Learning to Create 3D Content:
Geometry, Appearance, and Physics

Kangle Deng
CMU-RI-TR-25-85
Aug, 2025

The Robotics Institute
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:

Deva Ramanan, co-chair
Jun-Yan Zhu, co-chair
Shubham Tulsiani
Maneesh Agrawala, Stanford University
Noah Snavely, Cornell University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2025 Kangle Deng. All rights reserved.

Abstract

With the popularity of Virtual Reality (VR), Augmented Reality (AR),
and other 3D applications, developing methods that let everyday users
capture and create their own 3D content has become increasingly essen-
tial. Current 3D creation pipelines, however, often require tedious man-
ual effort or specialized capture setups. Furthermore, resulting assets
frequently suffer from baked-in lighting, inconsistent representations,
and a lack of physical plausibility, limiting their use in downstream
applications.

This dissertation addresses these challenges by developing methods
that leverage data-driven priors to significantly lower the barrier for 3D
content creation. By utilizing information from other modalities, large
datasets, and pre-trained generative models, the work presented here
reduces the burden on user input to casually captured photos, simple
sketches, and text prompts.

We first show how depth priors can enable users to digitalize 3D scenes
without dense data capture, and discuss how to enable interactive 3D
editing and generation through 2D user inputs such as sketches. We
then propose an end-to-end text-to-3D generation pipeline that gener-
ates both the geometry and texture of 3D assets. For geometry gener-
ation, we propose an octree-based adaptive tokenization scheme that
allocates representational capacity based on shape complexity, enabling
higher-fidelity and more efficient reconstruction and generation of 3D
shapes. Moreover, we address appearance modeling by utilizing data
and diffusion model priors to generate relightable textures on meshes
using text input, ensuring that generated 3D objects are functional in
downstream production workflows. Finally, to ground digital designs
in reality, we introduce BrickGPT, which incorporates manufacturing
and physics constraints to generate physically stable and buildable toy
brick structures from text prompts.

Collectively, these contributions bridge the gap between high-level user
intent and the creation of editable, functional, and physically realizable
3D content by addressing the core challenges in geometry representa-
tion, appearance modeling, and physics-aware generation.

111

iv

Acknowledgments

I would like to express my deepest gratitude to all those who have
supported me throughout my PhD journey. This thesis would not have
been possible without their invaluable contributions, guidance, and
encouragement.

First and foremost, I extend my sincere appreciation to my advisors,
Deva and Jun-Yan. I still remember the summer of 2019 when I was
doing a research internship in Deva’s lab as an undergraduate student.
From that summer, I learned a great deal from Deva, but most impor-
tantly, I learned to enjoy doing research. I will always recall the genuine
happiness we shared when discussing new insights. Deva, thank you
for showing me that research can be so fascinating!

Even before I knew anything about research, I had heard of Jun-Yan’s
name through his well-known work. He has always been a role model
as a brilliant junior faculty with both intellect and diligence. I'm grateful
that he taught me to keep polishing every detail of my work. Beyond
being an insightful advisor, he is also a close friend in life. He remem-
bers everyone’s birthday and orders cake for our lab. In addition to
his thoughtful comments on research, his curated list of restaurants in
Pittsburgh is another treasure to me.

I feel extremely fortunate to have worked with these two great advisors
throughout my PhD.

I am grateful to my committee members, Shubham, Noah, and Maneesh,
for their invaluable insights and challenging questions that strength-
ened this work. I also thank the other mentors I have had the great
fortune of working with: Aayush Bansal, Tinghui Zhou, and Kiran Bhat,
among others. They have guided me at various stages of my academic

journey.

I'm also thankful to my wonderful collaborators: Tianyi Fei, Andrew
Liu, Gengshan Yang, Andrew Song, Ruihan Gao, Ruixuan Liu, Yehonathan
Litman, Timothy Omernick, Alexander Weiss, Yiheng Zhu, Hsueh-Ti
Derek Liu, Xiaoxia Sun, Chong Shang, and Ava Pun, among others. 1
have learned tremendously from working with each of them.

My heartfelt thanks go to my colleagues and friends at Carnegie Mellon
University for making Pittsburgh and Smith Hall feel like home: Sheng-

vi

Yu Wang, Nupur Kumari, Gaurav Parmar, Ruihan Gao, Muyang Li,
George Cazenavetteorge, Andrew Song, Beijia Lu, Maxwell Jones, Ava
Pun, Sean Liu, Mia Tang, Bingliang Zhang, Daohan Lu, Gengshan Yang,
Jeff Tan, Zhiqiu Lin, Tarasha Khurana, Martin Li, Neehar Peri, Jonathon
Luiten, Haithem Turki, Aayush Bansal, Yufei Ye, Donglai Xiang among
many others. Their friendship and support have made this journey
truly memorable.

I extend my thanks to my undergraduate advisors and mentors, Xin
Huang, Yuxin Peng, and Jiaying Liu, who provided opportunities to
work on exciting projects and first stimulated my interest in research.

I would also like to acknowledge the financial support provided by
Microsoft Research PhD Fellowship, without which this research would
not have been feasible.

Finally, and most importantly, I am eternally grateful to my family —
my parents, my grandparents, and my wife, Yue — for their endless
love, patience, understanding, and unwavering belief in me. Their
encouragement has always been my constant source of strength and
inspiration.

Contents

1 Introduction

1.1 Background
1.2 Challenges
1.3 Dissertation Overview e
14 OtherResearch.

I Sparse-view 3D Reconstruction

2 Depth-supervised NeRF: Fewer Views and Faster Training for Free
2.1 Introduction

22 RelatedWork. o
2.3 Depth-Supervised Ray Termination
2.3.1 Volumetric rendering revisited
2.3.2 Deriving depth-supervision
24 Experiments
241 Datasets o000
242 Comparisonso
243 Few-inputviewsynthesis
244 Deptherror
245 Analysis L
25 Discussion.

II 3D Asset Generation

3 3D-aware Conditional Image Synthesis

3.1 Introduction
32 RelatedWork e
33 Method
3.3.1 Conditional 3D Generative Models
3.3.2 Learning Objective
34 Experiment.
3.4.1 Evaluationmetrics

N O N = =

11
11
14
15
15
17
18
20
21
23
25
25
26

27

29
29
31
33
33
36
39
41

Vil

I11

6

viil

3.4.2 Baselinecomparison 43
343 Applications Lo Lo o 45
35 Discussion 47

Efficient Autoregressive Shape Generation via Octree-Based Adaptive

Tokenization 49
41 Introduction 49
42 RelatedWork. 51
43 Method 54
43.1 Complexity-Driven Octree Construction 55

4.3.2 Adaptive shape tokenization with OAT 57

43.3 OctreeGPT: Autoregressive Shape Generation 60

44 Experiments 61
441 ShapeReconstruction. 62
442 ShapeGeneration 64

45 Discussion 65
Fast Relightable Mesh Texturing with LightControlNet 69
51 Introduction 69
52 RelatedWork o 71
53 Preliminaries L L 74
54 Method 75
54.1 LightControlNet. 76
542 Stage 1: Multi-view Visual Prompting 77
5.4.3 Stage 2: Texture Optimization 79

55 Experiments Lo 81
56 Discussion o oL 88
Physical Asset Generation 89
Generating Physically Stable and Buildable Brick Structures from Text 91
6.1 Introduction 92
6.2 Related Work. 94
6.3 Dataset 96
64 Method 98
6.4.1 Model Fine-tuning 99

6.4.2 Integrating Physical Stability 100

6.4.3 Brick Texturing and Coloring 103

6.5 Experiments 0 ... 106
6.5.1 Implementation Details 106

6.5.2 Brick Structure GenerationResults 108

6.5.3 Extensions and Applications 109

6.6 DiscussSion e e 109
Conclusions 111

71 DIScuSSion e e e e e 111
72 TFuture Work 112
Bibliography 115

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

ix

List of Figures

1.1

1.2

21

Two ways of creating 3D content. (a) 3D Digitization captures
real-world environments through photogrammetry or 3D scanning,
requiring dense camera views or specialized equipment setups to
achieve high-fidelity results. (b) 3D Modeling involves artists us-
ing professional software to handcraft virtual content from scratch,
including both geometry and texture creation. Both approaches
require specialized expertise and remain inaccessible to everyday
USETS. © v v vt e e e e e e e e e

Dissertation Overview. This dissertation is organized in three parts:
(a) Sparse-view 3D Reconstruction (Part I) enables high-quality 3D
scene reconstruction from as few as two casually captured photos.
(b)(c) 3D Asset Generation (Part II) creates 3D content from intuitive
inputs: generating editable 3D objects from 2D segmentation maps
or sketches for category-specific generation (Chapter 3), and diverse
3D asset creation from text descriptions (Chapters 4 and 5). (d)
Physical Asset Generation (Part III) extends beyond virtual assets
to generate physically stable and buildable brick structures from
text prompts, providing step-by-step construction sequences for
real-world implementation. Lo L0

Training NeRFs can be difficult when given insufficient input images.
We utilize additional supervision from depth recovered from 3D
point clouds estimated from running structure-from-motion and
impose a loss to ensure the rendered ray’s termination distribution
respects the surface priors given by the each keypoint. Because our
supervision is complementary to NeRF, it can be combined with any
such approach to reduce overfitting and speed up training.

2.2

2.3

24

2.5

2.6

2.7

Few view NeRF. NeRF is susceptible to overfitting when given few
training views. As seen by the PSNR gap between train and test
renders (left), NeRF has overfit and fails at synthesizing novel views.
Further, the depth map (right) and depth error (middle) for NeRF
suggest that its density function has failed to extract the surface
geometry and can only reconstruct the training views’ colors. Our
depth-supervised NeRF model is able to render plausible geometry
with consistently lower depth errors.

Ray Termination Distribution. (a) We plot various NeRF compo-
nents over the distance traveled by the ray. Even if a ray traverses
through multiple objects (as indicated by the multiple peaks of den-
sity o(t)), we find that the ray termination distribution h(t) is still
unimodal. We find that NeRF models trained with sufficient super-
vision tend to have peaky, unimodal ray termination distributions
as seen by the decreasing variance with more views in (c). We posit
that the ideal ray termination distribution approaches a § impulse
function. L

View Synthesis on DTU and Redwood. PixelNeRF, which is pre-
trained on DTU, performs the best when given 3-views, although
we find DS-NeRF to be visually competitive when more views are
available. On Redwood, DS-NeRF is the only baseline to perform
well on the 2-views setting.

Qualitative Comparison on NeRF Real. We render novel views and
depth for various NeRF models trained on 2, 5, and 10 views. We
tind that methods trained with DTU struggle on NeRF Real while
methods that use depth-supervision are able to render test views
with realistic depth maps, even when only 2 views are provided.
Please refer to Table 2.1 for quantitative comparisons.

Depth Supervision Ablations. We render novel views for NeRF
and DS-NeRF trained on 2 views and 5 views. NeRF fails to render
novel views as evident by the many artifacts. Using MSE between
rendered and sparse depth improves results slightly, but with KL

21

Divergence, DS-NeRF is able to render images with the fewest artifacts. 22

Faster Training. We train DS-NeRF and NeRF under identical condi-
tions and observe that DS-NeRF is able to reach NeRF’s peak PSNR
quality in a fraction of the number of iterations across. For 2 views,
we find that NeRF is unable to match DS-NeRF’s performance. . . .

22

xi

xii

3.1

3.2

3.3

34

3.5

3.6

Given a 2D label map as input, such as a segmentation or edge map,
our model learns to predict high-quality 3D labels, geometry, and
appearance, which enables us to render both labels and RGB images
from different viewpoints. The inferred 3D labels further allow
interactive editing of label maps from any viewpoint, as shown in
Figure3.10.

Overall pipeline. Given a 2D label map (e.g., segmentation map), a
random latent code z, and a camera pose Pas inputs, our generator
renders the label map and image from viewpoint P. Intuitively, the
input label map specifies the geometric structure, while the latent
code captures the appearance, such as hair color. We begin with
an encoder that encodes both the input label map and the latent
code into style vectors w'. We then use w* to modulate our 3D
representation, which takes a spatial point x and outputs (1) color
¢ € R3, (2) density o, (3) feature ¢ € R/, and (4) label s € R°. We
then perform volumetric rendering and 2D upsampling to get the
high-res label map I and RGB Image 1. For those rendered from
ground-truth poses, we compare them to ground-truth labels and
images with an LPIPS loss and label reconstruction loss. We apply
a GAN loss on labels and images rendered from both novel and
original viewpoints.o L o Lo oL

Cross-View Consistency Loss. Given an input label map I and its
associated pose P, we first infer the geometry latent code wg. From
wg, we can generate a label map {s from the same pose P, and
from a random pose P'. Next, we infer wg from the novel view f,
and render it back to the original pose P to obtain /. Finally, we

A

add a reconstruction loss: Lcye = AcveLs(T7, 1)

Qualitative Comparison with Pix2NeRF [13], SOFGAN [20], and
SEAN [298] on CelebAMask dataset for seg2face task. SEAN fails
in multi-view synthesis, while SOFGAN suffers from multi-view
inconsistency (e.g., face identity changes across viewpoints). Our
method renders high-quality images while maintaining multi-view
consistency.

Qualitative ablation on seg2face and seg2cat. We ablate our method
by removing the branch that renders label maps (w/o 3D Labels). Our
results better align with input labels (e.g., hairlines and the cat’s ear).

Results on edge2cat. Our model is trained on AFHQ-cat [34] with
edges extracted by pidinet [213]. o0 0L

38

3.7 Qualitative comparisons on edge2car. pix2pix3D (Ours) and Pix2NeRF [13]
are trained on shapenet-car [19], and pix2pix3D achieves better qual-

ity and alignment than Pix2NeRF. 42
3.8 Semantic Mesh. We show semantic meshes of human and cat faces
from marching cubes colored by 3D labels. 44

3.9 We study the effect of random pose sampling probability p during
training. Without random poses (p = 0), the model achieves the best
alignment with input semantic maps, with reduced image quality.

In contrast, only using random poses (p = 1) achieves the best image
quality, while results fail to align with input maps. We find p = 0.5
balances the image quality and input alignment. 45

3.10 Cross-view Editing of Edge2Car. Our 3D editing system allows
users to edit label maps from any viewpoint instead of only the input
view. Importantly, our feed-forward encoder allows fast inference of
the latent code without GAN-inversion. Typically, a single forward
pass of rendering takes only 40 ms on a single RTX A5000, which
enables interactive editing. Please check our demo video on our
website. ... 45

3.11 Multi-modal Synthesis. The leftmost column is the input segmen-
tation map. We use the same segmentation map for each row. We
generate multi-modal results by randomly sampling an appearance
style foreachcolumn. 46

3.12 Interpolation. In each 5 x 5 grid, the images at the top left and
bottom right are generated from the input maps next to them. Each
row interpolates two images in label space, while each column inter-
polates the appearance. For camera poses, we interpolate the pitch
along the row and the yaw along the column. 48

41 We propose an Octree-based Adaptive shape Tokenization (OAT)
that dynamically allocates tokens based on shape complexity. Our
approach achieves better reconstruction quality with fewer tokens on
average (439 compared to 512 on the full test set) by intelligently
distributing more tokens to complex shapes while saving on simpler
OMNES. . . o vt ittt e 50

4.2 Traditional octree construction subdivides each octant based on
whether the octant contains any mesh element. This construction
always subdivides to the maximum depth (set to 6 in this example),
leading to a similar amount of nodes for simple (top) and complex
(middle) shapes. In contrast, our approach terminates subdivision
when the local geometry is simple (e.g., a plane), leading to an
adaptive octree that better reflects the shape complexity. 52

xiii

http://cs.cmu.edu/~pix2pix3D

Xiv

4.3

44

4.5

4.6

4.7

4.8

(a) Adaptive Shape Tokenization. Given an input mesh with sur-
face point samples, we partition 3D space into a sparse octree that
adapts to the local geometric complexity of the surface. We then use
a Perceiver-based transformer [77] to encode the shape into a tree of
latent codes, where a child node need encode only the (quantized)
residual latent relative to its parent [100]. Latents can then be de-
coded into an occupancy field from which a mesh can be extracted.
(b) Autoregressive Shape Generation. We define an autoregressive
model for generating a tree of quantized shape tokens given a tex-
tual prompt, following a coarse-to-fine breadth-first search traversal.
Similar to variable-length generation of text via end-of-sentence to-
kens, we make use of structural tokens to generate variable-size tree
structures.
We plot reconstruction quality (IoU) against latent size in both dis-
crete (left) and continuous (right) scenarios. We use KiloBytes (KB)
for continuous latent representations for a fair comparison. Our
method consistently outperforms baseline approaches at equivalent
latent sizes and achieves comparable reconstruction quality with
much smaller latent representations.
Shape reconstruction with discrete latent. We compare our full
method against Craftsman-VQ [106] as well as an ablation with-
out Adaptive Subdivision (A.S.). With comparable or lower token
budget, our method generally outperforms the baseline regarding
reconstruction fidelity. Meanwhile, without adaptive subdivision,
the vanilla octree only allocates the token budget efficiently for ob-
jects of small volume (bottom) but wastes tokens on geometrically
simple objects that occupy large space (middle).
Shape reconstruction with continuous latent. We include the visual
comparison between our continuous VAE (OAT-KL) and other base-
lines. In general, our reconstruction preserves more details using
similar or smaller number of latent vectors.
Ablation study on token length. With an increasing number of
tokens, our method achieves better quality while consistently out-
performing the baseline at a comparable token length.
Shape Generation Results. We compare OctreeGPT with a GPT
baseline trained on Craftsman-VQVAE (Section 4.4.1), text-to-3D
model XCube [188], and image-to-3D methods InstantMesh [262]
and Craftsman [106]. Our results have smoother surfaces, finer
details, and fewer artifacts than baselines. For image-conditioned
methodst, we use FLUX.1 [96] to generate condition images from
inputtext.o o

62

51

52

53

54

We propose an efficient approach for texturing an input 3D mesh
given a user-provided text prompt. Our generated texture can be
relit properly in different lighting environments. The light probe
shows the varied lighting environment. We suggest the readers
check our video results of rotating lighting in our supplementary
material.

Given a 3D mesh of a helmet (a) and a lighting environment L, the
reference rendering (b) depicts the “correct” highlights on the mesh
due to L, by treating its surface reflectance as half-metal and half-
smooth with a gray diffuse color. (c) The texture generated by the
leading method Fantasia3D [24] is not properly relit as Fantasia3D
bakes most of the lighting into the diffuse texture for the mesh and
does not capture the bright highlights in the specular texture. (d)
In contrast, our pipeline disentangles lighting from material, better
capturing the diffuse and specular components of the metal helmet
in this environment. Text prompt: “A medieval steel helmet.”

Our Text-to-Texture pipeline. Our method efficiently synthesizes re-
lightable textures given an input 3D mesh and text prompt. In stage
1 (top left), we use multi-view visual prompting with our LightCon-
trolNet model to generate four visually consistent canonical views
of the mesh under fixed lighting, concatenated into a reference im-
age I.¢. In stage 2 we apply a new texture optimization procedure
using [..f as guidance along with a multi-resolution hash-grid repre-
sentation of the texture I'(B(-)). For each optimization iteration, we
render two batches of images using I'(B(-)) — one using the canonical
views and lighting of I to compute a reconstruction loss Lecon and
the other using randomly sampled views and lighting to compute
an SDS loss Lgpg based on LightControlNet.

(a) LightControlNet requires a conditioning image that specifies de-
sired lighting L for a view C of a 3D mesh. To form the conditioning
image, we first render the mesh with the desired L and C using
three different materials: (1) non-metal, not smooth, (2) half-metal,
half-smooth, and (3) pure metal, smooth, and then combine the
renderings into a single three-channel image. (b) LightControlNet
is a diffusion model that is conditional on such light conditioning
images as well as text prompts.

72

76

XV

XVi

55

5.6

5.7

6.1

Multi-view visual prompting. (a) When we independently input
four canonical conditioning images to LightControlNet, it generates
four very different appearances and styles even with a fixed random
seed. (b) When we concatenate the four images into a 2x2 grid and
pass them as a single image into LightControlNet, it produces a far
more consistent appearance and style. Text prompt: “A hiking boot”.

Sample results from our method applied to Objaverse test meshes
(top half) and 3D game assets (bottom half). To illustrate the efficacy
of our relightable textures, for each textured mesh, we fix the envi-
ronment lighting and render the mesh under different rotations. As
shown above, our method is able to generate textures that are not

78

only highly detailed, but also relightable with realistic lighting effects. 82

Qualitative analysis. (a) We compare our method with Fantasia3D
[24] that also attempts to generate Physically Based Rendering (PBR)
texture. However, unlike ours, their results often exhibit baked-in
lighting, leading to artifacts when put into varied lighting environ-
ments. (b) We also compare our method with other baselines that
can only generate non-relightable (RGB) texture. For non-relightable
texture generation, we can replace our LightControlNet with depth
ControlNet and generate RGB textures with a shorter runtime. More
detailsarein Table 5.1.

Overview of BRICKGPT. (a) Our method generates physically sta-
ble interconnecting brick assembly structures from text descriptions
through an end-to-end approach, showing intermediate brick-by-
brick steps. (b) The generated designs are buildable both by hand
and by automated robotic assembly. (c) We show example results
with corresponding text prompts. Besides basic brick designs (top),
our method can generate colored brick models (bottom right) and
textured models (bottom left) with appearance descriptions. We
highly recommend the reader to check our website for step-by-step
videos.

https://avalovelace1.github.io/BrickGPT/

6.2

6.3

6.4

6.5

6.6

6.7

StableText2Brick Dataset. (a) From a ShapeNetCore [19] mesh,
we generate a brick structure by voxelizing it onto a 20 x 20 x 20
grid, then constructing its brick layout with a delete-and-rebuild
algorithm. (b) We augment each shape with multiple structural vari-
ations by randomizing the brick layout while preserving the overall
shape. (c) Stability analysis [119] is performed on each variation to
filter out physically unstable designs. (d) To obtain captions for each
shape, we render the brick structure from 24 different viewpoints
and use GPT-4o [2] to generate detailed geometric descriptions. (e)
Data samples from 5 categories in our StableText2Brick dataset.

Method. (a) Our system tokenizes a brick structure into a sequence
of text tokens, ordered in a raster-scan manner from bottom to top.
(b) We create an instruction dataset pairing brick sequences with de-
scriptions to fine-tune LLaMA-3.2-Instruct-1B. (c) At inference time,
BRICKGPT generates brick structures incrementally by predicting
one brick at a time given a text prompt. For each generated brick,
we perform validity checks to ensure it is well-formatted, exists in
our brick library, and does not collide with existing bricks. After
completing the design, we verify its physical stability. If the structure
is unstable, we roll back to a stable state by removing all unstable
bricks and their subsequent bricks, and resume generation from that
point.
Force Model. (a) We consider all forces exerted on a single brick, in-
cluding gravity (black), vertical forces with the top brick (red/blue)
and bottom brick (green/purple), and horizontal (shear) forces due
to knob connections (cyan), and adjacent bricks (yellow). (b) The
structural force model F extends the individual force model to mul-
tiple bricks. Solving for static equilibrium in F determines each
brick’s stability score. Lo oo oo
Result gallery and baseline comparisons. Our method gener-
ates high-quality, diverse, and novel brick structures aligned with
the given text prompts. Black bricks are colliding. For LLaMA-
Mesh [250], LGM [223], XCube [188], and Hunyuan3D-2 [288], an
inset of the generated mesh is shown in the top-left corner.
Ablation study. Brick-by-brick rejection sampling and physics-
informed rollback help to ensure that the generated structure is both
valid and stable. Black indicates colliding bricks.
Brick Texture and Color Generation. Our method can generate
diverse textured (top two rows) and colored (bottom) brick struc-
tures based on the same shape while using different appearance text
prompts.

95

97

105

6.8 Automated Assembly. We demonstrate robotic assembly of gener-
ated structures using LEGO bricks.

Xviii

List of Tables

2.1

2.2

2.3

24

View Synthesis on NeRF Real. We evaluate view synthesis quality
for various methods when given 2, 5, 10 views from NeRF Real. We
find that metaNeRF-DTU and pixelNeRF-DTU struggle to learn on
NeRF Real due to its domain gap to DTU. PixelNeRF, IBRNet and
MVSNeRF can benefit from incorporating the depth supervision
loss to achieve their best performance. We find that our DS-NeRF
outperforms these methods on a variety of metrics, but especially
for the few view settings like 2 and 5 views.

View Synthesis on DTU. We evaluate on 3, 6, and 9 views respec-
tively for 15 test scenes from the DTU dataset. pixeINeRF-DTU and
metaNeRF-DTU perform well given that the domain overlap be-
tween training and testing. This is especially true for the few view
setting as the lack of information is supplemented by exploiting
dataset priors. In spite of this, DS-NeRF is still competitive on view
synthesis for6and 9views.

View Synthesis on Redwood. We evaluate view synthesis on 2,
5, and 10 input views on the Redwood dataset. DS-NeRF (with
COLMAP [199] inputs) outperforms baselines on various metrics
across varying numbers of views. Learning DS-NeRF with the
RGB-D reconstruction output [276] further improves performance,
highlighting the potential of applying our method alongside other
sourcesof depth. o 0 0L

Depth Error. We compare rendered depth to reference “ground-
truth” depth obtained from NeRF Real and Redwood RGB-D. DS-
NeRF is able to extract better geometry as indicated by the lower
depth errors from test views. We also show DS-NeRF trained with
Redwood’s dense supervision can significantly improve NeRF’s
ability to model the underlying geometry.

24

Xix

XX

3.1

3.2

3.3

34

4.1

Seg2face Evaluation. Our metrics include image quality (FID, KID,
SG Diversity), alignment (mloU and acc against GT label maps), and
multi-view consistency (FVV Identity). Single-generation diversity
(SG Diversity) is obtained by computing the LPIPS metric between
randomly generated pairs given a single conditional input. To eval-
uate alignment, we compare the generated label maps against the
ground truth in terms of mIoU and pixel accuracy (acc). Alterna-
tively, given a generated image, one could estimate label maps via a
face parser, and compare those against the ground truth (numbers in
parentheses). We include SEAN [298] and SOFGAN [20] as baselines,
and modify Pix2NeRF [13] to take conditional input. Our method
achieves the best quality, alignment ACC, and FVV Identity while
being competitive on SG Diversity. SOFGAN tends to have better
alignment but worse 3D consistency. We also ablate our method
w.r.t the 3D labels and the cross-view consistency (CVC) loss. Our
3D labels are crucial for alignment, while the CVC loss improves
multi-view consistency. Using pretrained models from EG3D (t)
also improves the performance.

Edge2car Evaluation. We compare our method with Pix2NeRF [13]
on edge2car using the shapenet-car [19] dataset. Similar to Table 3.1,
we evaluate FID, KID, and SG Diversity for image quality. We also
evaluate the alignment with the input edge map using AP. Similarly,
we can either run informative drawing [16] on generated images to
obtain edge maps (numbers in parentheses) or directly use generated
edge maps to calculate the metrics. We achieve better image quality
and alignment than Pix2NeRF. We also find that using 3D labels and

cross-view consistency loss is helpful regarding FID and AP metrics. 40

Seg2cat Evaluation. We compare our method with Pix2NeRF [13] on
Seg2Cat using AFHQ-cat dataset [34], with segmentation obtained
by clustering DINO features [3]. Similar to Table 3.1, we evaluate

the image quality and alignment. Ours performs better in all metrics. 43

Seg2car Evaluation. We compare our method with Pix2NeRF [13].
Ours performs better in all metrics.

Quantitative analysis of shape reconstruction with discrete latent.
We compare our method against Craftsman-VQ [106] and ablation
without Adaptive Subdivision (A.S.). With comparable token counts,
our approach outperforms both baselines, showing the effectiveness
of our proposed adaptive tokenization..

