is no swap. To be precise, we measure their relative position by comparing

their bounding box center locations. And considering that such crossover causes

potential trouble only when the objects have overlap, we only take the objects whose

bounding boxes have overlap into the calculation.

From the results shown in Figure 2.3(b), we could find that DanceTrack and MOT

datasets have close average IoU on adjacent frames. This indicates that DanceTrack is

considered harder than MOT datasets not because of lower frame rate or unreasonably

fast object movement.
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Table 2.2: Oracle analysis of different association models on MOT17 and DanceTrack
validation set, respectively. The detection boxes are ground-truth boxes. The result
comparison shows the evident increased difficulty of performing multi-object tracking
on DanceTrack than MOT17 dataset.

Appr. IoU Motion
MOT17 DanceTrack (Proposed Dataset)

HOTA DetA AssA MOTA IDF1 HOTA DetA AssA MOTA IDF1

✓ 98.1 98.9 97.3 98.0 97.8 72.8 98.9 53.6 98.7 63.5
✓ ✓ 96.4 97.1 95.8 99.7 98.1 69.4 87.9 54.8 99.4 71.3

✓ ✓ ✓ 95.0 94.7 95.4 99.3 98.8 59.7 82.5 43.2 97.2 60.5
✓ 93.3 99.0 87.9 98.9 90.9 68.0 97.7 47.4 97.9 58.7

On the other hand, from Figure 2.3(c) we could find that DanceTrack has much

more frequent relative position switches than other datasets such as KITTI, MOT17

and MOT20. The frequent relative position switches are caused by highly non-linear

motion pattern and result in frequent crossover and inter-object occlusion. This result

shows that the challenge of DanceTrack comes from the diversity of motion.

2.3.3 Evaluation Metrics

For a long time, the multi-object tracking community used MOTA as the main metric

for evaluation. However, recently, the community realized that MOTA focuses too

much on detection quality instead of association quality. Thus, Higher Order Tracking

Accuracy (HOTA) [225] is proposed to correct this historical bias since then. HOTA

has been used for the main metrics to evaluate tracking quality on multiple popular

benchmarks such as BDD100K [454] and KITTI [112]. We follow this setting for

evaluation metrics of DanceTrack.

In our protocol, the main metric is HOTA. We also use AssA and IDF1 score to

measure association performance and DetA and MOTA for detection quality.

For the detailed definitions of these metrics, we refer to [25, 225, 317]. To make it

convenient to run for fine-grained analysis, the evaluation tools also provide previously

widely-used statistics, such as False Positive (FP), False Negative (FN) and ID switch

(IDs).
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2.3.4 Limitation

In this part, we discuss some recognized limitations of this proposed DanceTrack

dataset. We emphasize again that we propose this dataset to provide a platform

for more comprehensive multi-object tracking studies beyond the currently popular

genre of combining detector and re-ID. However, the proposed dataset still has some

limitations. First, given the mentioned motivation and the proposed dataset, we

do not provide an algorithm that highly outperforms previous multi-object tracking

algorithms but keep this as an open question for future study. Besides, we believe, for

the cases, we emphasize in this work, the annotation of human pose or segmentation

mask should be important for more fine-grained study. But limited by time and

resources, we only provide the annotation of bounding boxes in this version.

2.4 Experiments

2.4.1 Experiment Setup

Dataset configurations. We compare DanceTrack with its closest dataset, MOT17.

For MOT17, because the test server is not available easily, we follow the train-val

splitting provided in CenterTrack [498] to evaluate on the validation subset. For

DanceTrack, we follow the default splitting described in the previous section to train

on the training subset and evaluate on the test subset.

Model configuration. Unless specified otherwise, we inherit the default training

settings of the investigated algorithms provided in the original papers or the officially

released codebases. For MOT17 and DanceTrack, algorithms use shared configurations

and hyperparameter settings.

2.4.2 Oracle Analysis

To decompose the analysis over object localization and association, we perform oracle

analysis here. We use the ground truth bounding boxes with different association

algorithms to achieve expected upper-bound performance.

This analysis can help us to understand what is the true bottleneck of tracking

on different datasets. To be precise, we try to use IoU matching or motion modeling
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…

MOT17-05 DanceTrack0019

Figure 2.4: Visualization of re-ID feature from sampled video in MOT17 and Dance-
Track dataset using t-SNE [379]. The same object is coded by the same color. For
better visualization, we only select first 200 frames in each video sequence. The
results show that object appearance is much distinguishable on MOT17 than that on
DanceTrack. It brings a shortcut for tracking on MOT17 by even only appearance
matching.

and appearance similarity for the association. We have experiments on MOT17 and

DanceTrack respectively. The results are shown in Table 2.2. We use a pre-trained

Re-ID model [279] for appearance matching and a Kalman Filter [173] for motion

modeling under linear motion assumption. IoU matching is simply performed by

calculating the IoU of objects’ bounding boxes in adjacent frames. From the results,

the tracking output is close to perfect in terms of all metrics on MOT17. And,

interestingly, using only IoU matching achieves the best performance, which proves

that MOT17 contains objects with simple and regular motion patterns and the

bottleneck does not lie in association in most cases.

On the other hand, using only IoU matching on DanceTrack gives a much lower

performance than on MOT17. Given DetA and MOTA scores are already close to

100, the bottleneck is obviously in the association part. All association metric scores

in all cases experience a dramatic drop compared with that on MOT17. Besides,

the best performance lies in only IoU matching, even combining a linear motion

model or additional appearance information does not help. When using appearance

similarity, all metrics are worse than not using any appearance cue. This is because
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Motion HOTA DetA AssA MOTA IDF1

None(IoU) 34.9 68.2 18.0 77.0 31.7
Kalman filter[28] 37.2 62.4 22.3 77.4 39.9
LSTM[54] 38.8 67.8 22.4 78.7 38.1

Table 2.3: Tracking performance of investigated algorithms on MOT17 and Dance-
Track test set respectively. The result comparison shows the evident increased
difficulty of performing multi-object tracking on DanceTrack than MOT17 dataset.
To be precise, DanceTrack makes detection easier (higher MOTA and DetA scoers) but
still brings significant tracking performance drop compared to MOT17 (lower HOTA,
AssA and IDF1 scores). This phenomenon reveals the bottleneck of multi-object
tracking on DanceTrack is on the association part.

the objects in DanceTrack videos usually have indistinguishable appearance so simply

using appearance matching makes negative effects in some cases. In Figure 2.4, we

visualize the appearance feature of objects extracted from DanceTrack and MOT17

videos respectively. We can observe that the appearance features of different objects

are very distinguishable in the feature space on MOT17 while highly entangled on

DanceTrack. This qualitatively provides evidence for the high similar appearance of

objects in the proposed DanceTrack dataset.

Given the results shown in the analysis with oracle object localization, we can

reach a clear conclusion that existing datasets have a heavy bias that focuses more on

the detection quality only and the involved simple trajectory patterns limit the study

in this area. On the contrary, DanceTrack is proposing a much higher requirement to

develop multi-object trackers with improvement in association ability. Considering

the scenarios included in DanceTrack are what we experience in real life, we believe

it is meaningful to provide such a platform.

2.4.3 Benchmark Results

We benchmark the current state-of-the-art multi-object tracking algorithms on MOT17

and DanceTrack. The evaluation is performed in the “private setting” that the

algorithm should do both detection and association. The benchmark results are

reported in Table 2.3. In terms of the tracking quality measured by HOTA, IDF1 and

AssA, all algorithms show a significant performance gap from MOT17 to DanceTrack.

For all investigated methods, their performance on DanceTrack is far from satisfactory.
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Table 2.4: Comparison of different association algorithms on DanceTrack validation
set. The detection results are output by YOLOX [111], trained on the DanceTrack
training set.

Association HOTA DetA AssA MOTA IDF1

IoU 44.7 79.6 25.3 87.3 36.8
SORT[28] 47.8 74.0 31.0 88.2 48.3
DeepSORT[409] 45.8 70.9 29.7 87.1 46.8
MOTDT[60] 39.2 68.8 22.5 84.3 39.6
BYTE[483] 47.1 70.5 31.5 88.2 51.9

On the other hand, the detection quality metrics, MOTA and DetA, of all algorithms

are in fact higher on DanceTrack than on MOT17. This suggests that detection is not

the bottleneck to have good tracking performance on DanceTrack and continues to

highlight the drop of association. The challenge on the proposed dataset is to make

robust associations against the uniform appearance and the diverse motion of objects.

2.4.4 Association Strategy

In the previous section, most methods entangle the detection and tracking modules.

To have an independent study on association algorithms, we use the most recently

developed YOLOX [111] detector for object detection on DanceTrack and conduct

different object association algorithms following that. The results are shown in

Table 2.4.

SORT [28] uses Kalman Filter to model the object trajectory and DeepSORT [409]

adds appearance matching. Compared to SORT, DeepSORT shows no performance

boost but worse performance instead, suggesting the negative gain due to appearance

matching. On the other hand, MOTDT [60] uses the tracking result to help detect

bounding boxes. But in fact, detection performance can be really good on the

DanceTrack dataset and the exact bottleneck is the association part, so MOTDT

shows even worse performance on both detection quality and association quality with

its design. Lastly, BYTE [483] uses a high-tolerance strategy to select detection

results into the association stage. The design aims to decrease tracklet fragmentation

in tracking. With such a strategy, BYTE shows the best association performance

in terms of IDF1 and AssA metrics. This also reveals that DanceTrack is not a
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Figure 2.5: Visualization of adding more information beyond bounding box on
DanceTrack. Tracks are coded by color. The 1st, 2nd and 3rd column are frame20,
120 and 200 of DanceTrack0007 video sequence, respectively. The 1st row is ground-
truth boxes and identifies.

Table 2.5: Ablation study on adding more information beyond bounding box on
DanceTrack validation set. All experiments are based on CenterNet [498] model and
BYTE [483] association. (a) Segmentation mask improves the tracking performance
on DanceTrack. (b) Pose information boosts the tracking performance with an even
larger gap than the segmentation mask. (c) Though adding depth information into
association shows a slightly positive influence, the results still blame the domain shift
between KITTI and DanceTrack.

Data Ass. HOTA DetA AssA MOTA IDF1

DanceTrack box 36.9 63.6 21.6 78.8 39.2
+ COCOmask [212] box 38.1 (+1.2) 64.5 (+0.9) 22.6 (+1.0) 80.6 (+1.8) 40.3 (+1.1)
+ COCOmask + mask 39.2 (+1.1) 64.9 (+0.4) 23.9 (+1.3) 80.7 (+0.1) 41.6 (+0.3)

DanceTrack box 36.9 63.6 21.6 78.8 39.2
+ COCOpose [212] box 40.6 (+3.7) 65.5 (+1.9) 25.3 (+3.7) 82.9 (+4.1) 42.9 (+3.7)
+ COCOpose + pose 41.0 (+0.4) 65.9 (+0.4) 25.6 (+0.3) 83.1 (+0.3) 43.9 (+1.0)

DanceTrack box 36.9 63.6 21.6 78.8 39.2
+ KITTI [112] box 34.4 (- 2.5) 57.8 (- 5.8) 20.7 (- 0.9) 72.9 (- 5.9) 38.5 (- 0.7)
+ KITTI + depth 35.1 (+0.7) 57.3 (- 0.5) 21.6 (+0.9) 72.8 (- 0.1) 40.2 (+1.7)

strict challenge for modern deep object detectors, the true challenge is in the object
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association part instead.

2.4.5 Analysis of More Modalities

Considering high scores of MOTA and DetA on DanceTrack, the limited performance

on DanceTrack is an exact failure of trackers instead of detectors. To boost per-

formance, a straightforward strategy is to add more cues other than bounding box.

Since DanceTrack contains bounding boxes and identities annotations, we propose to

use joint-training technology with other datasets, e.g., COCO [212] and KITTI [112],

to enable the model output more modalities including segmentation mask, pose and

depth, All models are based on CenterNet [498]. If additional modal is used other

than bounding box, we add a corresponding head following the backbone network.

Does fine-grained representation help ?. We investigate the influence of adding

the segmentation mask into the model. The training data is a combination of the

DanceTrack training set and COCO mask [212]. If the input image is from DanceTrack,

we set its mask loss as 0. During inference, the matching metric is the weighted

sum of bounding box IoU and mask IoU. From the results in Table 2.5, we find a

performance boost by using the segmentation mask. We believe this can be explained

by two reasons. First, the introduction of more fine-grained annotation makes the

training more robust just as what is observed in multi-task learning. On the other

hand, for crowded and occluded situations, the segmentation mask is a more reliable

information form than bounding boxes. From the segmentation mask, we can surely

expect to extract more accurate object identification information for the association

task.

Besides the mask, another modality is human pose information. The training

data is a combination of DanceTrack training set and COCO human pose [212]. If

the input image is from DanceTrack, we set its pose loss as 0. During inference, the

matching metric is the weighted sum of bounding box IoU and Object Keypoint

Similarity(OKS) [212]. The results are shown in Table 2.5. Adding additional pose

information in training better boosts the model performance on DanceTrack, and

using the output pose in association further helps to achieve better tracking results.

A potential reason is when most of the area of a human body is occluded already,

segmentation model usually can not provide reliable output while the pose estimation
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Table 2.6: Comparison of different motion models on DanceTrack validation set. The
detection results are output by CenterNet [498], trained on the DanceTrack training
set.

Methods
MOT17 DanceTrack (Proposed Dataset)

HOTA DetA AssA MOTA IDF1 HOTA DetA AssA MOTA IDF1
CenterTrack [500] 52.2 53.8 51.0 67.8 64.7 41.8 78.1 22.6 86.8 35.7
FairMOT [482] 59.3 60.9 58.0 73.7 72.3 39.7 66.7 23.8 82.2 40.8
QDTrack [270] 53.9 55.6 52.7 68.7 66.3 45.7 72.1 29.2 83.0 44.8
TransTrack [353] 54.1 61.6 47.9 75.2 63.5 45.5 75.9 27.5 88.4 45.2
TraDes [415] 52.7 55.2 50.8 69.1 63.9 43.3 74.5 25.4 86.2 41.2
MOTR [466] 55.1 56.2 54.2 67.4 67.0 48.4 71.8 32.7 79.2 46.1
ByteTrack[483] 63.1 64.5 62.0 80.3 77.3 47.7 71.0 32.1 89.6 53.9

model focusing on certain human body key-points usually shows higher robustness.

Does depth information help ?. We try to use additional depth information to

help tracking on DanceTrack. The training data is a combination of DanceTrack

training set and KITTI [112] 3D box. If the input image is from DanceTrack, we

set all losses related to the 3D box as 0. During inference, we directly use the

camera parameters in KITTI dataset, and the matching metric is the weighted sum

of bounding box IoU and depth similarity. The results are shown in Table 2.5. In

contrast to the COCO segmentation mask and human pose, depth information learned

from KITTI dataset does not increase the performance on DanceTrack. We explain

that COCO segmentation and pose estimation datasets contain humans as the main

category, while KITTI mainly contains vehicle instances. Thus, the object and scene

prior in DanceTrack and KITTI change, and this domain shift degenerates the model.

Nevertheless, depth information indeed helps association performance if we regard the

baseline as the model trained on joint-dataset of DanceTrack and KITTI. However,

limited by the available resources of depth-annotated data, this is the best we could

try for now. We expect more study on the influence of depth information to associate

objects with uniform appearance and diverse motion.

Does temporal dynamics help ?. As shown in Table 2.6, we use different motion

models to introduce temporal dynamics in the tracking process to facilitate better

association. Both Kalman filter [28] and LSTM [54] outperform naive IoU association

(without temporal dynamics) by a large margin, indicating the great potential of

motion models in tracking objects, especially when appearance cues are not reliable.

With the relatively slow progress of object model motion, we expect to see more
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advanced motion models in the field of multi-object tracking.

From the study above, we know that more modalities could help boost the

performance of tracking on DanceTrack, especially those from similar data distribu-

tions [98, 161, 455]. Given the limitation discussed in section 2.3.4 that DanceTrack

only provides bounding box annotation, for now, there would be several interesting

future works: (1) extending its annotation modalities, (2) using weakly-supervised

learning [374, 387, 497] to estimate other modalities, (3) using transfer learning and

domain adaptation [11, 43, 206] to transfer knowledge of other modalities from other

data domain to our benchmark.

2.5 Conclusion

In this paper, we propose a new multi-object tracking dataset called DanceTrack.

The objects have uniform appearance and diverse motion pattern in DanceTrack,

preventing being hacked by Re-ID algorithms. The motivation behind it is to reveal

the bias in existing datasets that tend to emphasize detection quality and matching

appearance only. This makes other cues to associate objects underrepresented. We

believe that the ability to analyze complex motion patterns is necessary for building

a more comprehensive and intelligent tracker. DanceTrack provides such a platform

to encourage future works on this line.
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Chapter 3

Multi-human Tracking by Fusing

Position Encoding and Appearance

3.1 Introduction

The transformer [51, 380] has introduced a new powerful paradigm for processing

sequential data. Among the innovations by transformers, positional encoding is an

essential addition to the transformer. It provides information of token position for

1D text sequences. However, compared to its success in language models, positional

encoding plays a relatively minor role in many vision tasks, such as multi-object

tracking. When applying transformers in multi-object tracking, popular methods [251,

353, 502] still mostly rely on appearance matching to associate targets across multiple

time steps.

Typically, the positional encoding is added to the tokens in the transformer to

provide information about the relative order of the input tokens. It has properties

such as being consistent for token pairs with the same relative distance, making it

ideal for processing 1D sequences of text tokens. However, when using positional

encodings in vision tasks, the previously defined position encoding is less well-formed

to preserve position information in images (2D) and video tubes (3D). Consequently,

many transformer-based methods have found positional encoding ineffective, especially

in target tracking [353, 502] tasks, and have stuck to applying appearance similarity

as the cue to associate targets.
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However, we believe position information should play a more critical role in multi-

object tracking. Moreover, by recognizing the flaws of directly migrating positional

encoding from language processing to vision tasks, we find that the key is to keep

spatial and temporal information lossless in the positional encoding. Motivated

by such analysis, we propose a new paradigm of applying the positional encoding

earlier, on 2D CNN feature maps, rather than later, on projected feature vectors. We

could preserve pixel order and positional information now. Furthermore, we take

advantage of the natural Fourier properties of our proposed positional encoding. By

approximating the underlying Fourier and maintaining its linearity, we can achieve

a uniform position encoding form for detections and trajectories. This enables the

model to associate (1) among the detections and (2) between the detections and

the trajectories in the same way. As the proposed positional encoding spans every

pixel densely and can represent the pixel position evolution over time, we name it

Dense Spatio-Temporal position encoding or DST encoding. We also propose using an

attention mask for more accurate pixel-wise feature extraction and to avoid noise from

background pixels. The attention mask can be computed from either segmentation

masks, saliency discovery maps, or other coarse pixel-wise maps.

With the proposed DST encoding, we build a transformer-based method achieving

state-of-the-art performance on multi-object tracking and multi-object tracking and

segmentation benchmarks. We also provide an analysis of the shortcomings of classic

positional encoding and how our DST encoding improves upon it as a new baseline

for future works.

3.2 Related Works

3.2.1 Tasks for Tracking Targets in Videos

Topics related to Target tracking in videos include multi-object tracking (MOT),

multi-object tracking and segmentation (MOTS), video object/instance segmentation

(VOS/VIS), and segmenting and tracking every pixel (STEP). We choose MOT [256,

355] and MOTS [383] to evaluate our proposed method because there are multiple

targets in the video and they show long-range movement, making them suitable

tasks to verify the effectiveness of our proposed method. On the contrary, VOS/VIS
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datasets, such as DAVIS [292] and Youtube-VOS [427], contain foreground objects

of very different appearances or even categories and they usually have simple and

slow movement. On the other hand, STEP [404] is based on MOTS but adds static

objects to consider, such as buildings, road lanes, and trees. These objects are static

and easy to track by linear motion models and are not suitable for showcasing the

advantages of our DST position encoding.

3.2.2 Positional Encoding as a Representation

The currently widely used positional encoding is introduced by the transformer [380]

for language models and then extended to vision tasks [51]. Positional encoding

or its variants with different names has been studied for a long time as a form

of representation. An early work [301] has studied random Fourier features to

approximate an arbitrary stationary kernel using Bochner’s theorem. It is close to the

use of positional encoding in the transformer. In computer vision, coordinate-MLPs

provide a way to encode objects’ positions as weights and are related to the study of

positional encoding [365, 493]. More recently, Zheng et al. [491] also suggest a study

of positional encoding beyond a Fourier lens. They show that non-Fourier embeddings

can also serve as positional encoding and, in the perspective of coordinate-MLPs,

the performance is determined by a trade-off between embedding matrix stable rank

and the distance preservation of coordinates. However, all these explorations have

not suggested an efficient form of positional encoding for vision tasks to preserve the

spatial transformation of a series of positions.

3.2.3 Multi-objec Tracking Algorithms

Early works on multi-object tracking mainly focus on motion analysis on the target

trajectory, where the Kalman Filter is a classic solution [27]. Later, the rise of

deep learning brings the powerful deep visual representations and related algorithms

follow two paradigms: tracking-by-detection and joint-detection-and-tracking methods.

Both of these paradigms involve an association stage, where they mostly focus on

appearance matching [269, 485], i.e., re-identification, without using the motion

information. More recently, transformer [380] is introduced into the area of multi-

object tracking [251, 353, 466] to take advantage of its parallel processing power.
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Figure 3.1: The illustration of associating targets within a video clip. For general
cases, we use bounding boxes to represent the targets of interest while we can further
replace the detector with a segmentation model to do the attention in a more fine-
grained mask area. Positional encoding is added to CNN feature maps to encode
position information.

However, existing methods still neglect the information motion information, with the

exception of MOTR [466] which has attempted to model motion implicitly using a

query iteration mechanism. GTR [502] shows that using position encoding decreases

transformer performance on MOT tasks. All the evidence suggests that the existing

ways for leveraging motion and position information in transformer trackers are

ineffective, which motivates the explorations in this paper.

3.3 Method

In this section, we first provide an overview of the architecture of our method and

then detail its components: the design of the Dense Spatio-Temporal (DST) encoding,

the attention mask, and the training and inference configurations.

3.3.1 Overview

The proposed method can make associations at two levels: between detections in a

video clip or between detections and existing trajectories.

Association of detections in a video clip.. For the association of objects,

we follow the “global association” scheme widely adopted by transformer-based
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methods [400, 466, 502], as shown in Figure 3.1. With the images of T frames as

input, we first use a backbone network to extract the feature maps. Then, a detector

head is used to localize N objects of interest inside these images with optional

segmentation to gain more fine-grained feature representation. Given the localized

objects, we extract their RoI features on both CNN features maps and DST encoding,

which are of the same shape T ×C ×HR ×WR, where (HR,WR) is the preset size of

RoI, e.g. 7×7. Finally, we add both features and project them to feature embeddings

of size N ×D, which we then forward into a transformer decoder to compute the

attention score matrix of size N ×N . Considering that there should be no association

between objects from the same frame, we perform softmax on each frame respectively

to ensure a well-formed association matrix.

Association between detections and trajectories.. The proposed method can

also perform the association between the detections on a new-coming video frame and

existing trajectories for online tracking during inference. During the online inference,

we perform tracking frame by frame by using a sliding window on the video with a

stride of 1. We align the representation of trajectories in the same shape and form as

detections to enable this process to share the same model for the detection-detection

association. To represent the position of detections on a single frame, we apply

RoI to extract the corresponding area from the DST map. However, to represent

the trajectory, we now have to use the accumulated DST encoding to record the

positional evolution of the track. In this fashion, the representation of a trajectory is

designed to be the element-wise addition of accumulated DST encoding of historical

object positions and the CNN features of the object snapshot at the last frame. The

process of associating detections and trajectories is explained in Figure 3.2a. We

perform softmax over the dimension of detections and the dimension of trajectories,

respectively, to output the final association matrix. We use the Hungarians algorithm

to ensure an one-to-one mapping between detections and trajectories. If a detection’s

attention score with all trajectories is lower than a threshold β or all available

trajectories are already associated, this remaining detection will give birth to a new

trajectory.
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Figure 3.2: A deeper look at the component in our method. (a): how we generate
the feature representations for both trajectories and single-frame objects. The
representation of a trajectory is the accumulated positional encoding of all contained
historical locations and the appearance feature of the last snapshot of the object. (b):
for the video tracking and segmentation task, we use the semantic occupancy map
onto object RoI to obtain more fine-grained RoI features where both position and
semantics are encoded.
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3.3.2 Dense Spatio-Temporal Position Encoding

Re-identification-based tracking methods associate targets across frames by comparing

the appearance similarity of targets, neglecting the location information. However,

we believe that location cues can significantly help associate targets because objects

usually follow certain motion patterns in the real world. To present the location of

each object, a navie way is to append the bounding box coordinates to the object’s

feature vector. However, this operation can not scale up to trajectories of arbitrary

length. Recently, the transformer has been adopted in multi-object tracking with the

one-dimensional sinusoidal positional encoding [380] added to token vectors. But it is

not as effective [353, 466, 502] as in the language process tasks [380]. We argue that

to scale the 1D positional encoding up to 2D images or 3D videos, we need to avoid

the loss of spatial information during feature projection. We will demonstrate that

our proposed DST encoding can solve this problem to provide a better structure of

location information in representing object trajectories.

Encoding of single-frame locations.. Given the channel number of feature maps

is C, for a pixel at position (x, y) in the image (or feature maps) whose size is W ×H,

its positional encoding value at the i-th channel is

P (x, y, i) =

−cos
[
( x
W

+ y
WH

)π + 2iπ
C

]
, i = 2k + 1

cos
[
( y
H
+ x

WH
)π + 2iπ

C

]
, i = 2k

k ∈ Z ∩ [0,
C

2
). (3.1)

Such an encoding has a few desirable properties. First, it injectively maps from

the pixel position to a value on all channels of the feature maps. Second, it keeps the

encoding zero-centered spanning the image area which is friendly to the model training.

Finally, the term 2iπ
C

keeps the encoding fairly sensitive to location variance within

the whole area of the image. Without this term, the encoding value changes more

sensitively around the image center while less sensitively near the image boundary.

This is easy to prove by checking the first derivative of the sinusoidal function.

What we use in the final DST encoding is the resized encoding from the RoI area

of objects only. This helps the model to have an encoding of the fixed shape and

focus on the object area. If the shape of RoI is WR × HR and the bounding box

coordinates of an object on the raw image is (u, v, u+ w, v + h), on the cropped and

37



3. Multi-human Tracking by Fusing Position Encoding and Appearance

resized RoI feature maps, the positional encoding becomes

PR(x
′, y′, i) =

−cos
[
( w
WWR

x′ + h
WHHR

y′)π + ( u
W

+ v
WH

)π + 2iπ
C

]
, i = 2k + 1

cos
[
( h
HHR

y′ + w
WHWR

x′)π + ( v
H
+ u

WH
)π + 2iπ

C

]
, i = 2k

k ∈ Z∩[0, C
2
),

(3.2)

where x′ ∈ [0,WR] and y′ ∈ [0, HR], only now extending in the boundary box area.

Here, the period of this encoding function changes in terms of the ratio of object

size and RoI size. Therefore, this operation also implicitly encodes the target shapes

instead of just the position.

Encoding of trajectory.. On two time steps t1 and t2, we note the bounding boxes

of a target object as b1 = (u1, v1, u1 +w1, v1 + h1) and b2 = (u2, v2, u2 +w2, v2 + h2).

Now, by adding the positional encoding in the RoI area, we have the trajectory

encoding of every pixel in the two bounding boxes as

P
b2|b1

R (x′, y′, i) = Pb1
R (x′, y′, i) + Pb2

R (x′, y′, i). (3.3)

Because the period of function P
b2|b1

R is still longer than WR and HR on the direction

of width and height, it can still represent the trajectory from b1 to b2 injectively.

Furthermore, we can extend this trajectory encoding to longer video clips as

P
bT |...|b1

R (x′, y′, i) =
T∑
t=1

αtP
bt
R (x′, y′, i), (3.4)

where αt is the weighting factor on the t-th frame. As for each frame, we have the

dense position encoding on each pixel in the object area in the form of trigonometric

functions; the trajectory encoding is well represented in a Fourier series now. We

choose a linear combination of frame-wise encoding to take advantage of the linearity of

Fourier series that is F(
∑K

i=1 σifi) =
∑K

i=1 σiF(fi), where F is the Fourier transform

and σi is the weighting factor for function fi. This property ensures the sanity to

extend trajectory encoding by linearly adding the position encoding on the new

coming frame. To show this, we note T bT |...|b1 the underlying function that we aim to

approximate to represent a trajectory along the bounding boxes (b1, ...,bT ). Then, if

we have a function L that maintains the linearity, we have F(T bT |...|b1) = L(PbT |...|b1

R ).
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Therefore, extending the trajectory to the next position bT+1 keeps the form of the

positional encoding for the trajectory the same:

L(PbT+1|bT |...|b1

R ) = L(PbT |...|b1

R )+L(PbT+1

R ) = F(T bT |...|b1)+F(T bT+1) = F(T bT+1|bT |...|b1).

(3.5)

Now, we have shown that the proposed DST encoding can preserve the position

information in a spatio-temporal occupancy tube densely and at arbitrary length.

On each encoding channel, the value is variant to both the absolute position of the

corresponding pixel and the position difference across frames. On the other hand,

the traditional positional encoding in the transformer maintains the same encoding

for any tokens of the same position difference. Also, since the full period (2π) spans

on the feature channel dimension (C), it can always map the same relative position

shift of two pixels to the same value on different channels. In practice, we use an

MLP without non-linear activation to model the function L along the dimension of

encoding channels. If a target moves smoothly along the width and height directions,

the encoding of its previous trajectory and its encoding on a new-coming frame will

output a high similarity by attention.

Compared to the classic vector positional encoding, DST encoding has three main

advantages: (1) preserving the object location information; (2) encoding pixel-wise

dense information; (3) unifying representation for single-frame objects and trajectories

across multiple frames. These properties provide additional knowledge to associate

targets across frames.

3.3.3 Dense Spatio-Temporal Attention

As both visual features and location encoding are dense on every pixel, we can do the

association in a pixel-wise dense fashion now. But in fact, the target objects often

change their pose in the bounding box and the bounding box includes background

area as noise, especially when the targets are non-rigid such as the human body in

pedestrian tracking. But when the video frame rate is high, the relative movement

of the object body inside the bounding box is minor, dense attention is still very

useful. Moreover, we perform attention to the RoI elements instead of the raw

image pixels. Each pixel in RoI is already a conclusion of multiple pixels on the raw
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images. It makes dense attention more robust. For the association of detections in

a video clip, the features already integrated with positional encodings are noted as

F ∈ RN×C×HR×WR for N objects. Then, we apply attention mask M ∈ RN×HR×WR

determining which “pixel” in the RoI areas should be attended to. In practice, the

attention mask M can be the segmentation mask (Figure 3.2b) if that is available

or an attention map without using segmentation supervision. We copy the feature

along the channel dimension to scale it to M ′ ∈ RN×C×HR×WR . Next, we apply

an MLP to transform the features into 1-d feature vectors, the operation noted as

g(·). Given all the preparation, we get the encoded feature vector as g(M ′F ), which

would later be transformed to K and Q by linear layers in self-attention. Finally, we

predict the attention matrix as S = softmax(Q×K
T

√
D

). This also works in the case of

cross-attention for associating trajectories and detections. For a trajectory, M is the

attention mask on its last frame. We will apply Hungarians algorithm to ensure the

validity of the final binary association matrix from the attention matrix.

3.3.4 Training and Inference

Training.. During training, we draw N high-confidence detections from a detector

after NMS, noted as D = {D1, ..., DN}. The features with positional encoding added

are noted as {F1, ..., FN}. From the self-attention-based association of objects within

the video clip, we can output its association matrix as Ŝ ∈ RN×N . With the ground

truth association matrix S ∈ RN×N , we can derive the MSE loss for in-clip object

association as

lclip(S, Ŝ) =
1

N2

∑
i,j

(Si,j − Ŝi,j)
2. (3.6)

In addition to this, we can train the association in the detection-trajectory pairs.

Similarly, in the video clip we draw, we have ground truth trajectories as T =

{τ1, ..., τk}. Then, for each frame t, we would remove the footage on and after

this frame from these trajectories. It results in a new set on each frame as T t =
{∅}

⋃
{τ t1, ..., τ tkt} where ∅ is an empty trajectory. At the same time, we note the

detections on the frame t as Dt = {Dt
1, ..., D

t
mt}. We then output the detection-

trajectory association matrix by the introduced cross-attention. With the ground

association matrix noted as St and the estimated association matrix from softmax as
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Ŝt. The loss is formulated by logistic as

ldet traj(D, T ) = −
N∑
t=1

∑
τ ti∈T t

mt∑
j=1

St(Dt
j, τ

t
i )log(Ŝ

t(Dt
j, τ

t
i )), (3.7)

where an object can also be associated with an “empty trajectory” which means it

has no corresponding existence on other frames. Finally the overall association loss

is the combination of these two terms as lasso = lclip + ldet traj. For the localization

stage, we can use a pretrained detection or segmentation model and freeze it or train

it at the same time as training the association module.

Inference.. During inference, we use an 1-stride sliding window to move from the first

video clip of length T to the last. In the first clip, we use the association of detections

to initialize trajectories. Then, for the following steps, we do detection-trajectory

and detection-detection associations at the same time. Then we use their average

likelihood of association to determine the final association matrix between new-coming

detections and existing trajectories. Because only one frame is new at each step of

the window sliding, it is averaging the score of associating detections on the T -th

frame and previous T − 1 frames. The later ones have been assigned to a trajectory

already. If the average association score is lower than 0.3, we start a new trajectory

from the detection. In this process, we use the Hungarians algorithm to ensure the

validity of the association matrix between detections and trajectories.

3.4 Experiments

3.4.1 Setup

Datasets and metrics.. We choose two MOT datasets (MOT17 [256] and Dance-

track [355]) and a MOTS dataset (MOTS20 [383]) as the experiment platforms. For

evaluation, we use HOTA [226] as the main metric, as it has a reasonable balance

between localization and association quality and evaluates association quality at

a trajectory level. We also emphasize AssA as it purely measures the video-level

association quality. However, on the MOTS20 test set, the HOTA evaluation protocol

is not reported. So we also take IDF1 as a secondary metric to compare the quality
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Table 3.1: Results on MOTS20 test set. We include only single-model methods here.

Method sMOTSA ↑ IDF1↑ MOTSA ↑ FP ↓ FN ↓ ID Sw. ↓ Frag ↓

Track R-CNN [383] 40.6 42.4 55.2 1,261 12,641 567 868
TraDes [415] 50.8 58.7 65.5 1,474 9,169 492 -
TrackFormer [251] 54.9 63.6 - 2,233 7,195 278 -
SORTS [4] 55.0 57.3 68.3 1,076 8,598 552 577
Ours 60.0 68.3 71.7 634 8,229 275 714

of the association. But we still note that IDF1 is calculated at a single-frame level

and cannot accurately measure the quality of association at a video level.

Implementation.. We use ResNet-50 [139] as the backbone network and BiFPN [364]

for upsampling of feature maps. We use RoIAlign [141] to extract RoI of size 7× 7.

For a fair comparison, we follow CenterNet [499] for detection and keep it as-is from

the pretraining on CrowdHuman [333]. For training, the image size is 1280× 1280

and we use T = 16 to draw video clips. We use AdamW [222] optimizer to finetune

the association module for 12K (MOT17, MOTS20) or 20K (Dancetrack) iterations

with the starting learning rate of 1e-3. For segmentation, we adopt the MaskRCNN

head [141] upon detection and train the head with an additional mask-rcnn loss added

to the association loss. We adopt two “linear-ReLU” layers to project the features in

the transformer. As for the evaluation of MOTS, each pixel is allowed to be assigned

to at most one object; we exclusively assign pixels to at most one object per their

confidence scores on MOTS20. Our implementation is based on Detectron2 [417]. We

also refer to mmtracking [76] for the implementation details.

3.4.2 Benchmark Results

On the MOTS20 test set (Table 3.1), we evaluate IDF1 as the main metric. Here we

only show the results from single-model methods for fairness so some others such as

ReMOTS [437] are not listed here. Our results show that the proposed method can

consistently outperform existing single-model methods. In addition to MOTS, we also

benchmark our method on MOT benchmarks of MOT17 (Table 3.2) and DanceTrack

(Table 3.3). On the MOT17 test set, among transformer-based methods, our proposed

method obtains the highest HOTA and AssA scores, showing its superior association

performance. Moreover, compared to GTR [502], which uses the same detection

network as ours but no position information during association, we could see the
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source of our method’s outperforming is the use of spatio-temporal position encoding.

On the DanceTrack test set, our method also achieves the highest HOTA and AssA

scores among transformer-based methods.

Table 3.2: Results on MOT17 test set. Best results among transformer methods are
underlined.

Tracker Transformer HOTA ↑ AssA ↑ MOTA↑ IDF1 ↑ ID Sw. ↓ FP ↓ FN ↓

FairMOT [485] 59.3 58.0 73.7 72.3 3,303 27,507 117,477
PermaTrack [375] 55.5 53.1 73.8 68.9 3,699 28,998 115,104
TraDes [415] 52.7 50.8 69.1 63.9 3,555 20,892 150,060
TubeTK [268] 48.0 45.1 63.0 58.6 4,137 27,060 177,483
ByteTrack [484] 63.1 62.0 80.3 77.3 2,196 25,491 83,721
OC-SORT [45] 63.2 63.4 78.0 77.5 1,950 15,129 107,055
TransTrk[353] ✓ 54.1 47.9 75.2 63.5 4,614 50,157 86,442

TransCenter [431] ✓ 54.5 49.7 73.2 62.2 3,663 23,112 123,738

TrackFormer [251] ✓ - - 65.0 63.9 3,258 70,443 123,552
MOTR [466] ✓ - - 67.4 67.0 1,992 32,355 149,400

GTR [502] ✓ 59.1 61.6 75.3 71.5 2,859 26,793 109,854
MeMOT [40] ✓ 56.9 55.2 72.5 69.0 2,724 37,221 115,248
Ours ✓ 60.1 62.1 75.2 72.3 2,729 24,227 109,912

Table 3.3: Results on DanceTrack test set. Best transformer-based results are
underlined.

Tracker Transformer HOTA ↑ DetA ↑ AssA ↑ MOTA↑ IDF1 ↑

CenterTrack [501] 41.8 78.1 22.6 86.8 35.7
FairMOT [485] 39.7 66.7 23.8 82.2 40.8
SORT [27] + YOLOX [110] 47.9 72.0 31.2 91.8 50.8
DeepSORT [408] + YOLOX [110] 45.6 71.0 29.7 87.8 47.9
ByteTrack [484] + YOLOX [110] 47.3 71.6 31.4 89.5 52.5
OC-SORT [45] + YOLOX [110] 55.1 80.3 38.0 89.4 54.2
TransTrk[353] ✓ 45.5 75.9 27.5 88.4 45.2
MOTR [466] ✓ 48.4 71.8 32.7 79.2 46.1
GTR [502] ✓ 48.0 72.5 31.9 84.7 50.3
Ours ✓ 51.9 72.3 34.6 84.9 51.0

Our results on diverse datasets have shown the effectiveness of our proposed method

compared to other transformer-based methods. We believe that emphasizing position

information during attention and association allows the DST position encoding to

outperform other methods. We will continue to further prove this through an ablation

study.
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3.4.3 Ablation Study

Some design choices may contribute to the performance of our proposed method.

To fully validate these choices, we need segmentation annotation, but the MOTS20

evaluation server has strict access restrictions, so we have to follow the common

practice [501] on MOT17 [256] to split each video in MOTS20 with the first half for

training and the later half for validation in the ablation study.

To have a deeper understanding of the proposed method, the first to come is the

role of DST position encoding. To verify its effectiveness, we compare it with the

same architecture but without positional encoding or using classic vector positional

encoding [380] in Table 3.4. The results clearly suggest the effectiveness of our

proposed DST position encoding. Moreover, the classic positional encoding hurts the

association performance, which is aligned with the observations by Zhou et al. [502].

Furthermore, we compare the performance with and without the attention mask

from segmentation on MOTS20-val. The results are reported in Table 3.5. It also

shows the clear advantage of using such a mask when gathering and processing

the features. It agrees with the intuition that such a mask eliminates the noise

from the background and potential secondary subjects in bounding boxes from the

representation features.

Table 3.4: The ablation study of positional encoding on MOTS20-val.

pos-encode HOTA ↑ IDF1 ↑ DetA ↑ AssA ↑ sMOTA↑ MOTSA ↑ ID Sw.↓

w/o pos-encoding 64.4 72.5 72.5 58.0 71.6 82.8 150
classic pos-encoding [380] 64.1 72.5 69.7 59.3 67.8 79.6 162
DST pos-encoding 67.1 74.9 72.8 62.3 71.7 83.0 135

Table 3.5: The ablation study of attention mask on MOTS20-val.

HOTA ↑ IDF1 ↑ DetA ↑ AssA ↑ sMOTA ↑ MOTSA ↑ ID Sw. ↓

w/o mask 64.6 71.3 72.5 58.1 71.3 82.6 156
w/ mask 67.1 74.9 72.8 62.3 71.7 83.0 135

The ablation studies demonstrate the effectiveness of the proposed DST position

encoding as the main contribution of this work. Also, the attention mask to more

accurately conclude the representation of objects is proven useful when necessary

mask information is given. We note that without a segmentation mask, we can use a
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pretrained segmentation model or a saliency detection model to generate such masks.

But this would introduce an unfair advantage, so we decide not to include it on the

benchmark of MOT datasets.

3.5 Conclusion

In this work, we propose a novel dense spatio-temporal (DST) position encoding to

incorporate target position information into the transformer for multi-object tracking.

DST encoding leverages the property of the Fourier transform to make a uniform

form of position representation for both single-frame objects and trajectories across

multiple frames. It shows good effectiveness in the task of multi-object tracking. While

multiple previous works have failed in boosting performance with classic positional

encoding, our work provides a novel and efficient paradigm for future works to do

object tracking beyond just appearance matching.
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Chapter 4

Multi-Object Tracking by

Hierarchical Visual Representations

4.1 Introduction

Discriminative visual representations can help avoid mismatches between different

targets in appearance-based association for multi-object tracking. We propose a new

visual representation paradigm by fusing visual information from different spatial

regions in a hierarchy. We argue that, compared to the common paradigm of only

using features from bounding boxes, the proposed hierarchical visual representation

is more discriminative and no extra annotations are required.

In modern computer vision, we typically use bounding boxes or instance masks to

define the area of an object of interest. Because the enclosed pixel area is bonded

with a certain object category, such a representation is usually considered as semantic.

However, we find that not just the semantic cues can make informative representations

for visual recognition. We can generate more discriminative visual representations

from the other two perspectives to define the existence of an object: compositional

and contextual. Compositional cues describe how the parts of a target look like and

contrast cues describe how a target looks different from others. For example, as shown

in Figure 4.1, multiple flamingo individuals are almost indistinguishable in appearance

to us. But by focusing on the distinguishable parts of certain individuals, such as the

shape of the wing red mark, we can easily spot the individual (compositional). We can
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also be more confident in distinguishing instances if we can compare all individuals

across timesteps (contrast).

We thus build discriminative visual representations from three perspectives: com-

positional, semantic, and contextual. The semantic level, such as a tight bounding

box or instance segmentation mask, defines the occupancy area of the object with

certain visual existence and semantic concept. The compositional level suggests the

salient visual regions of an object instance, with which, ideally, we can track it even

without seeing its full body. The contextual information helps to highlight a subject

via contrast with background pixels and other instances. For example, we often have

a hard time determining whether two object instances are the same one. However, it

is typically easier to determine whether one instance is more likely to be the same

one than another. Motivated by the insight, we propose to represent an object by a

three-level hierarchy, i.e., Compositional, Semantic, and Contextual.

We adopt the proposed visual hierarchy in video multi-object tracking to avoid the

mismatch among different targets. We find that it is crucial how the representations

from levels are leveraged together. The naive way of stacking or concatenating

them does not show a significant performance advantage. Instead, we propose an

attention-based module called CSC-Attention to fuse the features. The core idea of

CSC-Attention is to leverage the attention-based mechanism to attend to the salient

areas on the target subject body by contrasting to the background pixels close to it.

Discriminating targets by the fused features, the multi-object tracker we construct is

named CSC-Tracker. It leverages a global association by a transformer to effectively

track objects over time. Through experiments on multiple multi-object tracking

datasets, CSC-Tracker achieves state-of-the-art accuracy among transformer-based

methods with better robustness to noise, better time efficiency, and more economic

computation requirements.

Our contributions are three-fold. First, we propose a visual hierarchy for more

discriminative visual representations without additional annotations. Second, we

propose an attention-based module to leverage the hierarchical features. Last, we

build a transformer-based tracker with these two innovations and demonstrated

its superior accuracy and time efficiency in a pure appearance-based fashion for

multi-object tracking.
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timestep 𝑡! timestep 𝑡"

Figure 4.1: With a close look at distinct compositional visual regions, we can recognize
certain individuals much more easily.

4.2 Related Works

Deep Visual Representation. We typically use a backbone network to extract

features from a certain area, such as bounding boxes, as a visual representation

for visual perception. However, the bounding box is noisy as it always contains

pixels from the background or other object instances. For a more fine-grained

visual representation, a common way is to use pre-defined regions, such as human

head [333, 357] or human joints [9, 421]. However, these choices require additional

data annotations and specified perception modules. Without requiring additional

annotations, multi-region CNN [115] proposes to stack the features from bounding

box bins to build a compositional visual representation. However, this paradigm can

not generate instance-level discriminative representation though it shows effectiveness

in semantic-level recognition. Moreover, simply stacking features can’t emphasize the

discriminative visual regions.

Hierarchy Visual Representations. The term “hierarchical visual representations”

has been used indiscriminately for (1) features fused from different resolutions of

the same area, such as CNN feature pyramid [213, 236] and (2) features fused

from different pixel areas. Our proposed hierarchical visual representations lie in

the second genre. Our idea is inspired by David Marr’s hierarchical modeling of

the human body [247] (computational, algorithmic, and implementational) and the

visual cognitive hierarchy [101] (semantic, syntactic, physical). Compared to the

two visual hierarchies, the three-level hierarchy we propose (compositional, semantic,

contextual) is focused on building discriminative visual representations for multi-

object tracking. Also, in the area of re-identification, some previous works leverage

part-based hierarchical features to build visual representation. But most of them
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...

...

CSC-Attention CSC-Attention

Global Association

...
Feature Extractor

Compositional Semantic Contextual

Self-Attention
Cross-Attention

CSC-Token

Figure 4.2: The architecture of CSC-Tracker. The left half illustrates the overall architecture.
The right half is the zoomed-in CSC-Attention module. Our contributions are (1) the visual
hierarchy for feature extraction and (2) the CSC-Attention module for feature fusion.

typically require additional annotations for body parts [344]. The way they fuse the

features from different regions [103] is not effective in multi-object tracking cases

where the background noise in the target bounding box area is usually more severe

with fast-moving targets and non-static cameras.

Query-based Multi-Object Tracking. Transformer [380] is introduced to visual

perception [50] after its original application in natural language processing. Later,

query-based multi-object tracking methods were proposed. The early methods [249,

353] associate objects locally on adjacent time steps. Some recent methods associate

targets globally in a video clip [467, 502]. GTR [502] removes secondary modules such

as positional encoding, making a clean baseline to evaluate feature discriminativeness.

Most recent methods improve performance by gathering information over a long

period [41, 467]. However, a downside is the high requirement of computation

resources, e.g., 8xA100 GPUs [41]. Instead, the improvement of our method comes

from the proposed hierarchical representation. We demonstrate its state-of-the-art

effectiveness and efficiency among query-based methods.

4.3 Method

In this section, we first introduce the overall architecture of CSC-Tracker. Then we

describe the proposed CSC-Attention module to fuse the features from the visual

hierarchy. Finally, we elaborate on the training and inference of CSC-Tracker.
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4.3.1 Overall Architecture

We follow the spatio-temporal global association paradigm [400, 502] to build CSC-

Tracker, whose pipeline is shown in Figure 4.2. Now, we explain the three stages of it.

Notations are conditional to a generic time step t, which is the last time step where

the tracks have been finalized.

Detection and Feature Extraction. Given a video clip of T frames, i.e.,T =

{t + 1, ..., t + T}, we have the corresponding images I = {I t+1, ..., I t+T}. Given a

detector, we could derive the detections of the objects of interest on all frames in

parallel, noted as O = {O1, ..., ONt}. Nt is the number of detections and ti ∈ T
(1 ≤ i ≤ Nt) is the time step where the i-th detection, i.e.,Oi, is detected. Then, we

extract the features of each detected object by a backbone network.

Token Generation by CSC-Attention. We propose CSC-Attention (to be detailed

in the following section) to generate feature tokens. By CSC-Attention, we will have

the object CSC-tokens Qdet
t ∈ RNt×D, where D is the feature dimension. If we aim

to associate the new-coming detections with existing trajectories, we also need the

tokens to represent the existing Mt trajectories, i.e.,T
traj
t = {Tktraj

1 , Tktraj
2 , ..., Tktraj

Mt
}.

Instead of the resource-intensive iterative query passing [467] or long-time feature

buffering [41], we leverage the CSC-tokens of objects on a trajectory to represent it.

Within a horizon H, we represent a trajectory, Tktraj
j , with the token Qtraj

j ∈ RH×D

by combining the historical detection CSC-tokens. And all trajectory tokens are

Qtraj
t = {Qtraj

1 , ..., Qtraj
Mt
}.

Global Association. By cross-attention, we could get the association score between

the set of detections and a trajectory, i.e. Tktraj
j , as S(Qtraj

j ,Qdet
t ) ∈ RH×Nt . In

practice, because we aim to associate between all Mt trajectories and Nt detections,

we perform the cross-attention on all object queries and track queries at the same

time, namely S(Qtraj
t ,Qdet

t ) ∈ RHMt×Nt . By averaging the score on the H steps in

the horizon, we get the global association score St ∈ RMt×Nt . Then, we normalize

the association scores between a trajectory and objects from the same time step by

softmax:

P (Mt
j,i = 1|Qdet

t ,Qtraj
t ) =

exp(Stj,i)∑
k∈{1,2,...,Nt} 1[tk=ti]exp(S

t
j,k)

, (4.1)

where the binary indicator function 1[tk=ti] indicates whether the i-th detection and
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the k-th detection are on the same time step. Mt ∈ R(Mt+1)×Nt is the final global

association matrix. Its dimension is of (Mt + 1)×Nt because each detection can be

associated with an “empty trajectory” to start a new track. The query of the “empty

trajectory” is represented by a token randomly drawn from a previous unassociated

object. Also, after the association, unassociated trajectories will be considered absent

on the corresponding frames. In such a fashion, we can train over a large set of

detections and trajectories in parallel and conduct inference online by a sliding window.

We use a uniform form for queries to represent both objects and trajectories. Thus,

the global association can happen either among detections or between detections and

trajectories. These two schemes of associations thus are implemented as the same

and share all model modules. For online inference, we associate detections from the

new-coming time step (T = 1) and existing trajectories.

4.3.2 CSC-Attention

Now, we explain the attention mechanism to fuse the features from the Compositional-

Semantic-Contextual visual hierarchy. We name it CSC-Attention (right-half of

Fig. 4.2).

Hierarchy Construction. There are different choices for constructing the hierarchy.

To have a fair comparison with a close baseline [115], we use bounding box bins to

represent object parts. Given a detection O, we divide the bounding box into 2× 2

bins (to fit in GPU memory), making a set of body parts as P = {p1, p2, p3, p4}. On

the other hand, from a global scope, there are other targets interacting with O which

are highly likely to be mismatched in the association stage. We crop the union area

enclosing O and all other targets having overlap with it. We note the union area as

U . Till now, we have derived the triplet {P , O, U} as the raw material for the visual

hierarchy.

Feature Fusion. Among the three levels, semantic information is necessary to define

a visual boundary. Compositional and contextual cues serve as the enhancement to

the final representation’s discriminativeness. With the extracted regions {P , O, U},
we use a shared feature extractor to get their features, i.e. compositional, semantic,

and contextual features. To fuse the features, we first concatenate the compositional

and semantic features. Then a self-attention module is applied to help attend to
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the discriminative regions. Finally, the contextual features and the self-attention

output are processed by a cross-attention module to get the final CSC-tokens. Before

being forwarded to the global association, the tokens would be projected to a uniform

dimension of D.

4.3.3 Training and Inference

Training. We train the association module by maximizing the likelihood of associating

detections belonging to the same trajectory as in Eq. 4.1. We calculate the association

score on all T frames of the sampled video clip simultaneously and globally. The

objective thus turns to

max
t+T∏
q=t+1

P (Mt
j,τjq

= 1|Qdet
t ,Qtraj

t ), (4.2)

where τ jq is the ground truth index of the detection to be associated with the j-th

trajectory on the q-th time step. By applying the objective to all trajectories, the

training loss is

Lasso = −
Mt+1∑
j=1

t+T∑
q=t+1

logP (Mt
j,τ jq

= 1|Qdet
t ,Qtraj

t ). (4.3)

On the other hand, trajectories can also be absent on some time steps because

of occlusion or target disappearance. Therefore, Eq. 4.3 has included the situation

of associating a trajectory with no detection, i.e. “empty”. The token for an empty

detection is an arbitrary negative sample. We also have a triplet loss to pull away

the feature distance between negative pairs compared to that between positive pairs:

Lfeat = max(0,
NP

min
u=1
||Att(f(Fpu), f(FO))− f(FO)||2−

||Att(f(FO), f(F bg
U ))− f(FO)||2 + α),

(4.4)

where f(·) is the shared layers to project CNN features and NP is the number of part

patches (NP = 4 in our default setting). Att(·, ·) is the operation of cross attention. α

is the margin to control the distance between positive and negative pairs. FO and Fpu

53



4. Multi-Object Tracking by Hierarchical Visual Representations

(1 ≤ u ≤ NP) are the semantic and compositional features. F bg
U is the features of the

background area in the union area U . We obtain the background features by setting

the pixels of O in the area of U to 0 and forward the masked union area into the

shared feature encoder f(·). We design Eq. 4.4 to encourage (1) the feature encoder

to pay more attention to the salient and distinct area on targets while less attention

to the background area and (2) the features of the background area in the union box

to be discriminative from the foreground object. Finally, the training objective is

L = Lasso + Lfeat + Ldet, (4.5)

where Ldet is an optional detection loss.

Inference. We realize online inference by traversing the video with a sliding window

of stride 1. On the first frame, each detection initializes a trajectory. By averaging

the detection-detection association score alongside a trajectory, we get the detection-

trajectory association scores, whose negative value serves as the entries in the cost

matrix for the association assignment. We adopt Hungarian matching to ensure

one-to-one mapping. Only when the association score is higher than β = 0.3, the pair

can be associated. All unassociated detections on the new-coming frames will start

new tracks.

4.4 Experiments

4.4.1 Experiment Setups

Datasets. We focus on pedestrian tracking in this paper as it is the most popular

scenario and a line of previous works is available for comparison of association

accuracy. On some other tracking datasets, such as TAO [82], tracking faces main

difficulties at the detection stage instead of association. This causes uncontrollable

noise to evaluate how discriminative the features are. For valid evaluation of visual

representation distinguishness, we select three datasets, i.e., MOT17 [256], MOT20 [87]

and DanceTrack [354]. DanceTrack has the largest data scale and provides an official

validation set. DanceTrack contains targets mostly in the foreground but with

heavy occlusion, complex motion patterns, and similar appearances. On DanceTrack,
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Table 4.1: Results on MOT17 and MOT20 test sets with the private detections (FP and FN
reported by ×104).

Tracker HOTA↑AssA↑MOTA↑IDF1↑ FP↓ FN↓ IDs↓

MOT-17 Test

FairMOT [485] 59.3 58.0 73.7 72.3 2.75 11.7 3,303
Semi-TCL [205] 59.8 59.4 73.3 73.2 2.29 12.5 2,790
CSTrack [208] 59.3 57.9 74.9 72.6 2.38 11.4 3,567
GRTU [394] 62.0 62.1 74.9 75.0 3.20 10.8 1,812
QDTrack [269] 53.9 52.7 68.7 66.3 2.66 14.7 3,378
MAA [347] 62.0 60.2 79.4 75.9 3.73 7.77 1,452
ReMOT [438] 59.7 57.1 77.0 72.0 3.32 9.36 2,853
PermaTr [375] 55.5 53.1 73.8 68.9 2.90 11.5 3,699
ByteTrack [483] 63.1 62.0 80.3 77.3 2.55 8.37 2,196
DST-Tracker [47] 60.1 62.1 75.2 72.3 2.42 11.0 2,729
UniCorn [434] 61.7 - 77.2 75.5 5.01 7.33 5,379
OC-SORT [46] 63.2 63.2 78.0 77.5 1.51 10.8 1,950
Deep OC-SORT [238] 64.9 65.9 79.4 80.6 1.66 9.88 1,023

MotionTrack [297] 65.1 65.1 81.1 80.1 2.38 8.17 1,140
SUSHI [53] 66.5 67.8 81.1 83.1 3.23 7.32 1,149
TransCt [430] 54.5 49.7 73.2 62.2 2.31 12.4 4,614
TransTrk [353] 54.1 47.9 75.2 63.5 5.02 8.64 3,603
MOTR [467] 57.2 55.8 71.9 68.4 2.11 13.6 2,115
TrackFormer [249] - - 65.0 63.9 7.44 12.4 3,528
GTR [502] 59.1 57.0 75.3 75.1 2.68 10.9 2,859
MeMOT [41] 56.9 55.2 72.5 69.0 3,72 11.5 2,724
CSC-Tracker 60.8 60.7 75.4 75.7 2,45 10,8 2,879

MOT-20 Test

FairMOT [485] 54.6 54.7 61.8 67.3 10.3 8.89 5,243
CSTrack [208] 54.0 54.0 66.6 68.6 2.54 14.4 3,196
GSDT [397] 53.6 52.7 67.1 67.5 3.19 13.5 3,131
RelationT [453] 56.5 55.8 67.2 70.5 6.11 10.5 4,243
MAA [347] 57.3 55.1 73.9 71.2 2.49 10.9 1,331
ByteTrack [483] 61.3 59.6 77.8 75.2 2.62 8.76 1,223
OC-SORT [46] 62.1 62.0 75.5 75.9 1.80 10.8 913
Deep OC-SORT [238] 63.9 65.7 75.6 79.2 1.69 10.8 779
MotionTrack [297] 62.8 61.8 78.0 76.5 2.86 8.42 1,165
TransCt [430] 43.5 37.0 58.5 49.6 6.42 14.6 4,695
TransTrk [353] 48.5 45.2 65.0 59.4 2.72 15.0 3,608
MeMOT [41] 54.1 55.0 63.7 66.1 4,79 13.8 1,938
CSC-Tracker 53.0 51.1 65.8 64.4 3.64 13.7 3,948

detection is not considered as the bottleneck and the model ability of appearance

discrimination becomes the key for tracking.

Evaluation Metrics. The CLEAR evaluation protocol [24] is popular for multi-

object tracking evaluation but is biased to single-frame association quality [226].

MOTA is the main metric of CLEAR [24] protocol. But it is also biased to the

detection quality. To provide a more accurate sense of association accuracy, we

emphasize the recent HOTA [226] metric set where the metric is calculated upon

the video-level association between ground truth and predictions (by default in the

form of bounding boxes). In the set of metrics, AssA emphasizes the association
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performance, and DetA stresses the detection quality. HOTA is the main metric

by considering both detection and association quality. For the result tables, we use

underlined numbers to indicate the overall best value and bold numbers for the best

query-based methods. All query-based methods are listed in blue .

Implementation. We use ResNet-50 [139] as the backbone network, which is

pretrained on Crowdhuman [333] dataset first. Though advanced detector [483] is

demonstrated as a key to boosting tracking performance, we want our contribution

to be more from the improvement of the association stage. Therefore, on MOT17,

we align the implementation with the practice of GTR [502] to use the classic

CenterNet [498, 500] as the detector to make a fair comparison. The CenterNet

detector is pretrained together with the backbone on Crowdhuman. For the fine-

tuning of association modules on MOT17, we use a 1:1 mixture of MOT17-train and

Crowdhuman. We fine-tune with only the MOT20-train for evaluation on MOT20. For

DanceTrack, we use its official training set as the only training set during finetuning.

The image size is set to be 1280 × 1280 during training. The image size is 1560 for

the longer edge during the test. During finetuning, the detector head is also finetuned.

The training iterations are set to be 20k on MOT17/MOT20 and 80k on DanceTrack.

We use BiFPN [364] for the feature upsampling. For the implementation of the

transformer, we use a stack of two layers of “Linear + ReLU” as the projection layers

and one-layer encoders and decoders. We use AdamW [223] optimizer for training

whose base learning rate is set to be 5e-5. The length of the video clip is T = 8 for

training and T = 24 for inference in a sliding window for a fair comparison with

GTR [502]. We use 4 × V100 GPUs as the default training device but we will see

that even using only one RTX 3090 GPU for training, our method still achieves

comparable performance. The training takes 4 hours on MOT17 or MOT20 and 11

hours on DanceTrack.

4.4.2 Benchmark Results

For benchmarking, we only report the performance of online tracking algorithms

as offline post-processing [93, 486] gives unfair advantages and blurs the discussion

about visual representation discriminativeness. We first benchmark on MOT17 and

MOT20 motdtin Table 4.1. On MOT17, CSC-Tracker achieves the highest HOTA and
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Table 4.2: Benchmarking results on DanceTrack test set.

Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

CenterTrack [500] 41.8 78.1 22.6 86.8 35.7
FairMOT [485] 39.7 66.7 23.8 82.2 40.8
QDTrack [269] 45.7 72.1 29.2 83.0 44.8
TraDes [415] 43.3 74.5 25.4 86.2 41.2
ByteTrack [483] 47.3 71.6 31.4 89.5 52.5
OC-SORT [46] 55.7 81.7 38.3 92.0 54.6
Deep OC-SORT [238] 61.3 82.2 45.8 92.3 61.5
DST-Tracker [47] 51.9 72.3 34.6 84.9 51.0
SUSHI [53] 63.3 80.1 50.1 88.7 63.4
TransTrk[353] 45.5 75.9 27.5 88.4 45.2
MOTR [467] 54.2 73.5 40.2 79.7 51.5
GTR [502] 48.0 72.5 31.9 84.7 50.3
CSC-Tracker (Ours) 55.5 77.3 43.1 89.5 54.0

AssA score among transformer-based methods. MOT20 is a more challenging dataset

with crowded pedestrian flows. Though CSC-Tracker shows better performance than

MeMOT [41] on MOT17, its performance is inferior on MOT20. This is probably

related to the long-time heavy and frequent occlusion on MOT20. To solve this

problem, the long temporal buffer of historical object appearance in MeMOT shows

effectiveness. However, MeMOT requires 8×A100 GPUs for training to support such

a long buffering (22 frames v.s. 8 frames by CSC-Tracker) and uses COCO [211]

dataset as the additional pretraining data, which makes it not an apple-to-apple

comparison.

We also benchmark on DanceTrack-test in Table 4.2. CSC-Tracker achieves

state-of-the-art performance among transformer-based methods. Also, CSC-Tracker

shows advanced time efficiency. For example, training on MOT17 takes MOTR [467]

2.5 days on 8×V100 GPUs while only 4 hours on 4×V100 GPUs for our proposed

method. The inference speed is 6.3FPS for MOTR while 21.3FPS for our method on

the same machine (V100 GPU). Compared to GTR [502], CSC-Tracker achieves a

more significant outperforming on DanceTrack than on MOT17. As other variables

and design choices are strictly controlled, it suggests our proposed visual hierarchy

representation is more powerful than the naive bounding box features when the

occlusion is heavier.

Given the aforementioned results, we have demonstrated CSC-Tracker to be the

state-of-the-art among transformer-based methods with a lightweight design. More

importantly, we show that the proposed hierarchical representation is more effective

and efficient in discriminatively distinguishing objects. CSC-Tracker builds a new
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Figure 4.3: Upper line: Results from DanceTrack-test set where targets have occlusion,
crossover and similar appearance. Bottom line: Results on a MOT20-test video where the
pedestrians are in the crowd and heavily occluded.

baseline for future research in this line of methods. The commonly adopted techniques

of query propagation and iteration [249, 353, 467], deformable attention [41, 353]

and long-time feature buffering [41] are all compatible to be integrated with CSC-

Tracker. Compared to the overall state-of-the-art methods, such as OC-SORT [46]

and SUSHI [53], CSC-Tracker still shows inferior performance. But their performance

is reported with a more advanced detector, i.e. YOLOX [110]. This makes a fair

comparison hard to present. But still, there is a performance gap between the SOTAs

and the transformer-based methods. For inference speed, given detections on MOT17,

OC-SORT runs at 300FPS and SUSHI runs at 21FPS while CSC-Tracker runs at

93FPS.

4.4.3 Ablation Study

We now ablate the contribution of key variables in the design and implementation to

the performance of CSC-Tracker. Many previous works in the multi-object tracking

community follow the practice of CenterTrack [500] on MOT17 [256] to use the

latter half of training video sequences as the validation set. However, this makes

the ablation study on the validation set not fair because the data distribution of the

training set and validation set is so close that the performance gap reflected on the

validation set might degrade or even disappear on the test set. Therefore, we turn to

DanceTrack [354] for the ablation study as an independent validation set is provided.
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Table 4.3: Ablation of video clip length for training.

T HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

6 51.0 70.7 33.4 81.4 51.4
8 51.9 71.4 34.0 81.9 52.2
10 52.4 71.7 34.5 81.8 51.4
12 52.6 71.9 34.7 82.0 51.7

Table 4.4: Ablation of video clip length for Inference.

T HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

8 50.2 70.7 32.9 81.1 51.2
16 51.6 71.2 33.6 81.5 51.7
24 51.9 71.4 34.0 81.9 52.2
32 51.7 71.2 33.9 82.0 51.9

For the following tables, we highlight our default implementation choice in yellow ,

which corresponds to the entries previously reported on benchmarks to compare with

other methods.

Table 4.5: The ablation study about the contribution from semantic, compositional, and
contextual features.

SemanticCompo. Context. HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

✓ 47.8 69.1 30.1 80.8 49.1
✓ ✓ 49.6 69.3 31.3 81.2 50.4
✓ ✓ 50.5 70.6 32.6 81.5 51.2
✓ ✓ ✓ 51.9 71.4 34.0 81.9 52.2

Table 4.6: Different implementation choices to fit multiple training device configurations.

Training Device Train len Image Size HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

1x RTX 3090-24GB 6 1280 × 1280 50.9 71.0 33.3 81.3 51.2
1x V100-32GB 8 1560 × 1560 51.2 71.7 33.7 82.0 52.0
4x V100-32GB 8 1280 × 1280 51.9 71.4 34.0 81.9 52.2

Video Length. Table 4.3 and 4.4 show the influence of video clip length in the

training and inference stages respectively. The result suggests that training the

association model with longer video clips can continuously improve performance.

Limited by the GPU memory, we cannot increase the video clip length to longer than

12 frames here. On the contrary, during the inference stage, the sliding window size

does not have a significant impact on the performance. Increasing the window size

beyond a plateau will even hurt the performance.

Three levels in CSC-hierarchy. We study the contribution of each level of the
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Table 4.7: Ablation of detector models.

Detector HOTA↑DetA↑AssA↑MOTA↑IDF1↑

CenterNet 51.9 71.4 34.0 81.9 52.2
YOLOv4 [8] 52.6 73.8 34.5 84.0 53.4
YOLOX [110] 53.5 74.7 35.1 85.1 54.7

Table 4.8: Ablation about feature fusion strategies.

Method HOTA↑DetA↑AssA↑MOTA↑IDF1↑

Bbox only 47.8 69.1 30.1 80.8 49.1
Multi-Region
CNN[115]

47.4 69.5 29.5 80.8 48.6

CSC-Attention 51.9 71.4 34.0 81.9 52.2

CSC hierarchy in Table 4.5. Here, only the semantic information is necessary for the

evaluation with bounding box-based ground truth annotations and we can manipulate

the other two levels in the CSC-hierarchy by not adding the corresponding feature

in the generation of the CSC-Tokens. Here we note that adding the compositional

and contextual features only brings subtle computation overhead as the required self-

attention and cross-attention operation are highly in parallel. Compared to only using

the semantic feature, CSC-Tracker achieves a significant performance improvement

indicated by higher HOTA and AssA scores. Also, integrating the features of the

union area shows better effectiveness than solely integrating the features of body parts.

This is probably because the cross attention between object body and union areas

can provide critical information to compare object targets with their neighboring

objects, preventing potential mismatch. On the other hand, integrating the body

part features can’t explicitly avoid the mismatch with other instances. Fusing the

features from all the levels turns out the best choice.

Input size. We try different parameter configurations in Table 4.6 for the input

clip length and image size. With only a single RTX 3090 GPU for training and

inference, its performance is still comparable to the default setting with 4 × V100

GPUs. This makes the notorious computation barrier of transformer-based methods

not that terrible anymore.

Detector. The highest priority for experiments is to validate the effectiveness of our

proposed representations instead of racing on the leaderboard. For a fair comparison

with the closest baseline GTR [502], we follow it to choose CenterNet [498] as the

default detector. But CSC-Tracker is a tracking-by-detection method, flexible to
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integrate with different detectors. We compare CenterNet with the other detectors,

i.e., YOLOv4 [8] and YOLOX [110] (used by ByteTrack, OC-SORT, SUSHI, etc.) in

Table 4.7. Advanced detectors can boost tracking performance.

Fusion strategy of hierarchical features. As a main contribution of this paper,

we propose CSC-Attention module to fuse the features from the CSC-hierarchy. In a

naive fashion, the multi-region CNN applies a split-and-concatenate strategy to fuse

the features from different bins inside a bounding box. We conduct a comparison

with the multi-region CNN [115] in Table 4.8. Though multi-region CNN achieves

improvement over the naive bounding box representation for object detection, this

advantage is not observed anymore for multi-object tracking. Its performance gap

with the features fused by CSC-Attention is even more significant than solely using the

bounding box. This experiment suggests the effectiveness of the proposed three-level

hierarchy and fusing them with the proposed CSC-Attention module.

4.4.4 Robustness to Detection Noise

With the enforcement of the part region (compositional) features, we expect CSC-

Tracker to show better robustness to the noise in detections. The intuition is that

even if the bounding box is not accurate, as long as a distinct part is recognized, the

model should be able to track an object consistently. To validate it, we add noise to

the detection positions and observe its influence on the tracking performance. We

apply random shifting and random resizing to add noise. For random shifting, we have

a 25% chance to shift the bounding box to the four directions independently, the shift

stride is a random value in the range of [0,min(0.2d, 20)], where d is the bounding

box width or height. We resize the bounding box width or height independently with

a ratio of αw and αh, both of which are random values in the range of [0.9, 1.1]. The

results on Dancetrack-val are shown in Table 4.9. Compared to the motion-based

baseline OC-SORT and the full-box-only baseline GTR, CSC-Tracker shows better

robustness to the noise of detections as expected.

4.4.5 Time Efficiency

Time efficiency is a bottleneck of query-based methods, especially for those using

graph network [74], long-history buffers [41] or temporal aggregation [467]. Collecting
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Table 4.9: Effect of detection noise (* indicates adding noise).

Method HOTA↑ AssA↑ IDF1↑

OC-SORT [46] 52.1 35.3 51.6
OC-SORT* 49.5 (↓ 2.6) 31.3 (↓ 4.0) 48.5 (↓ 3.1)
GTR [502] 47.2 28.2 47.0
GTR* 45.0 (↓ 2.2) 26.7 (↓ 1.5) 45.6 (↓ 1.4)
CSC-Tracker 51.9 34.0 52.2
CSC-Tracker* 50.8 (↓ 1.1) 33.2 (↓ 0.8) 51.5 (↓ 0.7)

Table 4.10: Time efficiency (MOT17-test).

Method HOTA training time inference speed

Transtrack [353] 54.1 18 hrs 10FPS
Trackformer [249] - - 7.4FPS
MOTR [467] 57.2 63 hrs 6.5FPS
TransCenter [430] 54.5 - 11FPS
GTR [502] 59.1 4 hrs 22.4FPS
CSC-Tracker 60.8 4 hrs 21.3FPS

the methods that report the time efficiency or have open-sourced implementation,

we report the required training time and inference speed in Table 4.10 by default

settings on MOT17. The speed is tested on Nvidia V100 GPU and the training time

is evaluated on 4xV100 GPUs. CSC-Tracker achieves the best accuracy with one of

the best time efficiency for both training time and the inference speed.

4.5 Conclusion

In this paper, we propose to construct discriminative visual representations by a

compositional-semantic-contextual visual hierarchy combining different visual cues to

distinguish a target. To leverage them comprehensively, we propose a CSC-Attention

to gather and fuse the visual features. These are the two main contributions of this

paper. We have demonstrated that they are connected to show power. The designs

are integrated into CSC-Tracker for multi-object tracking. The results on multiple

datasets demonstrate its efficiency and effectiveness. We hope the study of this paper

can provide new knowledge in the visual representation of objects and an advanced

baseline model to solve multi-object tracking problems. The method is also more

robust to the detection noises and computation-economic.
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Chapter 5

Parametric Linear Filtering for

Multi-Human Tracking in Crowds

5.1 Introduction

We aim to develop a motion model-based multi-object tracking (MOT) method that

is robust to occlusion and non-linear motion. Most existing motion model-based

algorithms assume that the tracking targets have a constant velocity within a time

interval, which is called the linear motion assumption. This assumption breaks in

many practical scenarios, but it still works because when the time interval is small

enough, the object’s motion can be reasonably approximated as linear. In this work,

we are motivated by the fact that most of the errors from motion model-based tracking

methods occur when occlusion and non-linear motion happen together. To mitigate

the adverse effects caused, we first rethink current motion models and recognize some

limitations. Then, we propose addressing them for more robust tracking performance,

especially in occlusion.

As the main branch of motion model-based tracking, filtering-based methods

assume a transition function to predict the state of objects on future time steps,

which are called state “estimations”. Besides estimations, they leverage an observation

model, such as an object detector, to derive the state measurements of target objects,

also called “observations”. Observations usually serve as auxiliary information to

help update the posteriori parameters of the filter. The trajectories are still extended
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(a) SORT (b) The proposed OC-SORT

Figure 5.1: Samples from the results on DanceTrack [354]. SORT and OC-SORT use
the same detection results. On the third frame, SORT encounters an ID switch for
the backflip target while ours not.

by the state estimations. Among this line of work, the most widely used one is

SORT [27], which uses a Kalman filter (KF) to estimate object states and a linear

motion function as the transition function between time steps. However, SORT

shows insufficient tracking robustness when the object motion is non-linear, and no

observations are available when updating the filter posteriori parameters.

In this work, we recognize three limitations of SORT. First, although the high

frame rate is the key to approximating the object motion as linear, it also amplifies the

model’s sensitivity to the noise of state estimations. Specifically, between consecutive

frames of a high frame-rate video, we demonstrate that the noise of displacement of

the object can be of the same magnitude as the actual object displacement, leading

to the estimated object velocity by KF suffering from a significant variance. Also,

the noise in the velocity estimate will accumulate into the position estimate by the

transition process. Second, the noise of state estimations by KF is accumulated along

the time when there is no observation available in the update stage of KF. We show

that the error accumulates very fast with respect to the time of the target object’s

being untracked. The noise’s influence on the velocity direction often makes the

track lost again even after re-association. Last, given the development of modern

detectors, the object state by detections usually has lower variance than the state

estimations propagated along time steps by a fixed transition function in filters.

However, SORT is designed to prolong the object trajectories by state estimations

instead of observations.

To relieve the negative effect of these limitations, we propose two main innovations

in this work. First, we design a module to use object state observations to reduce the
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accumulated error during the track’s being lost in a backcheck fashion. To be precise,

besides the traditional stages of predict and update, we add a stage of re-update to

correct the accumulated error. The re-update is triggered when a track is re-activated

by associating to an observation after a period of being untracked. The re-update uses

virtual observations on the historical time steps to prevent error accumulation. The

virtual observations come from a trajectory generated using the last-seen observation

before untracked and the latest observation re-activating this track as anchors. We

name it Observation-centric Re-Update (ORU).

Besides ORU, the assumption of linear motion provides the consistency of the

object motion direction. But this cue is hard to be used in SORT’s association because

of the heavy noise in direction estimation. But we propose an observation-centric

manner to incorporate the direction consistency of tracks in the cost matrix for the

association. We name it Observation-Centric Momentum (OCM). We also provide

analytical justification for the noise of velocity direction estimation in practice.

The proposed method, named as Observation-Centric SORT or OC-SORT in

short, remains simple, online, real-time and significantly improves robustness over

occlusion and non-linear motion. Our contributions are summarized as the following:

1. We recognize, analytically and empirically, three limitations of SORT, i.e.,sensitivity

to the noise of state estimations, error accumulation over time, and being

estimation-centric;

2. We propose OC-SORT for tracking under occlusion and non-linear motion by

fixing SORT’s limitations. It achieves state-of-the-art performance on multiple

datasets in an online and real-time fashion.

5.2 Related Works

Motion Models.. Many modern MOT algorithms [27, 69, 409, 483, 500] use motion

models. Typically, these motion models use Bayesian estimation [195] to predict the

next state by maximizing a posterior estimation. As one of the most classic motion

models, Kalman filter (KF) [172] is a recursive Bayes filter that follows a typical

predict-update cycle. The true state is assumed to be an unobserved Markov process,

and the measurements are observations from a hidden Markov model [298]. Given
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that the linear motion assumption limits KF, follow-up works like Extended KF [342]

and Unscented KF [169] were proposed to handle non-linear motion with first-order

and third-order Taylor approximation. However, they still rely on approximating the

Gaussian prior assumed by KF and require motion pattern assumption. On the other

hand, particle filters [128] solve the non-linear motion by sampling-based posterior

estimation but require exponential order of computation. Therefore, these variants of

Kalman filter and particle filters are rarely adopted in the visual multi-object tracking

and the mostly adopted motion model is still based on Kalman filter [27].

Multi-object Tracking.. As a classic computer vision task, visual multi-object track-

ing is traditionally approached from probabilistic perspectives, e.g.,joint probabilistic

association [16]. And modern video object tracking is usually built upon modern

object detectors [308, 313, 498]. SORT [27] adopts the Kalman filter for motion-

based multi-object tracking given observations from deep detectors. DeepSORT [409]

further introduces deep visual features [140, 340] into object association under the

framework of SORT. Re-identification-based object association[269, 409, 485] has

also become popular since then but falls short when scenes are crowded and objects

are represented coarsely (e.g.,enclosed by bounding boxes), or object appearance

is not distinguishable. More recently, transformers [380] have been introduced to

MOT [47, 249, 352, 465] to learn deep representations from both visual information

and object trajectories. However, their performance still has a significant gap between

state-of-the-art tracking-by-detection methods in terms of both accuracy and time

efficiency.

5.3 Rethink the Limitations of SORT

In this section, we review Kalman filter and SORT [27]. We recognize some of their

limitations, which are significant with occlusion and non-linear object motion.

We are motivated to improve tracking robustness by fixing them.

5.3.1 Preliminaries

Kalman filter (KF) [172] is a linear estimator for dynamical systems discretized

in the time domain. KF only requires the state estimations on the previous time
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step and the current measurement to estimate the target state on the next time step.

The filter maintains two variables, the posteriori state estimate x, and the posteriori

estimate covariance matrix P. In the task of object tracking, we describe the KF

process with the state transition model F, the observation model H, the process noise

Q, and the observation noise R. At each step t, given observations zt, KF works in

an alternation of predict and update stages:

predict

{
x̂t|t−1 = Ftx̂t−1|t−1

Pt|t−1 = FtPt−1|t−1F
⊤
t +Qt

,

update


Kt = Pt|t−1H

⊤
t (HtPt|t−1H

⊤
t +Rt)

−1

x̂t|t = x̂t|t−1 +Kt(zt −Htx̂t|t−1)

Pt|t = (I−KtHt)Pt|t−1

.

(5.1)

The stage of predict is to derive the state estimations on the next time step t.

Given a measurement of target states on the next step t, the stage of update aims to

update the posteriori parameters in KF. Because the measurement comes from the

observation model H, it is also called “observation” in many scenarios.

SORT [27] is a multi-object tracker built upon KF. The KF’s state x in SORT is

defined as x = [u, v, s, r, u̇, v̇, ṡ]⊤, where (u, v) is the 2D coordinates of the object

center in the image. s is the bounding box scale (area) and r is the bounding box

aspect ratio. The aspect ratio r is assumed to be constant. The other three variables,

u̇, v̇ and ṡ are the corresponding time derivatives. The observation is a bounding

box z = [u, v, w, h, c]⊤ with object center position (u, v), object width w, and height

h and the detection confidence c respectively. SORT assumes linear motion as the

transition model F which leads to the state estimation as

ut+1 = ut + u̇t∆t, vt+1 = vt + v̇t∆t. (5.2)

To leverage KF (Eq 5.1) in SORT for visual MOT, the stage of predict corresponds

to estimating the object position on the next video frame. And the observations used

for the update stage usually come from a detection model. The update stage is to

update Kalman filter parameters and does not directly edit the tracking outcomes.

When the time difference between two steps is constant during the transition,
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Figure 5.2: The pipeline of our proposed OC-SORT. The red boxes are detections,
orange boxes are active tracks, blue boxes are untracked tracks, and dashed boxes
are the estimates from KF. During association, OCM is used to add the velocity
consistency cost. The target #1 is lost on the frame t+1 because of occlusion. But
on the next frame, it is recovered by referring to its observation of the frame t by
OCR. It being re-tracked triggers ORU from t to t+2 for the parameters of its KF.

e.g.,, the video frame rate is constant, we can set ∆t = 1. When the video frame

rate is high, SORT works well even when the object motion is non-linear globally,

(e.g.,dancing, fencing, wrestling) because the motion of the target object can be well

approximated as linear within short time intervals. However, in practice, observations

are often absent on some time steps, e.g.,the target object is occluded in multi-object

tracking. In such cases, we cannot update the KF parameters by the update operation

as in Eq. 5.1 anymore. SORT uses the priori estimations directly as posterior. We

call this “dummy update”, namely

x̂t|t = x̂t|t−1,Pt|t = Pt|t−1. (5.3)

The philosophy behind such a design is to trust estimations when no observations

are available to supervise them. We thus call the tracking algorithms following

this scheme “estimation-centric”. However, we will see that this estimation-centric

mechanism can cause trouble when non-linear motion and occlusion happen together.
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5.3.2 Limitations of SORT

In this section, we identify three main limitations of SORT which are connected. This

analysis lays the foundation of our proposed method.

Sensitive to State Noise

Now we show that SORT is sensitive to the noise from KF’s state estimations. To

begin with, we assume that the estimated object center position follows u ∼ N (µu, σ
2
u)

and v ∼ N (µv, σ
2
v), where (µu, µv) is the underlying true position. Then, if we assume

that the state noises are independent on different steps, by Eq.5.2, the object speed

between two time steps, t −→ t+∆t, is

u̇ =
ut+∆t − ut

∆t
, v̇ =

vt+∆t − vt
∆t

, (5.4)

making the noise of estimated speed δu̇ ∼ N (0, 2σ2
u

(∆t)2
), δv̇ ∼ N (0, 2σ2

v

(∆t)2
). Therefore,

a small ∆t will amplify the noise. This suggests that SORT will suffer from the

heavy noise of velocity estimation on high-frame-rate videos. The analysis above is

simplified from the reality. In pratice, velocity won’t be determined by the state on

future time steps. For a more strict analysis, please refer to 5.7.9.

Moreover, for most multi-object tracking scenarios, the target object displacement

is only a few pixels between consecutive frames. For instance, the average displacement

is 1.93 pixels and 0.65 pixels along the image width and height for the MOT17 [256]

training dataset. In such a case, even if the estimated position has a shift of only a

single pixel, it causes a significant variation in the estimated speed. In general, the

variance of the speed estimation can be of the same magnitude as the speed itself or

even greater. This will not make a massive impact as the shift is only of few pixels

from the ground truth on the next time step and the observations, whose variance is

independent of the time, will be able to fix the noise when updating the posteriori

parameters. However, we find that such a high sensitivity to state noise introduces

significant problems in practice after being amplified by the error accumulation across

multiple time steps when no observation is available for KF update.
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Temporal Error Magnification

For analysis above in Eq. 5.4, we assume the noise of the object state is i.i.d on

different time steps (this is a simplified version, a more detailed analysis is provided

in 5.7.9). This is reasonable for object detections but not for the estimations from KF.

This is because KF’s estimations always rely on its estimations on previous time steps.

The effect is usually minor because KF can use observation in update to prevent the

posteriori state estimation and covariance, i.e.,x̂t|t and Pt|t, deviating from the true

value too far away. However, when no observations are provided to KF, it cannot use

observation to update its parameters. Then it has to follow Eq. 5.3 to prolong the

estimated trajectory to the next time step. Consider a track is occluded on the time

steps between t and t+ T and the noise of speed estimate follows δu̇t ∼ N (0, 2σ2
u),

δv̇t ∼ N (0, 2σ2
v) for SORT. On the step t+ T , state estimation would be

ut+T = ut + T u̇t, vt+T = vt + T v̇t, (5.5)

whose noise follows δut+T
∼ N (0, 2T 2σ2

u) and δvt+T
∼ N (0, 2T 2σ2

v). So without the

observations, the estimation from the linear motion assumption of KF results in

a fast error accumulation with respect to time. Given σv and σu is of the same

magnitude as object displacement between consecutive frames, the noise of final

object position (ut+T , vt+T ) is of the same magnitude as the object size. For instance,

the size of pedestrians close to the camera on MOT17 is around 50× 300 pixels. So

even assuming the variance of position estimation is only 1 pixel, 10-frame occlusion

can accumulate a shift in final position estimation as large as the object size. Such

error magnification leads to a major accumulation of errors when the scenes are

crowded.

Estimation-Centric

The aforementioned limitations come from a fundamental property of SORT that

it follows KF to be estimation-centric. It allows update without the existence of

observations and purely trusts the estimations. A key difference between state

estimations and observations is that we can assume that the observations by an object

detector in each frame are affected by i.i.d. noise δz ∼ N (0, σ′2) while the noise in
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Figure 5.3: Example of how Observation-centric Re-Update (ORU) reduces the error
accumulation when a track is broken. The target is occluded between the second and
the third time step and the tracker finds it back at the third step. Yellow boxes are
the state observations by the detector. White stars are the estimated centers without
ORU. Yellow stars are the estimated centers fixed by ORU. The gray star on the
fourth step is the estimated center without ORU and fails to match observations.

state estimations can be accumulated along the hidden Markov process. Moreover,

modern object detectors use powerful object visual features [313, 340]. It makes that,

even on a single frame, it is usually safe to assume σ′ < σu and σ′ < σv because the

object localization is more accurate by detection than from the state estimations

through linear motion assumption. Combined with the previously mentioned two

limitations, being estimation-centric makes SORT suffer from heavy noise when there

is occlusion and the object motion is not perfectly linear.

5.4 Observation-Centric SORT

In this section, we introduce the proposed Observation-Centric SORT (OC-SORT). To

address the limitations of SORT discussed above, we use the momentum of the object

moving into the association stage and develop a pipeline with less noise and more

robustness over occlusion and non-linear motion. The key is to design the tracker

as observation-centric instead of estimation-centric. If a track is recovered

from being untracked, we use an Observation-centric Re-Update (ORU) strategy to

counter the accumulated error during the untracked period. OC-SORT also adds an

Observation-Centric Momentum (OCM) term in the association cost. Please refer to

Algorithm 1 for the pseudo-code of OC-SORT. The pipeline is shown in Fig. 5.2.
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5.4.1 Observation-centric Re-Update (ORU)

In practice, even if an object can be associated again by SORT after a period of

being untracked, it is probably lost again because its KF parameters have already

deviated far away from the correct due to the temporal error magnification. To

alleviate this problem, we propose Observation-centric Re-Update (ORU) to reduce

the accumulated error. Once a track is associated with an observation again after a

period of being untracked (“re-activation”), we backcheck the period of its being lost

and re-update the parameters of KF. The re-update is based on “observations” from

a virtual trajectory. The virtual trajectory is generated referring to the observations

on the steps starting and ending the untracked period. For example, by denoting the

last-seen observation before being untracked as zt1 and the observation triggering the

re-association as zt2 , the virtual trajectory is denoted as

z̃t = Trajvirtual(zt1 , zt2 , t), t1 < t < t2. (5.6)

Then, along the trajectory of z̃t(t1 < t < t2), we run the loop of predict and

re-update. The re-update operation is

re-update


Kt = Pt|t−1H

⊤
t (HtPt|t−1H

⊤
t +Rt)

−1

x̂t|t = x̂t|t−1 +Kt(z̃t −Htx̂t|t−1)

Pt|t = (I−KtHt)Pt|t−1

(5.7)

As the observations on the virtual trajectory match the motion pattern anchored

by the last-seen and the latest association real observations, the update will not

suffer from the error accumulated through the dummy update anymore. We call the

proposed process Observation-centric Re-Update. It serves as an independent stage

outside the predict-update loop and is triggered only a track is re-activated from a

period of having no observations.

5.4.2 Observation-Centric Momentum (OCM)

In a reasonably short time interval, we can approximate the motion as linear. And

the linear motion assumption also asks for consistent motion direction. But the
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∆𝜃

Figure 5.4: Calculation of motion direction difference in OCM. The green line indicates
an existing track and the dots are the observations on it. The red dots are the new
observations to be associated. The blue link and the yellow link form the directions of
θtrack and θintention respectively. The included angle is the difference of direction ∆θ.

noise prevents us from leveraging the consistency of direction. To be precise, to

determine the motion direction, we need the object state on two steps with a time

difference ∆t. If ∆t is small, the velocity noise would be significant because of the

estimation’s sensitivity to state noise. If ∆t is big, the noise of direction estimation

can also be significant because of the temporal error magnification and the failure

of linear motion assumption. As state observations have no problem of temporal

error magnification that state estimations suffer from, we propose to use observations

instead of estimations to reduce the noise of motion direction calculation and introduce

the term of its consistency to help the association.

With the new term, given N existing tracks and M detections on the new-coming

time step, the association cost matrix is formulated as

C(X̂,Z) = CIoU(X̂,Z) + λCv(Z,Z), (5.8)

where X̂ ∈ RN×7 is the set of object state estimations and Z ∈ RM×5 is the set of

observations on the new time step. λ is a weighting factor. Z contains the trajectory

of observations of all existing tracks. CIoU(·, ·) calculates the negative pairwise IoU

(Intersection over Union) and Cv(·, ·) calculates the consistency between the directions

of i) linking two observations on an existing track (θtrack) and ii) linking a track’s

historical observation and a new observation (θintention). Cv contains all pairs of

∆θ = |θtrack − θintention|. In our implementation, we calculate the motion direction in

radians, namely θ = arctan( v1−v2
u1−u2 ) where (u1, v1) and (u2, v2) are the observations on
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two different time steps. The calculation of this is also illustrated in Figure 5.4.

Following the assumptions of noise distribution mentioned before, we can derive

a closed-form probability density function of the distribution of the noise in the

direction estimation. The derivation is explained in detail in 5.7.1. By analyzing

the property of this distribution, we reach a conclusion that, under the linear-motion

model, the scale of the noise of direction estimation is negatively correlated to the

time difference between the two observation points, i.e.,∆t. This suggests increasing

∆t to achieve a low-noisy estimation of θ. However, the assumption of linear motion

typically holds only when ∆t is small enough. Therefore, the choice of ∆t requires a

trade-off.

Besides ORU and OCM, we also find it empirically helpful to check a track’s last

presence to recover it from being lost. We thus apply a heuristic Observation-Centric

Recovery (OCR) technique. OCR will start a second attempt of associating between

the last observation of unmatched tracks to the unmatched observations after the

usual association stage. It can handle the case of an object stopping or being occluded

for a short time interval.