4.2 Quantitative analysis of shape reconstruction with continuous
latent. We replace the quantization with a KL regularization to
learn continuous latent (OAT-KL) as mentioned in Section 4.3.2. Our
method outperforms all the baselines with comparable or shorter
latent code lengths. t indicates off-the-shelf models that are pre-
trained on different data sources thanours. 67

4.3 Quantitative analysis of shape generation. We compare OctreeGPT
with a GPT baseline trained on Craftsman-VQVAE (Section 4.4.1),
text-to-3D model XCube [188], and image-to-3D methods InstantMesh [262]
and Craftsman [106]. We compute FID [63], KID [10], and CLIP-
score on the renderings of generated shapes, and report the average
generation time. Our method outperforms all the baselines, show-
ing higher quality and better consistency with the input text while
achieving the fastest runtime due to our efficient tokenization. . . . 67

5.1 Quantitative Evaluation. We test our methods and baselines on
70 test objects from Objaverse [37] and 22 objects curated from 3D
game assets. With depth ControlNet, our method yields superior
results to all baselines while being three times as fast as the fastest
baseline. Using LightControlNet (Ours) within our model improves
the lighting disentanglement while maintaining comparable image
quality. 85

5.2 User study. We conduct a user preference study to evaluate (1) result
realism, (2) texture consistency with input text, and (3) plausibility
under varied lighting. Participants consistently prefer our results
over all baselines in theserespects. 86

5.3 Ablation study on algorithmic components. We analyze the role
of our distilled encoder (1st row) and multi-view visual prompt-
ing (2nd row). Replacing the distilled encoder with the original
VQ-VAE encoder doubles the running time without a noticeable
improvement. When removing the multi-view visual prompting for
initial generation, the system requires 2,000 iterations (5x compared
to our 400 iterations) to produce reasonable results, which produces
slightly worse texture quality. 86

5.4 Ablation study on material bases. We verify the impact of the
material bases in rendering conditioning images. Omitting any one
of these degrades quality. 86

XX1

5.5 Ablation study on the number of canonical views. We analyze

6.1

XXii

the role of our canonical view selection in Section 5.4.2. Relying
on only the left and right views provides insufficient supervision.
Interestingly, adding top and bottom views leads to worse overall
quality. This is likely due to the limitation of pre-trained 2D diffusion
models in synthesizing top and bottom views well for a variety of
objects. Furthermore, given the fixed resolution of the multi-view
image, stacking more views would result in a lower resolution for
each view, leading to a worse initialization for Stage 2.

Quantitative Analysis. We evaluate our method against several
baselines on validity (no out-of-library, out-of-bounds, or colliding
bricks), stability, CLIP-based text similarity, and DINOv2-based
image similarity. Stability, CLIP, and DINO are computed over valid
structures only. For LLaMA-Mesh [250], validity requires a well-
formed OB]J file. Our method outperforms all baselines as well as the
ablated setups on validity and stability using our proposed rejection
sampling and rollback, while maintaining high text similarity. . . .

103

Chapter 1

Introduction

1.1 Background

The ability to capture, create, and interact with 3D content is fundamental to the
future of digital experiences. From the immersive environments in modern video
games and cinematic productions to the expansive virtual worlds of the meta-
verse [155], the demand for high-fidelity 3D content has never been greater. These
technologies promise to benefit fields ranging from entertainment to engineering
and robotics, enabling more realistic simulations and creative expressions.

However, a significant bottleneck exists between the demand for 3D content
and the ability of most people to produce it. Traditionally, creating high-quality
3D assets has been the domain of specialists, relying on two primary paradigms:
digitizing the real world and handcrafting from imagination.

One important method of creating 3D content is by digitizing the real world [85],
as shown in Figure 1.1(a). For example, many video games have their environ-
ments created by scanning real-world scenes, which brings a high level of realism.
This process, known as photogrammetry [6, 82, 102, 149, 167, 199, 263] or 3D scan-
ning [35, 76, 187, 219], can produce assets with unparalleled fidelity. Another way
of 3D content creation is handcrafting them as illustrated in Figure 1.1(b). Artists
use professional 3D modeling software, e.g., Blender, Maya, and 3DSMax, to de-
sign and build virtual worlds, shaping every detail from scratch. This approach

allows for boundless creativity, enabling the creation of fantastic objects and scenes

1

https://www.blender.org/
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/3ds-max/overview

1. Introduction

& @blender‘ m Maya

3D Modeling Software

AUTODESK ,~
| n 3ds Max %ZBRUSH
A

o

N

Capture l e

Scanner Dense Camera Rig

= i * Geometry Texture
(a) 3D Digitization requires (b) 3D Modeling requires
dense views or special setup. significant expertise.

Figure 1.1: Two ways of creating 3D content. (a) 3D Digitization captures real-
world environments through photogrammetry or 3D scanning, requiring dense
camera views or specialized equipment setups to achieve high-fidelity results. (b)
3D Modeling involves artists using professional software to handcraft virtual con-
tent from scratch, including both geometry and texture creation. Both approaches
require specialized expertise and remain inaccessible to everyday users.

that do not exist in reality.

However, both of these methods are mainly used by professionals and remain
out of reach for everyday users. 3D scanning and photogrammetry often require
densely captured views [6, 82, 102, 149, 167, 263] or even specialized equipment
setups [76, 219]. Meanwhile, 3D modeling demands significant expertise, and

mastering the software and techniques can be time-consuming and complex.

1.2 Challenges

Recent advances in Neural Radiance Fields (NeRF) [149] and Gaussian Splatting
(GS) [90] have made it possible to digitize 3D scenes using only 2D images. Simulta-
neously, the emergence of generative Al has revolutionized content creation across
multiple domains, from text generation with large language models [2, 44] to image
synthesis with GANSs [87] and diffusion models [192]. However, extending these

successes to usable 3D content creation, whether through reconstructing existing

2

1. Introduction

scenes or generating novel assets, presents unique and fundamental challenges.

Reconstruction Challenges. The most fundamental challenge in 3D reconstruc-
tion stems from the inherent ambiguity of inferring 3D structure from 2D observa-
tions. Multiple 3D configurations can produce identical 2D projections, creating
fundamental ambiguities that existing methods, e.g., NeRF [149] and GS [90], re-
solve by requiring hundreds of densely captured images from diverse viewpoints.
This dense view requirement severely restricts practical applications, as capturing
such extensive datasets is often impractical or impossible in real-world scenarios
where users want to quickly digitize objects or scenes with minimal effort. The
problem is compounded by the need for careful camera positioning, controlled
lighting conditions, and often specialized equipment to achieve the coverage and

quality necessary for high-fidelity reconstruction.

Generation Challenges. While 2D generation often focuses on visual appeal
from a single viewpoint, generated 3D content must appear coherent across all
possible views. This multi-view consistency requirement dramatically increases
the complexity of the generation task, as models must reason about the underlying
3D content that looks plausible from every perspective rather than optimizing
for a single view. The challenge is exacerbated by severe data scarcity in the 3D
domain. While 2D image datasets like LAION [201] contain billions of examples,
high-quality 3D datasets are orders of magnitude smaller and significantly more
expensive to create, requiring specialized equipment, e.g., LIDAR scanners, or
manually creating 3D assets. This data scarcity makes it challenging to train ro-
bust generative models that can handle the full diversity of real-world 3D content.
Additionally, 3D content creation involves multiple interconnected modalities,
geometry, appearance, and physics, each with its own representation challenges
and constraints. Unlike 2D generation where visual quality is often the primary ob-
jective, 3D content frequently needs to satisfy additional requirements depending
on its intended use, e.g., efficient geometry representations that adapt to different
levels of detail, correct material properties for realistic lighting and interaction, and

physical plausibility for downstream simulation or manufacturing purposes.

1. Introduction

Part I:
Sparse-view 3D
Reconstruction , o
Two casually captured photos Rendered RGB & Depth from a novel view
(a) Reconstruct a 3D Scene with 2 Input Views (Chap. 2)
o |
., |) @
Input Seg. Map Generated Results Input Sketch Generated Results
Part II: (b) 3D Generation from 2D User Input (Chap. 3)
3D Asset
Generation
“A unicorn with Chap. 4
rainbow mane
and tail”
Input Text Generated Shape Generated Texture
(c) Text-to-3D Generation (Chap. 4 and 5)

Input Text Prompt: “A streamlined vessel with a long, narrow hull.”

Part IlI:

Physical Asset o .. || P
ysical A b &
Generation

Sequence of Building Steps Generated Brick Structure
(d) Generate Physically Stable and Buildable Assets (Chap. 6)

Figure 1.2: Dissertation Overview. This dissertation is organized in three parts: (a)
Sparse-view 3D Reconstruction (Part I) enables high-quality 3D scene reconstruc-
tion from as few as two casually captured photos. (b)(c) 3D Asset Generation (Part
IT) creates 3D content from intuitive inputs: generating editable 3D objects from 2D
segmentation maps or sketches for category-specific generation (Chapter 3), and
diverse 3D asset creation from text descriptions (Chapters 4 and 5). (d) Physical
Asset Generation (Part IIT) extends beyond virtual assets to generate physically
stable and buildable brick structures from text prompts, providing step-by-step
construction sequences for real-world implementation.

1. Introduction

1.3 Dissertation Overview

To address the challenges outlined above, this dissertation proposes to integrate
classical 3D understanding with modern generative models across the core aspects
of 3D content: geometry, appearance, and physics. Rather than relying purely on
data-driven learning, our approach leverages well-established geometric principles,
structural knowledge, and physical constraints developed over decades of 3D com-
puter vision and graphics research. By grounding generative models in classical
3D principles, e.g., multi-view geometry, octree hierarchy, material representations,
and structural stability, we can create more robust, efficient, and practically useful
3D generation systems.

Specifically, this dissertation is structured in three parts. We begin by mak-

ing real-world capture easier, then move to simplifying creative generation, and
conclude by bridging the gap between digital designs and physically realizable
objects.
Part I: Sparse-View 3D Reconstruction. It is vital to develop a generic and easy-to-
use method to reconstruct objects and scenes in real life. Neural Radiance Fields
(NeRF) [149] make this possible using only 2D images. However, plain NeRF and
many of its follow-up works [263] require dense views from hundreds of images,
which restricts its usage. Part I aims to lower the bar of using 3D reconstruction in
our daily life by relieving the burden of taking dense view data.

As shown in Figure 1.2(a), Chapter 2 introduces Depth-Supervised NeRF (DS-
NeRF) [39], a method that utilizes geometric priors using “free” depth information
obtained from standard Structure-from-Motion (SFM) pipelines [199]. By super-
vising the geometry learning process, DS-NeRF reduces overfitting, accelerates
training, and enables high-quality view synthesis from as few as two images, mak-
ing high-fidelity capture accessible from casual photos. Building on this foundation,
our follow-up work Total-recon [212], while not included in the thesis, shows that
depth supervision can also help improve 4D reconstruction from monocular videos.
Part II: 3D Asset Generation. In addition to capturing 3D scenes from the real
world, we also want to lower the skill barrier for creating novel 3D content. Part
IT explores methods that generate rich 3D assets from intuitive, low-effort inputs
such as 2D sketch maps and text prompts.

1. Introduction

Chapter 3 presents a method for 3D-aware conditional image synthesis [40],
which can generate editable 3D objects of specific categories, e.g., cars, from a single
2D semantic input like a segmentation or sketch map, as shown in Figure 1.2(b).
Notably, by interactive editing of the semantic maps projected onto user-specified
viewpoints, our system can be used as a tool for 3D editing of the generated
content.

Expanding beyond visual inputs and category-specific asset generation, the
following two chapters explore natural language as an interface for generic 3D
asset creation. Similar to how artists create 3D assets, we divide the problem
into a two-stage process, geometry generation (Chapter 4) and texture generation
(Chapter 5), as shown in Figure 1.2(c).

Specifically, chapter 4 introduces a more efficient way to represent and generate
3D shapes with Octree-based Adaptive Tokenization (OAT) [42]. This method
dynamically allocates representational capacity based on geometric complexity.
Building on this, OctreeGPT can generate diverse, high-quality 3D shapes from
text descriptions, advancing on prior text-to-3D methods [106, 179, 223].

Chapter 5 addresses the crucial challenge of appearance modeling by generating

high-quality relightable texturing. The proposed method, FlashTex [41], textures an
input 3D mesh given a user-provided text prompt, improving upon prior texturing
methods [23, 24, 189]. Notably, our generated texture can be relit properly in
different lighting environments, which makes our results widely applicable in
downstream tasks.
Part III: Physical Asset Generation. In addition to virtual assets, we also explore a
novel direction by considering the physical realizability of generated designs [133].
While most generative models produce objects that are only visually plausible, this
tinal part of the thesis explores how to create designs that are structurally sound
and buildable in the real world.

Chapter 6 introduces BrickGPT [181], a system that generates physically stable
and buildable brick structures directly from text prompts. By repurposing a large
language model [44] for “next-brick prediction” and incorporating physics-aware
checks for stability [121], BrickGPT produces complex and creative designs that
are not only imaginative but also physically stable and buildable, as shown in
Figure 1.2(d).

6

1. Introduction

1.4 Other Research

In addition to the thesis work, I also contributed to other relevant research projects

in 3D content creation, including monocular video reconstruction [212], texture

generation with tactile input [48], stability analysis [119], 3D reconstruction with

materials [113], and scene generation [191]:

1.

Chonghyuk Song, Gengshan Yang, Kangle Deng, Jun-Yan Zhu and Deva
Ramanan. Total-Recon: Deformable Scene Reconstruction for Embodied View
Synthesis. ICCV 2023. [212]

. Ruihan Gao, Kangle Deng, Gengshan Yang, Wenzhen Yuan, Jun-Yan Zhu.

Tactile DreamFusion: Exploiting Tactile Sensing for 3D Generation. NeurIPS
2024. [48]

. Ruixuan Liu, Kangle Deng, Ziwei Wang, Changliu Liu. StableLego: Stability

Analysis of Block Stacking Assembly. RA-L 2024. [119]

. Yehonathan Litman, Or Patashnik, Kangle Deng, Aviral Agrawal, Rushikesh

Zawar, Fernando De la Torre, Shubham Tulsiani. MaterialFusion: Enhancing
Inverse Rendering with Material Diffusion Priors. 3DV 2025. [113]

Roblox Foundation AI Team: Kangle Deng (core contributor). Cube: A Roblox
View of 3D Intelligence. Technical Report 2025. [191]

1. Introduction

Part 1

Sparse-view 3D Reconstruction

Chapter 2

Depth-supervised NeRF: Fewer Views
and Faster Training for Free

We begin our exploration of 3D content creation by addressing the challenge of
sparse-view 3D reconstruction. As established in the challenges section, traditional
3D reconstruction methods suffer from inherent ambiguity when inferring 3D
structure from limited 2D observations, typically requiring hundreds of densely
captured images to achieve high-quality results.

The key insight driving this chapter is that we can resolve reconstruction ambi-
guity not by requiring more data, but by incorporating complementary geometric
priors that are readily available from standard reconstruction pipelines.

The following chapter demonstrates how this integration of classical multi-
view geometry with modern neural rendering can dramatically reduce view re-
quirements while maintaining reconstruction quality, making 3D scene capture

accessible from casual photographs.

2.1 Introduction

Neural rendering with implicit representations has become a widely-used tech-
nique for solving many vision and graphics tasks ranging from view synthesis [32,
149, 210], to re-lighting [134, 143], to pose and shape estimation [169, 195, 271],
to 3D-aware image synthesis and editing [17, 124, 202], to modeling dynamic

11

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

Sparse views T R et A Pt N y %
i 4l o Depth Supervision for each keypoint

B Comn = S KLIND, 8)1h(1)

h(t): Rendered Ray Termination Dist.

Structure
From
Motion

A D: SFM Depth G: Reprojection Err.

S

i Color Supervision for each pixel

'CColor = Z | ‘é - Cg-f-Hz
C :Rendered Color

Color
i Supervision
Color :

P +
Supervision

;
i Supervision
:

Figure 2.1: Training NeRFs can be difficult when given insufficient input images.
We utilize additional supervision from depth recovered from 3D point clouds
estimated from running structure-from-motion and impose a loss to ensure the
rendered ray’s termination distribution respects the surface priors given by the
each keypoint. Because our supervision is complementary to NeRF, it can be
combined with any such approach to reduce overfitting and speed up training.

scenes [108, 172, 180]. The seminal work of Neural Radiance Fields (NeRF) [149]
demonstrated impressive view synthesis results by using implicit functions to

encode volumetric density and color observations.

In spite of this, NeRF has several limitations. Reconstructing both the scene
appearance and geometry can be ill-posed given a small number of input views.
Figure 2.2 shows that NeRF can learn wildly inaccurate scene geometries that still
accurately render train-views. However, such models produce poor renderings
of novel test-views, essentially overfitting to the train set. Furthermore, even
given a large number of input views, NeRF can still be time-consuming to train; it
often takes between ten hours to several days to model a single scene at moderate
resolutions on a single GPU. The training is slow due to both the expensive ray-
casting operations and lengthy optimization process.

In this work, we explore depth as an additional, cheap source of supervision to
guide the geometry learned by NeRF. Typical NeRF pipelines require images and
camera poses, where the latter are estimated from structure-from-motion (SFM)

12

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

Figure 2.2: Few view NeRF. NeRF is susceptible to overfitting when given few
training views. As seen by the PSNR gap between train and test renders (left),
NeRF has overfit and fails at synthesizing novel views. Further, the depth map
(right) and depth error (middle) for NeRF suggest that its density function has
failed to extract the surface geometry and can only reconstruct the training views’
colors. Our depth-supervised NeRF model is able to render plausible geometry
with consistently lower depth errors.

solvers such as COLMAP [199]. In addition to returning cameras, COLMAP also
outputs sparse 3D point clouds as well as their reprojection errors. We impose a
loss to encourage the distribution of a ray’s termination to match the 3D keypoint,
incorporating reprojection error as an uncertainty measure. This is a significantly
stronger signal than reconstructing only RGB. Without depth supervision, NeRF is
implicitly solving a 3D correspondence problem between multiple views. However,
the sparse version of this exact problem has already been solved by SFM, whose
solution is given by the sparse 3D keypoints. Therefore depth supervision improves
NeRF by (softly) anchoring its search over implicit correspondences with sparse
explicit ones.

Our experiments show that this simple idea translates to massive improvements
in training NeRFs and its variations, regarding both the training speed and the
amount of training data needed. We observe that depth-supervised NeRF can
accelerate model training by 2-3x while producing results with the same quality. For
sparse view settings, experiments show that our method synthesizes better results
compared to the original NeRF and recent sparse-views NeRF models [220, 273]
on both NeRF Real [149] and Redwood-3dscan [33] We also show that our depth
supervision loss works well with depth derived from other sources such as a depth
camera. Our code and more results are available at https://www.cs.cmu.edu/
~dsnerf/.

13

https://www.cs.cmu.edu/~dsnerf/
https://www.cs.cmu.edu/~dsnerf/

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

2.2 Related Work

NeRF from few views. NeRF [149] was originally shown to work on a large
number of images with the LLFF NeRF Real dataset [148] consisting of nearly 50
images per scene. This is because fitting the NeRF volume often requires a large
number of views to avoid arriving at degenerate representations. Recent works
have sought to decrease the data-hungriness of NeRF in a variety of different
ways. PixelNeRF [273] and metaNeRF [220] use data-driven priors recovered
from a domain of training scenes to fill in missing information from test scenes.
Such an approach works well when given sufficient training scenes and limited
gap between the training and test distribution, but such assumptions are not
particularly flexible. Another approach is to leverage priors recovered from a
different task like semantic consistency [78] or depth prediction [254].

Similar to our insight that the primary difficulty in fitting few-view NeRF is
correctly modeling 3D geometry, MVSNeRF [21] combines both 3D knowledge
with scene priors by constructing a plane sweep volume before using a pretrained
network with generalizable priors to render scenes. One appeal of an approach
that utilizes 3D information is the lack of assumptions it makes on the problem
statement. Unlike the aforementioned approaches which depend on the availability
of training data or the applicability of prior assumptions, our approach only
requires the existence of 3D keypoints. This gives depth supervision the flexibility
to be used not only as a standalone method, but one that can be freely incorporated
into existing NeRF methods easily.

Faster NeRF. Another drawback of NeRF is the lengthy optimization time required
to fit the volumetric representation. Indeed Mildenhall ef al. [149] trained a single
scene’s NeRF model for twelve hours of GPU compute. Many works [186, 272]
have found that the limiting factor is not learning the radiance itself, but rather
oversampling the empty space during training. Indeed this is a similar intuition to
the fact that the majority of the volume is actually empty, but NeRF’s initialization
is a median uniform density. Our insight is to apply a supervisory signal directly
to the NeRF density to increase the convergence of the geometry and to encourage
NeRF’s density function to mimic the behavior of real-world surface geometries.

14

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

Depth and NeREFE. Several prior works have explored ways to leverage depth
information for view synthesis [205, 234] and NeRF training [108, 114, 158,172, 254].
For instance, 3D keypoints have been demonstrated to be helpful when extending
NeRFs with relaxed assumptions like deformable surfaces [172] or dynamic scene
flows [108]. Other works like DONeRF [158] proposed training a depth oracle
to improve rendering speed by directly smartly sampling the surface of a NeRF
density function. Similar to DONeRF, NerfingMVS [254] shows how a monocular
depth network can be used to induce depth priors to do smarter sampling during
training and inference.

Our work attempts to improve NeRF-based methods by directly supervising
the NeRF density function. As depth becomes a more accessible source of data,
being able to apply depth supervision becomes increasingly more powerful. For
example, recent works have demonstrated how depth extracted from sensors like
time-of-flight cameras [4] or RGB-D Kinect sensor [5] can be applied to fit implicit
functions. Building upon their insights, we provide a probabilistic formulation of
the depth supervision, and show this results in meaningful improvements to NeRF

and its variants.

2.3 Depth-Supervised Ray Termination

We now present our proposed depth-supervised loss for training NeRFs. We first
revisit volumetric rendering and then analyze the termination distribution for rays.

We conclude with our depth-supervised distribution loss.

2.3.1 Volumetric rendering revisited

A Neural Radiance Field takes a set of posed images and encodes a scene as a
volume density and emitted radiance. More specifically, for a given 3D point
x € R? and a particular viewing direction d € R3, NeRF learns an implicit function
f that estimates the differential density ¢ and RGB color c like so: f(x,d) = (o, ¢).

To render a 2D image given a pose P, we cast rays r originating from the P’s
center of projection o in direction d derived from its intrinsics. We integrate the

implicit radiance field along this ray to compute the incoming radiance from any

15

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

o(t) at :1,‘,“,[,/’*”’,,‘“1,,.) -
- 5

W by / "/\4[

}|u hn | \M/ \

n oWk I
S Y

t
T(t :\‘xp(f/n s)ds) h(t) =T(t)o(t)
Jo

All-view: Unimodal

A

NeRF: Multi-modal

Log of average variance
|)] .

Ours: Unimodal

A

1 2 3 4 5 6 7 8 % 100110120 130 140 150 160 170 150 150 200
Number of training views

(@) (b) (©

Figure 2.3: Ray Termination Distribution. (a) We plot various NeRF components
over the distance traveled by the ray. Even if a ray traverses through multiple
objects (as indicated by the multiple peaks of density o (t)), we find that the ray
termination distribution h(f) is still unimodal. We find that NeRF models trained
with sufficient supervision tend to have peaky, unimodal ray termination distribu-
tions as seen by the decreasing variance with more views in (c). We posit that the
ideal ray termination distribution approaches a § impulse function.

object that lies along d:

¢ - /0 T T () o(t)e(t)dt, 2.1)
where ¢ parameterizes the aforementioned ray as r(t) = o+ td and T(t) =
exp(— fo s)ds) checks for occlusions by integrating the differential density be-
tween 0 to t. Because the density and radiance are the outputs of neural networks,
NeRF methods approximate this integral using a sampling-based Riemann sum
instead. The final NeRF rendering loss is given by a reconstruction loss over colors
returned from rendering the set of rays R(P) produced by a particular camera
parameter P.

L"Color = rER HC (1‘) H; . (2-2)

Ray distribution. Let us write h(t) = T(t)co(t). In the appendix, we show that
it is a continuous probability distribution over ray distance t that describes the
likelihood of a ray terminating at t. Due to practical constraints, NeRFs assume
that the scene lies between a near and far bound (t,, ts). To ensure h(t) sums to
one, NeRF implementations often treat ¢ as an opaque wall. With this definition,

16

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

the rendered color can be written as an expectation:

A,

& - /Oooh(t)c(t)dt = By [e(t)]

Idealized distribution. The distribution /(t) describes the weighed contribution
of sampled radiances along a ray to the final rendered value. Most scenes consist
of empty spaces and opaque surfaces that restrict the weighted contribution to
stem from the closest surface. This implies that the ideal ray distribution of image
point with a closest-surface depth of D should be é(t — D). Figure 2.3(c) shows
that the empirical variance of NeRF termination distributions decreases with more
training views, suggesting that high quality NeRFs (trained with many views) tend
to have ray distributions that approach the J-function. This insight motivates our

depth-supervised ray termination loss.

2.3.2 Deriving depth-supervision

Recall that most NeRF pipelines require images with associated camera matrices
(P1,Py,...), often estimated with SFM packages such as COLMAP [199]. Impor-
tantly, SFM makes use of bundle adjustment, which also returns 3D keypoints
{X: x1,x2,... € R3} and visibility flags for which keypoints are seen from camera
j: X; C X. Given image [; and its camera P;, we estimate the depth of visible
keypoints x; € X; by simply projecting x; with P;, taking the re-projected z value
as the keypoint’s depth D;;.

Depth uncertainty. Unsurprisingly D;; are inherently noisy estimates due to spuri-
ous correspondences, noisy camera parameters, or poor COLMAP optimization.
The reliability of a particular keypoint x; can be measured using the average repro-
jection error ¢; across views over which the keypoint was detected. Specifically, we
model the location of the first surface encountered by a ray as a random variable
ID;; that is normally distributed around the COLMAP-estimated depth D;; with
variance 0;: ID;; ~ IN(D,-]-, ;). Combining the intuition regarding behavior of ideal
termination distribution, our objective is to minimize the KL divergence between
the rendered ray distribution /;;(t) of x;’s image coordinates and the noisy depth

17

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

distribution:
min Ep, KL[5(t — Djj)|[h;(t)] (2.3)
if
, p(t;Dg..)
= argmhln]EDg_,_ /p(t; D, ;) log Tt)gdt (2.4)
& max[Ep, / 5(t — Dyj) log h;(£)dt 2.5)
i
= rr}lax IE]Dij log h1] (Dl]) (2.6)
i
log hi:(t) (t-Dy)* 2.7
@n}sx/ og hij exp—T . (2.7)
< min KL[N(Djj, ;) || hij(t)]- (2.8)

g

Ep, KL[5(t — IDjj)|[hij(t)] = KLIN(Dyj, ;)| |hij ()] + const.

Ray distribution loss. The above equivalence (see our appendix for proof) allows
the termination distribution /(t) to be trained with probabilisitic COLMAP depth

supervision:

(t — Dy)?
2(A7i2
(t — Dyj)?

i

Loepn = ~Exex; [logh(t) exp (-)dt

~ —Eyex; Zlog hiexp (—
k

Our overall training loss for NeRF is £ = Lcolor + ApLpepth where Ap is a hyper-
parameter balancing color and depth supervision.

2.4 Experiments

We first evaluate the input data efficiency on view synthesis over several datasets
in Section 2.4.3. For relevant NeRF-related methods, we also evaluate the error of
rendered depth maps in Section 2.4.4. Finally, we analyze training speed improve-

ments in Section 2.4.5.