5.5 Experiments

5.5.1 Experimental Setup

Datasets. We evaluate our method on multiple multi-object tracking datasets

including MOT17 [256], MOT20 [87], KITTI [112], DanceTrack [354] and CroHD [357].

MOT17 [256] and MOT20 [87] are for pedestrian tracking, where targets mostly move

linearly, while scenes in MOT20 are more crowded. KITTI [112] is for pedestrian and

car tracking with a relatively low frame rate of 10FPS. CroHD is a dataset for head

tracking in the crowd and the results on it are included in 5.7. DanceTrack [354] is a

recently proposed dataset for human tracking. For the data in DanceTrack, object

localization is easy, but the object motion is highly non-linear. Furthermore, the

objects have a close appearance, severe occlusion, and frequent crossovers. Considering

our goal is to improve tracking robustness under occlusion and non-linear object

motion, we would emphasize the comparison on DanceTrack.

Implementations. For a fair comparison, we directly apply the object detections
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Table 5.1: Results on MOT17-test with the private detections. ByteTrack and OC-
SORT share detections.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

FairMOT [485] 59.3 73.7 72.3 2.75 11.7 3,303 8,073 58.0 63.6
TransCt [430] 54.5 73.2 62.2 2.31 12.4 4,614 9,519 49.7 54.2
TransTrk [352] 54.1 75.2 63.5 5.02 8.64 3,603 4,872 47.9 57.1
GRTU [394] 62.0 74.9 75.0 3.20 10.8 1,812 1,824 62.1 65.8
QDTrack [269] 53.9 68.7 66.3 2.66 14.7 3,378 8,091 52.7 57.2
MOTR [465] 57.2 71.9 68.4 2.11 13.6 2,115 3,897 55.8 59.2
PermaTr [375] 55.5 73.8 68.9 2.90 11.5 3,699 6,132 53.1 59.8
TransMOT [74] 61.7 76.7 75.1 3.62 9.32 2,346 7,719 59.9 66.5
GTR [503] 59.1 75.3 71.5 2.68 11.0 2,859 - 61.6 -
DST-Tracker [47] 60.1 75.2 72.3 2.42 11.0 2,729 - 62.1 -
MeMOT [40] 56.9 72.5 69.0 2.72 11.5 2,724 - 55.2 -
UniCorn [435] 61.7 77.2 75.5 5.01 7.33 5,379 - - -
ByteTrack [483] 63.1 80.3 77.3 2.55 8.37 2,196 2,277 62.0 68.2
OC-SORT 63.2 78.0 77.5 1.51 10.8 1,950 2,040 63.2 67.5

Table 5.2: Results on MOT20-test with private detections. ByteTrack and OC-SORT
share detections.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

FairMOT [485] 54.6 61.8 67.3 10.3 8.89 5,243 7,874 54.7 60.7
TransCt [430] 43.5 58.5 49.6 6.42 14.6 4,695 9,581 37.0 45.1
Semi-TCL [205] 55.3 65.2 70.1 6.12 11.5 4,139 8,508 56.3 60.9
CSTrack [208] 54.0 66.6 68.6 2.54 14.4 3,196 7,632 54.0 57.6
GSDT [397] 53.6 67.1 67.5 3.19 13.5 3,131 9,875 52.7 58.5
TransMOT [74] 61.9 77.5 75.2 3.42 8.08 1,615 2,421 60.1 66.3
MeMOT [40] 54.1 63.7 66.1 4.79 13.8 1,938 - 55.0 -
ByteTrack [483] 61.3 77.8 75.2 2.62 8.76 1,223 1,460 59.6 66.2
OC-SORT 62.1 75.5 75.9 1.80 10.8 913 1,198 62.0 67.5

Table 5.3: Results on DanceTrack test set. Methods in the blue block share the same
detections.

Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

CenterTrack [500] 41.8 78.1 22.6 86.8 35.7
FairMOT [485] 39.7 66.7 23.8 82.2 40.8
QDTrack [269] 45.7 72.1 29.2 83.0 44.8
TransTrk[352] 45.5 75.9 27.5 88.4 45.2
TraDes [415] 43.3 74.5 25.4 86.2 41.2
MOTR [465] 54.2 73.5 40.2 79.7 51.5
GTR [503] 48.0 72.5 31.9 84.7 50.3
DST-Tracker [47] 51.9 72.3 34.6 84.9 51.0
SORT [27] 47.9 72.0 31.2 91.8 50.8
DeepSORT [409] 45.6 71.0 29.7 87.8 47.9
ByteTrack [483] 47.3 71.6 31.4 89.5 52.5
OC-SORT 54.6 80.4 40.2 89.6 54.6
OC-SORT + Linear Interp 55.1 80.4 40.4 92.2 54.9
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Table 5.4: Results on KITTI-test. Our method uses the same detections as Per-
maTr [375]

Car Pedestrian

Tracker HOTA↑ MOTA↑ AssA↑ IDs↓ Frag↓ HOTA↑ MOTA↑ AssA↑ IDs↓ Frag↓

IMMDP [418] 68.66 82.75 69.76 211 181 - - - - -
SMAT [118] 71.88 83.64 72.13 198 294 - - - - -
TrackMPNN [306] 72.30 87.33 70.63 481 237 39.40 52.10 35.45 626 669
MPNTrack [35] - - - - - 45.26 46.23 47.28 397 1,078
CenterTr [500] 73.02 88.83 71.18 254 227 40.35 53.84 36.93 425 618
LGM [388] 73.14 87.60 72.31 448 164 - - - - -
TuSimple [69] 71.55 86.31 71.11 292 218 45.88 57.61 47.62 246 651
PermaTr [375] 77.42 90.85 77.66 275 271 47.43 65.05 43.66 483 703
OC-SORT 74.64 87.81 74.52 257 318 52.95 62.00 57.81 181 598
OC-SORT + HP 76.54 90.28 76.39 250 280 54.69 65.14 59.08 184 609

from existing baselines. For MOT17, MOT20, and DanceTrack, we use the publicly

available YOLOX [110] detector weights by ByteTrack [483]. For KITTI [112], we use

the detections from PermaTrack [375] publicly available in the official release1. For

ORU, we generate the virtual trajectory during occlusion with the constant-velocity

assumption. Therefore, Eq. 5.6 is adopted as z̃t = zt1 +
t−t1
t2−t1 (zt2 − zt1), t1 < t < t2.

For OCM, the velocity direction is calculated using the observations three time steps

apart, i.e.,∆t = 3. The direction difference is measured by the absolute difference

of angles in radians. We set λ = 0.2 in Eq. 5.8. Following the common practice of

SORT, we set the detection confidence threshold at 0.4 for MOT20 and 0.6 for other

datasets. The IoU threshold during association is 0.3.

Metrics. We adopt HOTA [226] as the main metric as it maintains a better balance

between the accuracy of object detection and association [226]. We also emphasize

AssA to evaluate the association performance. IDF1 is also used for association

performance evaluation. Other metrics we report, such as MOTA, are highly related

to detection performance. It is fair to use these metrics only when all methods use

the same detections for tracking, which is referred to as “public tracking” as reported

in 5.7.5.

1https://github.com/TRI-ML/permatrack/
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5.5.2 Benchmark Results

Here we report the benchmark results on multiple datasets. We put all methods that

use the shared detection results in a block at the bottom of each table.

Table 5.5: Ablation on MOT17-val and DanceTrack-val.

MOT17-val DanceTrack-val

ORU OCMOCR HOTA↑AssA↑ IDF1↑ HOTA↑AssA↑ IDF1↑

64.9 66.8 76.9 47.8 31.0 48.3
✓ 66.3 68.0 77.2 48.5 32.2 49.8
✓ ✓ 66.4 69.0 77.8 52.1 35.0 50.6
✓ ✓ ✓ 66.5 68.9 77.7 52.1 35.3 51.6

Table 5.6: Ablation on the trajectory hypothesis in ORU.

MOT17-val DanceTrack-val

HOTA↑AssA↑ IDF1↑ HOTA↑AssA↑ IDF1↑

Const. Speed 66.5 68.9 77.7 52.1 35.3 51.6
GPR 63.1 65.2 75.7 49.5 33.7 49.6
Linear Regres-
sion

64.3 66.5 76.0 49.3 33.4 49.2

Const. Acceler-
ation

66.2 67.9 77.4 51.3 34.8 50.9

Table 5.7: Influence from the value of ∆t in OCM.

MOT17-val DanceTrack-val

HOTA↑AssA↑ IDF1↑ HOTA↑AssA↑ IDF1↑

∆t = 1 66.1 67.5 76.9 51.3 34.3 51.3
∆t = 2 66.3 68.0 77.3 52.2 35.4 51.4
∆t = 3 66.5 68.9 77.7 52.1 35.3 51.6
∆t = 6 66.0 67.5 76.9 52.1 35.4 51.8

MOT17 and MOT20. We report OC-SORT’s performance on MOT17 and MOT20

in Table 5.1 and Table 5.2 using private detections. To make a fair comparison, we use

the same detection as ByteTrack [483]. OC-SORT achieves performance comparable

to other state-of-the-art methods. Our gains are especially significant in MOT20 under

severe pedestrian occlusion, setting a state-of-the-art HOTA of 62.1. As our method

is designed to be simple for better generalization, we do not use adaptive detection

thresholds as in ByteTrack. Also, ByteTrack uses more detections of low-confidence to
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achieve higher MOTA scores but we keep the detection confidence threshold the same

as on other datasets, which is the common practice in the community. We inherit the

linear interpolation on the two datasets as baseline methods for a fair comparison. To

more clearly discard the variance from the detector, we also perform public tracking

on MOT17 and MOT20, which is reported in Table 5.12 and Table 5.13 I 5.7.5.

OC-SORT still outperforms the existing state-of-the-art in public tracking settings.

DanceTrack. To evaluate OC-SORT under challenging non-linear object motion, we

report results on the DanceTrack in Table 5.3. OC-SORT sets a new state-of-the-art,

outperforming the baselines by a great margin under non-linear object motions. We

compare the tracking results of SORT and OC-SORT under extreme non-linear

situations in Fig.5.1 and more samples are available in Fig. 5.8 in 5.7.7. We also

visualize the output trajectories by OC-SORT and SORT on randomly selected

DanceTrack video clips in Fig. 5.9 in 5.7.7. For multi-object tracking in occlusion and

non-linear motion, the results on DanceTrack are strong evidence of the effectiveness

of OC-SORT.

KITTI. In Table 5.4 we report the results on the KITTI dataset. For a fair comparison,

we adopt the detector weights by PermaTr [375] and report its performance in the

table as well. Then, we run OC-SORT given the shared detections. As initializing

SORT’s track requires continuous tracking across several frames (“minimum hits”),

we observe that the results not recorded during the track initialization make a

significant difference. To address this problem, we perform offline head padding

(HP) post-processing by writing these entries back after finishing the online tracking

stage. The results of the car category on KITTI show an essential shortcoming of

the default implementation version of OC-SORT that it chooses the IoU matching

for the association. When the object velocity is high or the frame rate is low, the

IoU of object bounding boxes between consecutive frames can be very low or even

zero. This issue does not come from the intrinsic design of OC-SORT and is widely

observed when using IoU as the association cue. Adding other cues [314, 492, 500] and

appearance similarity [239, 409] have been demonstrated [409] efficient to solve this.

In contrast to the relatively inferior car tracking performance, OC-SORT improves

pedestrian tracking performance to a new state-of-the-art. Using the same detections,

OC-SORT achieves a large performance gap over PermaTr with 10x faster speed.

The results on multiple benchmarks have demonstrated the effectiveness and
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efficiency of OC-SORT. We note that we use a shared parameter stack across datasets.

Carefully tuning the parameters can probably further boost the performance. For

example, the adaptive detection threshold is proven useful in previous work [483].

Besides the association accuracy, we also care about the inference speed. Given

off-the-shelf detections, OC-SORT runs at 793 FPS on an Intel i9-9980XE CPU @

3.00GHz. Therefore, OC-SORT can still run in an online and real-time fashion.

5.5.3 Ablation Study

Component Ablation. We ablate the contribution of proposed modules on the

validation sets of MOT17 and DanceTrack in Table 5.5. The splitting of the MOT17

validation set follows a popular convention [500]. The results demonstrate the efficiency

of the proposed modules in OC-SORT. The results show that the performance

gain from ORU is significant on both datasets but OCM only shows good help on

DanceTrack dataset where object motion is more complicated and the occlusion is

heavy. It suggests the effectiveness of our proposed method to improve tracking

robustness in occlusion and non-linear motion.

Virtual Trajectory in ORU. For simplicity, we follow the naive hypothesis of

constant speed to generate a virtual trajectory in ORU. There are other alternatives

like constant acceleration, regression-based fitting such as Linear Regression (LR)

or Gaussian Process Regression (GPR), and Near Constant Acceleration Model

(NCAM) [162]. The results of comparing these choices are shown in Table 5.6. For

GPR, we use the RBF kernel [57] k(x,x′) = exp
(
− ||x−x

′||2
50

)
. We provide more studies

on the kernel configuration in 5.7.2. The results show that local hypotheses such as

Constant Speed/Acceleration perform much better than global hypotheses such as

LR and GPR. This is probably because, as virtual trajectory generation happens in

an online fashion, it is hard to get a reliable fit using only limited data points on

historical time steps.

∆t in OCM. There is a trade-off when choosing the time difference ∆t in OCM

(Section 5.4). A large ∆t decreases the noise of velocity estimation. but is also

likely to discourage approximating object motion as linear. Therefore, we study

the influence of varying ∆t in Table 5.7. Our results agree with our analysis that

increasing ∆t from ∆t = 1 can boost the association performance. But increasing ∆t
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higher than the bottleneck instead hurts the performance because of the difficulty of

maintaining the approximation of linear motion.

5.6 Conclusion

We analyze the popular motion-based tracker SORT and recognize its intrinsic

limitations from using Kalman filter. These limitations significantly hurt tracking

accuracy when the tracker fails to gain observations for supervision - likely caused by

unreliable detectors, occlusion, or fast and non-linear target object motion. To address

these issues, we propose Observation-Centric SORT (OC-SORT). OC-SORT is more

robust to occlusion and non-linear object motion while keeping simple, online, and

real-time. In our experiments on diverse datasets, OC-SORT significantly outperforms

the state-of-the-art. The gain is especially significant for multi-object tracking under

occlusion and non-linear object motion.

5.7 More Analysis

5.7.1 Velocity Direction Variance in OCM

In this section, we work on the setting of linear motion with noisy states. We provide

proof that the trajectory direction estimation has a smaller variance if the two states

we use for the estimation have a larger time difference. We assume the motion model

is xt = f(t) + ϵ where ϵ is gaussian noise and the ground-truth center position of the

target is (µut , µvt) at time step t. Then the true motion direction between the two

time steps is

θ = arctan(
µvt1 − µvt2
µut1 − µut2

). (5.9)

And we have |µvt1 − µvt2 | ∝ |t1− t2|, |µut1 − µut2 | ∝ |t1− t2|. As the detection results

do not suffer from the error accumulation due to propagating along Markov process

as Kalman filter does, we can assume the states from observation suffers some i.i.d.

noise, i.e., ut ∼ N (µut , σ
2
u) and vt ∼ N (µvt , σ

2
v). We now analyze the noise of the

estimated θ̃ =
vt1−vt2
ut1−ut2

by two observations on the trajectory. Because the function

of arctan(·) is monotone over the whole real field, we can study tan θ̃ instead which
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simplifies the analysis. We denote w = ut1 − ut2 , y = vt1 − vt2 , and z = y
w
, first we

can see that y and w jointly form a Gaussian distribution:[
y

w

]
∼ N

([
µy

µw

]
,

[
σ2
y ρσyσw

ρσyσw σ2
w

])
, (5.10)

where µy = µvt1 − µvt2 , µw = µut1 − µut2 , σw =
√
2σu and σy =

√
2σv, and ρ is the

correlation coefficient between y and w. We can derive a closed-form solution of the

probability density function [147] of z as

p(z) =
g(z)e

g(z)2−αr(z)2

2β2r(z)2

√
2πσwσyr(z)3

[
Φ

(
g(z)

βr(z)

)
− Φ

(
− g(z)

βr(z)

)]
+

βe−2α/β

πσwσyr(z)2

(5.11)

where

r(z) =

√
z2

σ2
y

− 2ρz

σyσw
+

1

σ2
w

,

g(z) =
µyz

σ2
y

− ρ(µy + µwz)

σyσw
+

µw
σ2
w

,

α =
µ2
w + µ2

y

σ2
y

− 2ρµyµw
σwσy

, β =
√

1− ρ2,

(5.12)

and Φ is the cumulative distribution function of the standard normal. Without loss

of generality, we can assume µw > 0 and µy > 0 because negative ground-truth

displacements enjoy the same property. This solution has a good property that larger

µw or µy makes the probability density at the true value, i.e. µz =
µy
µw

, higher, and

the tails decay more rapidly. So the estimation of arctan θ, also θ, has smaller noise

when µw or µy is larger. Under the assumption of linear motion, we thus should select

two observations with a large temporal difference to estimate the direction.

It is reasonable to assume the noise of detection along the u-axis and v-axis are

independent so ρ = 0. And when representing the center position in pixel, it is also

moderate to assume σw = σy = 1 (also for the ease of presentation). Then, with

different true value of µz =
µy
µw

, the visualizations of p(z) over z and µy are shown in

Figure 5.5. The visualization demonstrates our analysis above. Moreover, it shows
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(a) µz = 0.1 (b) µz = 0.5 (c) µz = 2 (d) µz = 5

Figure 5.5: The probability density of z = tan θ under different true value of z, i.e.
µz =

µy
µw

. We set µy and z as two variables. It shows that under different settings of
true velocity direction when µy is smaller, the probability of estimated value with
a significant shift from the true value is higher. As µy is proportional to the time
difference of the two selected observations under linear motion assumption, it relates
to the case that the two steps for velocity direction estimation has a shorter time
difference.

that when the value of µy or µw is small, the cluster peak of the distribution at µz is

not significant anymore, as the noise σy and σw can be dominant. Considering the

visualization shows that happens when µy is close to σy, this can happen when we

estimate the speed by observations from two consecutive frames because the variance

of observation can be close to the absolute displacement of object motion. This makes

another support to our analysis in the main paper about the sensitivity to state

estimation noise.

Table 5.8: Ablation study about the interpolation post-processing.

MOT17-val DanceTrack-val

HOTA↑ AssA↑ MOTA↑ IDF1↑ HOTA↑ AssA↑ MOTA↑ IDF1↑

w/o interpolation 66.5 68.9 74.9 77.7 52.1 35.3 87.3 51.6
Linear Interpolation 68.0 69.9 77.9 79.3 52.8 35.6 89.8 52.1
GPR Interpolation 65.2 67.0 72.9 75.9 51.6 35.0 86.1 51.2

5.7.2 Interpolation by Gaussian Progress Regression

Interpolation as post-processing. Although we focus on developing an online

tracking algorithm, we are also interested in whether post-process can further optimize

the tracking results in diverse conditions. Despite the failure of GPR in online tracking

in Table 5.6, we continue to study if GPR is better suited for interpolation in Table 5.8.
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Table 5.9: Ablation study about using Gaussian Process Regression for object
trajectory interpolation. LI indicates Linear Interpolation, which is used to interpolate
the trajectory before smoothing the trajectory by GPR. MT indicates Median Trick
for kernel choice in regression. Lτ is the length of trajectory.

MOT17-val DanceTrack-val

Interpolation Method HOTA AssA MOTA IDF1 HOTA AssA MOTA IDF1

w/o interpolation 66.5 68.9 74.9 77.7 52.1 35.3 87.3 51.6
Linear Interpolation 69.6 69.9 77.9 79.3 52.8 35.6 89.8 52.1

GPR Interp, l = 1 66.2 67.6 74.3 76.6 51.8 35.0 86.6 50.8
GPR Interp, l = 5 66.3 67.0 72.9 75.9 51.8 35.1 86.5 51.1
GPR Interp, l = Lτ 66.1 67.0 73.1 77.8 51.6 35.1 86.4 50.7
GPR Interp, l = 1000/Lτ 65.9 67.0 73.0 77.8 51.8 35.0 86.9 51.0
GPR Interp, l = MT(τ) 65.9 67.0 73.1 77.8 51.7 35.1 86.7 50.9

LI + GPR Smoothing, l = 1 69.5 69.6 77.8 79.3 52.8 35.6 89.9 52.1
LI + GPR Smoothing, l = 5 69.5 69.7 77.8 79.3 52.9 34.9 89.7 52.1
LI + GPR Smoothing, l = Lτ 69.6 69.5 77.8 79.2 52.9 35.6 89.9 52.1
LI + GPR Smoothing, l = 1000/Lτ 69.5 69.9 77.8 79.3 53.0 35.6 89.9 52.1
LI + GPR Smoothing, l = MT(τ) 69.5 69.6 77.8 79.3 52.8 35.6 89.8 52.1

We compare GPR with the widely-used linear interpolation. The maximum gap for

interpolation is set as 20 frames and we use the same kernel for GPR as mentioned

above. The results suggest that the GPR’s non-linear interpolation is simply not

efficient. We think this is due to limited data points which results in an inaccurate

fit of the object trajectory. Further, the variance in regressor predictions introduces

extra noise. Although GPR interpolation decreases the performance on MOT17-val

significantly, its negative influence on DanceTrack is relatively minor where the object

motion is more non-linear. We believe how to fit object trajectory with non-linear

hypothesis still requires more study.

From the analysis in the main paper, the failure of SORT can mainly result from

occlusion (lack of observations) or the non-linear motion of objects (the break of the

linear-motion assumption). So the question arises naturally whether we can extend

SORT free of the linear-motion assumption or at least more robust when it breaks.

One way is to extend from KF to non-linear filters, such as EKF [172, 342] and

UKF [169]. However, for real-world online tracking, they can be hard to be adopted

as they need knowledge about the motion pattern or still rely on the techniques

fragile to non-linear patterns, such as linearization [170]. Another choice is to gain

the knowledge beyond linearity by regressing previous trajectory, such as combing

Gaussian Process (GP) [183, 309, 406]: given a observation z⋆ and a kernel function
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k(·, ·), GP defines gaussian functions with mean µz⋆ and variance Σz⋆ as

µz⋆ = k⊤⋆ [K+ σ2I]−1y,

Σz⋆ = k(z⋆, z⋆)− k⊤⋆ [K+ σ2I]−1k⋆,
(5.13)

where k⋆ is the kernel matrix between the input and training data and K is the

kernel matrix over training data, y is the output of data. Until now, we have

shown the primary study of using Gaussian Process Regression (GPR) in the online

generation of the virtual trajectory in ORU and offline interpolation. But neither of

them successfully boosts the tracking performance. Now, We continue to investigate

in detail the chance of combining GPR and SORT for multi-object tracking for

interpolation as some designs are worth more study.

5.7.3 Choice of Kernel Function in Gaussian Process

The kernel function is a key variable of GPR. There is not a generally efficient

guideline to choose the kernel for Gaussian Process Regression though some basic

observations are available [94]. When there is no additional knowledge about the

time sequential data to fit, the RBF kernel is one of the most common choices:

k(x,x′) = σ2exp

(
−||x− x′||2

2l2

)
, (5.14)

where l is the lengthscale of the data to be fit. It determines the length of the

“wiggles” of the target function. σ2 is the output variance that determines the average

distance of the function away from its mean. This is usually just a scale factor [94].

GPR is considered sensitive to l in some situations. So we conduct an ablation study

over it in the offline interpolation to see if we can use GPR to outperform the linear

interpolation widely used in multi-object tracking.

5.7.4 GPR for Offline Interpolation

We have presented the use of GPR in online virtual trajectory fitting and offline

interpolation where we use l2 = 25 and σ = 1 for the kernel in Eq. 5.14. Further,

we make a more thorough study of the setting of GPR. We follow the settings of
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Table 5.10: Results on CroHD Head Tracking dataset [357]. Our method uses the
detections from HeadHunter [357] or FairMOT [485] to generate new tracks.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓

HeadHunter [357] 36.8 57.8 53.9 5.18 30.0 4,394 15,146
HeadHunter dets + OC-SORT 39.0 60.0 56.8 5.18 28.1 4,122 10,483

FairMOT [485] 43.0 60.8 62.8 11.8 19.9 12,781 41,399
FairMOT dets + OC-SORT 44.1 67.9 62.9 10.2 16.4 4,243 10,122

Table 5.11: Results on DanceTrack test set. “Ours (MOT17)” uses the YOLOX
detector trained on MOT17-training set.

Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

SORT 47.9 72.0 31.2 91.8 50.8
OC-SORT 55.1 80.3 38.0 89.4 54.2
OC-SORT (MOT17) 48.6 71.0 33.3 84.2 51.5

experiments in the main paper that only trajectories longer than 30 frames are

put into interpolation. And the interpolation is only applied to the gap shorter

than 20 frames. We conduct the experiments on the validation sets of MOT17 and

DanceTrack.

For the value of l, we try fixed values, i.e. l = 1 and l = 5 (2l2 = 50), value

adaptive to trajectory length, i.e. l = Lτ and l = 1000/Lτ , and the value output

by Median Trick (MT) [109]. The training data is a series of quaternary [u, v, w, h],

normalized to zero-mean before being fed into training. The results are shown in

Table 5.9. Linear interpolation is simple but builds a strong baseline as it can stably

improve the tracking performance concerning multiple metrics. Directly using GPR

to interpolate the missing points hurts the performance and the results of GPR are

not sensitive to the setting of l.

There are two reasons preventing GPR from accurately interpolating missing

segments. First, the trajectory is usually limited to at most hundreds of steps,

providing very limited data points for GPR training to converge. On the other hand,

the missing intermediate data points make the data series discontinuous, causing

a huge challenge. We can fix the second issue by interpolating the trajectory with

Linear Interpolation (LI) first and then smoothing the interpolated steps by GPR.

This outperforms LI on DanceTrack but still regrades the performance by LI on

MOT17. This is likely promoted by the non-linear motion on DanceTrack. By fixing
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Table 5.12: Results on MOT17 test set with the public detections. LI indicates Linear
Interpolation.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

CenterTrack [500] - 61.5 59.6 1.41 20.1 2,583 - - -
QDTrack [269] - 64.6 65.1 1.41 18.3 2,652 - - -
Lif T [151] 51.3 60.5 65.6 1.50 20.7 1,189 3,476 54.7 59.0
TransCt [430] 51.4 68.8 61.4 2.29 14.9 4,102 8,468 47.7 52.8
TrackFormer [249] - 62.5 60.7 3.28 17.5 2,540 - - -

OC-SORT 52.4 58.2 65.1 0.44 23.0 784 2,006 57.6 63.5
OC-SORT + LI 52.9 59.4 65.7 0.66 22.2 801 1,030 57.5 63.9

Table 5.13: Results on MOT20 test set with the public detections. LI indicates Linear
Interpolation.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

MPNTrack [35] 46.8 57.6 59.1 17.0 20.1 1,210 1,420 47.3 52.7
TransCt [430] 43.5 61.0 49.8 4.92 14.8 4,493 8,950 36.1 44.5
ApLift [152] 46.6 58.9 56.5 1.77 19.3 2,241 2,112 45.2 48.1
TMOH [346] 48.9 60.1 61.2 3.80 16.6 2,342 4,320 48.4 52.9
LPC MOT [79] 49.0 56.3 62.5 1.17 21.3 1,562 1,865 52.4 54.7

OC-SORT 54.3 59.9 67.0 0.44 20.2 554 2,345 59.5 65.1
OC-SORT + LI 55.2 61.7 67.9 0.57 19.2 508 805 59.8 65.9

the missing data issue of GPR, GPR can have a more accurate trajectory fitting over

LI for the non-linear trajectory cases. But considering the outperforming from GPR

is still minor compared with the Linear Interpolation-only version and GPR requires

much heavier computation overhead, we do not recommend using such a practice in

most multi-object tracking tasks. More careful and deeper study is still required on

this problem.

5.7.5 Results on More Benchmarks

Results on HeadTrack [357].. When considering tracking in the crowd, focusing on

only a part of the object can be beneficial [48] as it usually suffers less from occlusion

than the full body. This line of study is conducted over hand tracking [252, 334],

human pose [421] and head tracking [19, 281, 357] for a while. Moreover, with the

knowledge of more fine-grained part trajectory, it can be useful in downstream tasks,

such as action recognition [98, 106] and forecasting [43, 56, 182, 189]. As we are

interested in the multi-object tracking in the crowd, we also evaluate the proposed

OC-SORT on a recently proposed human head tracking dataset CroHD [357]. To
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Figure 5.6: The visualization of the output of OC-SORT on randomly selected
samples from the test set of HeadTrack [357] (the first two rows) and MOT20 [87]
(the bottom row). These two datasets are both challenging because of the crowded
scenes where pedestrians have heavy occlusion with each other. OC-SORT achieves
superior performance on both datasets.
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make a fair comparison on only the association performance, we adopt OC-SORT

by directing using the detections from existing tracking algorithms. The results

are shown in Table 5.10. The detections of FairMOT [485] and HeadHunter [357]

are extracted from their tracking results downloaded from the official leaderboard 2.

We use the same parameters for OC-SORT as on the other datasets. The results

suggest a significant tracking performance improvement compared with the previous

methods [357, 485] for human body part tracking. But the tracking performance

is still relatively low (HOTA=∼ 40). It is highly related to the difficulty of having

accurate detections of tiny objects. Some samples from the test set of HeadTrack are

shown in the first two rows of Figure 5.6.

Public Tracking on MOT17 and MOT20.. Although we use the same object

detectors as some selected baselines, there is still variances in detections when

compared with other methods. Therefore, we also report with the public detections

on MOT17/MOT20 in Table 5.12 and Table 5.13. OC-SORT still outperforms the

existing state-of-the-arts in the public tracking setting. And the outperforming of

OC-SORT is more significant on MOT20 which has more severe occlusion scenes.

Some samples from the test set of MOT20 are shown in the last row in Figure 5.6.

5.7.6 Pseudo-code of OC-SORT

See the pseudo-code of OC-SORT in Algorithm. 1.

5.7.7 More Results on DanceTrack

To gain more intuition about the improvement of OC-SORT over SORT, we provide

more comparisons. In Figure 5.8, we show more samples where SORT suffers from

ID switch or Fragmentation caused by non-linear motion or occlusion but OC-SORT

survives. Furthermore, in Figure 5.9, we show more samples of trajectory visualizations

from SORT and OC-SORT on DanceTrack-val set.

DanceTrack [354] is proposed to encourage better association algorithms instead

of carefully tuning detectors. We train YOLOX [110] detector on MOT17 training

set only to provide detections on DanceTrack. We find the tracking performance of

2https://motchallenge.net/results/Head Tracking 21/
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OC-SORT is already higher than the baselines (Table 5.11). We believe the potential

to improve multi-object tracking by better association strategy is still promising and

DanceTrack is a good platform for the evaluation.

5.7.8 Integrate Appearance into OC-SORT

OC-SORT is pure motion-based but flexible to integrate with other association cues,

such as object appearance. We make an attempt of adding appearance information

into OC-SORT and achieve significant performance improvements, validated by exper-

iments on MOT17, MOT20, and DanceTrack. Please refer to Deep OC-SORT [239]

for details.

5.7.9 More Discussion of State Noise Sensitivity

In Section 5.3.2, we show that the noise of state estimate will be amplified to the

noise of velocity estimate. This is because the velocity estimate is correlated to the

state estimate. But the analysis is in a simplified model in which velocity itself does

not gain noise from the transition directly and the noise of state estimate is i.i.d on

different steps. However, in the general case, such a simplification does not hold. We

now provide a more general analysis of the state noise sensitivity of SORT.

For the process in Eq 5.1, we follow the most commonly adapted implementation

of Kalman filter 3 and SORT 4 for video multi-object tracking. Instead of writing the

mean state estimate, we consider the noisy prediction of state estimate now, which is

formulated as

xt|t−1 = Ftxt|t−1 +wt, (5.15)

wherewt is the process noise, drawn from a zero mean multivariate normal distribution,

N , with covariance, wt ∼ N (0,Qt). As xt is a seven-tuple, i.e.,xt = [u, v, s, r, u̇, v̇, ṡ]⊤,

the process noise applies to not just the state estimate but also the velocity estimates.

Therefore, for a general form of analysis of temporal error magnification in Eq 5.5, we

would get a different result because not just the position terms but also the velocity

terms gain noise from the transition process. And the noise of velocity terms will

3https://github.com/rlabbe/filterpy
4https://github.com/abewley/sort
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amplify the noise of position estimate by the transition at the next step. We note the

process noise as in practice:

Qt =



σ2
u 0 0 0 0 0 0

0 σ2
v 0 0 0 0 0

0 0 σ2
s 0 0 0 0

0 0 0 σ2
r 0 0 0

0 0 0 0 σ2
u̇ 0 0

0 0 0 0 0 σ2
v̇ 0

0 0 0 0 0 0 σ2
ṡ


, (5.16)

and the linear transition model as

Ft =



1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


. (5.17)

We assume the time step when a track gets untracked is t1 and don’t consider the

noise from previous steps. For simplicity, we assume the motion in the x-direction and

y-direction do not correlate. We take the motion on the x-direction as an example

without loss of generality:

δut0 ∼ N (0, σ2
u), δu̇t0 ∼ N (0, σu̇

2). (5.18)

On the next step, with no correction from the observation, the error would be

accumulated (∆t = 1),

δut0+1 ∼ N (0, 2σ2
u + σu̇

2), δu̇t0+1 ∼ N (0, 2σu̇
2). (5.19)
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keep tracking

target lost

re-associated direction difference

KF estimate trajectory
tracked trajectory
untracked trajectory
virtual trajectory

KF estimations
estimations by ORU
untracked observations
tracked observations

(a) (b) (c)

Figure 5.7: Illustration of how ORU changes the behaviors of SORT after an untracked
track is re-associated to an observation. The circle area with shadow indicates the
range that an estimate can be associated with observations close enough to it. (a).
The track is re-associates with an observation zt2 at the step t2 after being untracked
since the time step t1. (b). Without ORU, on the next step of re-association, even
though the KF state is updated by zt2 , there is still a direction difference between
the true object trajectory and the KF estimates. Therefore, the track is unmatched
with detections again (in blue). (c). With ORU, we get a more significant change
in the state, especially the motion direction by updating velocity. Now, the state
estimate (in red) is closer to the state observation and they can be associated again.
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Therefore, the accumulation is even faster than we analyze in Section 5.3.2 as

δut0+T
∼ N (0, (T + 1)σ2

u +
1

2
T (T + 1)σ2

u̇). (5.20)

In the practice of SORT, we have to suppress the noise from velocity terms because

it is too sensitive. We achieve it by setting a proper value for the process noise Qt.

For example, the most commonly adopted value 5 of Qt in SORT is

Qt =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0.01 0 0

0 0 0 0 0 0.01 0

0 0 0 0 0 0 0.0001


. (5.21)

In such a parameter setting, we have the ratio between the noise from position

terms and velocity terms as

β =
(T + 1)σ2

u

0.5T (T + 1)σ2
u̇

=
200

T
. (5.22)

In practice, a track is typically deleted if it keeps untracked for Tdel time steps. Usually

we set Tdel < 10, so we have β > 20. Therefore, we usually consider the noise from

velocity terms as secondary. Such a convention allows us to use the simplified model

in Section 5.3.2 for noise analysis. But it also brings a side-effect that SORT can’t

allow the velocity direction of a track to change quickly in a short time interval. We

will see later (Section 5.7.10) that it makes trouble to SORT when non-linear motion

and occlusion come together and motivates the design of ORU in OC-SORT.

5.7.10 Intuition behind ORU

ORU is designed to fix the error accumulated during occlusion when an untracked

track is re-associated with an observation. But in general, the bias in the state

5https://github.com/abewley/sort/blob/master/sort.py#L111

92



5. Parametric Linear Filtering for Multi-Human Tracking in Crowds

estimate x̂ after being untracked for T time steps can be fixed by the update stage

once it gets re-associated with an observation. To be precise, the Optimal Kalman

gain, i.e.,Kt, can use the re-associated observation to update the KF posteriori

parameters. In general, such an expectation of KF’s behavior is reasonable. But

because we usually set the corresponding covariance for velocity terms very small

(Eq 5.21), it is difficult for SORT to steer to the correct velocity direction at the step

of re-association.

Motivated by such observations, we design ORU. In the simplified model shown

in Figure 5.7, the circle area with the shadow around each estimate footage is the

eligible range to associate with observations inside. ORU is designed for the case that

a track is re-associated after being untracked. Therefore, the typical situation is as

shown in the figure that the true trajectory first goes away from the linear trajectory

of KF estimates and then goes closer to it so that there can be a re-association. After

the re-association, there would be a cross of the two trajectories.

In SORT, after re-associating with an observation, the direction of the velocity of

the previously untracked track still has a significant difference from the true value.

This is shown in Figure 5.7(b). This makes the estimate on the future steps lost again

(the blue triangle). The reason is the convention of Q discussed in Appendix 5.7.9.

Therefore, even though the canonical KF can support fixing the accumulated error

during being untracked theoretically, it is very rare in practice. In ORU, we follow the

virtual trajectory where we have multiple virtual observations. In this way, even if

the value of Q[4 :, 4 :] is small, we can still have a better-calibrated velocity direction

after the time step t2. We would like to note that the intuition behind ORU is from

our observations in practice and based on the common convention of using Kalman

filter for multi-object tracking. It does not make fundamental changes to upgrade

the power of the canonical Kalman filter.

Here we provide a more formal mathematical expression to compare the behaviors

of SORT and OC-SORT. Assume that the track was lost at the time step t1 and

re-associated at t2. We assume the mean state estimate is

x̂t1|t1 = [u1, v1, s1, r1, u̇1, v̇1, ṡ1]
⊤, (5.23)
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and the covariance at t1 is

Pt1|t1 =



σ2
u1

0 0 0 0 0 0

0 σ2
v1

0 0 0 0 0

0 0 σ2
s1

0 0 0 0

0 0 0 σ2
r1

0 0 0

0 0 0 0 σ2
u̇1

0 0

0 0 0 0 0 σ2
v̇1

0

0 0 0 0 0 0 σ2
ṡ1


. (5.24)

Then, because the covariance expands from the input of process noise at each step of

predict, at t2, we have the priori estimates (t∆ = t2 − t1) of state

x̂t2|t2−1 = [u2, v2, s2, r2, u̇2, v̇2, ṡ2]
⊤, (5.25)

with
u2 = u1 + u̇1t∆,

v2 = v1 + v̇1t∆,

s2 = s1 + ṡ1t∆,

r2 = r1,

u̇2 = u̇1,

v̇2 = v̇1,

ṡ2 = ṡ1.

(5.26)

And the priori covariance

Pt2|t2−1 =



σ2
u2

0 0 0 0 0 0

0 σ2
v2

0 0 0 0 0

0 0 σ2
s2

0 0 0 0

0 0 0 σ2
r2

0 0 0

0 0 0 0 σ2
u̇2

0 0

0 0 0 0 0 σ2
v̇2

0

0 0 0 0 0 0 σ2
ṡ2


, (5.27)
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with

σ2
u2

= σ2
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2
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2
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2
v + σ2

v̇1
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t∆(t∆ − 1)

2
σ2
v̇ ,

σ2
s2
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s1
+ t∆(σ

2
s + σ2

ṡ1
) +

t∆(t∆ − 1)

2
σ2
ṡ ,

σ2
r2
= σ2

r1
+ t∆σ

2
r ,

σ2
u̇2

= σ2
u̇1

+ t∆σ
2
u̇,

σ2
v̇2

= σ2
v̇1
+ t∆σ

2
v̇ ,

σ2
ṡ2
= σ2

ṡ1
+ t∆σ

2
ṡ .

(5.28)

Now, SORT will keep going forward as normal. Therefore, with the re-associated

observation zt2 , we have

SORT

{
x̂t2|t2 = x̂t2|t2−1 +Kt2(zt2 −Hx̂t2|t2−1),

Pt2|t2 = (I−Kt2H)Pt2|t2−1
(5.29)

where the observation model is

H =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

 , (5.30)

and the Kalman gain is

Kt2 = Pt2|t2−1H
⊤(HPt2|t2−1H

⊤ +Rt2)
−1. (5.31)

On the other hand, OC-SORT will replay Kalman filter predict on a generated

virtual trajectory to gain the posteriori estimates on t2 (ORU). With the default

linear motion analysis, we have the virtual trajectory as

z̃t = zt1 +
t− t1
t2 − t1

(zt2 − zt1), t1 < t < t2. (5.32)

Now, to derive the posteriori estimate, we will run the loop between predict and
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re-update from t1 to t2.

OC-SORT

{
x̂t|t = Fx̂t−1|t−1 +Kt(z̃t −HFx̂t−1|t−1)

Pt|t = (I−KtH)(FPt−1|t−1F
⊤ +Qt)

(5.33)

where the Kalman gain is

Kt = Pt|t−1H
⊤
t (HPt|t−1H

⊤ +Rt)
−1, (5.34)

and we can always rewrite it with

Pt|t−1 = FPt−1|t−1F
⊤ +Qt. (5.35)

In the common practice of Kalman filter, we assume a constant set of Gaussian noise

for the process noise Qt. This assumption typically can’t hold in practice. This

makes the conflict that when there are consistent observations over time, we require

a small process noise for multi-object tracking in high-frame-rate videos. However,

when there is a period of observation missing, the direction difference between the

true direction and the direction maintained by the linear motion assumption grows.

This causes the failure of SORT to consistently track previously lost targets even

after re-association.

We show the different outcomes of SORT and OC-SORT upon re-associating lost

targets in Eq 5.29 and Eq 5.33. Analyzing their difference more deeply will require

more assumptions of the underlying true object trajectory and the observations.

Therefore, instead of theoretical proof, we demonstrate the gain of performance from

OC-SORT over SORT empirically as shown in the experiments.
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Input: Detections Z = {zik|1 ≤ k ≤ T, 1 ≤ i ≤ Nk}; Kalman Filter KF; threshold to remove untracked tracks texpire
Output: The set of tracks T = {τi}

1 Initialization: T ← ∅ and KF;
2 for timestep t← 1 : T do

/* Step 1: match track prediction with observations */

3 Zt ← [z1t , ..., z
Nt
t ]⊤ /* Obervations */

4 X̂t ← [x̂1
t , ..., x̂

|T |
t ]⊤ from T /* Estimations by KF.predict */

5 Z ← Historical observations on the existing tracks

6 Ct ← CIoU(X̂t,Zt) + λCv(Z,Zt) /* Cost Matrix with OCM term */

7 Linear assignment by Hungarians with cost Ct

8 T matched
t ← tracks matched to an observation

9 T remain
t ← tracks not matched to any observation

10 Zremain
t ← observations not matched to any track

/* Step 2: perform OCR to find lost tracks back */

11 ZT remain
t ← last matched observations of tracks in T remain

t

12 Cremain
t ← CIoU(ZT remain

t ,Zremain
t )

13 Linear assignment by Hungarians with cost Cremain
t

14 T recovery
t ← tracks from T remain

t and matched to observations in ZT remain
t

15 Zunmatched
t ← observations from ZT remain

t that are still unmatched to tracks

16 T unmatched
t ← tracks from T remain

t that are still unmatched to observations

17 T matched
t ← {T matched

t , T recovery
t }

/* Step 3: update status of matched tracks */

18 for τ in T matched
t do

19 if τ.tracked = False then
/* Perform ORU for track from untracked to tracked */

20 zτ
t′ , t

′ ← The last observation matched to τ and the time step

21 Rollback KF parameters to t′

/* Generate virtual observation trajectory */

22 Ẑτ
t ← [ẑτ

t′+1
, ..., ẑτt−1]

23 Online smooth KF parameters along Ẑτ
t

24 end
25 τ.tracked = True
26 τ.untracked = 0
27 Append the new matched associated observation zτt to τ ’s observation history
28 Update KF parameters for τ by zτt
29 end

/* Step 4: initialize new tracks and remove expired tracks */

30 T new
t ← new tracks generated from Zunmatched

t

31 for τ in T unmatched
t do

32 τ.tracked = False
33 τ.untracked = τ.untracked+ 1

34 end

35 T reserved
t ← {τ | τ ∈ T unmatched

t and τ.untacked < texpire} /* remove expired unmatched tracks */

36 T ← {T new
t , T matched

t , T reserved
t } /* Conclude */

37 end
38 T ← Postprocess(T ) /* [Optional] offline post-processing */

39 Return: T

algorithm 1: Pseudo-code of OCSORT.
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(a) SORT: dancetrack0036 (b) OC-SORT: dancetrack0036

(c) SORT: dancetrack0054 (d) OC-SORT: dancetrack0054

(e) SORT: dancetrack0064 (f) OC-SORT: dancetrack0064

(g) SORT: dancetrack0078 (h) OC-SORT: dancetrack0078

(i) SORT: dancetrack0089 (j) OC-SORT: dancetrack0089

(k) SORT: dancetrack0100 (l) OC-SORT: dancetrack0100

Figure 5.8: More samples where SORT suffers from the fragmentation and ID switch
of tracks from occlusion or non-linear motion but OC-SORT survives. To be precise,
the issue happens on the objects by SORT at: (a) #322 → #324; (c) ID switch
between #672 and #673, later #673 being lost; (e) #760→ #761; (g) #871→ #872;
(i) #1063 → #1090, then ID switch with #1081; (l) #1295 → #1304. We select
samples from diverse scenes, including street dance, classic dance and gymnastics.
Best viewed in color and zoomed in.
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dancetrack0004_GT#3

(a) GT #3 on video #0003

dancetrack0005_GT#0

(b) GT #0 on video #0005

dancetrack0007_GT#1

(c) GT #1 on video #0007

dancetrack0010_GT#2

(d) GT #2 on video #0010

dancetrack0018_GT#0

(e) GT #0 on video #0018

dancetrack0025_GT#6

(f) GT #6 on video #0025

dancetrack0034_GT#9

(g) GT #9 on video #0034

dancetrack0035_GT#6

(h) GT #6 on video #0035

dancetrack0041_GT#0

(i) GT #0 on video #0041

dancetrack0047_GT#0

(j) GT #0 on video #0047

dancetrack0065_GT#0

(k) GT #0 on video #0065

dancetrack0077_GT#5

(l) GT #5 on video #0077

dancetrack0079_GT#3

(m) GT #3 on video #0079

dancetrack0081_GT#0

(n) GT #0 on video #0081

dancetrack0081_GT#11

(o) GT #11 on video #0081

Figure 5.9: Randomly selected object trajectories on the videos from the DanceTrack-
val set. The black cross indicates the ground truth trajectory. The red dots indicate
the trajectory output by OC-SORT and associated to the selected GT trajectory.
The green triangles indicate the trajectory output by SORT and associated to the
selected GT trajectory. SORT and OC-SORT use the same hyperparameters and
detections. Trajectories are sampled at the first 100 frames of each video sequence.
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Chapter 6

Mixed Gaussian Prior for Human

Trajectory Generation

6.1 Introduction

In this work, we aim to improve the diversity for probabilistic trajectory prediction. In

trajectory prediction, diversity describes the fact that agents (pedestrians) can move

in different directions, speeds, and interact with other agents. Because the motion

intentions of agents can not be determined by their historical positions, there is

typically no global-optimal strategy to predict a single outcome of future trajectories.

Therefore, recent works have focused on probabilistic methods to generate multiple

likely outcomes. However, existing solutions are argued to lack good diversity and

they often fail to generate the under-represented future trajectory patterns in the

training data.

Different motion patterns are usually imbalanced in a dataset. For example,

agents are more likely to move straight than turn around in most datasets. Thus,

many motion patterns are highly under-represented though discoverable. Therefore,

intuitively, an ideal distribution to represent the possible future trajectories should

be asymmetric, multi-modal, and expressive to represent long-tailed patterns.

However, most existing generative models solve the problem of trajectory prediction

by modeling it as a single-modal and symmetric distribution, i.e., standard Gaussian.

This is because the standard Gaussian is tractable and there is a belief that it
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Figure 6.1: Non-invertible generative models (a), e.g., CVAE, GAN, and diffusions,
lack the invertibility for probability density estimation. Flow-based methods (b) are
invertible while, sampling from the symmetric standard Gaussian, undermines the
diversity and controllability of generation. Our proposed Mixed Gaussian flow (c)
maps from a mixed Gaussian prior instead. Summarizing distributions from data and
controllable edits, it achieves better diversity and controllability for trajectory
prediction.

can be transformed into any desired distribution of the same or a lower dimension.

However, deriving a desired complex distribution from a simple and symmetric prior

distribution is challenging, especially with limited and imbalanced data. Moreover,

when we derive the target distribution by transforming from the tractable original

distribution as Normalizing Flows, GANs, and VAEs do, a dilemma arises: an over-

smoothing transformation model can neglect under-represented samples while an

over-decorated transformation model will overfit. Especially for normalizing flow,

some studies[33, 187] discussed the difficulty of training normalizing flow in practice

to represent a complex target distribution.

To solve this dilemma, we propose a prior distribution with more expressiveness

and data-driven statistics. It is asymmetric, multi-modal, and adaptive to the training

data in the form of a mixed set of Gaussians. Compared to the standard Gaussian, the

mixture of Gaussians can better summarize the under-represented samples scattered

far away in the representation space. This relieves the sparsity issue of rare cases and

thus enhances the diversity of the generated outcomes. Besides diversity, as the mixed

Gaussian prior is parametric and transparent during construction, we could control the

generation by manipulating this prior, such as adjusting the weights of different sub-

Gaussians or manipulating the mean value of them. All these manipulations change

generation results statistically without requiring fine-tuning or other re-training. Upon
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the prior distribution, we choose to construct the generative model by normalizing

flow with the unique advantage of being invertible. We thus could estimate the

likelihood of each single generated outcome. By combining the designs, we propose

a normalizing flow-based trajectory prediction model named Mixed Gaussian Flow

(MGF). It enjoys better diversity, controllability, interruptibility, and invertibility for

trajectory prediction. During our study, we find that though several evaluation tools

have been proposed for measuring diversity[260, 274, 332, 459], they employ varying

calculation method and have not gained widespread adoption within the research

community. The most popular evaluation metrics (APD/FDE scores) focus on how

similar a generated trajectory is to the single ground truth. It is calculated in a

“best-of-M” fashion where only one candidate in a batch of M predictions is taken

into the measurement. This protocol encourages the methods to generate outcomes

approaching the mean (most likelihood) of the learned distribution and provides no

sense of the diversity of generation outcomes. Therefore, building upon previous

research in the field of human motion prediction[459], we formulate a metric set

of Average Pairwise Displacement (APD) and Final Pairwise Displacement (FPD),

which measure the diversity of a batch of M generated samples. This helps us to

have a concrete study about generation diversity and avoid bias from the “best-of-M”

evaluation protocol. With the proposed metrics, we demonstrate that the proposed

architecture design improves the diversity of generated trajectories. Still, we estimate

the “best-of-M” candidate’s alignment with the ground truth under widely adopted

APD/FDE metrics. Surprisingly, MGF also achieves state-of-the-art performance.

To conclude, In this work, we focus on enhancing the diversity of trajectory pre-

diction. We propose Mixed Gaussian Flow (MGF) by reforming the prior distribution

of normalizing flows as a novel design of mixed Gaussians. It achieves state-of-the-art

performance with respect to both the “best-of-M” alignment metrics and diversity

metrics. We demonstrate that the proposed MGF model is capable of diverse and

controllable trajectory predictions.

6.2 Related Works

Generative Models for Trajectory Prediction. Trajectory prediction aims to

predict the positions in a future horizon given historical position observations of
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multiple participants (agents). Early studies solve the problem by deterministic

trajectory prediction [182] where Social forces [144], RNNs [6, 262, 381], and the

Gaussian Process [389] are proposed to model the agent motion intentions. Recent

works mostly seek multi-modal and probabilistic solutions for trajectory prediction

instead, which is a more challenging but faithful setting. Though some of them

leverage reinforcement learning [44, 197], the mainstream uses generative models to

solve the problem as generating likely future trajectories. Auto-encoder [178] and

its variants, such as CVAE [193, 461], are widely adopted. GANs make another line

of work [126]. More recently, the diffusion [149] model is also used in this area [246].

However, they are typically not capable of estimating outcome probability as the

generation process is not invertible. Normalizing flow [184] is preferred in many cases

for being invertible.

Normalizing Flow for Trajectory Prediction. In this work, we would like

the predicted trajectories diverse and controllable. We prefer the generation process

invertible to allow tractable generation likelihood. We thus choose normalizing

flow [184] generative models. Normalizing flow [271] constructs complex distributions

by transforming a probability density through invertible mappings from tractable

distribution. Normalizing flow has been studied for trajectory prediction in some

previous works [120, 315, 316]. In the commonly adopted evaluation protocol of “best-

of-M” trajectory candidates, normalizing flow-based methods are once considered

not capable of achieving state-of-the-art performance. However, we will show in this

paper that with proper design of architecture, normalizing flow can be state-of-the-art.

And much more importantly, its invertibility allows more controllable and explainable

trajectory prediction.

Gaussian Mixture models as prior. Though the standard Gaussian is chosen

by mainstream generative models as the original sampling distribution, some previous

works explored how Gaussian mixture models (GMM) can be an alternative to help

with generation or classification tasks. [90] uses a GMM prior in VAE models to

enhance the clustering and classification performance. [20] adopts GMM to enhance

the conditional generation of GAN networks. FlowGMM [160] uses GMM as the prior

for flow-based models to deal with the classification task in a semi-supervised way. A

recent work PluGen [410] proposes to mix two Gaussians to model the conditional

presence of two binary labels to control generation tasks. Existing methods mostly

104



6. Mixed Gaussian Prior for Human Trajectory Generation

use GMM to describe the presence of multiple auxiliary labels and they typically

require additional annotations to construct the GMM. In this work, we use GMM as

the distribution prior for normalizing flows without requiring any label annotations.

It is designed to enhance the diversity of the generation and relieve the difficulty of

learning transforming the tractable prior distribution to the desired complex and

multi-modal target distribution for future trajectory generation.

6.3 Method

Our proposed method is based on the normalizing flow paradigm for invertible trajec-

tory generation while we construct a mixed Gaussian prior as the original distribution

instead of the naive standard Gaussian to allow more diverse and controllable out-

comes. In this section, we first provide the formal problem formulation in section 6.3.1.

Then we introduce normalizing flow in section 6.3.2 and the proposed Mixed Gaussian

Flow (MGF) model in section 6.3.3. We detail the training/inference implementations

in section 6.3.4. At last, we introduce the proposed metrics set to measure the

diversity of generated trajectories in section 6.3.5. The overall illustration of MGF is

shown in Figure 6.2.

6.3.1 Problem Formulation

We focus on 2D agent trajectory forecasting and represent the agent positions by 2D

coordinates. Given a set of multiple agents, i.e., pedestrians in our case, we denote the

2D position of an agent a at time t as xat and a trajectory from ti to tj(ti < tj) as x
a
ti:tj

.

Given a fixed scene with map M and a period T: t0, t1, t2, ..., tc, ..., tT , there are N

agents that have appeared during the period T, denoted as At0:tT = {a0, a1, ..., aN−1}.
Without loss of generality, given a current time step tc ∈ (t0, tT ), the task of trajectory

prediction aims to obtain a set of likely trajectories xatc:tT with the past trajectories

of all observed agents X
At0:tc

t0:tc = {xat0:tc , a ∈ At0:tc} as input, where a is an arbitrary

agent that has shown up during t : t0 −→ tc. For each agent a ∈ At0:tc we seek to

sample plausible and likely trajectories of it over the remaining time steps tc −→ tT
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by a generative model Φ, i.e.,

x̂atc:tT = Φ(X
At0:tc

t0:tc ), (6.1)

at the same time, when there are other variables such as the observations of the maps

are provided, we can use them as additional input information. By denoting the

observations until t as Ot0:tc we have

x̂atc:tT = Φ(x
At0:tc

t0:tc ;Ot0:tc). (6.2)

If the generation process is probabilistic instead of deterministic, the outcome

of the solution is a set of trajectories instead of a single one. The formulation thus

turns to

{(i)x̂atc:tT } = Φ(x
At0:tc

t0:tc ;Ot0:tc), (6.3)

where i is the index of one candidate in the predicted batch.

For some generative models relying on transforming from a sample point in a

known distribution D0 to the target distribution, e.g., GANs and normalizing flows,

the set is generated by mapping from different sample points, i.e., p ∈ D0. Therefore,

the full formulation becomes

{(i)x̂atc:tT } = Φ(x
At0:tc

t0:tc ;Ot0:tc ,P), (6.4)

where P = {p0, ..., pK} is a set of sampled points from D0.

Implicitly, the model Φ is required to construct a transformation (Jacobians)

between the two distributions. Usually, D0 is chosen as a symmetric and tractable

distribution, such as a standard Gaussian. However, the distribution of the target

distribution can be shaped by many data-biased asymmetries thus posing a challenge

to learning the transformation effectively and inclusively. This often causes failure

of generating under-represented trajectory patterns for trajectory forecasting and

hurts the diversity of the outcomes. This observation motivates us to propose a

probabilistic generative model for more diverse outcomes by representing the original

distribution with more expressiveness.
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Figure 6.2: The illustration of our proposed Mixed Gaussian Flow (MGF). During
training, we construct a mixed Gaussian prior by statistics from the training set.
During sampling, the initial noise samples are from the constructed mixed Gaussian
prior. MGF keeps a tractable prior distribution and an invertible inference process
while the novel mixed Gaussian prior provides more diversity and controllability to
the generation outcomes.

6.3.2 Normaling Flow

Normalizing flow [184] is a genre of generative model that constructs complex distri-

butions by transforming a simple distribution through a series of invertible mappings.

We choose normalizing flow over other probabilistic generative models as it can

provide per-sample likelihood estimates thanks to being invertible. This property

is critical to more comprehensively understand the distribution of different future

trajectory patterns, especially when typically only sampling dozens of outcomes and

considering the existence of long-tailed trajectory patterns. We denote a normalizing

flow as a bijective mapping f which transforms a simple distribution p(z) to a complex

distribution p(x). The transformation is often conditioned on context information c.

With the change-of-variables formula, we can derive the transformation connecting

two smooth distributions as follows:

x = f(z; c),

p(x) = p(z) · | det(∇xf
−1(x; c))|,

− log(p(x)) = − log(p(z))− log(| det(∇xf
−1(x; c))|).

(6.5)
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Given the formulations, with a known distribution z ∼ D0, we can calculate the

density of p(x) following the transformations and vice versa. However, the equations

require the Jacobian determinant of the function f to obtain the distribution density

p(x). The calculation of it in the high-dimensional space is not trivial. Recent works

propose to use deep neural networks to approximate the Jacobians. To maintain the

inevitability of the normalizing flows, some carefully designed layers are inserted into

the deep models and the coupling layers [91] are one of the most widely adopted ones.

More recently, FlowChain [237] is proposed to enhance the standard normalizing

flow models by using a series of Conditional Continuously-indexed Flows (CIFs) [77]

to estimate the density of outcomes. CIFs are obtained by replacing the single

bijection f in normalizing flows with an indexed family F (·;u)u∈U , where U ⊆ R is

the index set and each F (·;u) : z −→ x is a bijection. Then, the transformation is

changed to

z ∼ p(z), U ∼ pU |z(·|z), x := F (z;U). (6.6)

Please refer to [77] for more details about CIFs and their connection with variational

inference. In this work, we follow the idea of using a stack of CIFs from [237] to

achieve fast inference and the updates of trajectory density estimates.

Normalizing flow based model samples from a standard Gaussian, z ∼ N (0, 1),

usually results in overfitting to the most-likelihood for trajectory prediction. This is

because each data sample from the training sample is considered extracted as the mode

of a standard Gaussian. Only the mode value (the ground truth) is directly supervised

and the underlying target distribution is assumed to be perfectly symmetric, which is

not aligned with the usual real-world facts. Related discussion can be found in many

previous literatures[180, 324]. This typically results in degraded expressiveness of the

model to fail to capture under-represented motion patterns from the data and thus

hurts the outcome diversity.

6.3.3 Mixed Gaussian Flow (MGF)

We propose Mixed Gaussian Flow (MGF) to enhance the diversity and controllability

in trajectory prediction. MGF consists of two stages as summarized in Figure 6.2.

First, we construct the mixed Gaussian prior by fitting the parametric model of a

combination of K Gaussians, {N (µk, σ
2
k)}, (1 ≤ k ≤ K). The parametric model is
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obtained with the data samples from training sets. Then, during inference, we sample

points from the mixture of Gaussian and map them into a trajectory latent in the

target distribution by a stack of CIF layers with the historical trajectories of all

involved agents as the condition. We will introduce the two stages in detail below.

MGF maps from a mixture of Gaussians instead of a single Gaussian to the target

distribution. To maintain the inevitability of the model, the mixed Gaussian prior

can not be arbitrary. We obtain the parametric construction of the mixed Gaussian

by fitting it with training data. In this fashion, we can derive multiple Gaussians to

represent different motion patterns in the dataset, such as going straight or turning left

and right. In a simplified perspective, we regard the mixture as combining multiple

clusters, each of which represents a certain sub-distribution. By sampling from the

mixture of Gaussians instead of a standard Gaussian, our constructed model has

more powerful expressiveness than the standard normalizing flow model. This results

in more diverse trajectory predictions. Also, by manipulating the mixed Gaussian

prior, we can achieve controllable trajectory prediction.

Mixed Gaussian Prior Construction. For the data pre-processing, we transfer

motion directions into relative directions with respect to a zero-degree direction. All

position footage is represented in meters. Given the trajectory between t0 −→ tc to

predict the trajectory between tc −→ tT , we would put the position pivot at tc, i.e.,

xtc , as the origin and convert the position on all other time steps to be the offset

from xtc . Then, we cluster the preprocessed future trajectories into K clusters, which

is a hyper-parameter. We note the mean of the clusters as µ = {µi}i=1,...,K .

These cluster centers reveal the mean value of K representative patterns of

pedestrians’ motion, e.g. go straight, turn left. They will be the means of the

Gaussians. The variances of the Gaussian, i.e., σ2
k, can be pre-determined or learned.

The final mixture of Gaussians is denoted as

DΣ =
K∑
k=1

βkN (µk, σ
2
k), (6.7)

where βk are the weights assigned to each cluster following the k-means clustering of

the training data. By default, we perform clustering by K-means with K = 8.

Flow Prediction. Once the mixed Gaussian prior is built, we can do trajec-
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tory prediction by mapping samples from the distribution to future trajectories

conditioned on historical information(e.g. social interaction features extracted by

a Trajectron++[328] encoder). Here, we ignore the intermediate transformation by

CIFs as eq. (6.6) shows while following the original formulations of normalizing flows

as eq. (6.5) for simplicity. We distribute the samples from different Gaussians by

their weights. Given the i-th sample from N (µk, σ
2
k), we can transform it to the i-th

predicted trajectories

zi ∼ DΣ, (i)x̂atc:tT = Φ(x
At0:tc

t0:tc ;Ot0:tc , zi). (6.8)

For a sample zi
βk
∼ N (µk, σ

2
k), we have the probability estimate

p(zi) = βk
1

σk
√
2π

e
− (zi−µk)2

2σ2
k , (6.9)

and the transformation is converted to

p((i)x̂atc:tT ) = exp(−(zi − µk)
2

2σ2
k

+ log
βk

σk
√
2π

) · | det(∇f(zi;Ot0:tc )
zi)|, (6.10)

which can be also invested back for the density estimate by the normalizing flow law

p̂(zi) = βk
1

σk
√
2π

exp(−
[f−1((i)x̂atc:tT ;Ot0:tc)− µk]

2

2σ2
k

). (6.11)

6.3.4 Training and Inference

The training loss of MGF comes from two directions: the forward process to get

mixed flow loss and the inverse process to get minimum ℓ2 loss.

Forward process. Given a ground truth trajectory sample xatc:tT , we need to

assign it to a cluster in the mixed Gaussian prior by measuring its distance to the

centroids

k̂ = argmin
i

(xatc:tT − µi)
2, Dk̂ := βk̂N (µk̂, σk̂2), (6.12)

with a tractable probability density function pk̂(·). Through the inverse process f−1

of flow model, we transform xatc:tT into its corresponding latent representation, here
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Figure 6.3: During training, the model is trained at both the forward and the inverse
process of the normalizing flow.

denoted as

ẑ = f−1(xatc:tT ;Ot0:tc). (6.13)

Then we can compute the forward mixed flow loss:

Lforward = − log(p(xatc:tT )) = − log(pk̂(ẑ))− log(| det(∇xa
tc:tT

ẑ)|). (6.14)

Instead of computing negative-log-likelihood(NLL) loss of ẑ in the mixed distribu-

tion
∑K

k=1 βkN (µk, σ
2
k), we compute NLL loss in the sub-Gaussian with the nearest

centroid βk̂N (µk̂, σk̂2) because each centroid is independent to others in the mixed

distribution and we encourage the model to learn specified motion patterns to avoid

overwhelming by the major data patterns. Calculating NLL loss over the mixed

distribution may fuse other centroids and damage the diversity of model outputs.

By our design, the mixed Gaussian prior can maintain more capacity for expressing

complicated multi-modal distribution than the traditional single Gaussian prior,

which typically constrains the target distribution to be single-modal and symmetric.

Inverse Process. This process repeats the flow prediction process to get generated

trajectories. To predict M candidates, we sample zi ∼
∑K

k=1 βkN (µk, σ
2
k), i =

1, 2, ...,M and transform them into M trajectories

{(i)x̂atc:tT } = {f(zi;Ot0:tc)}, i = 1, 2, ...,M. (6.15)

We compute the minimum ℓ2 loss between M predictions and ground truth trajectory
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as [126] does:

Linverse =
M

min
i=1

((i)x̂atc:tT − xatc:tT )
2

tT − tc
. (6.16)

We sample zi from sub Gaussians by their weight. This is approximately equal to

sampling from the original mixed Gaussians but makes the reparameterization trick

doable.

Although approximated differential backpropagation techniques, such as the

Gumbel-Softmax trick, can be employed to make the sampling process of mixed

Gaussians differentiable, computing the Negative Log-Likelihood (NLL) loss between

a sample point and the mixed Gaussian distribution remains challenging because

− log(pDΣ(ẑ)) = − log(
K∑
k=1

βk
σk
· e
− (ẑ−µk)2

2σ2
k ) + C, (6.17)

contains exponential operations on matrices, which can be simplified through log-

arithmic operations in single Gaussian condition. Computing this term requires

iterative optimization methods, such as the Expectation-Maximization algorithm[85]

for approximation[331, 433], which makes the computing process much more complex.

Therefore, in practice, sampling from individual Gaussian components is preferred for

computing efficiency. Furthermore, applying the Gumble-softmax to learn a mixture

of Gaussians in generative models has been reported difficult in practice in some

cases[294] due to gradient vanishing problem.

The forward and inverse losses encourage the model to predict a well-aligned

sample in a sub-space from the prior without hurting the flexibility and expressiveness

of other sub-spaces. We combine the forward and inverse losses by a ratio γ to be a

Symmetric Cross-Entropy loss [315], which was proved beneficial for better balancing

the ”diversity” and ”precision” of predicted trajectories:

L = Lforward + γ · Linverse. (6.18)

6.3.5 Diversity Metrics

The widely adopted average/final displacement error (ADE/FDE) scores measure the

alignment (precision) between the ground truth future trajectory and one predicted
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trajectory. Under the common “best-of-M” evaluation protocol, ADE/FDE scores

encourage nothing but finding a single “aligned” trajectory with the ground truth.

ADE encourages the position on all time steps to be aligned with the single ground

truth and FDE chooses the trajectory with the closest endpoint while all other trajec-

tories are neglected in score calculating. Such an evaluation protocol overwhelmingly

encourages the methods to fit the most likelihood from a certain distribution and all

generated candidates race to be the most similar one as the distribution mean. Under

the single-mode and symmetric assumption, this usually tends to fit into a Gaussian

with a smaller variance. However, this tendency hurts the diversity of predicted

trajectory hypotheses.

To provide a tool for quantitative trajectory diversity evaluation, we formulate

a set of metrics. Following the idea of average displacement error (ADE) and final

displacement error (FDE), we measure the diversity of trajectories by their pairwise

displacement along the whole generated trajectories and the final step. Follow

Dlow[459], we name that average pairwise displacement (APD) and final pairwise

displacement (FPD). We note that the diversity metrics are measured in the complete

set of generated trajectory candidates instead of between a single candidate and the

ground truth. The formulation of APD and FPD are as below

APD =

∑M
i=1

∑M
j=1

√
ΣtT
t=tc(

(i)x̂at −(j) x̂at )
2

M2 · (tT − tc)
, FPD =

∑M
i=1

∑M
j=1

√
((i)x̂atT −(j) x̂atT )

2

M2
,

(6.19)

where APD measures the average displacement along the whole predicted trajectories

and FPD measures the displacement of trajectory endpoints. We would mainly follow

the widely adopted ADE/FDE for benchmarking purposes while using APD/FPD

as a secondary metric set to better understand the diversity of the generated future

trajectories.

6.4 Experiments

In this section, we provide experiments to demonstrate the effectiveness of our method.

We first introduce experiment setup in section 6.4.1 and benchmark with related works

to evaluate the trajectory prediction alignment and diversity in section 6.4.2. Then,
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Table 6.1: Results on ETH/UCY dataset with Best-of-20 metrics. Scores are in
meters, lower is better. bold and underlined scores denote the best and the second-best
scores.

ETH HOTEL UNIV ZARA1 ZARA2 Mean
Method

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Social-GAN [126] 0.87 1.62 0.67 1.37 0.76 1.52 0.35 0.68 0.42 0.84 0.61 1.21
STGAT [157] 0.65 1.12 0.35 0.66 0.52 1.10 0.34 0.69 0.29 0.60 0.43 0.83
Social-STGCNN [259] 0.64 1.11 0.49 0.85 0.44 0.79 0.34 0.53 0.30 0.48 0.44 0.75
Trajectron++ [328] 0.61 1.03 0.20 0.28 0.30 0.55 0.24 0.41 0.18 0.32 0.31 0.52
MID [119] 0.55 0.88 0.20 0.35 0.30 0.55 0.29 0.51 0.20 0.38 0.31 0.53
PECNet [245] 0.54 0.87 0.18 0.24 0.35 0.60 0.22 0.39 0.17 0.30 0.29 0.48
GroupNet [422] 0.46 0.73 0.15 0.25 0.26 0.49 0.21 0.39 0.17 0.33 0.25 0.44
AgentFormer [461] 0.45 0.75 0.14 0.22 0.25 0.45 0.18 0.30 0.14 0.24 0.23 0.39
EqMotion [424] 0.40 0.61 0.12 0.18 0.23 0.43 0.18 0.32 0.13 0.23 0.21 0.35
FlowChain [237] 0.55 0.99 0.20 0.35 0.29 0.54 0.22 0.40 0.20 0.34 0.29 0.52

MGF(Ours) 0.39 0.59 0.13 0.20 0.21 0.39 0.17 0.29 0.14 0.24 0.21 0.34

Table 6.2: Evaluation results on SDD (in pixels).

Method ADE FDE

Social-GAN [126] 27.25 41.44
STGAT [157] 14.85 28.17
Social-STGCNN [259] 20.76 33.18
Trajectron++ [328] 19.30 32.70
MID [119] 10.31 17.37
PECNet [245] 9.97 15.89
GroupNet [422] 9.31 16.11
EqMotion [424] 8.80 14.35
MemoNet [423] 8.56 12.66
FlowChain [237] 9.93 17.17

MGF (Ours) 7.74 12.07

we showcase the diversity and controllability of MGF in section 6.4.3 and section 6.4.4.

Finally, we ablate key implementation components in section 6.4.5.

6.4.1 Setup

Datasets. We evaluate on two major benchmarks, i.e., ETH/UCY [196, 280] and

SDD [318]. ETH/UCY consists of five subsets. We follow the widely used Social-

GAN [126] benchmark. SDD dataset consists of 20 scenes captured in bird’s eye

view. We follow the TrajNet [327] benchmark. We note that in the community of

trajectory prediction, previous works have inconsistent evaluation protocol details

and thus have made unfair comparisons.

Metrics. We use the widely used average displacement error (ADE) and final
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Table 6.3: Results on ETH/UCY dataset with diversity metrics. Scores are in
meters, higher means more diverse prediction. bold and underlined scores denote the best
and the second-best scores.

ETH HOTEL UNIV ZARA1 ZARA2 Mean
Method

APD FPD APD FPD APD FPD APD FPD APD FPD APD FPD

Social-GAN [126] 0.680 1.331 0.566 1.259 0.657 1.502 0.617 1.360 0.515 1.119 0.607 1.314
Social-STGCNN [259] 0.404 0.633 0.591 0.923 0.333 0.497 0.490 0.762 0.417 0.657 0.447 0.694
Trajectron++ [328] 0.704 1.532 0.568 1.240 0.648 1.404 0.697 1.528 0.532 1.161 0.630 1.373
AgentFormer [461] 1.998 4.560 0.995 2.333 1.049 2.445 0.774 1.772 0.849 1.982 1.133 2.618
MemoNet [423] 1.232 2.870 0.950 2.030 0.847 1.822 0.844 1.919 0.880 2.120 0.951 2.152
FlowChain [237] 0.814 1.481 0.484 0.833 0.636 1.094 0.505 0.890 0.492 0.859 0.586 1.031

MGF(Ours) 1.624 3.555 1.138 2.387 1.115 2.163 1.029 2.119 1.065 2.182 1.194 2.481

displacement error (FDE) to measure the alignment of the predicted trajectories and

the ground truth. ADE is the average L2 distance between the ground truth and the

predicted trajectory. FDE is the L2 distance between the ground truth endpoints

and predictions. Most previous works choose the “Best-of-M” evaluation protocol

and we follow it to choose M = 20 as default.

Here, we note that, under different assumptions of distribution spreading and

variance, the evaluation is ideally done with different values of M . However, most

existing methods only provide results with M = 20 and many of them do not open-

source the code of the models so we can not rebenchmark with other value choices of

M . Besides the metrics for trajectory alignment, we also use the proposed metrics

set APD and FPD to measure the diversity of the predicted trajectory candidates.

Implementation Details. We enhance our model using a similar technique

as “intension clustering” [423] and we name it “prediction clustering”. The key

difference is that we directly cluster the entire trajectory instead of the endpoints.

To make a fair comparison, we followed the data processing from FlowChain [237]

and Trajectron++ [328]. We also follow FlowChain’s implementations of CIFs that

each layer consists of a RealNVP [92] with a 3-layer MLP and 128 hidden units. We

use a Trajectron++ [328] encoder to encode historical trajectories. All models were

trained on a single NVIDIA V100 GPU for 100 epochs(approximately 4 to 8 hours).

6.4.2 Benchmark Results

We benchmark MGF with a line of recent related works on ETH/UCY dataset

in table 6.1. The results of Trajectron++ and MID are updated according to a
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reported implementation issue 1. MGF achieves on-par state-of-the-art performance

with Eqmotion [424]. Specifically, Our method achieves the best ADE and FDE in 3

out of 5 subsets and the best ADE and FDE score by averaging all splits. Here we

note that we build MGF as a normalizing flow-based method as its invertibility is key

property we desire, though normalizing flow is usually considered inferior regarding

the alignment evaluation. Therefore, such a good performance on the alignment is

surprising to us. To compare with other normalizing flow-based methods, our method

significantly improves the performance compared to FlowChain, achieving 27.6%

improvement by ADE and 34.6% improvement by FDE.

On the SDD dataset, where the motion pattern is considered more diverse than

UCY/ETH, the benchmark results are shown in table 6.2. Our method outperforms

all baselines measured by ADE/FDE for trajectory alignment. Specifically, Our

method reduces ADE from 8.56 to 7.74 compared to the current state-of-the-art

method MemoNet, achieving 9.6% improvement. Our method also significantly

improves the performance of FlowChain for 22.1% by ADE and 29.7% by FDE.

According to the benchmarking on the two popular datasets, we demonstrate the

state-of-the-art alignment (precision) of our proposed method. Here we note again

that the alignment with the deterministic ground truth is not the highest priority

when we design our method, we will discuss the main advantages of MGF, diversity,

and controllability, in the next paragraphs.

6.4.3 Diverse Generation

By leveraging the mixed Gaussian prior, our model can generate trajectories from the

corresponding clusters, resulting in a more diverse set of trajectories than sampling

from a Gaussian. This is intuitively due to less difficulty in learning the Jacobians for

distribution transformation. We present examples in fig. 6.4. Given a past trajectory,

there is a single ground truth future trajectory possibility from the dataset. We

select four samples with different ground truth intentions, i.e., going straight, U-turn,

left-turn, and right-turn. By sampling noise from the clustered distributions, we

could generate future trajectories with diverse intentions. From the visualizations,

we could notice, of course, that we generate outcomes that are very similar to the

1https://github.com/StanfordASL/Trajectron-plus-plus/issues/53
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Table 6.4: Ablation study on the ETH/UCY and SDD dataset. All components are
demonstrated beneficial to the prediction alignment.

ETH/UCY SDD
Inv.
Loss

Mixed
Gaus.

Learnable
Var.

Pred.
Clustering ADE FDE ADE FDE

0.30 0.55 10.00 16.59
✓ 0.28 (↓0.02) 0.53 (↓0.02) 9.65 (↓0.35) 16.39 (↓0.20)
✓ ✓ 0.27 (↓0.01) 0.44 (↓0.09) 9.26 (↓0.39) 15.48 (↓0.91)
✓ ✓ ✓ 0.25 (↓0.02) 0.40 (↓0.04) 9.20 (↓0.06) 14.78 (↓0.70)
✓ ✓ ✓ ✓ 0.21 (↓0.04) 0.34 (↓0.06) 7.74 (↓1.46) 12.17 (↓2.61)

ground truth with close intentions while we also generate outcomes that have very

diverse intentions. The well-aligned single trajectory accounts for the high ADE

and FDE score our method achieves. And the impressive diversity demonstrates

the effectiveness of our design, especially considering they are well controlled by the

clusters where they are sampled from.

Quantitatively, we evaluate the generation diversity according to our proposed

metrics on ETH/UCY dataset since most existing methods did not either make

experiments on SDD or open-source training code/checkpoint on SDD. The results

are presented in table 6.3. We can observe that MGF achieves the best or second-

best APD and FPD score on all splits among sota methods. Besides, our method

significantly improves the performance compared to FlowChain, achieving 103.7%

improvement by APD and 140.6% improvement by FPD. The only method that can

achieve close diversity with our method is Agentformer [461], which designs sampling

from a set of conditional VAE to improve the diversity. However, compared to MGF,

Agentformer is more computation-intensive and shows significantly lower alignment

according to ADE/FDE scores in table 6.1. Also, Agentformer is not fully invertible,

which is considered a key property we desire for trajectory forecasting. The superior

quantitative performance according to the alignment (precision) and diversity metrics

suggests the effectiveness of our method by balancing these two adversarial features.

6.4.4 Controllable Generation

The generated sample from MGF is highly correlated with the original sample drawn

from the mixed Gaussian prior. If the prior distribution is a standard Gaussian as

in the canonical normalizing flow method, we can have almost no control over the
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Figure 6.4: MGF predictions on ETH
dataset. The color of trajectories corre-
sponds to the cluster in the mixed Gaus-
sian prior, from which the sample belongs
to.

Figure 6.5: Controllable generation on
ETH dataset. By editing cluster centers,
we can control the predictions.

generated sample. The only controllability is to sample near the mode to generate a

sample similar to the learned most-likelihood outcome or far from the mode to make

them more different. However, as we discussed, after sufficient training and supervision

by the forward loss, the variance of the latent Gaussian distribution of the outcome

is usually very small, which further hurts the controllability. However, as we chose a

transparent mixed Gaussian prior for the sampling, we can control the generation

flexibility. First, by adjusting sub-Gaussians in the mixture prior, we can manipulate

the generation process statistically. fig. 6.5 shows that by editing cluster compositions,

we can control the predictions of MGF with good interpretability. By editing the

weights of sub-Gaussians, we can control the ratio of splatting into directions. By

editing the directions of the cluster means, we can control the intentions of samples

statistically. Besides cluster centers, we can also edit the variance of Gaussian to

control the density of generated trajectories or combine a set of operations to get

expected predictions. We provide more discussions and examples in the appendix in

the supplement.

6.4.5 Ablation Study

We ablate some key components of our implementation for both ADE/FDE and

APD/FPD metrics, see table 6.5 and table 6.6. (1)Prediction clustering is a
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Table 6.5: Ablation study of ADE/FDE on the ETH/UCY and SDD dataset.

ETH/UCY SDD
Pred.

Clustering
Mixed
Gaus.

Learnable
Var.

Inv.
Loss ADE FDE ADE FDE

- - - - 0.33 0.61 11.90 21.33
- ✓ - - 0.29 (↓0.04) 0.48 (↓0.13) 11.38 (↓0.52) 19.28 (↓2.05)
✓ - - - 0.29 0.54 10.63 18.80
✓ ✓ - - 0.27 (↓0.02) 0.48 (↓0.06) 9.19 (↓1.44) 15.86 (↓2.94)
✓ ✓ ✓ - 0.23 (↓0.04) 0.39 (↓0.09) 8.71 (↓0.48) 14.86 (↓1.00)
✓ ✓ ✓ ✓ 0.21 (↓0.02) 0.34 (↓0.05) 7.74 (↓0.97) 12.07 (↓2.79)

Table 6.6: Ablation study of APD/FPD on the ETH/UCY and SDD dataset.

ETH/UCY SDD
Pred.

Clustering
Mixed
Gaus.

Learnable
Var.

Inv.
Loss APD FPD APD FPD

- - - - 0.39 0.76 14.82 27.22
- ✓ - - 0.78(↑0.39) 1.70(↑0.94) 23.18(↑8.36) 44.90(↑17.68)
✓ - - - 0.41 0.80 15.52 28.50
✓ ✓ - - 1.09(↑0.68) 2.33(↑1.53) 32.42(↑16.9) 65.43(↑36.93)
✓ ✓ ✓ - 0.96(↓0.13) 2.12(↓0.21) 30.10(↓2.32) 60.20(↓5.23)
✓ ✓ ✓ ✓ 1.19(↑0.77) 2.48(↑0.36) 31.56(↑1.46) 64.52(↑4.32)

common post-processing method, which improves the ADE/FDE as expected. How-

ever, it hurts the diversity for nomalizing flow model with single Gaussian prior.

This is reasonable as the single Gaussian prior tends to generate trajectories densely

close to the most likelihood and prediction clustering can’t cluster them into well-

separated clusters for different motion intentions. (2)Mixed Gaussian prior help

the model generates more diverse outputs and achieves higher APD/FPD scores

and this improvement can be further enhanced by prediction clustering. It also

increases ADE/FDE scores a lot, we believe this is because mixed Gaussian prior

relieves the difficulty of learning the Jacobians for distribution transformation. Thus

more under-explored patterns, which may be selected as the ”best-of-M” samples

in rare but plausible scenarios, have the chance to be expressed. (3)Learnable

variance improve ADE/FDE while bring down APD/FPD a bit. We find that the

learnable variance usually converges to a smaller value than the fixed situation. This

is encouraged by the supervision from the ground truth (most likelihood) to a desired

steeper Gaussian, thus hurting the diversity. However, its substantial improvement

in ADE/FDE indicates that it remains a valuable component of the model archi-

tecture. (4)Inverse loss provides a straightforward supervision of the trajectory in

the coordinate space, which is also proved beneficial for ADE/FDE and APD/FPD
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scores.

6.5 Conclusion

We focus on improving the diversity while keeping the estimated probability tractable

for trajectory forecasting in this work. We noticed the poor expressiveness of Gaussian

distribution as the original sampling distribution for normalizing flow-based methods

to generate complicated and clustered outcome patterns. We thus propose to construct

a mixed Gaussian prior to help learn Jacobians for distribution transformation with

less difficulty and higher flexibility. Based on this main innovation, we propose Mixed

Gaussian Flow (MGF) model for the diverse and controllable trajectory generation.

The cooperating strategy of constructing the prior distribution and training the model

is also designed. According to the evaluation of popular benchmarks, we demonstrate

that MGF achieves state-of-the-art prediction alignment and diversity. It also has

other good properties such as controllability and being invertible for probability

estimates.
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Human Motion from Human-Scene

Interaction
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Chapter 7

Physics-Based Human Motion

Imitation

7.1 Introduction

Physics-based motion imitation has captured the imagination of vision and graphics

communities due to its potential for creating realistic human motion, enabling plausible

environmental interactions, and advancing virtual avatar technologies of the future.

However, controlling high-degree-of-freedom (DOF) humanoids in simulation presents

significant challenges, as they can fall, trip, or deviate from their reference motions,

and struggle to recover. For example, controlling simulated humanoids using poses

estimated from noisy video observations can often lead humanoids to fall to the

ground[229, 231, 456, 457]. These limitations prevent the widespread adoption of

physics-based methods, as current control policies cannot handle noisy observations

such as video or language.

In order to apply physically simulated humanoids for avatars, the first major

challenge is learning a motion imitator (controller) that can faithfully reproduce

human-like motion with a high success rate. While reinforcement learning (RL)-based

imitation policies have shown promising results, successfully imitating motion from a

large dataset, such as AMASS (ten thousand clips, 40 hours of motion), with a single

policy has yet to be achieved. Attempts to use larger or a mixture of expert policies

have been met with some success [395, 411], although they have not yet scaled to
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Figure 7.1: We propose a motion imitator that can naturally recover from falls and walk
to far-away reference motion, perpetually controlling simulated avatars without requiring
reset. Left: real-time avatars from video, where the blue humanoid recovers from a fall.
Right: Imitating 3 disjoint clips of motion generated from language, where our controller
fills in the blank. The color gradient indicates the passage of time.

the largest dataset. Therefore, researchers have resorted to using external forces to

help stabilize the humanoid. Residual force control (RFC) [458] has helped to create

motion imitators that can mimic up to 97% of the AMASS dataset [229], and has

seen successful applications in human pose estimation from video[117, 230, 460] and

language-based motion generation [463]. However, the external force compromises

physical realism by acting as a “hand of God” that puppets the humanoid, leading

to artifacts such as flying and floating. One might argue that, with RFC, the realism

of simulation is compromised, as the model can freely apply a non-physical force on

the humanoid.

Another important aspect of controlling simulated humanoids is how to handle

noisy input and failure cases. In this work, we consider human poses estimated

from video or language input. Especially with respect to video input, artifacts such

as floating [463], foot sliding [509], and physically impossible poses are prevalent

in popular pose estimation methods due to occlusion, challenging view point and

lighting, fast motions etc.. To handle these cases, most physics-based methods

resort to resetting the humanoid when a failure condition is triggered [229, 231, 457].

However, resetting successfully requires a high-quality reference pose, which is often

difficult to obtain due to the noisy nature of the pose estimates, leading to a vicious

cycle of falling and resetting to unreliable poses. Thus, it is important to have a
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controller that can gracefully handle unexpected falls and noisy input, naturally

recover from fail-state, and resume imitation.

In this work, our aim is to create a humanoid controller specifically designed to

control real-time virtual avatars, where video observations of a human user are used

to control the avatar. We design the Perpetual Humanoid Controller (PHC), a single

policy that achieves a high success rate on motion imitation and can recover from

fail-state naturally. We propose a progressive multiplicative control policy (PMCP)

to learn from motion sequences in the entire AMASS dataset without suffering

catastrophic forgetting. By treating harder and harder motion sequences as a different

“task” and gradually allocating new network capacity to learn, PMCP retains its ability

to imitate easier motion clips when learning harder ones. PMCP also allows the

controller to learn fail-state recovery tasks without compromising its motion imitation

capabilities. Additionally, we adopt Adversarial Motion Prior (AMP)[286] throughout

our pipeline and ensure natural and human-like behavior during fail-state recovery.

Furthermore, while most motion imitation methods require both estimates of link

position and rotation as input, we show that we can design controllers that require

only the link positions. This input can be generated more easily by vision-based 3D

keypoint estimators or 3D pose estimates from VR controllers.

To summarize, our contributions are as follows: (1) we propose a Perpetual

Humanoid Controller that can successfully imitate 98.9% of the AMASS dataset

without applying any external forces; (2) we propose the progressive multiplicative

control policy to learn from a large motion dataset without catastrophic forgetting

and unlock additional capabilities such as fail-state recovery; (3) our controller is

task-agnostic and is compatible with off-the-shelf video-based pose estimators as a

drop-in solution. We demonstrate the capabilities of our controller by evaluating on

both Motion Capture (MoCap) and estimated motion from videos. We also show a

live (30 fps) demo of driving perpetually simulated avatars using a webcam video as

input.

7.2 Related Works

Physics-based Motion Imitation. Governed by the laws of physics, simulated
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characters [22, 66, 105, 117, 132, 254, 283, 284, 285, 286, 288, 395, 407, 458] have the

distinct advantage of creating natural human motion, human-to-human interaction

[217, 412], and human-object interactions [254, 288]. Since most modern physics

simulators are not differentiable, training these simulated agents requires RL, which

is time-consuming & costly. As a result, most of the work focuses on small-scale

use cases such as interactive control based on user input [22, 286, 288, 395], playing

sports [217, 254, 412], or other modular tasks (reaching goals [413], dribbling [286],

moving around [283], etc.). On the other hand, imitating large-scale motion datasets

is a challenging yet fundamental task, as an agent that can imitate reference motion

can be easily paired with a motion generator to achieve different tasks. From learning

to imitate a single clip [284] to datasets [66, 385, 395, 411], motion imitators have

demonstrated their impressive ability to imitate reference motion, but are often

limited to imitating high-quality MoCap data. Among them, ScaDiver [411] uses a

mixture of expert policy to scale up to the CMU MoCap dataset and achieves a success

rate of around 80% measured by time to failure. Unicon[395] shows qualitative results

in imitation and transfer, but does not quantify the imitator’s ability to imitate clips

from datasets. MoCapAct[385] first learns single-clip experts on the CMU MoCap

dataset, and distills them into a single that achieves around 80% of the experts’

performance. The effort closest to ours is UHC [229], which successfully imitates

97% of the AMASS dataset. However, UHC uses residual force control [457], which

applies a non-physical force at the root of the humanoid to help balance. Although

effective in preventing the humanoid from falling, RFC reduces physical realism and

creates artifacts such as floating and swinging, especially when motion sequences

become challenging [229, 230]. Compared to UHC, our controller does not utilize any

external force.

Fail-state Recovery for Simulated Characters. As simulated characters can

easily fall when losing balance, many approaches [66, 288, 337, 367, 457] have been

proposed to help recovery. PhysCap [337] uses a floating-base humanoid that does not

require balancing. This compromises physical realism, as the humanoid is no longer

properly simulated. Egopose [457] designs a fail-safe mechanism to reset the humanoid

to the kinematic pose when it is about to fall, leading to potential teleport behavior

in which the humanoid keeps resetting to unreliable kinematic poses. NeruoMoCon

[154] utilizes sampling-based control and reruns the sampling process if the humanoid
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falls. Although effective, this approach does not guarantee success and prohibits

real-time use cases. Another natural approach is to use an additional recovery policy

[66] when the humanoid has deviated from the reference motion. However, since such

a recovery policy no longer has access to the reference motion, it produces unnatural

behavior, such as high-frequency jitters. To combat this, ASE [288] demonstrates

the ability to rise naturally from the ground for a sword-swinging policy. While

impressive, in motion imitation the policy not only needs to get up from the ground,

but also goes back to tracking the reference motion. In this work, we propose a

comprehensive solution to the fail-state recovery problem in motion imitation: our

PHC can rise from fallen state and naturally walks back to the reference motion and

resume imitation.