18

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

PSNR?T SSIM?T LPIPS|
NeRF Real [148] 2-view 5-view 10-view ‘ 2-view 5-view 10-view ‘ 2-view 5-view 10-view
LLFF 14.3 17.6 223 0.48 0.49 0.53 0.55 0.51 0.53
NeRF 13.5 18.2 22.5 0.39 0.57 0.67 0.56 0.50 0.52
metaNeRF-DTU 13.1 13.8 14.3 0.43 0.45 0.46 0.89 0.88 0.87
pixelNeRF-DTU 9.6 9.5 9.7 0.39 0.40 0.40 0.82 0.87 0.81
finetuned 18.2 22.0 24.1 0.56 0.59 0.63 0.53 0.53 0.41
finetuned w/ DS 18.9 22.1 244 0.54 0.61 0.66 0.55 0.47 0.42
IBRNet 144 21.8 24.3 0.50 0.51 0.54 0.53 0.54 0.51
finetuned w/ DS 19.3 22.3 24.5 0.63 0.66 0.68 0.39 0.36 0.38
MVSNeRF - 17.2 17.2 - 0.61 0.60 - 0.37 0.36
fintuned - 21.8 229 - 0.70 0.74 - 0.27 0.23
fintuned w/ DS - 22.0 229 - 0.70 0.75 - 0.27 0.25
DS-NeRF
MSE 19.5 22.2 24.7 0.65 0.69 0.71 0.43 0.40 0.37
KL divergence 20.2 22.6 249 0.67 0.69 0.72 0.39 0.35 0.34

Table 2.1: View Synthesis on NeRF Real. We evaluate view synthesis quality
for various methods when given 2, 5, 10 views from NeRF Real. We find that
metaNeRF-DTU and pixelNeRF-DTU struggle to learn on NeRF Real due to its
domain gap to DTU. PixelNeRF, IBRNet and MVSNeRF can benefit from incorpo-
rating the depth supervision loss to achieve their best performance. We find that
our DS-NeRF outperforms these methods on a variety of metrics, but especially for
the few view settings like 2 and 5 views.

PSNR? SSIM?T LPIPS|

DTU [79] 3-view 6-view 9-view ‘ 3-view 6-view 9-view ‘ 3-view 6-view 9-view
NeRF 9.9 18.6 221 0.37 0.72 0.82 0.62 0.35 0.26
metaNeRF-DTU 18.2 18.8 20.2 0.60 0.61 0.67 0.40 0.41 0.35
pixelNeRF-DTU 19.3 20.4 211 0.70 0.73 0.76 0.39 0.36 0.34
DS-NeRF

MSE 16.5 20.5 222 0.54 0.73 0.77 0.48 0.31 0.26

KL divergence 16.9 20.6 22.3 0.57 0.75 0.81 0.45 0.29 0.24

Table 2.2: View Synthesis on DTU. We evaluate on 3, 6, and 9 views respectively
for 15 test scenes from the DTU dataset. pixelNeRF-DTU and metaNeRF-DTU
perform well given that the domain overlap between training and testing. This is
especially true for the few view setting as the lack of information is supplemented
by exploiting dataset priors. In spite of this, DS-NeRF is still competitive on view
synthesis for 6 and 9 views.

19

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

DTU Redwood
3-view 6-view 9-view 2-view 5-view 10-view

pixelNeRF metaNeRF
DTU DTU NeRF

DSNeRF

Figure 2.4: View Synthesis on DTU and Redwood. PixelNeRF, which is pre-
trained on DTU, performs the best when given 3-views, although we find DS-NeRF
to be visually competitive when more views are available. On Redwood, DS-NeRF
is the only baseline to perform well on the 2-views setting.

2.4.1 Datasets

DTU MVS Dataset (DTU) [79] captures various objects from multiple viewpoints.
Following Yu et al.’s setup in PixelNeRF [273], we evaluated on the same test scenes
and views. For each scene, we used their subsets of size 3, 6, 9 training views.
We run COLMAP with the ground truth calibrated camera poses to get keypoints.

Images are down-sampled to a resolution of 400 x 300 for training and evaluation.

NeRF Real-world Data (NeRF Real) [148, 149] contains 8 real world scenes cap-
tured from many forward-facing views. We create subsets of training images for
each scene of sizes 2, 5, and 10 views. For every subset, we run COLMAP [199]

over its training images to estimate cameras and collect sparse keypoints for depth
supervision.

Redwood-3dscan (Redwood) [33] contains RGB-D videos of various objects. We
select 5 RGB-D sequences and create subsets of 2, 5, and 10 training frames for
each object. We run COLMAP to get their camera poses and sparse point clouds.

20

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

10-view

NeRF

metaNeRF

pixeINeRF
pretrained

pixelNeRF
-finetuned w/ DS

DS-NeRF
(ours)

Figure 2.5: Qualitative Comparison on NeRF Real. We render novel views and
depth for various NeRF models trained on 2, 5, and 10 views. We find that methods
trained with DTU struggle on NeRF Real while methods that use depth-supervision
are able to render test views with realistic depth maps, even when only 2 views are
provided. Please refer to Table 2.1 for quantitative comparisons.

To connect the scale of COLMAP’s pose with the scanned depth, we solve a least-
squares that best fits detected keypoints to the scanned depth value. Please refer to

our appendix for full details.

2.4.2 Comparisons

First we consider Local Lightfield Fusion (LLFF) [148], an MPI-based representation
that learns from multiple view points. Next we consider a set of NeRF baselines.

PixelNeRF [273] expands upon NeRF by using an encoder to train a general
model across multiple scenes. pixeINeRF-DTU is evaluated using the released DTU
checkpoint. For cases where the train and test domain are different, we finetune
using RGB supervision for additional iterations on each test scene to get pixelNeRF
finetuned.

21

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

DS-NeRF
(MSE) NeRF

DS-NeRF
(KL divergence)

Figure 2.6: Depth Supervision Ablations. We render novel views for NeRF and
DS-NeRF trained on 2 views and 5 views. NeRF fails to render novel views as
evident by the many artifacts. Using MSE between rendered and sparse depth
improves results slightly, but with KL Divergence, DS-NeRF is able to render
images with the fewest artifacts.

2-view 5-view 10-view

20 { — NeRF —— NeRF
~—— DS-NeRF 22 1 —— DS-NeRF
19
21
18
20
17
19
3x

Bl T — | Speedupg

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

2x
Speedup

Test PSNR

— NeRF
— DS-NeRF

Iterations (in thousands) Iterations (in thousands) Iterations (in thousands)

Figure 2.7: Faster Training. We train DS-NeRF and NeRF under identical conditions
and observe that DS-NeRF is able to reach NeRF’s peak PSNR quality in a fraction
of the number of iterations across. For 2 views, we find that NeRF is unable to
match DS-NeRF’s performance.

MetaNeRF [220] finds a better NeRF initialization over a domain of training scenes
before running test-time optimization on new scenes. Because DTU is the only
dataset large enough for meta-learning, we only consider the metaNeRF-DTU
baseline which learns an initialization over DTU for 40K meta-iterations and
then finetunes for 1000 steps on new scenes. We follow metaNeRF’s ShapeNet
experiments to demonstrate its susceptibility to differences between training and
testing domains.

IBRNet [245] extends NeRF by using a MLP and ray transformer to estimate

radiance and volume density.

22

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

PSNR? SSIMt LPIPS|

Redwood-3dscan [33] | 2-view 5-view 10-view | 2-view 5-view 10-view | 2-view 5-view 10-view
NeRF 10.5 224 23.4 0.38 0.75 0.82 0.51 0.45 0.45
metaNeRF-DTU 14.3 14.6 15.1 0.37 0.39 0.40 076 0.76 0.75
pixelNeRF-DTU 12.7 129 12.8 0.43 0.47 0.50 0.76 0.75 0.70
MVSNeRF-DTU - 17.1 17.1 - 0.54 0.53 - 0.63 0.63

finetuned - 22.7 23.1 - 0.78 0.78 - 0.36 0.34
DS-NeRF | 181 229 238 | 062 0.78 081 | 040 0.34 0.42
DS-NeRFw/RGB-D | 20.3 23.4 239 | 073 0.77 0.84 | 0.36 0.35 0.28

Table 2.3: View Synthesis on Redwood. We evaluate view synthesis on 2, 5,
and 10 input views on the Redwood dataset. DS-NeRF (with COLMAP [199]
inputs) outperforms baselines on various metrics across varying numbers of views.
Learning DS-NeRF with the RGB-D reconstruction output [276] further improves
performance, highlighting the potential of applying our method alongside other
sources of depth.

MVSNEeREF [21] initializes a plane sweep volume from 3 views before converting
it to a NeRF by a pretrained network. MVSNeRF can be further optimized using
RGB supervision.

DS-NeRF (Ours). To illustrate the effectiveness of KL divergence, we include a
variant of DS-NeRF with an MSE loss between the SEM-estimated and the rendered
depth. Figure 2.6 qualitatively shows that KL divergence penalty produces views
with less artifacts on NeRF Real sequences.

DS with existing methods. As our DS loss does not require additional annotation
or assumptions, our loss can be inserted into many NeRF-based methods. Here,

we also incorporate our loss when finetuning pixelNeRF and IBRNet.

2.4.3 Few-input view synthesis

We start by comparing each method on rendering test views from few inputs. For
view synthesis, we report three metrics (PSNR, SSIM [251], and LPIPS [285]) that
evaluate the quality of rendered views against a ground truth.

DTU. We show evaluations on DTU in Table 2.2 and qualitative results in Figure 2.4.
We find that DS-NeRF renders images from 6 and 9 input views that are competitive
with pixelNeRF-DTU, however metaNeRF-DTU and pixelNeRF-DTU are able

to outperform DS-NeRF on 3-views. This is not particularly surprising as both

23

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

Depth err%] NeRF real-world Redwood-3dscan
2-view 5-view 10-view ‘ 2-view 5-view 10-view
NeRF 20.32 15.00 12.41 25.32 24.34 21.34
metaNeRF-DTU 22.23 22.07 22.30 20.84 21.12 20.96
pixelNeRF-DTU 22.12 22.09 22.06 19.46 19.87 19.54
DS-NeRF 10.41 8.61 8.15 11.42 10.43 9.43
DS-NeRF w/ RGBD - - - 5.81 5.31 4.22

Table 2.4: Depth Error. We compare rendered depth to reference “ground-truth”
depth obtained from NeRF Real and Redwood RGB-D. DS-NeRF is able to extract
better geometry as indicated by the lower depth errors from test views. We also
show DS-NeRF trained with Redwood’s dense supervision can significantly im-
prove NeRF’s ability to model the underlying geometry.

methods are trained on DTU scenes and therefore can fully leverage dataset priors.

NeRF Real. As seen in Table 2.1, our approach renders images with better scores
than than NeRF and LLFF, especially when only two and fives input views are
available. We also find that metaNeRF-DTU and pixelNeRF struggle which high-
lights their apparent weakness. These DTU-pretrained models struggle to perform
well outside of DTU. Our full approach is capable of achieving good rendering
results because we do not utilize assumptions on the test scene’s structure. We also
add our depth supervision loss to other methods like pixelNeRF and IBRNet and
tind their performances improve, showing that many methods can benefit from
adding depth supervision. MVSNeRF has an existing geometry prior handled
by its PSV-initialization, thus we did not see an improvement from adding depth

supervision.

Redwood. Like NeRF Real, we find similar improvements in performance across
the Redwood dataset in Table 2.3. Because Redwood includes depth measurements
collected with a sensor, we also consider how alternative sources of depth supervi-
sion can improve results. We train DS-NeRF, replacing COLMAP supervision with
the scaled Redwood depth measurements and find that the denser depth helps

even more, achieving a PSNR of 20.3 on 2-views.

24

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

24.4 Depth error

We evaluate NeRF’s rendered depth by comparing them to reference “ground truth”
depth measurements. For NeRF Real, we use reference depth of test keypoints
recovered from running an all-view dense stereo reconstruction. For Redwood
[33], we align their released 3D models with our cameras by running 3dMatch [276]
and generate reference depths for each test view. Please refer to our arXiv version
for more details regarding depth error evaluation. As shown in Table 2.4, DS-NeRF,
trained with supervision obtained only from depth in training views, is able to
estimate depth more accurately than all the other NeRF models. While this is
not particularly surprising, it does highlight the weakness of training NeRFs only
using RGB supervision. For example, in Figure 2.5, NeRF tends to ignore geometry

and fails to produce any coherent depth map.

RBG-D inputs. We consider a variant of depth supervision using RGB-D in-
put from Redwood. We derive dense depth map for each training view using
3DMatch [276] with RGB-D input. With dense depth supervision, we can ren-
der rays for any pixel in the valid region, and apply our KL depth-supervision
loss. As shown in Table 2.3 and Table 2.4, dense depth supervision produces even
better-quality images and significantly lower depth errors.

2.4.5 Analysis

Overfitting. Figure 2.2 shows that NeRF can overfit to a small number of input
views by learning degenerate 3D geometries. Adding depth supervision can assist

NeRF to disambiguate geometry and render better novel views.

Faster Training. To quantify speed improvements in NeRF training, we compare
training DS-NeRF and NeRF under identical settings. Like in Section 2.4.3, we
evaluate view synthesis quality on test views under various number of input views
from NeRF Real using PSNR. We can compare training speed performance by
plotting PSNR on test views versus training iterations in Figure 2.7.

DS-NeRF achieves a particular test PSNR threshold using 2-3x less training
iterations than NeRF. These benefits are significantly magnified when given fewer

views. In the extreme case of only 2-views, NeRF is completely unable to match

25

2. Depth-supervised NeRF: Fewer Views and Faster Training for Free
O

DS-NeRF’s performance. While these results are given in terms of training iteration,
we can translate them into wall time improvements. On a single RTX A5000, a
training loop of DS-NeRF takes ~ 362.4 ms/iter while NeRF needs ~ 359.8 ms/iter.
Thus in the 5-view case, DS-NeRF achieves NeRF’s peak test PSNR around 13

hours faster, a massive improvement considering the negligible cost.

2.5 Discussion.

We introduce Depth-supervised NeRF, a model for learning neural radiance fields
that takes advantage of depth supervision. Our model uses “free” supervision
provided by sparse 3D point clouds computed during standard SFM pre-processing
steps. This additional supervision has a significant impact; DS-NeRF trains 2-3x
taster and produces better results from fewer training views (improving PSNR
from 13.5 to 20.2). While recent research has sought to improve NeRF by exploiting
priors learned from category-specific training data, our approach requires no
training and thus generalizes (in principle) to any scenes on which SFM succeeds.
This allows us to integrate depth supervision to many NeRF-based methods and
observe significant benefits. Finally, we provide cursory experiments that explore

alternate forms of depth supervision such as active depth sensors.

26

Part 11

3D Asset Generation

27

Chapter 3

3D-aware Conditional Image

Synthesis

While Chapter 2 demonstrated that depth supervision can dramatically reduce the
view requirements for 3D reconstruction, enabling scene capture from as few as
two images. However, these approaches are inherently limited to digitizing what
already exists in the physical world, offering no path for creating novel 3D content
that exists only in imagination.

This limitation motivates a shift from reconstruction to generation: What if
we want to create entirely new 3D scenes and objects from scratch? However,
as discussed in the challenges section, 3D generation presents its own unique
difficulties, particularly around multi-view consistency and the requirement for
expensive 3D training data.

The following chapter explores how we can train a 3D-aware generative model
leveraging only posed 2D images to enable controllable generation of new 3D
objects.

3.1 Introduction

Content creation with generative models has witnessed tremendous progress in
recent years, enabling high-quality, user-controllable image and video synthe-
sis [45, 54, 64, 86]. In particular, image-to-image translation methods [75, 174, 295]

29

3. 3D-aware Conditional Image Synthesis

GT View Novel View GT View Novel View

Input Seg Map Input Seg Map

GT View Novel View

Input Edge Map ; [/\“‘/ J ;?
g &

Figure 3.1: Given a 2D label map as input, such as a segmentation or edge map,
our model learns to predict high-quality 3D labels, geometry, and appearance,
which enables us to render both labels and RGB images from different viewpoints.
The inferred 3D labels further allow interactive editing of label maps from any
viewpoint, as shown in Figure 3.10.

Input Edge Map

allow users to interactively create and manipulate a high-resolution image given a
2D input label map. Unfortunately, existing image-to-image translation methods
operate purely in 2D, without explicit reasoning of the underlying 3D structure
of the content. As shown in Figure 3.1, we aim to make conditional image syn-
thesis 3D-aware, allowing not only 3D content generation but also viewpoint
manipulation and attribute editing (e.g., car shape) in 3D.

Synthesizing 3D content conditioned on user input is challenging. For model
training, it is costly to obtain large-scale datasets with paired user inputs and
their desired 3D outputs. During test time, 3D content creation often requires
multi-view user inputs, as a user may want to specify the details of 3D objects
using 2D interfaces from different viewpoints. However, these inputs may not be
3D-consistent, providing conflicting signals for 3D content creation.

To address the above challenges, we extend conditional generative models with
3D neural scene representations. To enable cross-view editing, we additionally
encode semantic information in 3D, which can then be rendered as 2D label maps

from different viewpoints. We learn the aforementioned 3D representation using

30

3. 3D-aware Conditional Image Synthesis

only 2D supervision in the form of image reconstruction and adversarial losses.
While the reconstruction loss ensures the alignment between 2D user inputs and
corresponding 3D content, our pixel-aligned conditional discriminator encourages
the appearance and labels to look plausible while remaining pixel-aligned when
rendered into novel viewpoints. We also propose a cross-view consistency loss to
enforce the latent codes to be consistent from different viewpoints.

We focus on 3D-aware semantic image synthesis on the CelebAMask-HQ [99],
AFHQ-cat [34], and shapenet-car [19] datasets. Our method works well for various
2D user inputs, including segmentation maps and edge maps. Our method outper-
forms several 2D and 3D baselines, such as Pix2NeRF variants [13], Sof GAN [20],
and SEAN [298]. We further ablate the impact of various design choices and
demonstrate applications of our method, such as cross-view editing and explicit

user control over semantics and style.

3.2 Related Work

Neural Implicit Representation. Neural implicit fields, such as DeepSDF and
NeRFs [149, 170], model the appearance of objects and scenes with an implicitly
defined, continuous 3D representation parameterized by neural networks. They
have produced significant results for 3D reconstruction [214, 299] and novel view
synthesis applications [110, 134, 139, 153, 280] thanks to their compactness and
expressiveness. NeRF and its descendants aim to optimize a network for an
individual scene, given hundreds of images from multiple viewpoints. Recent
works further reduce the number of training views through learning network
initializations [21, 221, 273], leveraging auxiliary supervision [39, 78], or imposing
regularization terms [163]. Recently, explicit or hybrid representations of radiance
fields [22, 153, 196] have also shown promising results regarding quality and speed.
In our work, we use hybrid representations for modeling both user inputs and
outputs in 3D, focusing on synthesizing novel images rather than reconstructing an
existing scene. A recent work Pix2NeRF [13] aims to translate a single image to a
neural radiance field, which allows single-image novel view synthesis. In contrast,

we focus on 3D-aware user-controlled content generation.

31

3. 3D-aware Conditional Image Synthesis

Conditional GANSs. Generative adversarial networks (GANSs) learn the distribu-
tion of natural images by forcing the generated and real images to be indistinguish-
able. They have demonstrated high-quality results on 2D image synthesis and
manipulation [1, 7, 12, 54, 86, 87, 88, 177, 203, 232, 293, 294]. Several methods adopt
image-conditional GANs [75, 150] for user-guided image synthesis and editing
applications [70, 72, 99, 115, 174, 175, 200, 248, 295, 298] . In contrast, we propose a
3D-aware generative model conditioned on 2D user inputs that can render view-
consistent images and enable interactive 3D editing. Recently, SOFGAN [20] uses
a 3D semantic map generator and a 2D semantic-to-image generator to enable

3D-aware generation, but using 2D generators does not ensure 3D consistency.

3D-aware Image Synthesis. Early data-driven 3D image editing systems can
achieve various 3D effects but often require a huge amount of manual effort [27, 91].
Recent works have integrated the 3D structure into learning-based image genera-
tion pipelines using various geometric representations, including voxels [61, 297],
voxelized 3D features [159], and 3D morphable models [227, 269]. However,
many rely on external 3D data [227, 269, 297]. Recently, neural scene repre-
sentations have been integrated into GANs to enable 3D-aware image synthe-
sis [17, 18, 55, 162, 166, 168, 202, 266]. Intriguingly, these 3D-aware GANs can
learn 3D structures without any 3D supervision. For example, StyleNeRF [55]
and EG3D [18] learn to generate 3D representations by modulating either NeRFs
or explicit representations with latent style vectors. This allows them to render
high-resolution view-consistent images. Unlike the above methods, we focus on
conditional synthesis and interactive editing rather than random sampling. Several
works [38, 74, 131, 260] have explored sketch-based shape generation but they do
not allow realistic image synthesis.

Closely related to our work, Huang et al. [67] propose synthesizing novel
views conditional on a semantic map. Our work differs in three ways. First,
we can predict full 3D labels, geometry, and appearance, rather than only 2D
views, which enables cross-view editing. Second, our method can synthesize
images with a much wider baseline than Huang et al. [67]. Finally, our learning
algorithm does not require ground truth multi-view images of the same scene. Two
recent works, FENeRF [216] and 3DSGAN [279], also leverage semantic labels for

training 3D-aware GANSs, but they do not support conditional inputs and require

32

3. 3D-aware Conditional Image Synthesis

additional efforts (e.g., GAN-inversion) to allow user editing. Three concurrent
works, IDE-3D [215], NeRFFaceEditing [80], and sem2nerf [31], also explore the
task of 3D-aware generation based on segmentation masks. However, IDE-3D and
sem2nerf only allow editing on a fixed view, and NeRFFaceEditing focuses on real
image editing rather than generation. All of them do not include results for other
input modalities. In contrast, we present a general-purpose method that works

well for diverse datasets and input controls.

3.3 Method

Given a 2D label map I, such as a segmentation or edge map, pix2pix3D generates
a 3D-volumetric representation of geometry, appearance, and labels that can be
rendered from different viewpoints. Figure 3.2 provides an overview. We first
introduce the formulation of our 3D conditional generative model for 3D-aware
image synthesis in Section 3.3.1. Then, in Section 3.3.2, we discuss how to learn the
model from color and label map pairs {I, Is} associated with poses P.

3.3.1 Conditional 3D Generative Models

Similar to EG3D [18], we adopt a hybrid representation for the density and appear-
ance of a scene and use style vectors to modulate the 3D generations. To condition
the 3D representations on 2D label map inputs, we introduce a conditional en-
coder that maps a 2D label map into a latent style vector. Additionally, pix2pix3D
produces 3D labels that can be rendered from different viewpoints, allowing for

cross-view user editing.

Conditional Encoder. Given a 2D label map input Is and a random latent code
sampled from the spherical Gaussian space z ~ N (0, I), our conditional encoder
E outputs a list of style vectors w* € RP*2%,

w' = E(I, z),

where | = 13 is the number of layers to be modulated. Specifically, we encode I

into the first 7 style vectors that represent the global geometric information of the

33

3. 3D-aware Conditional Image Synthesis

__________ R z e R¥® Random Latent Code
s ceR? RGB Color
3D Spa;i(al Point | G, pose - s € R Label
, Moae ! Novel ¢ e R Feature
W I‘JOSeS oceRT Density

ic c RO4x64x3 Raw RGB Image

w i, € R64x64xc Raw Label Map
mo’yrk N i, € RO0™<! Raw Feature Map
i, i, 'I;, Render |~ i} € R?12x512x3 Final RGB Image
@ 1} € R912x%12%¢ Final Label Map

Rendered Label Map 1

Real/Fake
Semantic Palr
e, GAN e
Loss

LPIPS
Loss Real /Fake GAN Loss
Image

G.T. RGB Image

Rendered RGB Image 1}

Novel-view Label Maps

!1!1!1

Novel-view RGB Images

Real/Fake
Pa1r

r GAN Loss

Real/ Fake GAN Loss
Image

Figure 3.2: Overall pipeline. Given a 2D label map (e.g., segmentation map), a
random latent code z, and a camera pose Pas inputs, our generator renders the
label map and image from viewpoint P. Intuitively, the input label map specifies
the geometric structure, while the latent code captures the appearance, such as
hair color. We begin with an encoder that encodes both the input label map
and the latent code into style vectors w'. We then use w' to modulate our 3D
representation, which takes a spatial point x and outputs (1) color ¢ € R3, (2)
density o, (3) feature ¢ € R/, and (4) label s € IR°. We then perform volumetric
rendering and 2D upsampling to get the high-res label map I} and RGB Image 1.
For those rendered from ground-truth poses, we compare them to ground-truth
labels and images with an LPIPS loss and label reconstruction loss. We apply a
GAN loss on labels and images rendered from both novel and original viewpoints.

34

3. 3D-aware Conditional Image Synthesis

scene. We then feed the random latent code z through a Multi-Layer Perceptron
(MLP) mapping network to obtain the rest of the style vectors that control the

appearance.

Conditional 3D Representation. Our 3D representation is parameterized by tri-
planes followed by an 2-layer MLP f [18], which takes in a spatial point x € R3
and returns 4 types of outputs: (1) color ¢ € R3, (2) density o € RT, (3) feature
¢ € R for the purpose of 2D upsampling, and most notably, (4) label s € RR°,
where c is the number of classes if I is a segmentation map, otherwise 1 for edge
labels. We make the field conditional by modulating the generation of tri-planes
F! with the style vectors w'. We also remove the view dependence of the color

following [18, 55]. Formally,
(¢;5,0,¢) = f(Fyt (x)).

Volume Rendering and Upsampling. We apply volumetric rendering to synthe-
size color images [84, 149]. In addition, we render label maps, which are crucial
for enabling cross-view editing (Section 3.4.3) and improving rendering quality
(Table 3.1). Given a viewpoint P looking at the scene origin, we sample N points
along the ray that emanates from a pixel location and query density, color, labels,
and feature information from our 3D representation. Let x; be the i-th sampled
point along the ray r. Let ¢;, s; and (E; be the color, labels, and the features of x;.
Similar to [216], The color, label map, and feature images are computed as the
weighted combination of queried values,
N N N
(r) =) ma, I(r) =) usi, 1g(r) =) t, (3.1)
i=1 i=1 i=1

where the transmittance 7; is computed as the probability of a photon traversing
between the camera center and the i-th point given the length of the i-th interval J;,

7= [Texp (-035)(1 — exp (60
L

Similar to prior works [18, 55, 166], we approximate Equation 3.1 by 2D Upsampler

35

3. 3D-aware Conditional Image Synthesis

U to reduce the computational cost. We render high-res 512 x 512 images in two
passes. In the first pass, we render low-res 64 x 64 images i, I, iE. Then a CNN
up-sampler U is applied to obtain high-res images,

i — Uy ie), 1 = U i)

3.3.2 Learning Objective

Learning conditional 3D representations from monocular images is challenging
due to its under-constrained nature. Given training data of associated images,
label maps, and camera poses predicted by an off-the-shelf model, we carefully
construct learning objectives, including reconstruction, adversarial, and cross-view

consistency losses. These objectives will be described below.

Reconstruction Loss. Given a ground-truth viewpoint P associated with the color
and label maps {I, Is}, we render color and label maps from P and compute
reconstruction losses for both high-res and low-res output. We use LPIPS [284] to
compute the image reconstruction loss L. for color images. For label reconstruction
loss L, we use the balanced cross-entropy loss for segmentation maps or L2 Loss

for edge maps,
LI'GCOII = /\C£C(IC/ {iC/ i;’_}) + ASES(IS/ {iS/ i;_})/

where A, and A balance two terms.

Pixel-aligned Conditional Discriminator. The reconstruction loss alone fails to
synthesize detailed results from novel viewpoints. Therefore, we use an adversarial
loss [54] to enforce renderings to look realistic from random viewpoints. Specif-
ically, we have two discriminators D. and Ds for RGB images and label maps,
respectively. D, is a widely-used GAN loss that takes real and fake images as input,
while the pixel-aligned conditional discriminator Ds concatenates color images and
label maps as input, which encourages pixel alignment between color images and
label maps. Notably, in Ds, we stop the gradients for the color images to prevent a
potential quality downgrade. We also feed the rendered low-res images to prevent

the upsampler from hallucinating details, inconsistent with the low-res output.

36

3. 3D-aware Conditional Image Synthesis

Multi-view Generation of Seg Maps

Input I Rendered Is Rendered i’s Rendered i’sl
from Pose P from Pose P from Pose P’ from Pose P

W,

Love |

Figure 3.3: Cross-View Consistency Loss. Given an input label map I and its
associated pose P, we first infer the geometry latent code wg. From wg, we can

generate a label map 5 from the same pose P, and I/, from a random pose P'. Next,
we infer wy from the novel view I, and render it back to the original pose P to

obtain 1. Finally, we add a reconstruction loss: Lcyc = AcycLs(1,1s).

The adversarial loss can be written as follows.

N

Lcan = Ap Lp (15, 1) + Ap Lp, (I, 1, 17, 1s).

where Ap_and Ap_ balance two terms. To stabilize the GAN training, we adopt the
R1 regularization loss [141].

Cross-view Consistency Loss. We observe that inputting label maps of the same
object from different viewpoints will sometimes result in different 3D shapes.
Therefore we add a cross-view consistency loss to regularize the training, as illus-
trated in Figure 3.3. Given an input label map Is and its associated pose P, we
generate the label map 1, from a different viewpoint P/, and render the label map
1” back to the pose P using 1} as input. We add a reconstruction loss between 1/
and Is:
Leve = AeveLs(3],1s),

where L, denotes the reconstruction loss in the label space, and Acyc weights the
loss term. This loss is crucial for reducing error accumulation during cross-view

editing.

37

3. 3D-aware Conditional Image Synthesis

Input Seg Map Pix2NeRF

Figure 3.4: Qualitative Comparison with Pix2NeRF [13], SoOFGAN [20], and
SEAN [298] on CelebAMask dataset for seg2face task. SEAN fails in multi-view
synthesis, while SOFGAN suffers from multi-view inconsistency (e.g., face identity
changes across viewpoints). Our method renders high-quality images while main-
taining multi-view consistency.

Optimization. Our final learning objective is written as follows:

Liotal = Lrecon + Lcan + Lcve.

At every iteration, we determine whether to use a ground-truth pose or sample a
random one with a probability of p. We use the reconstruction loss and GAN loss

for ground-truth poses, while for random poses, we only use the GAN loss.

Input Seg Maj w/o0 3D Labels Input Seg Maj
p g Map P g Map

Figure 3.5: Qualitative ablation on seg2face and seg2cat. We ablate our method
by removing the branch that renders label maps (w/o 3D Labels). Our results better
align with input labels (e.g., hairlines and the cat’s ear).

3. 3D-aware Conditional Image Synthesis

Quality Alignment
SG FVV
CelebAMask FID | KID | Diversity 1| mloU 1 accT |Identity |

Seg?Face

SEAN 32.74 0.018 0.29 0.52 0.85 N/A
SoFGAN 23.34 0.012 0.33 0.53 0.89 0.58
Pix2NeRF 54.23 0.042 0.16 0.36 0.65 0.44

pix2pix3D (Ours)
w/0 3D Labels 12.96 0.005 030 |N/A(0.43) N/A (0.81)] 0.38

w/o CVC 11.62 0.004 030 |0.50(0.50) 0.87 (0.85) | 0.42
full model 11.54 0.003 028 |0.51(0.52) 0.90(0.88)| 0.36
full model® 11.13 0.003 0.29 0.51 (0.50) 0.90 (0.87) | 0.36

Table 3.1: Seg2face Evaluation. Our metrics include image quality (FID, KID,
SG Diversity), alignment (mloU and acc against GT label maps), and multi-view
consistency (FVV Identity). Single-generation diversity (SG Diversity) is obtained
by computing the LPIPS metric between randomly generated pairs given a single
conditional input. To evaluate alignment, we compare the generated label maps
against the ground truth in terms of mloU and pixel accuracy (acc). Alternatively,
given a generated image, one could estimate label maps via a face parser, and
compare those against the ground truth (numbers in parentheses). We include
SEAN [298] and SoFGAN [20] as baselines, and modify Pix2NeRF [13] to take
conditional input. Our method achieves the best quality, alignment ACC, and FVV
Identity while being competitive on SG Diversity. SOFGAN tends to have better
alignment but worse 3D consistency. We also ablate our method w.r.t the 3D labels
and the cross-view consistency (CVC) loss. Our 3D labels are crucial for alignment,
while the CVC loss improves multi-view consistency. Using pretrained models
from EG3D (1) also improves the performance.

3.4 Experiment

We first introduce the datasets and evaluation metrics. Then we compare our
method with the baselines. Finally, we demonstrate cross-view editing and multi-
modal synthesis applications enabled by our method.

Datasets. We consider four tasks: seg2face, seg2cat, edge2cat, and edge2car in our ex-

39

3. 3D-aware Conditional Image Synthesis

Edge2Car Quality Alignment
FID | KID | SG Diversity t| AP 71
Pix2NeRF 23.42 0.014 0.06 0.28

pix2pix3D (Ours)

w/03DLabels 10.73 0.005 0.12 0.45 (0.42)
w/0 CVC 9.42 0.004 0.13 0.61 (0.59)
full model 8.31 0.004 0.13 0.63 (0.59)

Table 3.2: Edge2car Evaluation. We compare our method with Pix2NeRF [13] on
edge2car using the shapenet-car [19] dataset. Similar to Table 3.1, we evaluate FID,
KID, and SG Diversity for image quality. We also evaluate the alignment with the
input edge map using AP. Similarly, we can either run informative drawing [16]
on generated images to obtain edge maps (numbers in parentheses) or directly
use generated edge maps to calculate the metrics. We achieve better image quality
and alignment than Pix2NeRF. We also find that using 3D labels and cross-view
consistency loss is helpful regarding FID and AP metrics.

periments. For seg2face, we use CelebAMask-HQ [99] for evaluation. CelebAMask-
HQ contains 30,000 high-resolution face images from CelebA [126], and each image
has a facial part segmentation mask and a predicted pose. The segmentation masks
contain 19 classes, including skin, eyebrows, ears, mouth, lip, etc. The pose associ-
ated with each image segmentation is predicted by HopeNet [193]. We split the
CelebAMask-HQ dataset into a training set of 24,183, a validation set of 2,993, and
a test set of 2,824, following the original work [99]. For seg2cat and edge2cat, we
use AFHQ-cat [34], which contains 5,065 images at 512 x resolution. We estimate
the viewpoints using unsup3d [256]. We extract the edges using pidinet [213] and
obtain segmentation by clustering DINO features [3] into 6 classes. For edge2car,
we use 3D models from shapenet-car [19] and render 500,000 images at 128 x
resolution for training, and 30,000 for evaluation. We extract the edges using infor-
mative drawing [16]. We train our model at 512 x resolution except for 128 x in the
edge2car task.

Running Time. For training the model at 512 x resolution, it takes about three
days on eight RTX 3090 GPUs. But we can significantly reduce the training time to

40

3. 3D-aware Conditional Image Synthesis

Rendered RGB images & edge maps
Input Edge Map GT View Novel View

Figure 3.6: Results on edge2cat. Our model is trained on AFHQ-cat [34] with
edges extracted by pidinet [213].

4 hours if we initialize parts of our model with pretrained weights from EG3D[18].
During inference, our model takes 10 ms to obtain the style vector, and another 30
ms to render the final image and the label map on a single RTX A5000. The low

latency (25 FPS) allows for interactive user editing.

3.4.1 Evaluation metrics

We evaluate the models from two aspects: 1) the image quality regarding fidelity
and diversity, and 2) the alignment between input label maps and generated
outputs.

Quality Metrics. Following prior works [55, 173], we use the clean-fid library [176]
to compute Fréchet Inception Distance (FID) [63] and Kernel Inception Distance
(KID) [10] to measure the distribution distance between synthesized results and
real images. We also evaluate the single-generation diversity (SG Diversity) by
calculating the LPIPS metric between randomly generated pairs given a single
input following prior works [20, 296]. For FID and KID, we generate 10 images per

41

3. 3D-aware Conditional Image Synthesis

Novel View

GT View ,— ~
s
& | :
Input Edge Map A
SR
5
O

Figure 3.7: Qualitative comparisons on edge2car. pix2pix3D (Ours) and
Pix2NeRF [13] are trained on shapenet-car [19], and pix2pix3D achieves better
quality and alignment than PixX2NeRF.

label map in the test set using randomly sampled z. We compare our generated

images with the whole dataset, including training and test images.

Alignment Metrics. We evaluate models on the test set using mean Intersection-
over-Union (mloU) and pixel accuracy (acc) for segmentation maps following
existing works [173, 200], and average precision (AP) for edge maps. For those
models that render label maps as output, we directly compare them with ground-
truth labels. Otherwise, we first predict the label maps from the output RGB images
using off-the-shelf networks [99, 213], and then compare the prediction with the
ground truth. The metrics regarding such predicted semantic maps are reported
within brackets in Table 3.1 and Table 3.2.

For seg2face, we evaluate the preservation of facial identity from different view-
points (FVV Identity) by calculating their distances with the dlib face recognition
algorithm!.

Ihttps://github.com/ageitgey/face_recognition

42

https://github.com/ageitgey/face_recognition

3. 3D-aware Conditional Image Synthesis

Seg2Cat Quality Alignment
AFHQ-cat FID | KID | SG Diversity 7| mloU 1 acc T
Pix2NeRF 43.92 0.081 0.15 0.27 0.58
Ours

w/03D Labels 10.41 0.004 0.26 N/A (0.49) N/A (0.69)
w/o CVC 9.64 0.004 0.26 0.66 (0.63) 0.76 (0.73)
Full Model 8.62 0.003 0.27 0.66 (0.62) 0.78 (0.73)

Table 3.3: Seg2cat Evaluation. We compare our method with Pix2NeRF [13] on
Seg2Cat using AFHQ-cat dataset [34], with segmentation obtained by clustering
DINO features [3]. Similar to Table 3.1, we evaluate the image quality and align-
ment. Ours performs better in all metrics.

3.4.2 Baseline comparison

Baselines. Since there are no prior works on conditional 3D-aware image synthesis,
we make minimum modifications to Pix2NeRF [13] to be conditional on label maps
instead of images. For a thorough comparison, we introduce several baselines:
SEAN [298] and SoFGAN [20]. 2D baselines like SEAN [298] cannot generate
multi-view images by design (N/A for FVV Identity), while SOFGAN [20] uses
an unconditional 3D semantic map generator before the 2D generator so we can
evaluate FVV Identity for that.

Results. Figure 3.4 shows the qualitative comparison for seg2face and Table 3.1
reports the evaluation results. SOFGAN [20] tends to produce results with slightly
better alignment but worse 3D consistency for its 2D RGB generator. Our method
achieves the best quality, alignment acc, and FVV Identity while being competitive
with 2D baselines on SG diversity. Figure 3.5 shows the qualitative ablation on
seg2face and seg2cat. Table 3.4 reports the metrics for seg2cat. Figure 3.6 shows
the example results for edge2cat. Figure 3.7 shows the qualitative comparison for
edge2car and Table 3.2 reports the metrics. Our method achieves the best image
quality and alignment. Figure 3.8 shows semantic meshes of human and cat faces,

extracted by marching cubes and colored by our learned 3D labels.

43

3. 3D-aware Conditional Image Synthesis

Input Seg Map Generated Semantic Mesh

Figure 3.8: Semantic Mesh. We show semantic meshes of human and cat faces
from marching cubes colored by 3D labels.

Ablation Study. We compare our full method to several variants. Specifically, (1)
W /0 3D LABELS, we remove the branch of rendering label maps from our method,
and (2) w/0 CVC, we remove the cross-view consistency loss. From Table 3.1,
Table 3.2, and Figure 3.5, rendering label maps is crucial for the alignment with
the input. We posit that the joint learning of appearance, geometry, and label
information poses strong constraints on correspondence between the input label
maps and the 3D representation. Thus our method can synthesize images pixel-
aligned with the inputs. Our CVC loss helps preserve the facial identity from
different viewpoints.

Seg2Car Quality Alignment

Shapnet-car FID | KID | SG Diversity 1 ‘ mloU 1 acc 1
Pix2NeRF 25.86 0.018 0.08 ‘ 024 0.59
Ours 9.35 0.004 0.14 ‘ 0.58 0.88

Table 3.4: Seg2car Evaluation. We compare our method with Pix2NeRF [13]. Ours
performs better in all metrics.

Analysis on random sampling of poses. We study the effect of the different

44

3. 3D-aware Conditional Image Synthesis

FID | 0.0060-— KID Generated mioU 0.90 K— Generated acc
Predicted mioU Predicted acc

3 0.0055 o

D
0
o °
3
o

0.0025

Figure 3.9: We study the effect of random pose sampling probability p during
training. Without random poses (p = 0), the model achieves the best alignment
with input semantic maps, with reduced image quality. In contrast, only using
random poses (p = 1) achieves the best image quality, while results fail to align
with input maps. We find p = 0.5 balances the image quality and input alignment.

Multi-view Generation Multi-view Generation
of RGB & Edge maps of RGB & Edge maps

Inj;t_‘i—ic;ap» # j D Edited]ége Map-> D ﬁ j
i § @ I @ D @

Figure 3.10: Cross-view Editing of Edge2Car. Our 3D editing system allows users
to edit label maps from any viewpoint instead of only the input view. Importantly,
our feed-forward encoder allows fast inference of the latent code without GAN-
inversion. Typically, a single forward pass of rendering takes only 40 ms on a single
RTX A5000, which enables interactive editing. Please check our demo video on our
website.

probabilities of sampling random poses during training, as shown in Figure 3.9.
When sampling no random poses (p = 0), the model best aligns with input label
maps with suboptimal image quality. Conversely, only sampling random poses
(p = 1) gives the best image quality but suffers huge misalignment with input label
maps. We find p = 0.5 achieves the balance between the image quality and the
alignment with the input.

3.4.3 Applications

Cross-view Editing. As shown in Figure 3.10, our 3D editing system allows users

to generate and edit label maps from any viewpoint instead of only the input view.

45

http://cs.cmu.edu/~pix2pix3D

3. 3D-aware Conditional Image Synthesis

Appearance

Geometry

Figure 3.11: Multi-modal Synthesis. The leftmost column is the input segmenta-
tion map. We use the same segmentation map for each row. We generate multi-
modal results by randomly sampling an appearance style for each column.

The edited label map is further fed into the conditional encoder to update the 3D
representation. Unlike GAN inversion [294], our feed-forward conditional encoder
allows fast inference of the latent code. Thus, a single forward pass of our full
model takes only 40 ms on a single RTX A5000.

Multi-modal synthesis and interpolation. Like other style-based generative mod-
els [18, 55, 86, 87], our method can disentangle the geometry and appearance
information. Specifically, the input label map captures the geometry informa-
tion while the randomly sampled latent code controls the appearance. We show
style manipulation results in Figure 3.11. We can also interpolate both the geom-
etry styles and the appearance styles (Figure 3.12). These results show the clear
disentanglement of our 3D representation.

46

3. 3D-aware Conditional Image Synthesis

3.5 Discussion

We have introduced pix2pix3D, a 3D-aware conditional generative model for
controllable image synthesis. Given a 2D label map, our model allows users to
render images given any viewpoint. Our model augments the neural field with
3D labels, assigning label, color, and density to every 3D point, allowing for the
simultaneous rendering of the image and a pixel-aligned label map. The learned
3D labels further enable interactive 3D cross-view editing. We discuss the broader

impact and limitations in the appendix.

47

3. 3D-aware Conditional Image Synthesis

Appearance

Geometry

Figure 3.12: Interpolation. In each 5 x 5 grid, the images at the top left and bottom
right are generated from the input maps next to them. Each row interpolates two
images in label space, while each column interpolates the appearance. For camera
poses, we interpolate the pitch along the row and the yaw along the column.

48

Chapter 4

Efficient Autoregressive Shape
Generation via Octree-Based Adaptive

Tokenization

Chapter 3 demonstrated that by incorporating 3D awareness into the generation
process, we can create editable 3D objects from simple 2D semantic inputs like
sketches or segmentation maps. However, this approach is designed for category-
specific generation. It works well for cars, faces, or other well-defined object
categories with sufficient training data, but cannot easily generalize to the vast
diversity of objects and scenes users might want to create. Furthermore, the reliance
on 2D semantic inputs, while expressive and intuitive, is not as accessible as simple
text descriptions.

The following chapter explores how to scale our training to generic text-to-3D
generation that automatically creates arbitrary high-fidelity 3D shapes based on
text descriptions.

4.1 Introduction

Recent advances in generative models have revolutionized the field of 3D content
creation, enabling diverse applications, including shape generation [106, 142, 235],
text-to-3D generation [111, 179, 249], text-driven mesh texturing [23, 41], single-

49

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Fewer Tokens for Simple Shapes Better Reconstruction for Complex Shapes

f LI | 1
a0 R :
I xd 140
truth S Y
a0 w o) R ,
i . - KDy WX i K /g\ G
Reconstruction i w B

512 tokens 512 tokens 512 tokens 512 tokens 512 tokens 512 tokens 512 tokens 512 tokens

T L A -

9 tokens (1.7%) 17 tokens (3.3%) 72 tokens (14%) 173 tokens (34%) 473 tokens 494 tokens 526 tokens 547 tokens

Figure 4.1: We propose an Octree-based Adaptive shape Tokenization (OAT) that
dynamically allocates tokens based on shape complexity. Our approach achieves
better reconstruction quality with fewer tokens on average (439 compared to 512 on
the full test set) by intelligently distributing more tokens to complex shapes while
saving on simpler ones.

image 3D generation [123, 128], and 3D scene editing [59, 124]. One popular
paradigm among state-of-the-art methods employs 3D-native diffusion or au-
toregressive models [106, 188, 261, 282, 288] on top of 3D latents learned from
large-scale datasets. As a result, the effectiveness of these models heavily depends
on how well 3D shapes are represented and encoded as latent representations.

Effective latent representations for 3D shapes must address several fundamen-
tal challenges. First, 3D data is inherently sparse, with meaningful information
concentrated primarily on surfaces rather than distributed throughout the volume.
Second, real-world objects vary in geometric complexity, ranging from simple prim-
itives to intricate structures with fine details, requiring representation structures
that can adapt accordingly. Third, the encoding process must take into account
capturing fine local details while preserving the global geometric structure.

Most existing shape VAEs [106, 278, 282, 288] encode shapes into fixed-size
latent representations and fail to adapt to the inherent variations in geometric
complexity within such shapes. As shown in Figure 4.1 (bottom), objects are en-
coded with identical latent capacity regardless of their scale, sparsity, or complexity,

50

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

resulting in inefficient compression and degraded performance in downstream
generative models. While some approaches [188, 261] leverage sparse voxel repre-
sentations like octrees to account for sparsity, they still subdivide any cell contain-
ing surface geometry to the finest level, thus failing to adapt to shape complexity.
As illustrated in Figure 4.2, a simple cube with only eight vertices requires similar
representation capacity as a highly detailed sculpture in traditional octree struc-
tures. Ideally, hierarchical shape representations should adapt to the complexity
of different regions within a shape. For instance, in the bottom right of Figure 4.2,
complex structures like a tree canopy should require finer subdivision than simpler
regions like the trunk.

To address these challenges, we propose an Octree-based Adaptive Tokeniza-
tion. Our approach dynamically adjusts the latent representation based on local
geometric complexity measured by quadric error, efficiently representing both sim-
ple and intricate regions with appropriate detail levels. As shown in Figure 4.1, our
approach achieves better reconstruction quality with comparable or fewer shape
tokens. By developing an Octree-based autoregressive generative model, we verify
that our efficient variable-sized shape tokenization is beneficial to downstream
generation tasks. Experiments show our generated results are generally better than
those of existing baselines regarding FID, KID, and CLIP scores.

4.2 Related Work

3D Generation. Recent 3D generation methods have achieved remarkable results
by leveraging pre-trained large-scale 2D diffusion models [192]. Approaches like
DreamFusion [179] and DreamGaussian [222] use 2D diffusion priors to optimize
3D representations, such as Neural Radiance Fields [149] and Gaussian Splats [90].
Subsequent works have improved performance with new loss functions and 3D rep-
resentations [24, 89, 105, 111, 127, 130, 135, 144, 147, 217, 233, 249, 270]. However,
these methods often require extensive iterative optimizations, making them imprac-
tical for real-world applications. To reduce inference time, feed-forward methods
have been developed that synthesize multi-view consistent images of the same
object followed by 3D reconstruction [66, 103, 116, 117, 122, 223, 231, 267, 281, 301].

51

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Input Traditional Octree Our Adaptive Octree

T

3367 Octree Nodes 9 Octree Nodes

3047 Octree Nodes 450 Octree Nodes

Figure 4.2: Traditional octree construction subdivides each octant based on whether
the octant contains any mesh element. This construction always subdivides to
the maximum depth (set to 6 in this example), leading to a similar amount of
nodes for simple (top) and complex (middle) shapes. In contrast, our approach
terminates subdivision when the local geometry is simple (e.g., a plane), leading to
an adaptive octree that better reflects the shape complexity.

Nonetheless, approaches leveraging 2D diffusion priors alone without 3D-native
supervision tend to suffer from challenges in modeling refined geometric structures

and complex surfaces, especially for shapes of high concavity.

More recently, a wave of 3D-native generative models [106, 118, 188, 259, 261,
282, 288] has emerged, aiming to train directly on raw 3D assets rather than relying
on 2D diffusion priors. These methods have achieved superior generation quality

52

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

compared to their predecessors thanks to the 3D-native architecture design. An-
other line of work explores auto-regressive methods for direct mesh generation
with artist-like topology [28, 29, 58, 209, 224, 255]. Due to tokenization inefficiency
and challenges in scaling up the context window, these methods are still struggling
to model high-poly meshes with complex surfaces. In contrast, our work aims to
explore more efficient tokenization schemes that encode shapes into compact yet

expressive representations for 3D-native generation.

Compact 3D latent representations. Representing 3D shapes with compact latent
representations has become increasingly popular in 3D generative modeling. One
line of work, pioneered by 3DShape2VecSet [171], advocates encoding 3D shapes
into latent vector sets that can be decoded into diverse geometry representations
such as occupancy fields [106, 171, 257, 282, 287], signed distance fields [25, 288],
and meshes [224]. These methods encode all shapes into a fixed-length vector, and
do not adaptively adjust the representation budget based on shape complexity.
Other work [206, 258] learns latent space from triplanes, but achieving high-fidelity
triplane representations remains challenging, which limits their accuracy, especially
for complex shapes.

An alternative direction focuses on structured 3D latent representations to better
leverage the spatial hierarchies inherent in the underlying geometry. For instance,
sparse voxel grids coupled with feature-rich latents or attributes, as proposed
in XCube [188], MeshFormer [118], LTS3D [140] and Trellis [259], enables more
efficient training for high-resolution shapes and scenes and better preservation
of high-frequency geometric details. Meanwhile, OctFusion [261] proposes to
represent a 3D shape as a volumetric octree with each leaf node encoded by latent
features. Although these approaches offer adaptiveness in the latent representation
similar to ours, their spatial structure is determined by volumetric occupancy
rather than surface complexity.

Octree-based 3D representation. Octree [136, 137] is an efficient 3D data structure
that recursively divides a 3D space into eight octants. It adapts to sparsity and
minimizes storage and computation in empty regions, making it both memory-
and computationally efficient. Compared to dense voxel grids, octrees signifi-
cantly reduce memory usage while preserving fine geometric details in complex

regions. Octree has been used in a wide range of geometric processing applications,

53

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

including point cloud compression [198], 3D texturing [8], multi-view scene recon-
struction [218, 272], shape analysis [190, 242, 243], and shape generation [225, 261].
While similar adaptive octree [244] has been used for the shape classification and
prediction tasks, our work is the first to explore octree representation in the context
of 3D tokenization and autoregressive generation, which requires us to co-design
the encoding, decoding, and generation with octree data structure. Compared to
existing approaches [188, 259, 261] that use uniform tokenization schemes, our

method adapts tokenization according to shape complexity.

(a) Adaptive Shape Tokenization (b) Autoregressive Shape Generation
i i Mesh Quantized Latent Octree (X, ¢)
?O'MCIOUd P. Adaptive quee Octree Structure S Leaf node latent Average Pooling
with Normals P, Construction x [].
H - ! Encode
gl gl — S| — ==
2 \ "’) 10
B B —_ [] d —_—
2 p == et o0 o
0 S 3 . . . - Text: “A dog standing on all 00 o
s J fours with a raised tail”
Surface KV Residual
Sample . « Quantization CLIP Embeddings Breadth-first ordered Shape Tokens
S . .
tized Residual 10 01 00
Input Mesh Extracted Mesh OCCF‘::;"CV — puaiy Accumulate Quarl;:m ej,; ua [11]. 10
I | B Ll ¥ ¥ ¥ ¥ ¥
548 g B | ey
- — - g gV g s — { Octree GPT }
- "T)_,‘ T R
2 I3 am 5 o e I T e N A
¢ s H ;
Query Po\'nts—QI

Figure 4.3: (a) Adaptive Shape Tokenization. Given an input mesh with surface
point samples, we partition 3D space into a sparse octree that adapts to the local ge-
ometric complexity of the surface. We then use a Perceiver-based transformer [77]
to encode the shape into a tree of latent codes, where a child node need encode
only the (quantized) residual latent relative to its parent [100]. Latents can then be
decoded into an occupancy field from which a mesh can be extracted. (b) Autore-
gressive Shape Generation. We define an autoregressive model for generating a
tree of quantized shape tokens given a textual prompt, following a coarse-to-fine
breadth-first search traversal. Similar to variable-length generation of text via
end-of-sentence tokens, we make use of structural tokens to generate variable-size
tree structures.

4.3 Method

Figure 4.3 illustrates our text-based shape generation framework. Our approach
comprises two components: (1) a shape tokenization method (Octree-based Adap-
tive Tokenization, OAT) in Section 4.3.1 and Section 4.3.2 that efficiently compresses

54

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

3D shapes into a compact latent space, and (2) an autoregressive generative back-
bone model, OctreeGPT in Section 4.3.3, which operates on these variable-length
shape tokens.

For each 3D shape, our approach begins by sampling a point cloud P, € RN*3
from the surface, along with its surface normal vectors P, € RN*3 following prior
work [278]. We then employ our novel adaptive octree construction algorithm that
partitions 3D space based on local geometric complexity to obtain an sparse octree
structure. We then leverage the Perceiver-based transformer architecture [77] to
encode the shape into an adaptive latent tree structure. The resulting variable-
length latent representation can then be decoded into an occupancy field, from
which a mesh can be extracted using marching cubes [129].

Unlike existing shape VAEs [106, 278, 282, 288] that learn fixed-size latent
representations for every shape using Variational Autoencoders [94], we propose
to encode shapes into variable-length latents based on their shape complexity. This
adaptive tokenization approach results in a more compact latent space that only
uses more latents by subdividing cells to finer resolution where the complexity
of the shape is higher — thereby leading to better reconstruction quality and

improved performance in downstream generative tasks.

4.3.1 Complexity-Driven Octree Construction

One of the core ingredients of our method is a sparse octree data structure which
subdivides octants according to local geometry complexity, unlike existing methods
subdividing cells based on occupancy.

An octree is a hierarchical spatial data structure that recursively subdivides 3D
space into eight equal octants. Starting with a root node representing a bounding
cube, each non-empty node can be further partitioned into eight child nodes,
creating a tree-like structure O = {V,€}. We use V = {v1,0y,...} to denote
the cells in an octree hierarchy, and £ C V x V defines parent-child relationships,
where (v;,v;) € € indicates that v; is the parent of v;. This representation is efficient
to represent sparse 3D data, as it allocates higher resolution only to occupied
regions.

In this paper, we consider the sparse octree by omitting empty child nodes,

55

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

i.e., each node can have 0 to 8 child nodes, with all nodes being non-empty. This
structure can be compactly encoded by an 8-bit binary code x : V — {0,1}8. For
instance, x(v) = (01001000), indicates that node v has two non-empty child nodes
at its second and fifth slots. An octree structure can thus be uniquely represented as
a sequence of 8-bit binary codes in breadth-first order, [x(vo), x(v1), - - - |.

While octrees have previously been used to tokenize 3D shapes, earlier meth-
ods [188, 261] always subdivide up to the maximum depth unless empty. In
contrast, we subdivide an octant only when the local geometry is “complex”. In-
spired by the literature in mesh simplification [49] and isosurfacing [83], we use the
quadric error metric to measure shape complexity and guide octree subdivision.
This approach optimizes representational capacity, allocating tokens where they
provide the greatest benefit for shape fidelity.