Progressive Reinforcement Learning. When learning from data containing

diverse patterns, catastrophic forgetting [102, 248] is observed when attempting

to perform multi-task or transfer learning by fine-tuning. Various approaches [84,

163, 181] have been proposed to combat this phenomenon, such as regularizing

the weights of the network [181], learning multiple experts [163], or increasing the

capacity using a mixture of experts [335, 411, 504] or multiplicative control [285]. A

paradigm has been studied in transfer learning and domain adaption as progressive

learning [42, 59] or curriculum learning [21]. Recently, progressive reinforcement

learning [26] has been proposed to distill skills from multiple expert policies. It aims to

find a policy that best matches the action distribution of experts instead of finding an

optimal mix of experts. Progressive Neural Networks (PNN) [326] proposes to avoid

catastrophic forgetting by freezing the weights of the previously learned subnetworks

and initializing additional subnetworks to learn new tasks. The experiences from

previous subnetworks are forwarded through lateral connections. PNN requires

manually choosing which subnetwork to use based on the task, preventing it from

being used in motion imitation since reference motion does not have the concept of

task labels.
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7.3 Method

We define the reference pose as q̂t := (θ̂t, p̂t), consisting of 3D joint rotation θ̂t ∈ RJ×6

and position p̂t ∈ RJ×3 of all J links on the humanoid (we use the 6 DoF rotation

representation [505]). From reference poses q̂1:T , one can compute the reference

velocities ˆ̇q1:T through finite difference, where ˆ̇qt := (ω̂t, v̂t) consist of angular

ω̂t ∈ RJ×3 and linear velocities v̂t ∈ RJ×3. We differentiate rotation-based and

keypoint-based motion imitation by input: rotation-based imitation relies on reference

poses q̂1:T (both rotation and keypoints), while keypoint-based imitation only requires

3D keypoints p̂1:T . As a notation convention, we use ·̃ to represent kinematic quantities

(without physics simulation) from pose estimator/keypoint detectors, ·̂ to denote

ground truth quantities from Motion Capture (MoCap), and normal symbols without

accents for values from the physics simulation. We use “imitate”, “track”, and “mimic”

reference motion interchangeably. In Sec.7.3.1, we first set up the preliminary of our

main framework. Sec.7.3.2 describes our progressive multiplicative control policy

to learn to imitate a large dataset of human motion and recover from fail-states.

Finally, in Sec.7.3.3, we briefly describe how we connect our task-agnostic controller

to off-the-shelf video pose estimators and generators for real-time use cases.

7.3.1 Goal Conditioned Motion Imitation with Adversarial

Motion Prior

Our controller follows the general framework of goal-conditioned RL (Fig.7.3), where

a goal-conditioned policy πPHC is tasked to imitate reference motion q̂1:t or keypoints

p̂1:T . Similar to prior work [229, 284], we formulate the task as a Markov Decision

Process (MDP) defined by the tupleM = ⟨S,A, T ,R, γ⟩ of states, actions, transition
dynamics, reward function, and discount factor. The physics simulation determines

state st ∈ S and transition dynamics T while our policy πPHC computes per-step

action at ∈ A. Based on the simulation state st and reference motion q̂t, the reward

function R computes a reward rt = R(st, q̂t) as the learning signal for our policy.

The policy’s goal is to maximize the discounted reward E
[∑T

t=1 γ
t−1rt

]
, and we use

the proximal policy gradient (PPO) [330] to learn πPHC.
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Figure 7.2: Our progressive training procedure to train primitives P(1),P(2), · · · ,P(K) by
gradually learning harder and harder sequences. Fail recovery P(F ) is trained in the end on
simple locomotion data; a composer is then trained to combine these frozen primitives.

Figure 7.3: Goal-conditioned RL framework with Adversarial Motion Prior. Each primitive
P(k) and composer C is trained using the same procedure, and here we visualize the final
product πPHC.
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State. The simulation state st := (spt , s
g
t ) consists of humanoid proprioception spt

and the goal state sgt . Proprioception spt := (qt, q̇t,β) contains the 3D body pose

qt, velocity q̇t, and (optionally) body shapes β. When trained with different body

shapes, β contains information about the length of the limb of each body link [231].

For rotation-based motion imitation, the goal state sgt is defined as the difference

between the next time step reference quantitives and their simulated counterpart:

sg-rott := (θ̂t+1 ⊖ θt, p̂t+1 − pt, v̂t+1 − vt, ω̂t+1 − ωt, θ̂t+1, p̂t+1)

where ⊖ calculates the rotation difference. For keypoint-only imtiation, the goal state

becomes

sg-kpt := (p̂t+1 − pt, v̂t+1 − vt, p̂t+1).

All of the above quantities in sgt and spt are normalized with respect to the humanoid’s

current facing direction and root position [229, 413].

Reward. Unlike prior motion tracking policies that only use a motion imitation

reward, we use the recently proposed Adversarial Motion Prior [286] and include a

discriminator reward term throughout our framework. Including the discriminator

term helps our controller produce stable and natural motion and is especially crucial

in learning natural fail-state recovery behaviors. Specifically, our reward is defined as

the sum of a task reward rgt , a style reward ramp
t , and an additional energy penalty

renergyt [284]:

rt = 0.5rgt + 0.5ramp
t + renergyt . (7.1)

For the discriminator, we use the same observations, loss formulation, and gradient

penalty as AMP [286]. The energy penalty is expressed as −0.0005 ·
∑

j∈ joints |µjωj|2

where µj and ωj correspond to the joint torque and the joint angular velocity,

respectively. The energy penalty [104] regulates the policy and prevents high-frequency

jitter of the foot that can manifest in a policy trained without external force (see

Sec.7.4.1). The task reward is defined based on the current training objective, which

can be chosen by switching the reward function for motion imitation Rimitation and

fail-state recovery Rrecover. For motion tracking, we use:
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rg-imitation
t = Rimitation(st, q̂t) = wjpe

−100∥p̂t−pt∥

+ wjre
−10∥q̂t⊖qt∥ + wjve

−0.1∥v̂t−vt∥ + wjωe
−0.1∥ω̂t−ωt∥

(7.2)

where we measure the difference between the translation, rotation, linear velocity, and

angular velocity of the rigid body for all links in the humanoid. For fail-state recovery, we

define the reward rg-recovert in Eq.7.3.

Action. We use a proportional derivative (PD) controller at each DoF of the humanoid

and the action at specifies the PD target. With the target joint set as qdt = at, the torque

applied at each joint is τ i = kp ◦ (at − qt) − kd ◦ q̇t. Notice that this is different from

the residual action representation [229, 275, 458] used in prior motion imitation methods,

where the action is added to the reference pose: qdt = q̂t + at to speed up training. As our

PHC needs to remain robust to noisy and ill-posed reference motion, we remove such a

dependency on reference motion in our action space. We do not use any external forces

[458] or meta-PD control[460].

Control Policy and Discriminator. Our control policy πPHC(at|st) = N (µ(st), σ)

represents a Gaussian distribution with fixed diagonal covariance. The AMP discriminator

D(spt−10:t) computes a real and fake value based on the current prioproception of the

humanoid. All of our networks (discriminator, primitive, value function, and discriminator)

are two-layer multilayer perceptrons (MLP) with dimensions [1024, 512].

Humanoid. Our humanoid controller can support any human kinematic structure, and we

use the SMPL [219] kinematic structure following prior arts [229, 230, 460]. The SMPL

body contains 24 rigid bodies, of which 23 are actuated, resulting in an action space of

at ∈ R23×3. The body proportion can vary based on a body shape parameter β ∈ R10.

Initialization and Relaxed Early Termination. We use reference state initialization

(RSI) [284] during training and randomly select a starting point for a motion clip for

imitation. For early termination, we follow UHC [229] and terminate the episode when

the joints are more than 0.5 meters globally on average from the reference motion. Unlike

UHC, we remove the ankle and toe joints from the termination condition. As observed

by RFC [458], there exists a dynamics mismatch between simulated humanoids and real

humans, especially since the real human foot is multisegment [272]. Thus, it is not possible

for the simulated humanoid to have the exact same foot movement as MoCap, and blindly

following the reference foot movement may lead to the humanoid losing balance. Thus, we

propose Relaxed Early Termination (RET), which allows the humanoid’s ankle and toes to

slightly deviate from the MoCap motion to remain balanced. Notice that the humanoid
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still receives imitation and discriminator rewards for these body parts, which prevents these

joints from moving in a nonhuman manner. We show that though this is a small detail, it

is conducive to achieving a good motion imitation success rate.

Hard Negative Mining. When learning from a large motion dataset, it is essential

to train on harder sequences in the later stages of training to gather more informative

experiences. We use a similar hard negative mining procedure as in UHC [229] and define

hard sequences by whether or not our controller can successfully imitate this sequence.

From a motion dataset Q̂, we find hard sequences Q̂hard ⊆ Q̂ by evaluating our model over

the entire dataset and choosing sequences that our policy fails to imitate.

7.3.2 Progressive Multiplicative Control Policy

As training continues, we notice that the performance of the model plateaus as it forgets older

sequences when learning new ones. Hard negative mining alleviates the problem to a certain

extent, yet suffers from the same issue. Introducing new tasks, such as fail-state recovery,

may further degrade imitation performance due to catastrophic forgetting. These effects

are more concretely categorized in the Appendix (App. C). Thus, we propose a progressive

multiplicative control policy (PMCP), which allocates new subnetworks (primitives P) to

learn harder sequences.

Progressive Neural Networks (PNN). A PNN [326] starts with a single primitive

network P(1) trained on the full dataset Q̂. Once P(1) is trained to convergence on the entire

motion dataset Q̂ using the imitation task, we create a subset of hard motions by evaluating

P(1) on Q̂. We define convergence as the success rate on Q̂
(k)
hard no longer increases. The

sequences that P(1) fails on is formed as Q̂
(1)
hard. We then freeze the parameters of P(1)

and create a new primitive P(2) (randomly initialized) along with lateral connections that

connect each layer of P(1) to P(2). For more information about PNN, please refer to

our supplementary material. During training, we construct each Q̂
(k)
hard by selecting the

failed sequences from the previous step Q̂
(k−1)
hard , resulting in a smaller and smaller hard

subset: Q̂
(k)
hard ⊆ Q̂

(k−1)
hard . In this way, we ensure that each newly initiated primitive P(k)

is responsible for learning a new and harder subset of motion sequences, as can be seen

in Fig.7.2. Notice that this is different from hard-negative mining in UHC [229], as we

initialize a new primitive P(k+1) to train. Since the original PNN is proposed to solve

completely new tasks (such as different Atari games), a lateral connection mechanism is

proposed to allow later tasks to choose between reuse, modify, or discard prior experiences.

However, mimicking human motion is highly correlated, where fitting to harder sequences

Q̂
(k)
hard can effectively draw experiences from previous motor control experiences. Thus,
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Figure 7.4: (a) Imitating high-quality MoCap – spin and kick. (b) Recover from fallen
state and go back to reference motion (indicated by red dots). (b) Imitating noisy motion
estimated from video. (c) Imitating motion generated from language. (d) Using poses
estimated from a webcam stream for a real-time simulated avatar.

we also consider a variant of PNN where there are no lateral connections, but the new

primitives are initialized from the weights of the prior layer. This weight sharing scheme is

similar to fine-tuning on the harder motion sequences using a new primitive P(k+1) and

preserve P(k)’s ability to imitate learned sequences.

Fail-state Recovery. In addition to learning harder sequences, we also learn new tasks,

such as recovering from fail-state. We define three types of fail-state: 1) fallen on the ground;

2) faraway from the reference motion (> 0.5m); 3) their combination: fallen and faraway.

In these situations, the humanoid should get up from the ground, approach the reference

motion in a natural way, and resume motion imitation. For this new task, we initialize a

primitive P(F ) at the end of the primitive stack. P(F ) shares the same input and output

space as P(1) · · ·P(k), but since the reference motion does not provide useful information

about fail-state recovery (the humanoid should not attempt to imitate the reference motion

when lying on the ground), we modify the state space during fail-state recovery to remove

all information about the reference motion except the root. For the reference joint rotation

θ̂t = [θ̂0
t , θ̂

1
t , · · · θ̂Jt ] where θ̂it corresponds to the ith joint, we construct θ̂′t = [θ̂0

t ,θ
1
t , · · ·θ

j
t ]

where all joint rotations except the root are replaced with simulated values (without ·̂). This

amounts to setting the non-root joint goals to be identity when computing the goal states:

sg-Failt := (θ̂′t ⊖ θt, p̂
′
t − pt, v̂

′
t − vt, ω̂

′
t − ωt, θ̂

′
t, p̂
′
t). sg-Failt thus collapse from an imitation

objective to a point-goal [413] objective where the only information provided is the relative

position and orientation of the target root. When the reference root is too far (> 5m),
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we normalize p̂′t − pt as
5×(p̂′

t−pt)
∥p̂′

t−pt∥2 to clamp the goal position. Once the humanoid is close

enough (e.g.,< 0.5m ), the goal will switch back to full-motion imitation:

sgt =

sgt ∥p̂0
t − p0

t ∥2 ≤ 0.5

sg-Failt otherwise.
(7.3)

To create fallen states, we follow ASE [288] and randomly drop the humanoid on the

ground at the beginning of the episode. The faraway state can be created by initializing

the humanoid 2 ∼ 5 meters from the reference motion. The reward for fail-state recovery

consists of the AMP reward ramp
t , point-goal reward rg-pointt , and energy penalty renergyt ,

calculated by the reward function Rrecover:

rg-recovert = Rrecover(st, q̂t) = 0.5rg-pointt + 0.5ramp
t + 0.1renergyt , (7.4)

The point-goal reward is formulated as rg-pointt = (dt−1 − dt) where dt is the distance

between the root reference and simulated root at the time step t [413]. For training P(F ),

we use a handpicked subset of the AMASS dataset named Qloco where it contains mainly

walking and running sequences. Learning using only Qloco coaxes the discriminator D and

the AMP reward ramp
t to bias toward simple locomotion such as walking and running. We

do not initialize a new value function and discriminator while training the primitives and

continuously fine-tune the existing ones.

Multiplicative Control. Once each primitive has been learned, we obtain {P(1) · · ·P(K),P(F )},
with each primitive capable of imitating a subset of the dataset Q̂. In Progressive Networks

[326], task switching is performed manually. In motion imitation, however, the boundary

between hard and easy sequences is blurred. Thus, we utilize Multiplicative Control Policy

(MCP) [285] and train an additional composer C to dynamically combine the learned

primitives. Essentially, we use the pretrained primitives as a informed search space for

the composer C, and C only needs to select which primitives to activate for imitation.

Specifically, our composer C(w1:K+1
t |st) consumes the same input as the primitives and

outputs a weight vector w1:K+1
t ∈ Rk+1 to activate the primitives. Combining our composer

and primitives, we have the PHC’s output distribution:

πPHC(at | st) =
1

C(st)

k∏
i

P(i)(a
(i)
t | st)C(st), C(st) ≥ 0. (7.5)
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Table 7.1: Quantitative results on imitating MoCap motion sequences (* indicates removing
sequences containing human-object interaction). AMASS-Train*, AMASS-Test*, and H36M-
Motion* contain 11313, 140, and 140 high-quality MoCap sequences, respectively.

AMASS-Train* AMASS-Test* H36M-Motion*

Method RFC Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓ Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓ Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓

UHC ✓ 97.0 % 36.4 25.1 4.4 5.9 96.4 % 50.0 31.2 9.7 12.1 87.0% 59.7 35.4 4.9 7.4

UHC ✗ 84.5 % 62.7 39.6 10.9 10.9 62.6% 58.2 98.1 22.8 21.9 23.6% 133.14 67.4 14.9 17.2
Ours ✗ 98.9 % 37.5 26.9 3.3 4.9 96.4% 47.4 30.9 6.8 9.1 92.9% 50.3 33.3 3.7 5.5
Ours-kp ✗ 98.7% 40.7 32.3 3.5 5.5 97.1% 53.1 39.5 7.5 10.4 95.7% 49.5 39.2 3.7 5.8

As each P(k) is an independent Gaussian, the action distribution:

N

 1∑k
l

Ci(st)

σj
l (st)

k∑
i

Ci(st)
σji (st)

µji (st), σ
j(st) =

(
k∑
i

Ci(st)
σji (st)

)−1 , (7.6)

where µji (st) corresponds to the P(i)’s jth action dimension. Unlike a Mixture of Expert

policies that only activates one at a time (top-1 MOE), MCP combines the actors’ dis-

tribution and activates all actors at the same (similar to top-inf MOE). Unlike MCP, we

progressively train our primitives and make the composer and actor share the same input

space. Since primitives are independently trained for different harder sequences, we observe

that the composite policy sees a significant boost in performance. During composer training,

we interleave fail-state recovery training. The training process is described in Alg.2 and

Fig.7.2.

7.3.3 Connecting with Motion Estimators

Our PHC is task-agnostic as it only requires the next time-step reference pose q̃t or the

keypoint p̃t for motion tracking. Thus, we can use any off-the-shelf video-based human

pose estimator or generator compatible with the SMPL kinematic structure. For driving

simulated avatars from videos, we employ HybrIK [199] and MeTRAbs [358, 359], both of

which estimate in the metric space with the important distinction that HybrIK outputs

joint rotation θ̃t while MeTRAbs only outputs 3D keypoints p̃t. For language-based motion

generation, we use the Motion Diffusion Model (MDM) [371]. MDM generates disjoint

motion sequences based on prompts, and we use our controller’s recovery ability to achieve

in-betweening.
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Table 7.2: Motion imitation on noisy motion. We use HybrIK[199] to estimate the joint
rotations θ̃t and uses MeTRAbs [358] for global 3D keypoints p̃t. HybrIK + MeTRAbs
(root): using joint rotations θ̃t from HybrIK and root position p̃0

t from MeTRAbs. MeTRAbs
(all keypoints): using all keypoints p̃t from MeTRAbs, only applicable to our keypoint-based
controller.

H36M-Test-Video*

Method RFC Pose Estimate Succ ↑ Eg-mpjpe ↓ Empjpe ↓

UHC ✓ HybrIK + MeTRAbs (root) 58.1% 75.5 49.3

UHC ✗ HybrIK + MeTRAbs (root) 18.1% 126.1 67.1
Ours ✗ HybrIK + MeTRAbs (root) 88.7% 55.4 34.7
Ours-kp ✗ HybrIK + MeTRAbs (root) 90.0% 55.8 41.0
Ours-kp ✗ MeTRAbs (all keypoints) 91.9% 55.7 41.1

7.4 Experiments

We evaluate and ablate our humanoid controller’s ability to imitate high-quality MoCap

sequences and noisy motion sequences estimated from videos in Sec.7.4.1. In Sec.7.4.2, we

test our controller’s ability to recovery from fail-state. As motion is best in videos, we

provide extensive qualitative results in the supplementary materials. All experiments are

run three times and averaged.

Baselines. We compare with the SOTA motion imitator UHC [229] and use the official

implementation. We compare against UHC both with and without residual force control.

Implementation Details. We uses four primitives (including fail-state recovery) for all

our evaluations. PHC can be trained on a single NVIDIA A100 GPU; it takes around a

week to train all primitives and the composer. Once trained, the composite policy runs at

> 30 FPS. Physics simulation is carried out in NVIDIA’s Isaac Gym [242]. The control

policy is run at 30 Hz, while simulation runs at 60 Hz. For evaluation, we do not consider

body shape variation and use the mean SMPL body shape.

Datasets. PHC is trained on the training split of the AMASS [241] dataset. We follow UHC

[229] and remove sequences that are noisy or involve interactions of human objects, resulting

in 11313 high-quality training sequences and 140 test sequences. To evaluate our policy’s

ability to handle unseen MoCap sequences and noisy pose estimate from pose estimation

methods, we use the popular H36M dataset [158]. From H36M, we derive two subsets

H36M-Motion* and H36M-Test-Video*. H36M-Motion* contains 140 high-quality MoCap

sequences from the entire H36M dataset. H36M-Test-Video* contains 160 sequences of noisy

poses estimated from videos in the H36M test split (since SOTA pose estimation methods
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are trained on H36M’s training split). * indicates the removal of sequences containing

human-chair interaction.

Metrics. We use a series of pose-based and physics-based metrics to evaluate our motion

imitation performance. We report the success rate (Succ) as in UHC [229], deeming imitation

unsuccessful when, at any point during imitation, the body joints are on average > 0.5m

from the reference motion. Succ measures whether the humanoid can track the reference

motion without losing balance or significantly lags behind. We also report the root-relative

mean per-joint position error (MPJPE) Empjpe and the global MPJPE Eg-mpjpe (in mm),

measuring our imitator’s ability to imitate the reference motion both locally (root-relative)

and globally. To show physical realism, we also compare acceleration Eacc (mm/frame2)

and velocity Evel (mm/frame) difference between simulated and MoCap motion. All the

baseline and our methods are physically simulated, so we do not report any foot sliding or

penetration.

7.4.1 Motion Imitation

Motion Imitation on High-quality MoCap. Table7.1 reports our motion imitation

result on the AMASS train, test, and H36M-Motion* dataset. Comparing with the baseline

with RFC, our method outperforms it on almost all metrics across training and test

datasets. On the training dataset, PHC has a better success rate while achieving better or

similar MPJPE, showcasing its ability to better imitate sequences from the training split.

On testing, PHC shows a high success rate on unseen MoCap sequences from both the

AMASS and H36M data. Unseen motion poses additional challenges, as can be seen in the

larger per-joint error. UHC trained without residual force performs poorly on the test set,

showing that it lacks the ability to imitate unseen reference motion. Noticeably, it also

has a much larger acceleration error because it uses high-frequency jitter to stay balanced.

Compared to UHC, our controller has a low acceleration error even when facing unseen

motion sequences, benefiting from the energy penalty and motion prior. Surprisingly, our

keypoint-based controller is on par and sometimes outperforms the rotation-based one. This

validates that the keypoint-based motion imitator can be a simple and strong alternative to

the rotation-based ones.

Motion Imitation on Noisy Input from Video. We use off-the-shelf pose estima-

tors HybrIK [199] and MeTRAbs [358] to extract joint rotation (HybrIK) and keypoints

(MeTRAbs) using images from the H36M test set. As a post-processing step, we apply

a Gaussian filter to the extracted pose and keypoints. Both HyBrIK and MeTRAbs are
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per-frame models that do not use any temporal information. Due to depth ambiguity,

monocular global pose estimation is highly noisy [358] and suffers from severe depth-wise

jitter, posing significant challenge to motion imitators. We find that MeTRAbs outputs

better global root estimation p̃0
t , so we use its p̃0

t combined with HybrIK’s estimated joint

rotation θ̃t (HybrIK + Metrabs (root)). In Table7.2, we report our controller and baseline’s

performance on imitating these noisy sequences. Similar to results on MoCap Imitation,

PHC outperforms the baselines by a large margin and achieves a high success rate (∼ 90%).

This validates our hypothesis that PHC is robust to noisy motion and can be used to drive

simulated avatars directly from videos. Similarly, we see that keypoint-based controller

(ours-kp) outperforms rotation-based, which can be explained by 1) estimating 3D keypoint

directly from images is an easier task than estimating joint rotations, so keypoints from

MeTRABs are of higher quality than joint rotations from HybrIK; 2) our keypoint-based

controller is more robust to noisy input as it has the freedom to use any joint configuration

to try to match the keypoints.

Ablations. Table7.3 shows our controller trained with various components disabled.

We perform ablation on the noisy input from H36M-Test-Image* to better showcase the

controller’s ability to imitate noisy data. First, we study the performance of our controller

before training to recover from fail-state. Comparing row 1 (R1) and R2, we can see that

relaxed early termination (RET) allows our policy to better use the ankle and toes for

balance. R2 vs R3 shows that using MCP directly without our progressive training process

boosts the network performance due to its enlarged network capacity. However, using the

PMCP pipeline significantly boosts robustness and imitation performance (R3 vs. R4).

Comparing R4 and R5 shows that PMCP is effective in adding fail-state recovery capability

without compromising motion imitation. Finally, R5 vs. R6 shows that our keypoint-based

imitator can be on-par with rotation-based ones, offering a simpler formulation where only

keypoints is needed. For additional ablation on MOE vs. MCP, number of primitives, please

refer to the supplement.

Real-time Simulated Avatars. We demonstrate our controller’s ability to imitate

pose estimates streamed in real-time from videos. Fig.7.4 shows a qualitative result on a

live demonstration of using poses estimated from an office environment. To achieve this,

we use our keypoint-based controller and MeTRAbs-estimated keypoints in a streaming

fashion. The actor performs a series of motions, such as posing and jumping, and our

controller can remain stable. Fig.7.4 also shows our controller’s ability to imitate reference

motion generated directly from a motion language model MDM [371]. We provide extensive

qualitative results in our supplementary materials for our real-time use cases.
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Table 7.3: Ablation on components of our pipeline, performed using noisy pose estimate
from HybrIK + Metrabs (root) on the H36M-Test-Video* data. RET: relaxed early
termination. MCP: multiplicative control policy. PNN: progressive neural networks.

H36M-Test-Video*

RET MCP PNN Rotation Fail-Recover Succ ↑ Eg-mpjpe ↓ Empjpe ↓

✗ ✗ ✗ ✓ ✗ 51.2% 56.2 34.4
✓ ✗ ✗ ✓ ✗ 59.4% 60.2 37.2
✓ ✓ ✗ ✓ ✗ 66.2% 59.0 38.3
✓ ✓ ✓ ✓ ✗ 86.9% 53.1 33.7

✓ ✓ ✓ ✓ ✓ 88.7% 55.4 34.7
✓ ✓ ✓ ✗ ✓ 90.0% 55.8 41.0

Table 7.4: We measure whether our controller can recover from the fail-states by generating
these scenarios (dropping the humanoid on the ground & far from the reference motion)
and measuring the time it takes to resume tracking.

Fallen-State Far-State Fallen + Far-State

Method Succ-5s ↑ Succ-10s ↑ Succ-5s ↑ Succ-10s ↑ Succ-5s ↑ Succ-10s ↑

Ours 95.0% 98.8% 83.7% 99.5% 93.4% 98.8%
Ours-kp 92.5% 94.6% 95.1% 96.0% 79.4% 93.2%

7.4.2 Fail-state Recovery

To evaluate our controller’s ability to recover from fail-state, we measure whether our

controller can successfully reach the reference motion within a certain time frame. We

consider three scenarios: 1) fallen on the ground, 2) far away from reference motion, and 3)

fallen and far from reference. We use a single clip of standing-still reference motion during

this evaluation. We generate fallen-states by dropping the humanoid on the ground and

applying random joint torques for 150 time steps. We create the far-state by initializing the

humanoid 3 meters from the reference motion. Experiments are run randomly 1000 trials.

From Tab.7.4 we can see that both of our keypoint-based and rotation-based controllers

can recover from fall state with high success rate (> 90%) even in the challenging scenario

when the humanoid is both fallen and far away from the reference motion. For a more

visual analysis of fail-state recovery, see our supplementary videos.

7.5 Discussions

Limitations. While our purposed PHC can imitate human motion from MoCap and noisy

input faithfully, it does not achieve a 100% success rate on the training set. Upon inspection,
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we find that highly dynamic motions such as high jumping and back flipping are still

challenging. Although we can train single-clip controller to overfit on these sequences (see

the supplement), our full controller often fails to learn these sequences. We hypothesize that

learning such highly dynamic clips (together with simpler motion) requires more planning

and intent (e.g.,running up to a high jump), which is not conveyed in the single-frame pose

target q̂t+1 for our controller. The training time is also long due to our progressive training

procedure. Furthermore, to achieve better downstream tasks, the current disjoint process

(where the video pose estimator is unaware of the physics simulation) may be insufficient;

tighter integration with pose estimation [230, 460] and language-based motion generation

[463] is needed.

Conclusion and Future Work. We introduce Perpetual Humanoid Controller, a general

purpose physics-based motion imitator that achieves high quality motion imitation while

being able to recover from fail-states. Our controller is robust to noisy estimated motion

from video and can be used to perpetually simulate a real-time avatar without requiring reset.

Future directions include 1) improving imitation capability and learning to imitate 100% of

the motion sequences of the training set; 2) incorporating terrain and scene awareness to

enable human-object interaction; 3) tighter integration with downstream tasks such as pose

estimation and motion generation, etc..
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Function TrainPPO(π, Q̂(k), D, V, R):
1 while not converged do
2 M ← ∅ initialize sampling memory
3 while M not full do

4 q̂1:T ← sample motion from Q̂
5 for t← 1...T do
6 st ← (spt , s

g
t ) ;

7 at ∼ π(at|st)
8 st+1 ← T (st+1|st,at) // simulation

1010 rt ←R(st, q̂t+1)
1212 store (st,at, rt, st+1) into memory M

13 P(k),V ← PPO update using experiences collected in M
14 D ← Discriminator update using experiences collected in M

return π

Input: Ground truth motion dataset Q̂;

15 D, V , Q̂
(1)
hard ← Q̂ // Initialize discriminator, value function, and dataset

16 for k ← 1...K do

17 Initialize P(k) // Lateral connection/weight sharing

18 P(k) ← TrainPPO(P(k), Q̂
(k)
hard, D, V, Rimitation)

19 Q̂
(k+1)
hard ← eval( P(k), Q̂(k) )

20 P(k) ← freeze P(k)

21 P(F ) ← TrainPPO(P(F ), Qloco, D, V, Rrecover) // Fail-state Recovery

22 πPHC ← {P(1) · · ·P(K),P(F ),C}
23 πPHC ← TrainPPO(πPHC, Q̂, D, V, {Rimitation,Rrecover}) // Train Composer

algorithm 3: Learn Progressive Multiplicative Control Policy
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Chapter 8

Language-Guided Human Motion

Generation in Simulated Scenes

Put the book to 
the top shelf

Play video games 
for a while

Lean back
and watch TV

Lean forward 
and watch TV

Lie on the bed, 
knees up

UniHSI

Multi-obj
Interaction

Diverse Interactions
with the same object

Unified and Long-horizon Control
With Language Commands as Inputs

Fine-granularity 
Control

Figure 8.1: UniHSI facilitates unified and long-horizon control in response to natural
language commands, offering notable features such as diverse interactions with a
singular object, multi-object interactions and fine-granularity control.

8.1 Introduction

Human-Scene Interaction (HSI) constitutes a crucial element in various applications,

including embodied AI and virtual reality. Despite the great efforts in this domain
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8. Language-Guided Human Motion Generation in Simulated Scenes

to promote motion quality [134, 135, 150, 348, 349, 390, 489] and physical plausibility

[134, 135, 150, 348, 349, 390, 489], two key factors, versatile interaction control and the

development of a user-friendly interface, are yet to be explored before HSI can be put into

practical usage.

This paper aims to provide an HSI system that supports versatile interaction control

through language commands, one of the most uniform and accessible interfaces for users.

Such a system requires: 1) Aligning language commands with precise interaction execution,

2) Unifying diverse interactions within a single model to ensure scalability. To achieve this,

the initial effort involves the uniform definition of different interactions. We propose that

interaction itself contains a strong prior in the form of human-object contact regions. For

example, in the case of “lie down on the bed”, it can be interpreted as “first the pelvis

contacts the mattress of the bed, then the head contacts the pillow”. To this end, we

formulate interaction as ordered sequences of human joint-object part contact pairs, which

we refer to as Chain of Contacts (CoC). Unlike previous contact-driven methods, which are

limited to supporting specific interactions through manual design, our interaction definition

is generalizable to versatile interactions and capable of modeling multi-round transitions.

The recent advancements in Large Language Models have made it possible to translate

language commands into CoC. The structured formulation then can be uniformly processed

for the downstream controller to execute.

Following the above formulation, we propose UniHSI, the first Unified physical HSI

framework with language commands as inputs. UniHSI consists of a high-level LLM

Planner to translate language inputs into the task plans in the form of CoC and a low-

level Unified Controller for executing these plans. Combining language commands and

background information such as body joint names and object part layout, we harness prompt

engineering techniques to instruct LLMs to plan interaction step by step. We design the

TaskParser to support the unified execution. It serves as the core of the Unified Controller.

Following CoC, the TaskParser collects information including joint poses and object point

clouds from the physical environment, then formulates them into uniform task observations

and task objectives.

As illustrated in Fig. 8.1, the Unified Controller models whole-body joints and arbitrary

parts of objects in the scenarios to enable fine-granularity control and multi-object inter-

action. With different language commands, we can generate diverse interactions with the

same object. Unlike previous methods that only model a limited horizon of interactions, like

“sitting down”, we design the TaskParser to evaluate the completion of the current steps

and sequentially fetch the next step, resulting in multi-round and long-horizon transition
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control. The Unified control leverages the adversarial motion prior framework [287] that

uses a motion discriminator for realistic motion synthesis and a physical simulation [243] to

ensure physical plausibility.

Another impressive feature of our framework is the training is interaction annotation-

free. Previous methods typically require datasets that capture both target objects and the

corresponding motion sequences, which demand numerous laboring. In contrast, we leverage

the interaction knowledge of LLMs to generate interaction plans. It significantly reduces

the annotation requirements and makes versatile interaction training feasible. To this end,

we create a novel dataset named ScenePlan. It encompasses thousands of interaction plans

based on scenarios constructed from PartNet [258] and ScanNet [78] datasets. We conduct

comprehensive experiments on ScenePlan. The results illustrate the effectiveness of the

model in versatile interaction control and good generalizability on real scanned scenarios.

8.2 Related Works

Kinematics-based Human-Scene Interaction.. How to synthesize realistic human

behavior is a long-standing topic. Most existing methods focus on promoting the quality

and diversity of humanoid movements [18, 131, 278, 372, 436, 474, 481] but do not consider

scene influence. Recently, there has been a growing interest in synthesizing motion with

human-scene interactions, driven by its applications in various applications like embodied AI

and virtual reality. Many previous methods [134, 135, 150, 348, 349, 390, 401, 479, 489] use

data-driven kinematic models to generate static or dynamic interactions. These methods are

typically inferior in physical plausibility and prone to synthesizing motions with artifacts,

such as penetration, floating, and sliding. The need for additional post-processing to

mitigate these artifacts hinders the real-time applicability of these frameworks.

Physics-based Human-Scene Interaction.. Recent advances in physics-based methods

(e.g., [136, 171, 267, 287, 289] hold promise for ensuring physical realism through physics-

aware simulators. However, they have limitations: 1) They typically require separate policy

networks for each task, limiting their ability to learn versatile interactions within a unified

controller. 2) These methods often focus on basic action-based control, neglecting finer-

grained interaction details. 3) They heavily rely on annotated motion sequences for human-

scene interactions, which can be challenging to obtain. In contrast, our UniHSI redesigns

human-scene interactions into a uniform representation, driven by world knowledge from

our high-level LLM Planner. This allows us to train a unified controller with versatile
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Table 8.1: Comparative Analysis of Key Features between UniHSI and Preceding
Methods.

Methods
Unified

Interact.
Language

Input

Long
horizon
Transit.

Interact.
Annot.

free

Control
Joints

Multi-obj
Interact.

NSM [348] ✓ 3 (pelvis, hands) ✓
SAMP [134] 1 (pelvis)
COUCH [479] 3 (pelvis, hands) ✓

HUMANISE [401] ✓ ✓ -
ScenDiffuser [156] ✓ ✓ -

PADL [171] ✓ ✓ ✓ -
InterPhys [136] 4 (pelvis, head, hands)

Ours ✓ ✓ ✓ ✓ 15 (whole-body) ✓

interaction skills without the need for annotated motion sequences. Key feature comparisons

are in Tab. 8.1.

Languages in Human Motion Control.. Incorporating language understanding into

human motion control has become a recent research focus. Existing methods primarily focus

on scene-agnostic motion synthesis [63, 165, 370, 372, 472, 474, 481] [13]. Generating human-

scene interactions using language commands poses additional challenges because the output

movements must align with the commands and be coherent with the environment. Zhao

et al. [489] generates static interaction gestures through rule-based mapping of language

commands to specific tasks. Juravsky et al. [171] utilized BERT [89] to infer language

commands, but their method requires pre-defined tasks and different low-level policies for

task execution. Wang et al. [401] unified various tasks in a CVAE [442] network with a

language interface, but their performance was limited due to challenges in grounding target

objects and contact areas for the characters. Recently, there have been some explorations

on LLM-based agent control. Brohan et al. [38] uses fine-tuned VLM (Vision Language

Model) to directly output actions for low-level robots. Rocamonde et al. [319] employs

CLIP-generated cos-similarity as RL training rewards. In contrast, UniHSI utilizes large

language models to transfer language commands into the formation of Chain of Contacts

and design a robust unified controller to execute versatile interaction based on the structured

formation.
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Instruction: I would like to play video games for a while. After that, I will go to sleep.

Scene Information
Unlabeled 

Motion DatasetsChain of Contacts

LLMs

Step 1 Step 7

Environment

NextFetchUnified Controller

Train & Infer

Only Train 

Discriminator

Step 2 Step 3 Step 4 Step 5 Step 6

𝑠𝑡
𝑈
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𝑎𝑡

𝑟𝑡
𝐺

𝑠𝑡
𝐴

𝑟𝑡
𝑆

LLM Planner

Randomly Fetch

Pair 1, pelvis on seat surface
Pair 2, left hand on keyboard
Pair 3, right hand on keyboard

Step n:Play video games

Control Policy

<Pair 1 Obs.>
<Pair 2 Obs.>

…

<Pair 1 Reward>
<Pair 2 Reward>

… 

TaskParser

Figure 8.2: Comprehensive Overview of UniHSI. The entire pipeline comprises
two principal components: the LLM Planner and the Unified Controller. The LLM
Planner processes language inputs and background scenario information to generate
multi-step plans in the form of CoC. Subsequently, the Unified Controller executes
CoC step by step, producing interaction movements.

8.3 Methodology

As shown in Fig. 8.2, UniHSI supports versatile human-scene interaction control following

language commands. In the following subsections, we first illustrate how we design the

unified interaction formulation as CoC(Sec. 8.3.1). Then we show how we translate

language commands into the unified formulation by the LLM Planner (Sec. 8.3.2). Finally,

we elaborate on the construction of the Unified Controller (Sec. 8.3.3).

8.3.1 Chain of Contacts

The initial effort of UniHSI lies in the unified formulation of interaction. Inspired by

Hassan et al. [135], which infers contact regions of humans and objects based on the
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interaction gestures of humans, we propose a high correlation between contact regions

and interaction types. Further, interactions are not limited to a single gesture but involve

sequential transitions. To this end, we can universally define interaction as CoC C, with

the formulation as

C = {S1,S2, ...}, (8.1)

where Si is the ith contact step. Each step S includes several contact pairs. For each contact

pair, we control whether a joint contacts the corresponding object part and the direction

of the contact. We construct each contact pair with five elements: an object o, an object

part p, a humanoid joint j, the contact type c of j and p, and the relative direction d from

j to p. The contact type includes “contact”, “not contact”, and “not care”. The relative

direction includes “up”, “down”, “front”, “back”, “left”, and “right”. For example, one

contact unit {o, p, j, c, d} could be {chair, seat surface, pelvis, contact, up}. In this way, we

can formulate each S as

S = {{o1, p1, j1, c1, d1}, {o2, p2, j2, c2, d2}, ...}. (8.2)

CoC is the output of the LLM Planner and the input of the Unified Controller.

8.3.2 Large Language Model Planner

We leverage LLMs as our planners to infer language commands L into manageable plans

C. As shown in Fig. 8.3, the inputs of the LLM Planner include language commands L,

background scenario information B, humanoid joint information J together with pre-set

instructions, rules and examples. Specifically, B includes several objects O and their optional

spatial layouts. Each object consists of several parts P, i.e.,, a chair could consist of arms,

the back, and the seat. The humanoid joint information is pre-defined for all scenarios. We

use prompt engineering to combine these elements together and instruct LLMs to output

task plans. By modifying instructions in the prompts, we can generate specified numbers

of plans for diverse ways of interactions. We can also let LLMs automatically generate

plausible plans given the scenes. In this way, we build our interaction datasets to train and

evaluate the Unified Controller.

148



8. Language-Guided Human Motion Generation in Simulated Scenes

8.3.3 Unified Controller

The Unified Controller takes multi-step plans C and background scenarios in the form

of meshes and point clouds as input and outputs realistic movements coherent to the

environments.

Preliminary.. We build the controller upon AMP [287]. AMP is a goal-conditioned

reinforcement learning framework incorporated with an adversarial discriminator to model

the motion prior. Its objective is defined by a reward function R(·) as

R(st,at, st+1,G) = wGRG(st,at, st+1,G) + wSRS(st, st+1). (8.3)

The task reward RG defines the high-level goal G an agent should achieve. The style reward

RS encourages the agent to imitate low-level behaviors from motion datasets. wG and wS

are empirical weights of RG and RS , respectively. st, at, st+1 are the state at time t, the

action at time t, the state at time t+ 1, respectively. The style reward RS is modeled using

an adversarial discriminator D, which is trained according to the objective:

arg min
D

−EdM(st,st+1)

[
log
(
D(sAt , s

A
t+1)

)]
− Edπ(s,st+1)

[
log
(
1−D(sA, sAt+1)

)]
+wgp EdM(s,st+1)

[∣∣∣∣∣∣∇ϕD(ϕ)
∣∣∣ϕ=(sA,sAt+1)

∣∣∣∣∣∣2] , (8.4)

where dM(s, st+1) and dπ(s, st+1) denote the likelihood of a state transition from st

to st+1 in the dataset M and the policy π respectively. wgp is an empirical coefficient

to regularize gradient penalty. sA = Φ(s) is the observation for discriminator. The style

reward rS = RS(·) for the policy is then formulated as:

RS(st, st+1) = −log(1−D(sAt , s
A
t+1)). (8.5)

We adopt the key design of motion discriminator for realistic motion modeling. In our

implementation, we feed 10 adjacent frames together into the discriminator to assess the

style. Our main contribution to the controller parts lies in unifying different tasks. As

shown in the left part of Fig. 8.4 (a), AMP [287], as well as most of the previous methods

[171, 490], design specified task observations, task objectives, and hyperparameters to train

task-specified control policy. In contrast, we unify different tasks into Chains of Contacts

and devise a TaskParser to process the uniform representation.
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Instruction: I want to play video games for a while, then go to sleep.

[start of background Information] The room has OBJECTS: [bed, chair, table, laptop]. The [OBJECT: 

laptop] is upon the [OBJECT: table] …The [OBJECT: bed] has PARTS: [pillow, mattress]… The 

human has JOINTS: [pelvis, left hip, left knee, left foot… [end of background Information]

Given the instruction and background information, generate 1 task plan according to the following rules 

and examples. [start of  rules]1. Each task plan should be composite into detailed steps.

2. Each step should contain meaningful joint-part pairs…[end of rules] [start of examples][end of examples]

Step 1: Get close to the chair.

Step 2: Sit on the chair.

Pair 1: {chair, seat surface, 

pelvis, contact, up}.

Step 3: Play video games.

…

Figure 8.3: The Procedure for Translating Language Commands into Chains of
Contacts.

TaskParser.. As the core of the Unified Controller, the TaskParser is responsible for

formulating CoC into uniform task observations and task objectives. It also sequentially

fetches steps for multi-round interaction execution.

Given one specific contacting pair {o, p, j, c, d}, for task observation, the TaskParser

collects the corresponding position vj ∈ R3 of the joint j, and point clouds vp ∈ Rm×3 of

the object part p from the simulation environment, where m is the point number of point

clouds. It selects the nearest point vnp ∈ vp from vp to vj as the target point for contact.

We formulate task observation of the single pair as {vnp−vj , c, d}. For the task observation

in the network, we map c and d into digital numbers, but we still use the same notation for

simplicity. Combining these contact pairs together, we get the uniform task observations

sU = {{vnp1 − vj1, c1, d1}, {v
np
2 − vj2, c2, d2}, ..., {v

np
n − vjn, cn, dn}}.

The task reward rG = RG(·) is the summarization of all contact pair rewards:

RG =
∑
k

wkRk, k = 1, 2, ..., n. (8.6)

We model each contact reward Rk according to the contact type ck. When ck = contact,

the contact reward encourages the joint j to be close to the part p, satisfying the specified

direction d. When ck = notcontact, we hope the joint j is not close to the part p. If

ck = not care, we directly set the reward to max. Following the idea, the kth contact reward

Rk is defined as

Rk =


wdisexp(−wdk||dk||) + wdirmax(dkd̂k, 0), ck = contact

1− exp(−wdk||dk||), ck = not contact

1, ck = not care

(8.7)

where dk = vnp − vj indicates the kth distance vector, dk is the normalized unit vector of
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Design 1 Unified Interface

TaskParser

Unified PolicyDesign 3

Design 2

Model 1

Model 2

Model 3

Previous:
Isolated designs for different tasks

Ours: Unified designs
for all tasks

(b) Ego-centric Heightmap(a) Framework Comparison

Task 1

Task 2

Task 3

Figure 8.4: Design Visualization. (a) Our framework ensures a unified design
across tasks using the unified interface and the TaskParser. (b) The ego-centric height
map in a ScanNet scene is depicted by green dots, with darker shades indicating
greater height.

dk, d̂k is the unit direction vector specified by direction dk, and ck is the kth contact type.

wdis, wdir, wdk are corresponding weights. We set the scale interval of Rk as [0, 1] and use

exp to ensure it.

Similar to the formulation of contact reward, the TaskParser considers a step to be

completed if All k = 1, 2, ..., n satisfy: if ck = contact : ||dk|| < 0.1 and dkd̂k > 0.8, if

ck = not contact : ||dk|| > 0.1, if ck = not care, T rue.

Adaptive Contact Weights.. The formulation of 8.6 includes lots of weights to balance

different contact parts of the rewards. Empirically setting them requires much laboring and

is not generalizable to versatile tasks. To this end, we adaptively set these weights based

on the current optimization process. The basic idea is to give parts of rewards that are

hard to optimize high rewards while lowering the weights of easier parts. Given R1, R2, ...,

Rn, we heuristically set their weights to

wk =
1−Rk

n−
∑

k=1,2,...,nRk + e
, (8.8)

Ego-centric Heightmap.. The humanoid must be scene-aware to avoid collision when

navigating or interacting in a scene. We adopt similar approaches in Starke et al. [348], Wang

et al. [390], Won et al. [414] that sample surrounding information as the humanoid’s obser-

vation. We build1 a square ego-centric heightmap that samples the height of surrounding

objects (Fig. 8.4 (b)). It is important to extend our methods into real scanned scenarios

such as ScanNet [78] in which various objects are densely distributed and easily collide.
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Table 8.2: Performance Evaluation on the ScenePlan Dataset.