Quadric error metric was first introduced to quantify local geometric complexity
for mesh simplification tasks [50]. Given a plane in R?, let p denote a point on the
plane with unit normal vector n. The plane can be defined by all points x € R3
satisfying

n' (x—p)=0. 4.1)

The quadric error measures the squared point-to-plane distance between any
point x and this plane, computed as

E() = (n"(x—p) =, 1]Q 17, 42)

where the quadric matrix Q € R*** is defined as

T _ T
Q:[nn nn p]. 43)

(—nn'p)" p'nn'p

As a key property, the cumulative error from a point x to multiple planes can be
computed with a summed quadric,

E(x) =} Ei(x) = [x',1] (ZQ) X', 17 (4.4)

56

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

We use the quadric error E* = miny E(x) to measure local geometric complexity.
As the energy is quadratic, the minimum E* can be efficiently computed by solving
a linear system, with details left in the appendix. Intuitively, when the planes form
common intersections (e.g., an edge, a cone, or being flat), the optimal quadric
error approaches zero, whereas complex regions usually yield higher quadric error
values. This property makes quadric error metrics suitable for guiding adaptive
geometric representations.

Specifically, for each octree cell v € V, we compute the cell quadric Q, by

summing up quadrics for all sampled points within v,

Q=), Qp (4.5)

pePe(v)

where P.(v) = {p € P. | p is contained in cell v} denotes the subset of points that
lie within cell v, and Q) is the quadric matrix for point p with its corresponding
normal vector n € P,,. We then calculate the average quadric error

1

E; = min Ey(x) = P.(0) mxin[xT,l]Qv[xT,l]T. (4.6)

We recursively subdivide v into child cells only when both of these conditions are
met: (1) the maximum depth L has not been reached, and (2) the quadric error
exceeds our pre-defined threshold, E; > T. In regions with complex geometry,
cells are subdivided to the maximum depth L, while subdivision stops early in

areas with simpler (i.e., planar) geometry.

4.3.2 Adaptive shape tokenization with OAT

Following prior work [106, 278, 282, 287, 288], we adopt a Perceiver-based varia-
tional autoencoder (VAE) [77, 94] to encode the shape into latents. Specifically, we

compute:
P = Concat (PE(P.),P,), 4.7)
O = Concat (PE(Vicat), SE(Vicat)) , (4.8)
¢ (Vieat) = SelfAttn) (CrossAttn(0,P)), i =1, -, L,

57

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

where the encoder ¢ outputs a latent vector ¢(v) for every leaf cell v € Vjgaf, where
¢ : V — R Here, PE denotes the positional encoding function [236], which
operates on point coordinates and octree cell centers, while SE denotes the scale
encoding function on the depth of octree cells. Vjoo¢ comprises all the leaf cells
within V, and L, refers to the number of Self Attention layers in the shape encoder.

Notably, the cross-attention operation is global, allowing each leaf cell to attend
to all points in P across the entire shape, rather than just points within its local
cell. This global attention enables the model to capture long-range dependen-
cies and contextual information beyond local neighborhoods. The subsequent
self-attention layers further refine these representations by allowing leaf cells to
exchange information.

Finally, we propagate latent vectors from leaf cells to their ancestors bottom-up.

Each non-leaf node computes its latent vector by averaging those of its child nodes.

Multi-scale octree residual quantization. The variable length of the encoded
latent motivates us to adopt an autoregressive model for downstream generation
in Section 4.3.3. This approach requires us to learn a quantization bottleneck in the
VAE. To achieve this, we propose an octree-based residual quantization strategy,
enabling a coarse-to-fine token ordering using residual quantization [100, 229].
Specifically, we start quantization from the root node and only process the residual
latent of every latent from its parent. We use a shared codebook and quantization
function for all of the nodes using vqtorch [73]. We summarize our residual
quantization algorithm in Algorithm 1.

Octree decoding. Given the multi-scale octree residual latent z : V — R?, we
recover the full latent ¢ : V — R? by adding the latent to every node from all
its ancestors. Motivated by prior work [106, 278, 287], we use a similar perceiver-
based transformer to decode the latent to an occupancy field. Specifically, given a

query 3D point x € R3, the decoder predicts its occupancy value:

S = Concat (¢(V),PE(V),S (V)), (4.9)
S = SelfAtn!)(§), j=1,2,---,Lg, (4.10)
o(x,$, O) = CrossAttn (PE(x),S), (4.11)

where L; is the number of Self Attention layers in the shape decoder, and ¢ is the

58

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Algorithm 1 Multi-scale octree residual quantization

Input: Octree O = {V, £}, Latent ¢ : V — R%.
Output: Multi-scale residual quantized latent z : V — R, Quantized latent index
qg:V — Z.

1: z(vg),q(vg) = Quantize(¢(vy)) > v is the root node.
2: Zgec(v9) = z(vp) > Initialize accumulated latent.
3 ford=1,---,L—1do > L is the max depth of O.
4: forv e V;do > V; is the set of nodes at level 4.
5: Find the parent vparent of v according to €.

6: z(v),q(v) = Quantize(¢(v) — Zacc(Vparent))-

7: Zace (V) = Zace(Vparent) + 2(0). > Update zg.
8: end for

9: end for

predicted occupancy value at the query point. At inference time, we query the
decoder using grid points and run marching cubes [129] to extract a mesh. During
training, we sample query points using uniform and importance sampling near the
mesh surface following prior work [106, 278, 287].We jointly optimize the networks
and codebook via the following loss functions.

Lvq = Eoelsg(@(v)) — ¢(0)[1* + [Isg(#(v)) — $(0)[%, (412)

where sg() is the stop-gradient operation. Additionally, we incorporate an occu-
pancy reconstruction loss to ensure that the latent codes accurately reconstruct the
input shape:

Erec -]EXEBCE (U(x),ﬁ(x, 43/ O)) ’ (4-13)

where Lpcg is the binary cross-entropy loss for shape reconstruction, and o(x) €
{0,1} is the ground truth occupancy value of the query point, indicating whether
it is located inside the object. Our final loss function is:

Lrec + AvoLvo, (4.14)

where Ayg weights the vector quantization loss.

KL variant for continuous tokens. By replacing the quantization bottleneck with

59

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

a KL regularization [94], our proposed OAT can learn continuous shape latent
instead, which provides a fair comparison with other continuous latent baselines
in Section 4.4.1.

4.3.3 OctreeGPT: Autoregressive Shape Generation

Building on our adaptive tokenization framework, we develop OctreeGPT, an
autoregressive model for generating 3D shapes conditioned on text descriptions.
Unlike previous approaches that operate on fixed-size representations [106, 282,
288], OctreeGPT models the joint distribution of variable-length octree tokens

while maintaining a hierarchical coarse-to-fine structure.

Shape Token Sequence. To enable autoregressive modeling, we first serialize
the octree structure by traversing it in a breadth-first manner as mentioned in
Section 4.3.2. For each node v, we include both its quantized index q(v) € Z
and a structural code x(v) € {0,1}® that encodes the presence or absence of
each potential child node. A latent octree can thus be uniquely represented by a
variable-length sequence of tokens:

[tOI t]/ e ItN] s
where each token t; = (q(v;), x(v;)), Vi € N.
We train an autoregressive model that predicts the next token in the sequence,
N
P(tOItll" tN|9 :HP t |t01"' i— 1/6)/ (415)

i=1

where 6 is our learned OctreeGPT model.

Model Architecture. Our architecture builds upon decoder-only transformers
similar to GPT-2 [45, 182]. Specifically, we compute the embedding for each shape
token t; as:

Embed(t;) = Embed,(q(v;)) + Embed, (x(v;)) + PEtree(vi), (4.16)

where X (v;) is interpreted as an 8-bit integer. The tree-structured positional encod-

60

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive

Tokenization

ing PEe(v;) captures both spatial and hierarchical information:
PEiree(v;) = Embed, (x(v;)) + Embed, (y(v;)) (4.17)
+Embed;(z(v;)) + Embed;(d(v;)), (4.18)

where x, y, z are quantized coordinates of the cell center, and d € {0,1,--- ,L — 1}
is the depth of the octree node. This multi-dimensional positional encoding helps
the model understand both spatial relationships and the hierarchical structure of
the octree. Our model employs dual prediction heads for predicting quantized
latent indices 4 and structural codes %, allowing the model to jointly reason about
geometry and tree structure. For text-conditioned generation, we prepend the
sequence with 77 tokens derived from the input text’s CLIP embedding [183].

Training and Inference. We train OctreeGPT using a combined loss function that

balances the reconstruction of latent tokens and structural codes:

Lorr = Lce(9,9) + A Lee(x, X), (4.19)

where Lcg is the cross-entropy loss for 28-way classification, and Ay are balancing
hyperparameters. During inference, we employ sampling with temperature T to
control the diversity and quality of generated shapes. We process the predicted
structural code x(v;) on the fly to determine the octree topology, which dynamically
establishes the final length of the token sequence. Further implementation details

and hyperparameter settings are provided in the appendix.

4.4 Experiments

We evaluate our method on shape tokenization and generation. We perform
qualitative and quantitative comparisons with existing baselines and conduct an

ablation study on the significance of each major component.

Dataset. We use the Objaverse [37] dataset, which contains around 800K 3D models,
as our training and test data. To ensure high-quality training and evaluation, we
filter out low-quality meshes, such as those with point clouds, thin structures, or
holes. This results in a curated dataset of around 207K objects for training and 22K

61

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

M Ours Ours w/o subdiv. B Craftsman B Octfusion
loU loU
90 93
88
91
86
89 ®
i /
200 600 1000 1400 200 400 600 800
Average number of tokens Average KB per shape

Figure 4.4: We plot reconstruction quality (IoU) against latent size in both discrete
(left) and continuous (right) scenarios. We use KiloBytes (KB) for continuous latent
representations for a fair comparison. Our method consistently outperforms base-
line approaches at equivalent latent sizes and achieves comparable reconstruction
quality with much smaller latent representations.

objects for testing.

For preprocessing, each mesh is normalized to a unit cube. For each mesh, we
sample 1M points with their normals from the surface as the input point cloud. To
generate ground-truth occupancy values, we uniformly sample 500K points within
the unit volume and an additional 1M points near the mesh surface to capture fine
details and obtain the occupancy based on visibility following prior work [282].
We then construct an adaptive octree for each shape based on the sampled point
cloud using a pre-defined quadric error threshold T, which guides the subdivision
process according to local geometric complexity. To enable text conditioning, we
render nine views of each object under random rotations and use GPT-4o [2] to

generate descriptive captions from these renderings.

4.4.1 Shape Reconstruction

We first assess the reconstruction fidelity of different latent representations.

Baselines. We compare OAT with latent vector sets from Craftsman3D [106]. For
a fair comparison, we train both methods under identical conditions, using both

quantization for discrete tokenization and KL regularization for continuous latent

62

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive

Tokenization
Ground- Ours Ours w/o A.S. Craftsman-
truth (439 tokens (607 tokens VQVAE
on average) on average) (512 tokens)
¢4 / 44 y \4A f .’"
569 tokens 537 tokens
37 tokens 629 tokens
34 tokens 47 tokens

Figure 4.5: Shape reconstruction with discrete latent. We compare our full method
against Craftsman-VQ [106] as well as an ablation without Adaptive Subdivision
(A.S.). With comparable or lower token budget, our method generally outperforms
the baseline regarding reconstruction fidelity. Meanwhile, without adaptive sub-
division, the vanilla octree only allocates the token budget efficiently for objects
of small volume (bottom) but wastes tokens on geometrically simple objects that
occupy large space (middle).

space. Additionally, we evaluate against two other recent approaches, XCube [188]
and Octfusion [261]. Due to computational resource constraints, we use publicly
available pre-trained models for these two baselines rather than retraining them
on our dataset. We exclude VAE models from Direct3D [257], CLAY [282], and
LTS3D [140] as their implementations are not available.

Results. We evaluate shape reconstruction quality using volume Intersection
over Union (IoU) and Chamfer Distance (CD) with 10K sampled surface points
in Table 4.1 and Table 4.2. Note that XCube [188] outputs an Unsigned Distance

Function (UDF), which cannot be evaluated with IoU metrics. Visual comparisons

63

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Ours-KL Octfusion Craftsman-VAE
(439 latent) (4096 latent) (512 latent)

[Pjt ml
oA o

539 latent

Groundtruth

Figure 4.6: Shape reconstruction with continuous latent. We include the visual
comparison between our continuous VAE (OAT-KL) and other baselines. In general,
our reconstruction preserves more details using similar or smaller number of latent
vectors.

in Figure 4.5 and Figure 4.6 demonstrate our approach outperforms all baselines.

Ablation Study. We ablate our proposed adaptive subdivision in Figure 4.5. With-
out quadric-error-based adaptive subdivision, the octree representation subdivides
to the deepest level unless empty, wasting tokens on simple objects of large vol-
umetric occupancy (middle row). Figure 4.4 shows reconstruction quality (IoU)
versus latent size in both discrete and continuous scenarios, confirming our method
achieves better quality at equivalent latent sizes and requires significantly smaller
latent representations for comparable reconstruction quality. Figure 4.7 further
shows a qualitative comparison between our method and the baseline in recon-

struction quality with respect to the number of tokens used.

4.4.2 Shape Generation

This section evaluates our text-to-shape generation quality against multiple base-
lines. We train our OctreeGPT on top of OAT using 439 tokens on average, and
for comparison, train a GPT model on Craftsman-VQ with 512 tokens. We include
XCube [188]’s pre-trained Objaverse model as a native text-to-3D baseline. We also

64

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Ours

236 tokens 506 tokens 1045 tokens

Craftsman-
VQVAE

AN &
256 tokens 512 tokens 1024 tokens

Figure 4.7: Ablation study on token length. With an increasing number of tokens,
our method achieves better quality while consistently outperforming the baseline
at a comparable token length.

compare against two image-to-3D methods, InstantMesh [262] and Craftsman [106],
using FLUX.1 [96] to generate condition images from input text.

Results. We quantitatively evaluate generation quality in Table 4.3 by rendering
generated shapes and computing Frechet Inception Distance (FID) [63, 176], and
Kernel Inception Distance (KID) [10] against groundtruth renderings. We also
report CLIP-score [183] to evaluate text-shape consistency, and average generation
time to evaluate efficiency. In addition to quantitative measures, we also provide
qualitative comparisons in Figure 4.8. Overall, thanks to a more compact and
representative latent space, our OctreeGPT produces finer details with fewer ar-
tifacts compared to Craftsman-VQ with GPT, while also outperforming other 3D
generation baselines in both geometry quality and prompt adherence, with a faster

runtime.

4.5 Discussion

In this work, we propose an octree-based Adaptive Shape Tokenization, OAT,
a framework that dynamically adjusts latent representations according to shape
complexity. At its core, OAT constructs an adaptive octree structure guided by a
quadric-error-based subdivision criterion, allocating more tokens to complicated

parts and objects while saving on simpler ones. Extensive experiments show that

65

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Method Avg Token Cnt ToU 1 CD (x1073)]
256 83.1 2.31
512 83.8 1.94
Craftsman-VQ [106] 768 84.2 1.88
1024 84.4 1.80
Ours (OAT) égg zgg iég
w/oAS. ' '
1726 89.9 1.37
266 86.7 1.94
439 88.6 1.78
Ours (OAT) 625 89.7 1.53
1284 90.2 1.27

Table 4.1: Quantitative analysis of shape reconstruction with discrete latent. We
compare our method against Craftsman-VQ [106] and ablation without Adaptive
Subdivision (A.S.). With comparable token counts, our approach outperforms both
baselines, showing the effectiveness of our proposed adaptive tokenization.

OAT reduces token counts by 50% compared to previous fixed-size approaches
while maintaining comparable visual quality. Alternatively, with a similar number
of tokens, OAT produces much higher-quality shapes. Building upon this tokeniza-
tion, we develop an octree-based Autoregressive generative model, OctreeGPT that
effectively leverages these variable-sized representations, outperforming existing
baselines.

Limitations. Our framework only addresses geometric shape reconstruction and
generation without incorporating texture information. We leave modeling both
shape and texture properties jointly for future work.

66

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Method Avg Latent Len IoU 1 CD (x1073%)]
256 87.8 1.96
512 91.0 1.83
Craftsman [106] 768 901 133
1024 924 1.29
Octfusion® [261] 4096 88.9 1.87
XCube' [188] 4096 - 1.26
owsOaTkn 8 B 1
w/0 A.S.) ’
1726 93.0 1.01
266 89.7 1.81
439 91.6 1.29
Ours (OAT-KL) 625 92.7 1.08
1284 93.1 0.97

Table 4.2: Quantitative analysis of shape reconstruction with continuous latent.
We replace the quantization with a KL regularization to learn continuous latent
(OAT-KL) as mentioned in Section 4.3.2. Our method outperforms all the baselines
with comparable or shorter latent code lengths. t indicates off-the-shelf models
that are pre-trained on different data sources than ours.

KID| CLIP- Runtime]

Method FID} (x1073) scoret (secs)
Craftsman® [106] 65.18 6.42 0.27 54.8
InstantMesh' [153] 6793 723 0.31 215
XCube [188] 13256 9.83 0.23 32.3

Craftsman-VQ + GPT 85.10 7.49 0.26 154
Ours (OctreeGPT) 56.88 5.79 0.34 11.3

Table 4.3: Quantitative analysis of shape generation. We compare OctreeGPT
with a GPT baseline trained on Craftsman-VQVAE (Section 4.4.1), text-to-3D model
XCube [188], and image-to-3D methods InstantMesh [262] and Craftsman [106].
We compute FID [63], KID [10], and CLIP-score on the renderings of generated
shapes, and report the average generation time. Our method outperforms all the
baselines, showing higher quality and better consistency with the input text while
achieving the fastest runtime due to our efficient tokenization.

67

4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Craftsman-
Input Text Ours VQVAE+GPT

XCube InstantMeshJr Craftsmaan

A woodenh shi
with mast, ...

The imperi.al.
state crown of
england, ...

A dog warrior,

Figure 4.8: Shape Generation Results. We compare OctreeGPT with a GPT baseline
trained on Craftsman-VQVAE (Section 4.4.1), text-to-3D model XCube [188], and
image-to-3D methods InstantMesh [262] and Craftsman [106]. Our results have
smoother surfaces, finer details, and fewer artifacts than baselines. For image-
conditioned methods’, we use FLUX.1 [96] to generate condition images from
input text.

68

Chapter 5

Fast Relightable Mesh Texturing with
LightControlNet

Drawing inspiration from how professional artists create 3D content, we propose
decomposing the challenge into two sequential stages: geometry generation (Chap-
ter 4) and texture generation (This chapter). This decomposition allows each stage
to be optimized with appropriate structural priors while maintaining the flexibility
to create diverse, high-quality 3D assets from text descriptions.

Chapter 4 addressed the first stage by developing efficient octree-based repre-
sentations for generating diverse 3D shapes from text prompts.

The following chapter tackles the challenge of generating high-fidelity re-
lightable texture. Unlike simple flat texture, our approach generates physically-
based materials that exhibit realistic behavior under various lighting environments.
This capability is essential for downstream applications in games, films, and virtual
environments, where generated assets must integrate convincingly with existing

lighting setups and maintain visual consistency across different viewing conditions.

5.1 Introduction

Creating high-quality textures for 3D meshes is crucial across industries such as
gaming, film, animation, AR/VR, and industrial design. Traditional mesh texturing

tools are labor-intensive, and require extensive training in visual design. As the

69

5. Fast Relightable Mesh Texturing with LightControlNet

demand for immersive 3D content continues to surge, there is a pressing need to

streamline and automate the mesh texturing process (Figure 5.1).

In the past year, significant progress in text-to-image diffusion models [185, 192,
194] has created a paradigm shift in how artists create images. These models allow
anyone who can describe an image in a text prompt to generate a corresponding
picture. More recently, researchers have proposed techniques for leveraging such
2D diffusion models for automatically generating textures for an input 3D mesh
based on a user-specified text prompt [23, 24, 144, 189]. But these methods suf-
fer from three significant limitations that restrict their wide-spread adoption in
commercial applications: (1) slow generation speed (taking tens of minutes per
texture), (2) potential visual artifacts (e.g., seams, blurriness, lack of details), and
(3) baked-in lighting causing visual inconsistency in new lighting environments
(Figure 5.2). While some recent methods address one or two of these issues, none
adequately address all three.

In this work, we propose an efficient approach for texturing an input 3D mesh
based on a user-provided text prompt that disentangles the lighting from surface
material /reflectance to enable relighting (Figure 5.1). Our method introduces
LightControlNet, an illumination-aware text-to-image diffusion model based on
the ControlNet [283] architecture, which allows specification of the desired lighting
as a conditioning image for the diffusion model. Our text-to-texture pipeline uses
LightControlNet to generate relightable textures in two stages. In stage 1, we use
multi-view visual prompting in combination with the LightControlNet to produce
visually consistent reference views of the 3D mesh for a small set of viewpoints. In
stage 2, we perform a new texture optimization procedure that uses the reference
views from stage 1 as guidance, and extends Score Distillation Sampling (SDS) [179]
to work with LightControlNet. This allows us to increase the texture quality while
disentangling the lighting from surface material/reflectance. We show that the
guidance from the reference views allows our optimization to generate textures
with over 10x speed-up than previous SDS-based relightable texture generation
methods such as Fantasia3D [24]. Furthermore, our experiments show that the
quality of our textures is generally better than those of existing baselines in terms
of FID, KID, and user study.

70

5. Fast Relightable Mesh Texturing with LightControlNet

N . “Stone Groblet “Marble goblet with “Metal goblet intricatel
Noo;_er Saiflef\sf&h carved with runes white base color designed to reflect a Light Probe
grath patter and symbols” and red veins” Van Gogh painting”

Figure 5.1: We propose an efficient approach for texturing an input 3D mesh
given a user-provided text prompt. Our generated texture can be relit properly
in different lighting environments. The light probe shows the varied lighting
environment. We suggest the readers check our video results of rotating lighting in
our supplementary material.

5.2 Related Work

Text-to-Image generation. Recent years have seen significant advancements in
text-to-image generation empowered by diffusion models [185, 192, 194]. Stable
Diffusion [192], for example, trains a latent diffusion model (LDM) on the latent
space rather than pixel space, delivering highly impressive results with affordable
computational costs. Further extending the scope of text-based diffusion models,
works such as GLIGEN [107], PITI [247], T2IAdapter [152], and ControlNet [283]
incorporate spatial conditioning inputs (e.g., depth maps, normal maps, edge maps,
etc.) to enable localized control over the composition of the result. Beyond their
power in image generation, these 2D diffusion models, trained on large-scale text-

71

5. Fast Relightable Mesh Texturing with LightControlNet

v 2

(a) Mesh (b) Reference Lighting Composne RGB Diffuse Specular Composite RGB Diffuse Specular
(c) Fantasia3D Texture (d) Our Texture

Figure 5.2: Given a 3D mesh of a helmet (a) and a lighting environment L, the
reference rendering (b) depicts the “correct” highlights on the mesh due to L, by
treating its surface reflectance as half-metal and half-smooth with a gray diffuse
color. (c) The texture generated by the leading method Fantasia3D [24] is not
properly relit as Fantasia3D bakes most of the lighting into the diffuse texture for
the mesh and does not capture the bright highlights in the specular texture. (d)
In contrast, our pipeline disentangles lighting from material, better capturing the
diffuse and specular components of the metal helmet in this environment. Text
prompt: “A medieval steel helmet.”

image paired datasets, also contribute valuable priors to various other tasks such as
image editing [62, 138], 3D generation [179, 184], and 3D editing [59, 95, 240, 300].

Text-to-3D synthesis. The success of text-to-image synthesis has sparked consid-
erable interest in its 3D counterpart. Some approaches [104, 156, 206, 291] train a
text-conditioned 3D generative model akin to 2D models, while others employ 2D
priors from pre-trained diffusion models for optimization [24, 105, 111, 144, 179,
217,241, 249] and multi-view synthesis [122, 204]. For instance, DreamFusion [179]
and Score Jacobian Chaining [241] were the first to propose Score Distillation
Sampling to optimize a 3D representation using 2D diffusion model gradients.
Zero-1-to-3 [122] synthesizes novel views using a pose-conditioned 2D diffusion
model. Yet, these methods often produce blurry, low-frequency textures that bake
lighting into surface reflectance. Fantasia3D [24] can generate more realistic tex-
tures by incorporating physics-based materials. However, the resulting materials
remain entangled with lighting, making it difficult to relight the textured object in
a new lighting environment. In contrast, our method effectively disentangles the
lighting and surface reflectance texture. Concurrent to our work, MATLABER [265]
aims to recover material information in text-to-3D generation using a material
autoencoder. Our method, however, differs in approach and improves efficiency.

3D texture generation. The area of 3D texture generation has evolved over time.

Earlier models either directly took 3D representations as input to neural net-

72

5. Fast Relightable Mesh Texturing with LightControlNet

1
. 1
v i
1
X LightControlNet :

UNet \

Rendered :
Image 1
1

F3 1

) 1

3 |]

= 1

o .

1

1

1

\ Conditioning Image SDS Loss

e e 1

Ldll%ﬁ

(9),L,C) i

— . ' ‘ o
Random views md lighting

__

¥

(
1
1
1
1
1
1
1
|
1
|
1
1
1
1
1
1
1
1
\

(
1
1
1
1
1
|
1
|
1
1
1
1
1
1
1
1
1
1
\

Figure 5.3: Our Text-to-Texture pipeline. Our method efficiently synthesizes re-
lightable textures given an input 3D mesh and text prompt. In stage 1 (top left), we
use multi-view visual prompting with our LightControlNet model to generate four
visually consistent canonical views of the mesh under fixed lighting, concatenated
into a reference image I,.¢. In stage 2 we apply a new texture optimization proce-
dure using I, as guidance along with a multi-resolution hash-grid representation
of the texture T'(B(-)). For each optimization iteration, we render two batches
of images using I'(B(-)) — one using the canonical views and lighting of ¢ to
compute a reconstruction 1oss Lrecon and the other using randomly sampled views
and lighting to compute an SDS loss Lspg based on LightControlNet.

works [11, 207, 274] or used them as templates [171, 178]. While some methods
also use differentiable rendering to learn from 2D images [11, 60, 178, 274], the
learned models often fail to generalize beyond the limited training categories.
Closest to our work are the recent works that use pre-trained 2D diffusion mod-
els and treat texture generation as a byproduct of text-to-3D generation. Examples
include Latent-Paint [144], which uses Score Distillation Sampling in latent space,
Text2tex [23], which leverages depth-based 2D ControlNet, and TEXTure [189],
which exploits both previous methods. Nonetheless, similar to recent text-to-3D
models, such methods produce textures with entangled lighting effects and suffer
from slow generation. On the other hand, TANGO [30], generates material tex-

tures using a Spherical-Gaussian-based differentiable renderer, but struggles with

73

5. Fast Relightable Mesh Texturing with LightControlNet

complex texture generation. A concurrent work, Paint3D [277], aims to generate

lighting-less textures, yet it cannot produce material-based textures like ours.

Material generation. Bidirectional Reflection Distribution Function (BRDF) [161]
is widely used for modeling surface materials in computer vision and graph-
ics. Techniques for recovering material information from images often leverage
neural networks to resolve the inherent ambiguities when applied to a limited
range of view angles or unknown illuminations. However, these methods often
require controlled setups [109] or curated datasets [9, 47, 252], and struggle with
in-the-wild images. Meanwhile, material generation models like ControlMat [238],
Matfuse [237], and Matfusion [197] use diffusion models for generating Spatially-
Varying BRDF (SVBRDF) maps but limit themselves to 2D generation. In contrast,

our method creates relightable materials for 3D meshes.

5.3 Preliminaries

Our text-to-texture pipeline builds on several techniques that have been recently
introduced for text-to-image diffusion models. Here, we briefly describe these
prior methods and then present our pipeline in Section 5.4.