Source
Success Rate (%) ↑ Contact Error ↓ Success Steps

Simple Mid Hard Simple Mid Hard Simple Mid Hard

PartNet [258] 85.5 67.9 40.5 0.035 0.037 0.040 2.1 4.1 4.8
wo Adaptive Weights 21.2 5.3 0.1 0.181 0.312 0.487 0.7 1.2 0.0

wo Heightmap 61.6 45.7 0.0 0.068 0.076 - 1.8 3.4 0.0

ScanNet [78] 73.2 43.1 22.3 0.061 0.072 0.062 2.2 3.5 4.8
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Figure 8.5: Visual Examples Illustrating Tasks of Varying Difficulty Levels.

8.4 Experiments

Existing methods and datasets related to human-scene interactions mainly focus on short

and limited tasks [134, 136, 287, 401]. To the best of our knowledge, we are the first method

that supports arbitrary horizon interactions with language commands as input. To this end,

we construct a novel dataset for training and evaluation. We also conduct various ablations

with vanilla baselines and key components of our framework.

8.4.1 Datasets and Metrics

To facilitate the training and evaluation of UniHSI, we construct a novel ScenePlan dataset

comprising various indoor scenarios and interaction plans. The indoor scenarios are collected

and constructed from object datasets and scanned scene datasets. We leverage our LLM

Planner to generate interaction plans based on these scenarios. The training of our model

also requires motion datasets to train the motion discriminator, which constrains our agents

to interact in natural ways. We follow the practice of Hassan et al. [136] to evaluate the

performance of our method.
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ScenePlan.. We gather scenarios for ScenePlan from PartNet [258] and ScanNet [78]

datasets. PartNet offers indoor objects with fine-grained part annotations, ideal for LLM

Planners. We select diverse objects from PartNet and compose them into scenarios. For

ScanNet, which contains real indoor room scenes, we collect scenes and annotate key object

parts based on fragmented area annotations. We then employ the LLM Planner to generate

various interaction plans from these scenarios. Our training set includes 40 objects from

PartNet, with 5-20 plausible interaction steps generated for each object. During training,

we randomly choose 1-4 objects from this set for each scenario and select their steps

as interaction plans. The evaluation set consists of 40 PartNet objects and 10 ScanNet

scenarios. We construct objects from PartNet into scenarios either manually or randomly.

We generated 1,040 interaction plans for PartNet scenarios and 100 interaction plans for

ScanNet scenarios. These plans encompass diverse interactions, including different types,

horizons, and multiple objects.

Motion Datasets.. We use the SAMP dataset [134] and CIRCLE [10] as our motion

dataset. SAMP includes 100 minutes of MoCap clips, covering common walking, sitting,

and lying down behaviors. CIRCLE contains diverse right and left-hand reaching data. We

use all clips in SAMP and pick 20 representative clips in CIRCLE for training.

Metrics.. We follow Hassan et al. [136] that uses Success Rate and Contact Error

(Precision in Hassan et al. [136]) as the main metrics to measure the quality of interactions

quantitatively. Success Rate records the percentage of trials that humanoids successfully

complete every step of the whole plan. In our experiments, we consider a trial of n steps

to be successfully completed if humanoids finish it in n× 10 seconds. We also record the

average error of all contact pairs:

ContactError =
∑
i,ci ̸=0

eri/
∑
i,ci ̸=0

1, eri =

||dk||, ci = contact

min(0.3− ||dk||, 0). ci = not contact

(8.9)

We further record Success Steps, which denotes the average success step in task execution.

8.4.2 Performance on ScenePlan

We initially conducted experiments on our ScenePlan dataset. To measure performance in

detail, we categorize task plans into three levels: simple, medium, and hard. We classify

plans within 3 steps as simple tasks, those with more than 3 steps but with a single object

as medium-level tasks, and those with multiple objects as hard tasks. Simple task plans
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Table 8.3: Ablation Study on Baseline Models and Vanilla Implementations.

Methods
Success Rate (%) ↑ Contact Error ↓

Sit Lie Down Reach Sit Lie Down Reach

NSM - Sit [348] 75.0 - - 0.19 - -
SAMP - Sit [134] 75.0 - - 0.06 - -
SAMP - Lie Down[134] - 50.0 - - 0.05 -
InterPhys - Sit [136] 93.7 - - 0.09 - -
InterPhys - Lie Down[136] - 80.0 - - 0.30 -

AMP [287]-Sit 77.3 - - 0.090 - -
AMP-Lie Down - 21.3 - - 0.112 -
AMP-Reach - - 98.1 - - 0.016
AMP-Vanilla Combination (VC) 62.5 20.1 90.3 0.093 0.108 0.032

UniHSI 94.3 81.5 97.5 0.032 0.061 0.016

Table 8.4: UniHSI with different LLMs.

LLM Type ESR (%) ↑ PC (%) ↑

Human 73.2 -
w. GPT-3.5 35.6 49.1
w. GPT-4 57.3 71.9

typically involve straightforward interactions. Medium-level plans encompass more diverse

interactions with multiple rounds of transitions. Hard task plans introduce multiple objects,

requiring agents to navigate between these objects and interact with one or more objects

simultaneously. Examples of tasks are illustrated in Fig. 8.5.

As shown in Table 8.2, UniHSI performs well in simple task plans, exhibiting a high

Success Rate and low Error. However, as task plans become more diverse and complex,

the performance of our model experiences a noticeable decline. Nevertheless, the Success

Steps metric continues to increase, indicating that our model still performs well in parts of

the plans. It’s important to note that the scenarios in the ScenePlan test set are unseen

during training, and scenes from ScanNet exhibit a modality gap with the training set. The

overall performance on the test set demonstrates the versatile capability, robustness, and

generalization ability of UniHSI.

8.4.3 Ablation Studies

Key Components Ablation

Choice of LLMs for UniHSI.. We evaluated different Language Model (LM) choices

for the LLM Planner using 100 sets of language commands. We compared task plan

Execution Success Rate (ESR) and Planning Correctness (PC) among humans, GPT-
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(a) Visual comparisons on task performance (b) Comparisons on Success Rate v.s. Training Steps

Figure 8.6: Visual Ablations. (a) Our model exhibits superior natural and accurate
performance compared to baselines in tasks such as “Sit” and “Lie Down”. (b) Our
model demonstrates more efficient and effective training procedures.

3.5[265], and GPT-4[266] across 10 tests per plan. PC is evaluated by humans, with

choices of ”correct” and ”not correct”. GPT-4 outperformed GPT-3.5, but both LLMs

still lag behind human performance. Failures typically involved incomplete planning and

out-of-distribution interactions, like GPT-3.5 occasionally skipping transitions or generating

out-of-distribution actions like opening a laptop. While using more rules in prompts and

GPT-4 can mitigate these issues, errors can still occur.

Adaptive Weights.. Table 8.2 demonstrates that removing Adaptive Weights from our

controller leads to a substantial performance decline across all task levels. Adaptive Weights

are crucial for optimizing various contact pairs effectively. They automatically adjust

weights, reducing them for unused or easily learned pairs and increasing them for more

challenging pairs. This becomes especially vital as tasks become more complex.

Ego-centric Heightmap.. Removing the Ego-centric Heightmap results in performance

degradation, especially for difficult tasks. This heightmap is essential for agent navigation

within scenes, enabling perception of surroundings and preventing collisions with objects.

This is particularly critical for challenging tasks involving complex scenarios and numerous

objects. Additionally, the Ego-centric Heightmap is key to our model’s ability to generalize

to real scanned scenes.
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Design Comparison with Previous Methods

Baseline Settings.. We compared our approach to previous methods using simple

interaction tasks like “Sit,” “Lie Down,” and “Reach.” Direct comparisons are challenging

due to differences in training data and code unavailability for a closely related method

[134, 136, 348]. Thus we list the results from their papers and implement a simple version

of InterPhys [136]. We integrated key design elements from Hassan et al. [136] into our

baseline model [287] to ensure fairness. Task observations and objectives were manually

formulated for various tasks, following Hassan et al. [136], with task objectives expressed as:

RG =

0.7Rnear + 0.3Rfar, if distance > 0.5m

0.7Rnear + 0.3, otherwise
(8.10)

In this equation, Rfar encourages character movement toward the object, and Rnear

encourages specific task performance when the character is close, necessitating task-specific

designs.

We also created a vanilla baseline by consolidating multiple tasks within a single model.

We combined task observations from various tasks and included task choices within these

observations. We randomly selected tasks and trained them with their respective rewards

during training. This experiment involved a total of 70 objects (30 for sitting, 30 for lying

down, and 10 for reaching) with 4096 trials per task and random variations in orientation

and object placement during evaluation.

Quantitative Comparison.. In Table 8.3, UniHSI consistently outperforms or matches

baseline implementations across various metrics. The performance advantage is most

pronounced in complex tasks, especially the challenging “Lie Down” task. This improvement

stems from our approach of breaking tasks into multi-step plans, reducing task complexity.

Additionally, our model benefits from shared motion transitions among tasks, enhancing

its adaptability. Figure 8.6 (b) shows that our methods achieve higher success rates and

converge faster than baseline implementations. Importantly, the vanilla combination of

AMP [287] results in a noticeable performance drop in all tasks while our methods remain

effective. This difference is because the vanilla combination introduces interference and

inefficiencies in training, whereas our approach unifies tasks into consistent representations

and objectives, enhancing multi-task learning.

Qualitative Comparison.. In Figure 8.6 (a), we qualitatively visualize the performance

of baseline methods and our model. Our model performs more naturally and accurately

than the baselines in tasks like “Sit” and “Lie Down”. This is primarily attributed to the
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differences in task objectives. Baseline objectives (Eq. 8.10) model the combination of

sub-tasks, such as walking close and sitting down, as simultaneous processes. Consequently,

agents tend to perform these different goals simultaneously. For example, they may attempt

to sit down even if they are not in the correct position or throw themselves like a projectile

onto the bed, disregarding the natural task progression. On the other hand, our methods

decompose tasks into natural movements through language planners, resulting in more

realistic interactions.

8.5 Conclusion

UniHSI is a unified Human-Scene Interaction (HSI) system adept at diverse interactions and

language commands. Defined as Chains of Contacts (CoC), interactions involve sequences

of human joint-object part contact pairs. UniHSI integrates a Large Language Planner for

command translation into CoC and a Unified Controller for uniform execution. Compre-

hensive experiments showcase UniHSI’s effectiveness and generalizability, representing a

significant advancement in versatile and user-friendly HSI systems.
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Chapter 9

Static Hand-Object Grasp

Generation

9.1 Introduction

In this paper, we study generating hand-object grasps. Instead of fitting to a small set of

objects presented in 3D hand-object interaction datasets, we wish to generalize to diverse

object geometries. We build a joint diffusion model capable of generating the hand poses

either conditional to or jointly with the object shapes. The proposed method uses objects

in a pure geometric perspective instead of requiring language descriptions or category labels.

With access to limited hand-object interaction datasets, it learns an inclusive object shape

embedding by leveraging large-scale object shape datasets and generates the paired hand

and object in a grasp by denoising a joint latent representation.

Existing works [97, 224, 360] for hand-object grasp generation typically relies on datasets

with full-stack 3D annotations [97, 360, 441]. However, with the difficulty of capturing

3D object models and hand gestures, this area of research faces notorious limitations

of annotated data,e.g., only dozens of object shapes are available in a dataset [97, 360].

Moreover, existing datasets are designed for different hand parametric models [1, 164, 257,

322, 360, 393, 441], which prevents combining different data resources. The limited scale

of object annotations causes the method to overfit to biased object shapes and thus bad

generalizability of generating grasps on unseen objects.

On the other hand, human beings can transfer a grasping pattern to different objects

and make plausible grasping choices for an unseen object based on the object’s geometry.
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Object-Conditioned Grasp Generation Grasp-Conditioned Image GenerationObject and Grasp Joint Generation

Figure 9.1: Applications of our proposed method Joint Hand-Object Diffusion (JHOD).
Left: generating the hand grasp on an unseen object. Middle: jointly sampling a
combination of the hand and the object for a plausible grasp. Right: the generated
grasp can be used as guidance for generating photo-realistic grasping images using
existing image generation tools [3].

We call such ability universal grasp generation. We argue that the key to generating

the hand-object grasp universally is an inclusive object shape embedding, which is not

possible if we only train the object embedding with limited object shapes. Though full-stack

3D annotation is limited, we have large-scale 3D object datasets available. Therefore, in

this work, we aim to study if we can combine the large-scale 3D object datasets to help

hand-object grasp generation by jointly modeling hand and object representations in a

latent space. Specifically, our model can accept grasping data with partial supervision in

training, such as hand pose and object shape whichever is available, which significantly

increases the datasets it can use for learning. Our model can generate either the full 3D

grasping scenes with both the posed hand and object or a posed hand conditioned on

a given object geometry. We believe such a flexible hand-object interaction generation

ability without domain-specific auxiliary information makes one step forward for human-like

universal grasp generation.

Following such an intention, we propose our Joint Hand-Object Diffusion (JHOD)

model. It follows the latent diffusion model [320] (LDM) to encode and ensemble different

modalities into a latent space and then generate plausible samples by the probabilistic

denoising process [149]. To learn from more diverse objects, we construct the model by

leveraging the object shape encoding and decoding networks pre-trained on the large-scale

generic 3D object shape dataset [55]. As we aim to derive a universal grasp generation
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solution, we remove the category-specific information when constructing the latent code for

objects and encode the object shapes in a purely geometric fashion.

As the hand articulation and positions are always coupled to the object shape in hand-

object grasping, we design the latent diffusion to denoise the latent code from different

modalities as a whole. We decouple each modality representation to allow the model

training by fusing data from different resources with heterogeneous annotations. Therefore,

our method has independent encoder and decoder networks for different modalities and

can optimize the generation of each modality solely. Such a design solves the limitation

of object diversity in hand-object interaction datasets as we could leverage the data from

generic object shape datasets to tune the object generation part. The model is trained to

generate the hand part regarding the corresponding object shape embedding so an inclusive

object generation improves the corresponding hand grasp generation on diverse object

shapes. To achieve disentangled modality representations to boost training, we propose to

use asynchronous denoising schedulers for different modalities during noise diffusion and

denoising in training.

To conclude, we develop a joint hand-object grasp generation model to sample from

either joint distribution for both hand and object or the object-conditioned distribution for

hand generation. It has the advantage of incorporating training resources with different

annotations. By the qualitative and quantitative evaluations, our proposed method shows

a good performance for grasp generation in both unconditional and object-conditioned

settings. Thanks to the posterior generation learned from rich data resources, it shows

significantly better performance in generating grasp over out-of-domain object shapes,

which is critical for universal grasp generation. Considering that no published works have

supported the generation of both hand and object to form a grasp in an end-to-end fashion,

we believe our work is pioneering for the universal grasp generation task.

With the flexibility to generate both modalities in hand grasp, our model can facilitate

many downstream applications. The grasps are good references to generate photo-realistic

images with good geometry alignment and significantly fewer artifacts. We first generate

grasps in 3D and use them as conditional signals for image generation [3] can help produce

high-quality hand images with challenging gestures and view angles. We demonstrate using

grasp from our model as the condition improves grasp alignment on images and relieves

artifacts. Some examples of object-conditioned grasp generation, joint generation, and

image generation with grasp rendering are presented in Figure 9.1. The main contribution

of this work is to propose a generative model capable of generating hand grasp in either

unconditional or object-conditioned fashions and the corresponding strategy to enhance the
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performance with limited available 3D hand-object grasp annotations.

9.2 Related Works

Hand Grasp Generation. Modern generative models [149] are recently introduced into

hand grasp reconstruction [445] and generation. Hand grasp reconstruction asks for hand

grasp rendering aligned with images while hand grasp generation asks for hand grasp

visually or physically plausible. GrabNet [360] is a commonly used method for hand grasp

generation but it can hardly be generalized to diverse object shapes. HOIDiffusion [473]

uses the 3D hand grasp from GrabNet and an image diffusion model to generate hand-object

interaction images. AffordanceDiffusion [446] also studies the generation of hand-object

interaction for image synthesis. Instead of generating hand-object interaction images or

videos, we focus on improving hand-object interaction in 3D space. Many recent works

are based on diffusion models [73, 224, 448] or physics-based simulators [234, 429, 470].

Compared to existing works which typically require a given object [360, 446, 473, 495]

shape as input, we desire generating a hand grasp over a given object or generating both

the object and hand to form a plausible grasp.

Multi-Modal Generation. With the rise of diffusion models, multi-modal generation

has been extended in many areas, such as image+text generation [15] and audio+pixel

generation [325]. Our model can jointly generate the hand and object in a grasp, making

another type of multi-modal generation. A concurrent work UGG [224] studies to generate

both hand and object to form a grasp but it uses the ShadowHand parametric model to

leverage the large-scale synthetic ShadowHand grasping datasets [393] and the final results

are optimization-based instead of directly from the generative model. On the other hand,

another concurrent work G-HOP [448] builds a multi-modal hand-object grasp prior by

encoding object shape and hand poses into a unified latent space but a language prompt

is required to provide necessary conditional information. In this work, we focus on a

dual-modal latent diffusion model to generate the modalities of a 3D object and hand at

the same time without requiring optimization or auxiliary conditions. The hand grasp is

purely geometric-based. It allows more flexibility for downstream tasks, such as generating

photo-realistic images by using the rendering of generated 3D hand-object interaction as a

condition.
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Figure 9.2: The illustration of our proposed Joint Hand-Object Diffusion (JHOD).
We present the main modules of the model while removing the secondary modules
for simplicity. The optional object condition can turn the generation into object-
conditioned.

9.3 Method

In Section 9.3.1, we first provide the formal problem formulation. We then review the

related preliminary knowledge for methodology and data representation in Section 9.3.2.

Finally, we introduced our proposed method in Section 9.3.3.

9.3.1 Problem Formulation

An instance of hand-object grasp consists of a posed hand, denoted as H, and a posed

object, denoted as O. To generate a hand-object grasp unconditionally, we model the joint

distribution of hand and object:

{O,H} ∼ DΦ. (9.1)

Also, in the community of visual perception, animation, and robotics, people are interested

in generating hand grasp conditioned on certain objects, which can be formulated as

{H} ∼ DΦ|Og , (9.2)

where Og is a provided object shape. In the previous works, the unconditional generation

has been under-explored. The methods for conditional hand grasp generation are usually

required with no flexibility for object shape generation. They suffer from bad robustness

to different object shapes. This is because the existing datasets with 3D annotations of

both modalities are notoriously limited in covered object shapes due to the expansiveness
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of scanning the object shape and capturing the corresponding hand poses. These methods’

limitation is underestimated because the object shapes used in training and testing in

existing datasets share similar scales and geometries. In this work, we aim to solve both

unconditional and object-conditioned grasp generation by a single model. We also wish

to enhance the robustness of object shapes by deriving a more inclusive object embedding

which also improves the generalizability of the hand part generation.

9.3.2 Preliminaries

Latent Diffusion

Our method follows the latent diffusion models (LDM) [320, 343] to generate samples in

two modality spaces, i.e., articulable hands, and rigid objects. LDM diffuses and denoises

in a latent space instead of on the raw data representations.

To diffuse a data sample, given a clean latent code z0 from a data sample y ∼ Dy, i.e.,

z0 = E(y) ∼ Dz, we add noise following a Markov noise process:

q(zt|zt−1) = N (
√
αtzt−1, (1− αt)I), t ∈ [1, T ], (9.3)

where αt ∈ (0, 1) are constant hyper-parameters determined by the time step t and a

noise scheduler. Though the typical diffusion model [149] trains a denoiser to predict the

noise added per time step during the diffusion stage, there is another line of diffusion

models [304, 372] that learns to recover the clean data sample directly. The loss turns to

LLDM := Ez0∼Dz ,t∼[1,T ]

[
||z0 −GΦ(zt, t)||22

]
, (9.4)

requiring a generative model GΦ to predict a clean latent code conditioned to a noisy latent

code on a corresponding time step. We follow this paradigm of training diffusion models in

this work. Besides the diffusion model itself, we also need the conversion between the raw

data representation and the latent code. After recovering a clean code ẑ0, we can convert it

to the raw data representation by a decoder network X which is trained to be the inverse

of E , i.e., ideally X (z0) ∼ Dy. Therefore, there are three modules with learnable weights:

an encoder network E , a decoder network X , and the denoiser network GΦ.
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Modality Representations

Here we introduce the raw representations of the modalities involved in interrupting a

hand-object interaction.

Hand. We follow the MANO [322] parametric model to represent hands. Compared to

another parametric model ShadowHand [1], MANO is designed for animating non-rigid real

human hands instead of robotic hands thus a better fit for animation and photo-realistic

generalization tasks. However, its higher complexity causes difficulty in grasping data

synthesis. Therefore, there is no MANO-based hand grasping dataset as large-scale as

the synthetic ShadowHand-based datasets [393] yet. This prevents research on the joint

generation of MANO hands and objects in a straightforward supervised learning fashion.

In this work, we directly use MANO parameters as joint rotation angles, i.e. θ ∈ R48, and

the translation of hands th ∈ R3. We use constant mean shape parameters β0 = 010 during

linear blend skinning. The parameters of hands are concatenated and encoded by a hand

encoder EH to be the hand latent code yH ∈ R51.

Object. For object representation, we use the point cloud latent code as yO = h ∈ RN×4,

where N is the number of points. As the grasp is modeled in the object-centric frame, no

translation or orientation is required in the object pose and shape representation. This

convention is aligned with the definition of data in many hand-object grasp datasets, such

as OakInk [441].

Object Generation

The limited amount and high category-specific bias of the objects in hand-object interaction

(HOI) datasets prevent learning generating grasps robust and generalizable to diverse

object shapes. When training on these datasets only, the learned object embedding is

usually biased and overfit. By leveraging the large-scale object-only 3D datasets, we can

derive a more robust object encoding for the grasp generation than learning from the HOI

datasets solely. For the object encoding part, we borrow the point-cloud-based object shape

generation method LION [377]. Existing HOI generation methods can only learn object

shapes from HOI datasets, including only dozens of objects, while LION learns from a

much larger basis, i.e., more than 50,000 objects in ShapeNet [55]. LION generates objects

in two stages. In the first step, it derives a global latent code zG0 ∈ RDG from a posterior

distribution qϕ(zG0 |P) where P ∈ Ru×3 is the object point cloud. Then it samples a point

cloud latent h0 from a posterior qEO(h0|P, zG0 ). LION generates the object shape by a
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reverse process from sampled latent code

pEO,ψ,γ(P,h0, z
G
0 ) = pXO

(P|h0, z
G
0 )pψ(h0|zG0 )pγ(zG0 ), (9.5)

where XO is the decoder network, ψ is the generator of point cloud latent code and γ is

the distribution of global latent code. In this work, we remove the global latent code from

LION to consider the object shape from a purely geometric perspective. We encode and

decode the object between point clouds and latent code from the point cloud latent h0 only.

We convert the object generation part to

pEO,ψ′(P,h0) = pXO
(P|h0)pψ′(h0), (9.6)

where ψ′ is fine-tuned from ψ by replacing the global prior γ with a standard Gaussian.

Thanks to the pre-training from large-scale object datasets [55], we could use the weights

of EO and XO from LION directly. By freezing the encoder and decoder, we fine-tune the

object prior distribution with the object shapes from HOI datasets.

9.3.3 Joint Hand-Object Diffusion (JHOD)

We now introduce our proposed Joint Hand-Object Diffusion (JHOD). There are two main

goals. First, we would like to use the training data with heterogeneous annotations so that

we can go beyond the limited object shapes in HOI datasets. Second, we want a single

model capable of object-conditioned hand grasp generation and unconditional hand-object

joint generation. We present the overall illustration and key designs of our proposed method

in Figure 9.2.

Latent Codes for Different Modalities

For each modality, we have an MLP-based encoding network to convert the raw representa-

tion into latent codes:

zH0 = EH(yH), zO0 = EO(yO), (9.7)

with the dimensions zH0 ∈ R1×512 amd zO0 ∈ R4×512 . They are concatenated to be the final

latent code for the whole hand-object interaction configuration

z0 = zH0 ⊕ zO0 ∈ R5×512. (9.8)
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This design allows us to jointly process different modalities without unnecessary entangle-

ment. So we can train the model with partial modality supervision without corrupting the

parameters for other modalities.

Asynchronous Denoising Schedulers

We propose to generate either both hand and object or only the hand given an object

shape. To realize this, we need a certain degree of entanglement between the two modalities

as we need them to cooperate to form a valid grasp. However, we still desire certain

disentanglement so that we could supervise the training with partially annotated data,

e.g., 3D object shape data. In the usual fashion of organizing multi-modal latent codes in

latent diffusion models, the latent codes of different modalities always have the same scale

of noise corruption as they share the noise scheduler. In contrast, we desire that the two

modalities can be denoised with respect to an arbitrary level of noise in the other modality.

Therefore, we propose to use asynchronous denoising schedulers for this purpose during

training. Instead of using a single noise scheduler, we have two schedulers tH and tO to

control the noise patterns in the hand latent code and the object latent code respectively.

Following Equation (9.3) we derive the corrupted latent codes as

zHtH = ΠtH
t=1q(z

H
t |zHt−1), zOtO = ΠtO

t=1q(z
O
t |zOt−1), (9.9)

with the same time step range tO, tH ∈ [1, T ]. This design allows the diffusion to deal with

the noise in each modality separately. During training, it allows using object-only data to

supervise the object part only. During sampling, it allows the model to generate only the

hand given an object shape as the condition. Similar to Bao et al. [15], we will learn the

joint distribution for hand-object pairs and the marginal distribution for the hand at the

same time in an end-to-end fashion by manipulating the time schedulers.

Training and Sampling

Training. When training on HOI data samples, with the asynchronous noise schedulers,

we can derive the assembly of two corrupted latent codes as

ztH ,tO = zHtH ⊕ zOtO . (9.10)

Due to the element-wise property of MSE loss, we can calculate and back-propagate the

gradient to a certain part of the latent codes independently. We leverage this property to
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train the unconditional and conditional generation at the same time. To learn the joint

distribution, we apply the unconditional generation loss

Luncond. = Ez0∼DHOI ,{tH ,tO}∼[1,T ]

[
||z0 −GΦ(ztH ,tO , tH , tO)||22

]
, (9.11)

where DHOI is the distribution of the HOI datasets [360, 441]. We also train the model

to learn the object-conditioned grasp generation. Given an object latent code zO0 , we set

tO = 0 indicating that the object part is noise-free and serves as a condition to derive the

marginal distribution. The object-conditioned generation loss is thus

Lcond. = Ez0∼DHOI ,tH∼[1,T ]

[
||z0 −GΦ(ztH , tH)||22

]
, (9.12)

with ztH = zHtH ⊕ zO0 . The conditional and unconditional generation losses require uncor-

rupted and corrupted object latent codes respectively. In practice, we combine these two

training objectives in a 1:1 ratio for a single draw of training data batch. This training

strategy is similar to the classifier-free guidance [148] for diffusion model training. However,

the optional condition (object) exists in the input and output instead of in an independent

condition vector.

Finally, we could leverage the large-scale 3D object shape datasets to train the object

distribution only. We select object samples from both HOI datasets DHOI and object-only

datasets DO. The loss turns to

Lobj. = EzO0 ∼DO∪DHOI ,tO∼[1,T ]

[
||z0 −GΦ(ztO , tO)||22

]
, (9.13)

The latent codes only take the object part as the variable:

z0 = ϵ⊕ zO0 , ztO = ϵ⊕ zOtO , s.t. ϵ ∼ N (0, I). (9.14)

Obviously, the gradient only influences the object-related parts while keeping the hand part

as-is. During training, the object encoder and decoder networks are pre-trained on the

ShapeNet [55] and frozen. All other encoder, decoder, and denoiser networks are trained

end to end.

Similar to the proximity sensor features [363] and the Grasping Filed [175], we use

a distance field to help capture the relation between the hand and the object. Since we

eliminate the requirement of object templates to accommodate more general datasets, we

can not define the field using object keypoints [97] or templated vertices. Instead, we define
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the distance field as the vectors between each hand joint and the 10 closest points in the

object points. Therefore, we have the distance field as yf ∈ R16×30. When the data sample

is drawn from HOI datasets, we would also supervise the distance field calculated from the

recovered hand gesture and object shape:

Ldistance = ||yf − ŷf ||22, (9.15)

Besides supervision of the raw MANO parameters for hand, we also supervise the joint

position by the loss

Lhand xyz = ||LBS(yH)− LBS(ŷH)||22, (9.16)

where LBS(·) is the linear blend skinning process by MANO parametric model to derive

the joint kinematic positions. With all the losses introduced, we could train the diffusion

model using data with heterogeneous annotations and for unconditional and conditional

generation at the same time. The overall loss is

L = 1z0∼DHOI
(Luncond. + Lcond. + Ldistance + Lhand xyz) + Lobj.. (9.17)

Sampling. We follow the canonical progressive denoising process for diffusion models in

the sampling stage. To sample for joint (unconditional) HOI generation, we synchronize

the schedulers tH = tO = t. Similar to Tevet et al. [372], at each step t, we predict a

clean sample by ẑ0 = GΦ(zt, tH , tO) from the corrupted code zt and then noise it back

to zt−1. During sampling for object-conditioned grasp generation, we keep tO = 0 and

ztH = zHtH ⊕ z
O
0 . Then the denoiser predicts ẑ0 = GΦ(ztH , tH) and then noise it back to

zt−1. In either the unconditional or the conditional generation, we repeat the process above

along t = T −→ 1 until the final ẑ0 is achieved after T iterations.

9.4 Experiments

9.4.1 Setups

Datasets. We combine the data from multiple resources to train the model. GRAB [360]

contains human full-body poses together with 3D objects. We extract the hands from the

full-body annotations. For OakInk [441], we use the official training split for training. We

also use the contact-adapted synthetic grasp from the OakInk-Shape dataset for training.

Besides the hand-object interaction data, we also leverage the rich resources of 3D object
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Table 9.1: Quantitative evaluation of grasp generation. All models are trained using
GRAB and OakInk-shape training set. We evaluate the methods on the objects from
OakInk-test set, objects generated by JHOD, and objects from the ARCTIC dataset.

Objects Methods FID ↓ Pene.
Dep.

↓ Intsec.
Vol. ↓

Sim. Disp.
Mean ↓

User
Scor.↑

OakInk-test
GrabNet 26.96 0.70 11.93 3.14 3.80
GrabNet-Refine 25.26 0.63 4.44 2.78 4.00
JHOD 20.73 0.32 3.87 2.52 4.87

ARCTIC
GrabNet-Refine 37.23 1.22 14.20 12.17 1.33
JHOD 23.92 0.42 4.55 2.91 4.13

Self-generated
GrabNet-Refine - 1.17 13.82 10.03 1.33
JHOD (uncond.) - 0.51 6.71 7.13 3.53

Table 9.2: The ablation study about the impact of training data on the generation
quality over unseen objects from ARCTIC [97]. Adding more training data consistently
boosts the generation quality on unseen objects.

OakInk-Shape GRAB
Object-only

Data
FID ↓ Pene.

Dep.
↓ Intsec.

Vol. ↓
Sim. Disp.
Mean ↓

User
Scor.↑

✓ 27.29 0.51 4.89 3.22 3.87
✓ ✓ 25.31 0.47 4.61 3.08 4.00
✓ ✓ ✓ 23.92 0.42 4.55 2.91 4.13

data to help train the object part in our model. The object data is also used to fine-tune

the LION prior distribution. Fine-tuning prevents improper object shapes from the original

distribution (pre-trained from ShapeNet [55]) such as sofas, chairs, and bookcases. We

combine the objects from GRAB, OakInk (both the objects from OakInk-Image with

grasp annotation and the objects from OakInk-shape without grasps), Affordpose [446] and

DexGraspNet [393] as the object data resource. We also leverage the DeepSDF [273] as

trained in Ink-base [441] to provide synthetic object data and include them in OakInk-Shape.

Data Pre-Processing. We follow the convention in OakInk-Shape to transform the hands

into the object-centric frame. For data from GRAB [360], we extract the MANO parameters

from its original SMPL-X [277] annotations. Then, we filter out the frames where the

right-hand mesh has no contact with the object in training. For the object representation,

we randomly sample 2048 points from mesh vertices to represent each object every time

we draw the object in both training and inference to avoid overfitting a fixed set of point

clouds. For the objects in the OakInk-Shape dataset, we sample the point clouds from the

object mesh surfaces uniformly instead of sampling from the vertices because the annotated

mesh vertices are too sparse on smooth surfaces.
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Table 9.3: The ablation study about the impact of training data on the generation
quality for joint generation of hand and object. Adding more data, either hand-obejct
grasp data or object-only data, improves the generation quality.

OakInk-Shape GRAB Object-only Data ↓ Pene.
Dep.

↓ Intsec.
Vol. ↓

Sim. Disp.
Mean ↓

User
Scor.↑

✓ 0.92 8.12 8.23 3.33
✓ ✓ 0.51 6.71 7.13 3.53
✓ ✓ ✓ 0.43 5.55 6.98 3.73

Table 9.4: Ablation about asynchronous denoising schedulers. We evaluate on the
generated object shapes by JHOD.

Asyn.
Pene.
Dep.

↓ Intsec.
Vol. ↓

Sim. Disp.
Mean ↓

0.57 6.52 7.88
✓ 0.43 5.55 6.98

Implementation. The DeepSDF in Ink [441] is trained per category to derive better

details and fidelity when interpolating object shapes. We use the DeepSDF to provide

synthetic object shapes. For the encoder network to transform modality features to latent

codes, we always use 2-layer MLP networks with a hidden dimension of 1024 and an

output dimension of 512. For the denoiser, we follow MDM [372] to use a transformer

encoder-only backbone-based diffusion network. After decoding the object latent code by

the LION decoder, we derive the point cloud set. For visualization purposes, we conduct

surface reconstruction from the generated object point cloud. Though advanced surface

reconstruction techniques such as some learned solver [282] can provide more details, this

part is not our focus and we wish to keep consistency for out-of-domain objects generated.

Therefore, we choose the classic Alpha Shape algorithm [95]. Without category labels or

other constraints, it is challenging to generate object shapes with highly carved details and

it is not our focus in this paper.

Baseline Methods There is no commonly adopted benchmark in the area of grasp

generation and some similar methods can follow different evaluation protocols. For example,

the provided evaluation protocol of G-HOP [448] is for grasp reconstruction instead of

generation and text description or object label is necessary for its generation mode which is

not required in our proposed method. On the other hand, another line of works, such as

UGG [224] and DexDiffuer [405] focus on grasp generation but within the domain of robotic

dexterous hand thus there is no trivial way to compare with their in the same setting. In

this work, we focus on hand grasp generation with only object shape as condition or without
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any condition. We select the widely adopted method GrabNet [360] as the baseline method

to compare with in this section. We also use its refined version GrabNet-Refine in some

certain comparisons.

Evaluation and Metrics. Unlike the reconstruction tasks where the ground truth is

available, it is difficult to do the quantitative evaluation for generation models. We hold

the objects from the OakInk-Shape test set and ARCTIC [97] dataset for quantitative

evaluations. Referring to the evaluation of image generation quality, we first measure

the quality of generated grasp by FID (Frechet Inception Distance) [146] between the

images rendered from the ground truth grasps and the generated grasps. We can not

directly calculate the FID score on generated 3D parameters as there is no commonly used

encoder for this purpose and implementing it ourselves can cause many ambiguities. We

also measure the model performance by directly checking the 3D asset quality. We follow

previous studies [439, 441] to use three metrics: (1) the penetration depth (Pene. Depth)

between hand and object mesh, (2) the solid intersection volume (Intsec. Vol.) between

them and (3) the mean displacement in simulation following [137]. Finally, we perform

a user study to measure the plausibility and the truthfulness of the generated grasps by

scoring (1-5). We invite 15 participants to rate the quality of batches of the mixture of 10

rendering of ground truth grasps and 10 generated grasps. The score 1 indicates “totally

fake and implausible” and 5 indicates “plausible enough to be real”. Each participant

evaluates by averaging the scores over 10 randomly selected batches.

9.4.2 Object-Conditioned Grasp Generation

Our method can generate visually plausible grasp configurations even though the model has

not seen these objects during training. We generate samples on the objects from GRAB

and OakInk test sets as shown in Figure 9.3 and Figure 9.4 . We perform the quantitative

evaluation on the objects unseen during training with the previously introduced metrics.

We follow the previous practice [441] to use the widely adopted GrabNet [360] and its

refined version GrabNet-refine [441] as the baseline models. We train the models on the

GRAB and OakInk-shape train splits. The results are shown in Table 9.1.

Compared to the baseline methods, our proposed method achieves better generation

quality per four metrics: FID, Mesh Penetration Depth, Intersection Volume, and Mean

Simulation Displacement. The performance advantages are demonstrated on objects from

the OakInk test set, generated by our method or ARCTIC dataset.

OakInk training set and training set contain similar objects though not the same. Such a
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toothbrushbinoculars mug wineglass camera

Figure 9.3: Generated samples on objects from GRAB [360] dataset.

Figure 9.4: Generated samples on objects from OakInk [441] dataset.

biased similarity between the training and test sets exists in many HOI datasets and conceals

the limitation of generating grasps on unseen objects. So we also test on the ARCTIC

dataset, which is more confidently out-of-distribution from training. GrabNet-Refine fails

to generate grasps with decent quality while the advantage of our method becomes more

significant. GrabNet-Refine’s generation quality is inferior to our method with a much

larger margin by all metrics. The experiment reveals that some existing methods, such as

GrabNet, face difficulty in generalizing to object shapes that are significantly different from

training data. On the other hand, our method learns more generalizable and diverse object

prior information and more universal grasp generation ability.
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9.4.3 Unconditional Grasp Generation

Our proposed method learns the joint distribution of the latent representation of hand and

object. It leverages large-scale object datasets to learn a sufficiently generalizable object

shape embedding. To measure the quality of unconditional hand-object grasp, the results

are shown in the last row in Table 9.1. The metric scores indicate that the unconditional

hand grasp generation quality is also good and close to the generation quality on ARCTIC

objects. Compared to the object-conditioned generated grasps from JHOD, the quality of

unconditional generation is inferior, which is in fact as expected. Here, we also provide

the evaluation results by GrabNet-Refine on the same set of objects generated by our

method for reference. And GrabNet-Refine fails to generalize to this set of unseen objects

again just as its failure on ARCTIC objects. Such failure of generalizability is previously

under-explored because the training/test splits of a HOI dataset usually contain objects

from certain categories, with similar scale, geometry, and affordance. The method trained

on the training split can learn significantly biased in-domain knowledge about the objects

in the test splits. To generate hand grasps on more out-of-domain object shapes would be

a challenge to all existing methods.

By designing the method capable of training with object-only data and disentangling

the modality representations in the latent diffusion, our method not only has the advantage

of generating the object and the hand grasp simultaneously but also achieves much better

robustness to generate grasps on out-of-domain objects.

9.4.4 Ablation Study

We now provide ablation studies to show the contributions of different resources to our

method’s final performance.

Ablation of grasp generation on unseen objects. To provide transparent experimental

conclusions, we ablate the training data on the model generation quality. We use the objects

from ARCTIC [97] to measure the conditional generation quality on unseen objects. The

quantitative evaluation results are shown in Table 9.2. Compared to using only OakInk-

Shape data for training, adding GRAB data and object shapes from Object-only datasets

both improves the generalization qualities. The improvement from extra GRAB data is

easy to explain as training with more HOI data improves the generalizability of the model

while it is interesting that adding the object-only datasets also boosts the performance. We

believe this is because the extra object data improves the robustness and generalizability of

the object encoding. It extends the latent representation expressiveness that the diffusion
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model learns to generate.

Ablation of unconditional generation quality. The ability to generate both hand

and object to form a grasp is another main contribution. We are interested in whether

it can benefit from the additional training data as well. We present the ablation study

in Table 9.3. Similar to the conditional generation ablation study results, the unconditional

generation quality also benefits from additional training data consistently. The metrics of

Pene. Dep., Intsec. Vol. and Sim. Disp. Mean indicate that the generated hand-object pair

improves plausibility along with adding more training data. The increasing user scoring

result suggests that the generated object and hand also become more and more visually

realistic along with adding more training data.

Ablation of synchronous denoising schedulers. As one of the main implementation

innovations of JHOD, we conduct an ablation about Asynchronous Denoising Schedulers

in Table 9.4. For the fairness of the comparison, we keep the curriculum of the training

the same by mixing data samples from different resources. Intuitively, we designed this

module to decouple the noise level in hand latent and object latent so that the model could

better use the data with heterogeneous annotations and learn to denoise a certain modality.

Without Asynchronous Denoising Schedulers, the noise diffusion and denoising time step of

the object part is the same as the hand latent code. It makes the training biased to the

HOI dataset where both modalities are available for supervision. Adding Asynchronous

Denoising Schedulers, the denoising is learned with more independence for the object part

and the hand part. The model can better learn object shape coding to generate hand

grasps. Therefore, when evaluating on the out-of-domain objects generated by JHOD, the

generation quality is improved as expected.

9.5 Conclusion

In this work, we propose a joint diffusion model to generate hand-object grasps. By encoding

the modalities of objects and hands into a unified latent space, we could generate grasps

either jointly or conditionally. We reveal the limitations of existing methods by using

limited HOI data for training and explore how to learn grasp generation generalizable to

more diverse objects. Our model benefits from data with partial annotation thus relieving

the limitation of full-stack annotated data. The generated grasps in both unconditional

and conditional settings are of good quality. We believe that the proposed method provides

a good exploration of learning generalizable and robust hand-object grasp generation with

limited full-stack annotated data.

177



9. Static Hand-Object Grasp Generation

9.6 More Results

9.6.1 Qualitative Results

We showcase the qualitative visualization results of our proposed method here. We select

the object shapes from GRAB and OakInk-Shape that are not used in training as the object

condition. The generated hand grasps are presented in Figure 9.5 and Figure 9.6. On the

same object or objects with similar shapes, we can observe different hand grasp patterns,

which are visually plausible. Given that these object shapes are unseen during training and

no text/category description is provided as an extra condition, we believe such grasping

generation is made from the model’s ability to generate grasping from a pure geometric

perspective of the object shape. Moreover, by sampling noise from the latent space, we could

generate the object shape and a corresponding hand grasp unconditionally. The results are

presented in Figure 9.7. We could notice the good plausibility of the generated hand-object

grasp. The hand pose and articulation are well adapted to the object shapes generated.

Compared to the object shapes from real-world scanning, the objects generated by our

method lack the same level of well carving. This is also related to the surface reconstruction

algorithm, i.e., Alpha Shape [95], which we leveraged to reconstruct mesh from point clouds.

Applying a more advanced surface reconstruction method can improve the details and

fidelity of the object shapes but that is out of the scope of this work. Moreover, as we study

the object shapes from a pure geometric perspective, we can’t use the surface reconstruction

arts that require category prior.

9.6.2 Grasp Diversity

Given a single object shape, we could generate a set of different grasps onto it. Though

diversity is expected to be constrained by the hand grasp data available in training, there

are some other implicit but more fundamental cues to help generate diverse hand grasp.

This underlying but fundamental constraint can be leveraged to enhance the generation

robustness over unseen objects if the feature of the object shape is sufficiently generalizable.

For example, the model can learn to avoid penetration between the object volume and the

hand shape and certain fingers should be close to the surface of objects to form a physically

valid grasp. We generate grasps with unseen objects from the OakInk-shape test set as

the condition in Figure 9.8. We observe some grasp patterns not provided in the training

set, for example, holding a dagger between two fingers. As the implicit concept of forming

a valid grasp is always conditioned to object shapes, our strategy of exposing the model
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toothpastebinoculars mug wineglass fryingpan camera

Figure 9.5: Samples of object-conditioned grasp generation on GRAB.

Figure 9.6: Samples of object-conditioned grasp generation on OakInk-Shape.

training to more diverse object shapes can help to learn grasp patterns on unseen and even

out-of-domain objects. We believe this is a key reason for making our method outstanding

when generating grasps on out-of-domain objects.

9.6.3 Dataset Statistics

Here we provide more details about the statistics of the datasets involved in our training and

evaluation in Table 9.5. The HOI datasets with deformable and articulable hand models,

i.e., MANO [322], face severe limitations of object resources. Combining the training set of

GRAB [360] and OakInk-Image [441] datasets still make just ∼100 objects. On the other

hand, AffordPose [164] and DexGraspNet [393] contain more object shapes but the different

choices of hand models make them hard to integrate with MANO-parameterized datasets.

Fortunately, we have the large-scale 3D object shape dataset ShapeNet [55] with more than
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Figure 9.7: Samples of the unconditional generation of hand grasp together with
objects.

Table 9.5: Statistics of the datasets. ShapeNet contains the largest number of object
assets. However, it is a generic object shape dataset, thus many included objects are
not proper for hand grasp. OakInk-Shape contains rich grasp and object data but
can not provide annotation for object transformation. We use the grasp data from
GRAB and the object data from AffordPose as the supplement during training.

Datasets #obj #grasp real/syn. hand model

ShapeNet 51,300 - real -
GRAB [360] 51 1.3k real MANO [322]
OakInk-Image [441] 100 49k real MANO [322]
OakInk-Shape [441] 1,700 - real + synthetic MANO [322]
AffordPose [164] 641 26k synthetic GraspIt [257]
DexGraspNet [393] 5,355 1.32M synthetic ShadowHand [1]

50,000 objects. We combine the objects from these datasets in the training for the object

part. They help to construct a more universal prior distribution for object generation and

the grasp posterior distribution.

9.6.4 Grasp-conditioned Image Generation

We demonstrate using JHOD as a creativity tool to generate 3D grasps and the corresponding

images. In Figure 9.9, we first use JHOD to sample interaction pairs of 3D hands and

objects. With the rendering of the 3D hand-object grasp as the input, we applied Adobe

Firefly [3], an existing tool to generate the images with the depth and edge reference of the
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Figure 9.8: Given a single object, our method is capable of generating different grasps
on it.
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3D pairs. The hand pose and the geometry provide guidance for Firefly to complement the

details given simple text prompts. In Figure 9.10, compared to grasping images authorized

purely by text prompts, images guided by JHOD’s output have more consistent gestures,

better-aligned object geometry and boundaries, and fewer hand artifacts. Therefore, with

the rise of text-to-image generation, our hand-object grasp generation model can serve as a

proxy to enhance the consistency among multiple instances and the visual plausibilities.