ControlNet. ControlNet [283] is an architecture designed to add spatially localized
compositional controls to a text-to-image diffusion model, such as Stable Diffu-
sion [192], in the form of conditioning imagery (e.g., Canny edges [14], OpenPose
keypoints [15], depth images, etc.). In our work, where we take a 3D mesh as input,
the conditioning image I.,,q(C) is a rendering of the mesh from a given camera

viewpoint C. Then, given text prompt y,
Iout = ControlNet(I.onq(C),v),

where the output image I,y is conditioned on y and I.,,q. ControlNet introduces
a parameter s that sets the strength of the conditioning image. When s = 0, the
ControlNet simply produces an image using the underlying Stable Diffusion model,
and when s = 1, the conditioning is strongly applied.

Score Distillation Sampling (SDS). DreamFusion [179] optimizes a 3D scene

representation conditioned on text prompts using a pre-trained 2D text-to-image

74

5. Fast Relightable Mesh Texturing with LightControlNet

diffusion model. The scene is represented as a NeRF [6, 149] parametrization 6.
A differentiable renderer R applied to 6 with a randomly sampled camera view
C then generates a 2D image x = R(6,C). A small amount of noise € ~ IN(0,1)
is then added to x to obtain a noisy image x;. DreamFusion leverages a diffusion
model ¢ (Imagen [194]) to provide a score function é¢(xt ;y,1), which predicts the
sampled noise € given the noisy image x;, text prompt y, and noise level t. This
score function can update the scene parameters 6, using the gradient calculated by
Score Distillation Sampling (SDS):

VoLsns(,x) = By |w(t) €y 1) — €) 0|
where w(t) is a weighting function. During each iteration, to calculate the SDS
loss, we randomly choose a camera view C, render the NeRF 0 to form an image
x, add noise € to it, and predict the noise using the diffusion model ¢. We run the
optimization for 5,000 to 10,000 iterations.

In our work, we introduce an illumination-aware SDS loss to optimize sur-
face texture on a 3D mesh to suppress inconsistency artifacts and simultaneously
separate lighting from the surface reflectance.

5.4 Method

Our text-to-texture pipeline operates in two main stages to generate a relightable
texture for an input 3D mesh with a corresponding text prompt (Figure 5.3). In
Stage 1, we use a multi-view visual prompting approach to obtain visually con-
sistent views of the object from a small set of viewpoints, using a 2D ControlNet.
Simply backprojecting these sparse views onto the 3D mesh could produce patches
of high-quality texture, but would also generate visible seams and other visual
artifacts where the views do not fully match. The resulting texture would also
have lighting baked-in, making it difficult to relight the textured mesh in a new
lighting environment. Therefore, in Stage 2, we apply a texture optimization that
uses a ControlNet in combination with Score Distillation Sampling (SDS) [179]
to mitigate such artifacts and separate lighting from the surface material proper-

ties/reflectance. In both stages, we introduce a new illumination-aware ControlNet

75

5. Fast Relightable Mesh Texturing with LightControlNet

“Leather ...” “Metal ...” “Wooden ..."

Conditioning Image

G

) Non-Metal,

/ Not Smooth

S
4

Mesh

l Half-Metal,
Half Smooth
J Conditioning Image
‘ g g
Pure Metal,
Full Color Image Smooth
(a) Rendering Conditioning Image (b) Inference with LightControlNet

Figure 5.4: (a) LightControlNet requires a conditioning image that specifies desired
lighting L for a view C of a 3D mesh. To form the conditioning image, we first
render the mesh with the desired L and C using three different materials: (1) non-
metal, not smooth, (2) half-metal, half-smooth, and (3) pure metal, smooth, and
then combine the renderings into a single three-channel image. (b) LightControlNet
is a diffusion model that is conditional on such light conditioning images as well
as text prompts.

that allows us to specify the desired lighting as a conditioning image for an un-
derlying text-to-image diffusion model. We call this model LightControlNet and
describe how it works in Section 5.4.1. We then detail each stage in Section 5.4.2
and Section 5.4.3, respectively.

5.4.1 LightControlNet

LightControlNet adapts the ControlNet architecture to enable control over the
lighting in the generated image. More specifically, we create a conditioning image
for a 3D mesh by rendering it using three pre-defined materials and under known
lighting conditions (Figure 5.4). These renderings encapsulate information about
the desired shape and lighting for the object, and we stack them into a three-channel
conditioning image. We have found that setting the pre-defined materials to (1)
non-metal, not smooth; (2) half-metal, half-smooth; and (3) pure metal, extremely
smooth, respectively, works well in practice. The specific material parameters are
in the appendix.

To train our LightControlNet, we use 40K objects from the Objaverse dataset

76

5. Fast Relightable Mesh Texturing with LightControlNet

[37]. Each object is rendered from 12 views using a randomly sampled camera C
and lighting L sampled from 6 environment maps sourced from the Internet. L
is also subject to random rotation and intensity scaling. For each resulting (L, C)
pair, we render the conditioning image using the pre-defined materials, as well as
the full-color rendering of the object using its original materials and textures. We
use the resulting 480K pairs of (conditioning images, full-color rendering) to train
LightControlNet using the approach of Zhang et al. [283].

Once LightControlNet is trained, we can specify the desired view and lighting
for any 3D mesh. We first render the conditioning image with the desired view
and lighting and then pass it along with a text prompt into LightControlNet, to
obtain high-quality images. These images are spatially aligned to the desired view,
lit with the desired lighting, and contain detailed textures (Figure 5.4).

Distilling the encoder. We improve the efficiency of LightControlNet by distill-
ing the image encoder in Stable Diffusion [192], the base diffusion model in the
ControlNet architecture. The original Stable Diffusion image encoder consumes
almost 50% of the forward and backward time of SDS calculation using the latent
diffusion model, primarily in downsampling the input image. Metzer et al. [144]
have found the image decoder from latent space to image space can be closely
approximated by per-pixel matrix multiplication. Inspired by this, we distill the en-
coder by removing its attention modules and training it on the COCO dataset [112]
to match the original output. This distilled encoder runs 5x faster than the original
one, resulting in an approximately 2x acceleration of our text-to-texture pipeline
without compromising output quality. An ablation study of our distilled encoder
is detailed in Table 5.3, with additional implementation specifics in the appendix.

5.4.2 Stage 1: Multi-view Visual Prompting

In Stage 1, we leverage LightControlNet to synthesize high-quality 2D images
for a sparse set of views of the 3D mesh. Specifically, we create conditioning
images for four canonical views C* around the equator of the 3D mesh using a
fixed lighting environment map L* sampled from a set of environment maps. One
approach to generating the complete texture for the mesh would be to apply the
LightControlNet independently with each such conditioning image, but using the

77

5. Fast Relightable Mesh Texturing with LightControlNet

Conditioning Images LightControlNet Outputs Conditioning Image LightControlNet Output

(a) Independent Inputs to LightControlNet (b) Concatenated Input to LightControlNet
produce visual inconsistencies produces more consistent output

Figure 5.5: Multi-view visual prompting. (a) When we independently input
four canonical conditioning images to LightControlNet, it generates four very
different appearances and styles even with a fixed random seed. (b) When we
concatenate the four images into a 2x2 grid and pass them as a single image into
LightControlNet, it produces a far more consistent appearance and style. Text
prompt: “A hiking boot”.

same text prompt, and then backprojecting the four output images to the surface
of the 3D mesh. In practice, however, applying the LightControlNet to each view
independently produces inconsistent images of varying appearance and style, even
when the text prompt and random seed remain fixed (Figure 5.5).

To mitigate this multi-view inconsistency issue, we take a multi-view visual
prompting approach. We concatenate the conditioning images for the four canoni-
cal views into a single 2 x 2 grid and treat it as a single conditioning image. We
observe that applying LightControlNet to all four views simultaneously, using this
combined multi-view conditioning image, results in a far more consistent appear-
ance and style across the views, compared to independent prompting (Figure 5.5).
We suspect this property arises from the presence of similar training data samples —
grid-organized sets depicting the same object — in Stable Diffusion’s training set,
which is also observed in concurrent works [253, 286]. Formally, we generate the
conditioning image I.ong(L*, C*) under a fixed canonical lighting condition L*
using four canonical viewpoints C*. We then apply our LightControlNet with text

prompt y to generate the corresponding reference image I,

Lo = ControlNet(I.onq(L*, C*),v).

78

5. Fast Relightable Mesh Texturing with LightControlNet

5.4.3 Stage 2: Texture Optimization

In Stage 2, we could directly backproject the four reference views output in Stage
1 onto the 3D mesh using the camera matrix C associated with each view. While
the resulting texture would contain some high-quality regions, it would also suffer
from two problems (1) It would contain seams and visual artifacts due to remaining
inconsistencies between overlapping views, occlusions in the views that leave
parts of the mesh untextured, and loss of detail when applying the backprojection
transformation and resampling the views. (2) In addition, as lighting is baked into
the LightControlNet’s RGB images, it would also be baked into the backprojected
texture, making it difficult to relight the mesh.

To address both of these issues, we employ texture optimization using SDS
loss. Specifically, we use a multi-resolution hash-grid [153] as our 3D scene rep-
resentation, instead of NeRF as in the original DreamFusion formulation [179].
Given a 3D point p € R? on the mesh, our hash-grid produces a 32-dimensional
multi-resolution feature. This feature is then fed to a 2-layer MLP I to obtain
the texture material parameters for this point. Similar to Fantasia3D [24], these
material parameters consist of metallicness k;; € R, roughness k, € R, a bump
vector k,, € R3 and the base color k, € R3. Formally,

(ke km, kr, kn) = T(B(p)),

where f is the multi-resolution hash encoding function. Notably, this 3D hash-grid
representation can be easily converted to 2D uv texture maps, which are more
friendly to downstream applications. Given the mesh M, the texture I'(B(-)), a
camera view C and lighting L we can use nvdiffrast [97], a differentiable renderer

R to produce a 2D rendering of it, x, as
x = R(M,T(B(),L,C).

More details about the rendering equation are in the appendix. Since the mesh
geometry is fixed, we omit M in the remainder of the paper.
Recall that the optimization approach of DreamFusion [179] randomly samples

camera views C, generates an image for C using diffusion model ¢, and supervises

79

5. Fast Relightable Mesh Texturing with LightControlNet

the optimization using the SDS loss. We extend this optimization in two ways.
First, we use four fixed reference images I.f with their canonical views C* and

lighting L* to guide the texture optimization through a reconstruction loss:

Lrecon = ||Iref - R(r(ﬁ())/ L, C*)HZ + £perceptual(lref/7—‘)'(1—‘(,3('))/ L, C*))/

where both L2 loss and perceptual loss [81] are used. For a non-canonical view C,
we sample a random lighting L and use the SDS loss to supervise the optimization,
but with our LightControlNet as the diffusion model ¢; cn;, so

ox

Vr,gLsps(Pren, x) = Bre |w(t) (€p ey (x4 Yt Teond (L, C)) — e)m '

where x = R(T'(B(+)), L, C) and w(t) is the weight.

Finally, we employ a material smoothness regularizer on every iteration to
enforce smooth base colors, using the approach of nvdiffrec [154]. For a surface
point p with base color k.(p), the smoothness regularizer is defined as

£reg = Z ‘kC(P) - kC(P +€)"
peSs

where S denotes the object surface and € is a small random 3D perturbation. We
use Arecon = 1000 and Areg = 10 to reweight the loss Lrecon and Lyeg.

Scheduling the optimization. We warm up the optimization by rendering the four
canonical views and applying Lyecon for 50 iterations. We then add in iterations
using the Lgpg loss and optimize over randomly chosen camera views and ran-
domly selected lighting from a pre-defined set of environmental lighting maps.
Specifically we alternate iterations between using Lsps and Lyecon. In addition, for
a quarter of the SDS iterations, we use the canonical views rather than randomly
selecting the views. This ensures that the resulting texture does not overfit to the
reference images corresponding to the canonical views. The warm-up iterations
capture the large-scale structure of our texture and allow us to use relatively small
noise levels (t < 0.1) in the SDS optimization. We sample the noise following a
linearly decreasing schedule [71] with tnax = 0.1 and tmin, = 0.02. We also adjust

80

5. Fast Relightable Mesh Texturing with LightControlNet

the conditioning strength s of our LightControlNet in the SDS loss linearly from
1 to 0 over these iterations so that LightControlNet is only lightly applied by the
end of the optimization. We also experimented with a recent variant Variational
Score Distillation [249], but did not observe notable improvement. We have ex-
perimentally found that we obtain high-quality textures after 400 total iterations
of this optimization and this is far fewer iterations than other SDS-based texture
generation techniques such as Fantasia3D [24] which requires 5000 iterations. More

details are in the appendix.

Faster pipeline without relightability. Our two-stage pipeline is also compatible
with off-the-shelf depth ControlNet and Stable Diffusion [192] as the backbone
replacement of LightControlNet. Specifically, we can replace the LightControlNet
in Stage 1 with a depth ControlNet that uses a depth rendering of the mesh as the
conditioning image, and uses Stable Diffusion based SDS in Stage 2. In scenarios
where texture relightability is not required, this variant offers an additional 2 x
speed-up (as shown in Table 5.1), since it eliminates the additional computation
required by LightControlNet forward pass in the SDS optimization.

5.5 Experiments

In this section, we present comprehensive experiments to evaluate the efficacy of
our proposed method for relightable, text-based mesh texturing. We perform both
qualitative and quantitative comparisons with existing baselines, along with an

ablation study on the significance of each of our major components.

Dataset. As illustrated in Figure 5.3, we employ Objaverse [37] to render paired
data to train our LightControlNet. Objaverse consists of approximately 800k objects,
of which we use the names and tags as their text descriptions. We filter out objects
with low CLIP similarity [183] to their text descriptions and select around 40k as
our training set. Each object is rendered from 12 views using randomly sampled
cameras and lighting from a specific set of environmental lighting maps. To
evaluate baselines and our method, we hold out 70 random meshes from Objaverse
[37] as the test set. We additionally gather 22 mesh assets from 3D online games

with 5 prompts each to assess our method, demonstrating its ability to generalize

81

5. Fast Relightable Mesh Texturing with LightControlNet

“Pinecone”

“A vintage space explorer “Jacket made from the “Hylian goblin soldier
Jacket with o matching fabrics of a ghost ship, from legend of zelda ..."
helmet, ..." ,

€5 R

“A stylish jackeb, ...” “Jacket that gives the “An astronaut wolf, ...” “Mermaid warrior, ...”
impression of a swirling

nebula, ...”

Figure 5.6: Sample results from our method applied to Objaverse test meshes (top
half) and 3D game assets (bottom half). To illustrate the efficacy of our relightable
textures, for each textured mesh, we fix the environment lighting and render the
mesh under different rotations. As shown above, our method is able to generate
textures that are not only highly detailed, but also relightable with realistic lighting
effects.

beyond Objaverse. Further details are in the appendix.

Baselines. We compare our approach with existing mesh texturing methods. Specif-
ically, Latent-Paint [144] employs SDS loss in latent space for texture generation.
Text2tex [23] progressively produces 2D views from chosen viewpoints, followed
by an inverse projection to lift them to 3D. TEXTure [189] utilizes a similar lifting
approach but supplements it with a swift SDS optimization post-lifting. Beyond

82

5. Fast Relightable Mesh Texturing with LightControlNet

these texture generation methods, text-to-3D approaches serve as additional base-
lines, given that texture is a component of 3D generation. Notably, we choose
Fantasia3D [24] as a baseline, the first to use a material-based representation for

textures in text-to-3D processing.

Quantative evaluation. In Table 5.1, we compare our method with the baselines
on the Objaverse [37] test set. For each method, we generate 16 views and evaluate
Frechet Inception Distance (FID) [63, 176] and Kernel Inception Distance (KID)
[10] compared with ground-truth rendered views. Two variations of our method
are assessed. Both variants use our proposed two-stage pipeline, and the first
employs a standard depth-guided ControlNet, while the second uses our proposed
LightControlNet. Our method significantly outperforms the baselines in both

quality and runtime.

83

5. Fast Relightable Mesh Texturing with LightControlNet

Lighting 1 Lighting 2

Ours

Fantasia3D

(a) Close-up Comparison with Fantasia3D.
Left Prompt: “A medieval steel helmelt” ; Right Prompt: "A leather horse saddle”.

PBR Texture RGB Texture

Untextured Mesh Ours Fantasia3D Ours
(reference lighting) (Non-relightable)

& AR
M b il b

Diclele

(b) Comparison with relightable and non-relightable baselines.
Top Prompt: “A hiking boot”; Bottom Prompt: “A leather horse saddle”.

TEXTure Latent-Paint Text2tex

View 1

View 2

View 1

View 2

Figure 5.7: Qualitative analysis. (a) We compare our method with Fantasia3D [24]
that also attempts to generate Physically Based Rendering (PBR) texture. However,
unlike ours, their results often exhibit baked-in lighting, leading to artifacts when
put into varied lighting environments. (b) We also compare our method with other
baselines that can only generate non-relightable (RGB) texture. For non-relightable
texture generation, we can replace our LightControlNet with depth ControlNet
and generate RGB textures with a shorter runtime. More details are in Table 5.1.

84

5. Fast Relightable Mesh Texturing with LightControlNet

Objaverse test set Game Asset

Runtime |
FID | KID | FID | KID |
(x1073) (x1073) (mins)
Latent-Paint [144] 73.65 7.26 204.43 9.25 10
Fantasia3D [24] 120.32 8.34 164.32 9.34 30
TEXTure [189] 71.64 5.43 103.49 5.64 6
Text2tex [23] 95.59 4.71 119.98 5.21 15
Ours (w/ depth) 60.49 3.96 85.92 3.87 2
Ours 62.67 2.69 83.32 3.34 4

Table 5.1: Quantitative Evaluation. We test our methods and baselines on 70 test
objects from Objaverse [37] and 22 objects curated from 3D game assets. With
depth ControlNet, our method yields superior results to all baselines while being
three times as fast as the fastest baseline. Using LightControlNet (Ours) within
our model improves the lighting disentanglement while maintaining comparable
image quality.

Qualitative analysis. As shown in Figure 5.6, our method can generate highly-
detailed textures that can be rendered properly with the environment lighting
across a wide variety of meshes. We also visually compare our method and
the baselines in Figure 5.7. Our method produces textures with higher visual
fidelity than the baselines for both the relightable and non-relightable variants. In
particular, when compared with Fantasia3D [24], a recent work that also aims to
generate material-based texture, our results not only have superior visual quality,
but also disentangle the lighting more successfully.

User study. To further evaluate the texture quality quantitatively, we conduct a user
study comparing our results with each of the baselines on the Objaverse test set in
Table 5.2. We ask 30 participants to evaluate (1) the realism of the results, (2) the
consistency of the generated texture with the input text, and (3) the plausibility of
the results when placed under varying lighting conditions. Each result is presented
in the form of 360-degree rotation to display full texture details. The reference
lighting is provided alongside when participants evaluate (3). Across all three
aspects, participants consistently prefer our method over baselines.

Ablation study. We perform a thorough ablation analysis on different aspects
of our method as seen in Table 5.3.When substituting our distilled encoder with

85

5. Fast Relightable Mesh Texturing with LightControlNet

Preferred Percentage Objaverse test set

Realistic =~ Consistent with text =~ Relightable

Ours v.s. Latent-Paint [144] 92.6% 74.5% 84.3%
Ours v.s. Fantasia3D [24] 81.9% 67.6% 74.3%
Ours v.s. TEXTure [189] 70.8% 57.3% 87.1%
Ours v.s. Text2tex [23] 75.4% 61.6% 88.6%

Table 5.2: User study. We conduct a user preference study to evaluate (1) result
realism, (2) texture consistency with input text, and (3) plausibility under varied
lighting. Participants consistently prefer our results over all baselines in these
respects.

Objaverse test set FID| KID(x1073) | Runtime | (mins)
Ours (w/o dist. enc.) 60.34 2.84 8
Ours (w/0 m.v.v.p) 74.23 3.54 19
Ours 62.67 2.69 4

Table 5.3: Ablation study on algorithmic components. We analyze the role of our
distilled encoder (1st row) and multi-view visual prompting (2nd row). Replacing
the distilled encoder with the original VQ-VAE encoder doubles the running
time without a noticeable improvement. When removing the multi-view visual
prompting for initial generation, the system requires 2,000 iterations (5x compared
to our 400 iterations) to produce reasonable results, which produces slightly worse
texture quality.

Material Basis
non-metal, half-metal, puremetal, FID| KID(x1073)|

not smooth half-smooth smooth
v v ve 62.67 2.69
v v 66.34 3.11
v ve 64.32 3.42
ve v 67.43 412
v 72.13 4.53

Table 5.4: Ablation study on material bases. We verify the impact of the material
bases in rendering conditioning images. Omitting any one of these degrades
quality.

86

5. Fast Relightable Mesh Texturing with LightControlNet

Num. of canonical views FID| KID(x107%)]
2 views (front, back) 67.43 3.47
4 views (Ours: front, back, left, right) 62.67 2.69
6 views (front, back, left, right, top, bottom) 70.14 3.72

Table 5.5: Ablation study on the number of canonical views. We analyze the
role of our canonical view selection in Section 5.4.2. Relying on only the left
and right views provides insufficient supervision. Interestingly, adding top and
bottom views leads to worse overall quality. This is likely due to the limitation of
pre-trained 2D diffusion models in synthesizing top and bottom views well for a
variety of objects. Furthermore, given the fixed resolution of the multi-view image,
stacking more views would result in a lower resolution for each view, leading to a
worse initialization for Stage 2.

the original VQ-VAE encoder, the performance is twice as slow, but the quality
of results is not noticeably superior. On the other hand, without the multi-view
visual prompting for the initial generation, the system requires 2000 iterations (a
5x slowdown compared to our 400 iterations) to produce reasonable results, while
still leading to slightly worse texture quality.

In Section 5.4.1, we render a conditioning image using 3 pre-defined materials to
encompass a broad range of feasible materials: (1) non-metal, not smooth (diffuse
effect); (2) half-metal, half-smooth (mixed effect); (3) pure metal, smooth (specular
effect). These material bases cover a large range of feasible materials. Table 5.4

shows omitting any one of these bases degrades quality.

As shown in Table 5.5, we also evaluate our selection of four canonical views
in Section 5.4.2. Relying on only the left and right views provides insufficient
supervision. Interestingly, incorporating top and bottom views degrades the
performance. We hypothesize that the degradation is likely due to the limitation
of 2D diffusion model backbones in generating top and bottom views reliably.
Furthermore, stacking more views within a single image results in a decreased

resolution for each view, given the fixed resolution of the multi-view image.

87

5. Fast Relightable Mesh Texturing with LightControlNet

5.6 Discussion

We proposed an automated texturing technique based on user-provided prompts.
Our method employs an illumination-aware 2D diffusion model (LightControlNet)
and an improved optimization process based on the SDS loss. Our approach is
substantially faster than previous methods while yielding high-fidelity textures
with illumination disentangled from surface reflectance/albedo. We demonstrated
the efficacy of our method through quantitative and qualitative evaluation on the
Objaverse dataset and meshes curated from game assets.

Limitations. Our approach still poses a few limitations: (1) Baked-in lighting can
still be found in certain cases, especially for meshes that are outside of the training
data distribution of Objaverse; (2) The generated material maps are sometimes not
tully disentangled and interpretable as metallicness, roughness, etc.; (3) Due to the
inherent limitation of the 2D diffusion model backbones, the generated textures

can fail to follow the text prompt in some cases.

88

Part 111

Physical Asset Generation

89

Chapter 6

Generating Physically Stable and
Buildable Brick Structures from Text

Chapters 4 and 5 established a complete pipeline for generating diverse, high-
quality 3D assets from text descriptions by decomposing the problem into geome-
try and texture generation stages. This approach successfully produces visually
compelling results that can be used in downstream virtual applications like games

and film production.

However, a critical gap remains between generating visually plausible virtual
3D content and creating designs that are physically realizable in the real world.
While our generated assets may look convincing on screen, they often violate
fundamental physical principles, e.g., lacking structural stability, containing impos-
sible geometries. This limitation becomes particularly important as 3D generation
moves beyond entertainment and visualization toward applications in manufac-
turing, architecture, robotics, and other domains where physical realizability is

essential.

The final chapter of this dissertation explores generating 3D content that is not
only visually appealing but also structurally sound and buildable. Using LEGO
brick construction as our testbed, the following chapter demonstrates how physical
structural analysis can be integrated into modern generative models, producing

designs that are simultaneously creative and physically stable.

91

6. Generating Physically Stable and Buildable Brick Structures from Text

Input Text Prompt: “A streamlined vessel with a long, narrow hull.”

Generated Structure Intermediate Steps

following the st by Robot A
using LEGO Bricks ollowing the steps y Robot Arms

(a) Physically Stable Text-to-Brick Generation (b) Real-world Assembly using LEGO Bricks

YV

4
&Y
%

|

A bookshelf with A rectangular table with

A classic-style car with a A backless bench with . . A streamlined,
, . A classical guitar
horizontal tiers four legs

prominent front grille armrest elongated vessel

i
Gothic cathedral Walnut wooden Vintage floral tapestry with Rustic farmhouse chair Hot rod with flame Rustic stone bench with Parlor guitar with Weathered cargo ship
bookshelf][...] table [...] deep reds and golds [...] [...] paintwork [...] moss growth [...] ladder bracing][...]

(c) Result Gallery

A basic sofa A high-backed chair

Figure 6.1: Overview of BRICKGPT. (a) Our method generates physically stable
interconnecting brick assembly structures from text descriptions through an end-
to-end approach, showing intermediate brick-by-brick steps. (b) The generated
designs are buildable both by hand and by automated robotic assembly. (c) We
show example results with corresponding text prompts. Besides basic brick designs
(top), our method can generate colored brick models (bottom right) and textured
models (bottom left) with appearance descriptions. We highly recommend the
reader to check our website for step-by-step videos.

6.1 Introduction

3D generative models have made remarkable progress, driven by advances in
generative modeling [54, 211] and neural rendering [90, 149]. These models have
enabled various applications in virtual reality, gaming, entertainment, and scientific
computing. Several works have explored synthesizing 3D objects from text [179],
adding texture to meshes [41, 189], and manipulating the shape and appearance of
existing 3D objects and scenes [59, 124].

However, creating real-world objects with existing methods remains challeng-
ing. Most approaches focus on generating diverse 3D objects with high-fidelity
geometry and appearance [66, 282], but these digital designs often cannot be physi-
cally realized due to two key challenges [133]. First, the objects may be difficult to

assemble or fabricate using standard components. Second, the resulting structure

92

https://avalovelace1.github.io/BrickGPT/

6. Generating Physically Stable and Buildable Brick Structures from Text

may be physically unstable even if assembly is possible. Without proper support,
parts of the design could collapse, float, or remain disconnected.

In this work, we address the challenge of generating physically realizable objects.
We study this problem in the context of designing structures made of interlocking
toy bricks, such as LEGO® blocks. These are widely used in entertainment, edu-
cation, artistic creation, and manufacturing prototyping. Additionally, they can
serve as a reproducible research benchmark, as all standard components are readily
available. Due to the significant effort required to design brick structures manually,
recent studies have developed automated algorithms to streamline the process
and generate compelling results. However, existing approaches primarily create

structures from a given 3D object [132] or focus on a single object category [51, 52].

Our goal is to develop a method for generating brick assembly structures di-
rectly from freeform text prompts while ensuring physical stability and buildability.
Specifically, we aim to train a generative model that produces designs that are:

* Physically stable: Built on a baseplate with strong structural integrity, without
floating or collapsing bricks.

* Buildable: Compatible with standard interconnecting toy brick pieces and able
to be assembled brick-by-brick by humans or robots.

In this work, we introduce BRICKGPT with the key insight of repurposing
autoregressive large language models, originally trained for next-token prediction,
for next-brick prediction. We formulate the problem of brick structure design as an
autoregressive text generation task, where the next-brick dimension and placement

are specified with a simple textual format.