We also provide a closer look at their detailed in Figure 9.11 to compare the results with

and without the generated grasp as a proxy. At each row, the images are generated from

the same text prompt as shown at the bottom. There are two main benefits of generating

images conditioned to the grasp. It first allows a set of images with aligned hand and object

geometry and boundaries which can be useful for image and video editing. On the other

hand, even though the Adobe Firefly generator has shown a significant advantage over the

public Stable Diffusion in eliminating artifacts, we still observed many finger artifacts when

generating the images without a grasp condition. Fortunately, with the generated grasp,

including the object shape and the hand, as the condition, the image generator can produce

significantly fewer artifacts, especially artifact fingers, which have been a notorious issue in

image generation recently. We provided some zoomed-in examples at the bottom. Moreover,

compared to previous works using hand shapes to guide image generation [264, 446], we

could generate both the object and the hand. Therefore, we could use the whole scene of

hand-object interaction as the condition and thus enable more controllable details in the

generated image.

9.6.5 Failure cases

To provide a transparent evaluation of our proposed method, we still notice some failure

cases on the unseen objects from OakInk and GRAB datasets as shown in Figure 9.12.

There are in general three patterns of failures: (1) the hand and the object have no contact,

making the grasp physically implausible; (2) the hand skin is twisted or the pose is not

able to grasp the object in human common sense; (3) the mesh of object and hand has

penetration and intersection. There can be some reasons that make these happen. First

of all, we do not explicitly supervise the contact between the object surface and hand as

this is a rare annotation on many data sources, and calculating it can be computationally

expensive. On the other hand, some implausible grasps have pretty good visual quality as

shown in the middle two columns in the figure. However, according to our life experience,

we know that the grasp is not physically plausible to manipulate the object. This has gone
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Holding a saki bottle Holding a camera Holding a small vase Holding a big bottle Holding a milk box

Figure 9.9: Samples of images generated by Adobe Firefly with synthesized hand
grasp by our proposed method as the condition.

Prompt:

Holding a lemon

Not Grasp-conditioned Grasp-conditioned

Prompt:

Pouring soda from a bottle

Figure 9.10: Using the same text-prompted image generation tool, we synthesize
photo-realistic images with and without the grasp as the geometry condition. The
grasp-conditioned image generation can have broad applications in image and video
editing.

183



9. Static Hand-Object Grasp Generation

not grasp-conditioned images with artifact fingers

Not Grasp-conditioned Grasp-conditioned

Holding a milk box

Holding a saki bottle

Receive a huge pencil

Holding a Whiskey flask

Hand over a vegetable

Holding a small vase

Figure 9.11: More examples of generating images of grasps with and without the
condition from our generated grasps by the same image generation tool. Without
a plausible grasp as the condition, there are more frequent unrealistic artifacts in
the generated images, especially the number and pose of fingers. We provide some
zoomed-in bad examples at the bottom.
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no contact unplausible pose mesh penetration

Figure 9.12: Bad samples of conditional grasp generation given objects from GRAB
(gray) and OakInk-Shape (green).

beyond our scope in this work as we do not have any physics-aware supervision such as the

physical demonstration in a physics simulator. Finally, we use the object point cloud to

represent object shapes to allow grasp generation on universal objects without a template,

this causes the potential penetration between object mesh and hand mesh as the object

mesh is ambiguous and unknown to our method. Despite the failure cases, we note that

they make only a very small portion of the generated samples (less than 10% by a rough

estimation). We show them here for transparency and to help discussion about future works

in this area.
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Chapter 10

Whole-Body Motion Generation in

Physics with Object Interaction

10.1 Introduction

Given an object mesh, we aim to control a simulated humanoid equipped with two dexterous

hands to pick up the object and follow plausible trajectories, as shown in Fig.5.1. This

capability could be broadly applied to creating human-object interactions for animation

and AV/VR, with potential extensions to humanoid robotics [142]. However, controlling a

simulated humanoid with dexterous hands for precise object manipulation poses significant

challenges. The bipedal humanoid must maintain balance to enable detailed movements of

the arms and fingers. Moreover, interacting with objects requires forming stable grasps that

accommodate diverse object shapes. Combining these demands with the inherent difficulties

of controlling a humanoid with a high degree of freedom (e.g.,153 DoF) significantly

complicates the learning process.

These challenges have led previous methods of simulated grasping to employ a disem-

bodied hand [71, 81, 303, 432] to grasp and transport. While this approach can generate

physically plausible grasps, employing a floating hand compromises physical realism: the

hands’ root position and orientation are controlled by invisible forces, allowing it to remain

nearly perfectly stable during grasping. Moreover, studying the hand in isolation does not

accurately reflect its typical use, which is when it is attached to a mobile and flexible body.

A naive approach to supporting hands is to use existing full-body motion imitators [233]

to provide body control and train additional hand controllers for grasping. However, the
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presence of a body introduces instability, limits hand movement, and requires synchronizing

the entire body to facilitate finger motion. State-of-the-art (SOTA) full-body imitators

also have an average 30mm tracking error for the hands, which can cause the humanoid

to miss objects. Due to the above challenges, previous work that studies full-body object

manipulations often limits its scope to only one sequence of object interaction [396] and

encounters difficulties in trajectory following [36], even when trained with highly specialized

motion priors.

Another challenge of grasping is the diversity of the object shapes and trajectories.

Each object may require a unique type of grasping, and scaling to thousands of different

objects often requires training procedures such as generalist-specialist training [432] or

curriculum [386, 487]. There is also infinite variability in potential object trajectories, and

each trajectory may necessitate precise full-body coordination. Thus, prior work typically

focuses on simple trajectories, such as vertical lifting [71, 432], or on learning a single, fixed,

and pre-recorded trajectory per policy [81]. The flexibility with which humans manipulate

objects to follow various trajectories while holding them remains unobtainable for current

humanoids, even in simulations.

In this work, we introduce a full-body and dexterous humanoid controller capable of

picking up and following diverse object trajectories using Reinforcement Learning (RL). Our

proposed method, Omnigrasp, presents a scalable approach that generalizes to unseen object

shapes and trajectories. Here, “Omni” refers to following any trajectory in all directions

within a reasonable range and grasping diverse objects. Our key insight lies in using a

pretrained universal dexterous motion representation as the action space. Directly training

a policy on the joint actuation space using RL results in unnatural motion and leads to a

severe exploration problem. Exploration noise in the torso can lead to a large deviation

in the location of the arm and wrist as the noise propagates through the kinematic chain.

This can lead to the humanoid quickly knocking the object away, which hinders training

progress. Prior work has explored using a separate body and hand latent space trained using

adversarial learning [36]. However, as the adversarial latent space can only cover small-scale

and curated datasets, these methods do not achieve a high grasping success rate. The

separation of hands and body motion prior also adds complexity to the system. We propose

using a unified universal and dexterous humanoid motion latent space [232]. Learned from a

large-scale human motion database [241], our motion representation provides a compact and

efficient action space for RL exploration. We enhance the dexterity of this latent space by

incorporating articulated hand motions into the existing body-only human motion dataset.

Equipped with a universal motion representation, our humanoid controller does not
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require any specialized interaction graph [396, 488] to learn human-object interactions.

Our input to the policy consists only of object and trajectory-following information and is

devoid of any grasp or reference body motion. For training, we use randomly generated

trajectories and do not require paired full-body human-object motion data. We also identify

the importance of pre-grasps [81] (the hand pose right before grasping) and utilize it in our

reward design. The resulting policy can be directly applied to transport new objects without

additional processing and achieve a SOTA success rate on following object trajectories

captured by Motion Capture (MoCap).

To summarize, our contributions are: (1) we design a dexterous and universal humanoid

motion representation that significantly increases sample efficiency and enables learning

to grasp with simple yet effective state and reward designs; (2) we show that leveraging

this motion representation, one can learn grasping policies with synthetic grasp poses and

trajectories, without using any paired full-body and object motion data. (3) we demonstrate

the feasibility of training a humanoid controller that can achieve a high success rate in

grasping objects, following complex trajectories, scaling up to diverse training objects, and

generalizing to unseen objects.

10.2 Related Works

Simulated Humanoid Control. Simulated humanoids can be used to create animations

[136, 214, 284, 285, 286, 288, 411, 463, 488], estimate full-body pose from sensors [117,

154, 194, 229, 235, 407, 456, 457, 460], and transfer to real humanoid robots [104, 142, 143,

299, 300]. Since there are no ground truth data for joint actuation and physics simulators

are often non-differentiable, model-based control [153], trajectory optimization [214, 419],

and deep RL [65, 284] are used instead of supervised learning. Due to its flexibility and

scalability, deep RL has been popular among efforts in simulated humanoids, where a

policy/controller is trained via trial and error. Most of the previous work on humanoids

does not consider articulated fingers, except for a few [14, 36, 214, 254]. A dexterous

humanoid controller is essential for humanoids to perform meaningful tasks in simulation

and in the real world.

Dexterous Manipulation. Dexterous manipulation is an essential topic in robotics [37,

38, 61, 62, 71, 72, 99, 215, 302, 386, 432, 464, 470, 471] and animation [5, 36, 198, 487].

This task usually involves pick-and-place [37, 38], lifting [386, 432, 470], articulating objects

[471], and following predefined object trajectories [36, 39, 81]. Most of these efforts use a

disembodied hand for grasping and employ non-physical virtual forces to control the hand.
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Among them, D-Grasp [71] leverages the MANO [321] hand model for physically plausible

grasp synthesis and 6DoF target reaching. UniDexGrasp [432] and its followup [386] use

the Shadow Hand [2]. PGDM [81] trains a grasping policy for individual object trajectories

and identifies pre-grasp initialization (initializing the hand in a pose right before grasping)

as a crucial factor for successful grasping. For the works that consider both hands and body,

PMP [14] and PhysHOI [396] train one policy for each task or object. Braun et al.[36]

studies a similar setting to ours but relies on MoCap human-object interaction data and

only uses one hand. Compared to prior work, Omnigrasp trains one policy to transport

diverse objects, supports bimanual motion, and achieves a high success rate in lifting and

object trajectory following.

Kinematic Grasp Synthesis. Synthesizing hand grasp can be widely applied in robotics

and animation. A line of work [34, 49, 49, 96, 108, 216, 244, 263, 420, 444] focuses on

reconstructing and predicting grasp from images or videos, while others [264, 446] study

hand grasp generation to help image generation. Among them, Manipnet and CAMS

[469] predict finger poses given a hand object trajectory. TOCH [494] and GeneOH [218]

denoise dynamic hand pose predictions for object interactions. More research in this area

focuses on generating static or sequential hand poses with a given object as the condition

[166, 361, 447]. For synthesizing body and hand poses jointly, there are limited MoCap data

available [360] due to difficulties in capturing synchronized full-body and object trajectories.

Some generative methods [114, 203, 362, 363, 368, 416, 449] can create paired human-object

interactions, but they require initialization from the ground truth [114, 362, 416], or only

predict static full-body grasps [368]. In this work, we use GrabNet [361] trained on object

shapes from OakInk [440] to generate hand poses as reward guidance for our policy training.

Humanoid Motion Representation. Due to the high DoF of a humanoid and the sample

inefficiency of RL training, the search space within which the policy operates during trial and

error is crucial. A more structured action space such as motion primitives [129, 133, 253, 307]

or motion latent space [288, 369] can significantly increase sample efficiency since the policy

can sample coherent motion instead of relying on random “jittering” noise. This is especially

important for humanoids with dexterous hands, where the torso motion can drastically

affect the hand movement and lead to the humanoid knocking the object away. Thus, prior

work in this space utilizes part-based motion priors [14, 36] trained on specialized datasets.

While effective in the single task setting where the humanoid only needs to perform actions

close to the ones in the specialized datasets, these motion priors can hardly scale to more

free-formed motion, such as following randomly generated object trajectories. We extend

the recently proposed universal humanoid motion representation, PULSE [232], to the
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dexterous humanoid setting and demonstrate that a 48-dimensional, full-body-and-hand

motion latent space can be used to pick up and follow randomly generated trajectories.

10.3 Preliminaries

We define the human pose as qt := (θt,pt), consisting of 3D joint rotation θt ∈ RJ×6

and position pt ∈ RJ×3 of all J links on the humanoid (hands and body), using the 6

degree-of-freedom (DOF) rotation representation [505]. To define velocities q̇1:T , we have

q̇t := (ωt,vt) as angular ωt ∈ RJ×3 and linear velocities vt ∈ RJ×3. For objects, we define

their 3D trajectories qobjt using object position pobj
t , orientation θobj

t , linear velocity vobj
t ,

and angular velocity ωobj
t . As a notation convention, we use ·̂ to denote the kinematic

quantities from Motion Capture (MoCap) or trajectory generator and normal symbols

without accents for values from the physics simulation. Ô refers to a dataset of diverse

object meshes.

Goal-conditioned Reinforcement Learning for Humanoid Control. We define the

object grasping and transporting task using the general framework of goal-conditioned RL.

Namely, a goal-conditioned policy π is trained to control a simulated humanoid to grasp

an object and follow object trajectories q̂obj1:T using dexterous hands. The learning task is

formulated as a Markov Decision Process (MDP) defined by the tuple M = ⟨S,A, T ,R, γ⟩
of states, actions, transition dynamics, reward function, and discount factor. The simulation

determines the state st ∈ S and transition dynamics T , where a policy computes the action

at. The state st contains the proprioception spt and the goal state sgt . Proprioception is

defined as spt := (qt, q̇t, ct), which contains the 3D body pose qt, velocity q̇t, and contact

forces ct on the hand. The goal state sgt is defined based on the states of the objects. When

computing the states sgt and spt , all values are normalized with respect to the humanoid

heading (yaw). Based on proprioception spt and the goal state sgt , we define a reward

rt = R(spt , s
g
t ) for training the policy. We use proximal policy optimization (PPO) [330]

to maximize discounted reward E
[∑T

t=1 γ
t−1rt

]
. Our humanoid follows the kinematic

structure of SMPL-X [276] using the mean shape. It has 52 joints, of which 51 are actuated.

21 joints are body joints, and the remaining 30 joints are for two hands. All joints have 3

DoF, resulting in an actuation space of at ∈ R51×3. Each degree of freedom is actuated by

a proportional derivative (PD) controller, and the action at specifies the PD target.

191



10. Whole-Body Motion Generation in Physics with Object Interaction

Figure 10.1: Omnigrasp is trained in two stages. (a) A universal and dexterous humanoid
motion representation is trained via distillation. (b) Pre-grasp guided grasping training
using a pretrained motion representation.

10.4 Omnigrasp: Grasping Diverse Objects and

Follow Object Trajectories

To tackle the challenging problem of picking up objects and following diverse trajectories,

we first acquire a universal dexterous humanoid motion representation in Sec.10.4.1. Using

this motion representation, we design a hierarchical RL framework (Sec. 10.4.2) for grasping

objects using simple1 state and reward designs guided by pre-grasps. Our architecture is

visualized in Figure 10.1.

10.4.1 PULSE-X: Physics-based Universal Dexterous Hu-

manoid Motion Representation

We introduce PULSE-X that extends PULSE [232] to the dexterous humanoid by adding

articulated fingers. We first train a humanoid motion imitator [233] that can scale to a

large-scale human motion dataset with finger motion. Then, we distill the motion imitator

into a motion representation using a variational information bottleneck (similar to a VAE

[179]).

Data Augmentation. Since full-body motion datasets that contain finger motion are rare

(e.g.,, 91% of the AMASS sequences do not have finger motion), we first augment existing

1Here, the “simple reward” refers to not needing paired full-body-and-hand MoCap data when
computing the reward, which increases complexity.
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sequences with articulated finger motion and construct a dexterous full-body motion dataset.

Similarly to the process in BEDLAM [31], we randomly pair full-body motion from AMASS

[241] with hand motion sampled from GRAB [360] and Re:InterHand [261] to create a

dexterous AMASS dataset. Intuitively, training on this dataset increases the dexterity of

the imitator and the subsequent motion representation.

PULSE-X: Humanoid Motion Imitation with Articulated Fingers. Inspired by

PHC [233], we design PULSE-X πPHC-X for humanoid motion imitation with articulated

fingers. For the finger joints, we treat them similarly as the rest of the body (e.g.,toe or

wrist) and find this formulation sufficient to acquire the dexterity needed for grasping.

Formally, the goal state for training πPHC-X with RL is sg-mimic
t := (θ̂t+1 ⊖ θt, p̂t+1 −

pt, v̂t+1 − vt, ω̂t+1 − ωt, θ̂t+1, p̂t+1), which contains the difference between proprioception

and one frame reference pose q̂t+1.

Learning Motion Representation via Online Distillation. In PULSE [232], an encoder

EPULSE-X, decoder DPULSE-X, and prior PPULSE-X are learned to compress motor skills into

a latent representation. For downstream tasks, the frozen decoder and prior will translate

the latent code to joint actuation. Formally, the encoder EPULSE-X(zt|spt , s
g-mimic
t ) computes

the latent code distribution based on current input states. The decoder DPULSE-X(at|spt , zt)
produces action (joint actuation) based on the latent code zt. The prior PPULSE-X(zt|spt )

defines a Gaussian distribution based on proprioception and replaces the unit Gaussian

distribution used in VAEs [179]. The prior increases the expressiveness of the latent space

and guides downstream task learning by forming a residual action space (see Sec.10.4.2).

We model the encoder and prior distribution as diagonal Gaussian:

EPULSE-X(zt|spt , s
g-mimic
t ) = N (zt|µet ,σet ),PPULSE-X(zt|spt ) = N (zt|µpt ,σ

p
t ). (10.1)

To train the models, we use online distillation similar to DAgger [323] by rolling out the

encoder-decoder in simulation and querying πPHC-X for action labels aPHC-X
t . For more

information and evaluation of PULSE-X and PULSE-X, please refer to the Appendix 10.7.1.

10.4.2 Pre-grasp Guided Object Manipulation

Using hierarchical RL and PULSE-X’s trained decoder DPULSE-X and prior PPULSE-X, the

action space for our object manipulation policy becomes the latent motion representation zt.

Since the action space serves as a strong human-like motion prior, we can use simple state

and reward design and do not require any paired object and human motion to learn grasping
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policies. We use only hand pose before grasping (pregraps), either from a generative method

or MoCap, to train our policy.

State. To provide the task policy πOmnigrasp with information about the object and the

desired object trajectory, we define the goal state as

sgt := (p̂obj
t+1:t+ϕ−p

obj
t , θ̂obj

t+1:t+ϕ⊖θ
obj
t , v̂obj

t+1:t+ϕ−v
obj
t , ω̂obj

t+1:t+ϕ−ω
obj
t ,pobj

t ,θobj
t ,σobj,pobj

t −phand
t ),

(10.2)

which contains the reference object pose and the difference between the reference object

trajectory for the next ϕ frames and the current object state. σobj ∈ R512 is the object

shape latent code computed using the canonical object pose and Basis Point Set (BPS)

[295]. pobj
t − phand

t is the difference between the current object position and each hand joint

position. All values are normalized with respect to the humanoid heading. Notice that

the state sgt does not contain body pose, grasp, or phase variables [36], which makes our

method applicable to unseen objects and reference trajectories at test time.

Action. Similar to downstream task policies in PULSE, we form the action space of

πOmnigrasp as the residual action with respect to prior’s mean µpt and compute the PD

target at:

at = DPULSE-X(πPHC(zomnigrasp
t |spt , s

g
t ) + µpt ), (10.3)

where µpt is computed by the prior PPULSE-X(zt|spt ). The policy πOmnigrasp computes

zomnigrasp
t ∈ R48 instead of the target at ∈ R51×3 directly, and leverages the latent motion

representation of PULSE-X to produce human-like motion.

Reward. While our policy does not take any grasp guidance or reference body trajectory

as input, we utilize pre-grasp guidance in the reward. We refer to pre-grasp q̂pre-grasp :=

(p̂pre-grasp, θ̂pre-grasp) as a single frame of hand pose consisting of hand translation p̂pre-grasp

and rotation θ̂pre-grasp. PGDM [81] shows that initializing a floating hand to pre-grasps can

help the policy better reach objects and initiate manipulation. As we do not initialize the

humanoid with the pre-grasp pose as in PGDM, we design a stepwise pre-grasp reward:

romnigrasp
t =


rapproacht , ∥p̂pre-grasp − phand

t ∥2 > 0.2 and t < λ

rpre-graspt , ∥p̂pre-grasp − phand
t ∥2 ≤ 0.2 and t < λ

robjt , t ≥ λ,

(10.4)

based on time and the distance between the object and hands. Here, λ = 1.5s indicates

the frame in which grasping should occur, and phand
t indicates the hand position. When
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the object is far away from the hands (∥p̂pre-grasp − phand
t ∥2 > 0.2), we use an approach

reward rapproacht similar to a point-goal [233, 413] reward rapproacht = ∥p̂pre-grasp − phand
t ∥2 −

∥p̂pre-grasp − phand
t−1 ∥2,, where the policy is encouraged to get close to the pre-grasp. After

the hands are close enough (≤ 0.2m), we use a more precise hand imitation reward:

rpre-graspt = whpe
−100∥p̂pre-grasp−phand

t ∥2×1{∥p̂pre-grasp−p̂obj
t ∥2≤0.2} + whre

−100∥θ̂pre-grasp−θhandt ∥2 , to

encourage the hands to be close to pre-grasps. For grasps that involve only one hand, we

use an indicator variable 1{∥p̂pre-grasp − p̂obj
t ∥2 ≤ 0.2} to filter out hands that are too far

away from the object. After timestep λ, we use only the object trajectory following reward:

robjt = (wope
−100∥p̂obj

t −p
obj
t ∥2+wore

−100∥θ̂objt −θ
obj
t ∥2+wove

−5∥v̂obj
t −v

obj
t ∥2+woave

−5∥ω̂obj
t −ω

obj
t ∥2)·1{C}+1{C}·wc,

(10.5)

robjt computes the difference between the current and reference object pose, which is filtered

by an indicator variable 1{C} that is set to true if the object is in contact with the humanoid

hands. The reward 1{C} · wc encourages the humanoid’s hand to have contact with the

object. Hyperparameters can be found in Appendix 10.7.2.

Object 3D Trajectory Generator. As there is a limited number of ground-truth

object trajectories [81], either collected from MoCap or animators, we design a 3D object

trajectory generator that can create trajectories with varying speed and direction. Using the

trajectory generator, our policy can be trained without any ground-truth object trajectories.

This strategy provides better coverage of potential object trajectories, and the resulting

policy achieves higher success in following unseen trajectories (see Table 10.1). Specifically,

we extend the 2D trajectory generator used in PACER [312, 392] to 3D, and create our

trajectory generator T 3D(qobj0 ) = q̂obj1:T . Given initial object pose qobj0 , T 3D can generate a

sequence of plausible reference object motion q̂obj1:T . We limit the z-direction trajectory to

between 0.03m and 1.8m and leave the xy direction unbounded. For more information and

sampled trajectories, please refer to Appendix 10.7.2.

Training. Our training process is depicted in Algo 4. One of the main sources of performance

improvement for motion imitation is hard-negative mining [229, 233], where the policy is

evaluated regularly to find the failure sequences to train on. Thus, instead of using object

curriculum [386, 432, 487], we use a simple hard-negative mining process to pick hard

objects Ôhard to train on. Specifically, let sj be the number of failed lifts for object j over

all previous runs. The probability of choosing object j among all objects is P (j) =
sj∑J
i si

.

Object and Humanoid Initial State Randomization. Since objects can have diverse

initial positions and orientations with respect to the humanoid, it is crucial to have the policy
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Function TrainOmnigrasp(DPULSE-X,PPULSE-X, πPHC, Ô, T 3D):

Input: Pretrained PULSE-X’s decoder DPULSE-X and prior PPULSE-X, Object mesh dataset Ô, 3D trajectory
Generator T 3D while not converged do

M ← ∅ initialize sampling memory while M not full do

qobj0 , p̂pre-grasp, spt ∼ randomly sample initial object state, pre-grasp, and humanoid state q̂obj1:T ∼
sample reference object trajectory using T 3D for t← 1...T do

zomnigrasp
t ∼ πPHC(z

omnigrasp
t |spt , s

g
t ) // use pretrained latent space as action space

µp
t ,σ

p
t ← PPULSE-X(zt|spt ) // compute prior latent code

at ← DPULSE-X(at|spt , z
omnigrasp
t + µp

t ) // decode action using pretrained decoder

st+1 ← T (st+1|st,at) // simulation rt ←R(spt , s
g
t ) // compute reward store

(st, z
omnigrasp
t , rt, st+1) into memory M

πPHC ← PPO update using experiences collected in M Ôhard ← Eval and pick hard object subset to
train on.

return πPHC

algorithm 4: Learn Omnigrasp

exposed to diverse initial object states. Given the object dataset Ô and the provided initial

states (either from MoCap or by dropping the object in simulation) qobj0 , we perturb qobj0

by adding randomly sampled yaw-direction rotation and adjusting the position component

qobj0 . We do not change the pitch and yaw of the object’s initial pose as some poses are

invalid in simulation. For the humanoid, we use the initial state from the dataset if provided

(e.g.,GRAB dataset [360]), and a standing T-pose if there is no paired data.

Inference. During inference, the object latent code pobj
t , a random object starting pose

qobj0 , and desired object trajectory q̂obj1:T is all that is required, without any dependency on

pre-grasps or paired kinematic human pose.

10.5 Experiments

Datasets. We use the GRAB [360], OakInk [440], and OMOMO [198] to study grasping

small and large objects. The GRAB dataset contains 1.3k paired full-body motion and

object trajectories of 50 objects (we remove the doorknob as it is not movable). Since the

GRAB dataset provides reference body and object motion, we use them to extract initial

humanoid positions and pre-grasps. We follow prior art [36] in constructing cross-object (45

for training and 5 for testing) and cross-subject (9 subjects for training and 1 for testing)

train-test sets. On GRAB, we evaluate on following MoCap object trajectories using the

mean body shape humanoid. The OakInk dataset contains 1700 diverse objects of 32

categories with real-world scanned and generated object meshes. We split them into 1330

objects for training, 185 for validation, and 185 for testing. Train-test splits are conducted
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Table 10.1: Quantitative results on object grasp and trajectory following on the GRAB
dataset.

GRAB-Goal-Test (Cross-Object, 140 sequences, 5 unseen objects) GRAB-IMoS-Test (Cross-Subject, 92 sequences, 44 objects)

Method Traj Succgrasp ↑ Succtraj ↑ TTR ↑ Epos ↓ Erot ↓ Eacc ↓ Evel ↓ Succgrasp ↑ Succtraj ↑ TTR ↑ Epos ↓ Erot ↓ Eacc ↓ Evel ↓

PPO-10B Gen 98.4% 55.9% 97.5% 36.4 0.4 21.0 14.5 96.8% 53.2% 97.9% 35.6 0.5 19.6 13.9
PHC [233] MoCap 3.6% 11.4% 81.1% 66.3 0.8 1.5 3.8 0% 3.3% 97.4% 56.5 0.3 1.4 2.9
AMP [286] Gen 90.4% 46.6% 94.0 % 40.7 0.6 5.3 5.3 95.8 % 49.2% 96.5% 34.9 0.5 6.2 6.0
Braun et al.[36] MoCap 79% - 85% - - - - 64% - 65% - - - -

Omnigrasp MoCap 94.6% 84.8% 98.7% 28.0 0.5 4.2 4.3 95.8% 85.4% 99.8% 27.5 0.6 5.0 5.0
Omnigrasp Gen 100% 94.1% 99.6% 30.2 0.93 5.4 4.7 98.9% 90.5% 99.8% 27.9 0.97 6.3 5.4

within categories, with train and test splits containing objects from all categories. Since no

paired MoCap human motion or grasps exists for the OakInk dataset, we use an off-the-shelf

grasp generator [440] to create pre-grasps. The OMOMO dataset contains 15 large objects

(table lamps, monitors, etc.) with reconstructed mesh, and we pick 7 of them that have

cleaner meshes. Due to the limited number of objects from OMOMO, we only test lifting on

the objects used for training to verify that our pipeline can learn to move larger objects. On

OMOMO and OakInk, we study vertical lifting (30cm) and holding (3s) as the trajectory

for quantitative results.

Implementation Details. Simulation is conducted in Isaac Gym [242], where the policy

is run at 30 Hz and the simulation at 60 Hz. For PULSE-X and PULSE-X, each policy is a

6-layer MLP. For the grasping task, we employ a GRU [67] based recurrent policy and use a

GRU with a latent dimension of 512, followed by a 3-layer MLP. We train Omnigrasp for

three days collecting around 109 samples on a Nvidia A100 GPU. PULSE-X and PULSE-X

are trained once and frozen, which takes around 1.5 weeks and 3 days. Object density is

1000 kg/m3. The static and dynamic friction coefficients of the object and humanoid fingers

are set to 1. For reference object trajectory, we use ϕ = 20 future frames sampled at 15Hz.

For more details, please refer to Appendix 10.7.2.

Metrics. For the object trajectory following, we report the position error Epos (mm),

rotation error Erot (radian), and physics-based metrics such as acceleration error Eacc

(mm/frame2) and velocity error Evel (mm/frame). Following prior art in full-body simulated

humanoid grasping [36], we report the grasp success rate Succgrasp and Trajectory Targets

Reached (TTR). The grasp success rate Succgrasp deems a grasp successful when the object

is held for at least 0.5s in the physics simulation without dropping. TTR measures the

ratio of the target position (¡ 12cm away from the target position) reached over all the time

steps in the trajectory and is only measured on successful trajectories. To measure the

complete trajectory success rate, we also report Succtraj, where a trajectory following is

unsuccessful if, at any point in time, the object is ¿ 25cm away from the reference.
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Figure 10.2: Qualitative results. Unseen objects are tested for GRAB and OakInk. Green dots:
reference trajectories. Best seen in videos on our supplement site.

10.5.1 Grasping and Trajectory Following

As motion is best seen in videos, please refer to supplement site for extended evaluation

on trajectory following, unseen objects, and robustness. Unless otherwise specified, all

policies are trained on their respective dataset training split, and we conduct cross-dataset

experiments on GRAB and OakInk. All experiments are run 10 times and averaged as the

simulator yields slightly different results for each run due to e.g.,floating-point error. As

full-body simulated humanoid grasping is a relatively new task with a limited number of

baselines, we use Braun et [36] as our main comparison. We also implement AMP [286]

and PHC [233] as baselines. We train AMP with a similar state and reward design (without

using PULSE-X’s latent space) and a task and discriminator reward weighting of 0.5 and

0.5. PHC refers to using an imitator for grasping, where we directly feed ground-truth

kinematic body and finger motion to a pretrained imitator to grasp objects. Since PHC

and PULSE-X require pre-training, we also include PPO-10B, which is trained using RL

without PULSE-X for a month (∼10 billion samples).

GRAB Dataset (50 objects). Since Braun et al.do not use randomly generated trajecto-

ries, we train Omnigrasp using two different settings for a fair comparison: one trained

with MoCap object trajectories only, and one trained using synthetic trajectories only. From

Table 10.1, we can see that our method outperforms prior SOTA and baselines on all metrics,

especially on success rate and trajectory following. Since all methods are simulation-based,

we omit penetration/foot sliding metrics and report the precise trajectory tracking errors
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Table 10.2: Quantitative results on the OMOMO dataset.

OMOMO (7 objects)

Succgrasp ↑ Succtraj ↑ TTR ↑ Epos ↓ Erot ↓ Eacc ↓ Evel ↓

7/7 7/7 100% 22.8 0.2 3.1 3.3

instead. Training directly using PPO without PULSE-X leads to a performance that

significantly lags behind Omnigrasp, even though it has used similar aggregate samples

(counting PHC-X and PULSE-X training). Compared to Braun et al., Omnigrasp achieves

a high success rate on both object lifting and trajectory following. Directly using the motion

imitator, PHC, yields a low success rate even when the ground-truth kinematic pose is

provided, showing that the imitator’s error (on average 30mm) is too large to overcome

for precise object grasping. The body shape mismatch between MoCap and our simulated

humanoid also contributes to this error. AMP leads to a low trajectory success rate, showing

the importance of using a motion prior in the actions space. Omnigrasp can track the

MoCap trajectory precisely with an average error of 28mm. Comparing training on MoCap

trajectories and randomly generated ones, we can see that training on generated trajectories

achieves better performance on success rate and position error, though worse on rotation

error. This is due to our 3D trajectory generator offering good coverage on physically

plausible 3D trajectories, but there is a gap between the randomly generated rotations and

MoCap object rotation. This can be improved by introducing more rotation variation on

the trajectory generator. The gap between trajectory Succtraj and grasp success Succgrasp

shows that following the full trajectory is a much harder task than just grasping, and the

object can be dropped during trajectory following. Qualitative results can be found in

Fig. 10.2.

OakInk Dataset (1700 objects). On the OakInk dataset, we scale our grasping policy to

¿1000 objects and test our generalization to unseen objects. We also conduct cross-dataset

experiments, where we train on the GRAB dataset and test on the OakInk dataset. Results

are shown in Table 10.3. We can see that 1272 out of the 1330 objects are trained to be

picked up, and the whole lifting process also has a high success rate. We observe similar

results on the test split. Upon inspection, the failed objects are usually either too large or

too small for the humanoid to establish a grasp. The large number of objects also places a

strain on the hard-negative mining process. The policy trained on both GRAB and OakInk

shows the highest success rate, as on GRAB, there are bi-manual pre-grasps, and the policy

learned to use both hands.
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Table 10.3: Quantitative results on OakInk with our method. We also test Omnigrasp
cross-dataset, where a policy trained on GRAB is tested on the OakInk dataset.

OakInk-Train (1330 objects) OakInk-Test (185 objects)

Training Data Succgrasp ↑ Succtraj ↑ TTR ↑ Epos ↓ Erot ↓ Eacc ↓ Evel ↓ Succgrasp ↑ Succtraj ↑ TTR ↑ Epos ↓ Erot ↓ Eacc ↓ Evel ↓

OakInk 93.7% 86.2% 100% 21.3 0.4 7.7 6.0 94.3% 87.5% 100% 21.2 0.4 7.6 5.9
GRAB 84.5% 75.2% 99.9% 22.4 0.4 6.8 5.7 81.9% 72.1% 99.9% 22.7 0.4 7.1 5.8
GRAB + OakInk 95.6% 92.0% 100% 21.0 0.6 5.4 4.8 93.5% 89.0% 100% 21.3 0.6 5.4 4.8

Using both hands significantly improves the success rate on some larger objects, where

the humanoid can scoop up the object with one hand and carry it with both. As OakInk

only has pre-grasps using one hand, it cannot learn such a strategy. Surprisingly, training

on only GRAB achieves a high success rate on OakInk, picking up more than 1000 objects

without training on the dataset, showcasing the robustness of our grasping policy on unseen

objects.

OMOMO Dataset (7 objects). On the OMOMO dataset, we train a policy to show

that our method can learn to pick up large objects. Table 10.2 shows that our method can

successfully learn to pick up all the objects, including chairs and lamps. For larger objects,

the pre-grasp guidance is essential for guiding the policy to learn bi-manual manipulation

skills (as is shown in Fig 10.2)

10.5.2 Ablation and Analysis

Ablation. In this section, we study the effects of different components of our framework

using the cross-object split of the GRAB dataset. Results are shown in Table 10.4. First,

we compare our method trained with (Row 6) or without (R1) PULSE-X’s action space.

Using the same reward and state design, we can see that using the universal motion prior

significantly improves success rates. Upon inspection, using PULSE-X also yields human-

like motion, while not using it leads to unnatural motion (see in supplement site). R2

vs. R6 shows that the pre-grasp guidance is essential in learning grasps that are stable

for grasping objects, but without it, some objects can still be grasped successfully. The

difference between R3 and R6 is whether to train using the dexterous AMASS dataset. R3

vs R6 shows that without training on a dataset that has diverse hand motion and full-body

motion, the policy can learn to pick up objects (high grasp success rate), but struggles in

trajectory following. This is expected as the motion prior probably lacks the motion of

“holding the object while moving”. R4 and R5 show that object position randomization and

hard-negativing mining are crucial for learning robust and successful policies. Ablations on

the object latent code, RNN policy, etc. can be found in the Appendix 10.7.2.
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Table 10.4: Ablation on various strategies of training Omnigrasp. PULSE-X: whether to
use the latent motion representation. pre-grasp: pre-grasp guidance reward. Dex-AMASS:
whether to train PULSE-X on the dexterous AMASS dataset. Rand-pose: randomizing the
object initial pose. Hard-neg: hard-negative mining.

GRAB-Goal-Test (Cross-Object, 140 sequences, 5 unseen objects)

idx PULSE-X pre-grasp Dex-AMASS Rand-pose Hard-neg Succgrasp ↑ Succtraj ↑ TTR ↑ Epos ↓ Erot ↓ Eacc ↓ Evel ↓

1 ✗ ✓ ✓ ✓ ✓ 97.0% 33.6% 92.8% 43.5 0.5 10.6 8.3
2 ✓ ✗ ✓ ✓ ✓ 77.1% 57.9% 97.4% 54.9 1.0 5.5 5.2
3 ✓ ✓ ✗ ✓ ✓ 94.4% 77.3% 99.3% 30.5 0.9 4.8 4.4
4 ✓ ✓ ✓ ✗ ✓ 92.9% 79.9% 99.2% 31.4 1.1 4.5 4.4
5 ✓ ✓ ✓ ✓ ✗ 94.0% 71.6% 98.4% 32.3 1.3 6.2 5.7

6 ✓ ✓ ✓ ✓ ✓ 100% 94.1% 99.6% 30.2 0.9 5.4 4.7

Figure 10.3: (Top rows): grasping different objects using both hands. (Bottom) diverse
grasps on the same object.
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Table 10.5: Study on how noise affects pretrained Omnigrasp Policy

GRAB-Goal-Test (Cross-Object, 140 sequences, 5 unseen objects) GRAB-IMoS-Test (Cross-Subject, 92 sequences, 44 objects)

Method Noise Scale Succgrasp ↑ Succtraj ↑ TTR ↑ Epos ↓ Erot ↓ Eacc ↓ Evel ↓ Succgrasp ↑ Succtraj ↑ TTR ↑ Epos ↓ Erot ↓ Eacc ↓ Evel ↓

Omnigrasp 0 100% 94.1% 99.6% 30.2 0.93 5.4 4.7 98.9% 90.5% 99.8% 27.9 0.97 6.3 5.4
Omnigrasp 0.01 100% 91.4% 99.2% 34.8 1.1 15.6 11.5 99.5% 86.2% 99.6% 32.5 1.0 17.9 13.2

Analysis: Diverse Grasps. In Fig. 10.3, we visualize the grasping strategy used by

our method. We can see that based on the object shape, our policy uses a diverse set

of grasping strategies to hold the object during the trajectory following. Based on the

trajectory and object initial pose, Omnigrasp discovers different grasping poses for the

same object, showcasing the advantage of using simulation and laws of physics for grasp

generation. We also notice that for larger objects, our policy will resort to using two hands

and a non-prehensile transport strategy. This behavior is learned from pre-grasps in GRAB,

which utilize both hands for object manipulation.

Analysis: Robustness and Potential for Sim-to-real Transfer. In Table 10.5, we add

uniform random noise [-0.01, 0.01] to both task observation (positions, object latent codes,

etc.) and proprioception. A similar scale (0.01) of random noise is used in sim-to-real RL

to tackle noisy input in real-world humanoids [143]. We see that Omnigrasp is relatively

robust to input noise, even though it has not been trained with noisy input. Performance

drop is more prominent in the acceleration and velocity metrics. Adding noise during

training can further improve robustness. We do not claim that Omnigrasp is currently ready

for real-world deployment, but we believe that a similar system design plus sim-to-real

modifications (e.g. domain randomization, distilling into a vision-based policy) has the

potential. We conduct more analysis on the robustness of our method with respect to initial

object position, object weight, and object trajectories on our supplement site.

10.6 Limitations, Conclusions, and Future Work

Limitations. While Omnigrasp demonstrates the feasibility of controlling a simulated

humanoid to grasp diverse objects and hold them to follow diverse trajectories, many

limitations remain. For example, though the 6DoF input is provided in the input and

reward, the rotation error remains to be further improved. Omnigrasp has yet to support

precise in-hand manipulations. The success rate on trajectory following can be improved,

as objects can be dropped or not picked up. Another area of improvement is to achieve

specific types of grasps on the object, which may require additional input such as desired
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contact points and grasp. Human-level dexterity, even in simulation, remains challenging.

For visualization of failure cases, see supplement site.

Conclusion and Future Work. In conclusion, we present Omnigrasp, a humanoid

controller capable of grasping > 1200 objects and following trajectories while holding

the object. It generalizes to unseen objects of similar sizes, utilizes bi-manual skills, and

supports picking up larger objects. We demonstrate that by using a pretrained universal

humanoid motion representation, grasping can be learned using simplistic reward and

state designs. Future work includes improving trajectory following success rate, improving

grasping diversity, and supporting more object categories. Also, improving upon the

humanoid motion representation is a promising direction. While we utilize a simple yet

effective unified motion latent space, separating the motion representation for hands and

body [14, 36] could lead to further improvements. Effective object representation is also an

important future direction. How to formulate an object representation that does not rely

on canonical object pose and generalizes to vision-based systems will be valuable to help

the model generalize to more objects.

10.7 Appendix

In this document, we include additional details about PMCP that are omitted from the

main paper due to the page limit. In Sec.10.7.1, we include additional information about

training and evaluating the performance of our humanoid motion representation, PULSE-X.

In Sec. 10.7.2, we include details about PMCP , such as the trajectory generator and

training procedures.

Extensive qualitative results are provided at the project page as well as the supplementary

zip files (which contain lower-resolution videos due to file size limitations). As motion is

best seen in videos, we highly encourage our readers to view them to judge the capabilities

of our method better. Specifically, we visualize using our controller to trace the characters

“Omnigrasp” in the air while holding unseen objects during training. This complex trajectory

is never seen during training. We also visualize the policy on GRAB [360], OakInk [441],

and OMOMO [198] datasets, both for training and testing objects. On the GRAB dataset,

we follow MoCap trajectories, while for the OakInk and OMOMO datasets, we showcase

randomly generated trajectories for training. To demonstrate robustness to different object

poses, weights, and directions, we also test our method by varying these variables and show

that it can still pick up objects. Interestingly, we notice that our method prefers to use both

hands to pick and hold the object as the weight of the object increases. We also include
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Table 10.6: Imitation result on dexterous AMASS (14889 sequences).

Dexterous AMASS-Train

Method Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓

PHC-X 99.9 % 29.4 31.0 4.1 5.1
PULSE-X 99.5 % 42.9 46.4 4.6 6.7

motion imitation and random motion sampling for PHC-X and PULSE-X. Further, we

visualize our constructed dexterous AMASS dataset and the motion imitation result. Last,

we include failure cases for grasping and trajectory following.

10.7.1 Details about PHC-X and PULSE-X

Data Cleaning. To train both PHC-X and PULSE-X, we follow PULSE’s [232] procedure

in filtering on implausible motion. This process yields 14889 motion sequences from

the AMASS dataset for training our humanoid motion representation. Out of all 14889

sequences, only 9% of the sequences contain hand motion, and training on it will bias the

motion imitator to have limited dexterity. Thus, we construct the dexterous AMASS dataset

by pairing hand-only motion with body-only motion and demonstrate its effectiveness in

learning a motion representation that enables object grasping.

Training and Architecture

The state, action, and rewards for PHC-X and PULSE-X follow the implementation choices

of PULSE with the only modifications on the training data (dexterous AMASS) and

humanoid (SMPL-X). PHC-X is trained for 1.5 week while PULSE-X takes 3 days. We

use the same-sized networks: 6-layer MLP of units [2048, 1536, 1024, 1024, 512, 512] for

PHC-X and 3-layer MLP of units [3096, 2048, 1024] for PULSE-X’s encoder and decoders.

We notice that due to the increase in DoF from SMPL (69) to SMPL-X (153), simulation is

∼2 times slower.

Evaluation

We evaluate PULSE-X and PHC-X on our constructed dexterous AMASS dataset. The

metrics we use are the mean per-joint position error (mm) for both global Eg-mhpe and local

Empjpe (root-relative) settings. We also report acceleration and velocity errors, similar to

the object trajectory following the setting but averaged across all body joints. From Table
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Table 10.7: Hyperparameters for PMCP , PHC-X, and PULSE-X. σ: fixed variance
for policy. γ: discount factor. ϵ: clip range for PPO.

Method Batch Size Learning Rate σ γ ϵ # of samples

PHC-X 3072 2× 10−5 0.05 0.99 0.2 ∼ 1010

Batch Size Learning Rate Latent size # of samples

PULSE-X 3072 5× 10−4 48 ∼ 109

Batch Size Learning Rate σ γ ϵ wop wor wov woav wc # of samples

PMCP 3072 5× 10−4 0.36 0.99 0.2 0.5 0.3 0.05 0.05 0.1 ∼ 109

10.6, we can see that PHC-X and PULSE-X achieve a high success rate on training data

while maintaining a low per-joint error. Distilling from PHC-X to PULSE-X, we observe

similar degradation in imitation performance as in PULSE, akin to the reconstruction error

in training VAEs [179].

10.7.2 Details about PMCP

Object Processing

Since the simulator requires convex objects for simulation, we use the built-in v-hacd

function to decompose the meshes into convex geometries. The parameters we use for

decomposition can be found in Table 10.7. To compute object latent code, we use 512-d

BPS [295] by randomly sampling 512 points on a unit sphere and calculating their distances

to points on the object mesh. As some object meshes have a large number of vertices, we

also perform quadratic decimation on the mesh if it contains more than 50000 vertices.

Training Details

Early Termination. During training, we terminate the episode whenever the object is more

than 12cm away from its desired reference trajectory at time step t: ∥p̂obj
t − pobj

t ∥2 > 0.12.

Table Removal. Since the GRAB and OakInk datasets are table-top objects, we use a

table at the beginning of the episode to support the object. However, since our randomly

generated trajectory can collide with the table and the humanoid has no environmental

awareness except for the object, we remove the table after certain timestamps (1.5s) during

training.