To ensure generated structures are both stable and buildable, we enforce physics-
aware assembly constraints during both training and inference. During training,
we construct a large-scale dataset of physically stable brick structures paired with
captions. During autoregressive inference, we enforce feasibility with an efficient
validity check and physics-aware rollback to ensure that the final tokens adhere to

physics laws and assembly constraints.

Our experiments show that the generated designs are stable, diverse, and
visually appealing while adhering to input text prompts. Our method outperforms
pre-trained LLMs with and without in-context learning, and previous approaches

93

6. Generating Physically Stable and Buildable Brick Structures from Text

based on 3D mesh generation. Finally, we explore applications such as text-driven
brick texturing, as well as manual assembly and automated robotic assembly of
our designs. Our dataset, code, and models are available at the project website:
https://avalovelacel.github.io/BrickGPT/.

6.2 Related Work

Text-to-3D Generation. Text-to-3D generation has seen remarkable progress in
recent years, driven by advances in neural rendering and generative models.
Dreamfusion [179] and Score Jacobian Chaining [241] pioneer zero-shot text-to-3D
generation by optimizing neural radiance fields [149] with pre-trained diffusion
models [192]. Subsequent work has explored alternative 3D representations [24,
105,111,127, 144, 147, 217] and improved loss functions [89, 130, 135, 233, 249, 270].
Rather than relying on iterative optimization, a promising alternative direction
trains generative models directly on 3D asset datasets, with various backbones
including diffusion models [65, 104, 106, 156, 188, 206, 282, 288, 291], large re-
construction models [66, 103, 231, 267], U-Nets [118, 223], and autoregressive
models [26, 28, 29, 58, 157, 208, 224, 255].

However, these existing methods cannot be directly applied to generating brick
structures because they do not account for the unique physical constraints and
assembly requirements of real-world designs [133]. Our work bridges this gap
by introducing a method for generating physically stable and buildable brick
structures directly from text prompts.

Autoregressive 3D Modeling. Recent research has successfully used autoregres-
sive models to generate 3D meshes [26, 28, 29, 42, 58, 157, 208, 224, 255], often
conditioned on input text or images. Most recently, LLaMA-Mesh [250] demon-
strates that large language models (LLMs) can be fine-tuned to output 3D shapes
in plain-text format, given a text prompt. However, most existing autoregressive
methods focus on mesh generation. In contrast, we focus on generating brick
structures from text prompts, leveraging LLMs’ reasoning capabilities.

Brick Assembly and Design Generation. Creating brick structures given a ref-
erence 3D shape has been widely studied [92]. Existing works [164, 226, 290]

94

https://avalovelace1.github.io/BrickGPT/

6. Generating Physically Stable and Buildable Brick Structures from Text

apeNet Mesl rick Structure c) Stabili nalysis on different variations e) StableText2Brick Dataset Samples
Sh Mesh Brick S Stability Analysi: dif StableText2Brick D: Sample
T T SS
4) (b) Structure - z 3 ~ =
bt (a) Mesh-to-Brick Augmentation Sofa | 1 . W "& % L gl
i1y - P ; N ; 5
31 g ! (
| = ~; -~ - e =
Bed ~ H [D -
Render Multiple Views l N] L Q- \,
- g y - - . 4 : -~ s we e = - -
< . (v Mug (]u ﬂ“ ,”” m 1” k&
4 - Lo it
- - P - - - -)| y
1 ; i o W 4 > e =
Chair 4 “, f .'(# ,‘i X !
(d) GPT-40 Caption Generation using the multi-view brick structure rendering | - N
This is a rendering of a 3D object built with LEGO bricks with 24 different views. The object belongs to the category of chair. You
£ @ will generate five different captions for this chair that: 1. Describes the core object/subject and its key geometric features ...” > B & & S =
= =
“1. High-backed seat with four straight legs. 2. Tall chair with a flat seat, high backrest, and simple legs. 3. Chair featuring a Camera | “j’ n‘l ﬁ \ P! i’. Y],
vertical back twice the seat height and four stout legs. 4. Seat with elevated backrest, approximately double the seat height ...” -

Figure 6.2: StableText2Brick Dataset. (a) From a ShapeNetCore [19] mesh, we gen-
erate a brick structure by voxelizing it onto a 20 x 20 x 20 grid, then constructing
its brick layout with a delete-and-rebuild algorithm. (b) We augment each shape
with multiple structural variations by randomizing the brick layout while preserv-
ing the overall shape. (c) Stability analysis [119] is performed on each variation
to filter out physically unstable designs. (d) To obtain captions for each shape,
we render the brick structure from 24 different viewpoints and use GPT-4o [2] to
generate detailed geometric descriptions. (e) Data samples from 5 categories in our
StableText2Brick dataset.

formulate the generation as an optimization problem guided by hand-crafted
heuristic rules. Such heuristics can include ensuring that all bricks are intercon-
nected, minimizing the number of bricks, and maximizing the number of brick
orientation alternations. Wang et al. [246] translate a visual manual into step-
by-step brick assembly instructions. Luo et al. [132] leverage structural stability
estimation to find weak structural parts and rearrange the local brick layout to
generate physically stable designs. Kim et al. [93], Liu et al. [121] formulate a
planning problem to fill the target 3D model sequentially. However, these methods
only generate designs given an input 3D shape, assuming a valid brick structure
exists, which is difficult to verify in practice.

Few works have explored learning-based techniques to generate toy brick
designs. Thompson et al. [228] use a deep graph generative model in which the
graph encodes brick connectivity. However, this method is limited to generating
simple classes, such as walls and cuboids, using a single brick type. More recently,
Ge et al. [52] use a diffusion model to predict a semantic volume, which is then
translated into a high-quality micro building. Their method produces impressive
results for a single category. Zhou et al. [289] and Ge et al. [51] generate compelling

95

6. Generating Physically Stable and Buildable Brick Structures from Text

tigurine designs given an input portrait. They use machine learning to select
from a pre-made set of components that best match an input photo. Although
effective for faces, extending this selection-based approach to arbitrary objects is
challenging. Zhou et al. [292] formulate an optimization problem to create a brick
model from an input image. While their output is a 2D brick mosaic, we focus on
3D structures in this work. Goldberg et al. [53] query a vision-language model
to generate diverse 3D assembly structures. However, they use regular building
blocks instead of bricks with interlocking connections, and thus the structures have
limited expressiveness.

Our goal is closest to that of [101]. This work has three steps: (1) generating an
image using a text-to-image model, (2) converting the image into voxels, and (3)
using heuristics to create a physical brick model without considering physical con-
straints. In contrast, our method performs the text-to-brick task without requiring

intermediate image or voxel representations.

Physics-Aware Generation. Physics-aware 3D generation can be broadly cat-
egorized into two approaches: direct constraint enforcement and learned val-
idation. Simple physical constraints, such as collision avoidance and contact
requirements, can be incorporated directly through explicit penalty terms during
optimization [56, 69, 125, 151, 239, 268, 275]. More complex physical properties,
such as structural stability and dynamic behavior, typically require physics simula-
tors [46, 146, 160, 264] or data-driven physics-aware assessment models [43, 145].
To our knowledge, our paper is the first attempt to incorporate physics-aware
constraints into text-based brick assembly structure generation.

6.3 Dataset

Training a modern autoregressive model requires a large-scale dataset. Therefore,
we introduce StableText2Brick, a new large-scale dataset that contains 47,000+
different toy brick assembly structures, covering 28,000+ unique 3D objects from
21 common object categories of the ShapeNetCore dataset [19]. We select categories
featuring diverse and distinctive 3D objects while excluding those resembling
cuboids. Each structure is paired with a group of text descriptions and a stability

96

6. Generating Physically Stable and Buildable Brick Structures from Text

! (a) Brick Structure Tokenization

‘ i1 (b) Training 1 x 1 (7 8 , 0) 1 x 2 (1 7 17) Eos
3 Brick Sequence: Brick Structure: i i Lttt 11 1 1 11
1 14080 H LLaMA-3.2-Instruct-18)
2 1x2(7,6,0) i
. o i— T A A A AR AR AR AR A A A A A A A A A B
e A 1 Create -+ legs” SEP 1 x 1 (7 8 0o) 4 x 2 (1 7, 17)
125 1x2(5,7,17) ' " L \ J L . J
¢ M A
126 42 (1,7,17) \l\ " 15 Brick: 40th Brick: 80th Brick: 100th Brick: -
! i1 Create a LEGO model of the input. 1x1(7,8,0) 1x2(5,0,2) 1x2(7,6,5) 2x6(2,0,7)
1 Each brick hxw (x,y,z) corresponds to 10 tokens. 11 Format your response as a list of .
1 ion: i1 bricks = = .
i Caption: " oo S .
i “Achair with a high, rounded backrest and a flat, 1 <Input> . ~$‘ J..r g ' izgtlhla;'lc;'
< . < X2 (1,7,

“A chair with legs.”

‘\\ rectangular seat supported by four solid, straight legs.”

! (c) Inference
:

! o : A Remove unstable bricks and
! Create a LEGO model of the input description: subsequent ones until stable
“A rectangular sofa with a high backrest extending to form side armrests, featuring a spacious seating area and a supportive box-like base.” l
User

i Resample Resample Final !

i stability [Qutput!

; .@. | Check || [}

| BrickGPT ' *\ !

' i
I

4x6 Brick out
of library

‘ .
! Validity - Valid Brick type @ ° Collision °
\ Check - Collisionfree @

Figure 6.3: Method. (a) Our system tokenizes a brick structure into a sequence
of text tokens, ordered in a raster-scan manner from bottom to top. (b) We cre-
ate an instruction dataset pairing brick sequences with descriptions to fine-tune
LLaMA-3.2-Instruct-1B. (c) At inference time, BRICKGPT generates brick struc-
tures incrementally by predicting one brick at a time given a text prompt. For each
generated brick, we perform validity checks to ensure it is well-formatted, exists
in our brick library, and does not collide with existing bricks. After completing
the design, we verify its physical stability. If the structure is unstable, we roll back
to a stable state by removing all unstable bricks and their subsequent bricks, and
resume generation from that point.

score, which indicates its physical stability and buildability. Below, we describe the

dataset construction, an overview of which is given in Figure 6.2.

Brick Representation. We consider brick structures built on a fixed baseplate.
Each structure in StableText2Brick is represented as B = [by,by,...,by] with N
bricks, and each element denotes a brick’s state as b; = [h;, w;, x;,y;,z;]. Here, h;
and w; indicate the brick length in the X and Y directions, respectively, and x;,
y;, and z; denote the position of the stud closest to the origin. The position has
x;el0,1,...,H-1],y;€][0,1,..., W—1],z;€[0,1,...,D — 1], where H, W, and
D represent the dimensions of the discretized grid world.

Mesh-to-Brick. We construct the dataset by converting 3D shapes from ShapeNet-
Core [19] into brick structures as shown in Figure 6.2(a). Given a 3D mesh, we
voxelize and downsample it into a 20 x 20 x 20 grid world to ensure a consistent

97

6. Generating Physically Stable and Buildable Brick Structures from Text

scale,i.e., H =W = D = 20. The brick layout is generated by a delete-and-rebuild
algorithm similar to [132]. To improve data quality and diversity, we introduce
randomness and generate multiple different structures for the same 3D object, as
illustrated in Figure 6.2(b). This increases the chance of obtaining a stable structure
and more diverse layouts. We use eight commonly available standard bricks: 1 x 1,
1x2,1x4,1x6,1x8,2x2,2x4,and?2 x 6.

Stability Score. We assess the physical stability of each structure, as illustrated in
Figure 6.2(c), using the analysis method [119]. For a structure B = [by, by, ..., bn],
the stability score S € RN assigns each brick b; a value s; € [0, 1] that quantifies the
internal stress at its connections. Higher scores s; indicate greater stability, while
s; = 0 indicates an unstable brick that will cause structural failure. Calculating
the stability score requires solving a nonlinear program to determine the forces
acting on each brick to achieve a static equilibrium that prevents structural collapse,
as detailed in Section 6.4.2. For typically-sized (i.e., < 200 bricks) structures in
Figure 6.2, stability analysis takes ~0.35 seconds on average. A structure is stable
if all bricks have stability scores greater than 0; we only include stable structures in
the StableText2Brick dataset.

Caption Generation. To obtain captions for each shape, we render the brick
structure from 24 different viewpoints and combine them into a single multi-view
image. We then prompt GPT-40 [2] to produce five descriptions for these renderings
with various levels of detail. Importantly, we ask GPT-40 to omit color information
and focus only on geometry.

Figure 6.2(e) shows several data samples in StableText2Brick. The rich variations
within each category and the comprehensive text-brick pairs make it possible to

train large-scale generative models.

6.4 Method

Here, we introduce BRICKGPT, a method for generating physically stable intercon-
necting toy brick assembly structures from text prompts. Leveraging LLMs’ ability
to model sequences and understand text, we fine-tune a pre-trained LLM for the

brick structure generation task (Section 6.4.1). To increase the stability and build-

98

6. Generating Physically Stable and Buildable Brick Structures from Text

ability of our designs, we use brick-by-brick rejection sampling and physics-aware
rollback during inference (Section 6.4.2). Figure 6.3 illustrates an overview of our
method.

6.4.1 Model Fine-tuning

Pre-trained LLMs excel at modeling sequences and understanding natural lan-
guage, making them promising candidates for our task. We further fine-tune a
pre-trained LLM on a custom instruction dataset containing text prompts and their

corresponding brick structures from StableText2Brick.

Pre-trained Base Model. We use LLaMA-3.2-1B-Instruct [44] as our base model.
This model is fine-tuned to give coherent answers to instruction prompts, making it
suitable for text-based brick structure generation. As shown in Figure 6.5, the base
model can generate brick structures through in-context learning, highlighting the
promise of using pre-trained LLMs for our task. However, the generated structures
fail to follow the input prompt, and they contain intersecting or disconnected
bricks, making them physically unstable and unbuildable. To address these issues,

we further fine-tune the pre-trained model using our StableText2Brick.

Instruction Fine-tuning Dataset. For each stable structure and its corresponding
captions, we construct an instruction in the following format: “(user) Create a
LEGO model of {caption}. (assistant) {brick-structure}.”

To simplify training and reuse LLaMA's tokenizer, we represent brick structures
in plain text. But what format should we use? The standard format LDraw [98]
has two main drawbacks. First, it does not directly include brick dimensions,
which are crucial for assessing the structure and validating brick placements.
Second, it contains unnecessary information, such as brick orientation and scale.
This information is redundant, as each axis-aligned brick has only two valid
orientations.

Instead of using LDraw, we introduce a custom format to represent each brick
structure. Each line of our format represents one brick as “{h} x{w} ({x}{y}.{z})”,
where I x w are brick dimensions and (x, y, z) are its coordinates. All bricks are
1-unit-tall, axis-aligned cuboids, and the order of i and w encodes the brick’s

orientation about the vertical axis. This format significantly reduces the number of

99

6. Generating Physically Stable and Buildable Brick Structures from Text

tokens required to represent a design, while including brick dimension information
essential for 3D reasoning. Bricks are ordered in a raster-scan manner from bottom
to top.

With our fine-tuned BRICKGPT model 6, we predict the bricks by, by, ..., by in

an autoregressive manner:

P(bl, b2,...,bN|9) = p(bi|b1,...,bi_1,9). (61)

N
i=1

6.4.2 Integrating Physical Stability

Although trained on physically stable data, our model sometimes generates designs
that violate physics and assembly constraints. To address this issue, we further

incorporate physical stability verification into autoregressive inference.

(a) Brick Force Model (b) Structural Force Model

* Gravity. Horizontal normal forces in +X and +Y
directions due to the connections.
Pressing and Pulling due to the top Horizontal normal forces due to
connection. adjacent bricks.

* ? Dragging and Supporting due to the bottom connection.

Figure 6.4: Force Model. (a) We consider all forces exerted on a single brick, includ-
ing gravity (black), vertical forces with the top brick (red /blue) and bottom brick
(green/purple), and horizontal (shear) forces due to knob connections (cyan), and
adjacent bricks (yellow). (b) The structural force model F extends the individual
force model to multiple bricks. Solving for static equilibrium in F determines each
brick’s stability score.

100

6. Generating Physically Stable and Buildable Brick Structures from Text

A brick structure is considered physically stable and buildable if it does not
collapse when built on a baseplate. To this end, we assess physical structural
stability using the stability analysis method [119]. We briefly overview this method
below. Figure 6.4(a) illustrates all possible forces exerted on a single brick. We
extend the single brick model and derive the structural force model F, which
consists of a set of candidate forces (e.g., pulling, pressing, supporting, dragging,
normal, etc.), as shown in Figure 6.4(b). For a brick structure B = [by, by, ..., bn],
each brick b; has M; candidate forces Pij € Fi,j € [1, M;]. A structure is stable if all

bricks can reach static equilibrium, i.e.,
M; M Mo)
Y F=0 Y d=YLIxF=o (6.2)
j j J

where L{: denotes the force lever corresponding to Fij . The stability analysis is

formulated into a nonlinear program as

M;

y 7

J

|

N
argmin Z{ +aD" ™+ B Z D; }, (6.3)
F i

M;
Y F
j

subject to three constraints: 1) all force candidates in F should take non-negative
values; 2) certain forces exerted on the same brick cannot coexist, e.g., the pulling
(red arrow) and pressing (blue arrow), the dragging (green arrow) and support-
ing (purple arrow); 3) Newton’s third law, e.g., at a given connection point, the
supporting force on the upper brick should be equal to the pressing force on the
bottom brick. D; C F; is the set of candidate dragging forces (green arrow) on b;. «
and p are hyperparameter weights.

Solving the above nonlinear program in Equation 6.3 using Gurobi [57] finds
a force distribution F that drives the structure to static equilibrium with the
minimum required internal stress, suppressing the overall friction (i.e., }_ D;) as

well as avoiding extreme values (i.e., D"®). From the force distribution F, we

101

6. Generating Physically Stable and Buildable Brick Structures from Text

obtain the per-brick stability score as

¢

LV E #0
=1’ VLo (64
v DM fy
\ FT_FYT)?aX otherwise,

where Fr is a measured constant friction capacity between brick connections.
Higher scores s; indicate greater stability, while s; = 0 indicates an unstable
brick that will cause structural failure: either F cannot reach static equilibrium
(Z]Mi Fij #0V Z;VI" ‘L'ij # 0) or the required friction exceeds the friction capacity of
the material (D" > Fr). Due to the equality constraints imposed by Newton’s
third law, Equation 6.3 includes only the dragging forces and excludes pulling
forces. For a physically stable structure, we need s; > 0,Vi € [1, N].

When to apply stability analysis? Our model generates structures sequentially,
one brick at a time. A straightforward approach to ensuring physical stability is
to apply stability analysis to each step and resample a brick that would cause a
collapse. However, this step-by-step validation, though efficient per check, could
be time-consuming due to the large number of checks required. More importantly,
many structures are unstable when partially constructed, yet become stable when
fully assembled. Adding a stability check after each brick generation could overly
constrain the model exploration space. Instead, we propose brick-by-brick rejection

sampling combined with physics-aware rollback to balance stability and diversity.

Brick-by-Brick Rejection Sampling. To improve inference speed and avoid overly
constraining the model generation, we relax our constraints during inference.
First, when the model generates a brick and its position, the brick should be well-
formatted (e.g., available in the inventory) and not lie outside the workspace.
Second, we ensure that newly added bricks do not collide with the existing struc-
ture. Formally, for each generated brick b;, we have V; N V; = &,Vi € [1,t —1],
where V; denotes the voxels occupied by b;. These heuristics allow us to efficiently
generate well-formatted brick structures without explicitly considering complex

physical stability. To integrate these heuristics, we use rejection sampling: if a brick

102

6. Generating Physically Stable and Buildable Brick Structures from Text

Method % valid % stable mean brick stability min brick stability CLIP DINO
Pre-trained LLaMA (0-shot) 0.0% 0.0% N/A N/A N/A N/A
In-context learning (5-shot) 2.4% 1.2% 0.675 0.479 0.284 0.814
LLaMA-Mesh [250] 94.8% 50.8% 0.894 0.499 0.317 0.851
LGM [223] 100% 25.2% 0.942 0.231 0.300 0.851
XCube [188] 100% 75.2% 0.964 0.686 0322 0.859
Hunyuan3D-2 [288] 100% 75.2% 0.973 0.704 0.324 0.868
Ours w/o rejection sampling or rollback 37.2% 12.8% 0.956 0.325 0.329 0.888
Ours w/o rollback 100% 24.0% 0.947 0.228 0.322 0.882
Ours (BRICKGPT) 100% 98.8% 0.996 0.915 0.324 0.880

Table 6.1: Quantitative Analysis. We evaluate our method against several baselines
on validity (no out-of-library, out-of-bounds, or colliding bricks), stability, CLIP-
based text similarity, and DINOv2-based image similarity. Stability, CLIP, and
DINO are computed over valid structures only. For LLaMA-Mesh [250], validity
requires a well-formed OB] file. Our method outperforms all baselines as well as
the ablated setups on validity and stability using our proposed rejection sampling
and rollback, while maintaining high text similarity.

violates the heuristics, we resample a new brick from the model. Due to the relaxed
constraints, most bricks are valid, and rejection sampling does not significantly

affect inference time.

Physics-Aware Rollback. To ensure that the final design B = [by,by,...,bN]
is physically stable, we calculate the stability score S. If the resulting design
is unstable, i.e., s; = 0,i € Z, we roll back the design to the state before the first
unstable brick was generated, i.e., B’ = [by, b, ..., bminz_1]- Here, Z is the set of the
indices of all the unstable bricks. We repeat this process iteratively until we reach
a stable structure B’, and continue generation from the partial structure B’. Note
that we can use the per-brick stability score to efficiently find the collapsing bricks
and their corresponding indices in the sequence. We summarize our inference

sampling in Algorithm 2.

6.4.3 Brick Texturing and Coloring

While we primarily focus on generating the shape of a brick structure, color and
texture play a critical role in creative designs. Therefore, we propose a method that

applies detailed UV textures or assigns uniform colors to individual bricks.

UV Texture Generation. Given a structure B and its corresponding mesh M,

103

6. Generating Physically Stable and Buildable Brick Structures from Text

Algorithm 2 BRICKGPT inference algorithm.

Input: Text prompt c; Autoregressive model 6.
Output: Brick structure following the text prompt.
1: B < empty brick structure
2: loop > Predict next brick w/ rejection sampling

3: fork =1,...,max rejections do
4: context <~ T @ B.to_text format()
5: b < 0.predict_tokens(context) (Equation 6.1)
6: if b is valid then
7: break
8: end if
9: end for
10: B.add brick(b)
11: if b contains EOF then > Structure complete
12: if B is stable or max rollbacks exceeded then
13: return B
14: end if
15: while B is unstable do > Rollback if unstable
16: I <+ indices of unstable bricks in B
17 i< minZ > idx of 1st unstable brick
18: B« [by,...,b;i_1]
19: end while
20: end if
21: end loop

we first identify the set of occluded bricks B that have all six faces covered
by adjacent bricks, and remove B for efficiency. The remaining bricks Byis =
B\ Bocc are merged into a single mesh M with cleaned overlapping vertices using
ImportLDraw [230]. We generate a UV map UV y by cube projection. The texture
map liexture is then generated using FlashTex [41], a fast text-based mesh texturing
approach:

Liexture = FlashTex(M, UV y, ¢), (6.5)

where text prompt ¢ describes the visual appearance. This texture can be applied
through UV printing or stickers.

Uniform Brick Color Assignment. We can also assign each brick a uniform color

from a standard color library [98]. Given a structure B, we convert it to a voxel

104

6. Generating Physically Stable and Buildable Brick Structures from Text

Pre-trained LLaMA In-context learning LLaMA-Mesh LGM Xcube Hunyuan3D-2
(no training, zero-shot) (no training, few-shot) + mesh-to-brick + mesh-to-brick + mesh-to-brick + mesh-to-brick

>

Input prompt

“Table featuring a flat
rectangular surface
over four evenly
spaced legs.”

~

- ,
Invalid (colliding bricks) J| Invalid (colliding bricks) Unstable Stable

“Compact sofa with a
geometric design.”

“Small car featuring a v
rectangular body, flat
top, and stepped T
edges.”
Invalid (colliding bricks) [| Invalid (colliding bricks) Unstable Unstable Stable
“Train with rectangular
body and geometric
components.”

invalid (colliding bricks) | ivalid (colliding bricks) Unstable

i3
m

“Square-seated chair ~
featuring an upright, ‘.
rectangular backrest
and straight legs.” .

Invalid (colliding bricks) [l Invalid (colliding bricks)
“Compact chair with a
tall backrest and N/A
serrated seat.”

Invalid (out-of-library
bricks) Invalid (colliding bricks)

Figure 6.5: Result gallery and baseline comparisons. Our method generates high-
quality, diverse, and novel brick structures aligned with the given text prompts.
Black bricks are colliding. For LLaMA-Mesh [250], LGM [223], XCube [188], and
Hunyuan3D-2 [288], an inset of the generated mesh is shown in the top-left corner.

SEaRLE

grid V and then to a UV-unwrapped mesh My,. For every voxel v € V, let

7,i=1,...,Nypbeits visible faces where 0 < N, < 6. Each face f/ is split into two
triangles and mapped to a UV region S7, creating a mesh M, with UV map UVy,.
We apply FlashTex [41] to generate a texture liexture:

Liexture = FlashTex(M,,, UVy,, ¢). (6.6)

6. Generating Physically Stable and Buildable Brick Structures from Text

Input text Ours w/o rejection
prompt sampling or rollback

“Square-seated
chair featuring
an upright,
rectangular
backrest and
straight legs.”
Invalid (colliding bricks)

Ours w/o rollback Ours

“Boxy vehicle
featuring a
tiered facade
and angular
structure.”

Invalid (colliding bricks)

Figure 6.6: Ablation study. Brick-by-brick rejection sampling and physics-informed
rollback help to ensure that the generated structure is both valid and stable. Black
indicates colliding bricks.

The color of each voxel C(v) € R3 is computed as:

Ny
C(v) = Ni Yy o), voe, 67)

vi=1

where C(f?) = |Slﬁ Y(xy)e s Liexture (X, ¥) is the color of each visible face f, and
|S?| represents the number of pixels in region S7 in the UV map. For each brick b;
and its constituent voxels V;, we compute the brick color C(b;) = “ﬁ—” Yvey, C(0).
Finally, we find the closest color in the color set. While UV texturing offers higher-
fidelity details, uniform coloring allows us to use standard toy bricks.

6.5 Experiments

6.5.1 Implementation Details

Fine-tuning. Our fine-tuning dataset contains 240k distinct prompts and 47k+
distinct brick structures. We use 90% of the data for training and 10% for evaluation.

106

6. Generating Physically Stable and Buildable Brick Structures from Text

Generated Brick Structure Generated Textured Brick Models
“A layered bookshelf [...]” “Gothic cathedral “Japanese sliding bookcase ~ “Victorian library shelving
bookshelf with arch details, with shoji screens, with carved moldings [...]"”
medieval style [...]” traditional design [...]"”

“A sofa with a rectangular “Rustic farmhouse “Cyberpunk holographic “Comfortable lounge chair
base [...]” armchair built from material with neon purple wrapped in Japanese
reclaimed wood [...]” and blue gradients [...]"” shibori fabric [...]”
Generated Brick Structure Generated Colored Brick Models
“An asymmetrical six-string “Electric guitar in metallic “Steel resonator with “Sunburst Les Paul with
guitar [...]” purple [...]” engraved body [...]"” amber finish [...]”

Figure 6.7: Brick Texture and Color Generation. Our method can generate diverse
textured (top two rows) and colored (bottom) brick structures based on the same
shape while using different appearance text prompts.

For efficiency, we include samples only up to 4096 tokens in length.

Inference. To evaluate our method, we generate one brick structure for each of 250
prompts randomly selected from the validation dataset. The nonlinear optimization
in Equation 6.3 is solved using Gurobi [57]. We set Fr = 0.98N with « = 1073 and
B = 107°. We allow up to 100 physics-aware rollbacks before accepting the brick
structure. The median number of required rollbacks is 2, and the median time to
generate one structure is 40.8 seconds.