Contact Detection. As IsaacGym does not provide easy access to contact labels and only

provides contact forces, there is no way of differentiating between contact with the table,
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Table 10.8: Additional ablations: Object-latent refers to whether to provide the object
shape latent code σobj to the policy. RNN refers to either using an RNN-based policy or
an MLP-based policy. Im-obs refers to whether to provide the policy with ground truth
full-body pose q̂t+1 as input.

GRAB-Goal-Test (Cross-Object, 140 sequences, 5 unseen objects)

idx Object Latent RNN Im-obs Succgrasp ↑ Succtraj ↑ TTR ↑ Epos ↓ Erot ↓ Eacc ↓ Evel ↓

1 ✗ ✓ ✗ 100% 93.2% 99.8% 28.7 1.3 6.1 5.1
2 ✓ ✗ ✗ 99.9% 89.6% 99.0% 33.4 1.2 4.5 4.4
3 ✓ ✓ ✓ 95.2 77.8% 97.9% 32.2 0.9 3.2 3.9

4 ✓ ✓ ✗ 100% 94.1% 99.6% 30.2 0.9 5.4 4.7

humanoid body, or objects. Thus, we resort to a heuristic-based way to detect contact.

Specifically, if the object is within 0.2m from the hands, has non-zero contact forces, and

has a non-zero velocity, we deem it to have contact with the hands.

Trajectory Generator. Randomly generated trajectories can be seen on our supplement

site on the OakInk and OMOMO dataset, as there is no paired MoCap object motion

for these datasets. We sample a random velocity and delta angle at each time step and

aggregate the velocities to produce full trajectories. We bound the velocity of our randomly

generated trajectories to be between [0, 2] m/s and bound the angles to be between [0, 1]

radian. With a probability of 0.2, a sharp turn could happen where the angle is between [0,

2π]. As the trajectories can not be too high or low, we bound the z-direction translation to

be between [0.1, 2.0]. For orientation, we sample a random ending orientation at the end of

the trajectory and interpolate it between the object’s initial trajectory to obtain a sequence

of target rotations.

Additional Ablations

In Table 10.8, we provide additional ablations left out due to space limitations. Comparing

Row 1 (R1) and R4, we can see that on the GRAB dataset cross-object test set, a policy

trained without the object shape latent code σobj can be on par with a policy with access

to it. This is because the humanoid learned a general ”grasping” for small objects, and the

5 testing objects do not deviate too much from these strategies. Also, upon inspection, R1

learns to rely on bi-manual manipulation and using two hands when it cannot pick it up

with one hand, at which point the object shape no longer affects the grasping pose as much.

As a result, R1 suffers a higher rotation error Erot. On the GRAB cross-subject test (44

objects), R1 has a trajectory success rate of Succtraj 84.2%, worse than R4’s 90.5%. R2 vs.

R4 shows that the RNN policy is more effective than the MLP-based policy, confirming our
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Table 10.9: Per-object breakdown on the GRAB-Goal (cross-object) split.

Object Braun et al.[36] PMCP

Succgrasp ↑ Succtraj ↑ TTR ↑ Succgrasp ↑ Succtraj ↑ TTR ↑

Apple 95% - 91% 100% 99.6% 99.9%
Binoculars 54% - 83% 100% 90.5% 99.6%

Camera 95% - 85% 100% 97.7% 99.7%
Mug 89% - 74% 100% 97.3% 99.8%

Toothpaste 64% - 94% 100% 80.9% 99.0%

intuition that some form of memory is beneficial for a sequential task, such as grasping and

omnidirectional trajectory following. R3 studies the scenario where we provide ground truth

full-body pose q̂t to the policy at all times, similar to the setting in PhysHOI [396] (though

without the contact graph). Results show that this strategy leads to worse performance,

and also prevents us from training on objects that do not have paired MoCap full-body

motion. This indicates that the contact graph is needed to imitate human-object interaction

precisely. PMCP provides a flexible interface to support learning and testing on novel

objects without needing paired ground-truth full-body motion.

Per-object Successrate breakdown

In Table 10.9, we break down the per-object success rate on the cross-object split of the

GRAB dataset. Of the 5 novel objects, our model finds it hardest to pick up the toothpaste,

which has an elongated surface. Upon inspection, we find that PMCP will slip on the

round edges of the toothpaste surface and fail to grasp the object. Compared to previous

SOTA [36], PMCP outperforms in all metrics and objects.

10.7.3 Additional Discussions

Alternatives to PULSE-X

One alternative way for reusing the motor skills from a motion imitator like PHC-X is to

train a kinematic motion latent space to provide reference motion to drive PHC-X. Such

a general-purpose kinematic latent space has been used in physics-based control for pose

estimation [391] and animation [468]. However, few have been extended to include dexterous

hands. These latent spaces, like HuMoR [310], model motion transition using an encoder

qϕ(zt|q̂t, q̂t−1) and decoder pθ(q̂t|zt, q̂t−1) where q̂t is the pose at time step t and zt is the

latent code. qϕ and pθ are trained using supervised learning. The issue with applying such

a latent space to simulated humanoid control is twofold:
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• The output q̂t of the VAE model, while representing natural human motion, does not

model the PD-target (action) space required to maintain balance. This is shown in

prior art [391, 468], where an additional motion imitator is still needed to actuate

the humanoid by imitating q̂t instead of using q̂t as policy output (PD-target).

• qϕ and pθ are optimized using MoCap data, whose q̂t values are computed using

ground truth motion and finite difference (for velocities). As a result, qϕ and pθ

handle noisy humanoid states from simulation poorly. Thus, [391] runs the kinematic

latent space in an open-loop auto-regressive fashion without feedback from physics

simulation (e.g.,using q̂t−1 from the previous time step’s output rather than from

simulation). The lack of feedback from physics simulation leads to floating and

unnatural artifacts [391], and the imitator heavily relies on residual force control to

maintain stability.

10.7.4 Broader social impact.

Our method can be used to create a realistic grasping policy for humanoids, generate

animation, or synthesize stable grasps. While the state designs have access to privileged

information, the overall system design methodology (plus sim-to-real transfer techniques

such as domain randomization) has the potential to be transferred to a real humanoid robot.

Thus, it has a potential positive social impact, as it can create content or help build the

next generation of home robots.

208



Part IV

Unified Human Motion Estimation

and Generation

209





Chapter 11

Unified Human Motion Estimation

and Generation

11.1 Introduction

Human motion modeling is a longstanding topic in computer vision and graphics, with

applications in gaming, animation, and 3D content creation. These creative applications

typically require precise and intuitive user control. Consider a scenario where a user aims

to generate motion sequences integrating multiple modalities: starting from a video clip,

transitioning to follow textual descriptions, syncing with audio cues, and aligning with

another video, all while providing fine-grained control via user-defined keyframes. Such

sequences must precisely replicate observed human movements, reflect intended actions

described by text or music, and adhere consistently to specified keyframes. While recent

advances have made significant progress in individual tasks, achieving such precision and

flexibility across multiple modalities remains challenging. Specifically, motion estimation

from videos typically involves deterministic predictions focused on accuracy, whereas

text/music-to-motion generation requires diversity to all possible motions. Consequently,

these tasks are usually treated independently despite sharing common representations like

temporal dynamics and kinematic structures. This separation limits cross-task knowledge

transfer and requires maintaining distinct models.

Recent studies have revealed the synergistic relationship between motion estimation and

generation tasks. Generative models [138, 311, 373] have provided robust priors for motion

estimation, particularly in challenging scenarios such as world-space estimation [32, 186, 202,
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443]. Conversely, leveraging large-scale video data for estimation has enhanced the realism

of generative models by enriching their learned motion distributions [210]. This motivates

developing a unified generalist model capable of handling both tasks concurrently across

multiple modalities. However, developing such a framework presents significant challenges

due to the contrasting objectives of these tasks: generation requires producing diverse and

plausible outputs from abstract inputs like text or audio, while estimation demands precise

motion reconstruction from concrete observations such as videos and keypoints. Creating a

unified architecture that effectively balances diverse generation with accurate reconstruction

while leveraging shared representations remains a complex challenge.

To address these issues, we propose GENMO, a Generalist Model for Human Motion

that unifies estimation and generation within a single framework. We formulate motion

estimation as constrained motion generation adhering to observed signals. This unification

yields synergistic benefits: generative priors enhance plausibility in challenging estimation

scenarios (e.g., occlusions), while diverse video data enrich generative diversity without

requiring ground-truth 3D annotations.

GENMO is built upon a diffusion model framework incorporating a novel dual-mode

training paradigm: (1) estimation mode, where we feed the GENMO diffusion denoiser

with zero-initialized noise and the largest diffusion timestep, forcing the model to produce

maximum likelihood estimation (MLE) of the motion based on the conditional signals;

(2) generation mode, follows traditional diffusion training by sampling noisy motions and

timesteps according to a predefined schedule, enabling the model to learn rich generative

distributions from the conditioning signals. This dual-mode approach allows GENMO to

excel at both precise estimation and diverse generation tasks. We further enhance the

framework with an estimation-guided training objective that effectively leverages in-the-wild

videos with 2D annotations, substantially expanding the model’s generative capabilities.

Furthermore, our architectural innovations enable the processing of variable-length motion

sequences and seamlessly integrate arbitrary combinations of multi-modal conditioning

signals at different time intervals, as demonstrated in Fig. 5.1. Notably, GENMO generates

multi-conditioned motions in a single feedforward diffusion pass, without requiring complex

post-processing steps.

Through extensive empirical evaluation, we demonstrate GENMO’s capabilities across

a comprehensive suite of tasks encompassing both global and local motion estimation, as

well as diverse motion generation tasks including music-to-dance synthesis, text-to-motion

generation, and motion-inbetweening. Our experimental results establish that GENMO

achieves state-of-the-art performance across various tasks (global motion estimation, local
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motion estimation, and music-to-dance generation), validating its efficacy as a unified

generalist framework for human motion modeling.

Our contributions are summarized as follows:

• We propose GENMO, the first generalist model unifying state-of-the-art global motion

estimation with flexible human motion generation conditioned on videos, music, text,

2D keypoints, and 3D keyframes.

• Our architecture design supports seamless generation of variable-length motions

conditioned on arbitrary numbers and combinations of multimodal inputs without

complex post-processing.

• We propose a novel dual-mode training paradigm to explore the synergy between

regression and diffusion, and introduce an estimation-guided training objective that

enables effective training on in-the-wild videos.

• We demonstrate bidirectional benefits: generative priors improve estimation un-

der challenging conditions like occlusions; conversely, diverse video data enhances

generative expressiveness.

11.2 Related Work

11.2.1 Human Motion Generation

Human motion generation has progressed significantly in recent years [17, 52, 70, 75, 80,

125, 130, 138, 145, 291, 291, 311, 339, 373, 378, 425, 474, 475, 508] leveraging a variety

of conditioning signals such as text [64, 113, 124, 167], actions [121], speech [7, 507],

music [204, 341, 351, 366, 376, 378], and scenes/objects [134, 190, 401, 450, 480]. Recently,

multimodal motion generation has also gained attention [29, 227, 476, 506] enabling multiple

input modalities. However, most existing methods focus solely on generative tasks without

supporting estimation. For instance, the method [476] supports video input but treats it

as a generative task, resulting in motions that loosely imitate video content rather than

precisely matching it. In contrast, our method jointly handles generation and estimation

tasks, yielding more precise video-conditioned results.

For long-sequence motion generation, existing works mostly rely on ad-hoc post-

processing techniques to stitch separately generated fixed-length motions [12, 290, 296, 477].

In contrast, our method introduces a novel diffusion-based architecture enabling seamless
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generation of arbitrary-length motions conditioned on multiple modalities without complex

post-processing.

Existing datasets, such as AMASS [240], are limited in size and diversity. To address the

scarcity of 3D data, Motion-X [210] and MotionBank [426] augment datasets using 2D videos

and 3D pose estimation models [338, 462], but the resulting motions often contain artifacts.

In contrast, our method directly leverages in-the-wild videos with 2D annotations without

explicit 3D reconstruction, reducing reliance on noisy data and enhancing robustness and

diversity.

11.2.2 Human Motion Estimation

Human pose estimation from images [174, 200, 329], videos [68, 116, 185], or even sparse

marker data [192, 293, 451] has been studied extensively in the literature. Recent works

focus primarily on estimating global human motion in world-space coordinates [186, 202,

338, 399, 443, 462]. This is an inherently ill-posed problem, hence these methods leverage

generative priors and SLAM methods to constrain human and camera motions, respectively.

However, these methods typically involve computationally expensive optimization or separate

post-processing steps.

More recent approaches aim to estimate global human motion in a feed-forward man-

ner [336, 338, 399, 478], offering faster solutions. Our method extends this direction by

jointly modeling generation and estimation within a unified diffusion framework. This

integration leverages shared representations and generative priors during training to produce

more plausible estimations.

11.3 Generalist Model for Human Motion

GENMO unifies motion estimation and generation by formulating both tasks as conditional

motion generation. Specifically, it synthesizes a human motion sequence x of length N based

on a set of condition signals C and a set of corresponding condition masksM, where N can

be arbitrarily large. The condition set C includes one or more of the following: video feature

cvideo ∈ RN×dvideo , camera motion ccam ∈ RN×dcam , 2D skeleton c2d ∈ RN×d2d , music clip

cmusic ∈ RN×dmusic , 2d bounding box cbbox ∈ RN×dbbox , or natural language ctext ∈ RM×dtext

that describes the motion where M is the number of text tokens. The condition mask M
consists of the mask m⋆ ∈ RN×d⋆ for each condition type c⋆ in C. The mask matrix is of the

same size as the condition feature and its element is one if the condition feature is available
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and zero otherwise.

Joint Local and Global Motion Representation. We now introduce the motion

representation we use for x. Most text-to-motion generation methods adopt an egocentric

motion representation that encodes human motion in a heading-free local coordinate system.

However, for motion estimation, human motions are typically represented in the camera

coordinate system to ensure better image feature alignment that facilitates learning. In this

work, to obtain a unified generation and estimation model, we adopt a general human motion

representation that encodes both the egocentric and camera-space human motions, along

with the camera poses. Our approach leverages the gravity-view coordinate system [336],

where the global trajectory of a person at frame i includes the gravity-view orientation

Γigv ∈ R6 and the local root velocities viroot ∈ R3. The local motion at the i-th frame is

represented as the SMPL [221] parameters, which consists of joint angles θi ∈ R24×6, shape

parameters βi ∈ R10, and root translation tiroot ∈ R3. Camera pose information at frame

i is encoded through the camera-to-world transformation πi =
(
Γicv, t

i
cv

)
, comprising the

camera-view orientation Γicv ∈ R6 and camera translation ticv ∈ R3. Additionally, we include

contact labels pi ∈ R6 for hands and feet (heels and toes). The complete motion sequence

x =
{
xi
}N
i=1

encompasses N human poses, where each pose xi ∈ RD consists of global

motion, local motion, and camera pose:

xi =
(
Γigv, v

i
root, θ

i, βi, tiroot, π
i, pi
)
. (11.1)

11.3.1 Unified Estimation and Generation Design

In this section, we will present the architectural design of GENMO and elucidates how it

unifies motion estimation and generation within a single model. The model architecture,

illustrated in Figure 11.1, transforms a noisy motion sequence xt with the conditions C and

condtion masks M into a clean motion sequence x0 through a series of carefully designed

components. The initial processing stage consists of an additive fusion block that converts

xt into a sequence of per-frame motion tokens. This block utilizes dedicated multilayer

perceptrons (MLPs) to process each condition type in C independently, combines their

features through summation to create a unified condition representation, which is further

fused with noisy motion xt to produce the motion token sequence. The resulting sequence

is subsequently processed through L GENMO modules, each comprising a RoPE-based

Transformer block and our novel multi-text injection block. Our architecture leverages

Rotary Position Embedding (RoPE) [350], which computes attention based on relative
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Additive Fusion

Perframe Motion Token

RoPE-based Transformer

Multi-Text InjectionBlock
w/ Multi-Text Attention

Clean Motion

Noisy Motion

Text 1

Text 2

Text K

GENMO Module

Conditions

Condition Masks

Figure 11.1: GENMO Model Design supports the generation of variable-length
motion sequences in a single pass and enables seamless integration of multimodal
conditioning signals, supporting both human motion generation and estimation.

temporal positions. This design choice enables processing of variable-length sequences

and accommodates conditions lacking inherent temporal ordering, such as images and 2D

skeletons.

However, text conditioning poses unique challenges. Unlike frame-aligned modalities

such as video and music, text is not aligned with the motion frames. The conventional

approach of concatenating text with the motion sequence is inadequate as inserting text

at any positions can introduce temporal bias. To address this challenge, we propose a

novel multi-text injection block that facilitates text-conditioned motion generation while

accommodating multiple text inputs (K) with user-specified time windows. The multi-

text injection block comprises a transformer block with our proposed multi-text attention

mechanism at its core. As depicted in Figure 11.2, the multi-text attention mechanism

processes K text embedding sequences c1text, c
2
text, . . . , c

K
text alongside the input motion feature
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sequence fin to generate the output feature sequence fout:

fout =
K∑
k=1

MaskedMHA
(
fin, c

k
text,Ωk

)
. (11.2)

Ωk(i, j) =

1 if i is within time window of text k

0 otherwise
(11.3)

where MaskedMHA(·) represents a masked variant of the conventional multi-head attention

mechanism. For each text input k, we employ a binary mask Ωk that assumes a value of

one when timestep i lies within the designated time window of text k, and zero otherwise.

Through the multiplication of attention weights with mask Ωk, we effectively restrict the

influence of each text prompt to its corresponding time window. Although the mask

introduces discontinuities at time window boundaries, GENMO successfully generates

smooth motion sequences through the subsequent RoPE-based transformer block, which

effectively captures and models temporal motion dynamics.

Inference with Arbitrary Motion Length. Our architecture employs relative positional

embeddings rather than absolute embeddings for motion sequences, allowing GENMO

to generate motions of arbitrary length in a single diffusion forward pass while naturally

incorporating multiple text inputs across different time spans. During inference, we adopt

a sliding window attention mechanism in the RoPE-based Transformer block, where each

token attends only to tokens within a W -frame neighborhood. This design enables the

generation of motion sequences longer than those seen during training while preserving

computational efficiency and ensuring smooth, coherent motion transitions.

Mixed Multimodal Conditions. When conditioned on multiple modalities, our frame-

work employs a principled approach for generation: text conditions, which lack frame-level

alignment, are processed through our specialized multi-text attention mechanism, while

frame-aligned modalities (e.g., video, music, 2D skeleton) are managed through a temporal

masking strategy. As mentioned before, for each condition c⋆, we use a mask m⋆ of the

same size to indicate whether the condition feature is (partially) present at each frame (one

for present, zero otherwise). We also multiply the mask with the condition feature to nullify

missing features. This simple yet effective approach enables seamless transitions between

different conditioning modalities while maintaining temporal coherence.
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Figure 11.2: Multi-text attention enables flexible conditioning with multiple text
inputs, each constrained to its specified time window.

11.3.2 Dual-Mode Training Paradigm

As a diffusion model, GENMO can theoretically be trained with the standard DDPM [149]

objective:

Lgen = Et∼[1,T ],xt∼q(xt|x0)
[∥∥x0 − G(xt, t, C,M)

∥∥2] , (11.4)

where t the sampled diffusion timestep, and xt is the noisy motion sampled from the

forward diffusion process. Ideally, the model trained with this objective should be capable

of generating motion sequences that satisfy the condition set C and mask M, so it can

be used as a motion estimation model when provided with video cvideo or 2D skeleton c2d

conditions. However, we found that such a generative training objective is not enough

to generate accurate motion sequences that are consistent with the input video. We

observe a fundamental difference between motion estimation and text-to-motion generation

tasks: motion estimation results exhibit substantially lower variability. To investigate

this phenomenon, we trained separate diffusion models for text-to-motion generation and

video-conditioned motion estimation, then visualized their predictions across all diffusion

steps and different initial latent noises (Fig. 11.3). The results demonstrate that the video-
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Text Condition

Video Condition

Different Timesteps Different Samples

“A person turns
around, walks
forward, turns

around, and then
walks back.”

Figure 11.3: Variance of video/text conditioned predictions. Left: Intermediate
predictions across 50 DDIM denoising steps. Right: Predictions with 10 different
initial noises (including zero-noise). Motions are transparent except the first-step
and zero-noise predictions. Video conditioning yields more deterministic outputs
compared to text conditioning.

conditioned model behaves more deterministically, in other words, the first-step prediction

closely resembles predictions from subsequent steps with minimal variation. In contrast, the

text-to-motion model exhibits significantly higher variance among steps. This observation

has important implications for the estimation task: the accuracy of the first-step prediction

becomes critical, as errors introduced early in the diffusion process are difficult to correct in

later steps. Based on this insight, we propose a dual-mode training paradigm, which consists

of (1) an estimation mode and (2) a generation mode. Intuitively, this dual-mode approach

reinforces the quality of first-step predictions while maintaining the model’s generative

capabilities.

Estimation Mode. In the estimation mode, we formulate the problem as a regression task,

employing maximum likelihood estimation to learn the conditional distribution q(x|C,M).

This approach yields the following mean-square error (MSE) objective:

Lest = Ez∼N (0,I)

[∥∥x0 − G(z, T, C,M)
∥∥2] . (11.5)

Rather than using noisy motion xt, we utilize pure Gaussian noise z ∼ N (0, I) as input to
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the model, along with the corresponding maximum diffusion timestep T . This formulation

ensures that the estimation mode aligns with the inherent variance characteristics of the

diffusion model, thereby preventing conflicts between the generation and estimation modes.

To further enhance the quality of predicted motion sequences, we incorporate geometric

regularization losses Lgeo following established approaches in the literature [311, 373]. It

involves decoding the predicted motion sequences into SMPL joints and vertices, followed

by the application of constraints on world-space and camera-space vertices positions, world-

space and camera-space joint positions, and joint contacts. In scenarios where only 2D

annotations are available, we employ a 2D reprojection loss to effectively regularize the

predicted motion sequences.

Generation Mode. For data with clean 3D annotations x0, we can directly employ the

standard diffusion objective in Eq. 11.4 to train the generation mode. In this section, we

primarily focus on the more interesting scenario where only 2D annotations are available

for the generation mode.

Unlike 3D annotations, 2D pose labels are more readily accessible through manual

annotation or by applying robust 2D pose estimators on large-scale video datasets. 2D

data also offers greater diversity compared to existing 3D motion capture data, which is

constrained by the limited variety of subjects, motions, appearances, and environments.

Due to its inherent estimation capability, GENMO can naturally leverage 2D data for

training the generation mode. Specifically, we propose an estimation-guided generation

training strategy. First, we generate a pseudo-clean motion from the estimation mode

using video or 2D skeleton as conditions: x̂0 = G(z, T, C). Subsequently, we sample a noisy

motion sequence x̂t through the forward diffusion process: q
(
x̂t|x̂0

)
. We then apply a 2D

reprojection loss on the predicted clean motion using the 2D keypoint annotations x2d:

Lgen-2D = Ex̂t∼q(x̂t|x̂0),t∼[1,T ]
[∥∥x2d −Π(G(x̂t, t, C))

∥∥2], (11.6)

where Π represents the 2D projection function. For the generation mode, we also apply the

aforementioned geometric losses Lgeo to regularize the predicted motion sequences.

Training Mode Selection. We train the model on diverse datasets with various types

of modalities. When training on datasets with strong conditioning signals that render the

motion distribution more deterministic, such as video or 2D skeletons, we utilize both the

estimation and generation modes to train GENMO. Conversely, when training on datasets

with abstract conditions that result in more generative motion distributions, such as text

and music, we exclusively employ the generation mode. This mode selection principle is
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Table 11.1: World-grounded human motion estimation. We evaluate the global
motion quality on the EMDB-2 [176] dataset and RICH [155]. Parenthesis denotes
the number of joints used to compute WA-MPJPE100, W-MPJPE100 and Jitter.

EMDB (24) RICH (24)

Models WA-MPJPE100 W-MPJPE100 RTE Jitter Foot-Sliding WA-MPJPE100 W-MPJPE100 RTE Jitter Foot-Sliding

GLAMR [462] 280.8 726.6 11.4 46.3 20.7 129.4 236.2 3.8 49.7 18.1
TRACE [356] 529.0 1702.3 17.7 2987.6 370.7 238.1 925.4 610.4 1578.6 230.7
SLAHMR [443] 326.9 776.1 10.2 31.3 14.5 98.1 186.4 28.9 34.3 5.1
COIN [202] 152.8 407.3 3.5 - - - - - - -
WHAM (w/ DPVO) [338] 135.6 354.8 6.0 22.5 4.4 109.9 184.6 4.1 19.7 3.3
WHAM (w/ GT extrinsics) [338] 131.1 335.3 4.1 21.0 4.4 109.9 184.6 4.1 19.7 3.3
GVHMR (w/ DPVO) [336] 111.0 276.5 2.0 16.7 3.5 78.8 126.3 2.4 12.8 3.0
GVHMR (w/ GT extrinsics) [336] 109.1 274.9 1.9 16.5 3.5 78.8 126.3 2.4 12.8 3.0
TRAM (w/ DROID-SLAM) [399] 76.4 222.4 1.4 - - - - - - -

Ours (w/ DROID-SLAM) 74.3 202.1 1.2 17.8 8.8 75.3 118.6 1.9 15.0 6.7
Ours (w/ GT extrinsics) 69.5 185.9 0.9 17.7 8.6 75.3 118.6 1.9 15.0 6.7

applied to both 3D and 2D data.

11.4 Experiments

We evaluate the performance of GENMO on four different tasks including video-to-motion,

music-to-dance, text-to-motion, and motion in-betweening. Note that for all experiments

we use a single one-in-all checkpoint jointly trained for all tasks unless stated otherwise.

Datasets. GENMO is trained on a diverse collection of motion datasets spanning multiple

tasks: (1) motion capture data from AMASS [240]; (2) motion estimation benchmarks

including BEDLAM [30], Human3.6M [159], and 3DPW [384]; (3) music-to-dance data

from AIST++ [204]; (4) text-to-motion data from HumanML3D [122]; (5) 2D keypoints

and text descriptions from Motion-X [210]. Comprehensive details regarding the training

procedure and implementation are provided in the supplementary material.

For evaluation, we use RICH [155], and EMDB [176] for global human motion estima-

tion, 3DPW [384] for local human motion estimation, AIST++ [204] for music-to-dance

generation, and HumanML3D [122] and Motion-X [210] for text-to-motion generation.

Evaluation Metrics. For the music-to-dance generation, we follow the standard evaluation

metrics [204, 376] and report the FID, Diversity, PFC, and BAS. For text-to-motion

generation, we follow the standard evaluation metrics in previous works [122, 373] and

report the R-Precision (Top 3), FID, Diversity, and MultiModal Dist. We also test the

motion in-betweening performance by reporting the WA-MPJPE and PA-MPJPE for all

the keyframes.

For motion estimation, we report MPJPE, PA-MPJPE, and PVE to evaluate the local
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Table 11.2: Camera-space metrics. We evaluate the camera-space motion quality
on the 3DPW [384], RICH [155] and EMDB-1 [176] datasets. ∗ denotes models
trained with the 3DPW training set.

3DPW (14) RICH (24) EMDB (24)

Models PA-MPJPE MPJPE PVE Accel PA-MPJPE MPJPE PVE Accel PA-MPJPE MPJPE PVE Accel

p
er

-f
ra

m
e CLIFF∗ [207] 43.0 69.0 81.2 22.5 56.6 102.6 115.0 22.4 68.1 103.3 128.0 24.5

HybrIK∗ [200] 41.8 71.6 82.3 – 56.4 96.8 110.4 – 65.6 103.0 122.2 –
HMR2.0 [116] 44.4 69.8 82.2 18.1 48.1 96.0 110.9 18.8 60.6 98.0 120.3 19.8
ReFit∗ [398] 40.5 65.3 75.1 18.5 47.9 80.7 92.9 17.1 58.6 88.0 104.5 20.7

te
m

p
o
ra

l

VIBE∗ [185] 51.9 82.9 98.4 18.5 68.4 120.5 140.2 21.8 81.4 125.9 146.8 26.6
TRACE∗ [356] 50.9 79.1 95.4 28.6 – – – – 70.9 109.9 127.4 25.5
SLAHMR [443] 55.9 – – – 52.5 – – 9.4 69.5 93.5 110.7 7.1
PACE [186] – – – – 49.3 – – 8.8 – – – –
WHAM∗ [338] 35.9 57.8 68.7 6.6 44.3 80.0 91.2 5.3 50.4 79.7 94.4 5.3
GVHMR∗ [336] 36.2 55.6 67.2 5.0 39.5 66.0 74.4 4.1 42.7 72.6 84.2 3.6
TRAM∗ [399] 35.6 59.3 69.6 4.9 - - - - 45.7 74.4 86.6 4.9

Ours∗ (w/o 2D Training) 35.2 55.4 67.0 4.8 40.6 66.4 75.4 4.0 44.3 76.0 88.9 4.3
Ours∗ 34.6 53.9 65.8 5.2 39.1 66.8 75.4 4.1 42.5 73.0 84.8 3.8

motion. Acceleration error (Accel) is also reported to measure the smoothness of the motion.

For global motion estimation, we report W-MPJPE100 and WA-MPJPE100. We also evaluate

the error accumulation over long sequences by reporting RTE in %. Jitters and foot sliding

(FS) during contacts are also reported. Details are provided in the supplementary material.

Qualitative Results. We provide extensive qualitative results in the supplementary video,

demonstrating the effectiveness and versatility of GENMO.

11.4.1 Evaluation of Motion Estimation

Global Motion Estimation.. We compare GENMO with state-of-the-art (SOTA) methods

for recovering global human motion from videos with dynamic cameras. To ensure fair

comparison across methods that employ different SLAM techniques during inference, we also

report results using ground-truth camera parameters provided by the datasets. As shown

in Table 11.1, GENMO consistently outperforms specialized methods trained exclusively

for human motion estimation. Notably, our approach achieves a W-MPJPE of 202.1 mm

on the EMDB dataset, surpassing TRAM [399] (222.4 mm) despite both methods utilizing

identical SLAM systems and backbone features for video encoding. This performance

advantage stems from our unified motion generation and estimation framework, where the

generative prior enhances the quality of reconstructed motions. GENMO also demonstrates

superior performance on the RICH dataset compared to all existing methods. Extensive
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Table 11.3: Benchmark of Music-to-Dance Generation. Motion quality is
evaluated on the AIST++ [204] dataset.

Methods FIDk ↓ FIDm ↓ Divk ↑ Divm ↑ PFC ↓ BAS ↑

FACT [204] 86.43 43.46 6.85 3.32 2.2543 0.1607

Bailando [341] 28.16 9.62 7.83 6.34 1.754 0.2332

EDGE [376] 42.16 22.12 3.96 4.61 1.5363 0.2334

Ours (music only) 16.10 13.91 8.47 7.26 0.7340 0.2282

Ours 40.91 18.51 10.09 7.48 0.3702 0.2708

qualitative results are provided in the supplementary material.

Local Motion Estimation. We evaluate GENMO against SOTA methods for local 3D

human motion estimation. Quantitative results in Table 11.2 demonstrate that GENMO

surpasses existing approaches across most metrics. Additionally, we present results without

training on 2D-only data, where the observed performance degradation highlights the

effectiveness of our estimation-guided 2D training objective. Further evaluation on the

challenging 3DPW-XOCC dataset [201] reveals that our generative prior enables GENMO to

maintain robust performance even under severe occlusions and truncations. Comprehensive

analyses and results on 3DPW-XOCC are provided in the supplementary material.

11.4.2 Evaluation of Motion Generation

Comparison on Music-to-Dance. We evaluate music-to-dance generation performance

on the AIST++ dataset [204], with results presented in Table 11.3. GENMO is benchmarked

against SOTA methods and a specialized variant of our model trained exclusively on AIST++

for music-to-dance generation. Notably, our generalist model, jointly trained across multiple

estimation and generation tasks, demonstrates substantially enhanced motion diversity,

physical plausibility, and motion-music correlation, as evidenced by superior Divk, Divm,

PFC, and BAS metrics. While GENMO exhibits higher FID values compared to the

specialized music-only variant, this performance differential is expected given that our

generalist model was trained on considerably more heterogeneous motion data spanning

multiple tasks and domains.

Comparison on Text-to-Motion. We evaluate the text-to-motion generation capabilities

of GENMO on both HumanML3D (Table 11.4) and Motion-X (Table 11.5) datasets. Our

method demonstrates superior performance compared to the baseline model MDM [373],
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Table 11.4: Benchmark of Text-to-Motion Generation on the HumanML3D [122]
dataset. R@3 denotes R-Precision (Top 3).

Methods Rep. R@3 ↑ FID ↓ MM Dist ↓ Diversity →

Real HumanML3D 0.797 0.002 2.974 9.503

T2M [123] HumanML3D 0.740 1.067 3.340 9.188

MDM [373] HumanML3D 0.611 0.544 5.566 9.559

M2DM [188] HumanML3D 0.763 0.352 3.134 9.926

EMDM [496] HumanML3D 0.786 0.112 3.110 9.551

Ours (w/o 2D Training) SMPL 0.556 0.245 3.128 11.660

Ours SMPL 0.632 0.216 3.466 11.342

Table 11.5: Benchmark of Text-to-Motion Generation. Motion quality is
evaluated on the Motion-X [210] dataset.

Methods R@3 ↑ FID ↓ MM Dist ↓ Diversity →

Real 0.791 0.001 2.823 11.702

MDM [373] 0.313 2.389 6.745 8.720

Ours (w/o 2D Training) 0.401 0.515 5.210 12.124

Ours 0.472 0.207 4.801 11.719

exhibiting enhanced motion fidelity and improved text-prompt correspondence across both

benchmarks. To assess the impact of 2D data training, we compare GENMO with its

variant without training on Motion-X’s 2D data. The results indicate that incorporating 2D

training substantially enhances motion generation performance across both HumanML3D

and Motion-X datasets. These findings substantiate the efficacy of leveraging 2D data

within GENMO’s framework for text-conditioned motion generation tasks.

Discussion on HumanML3D Performance. Although GENMO exhibits worse perfor-

mance compared to SOTA methods like EMDM [496], this discrepancy can be stemmed from

our representation choice: GENMO utilizes SMPL parameters to represent human motion

for unified estimation and generation, whereas SOTA methods employ the HumanML3D

representation — the same representation used by the encoders of the FID and R-Precision

metrics. This representational mismatch introduces an inherent disadvantage for GENMO,

as it necessitates bidirectional conversion of ground-truth motions from HumanML3D

to SMPL during training and conversion of our generated motions to the HumanML3D
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Table 11.6: Motion In-betweening Experiments. The DDPM baseline is the
proposed method without the estimation objective, only using the standard diffusion
objective for training. “w/o Estimation.” is the proposed method without training for
the motion estimation task. “w/o 2D Training” is trained without Lgen-2D. Results
are reported using PA-MPJPE/WA-MPJPE.

HumanML3D Motion-X

Models 2-Keyframe 5-Keyframe 2-Keyframe 5-Keyframe

Diffusion-only 71.6/98.8 46.3/70.4 97.6/154.9 56.3/106.9
w/o Estimation 64.9/97.5 47.5/72.6 97.9/151.0 69.6/116.4
w/o 2D Training 56.4/85.1 36.7/59.5 68.3/136.8 44.6/98.6

Ours 53.5/85.3 37.1/58.5 58.8/122.7 40.5/89.5

format during evaluation. These conversion processes inevitably introduce distribution shifts

through alterations in bone lengths, joint angles, and joint velocities, consequently affecting

performance metrics and limiting the upper bound of GENMO’s achievable performance on

these HumanML3D-specific metrics.

Experiments on Motion In-betweening. We further evaluate the performance of condi-

tional motion generation through the motion in-betweening task, following the methodology

of prior diffusion-based approaches [373] by overwriting the noisy motion with the keyframe

poses before each denoising step. Experiments are conducted on both HumanML3D and

Motion-X test sets under two configurations with either 2 or 5 sampled keyframes. As shown

in Table 11.6, GENMO achieves superior performance through its unified estimation and

generation training compared to the diffusion-only baseline. Furthermore, the incorporation

of additional 2D-only data and joint training with video-conditioned motion estimation

substantially enhances motion in-betweening quality.

11.4.3 Ablation Study

Impact of the Estimation Mode. To assess the efficacy of our proposed estimation mode,

we evaluate a variant of our method trained exclusively with the generation mode (“Diffusion-

only”). Table 11.7 presents quantitative comparisons of global human motion estimation

performance on the RICH and EMDB datasets, using direct model predictions without

post-processing for static joints. The results demonstrate that omitting the estimation

objective significantly degrades global motion estimation performance, confirming the
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Table 11.7: Ablation studies on motion estimation. The DDPM baseline is the
proposed method without the estimation objective, only using the standard diffusion
objective for training. The regression baseline is the proposed method without the
generation objective.

RICH (24) EMDB (24)

Models WA-MPJPE100 W-MPJPE100 WA-MPJPE100 W-MPJPE100

Diffusion-only 88.9 143.9 128.6 307.7
Regression-only 87.0 141.0 121.1 300.1

Ours 81.3 130.6 114.6 281.7

Table 11.8: Effect of inference steps on motion generation and estimation perfor-
mance.

HumanML3D (Gen.) EMDB (Est.)

Models FID W-MPJPE100 MPJPE

Step=1 (Regression) 0.260±.101 280.0 73.0
Step=2 0.242±.083 276.8 72.5
Step=5 0.231±.091 274.9 72.2
Step=10 0.237±.126 275.8 72.3
Step=50 0.216±.119 278.7 72.7

estimation objective’s crucial role in enhancing consistency between predicted motions and

input videos. This finding is further corroborated by the motion in-betweening results in

Table 11.6, which similarly indicate that the estimation objective improves in-betweening

performance.

Impact of the Generation Mode. We compare our unified model against a pure

regression baseline (trained solely with the estimation mode, akin to SOTA human motion

estimation methods) to evaluate the impact of the generation objective. Quantitative

comparisons on the RICH and EMDB datasets (Table 11.7) reveal that our unified model

consistently outperforms the regression baseline, suggesting that incorporating generative

priors enhances motion quality in human motion estimation tasks.

Different Inference Steps. We evaluate the impact of denoising steps using the standard

DDIM [345] inference pipeline. As shown in Table 11.8, motion estimation performance

remains relatively stable across different step counts, while text-to-motion generation shows

greater sensitivity. Notably, single-step denoising sufficiently produces video-consistent
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human motions, with optimal estimation performance achieved at 5 inference steps — a

balance that effectively leverages generative priors without introducing excessive variance.

11.5 Conclusion

In this work, we introduced GENMO, a generalist framework for human motion modeling

that bridges the gap between motion estimation and generation tasks. We showed that

GENMO can effectively leverage shared representations to enable synergistic benefits:

generative priors enhance motion estimation robustness under challenging conditions, while

diverse video data enriches the generative capabilities. GENMO can produce variable-length

motion generation in a single pass and supports flexible control using text, videos, music,

2D keypoints, and 3D keyframes. GENMO achieved state-of-the-art performance on both

motion estimation and generation benchmarks, while also reducing reliance on 3D motion

capture data. Extensive experiments demonstrated that GENMO is not only capable of

handling multiple human motion tasks within a single framework but also achieves superior

results compared to task-specific models.

As with any other work, GENMO has some limitations. Currently, it relies on off-the-

shelf SLAM methods to obtain camera parameters for videos. Integrating camera estimation

inside GENMO is an interesting future work. Moreover, currently, our model only supports

full-body motion. We plan to enable facial expressions and hand articulation in the future.
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11.6 Conclusion and Lessons

In this thesis, we explored the problem of modeling human motion across multiple types of

interactions. We presented multiple projects for estimating and generating human motions,

and combined multiple knowledge resources for a broad range of tasks, including video,

motion capture, physics simulation, etc.

We began by estimating human motion from videos involving multiple people moving

together, where their interactions were implicitly present. At this stage, we focused on

global position estimation without modeling local body motion or deformation. We studied

the appearance matching and parametric filtering solutions for tracking humans in crowds

and in uniform appearances.

After investigating video-based motion estimation, we gradually shifted toward the

generation of dynamic human trajectories. In estimation tasks, the primary goal was to

deterministically match the observed video data, whereas in generation tasks, we aimed

to produce diverse and plausible motion sequences through multi-modal modeling. We

proposed to use the multi-modal distribution describing the motion intentions as the prior

for the normalizing flow model to improve the diversity and controllability of trajectory

generation.

To address more complex human interactions, we incorporated both global position

changes and local body deformations into the motion generation process. The objective was

to generate motion that appeared visually natural and physically realistic. While generative

models trained on videos or motion capture datasets effectively enforced visual realism, we

found it necessary to integrate physics simulators to ensure physical plausibility, such as

preventing foot sliding and ground penetration. We explored solutions involving motion

imitators and developed a method for imitating kinematic human pose sequences capable

of capturing a broad range of real-world motion patterns. Building on this imitator, we

introduced a language-guided human motion generation framework for interactive indoor

scenes.

Seeking to move beyond interactions with static environments, we extended our study

to human motion involving dynamic and manipulable objects. We addressed this problem

in two stages. Due to the complexity of modeling hand pose and finger articulation

required for dexterous grasping, we first developed a model for static hand-object grasp

generation. These generated grasps were then used to guide reinforcement learning policies

for hand-object interaction. Subsequently, we proposed a physics-based whole-body motion

generation model that integrated visual realism from motion capture data, physical realism

231



from simulation, and grasp priors from static grasp generation.

After examining a wide range of motion estimation and generation tasks, we explored

using a single unified model to handle both. Using sensory data such as video as an optional

condition, we developed a multi-modal conditioned diffusion model capable of generating

and estimating human motion. This model also supported additional conditioning inputs,

including 2D/3D human skeleton sequences, natural language, and music.

Here, we summarize some lessons learned during the presented works and some excluded

but relevant works during the author’s Ph.D. study:

1. Parametric Models and Data-Based Models. Deep learning-based models have

become mainstream in many areas. For example, deep feature-based appearance

matching is now the standard for target association in multi-object tracking. Similarly,

training end-to-end generative models on motion capture data is considered the main

approach for human motion generation. However, as demonstrated in multiple

projects (Chapter 5, Chapter 6, Chapter 7), parametric modeling, such as linear

motion filtering, mixed Gaussian priors, or physical rules from simulation, remains a

key tool for improving the quality and efficiency of motion estimation and generation.

Given that certain data are underrepresented in available datasets and that some

modalities are difficult to collect or represent, we believe combining task-specific

inductive biases from parametric models with data-based learnable models offers

significant advantages.

2. Physics Simulation and Generative Model. Our generation works use two arts

of methodologies, generative models (Chapter 6, Chapter 9, Chapter 11) and physics

simulation (Chapter 7, Chapter 8, Chapter 10). Following the popular paradigm of

end-to-end training, generative models benefit from large-scale and diverse annotated

kinematic datasets but fall short in preventing unrealistic physics and body shapes. On

the other hand, a physical simulator has significant advantages for motion generation

with explicitly enforced physical rules, while it potentially suffers from human-like

demonstrations and visual plausibility. We learned the significance of combining the

two streams as in Chapter 10. We believe this can be extended to more complicated

and high-fidelity human motion modeling in the future.

3. Training Unified Models with Heterogeneous Data. End-to-end training

with uniformly annotated, single-modality data has long been the norm. However,

due to the limitations in data availability and modality coverage, we encountered

challenges in training generative models with homogeneous data sources. To address
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this, we adopted a strategy of leveraging heterogeneous, multi-source datasets to

train unified models. By encoding different data modalities into a shared latent space

and conducting joint training therein, we achieved promising results (Chapter 6,

Chapter 10, Chapter 11). This approach mirrors practices in contemporary multi-

modal large language models, and our findings reinforce the value of this paradigm

for complex motion understanding and generation tasks.

Beyond the work presented in this thesis, there remains substantial room for advancement

in human motion estimation and generation. Several limitations in our current work point

to promising directions for future research.

First, we only model human-human interaction implicitly and do not account for local

body deformation during social interactions. Moreover, to manage the complexity of

multi-agent interactions common in daily life, we separately studied motion in interactions

with other humans, scenes, and objects. However, this simplification limits realism. In

particular, our treatment of human-scene and human-object interactions considers only

rigid objects, whereas articulable and non-rigid objects play a critical role in shaping motion

patterns—especially for dexterous hand operations.

These limitations highlight that human motion modeling is still in a relatively early

stage compared to other computer vision tasks. Looking forward, our overarching goal is to

build a generalist motion model capable of estimating and generating visually and physically

realistic motion across all forms of interactive human behavior, as illustrated in Figure 11.4.

To move toward this ambitious goal, we outline the following future directions:

1. We aim to develop models that can capture detailed human body motion and defor-

mation when multiple individuals interact in close proximity. This is a particularly

challenging problem because standard parametric models, such as SMPL [220], often

fail under these conditions. Specifically, the joint-to-mesh pipeline tends to produce

severe mesh penetrations when people are in physical contact. Furthermore, modeling

the fine-grained social dynamics in such interactions adds another layer of complexity.

2. We seek to build unified estimation and generation models that can jointly reason

about multiple elements—scene layouts, dynamic and manipulable objects, and other

humans—within a single setup, whether in real-world 3D environments or simulation.

With both static assets and active human agents embedded in a physics-aware

environment, we are also interested in developing tools capable of replaying and

analyzing sophisticated real-world dynamics in a controlled, reproducible way.
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3. We plan to model the dexterous operation of both human hands to enable human-level

manipulation capabilities with embodiment. This is a highly challenging problem

that requires joint advances in computer vision and robotics, and potentially relies

on richer sensory data beyond kinematic and physical inputs. As an initial step, we

propose building a strong hand motion prior capable of estimating plausible hand

movements from monocular in-the-wild video, while also remaining physically feasible

during downstream demonstrations.

Generation

Estimation

Global Local

Generalist motion
model in all-powered
interaction

human-human interaction

human-object interaction human-scene interaction

Figure 11.4: The quadrant to summarize projects we present in this thesis and the
future goal of building a generalist motion model in all-powered interaction.
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In European Conference on Computer Vision, pages 474–490. Springer, 2020.

[502] Xingyi Zhou, Tianwei Yin, Vladlen Koltun, and Philipp Krähenbühl. Global tracking
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