107

6. Generating Physically Stable and Buildable Brick Structures from Text

Generated Structure Automated Assembly Using LEGO Bricks Finished Assembly

Figure 6.8: Automated Assembly. We demonstrate robotic assembly of generated
structures using LEGO bricks.

6.5.2 Brick Structure Generation Results

Figure 6.5 shows a gallery of diverse, high-quality brick structures that closely
follow the input prompts.

Baseline Comparisons. As baselines, we use LLaMA-Mesh [250], LGM [223],
XCube [188], and Hunyuan3D-2 [288] to generate a mesh from each prompt, then
convert the meshes to brick structures with our delete-and-rebuild algorithm.
Additionally, we compare our method with pre-trained LLaMA models evaluated
in both a zero-shot and few-shot manner. For few-shot evaluation, we provide the
model with 5 examples of stable brick structures and their captions.

For each method, we compute the proportion of stable and valid structures
among the generated designs. Additionally, for each valid structure, we compute
its mean and minimum brick stability scores. To evaluate prompt alignment, we
compute the CLIP score [183] between a rendered image of each valid structure and
the text “A LEGO model of {prompt}”. We also calculate the alignment between
rendered images of the generated structure and the ground-truth structure for the
same prompt, as measured by the cosine similarity between DINOv2 features [165].
As shown in Table 6.1, our method outperforms all baselines in these metrics.
Figure 6.5 shows that our method generates brick structures of higher quality than
the baselines.

Ablation Study. We demonstrate the importance of rejection sampling and physics-
aware rollback. As seen in Figure 6.6, rejection sampling eliminates invalid bricks,

such as those with collisions, while rollback helps to ensure the final assembly

108

6. Generating Physically Stable and Buildable Brick Structures from Text

structure is physically stable. The quantitative results in Table 6.1 show that our
full method generates a higher proportion of valid and stable brick structures,
while closely following the text prompts.

6.5.3 Extensions and Applications

Robotic Assembly of Generated Structures. We demonstrate automated assembly
using a dual-robot-arm system in Figure 6.8. The robots use the manipulation
policy [120] and the asynchronous multi-agent planner [68] to manipulate toy
bricks and construct the structure. Since the generated structures are physically
stable, efficient and automated assembly can be performed.

Brick Texture and Color Generation. Figure 6.7 shows both UV texturing and
uniform coloring results of brick structures, demonstrating our method’s ability to

generate diverse styles while preserving the underlying geometry.

6.6 Discussion

In this work, we have introduced BRICKGPT, an autoregressive model for generat-
ing interconnecting toy brick structures from text prompts. Our method learns to
predict the next brick sequentially while ensuring physical stability and buildability.
We have shown that our method outperforms LLM backbone models and several
recent text-to-3D generation methods.

Limitations. Though our method outperforms existing methods, it still has several
limitations. First, due to limited computational resources, we have not explored the
largest 3D dataset. As a result, our method is restricted to producing designs within
a 20 x 20 x 20 grid across 21 categories, while recent 3D generation methods can
create a wider variety of objects. Future work includes scaling up model training
at higher grid resolutions on larger, more diverse datasets, such as Objaverse-
XL [36]. Training on large-scale datasets can also improve generalization to out-of-
distribution text prompts.

Second, our method currently supports a fixed set of commonly used toy bricks.
In future work, we plan to expand the brick library to include a broader range of

109

6. Generating Physically Stable and Buildable Brick Structures from Text

dimensions and brick types, such as slopes and tiles, allowing for more diverse

and intricate designs.

110

Chapter 7

Conclusions

7.1 Discussion

In this dissertation, we have explored the central challenge of democratizing 3D
content creation. By leveraging powerful, data-driven priors, we can significantly
lower the barriers that have traditionally confined 3D creation to the realm of
experts. By developing models based on vast datasets of images, text, and shapes,
we can empower everyday users to capture, generate, and realize 3D content from
simple and intuitive inputs. The work presented here spans three parts, collectively

addressing the fundamental aspects of: geometry, appearance, and physics.

Sparse-View 3D Reconstruction. We began by addressing the capture of real-
world scenes. In Chapter 2, DS-NeRF [39] demonstrated that by using “free” depth
priors from Structure-from-Motion, we can achieve high-fidelity 3D reconstruction

from as few as two images, removing the need for dense, specialized data capture.

3D Asset Generation. We then turned to the creation of novel digital assets.
In Chapters 3, 4, and 5, we introduced methods for generating complex 3D con-
tent from simple inputs. This included generating editable 3D objects from 2D
sketches [40], using OctreeGPT [42] for efficient text-to-shape generation, and de-
veloping FlashTex [41] with LightControlNet to produce high-quality, relightable
textures. These contributions make the creative process more accessible, replacing

111

7. Conclusions
complex manual modeling with intuitive commands.

Physical Asset Generation. Finally, we explored a novel direction by bridging
the gap between digital design and physical reality. In Chapter 6, BrickGPT [181]
showed that by integrating physics and manufacturing constraints, we can generate
designs from text that are not only visually compelling but also structurally stable
and buildable in the real world.

Collectively, we made small steps towards a future where 3D creation is as easy
as writing a sentence or drawing a sketch. Meanwhile, this work also opens up

new questions and reveals avenues for future exploration.

7.2 Future Work

While the methods in this thesis demonstrate considerable progress, several limita-

tions point toward exciting areas for future research.

Unified Generative Models. This thesis largely treats the generation of shape,
texture, and material as separate stages. While this modularity is practical, a key
next step is to develop unified generative models that can create complete, textured,
and relightable 3D assets in a single, end-to-end process. Such models could learn
the complex interplay between geometry and appearance, leading to even more
realistic and coherent results.

Large-scale 4D Scene Generation with Functional Assets. While Part II of this
thesis has primarily focused on generating individual objects, a crucial next step
is to scale these techniques to create large, dynamic 3D scenes. Our recent work,
Cube [191], represents a preliminary step in this direction by using a large language
model [2] as an agent to compose scenes from generated assets by techniques pre-
sented in Part II. However, the ultimate goal of generating expansive, functional
worlds, e.g., a cyberpunk city populated with drivable vehicles and autonomous
pedestrians, remains a significant and largely unexplored challenge. This will re-
quire not only scaling asset generation but also modeling the complex functionality,

behaviors, layout and interaction of 3D assets that bring a virtual world to life.

112

7. Conclusions

Scaling and Generalization. The models presented were trained on large but
finite datasets like Objaverse [37] and ShapeNet [19]. As a result, their ability to
generalize to out-of-distribution objects or highly complex scenes is still limited.
Scaling these methods to train on even larger and more diverse datasets, such
as Objaverse-XL [37], is a crucial step for improving robustness. Furthermore,
large video generative models, such as Google Veo 3, have demonstrated stunning
results with reasonable 3D understanding. Exploring how to utilize 3D priors from
video generative models could be helpful to expand the variety of 3D content that

can be generated.

Advanced User Interaction and Control. While we have simplified the input
to text and sketches, a significant area for future work lies in creating more user-
friendly interactive systems. Imagine an interface where a user can iteratively refine
a generated asset with a combination of text prompts ("make the legs thinner”),
direct manipulation (pulling a vertex), and sketching (drawing a new handle).
Developing real-time models that can seamlessly interpret these multimodal inputs

would provide users with far more granular and intuitive control.

Generalizing Physics-Aware Generation. BrickGPT [181] represents a first step
toward physically plausible generation, but it is constrained to a single domain
of interlocking bricks. A grand challenge is to extend these ideas to a broader
range of materials and fabrication processes. Future systems could generate de-
signs optimized for 3D printing, considering material strength and printability
constraints, or even design functional robotic parts or architectural plans with

inherent structural integrity.

113

7. Conclusions

114

Bibliography

[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to
embed images into the stylegan latent space? In IEEE International Conference
on Computer Vision (ICCV), 2019.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-

man, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[3] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features
as dense visual descriptors. In European Conference on Computer Vision (ECCV)
Workshop, 2022.

[4] Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil Kim, Christian
Richardt, James Tompkin, and Matthew O’Toole. Torf: Time-of-flight radi-
ance fields for dynamic scene view synthesis. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2021.

[5] Dejan Azinovié, Ricardo Martin-Brualla, Dan B Goldman, Matthias Niefsner,
and Justus Thies. Neural rgb-d surface reconstruction. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[6] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P. Srinivasan. Mip-nerf: A multiscale representa-
tion for anti-aliasing neural radiance fields. In IEEE International Conference
on Computer Vision (ICCV), 2021.

[7] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou,
Jun-Yan Zhu, and Antonio Torralba. Semantic photo manipulation with a
generative image prior. In ACM SIGGRAPH, 2019.

[8] David Benson and Joel Davis. Octree textures. In ACM Transactions on
Graphics (TOG), 2002.

[9] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli,
Milos Hasan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoor-
thi. Neural reflectance fields for appearance acquisition. arXiv preprint

115

Bibliography

arXiv:2008.03824, 2020.

[10] Mikotaj Bikkowski, Danica] Sutherland, Michael Arbel, and Arthur Gretton.
Demystifying mmd gans. In International Conference on Learning Representa-
tions (ICLR), 2018.

[11] Alexey Bokhovkin, Shubham Tulsiani, and Angela Dai. Mesh2tex: Gener-
ating mesh textures from image queries. In IEEE International Conference on
Computer Vision (ICCV), 2023.

[12] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN train-
ing for high fidelity natural image synthesis. In International Conference on
Learning Representations (ICLR), 2019.

[13] Shengqu Cai, Anton Obukhov, Dengxin Dai, and Luc Van Gool. Pix2nerf:
Unsupervised conditional 7r-gan for single image to neural radiance fields

translation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[14] John Canny. A computational approach to edge detection. In IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI), 1986.

[15] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[16] Caroline Chan, Frédo Durand, and Phillip Isola. Learning to generate line
drawings that convey geometry and semantics. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022.

[17] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wet-
zstein. pi-gan: Periodic implicit generative adversarial networks for 3d-
aware image synthesis. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[18] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan,
Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh
Khamis, Tero Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[19] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,

et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[20] Anpei Chen, Ruiyang Liu, Ling Xie, Zhang Chen, Hao Su, and Jingyi Yu. Sof-
gan: A portrait image generator with dynamic styling. In ACM SIGGRAPH,

116

Bibliography

2021.

[21] Anpei Chen, Zexiang Xu, Fuqgiang Zhao, Xiaoshuai Zhang, Fanbo Xiang,
Jingyi Yu, and Hao Su. Mvsnerf: Fast generalizable radiance field recon-
struction from multi-view stereo. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[22] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensort:
Tensorial radiance fields. In European Conference on Computer Vision (ECCV),
2022.

[23] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and
Matthias Niefiner. Text2tex: Text-driven texture synthesis via diffusion
models. In IEEE International Conference on Computer Vision (ICCV), 2023.

[24] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentan-
gling geometry and appearance for high-quality text-to-3d content creation.
In IEEE International Conference on Computer Vision (ICCV), 2023.

[25] Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu Li, Jiarui Liu,
Xiu Li, Xiaoxiao Long, Jiashi Feng, and Ping Tan. Dora: Sampling and
benchmarking for 3d shape variational auto-encoders. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2025.

[26] Sijin Chen, Xin Chen, Anqgi Pang, Xianfang Zeng, Wei Cheng, Yijun Fu, Fukun
Yin, Yanru Wang, Zhibin Wang, Chi Zhang, Jingyi Yu, Gang Yu, Bin Fu, and
Tao Chen. MeshXL: Neural coordinate field for generative 3D foundation
models. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

[27] Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 3-
sweep: Extracting editable objects from a single photo. In ACM Transactions
on Graphics (TOG), 2013.

[28] Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen, Jiaxiang Tang, Xin
Chen, Zhongang Cai, Lei Yang, Gang Yu, et al. Meshanything: Artist-created
mesh generation with autoregressive transformers. In International Conference
on Learning Representations (ICLR), 2024.

[29] Yiwen Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong Chen, Jun Zhu,
Chi Zhang, and Guosheng Lin. Meshanything v2: Artist-created mesh
generation with adjacent mesh tokenization. In IEEE International Conference
on Computer Vision (ICCV), 2025.

[30] Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and Kui Jia. Tango: Text-
driven photorealistic and robust 3d stylization via lighting decomposition.
In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[31] Yuedong Chen, Qianyi Wu, Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai.

117

Bibliography

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

118

Sem2nerf: Converting single-view semantic masks to neural radiance fields.
In European Conference on Computer Vision (ECCV), 2022.

Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard Pons-Moll. Stereo
radiance fields (srf): Learning view synthesis from sparse views of novel
scenes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large
dataset of object scans. arXiv:1602.02481, 2016.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Di-
verse image synthesis for multiple domains. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

Morteza Daneshmand, Ahmed Helmi, Egils Avots, Fatemeh Noroozi, Fatih
Alisinanoglu, Hasan Sait Arslan, Jelena Gorbova, Rain Eric Haamer, Cagri
Ozcinar, and Gholamreza Anbarjafari. 3d scanning: A comprehensive survey.
arXiv preprint arXiv:1801.08863, 2018.

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel,
Aditya Kusupati, Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak
Gadre, Eli VanderBilt, Aniruddha Kembhavi, Carl Vondrick, Georgia
Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi. Objaverse-XL:
A universe of 10M+ 3D objects. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli
VanderBilt, Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali
Farhadi. Objaverse: A universe of annotated 3d objects. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2023.

Johanna Delanoy, Adrien Bousseau, Mathieu Aubry, Phillip Isola, and
Alexei A Efros. What you sketch is what you get: 3d sketching using
multi-view deep volumetric prediction. In ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (I13D), 2018.

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-
supervised NeRF: Fewer views and faster training for free. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

Kangle Deng, Gengshan Yang, Deva Ramanan, and Jun-Yan Zhu. 3d-aware
conditional image synthesis. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

Kangle Deng, Timothy Omernick, Alexander Weiss, Deva Ramanan, Jun-Yan
Zhu, Tinghui Zhou, and Maneesh Agrawala. Flashtex: Fast relightable mesh

Bibliography

texturing with lightcontrolnet. In European Conference on Computer Vision
(ECCV), 2024.

[42] Kangle Deng, Hsueh-Ti Derek Liu, Yiheng Zhu, Xiaoxia Sun, Chong Shang,
Kiran Bhat, Deva Ramanan, Jun-Yan Zhu, Maneesh Agrawala, and Tinghui
Zhou. Efficient autoregressive shape generation via octree-based adaptive
tokenization. In IEEE International Conference on Computer Vision (ICCV), 2025.

[43] Yuan Dong, Qi Zuo, Xiaodong Gu, Weihao Yuan, Zhengyi Zhao, Zilong
Dong, Liefeng Bo, and Qixing Huang. GPLD3D: Latent diffusion of 3D
shape generative models by enforcing geometric and physical priors. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

[44] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang,
Angela Fan, et al. The Llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

[45] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for
high-resolution image synthesis. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[46] Pablo Funes and Jordan Pollack. Evolutionary body building: Adaptive
physical designs for robots. Artificial Life, 1998.

[47] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. Deep

inverse rendering for high-resolution svbrdf estimation from an arbitrary
number of images. In ACM SIGGRAPH, 2019.

[48] Ruihan Gao, Kangle Deng, Gengshan Yang, Wenzhen Yuan, and Jun-Yan
Zhu. Tactile dreamfusion: Exploiting tactile sensing for 3d generation. In
Advances in Neural Information Processing Systems (NeurIPS), 2024.

[49] Michael Garland and Paul S. Heckbert. Surface simplification using quadric
error metrics. In ACM SIGGRAPH, 1997.

[50] Michael Garland and Yuan Zhou. Quadric-based simplification in any di-
mension. In ACM Transactions on Graphics (TOG), 2005.

[61] Jiahao Ge, Mingjun Zhou, Wenrui Bao, Hao Xu, and Chi-Wing Fu. Creating
LEGO figurines from single images. In ACM Transactions on Graphics (TOG),
2024.

[52] Jiahao Ge, Mingjun Zhou, and Chi-Wing Fu. Learn to create simple LEGO
micro buildings. In ACM Transactions on Graphics (TOG), 2024.

[63] Andrew Goldberg, Kavish Kondap, Tianshuang Qiu, Zehan Ma, Letian Fu,
Justin Kerr, Huang Huang, Kaiyuan Chen, Kuan Fang, and Ken Goldberg.
Blox-Net: Generative design-for-robot-assembly using VLM supervision,

119

Bibliography

physics, simulation, and a robot with reset. In IEEE International Conference
on Robotics & Automation (ICRA), 2025.

[54] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2014.

[55] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A
style-based 3d aware generator for high-resolution image synthesis. In
International Conference on Learning Representations (ICLR), 2022.

[56] Minghao Guo, Bohan Wang, Pingchuan Ma, Tianyuan Zhang, Crystal Elaine
Owens, Chuang Gan, Joshua B. Tenenbaum, Kaiming He, and Wojciech
Matusik. Physically compatible 3D object modeling from a single image. In
Advances in Neural Information Processing Systems (NeurIPS), 2025.

[57] Gurobi Optimization, LLC. Gurobi Optimizer reference manual, 2023. URL
https://www.gurobi. com.

[58] Zekun Hao, David W Romero, Tsung-Yi Lin, and Ming-Yu Liu. Meshtron:
High-fidelity, artist-like 3d mesh generation at scale. arXiv preprint
arXiv:2412.09548, 2024.

[59] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and
Angjoo Kanazawa. Instruct-nerf2nerf: Editing 3d scenes with instructions.
In IEEE International Conference on Computer Vision (ICCV), 2023.

[60] Paul Henderson, Vagia Tsiminaki, and Christoph Lampert. Leveraging 2D
data to learn textured 3D mesh generation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[61] Philipp Henzler, Niloy] Mitra, and Tobias Ritschel. Escaping plato’s cave:
3d shape from adversarial rendering. In IEEE International Conference on
Computer Vision (ICCV), 2019.

[62] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and
Daniel Cohen-Or. Prompt-to-prompt image editing with cross attention
control. arXiv preprint arXiv:2208.01626, 2022.

[63] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. Gans trained by a two time-scale update rule converge
to a local nash equilibrium. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[64] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[65] Fangzhou Hong, Jiaxiang Tang, Ziang Cao, Min Shi, Tong Wu, Zhaoxi Chen,

120

https://www.gurobi.com

[66]

[67]

[68]

[69]

[72]

[73]

[74]

[75]

Bibliography

Tengfei Wang, Liang Pan, Dahua Lin, and Ziwei Liu. 3DTopia: Large
text-to-3D generation model with hybrid diffusion priors. arXiv preprint
arXiv:2403.02234, 2024.

Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng
Liu, Kalyan Sunkavalli, Trung Bui, and Hao Tan. Lrm: Large reconstruc-
tion model for single image to 3d. In International Conference on Learning
Representations (ICLR), 2024.

Hsin-Ping Huang, Hung-Yu Tseng, Hsin-Ying Lee, and Jia-Bin Huang. Se-
mantic view synthesis. In European Conference on Computer Vision (ECCV),
2020.

Philip Huang, Ruixuan Liu, Shobhit Aggarwal, Changliu Liu, and Jiaoyang
Li. Apex-mr: Multi-robot asynchronous planning and execution for coopera-
tive assembly. In Robotics: Science and Systems, 2025.

Siyuan Huang, Zan Wang, Puhao Li, Baoxiong Jia, Tengyu Liu, Yixin Zhu,
Wei Liang, and Song-Chun Zhu. Diffusion-based generation, optimization,
and planning in 3D scenes. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal
unsupervised image-to-image translation. In European Conference on Computer
Vision (ECCV), 2018.

Yukun Huang, Jianan Wang, Yukai Shi, Xianbiao Qi, Zheng-Jun Zha, and
Lei Zhang. Dreamtime: An improved optimization strategy for text-to-3d

content creation. In International Conference on Learning Representations (ICLR),
2025.

Zeng Huang, Tianye Li, Weikai Chen, Yajie Zhao, Jun Xing, Chloe Legendre,
Linjie Luo, Chongyang Ma, and Hao Li. Deep volumetric video from very

sparse multi-view performance capture. In European Conference on Computer
Vision (ECCV), 2018.

Minyoung Huh, Brian Cheung, Pulkit Agrawal, and Phillip Isola. Straighten-
ing out the straight-through estimator: Overcoming optimization challenges

in vector quantized networks. In International Conference on Machine Learning
(ICML), 2023.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching
interface for 3d freeform design. In ACM SIGGRAPH, 1999.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
image translation with conditional adversarial networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

121

Bibliography

[76] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard
Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman,
Andrew Davison, et al. Kinectfusion: real-time 3d reconstruction and inter-
action using a moving depth camera. In Proceedings of the 24th annual ACM
symposium on User interface software and technology (UIST), 2011.

[77] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zis-
serman, and Joao Carreira. Perceiver: General perception with iterative
attention. In International Conference on Machine Learning (ICML), 2021.

[78] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf on a diet: Seman-
tically consistent few-shot view synthesis. In IEEE International Conference on
Computer Vision (ICCV), 2021.

[79] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik
Aances. Large scale multi-view stereopsis evaluation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[80] Kaiwen Jiang, Shu-Yu Chen, Feng-Lin Liu, Hongbo Fu, and Lin Gao. Nerf-
faceediting: Disentangled face editing in neural radiance fields. In ACM
SIGGRAPH Asia, 2022.

[81] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-
time style transfer and super-resolution. In European Conference on Computer
Vision (ECCV), 2016.

[82] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo
Kanade, Shohei Nobuhara, and Yaser Sheikh. Panoptic studio: A massively
multiview system for social motion capture. In IEEE International Conference
on Computer Vision (ICCV), 2015.

[83] Tao Ju, Frank Losasso, Scott Schaefer, and Joe D. Warren. Dual contouring of
hermite data. In ACM Transactions on Graphics (TOG), 2002.

[84] James T Kajiya and Brian P Von Herzen. Ray tracing volume densities. In
ACM SIGGRAPH, 1984.

[85] Takeo Kanade, PJ] Narayanan, and Peter W Rander. Virtualized reality:
Concepts and early results. In Proceedings IEEE Workshop on Representation of
Visual Scenes, 1995.

[86] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator archi-
tecture for generative adversarial networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[87] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Analyzing and improving the image quality of StyleGAN. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

122

Bibliography

[88] Tero Karras, Miika Aittala, Samuli Laine, Erik Harkonen, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Alias-free generative adversarial networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[89] Oren Katzir, Or Patashnik, Daniel Cohen-Or, and Dani Lischinski. Noise-free
score distillation. In International Conference on Learning Representations (ICLR),
2024.

[90] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Dret-
takis. 3d gaussian splatting for real-time radiance field rendering. In ACM
Transactions on Graphics (TOG), 2023.

[91] Natasha Kholgade, Tomas Simon, Alexei Efros, and Yaser Sheikh. 3d ob-
ject manipulation in a single photograph using stock 3d models. In ACM
Transactions on Graphics (TOG), 2014.

[92] Jae Woo Kim. Survey on automated LEGO assembly construction. In Interna-
tional Conference on Advanced Communication Technology (ICACT), 2014.

[93] Jungtaek Kim, Hyunsoo Chung, Jinhwi Lee, Minsu Cho, and Jaesik Park.
Combinatorial 3D shape generation via sequential assembly. arXiv preprint
arXiv:2004.07414, 2020.

[94] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes,
2013.

[95] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing
nerf for editing via feature field distillation. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[96] Black Forest Labs. Flux. https://huggingface.co/black-forest-labs/
FLUX.1-schnell, 2024.

[97] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen,
and Timo Aila. Modular primitives for high-performance differentiable
rendering. In ACM SIGGRAPH, 2020.

[98] LDraw.org. Ldraw.org homepage, 2025. URL https://www.ldraw.org/.

[99] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards
diverse and interactive facial image manipulation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[100] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han.
Autoregressive image generation using residual quantization. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2022.

[101] Kyle Lennon, Katharina Fransen, Alexander O’Brien, Yumeng Cao, Matthew
Beveridge, Yamin Arefeen, Nikhil Singh, and Iddo Drori. Image2Lego: Cus-
tomized LEGO set generation from images. arXiv preprint arXiv:2108.08477,

123

https://huggingface.co/black-forest-labs/FLUX.1-schnell
https://huggingface.co/black-forest-labs/FLUX.1-schnell
https://www.ldraw.org/

Bibliography

2021.

[102] Marc Levoy and Pat Hanrahan. Light field rendering. In ACM SIGGRAPH,
1996.

[103] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong
Hong, Kalyan Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast
text-to-3d with sparse-view generation and large reconstruction model. In
International Conference on Learning Representations (ICLR), 2024.

[104] Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. Diffusion-sdf: Text-to-
shape via voxelized diffusion. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

[105] Weiyu Li, Rui Chen, Xuelin Chen, and Ping Tan. Sweetdreamer: Aligning
geometric priors in 2d diffusion for consistent text-to-3d. In International
Conference on Learning Representations (ICLR), 2024.

[106] Weiyu Li, Jiarui Liu, Hongyu Yan, Rui Chen, Yixun Liang, Xuelin Chen, Ping
Tan, and Xiaoxiao Long. Craftsman3d: High-fidelity mesh generation with
3d native generation and interactive geometry refiner. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2025.

[107] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng
Gao, Chunyuan Li, and Yong Jae Lee. Gligen: Open-set grounded text-
to-image generation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

[108] Zhenggqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene
flow fields for space-time view synthesis of dynamic scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[109] Zhenggqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. Materials for
masses: Svbrdf acquisition with a single mobile phone image. In European
Conference on Computer Vision (ECCV), 2018.

[110] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. Barf:
Bundle-adjusting neural radiance fields. In IEEE International Conference on
Computer Vision (ICCV), 2021.

[111] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng,
Xun Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin.
Magic3d: High-resolution text-to-3d content creation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[112] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Com-

124

Bibliography

mon objects in context. In European Conference on Computer Vision (ECCV),
2014.

[113] Yehonathan Litman, Or Patashnik, Kangle Deng, Aviral Agrawal, Rushikesh
Zawar, Fernando De la Torre, and Shubham Tulsiani. Materialfusion: En-
hancing inverse rendering with material diffusion priors. In International
Conference on 3D Vision (3DV), 2025.

[114] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.
Neural sparse voxel fields. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[115] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image
translation networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[116] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang
Xu, and Hao Su. One-2-3-45: Any single image to 3d mesh in 45 seconds
without per-shape optimization. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

[117] Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue
Wei, Hansheng Chen, Chong Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++:
Fast single image to 3d objects with consistent multi-view generation and
3d diffusion. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2024.

[118] Minghua Liu, Chong Zeng, Xinyue Wei, Ruoxi Shi, Linghao Chen, Chao
Xu, Mengqi Zhang, Zhaoning Wang, Xiaoshuai Zhang, Isabella Liu, et al.
Meshformer: High-quality mesh generation with 3d-guided reconstruction
model. In Advances in Neural Information Processing Systems (NeurIPS), 2025.

[119] Ruixuan Liu, Kangle Deng, Ziwei Wang, and Changliu Liu. Stablelego:
Stability analysis of block stacking assembly. In IEEE Robotics and Automation
Letters (RA-L), 2024.

[120] Ruixuan Liu, Yifan Sun, and Changliu Liu. A lightweight and transferable
design for robust LEGO manipulation. International Symposium on Flexible
Automation, 2024.

[121] Ruixuan Liu, Alan Chen, Weiye Zhao, and Changliu Liu. Physics-aware
combinatorial assembly sequence planning using data-free action masking.
In IEEE Robotics and Automation Letters (RA-L), 2025.

[122] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Za-
kharov, and Carl Vondrick. Zero-1-to-3: Zero-shot one image to 3d object. In
IEEE International Conference on Computer Vision (ICCV), 2023.

125

Bibliography

[123] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Za-
kharov, and Carl Vondrick. Zero-1-to-3: Zero-shot one image to 3d object. In
IEEE International Conference on Computer Vision (ICCV), 2023.

[124] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang, Jun-Yan Zhu,
and Bryan Russell. Editing conditional radiance fields. In IEEE International
Conference on Computer Vision (ICCV), 2021.

[125] Xueyi Liu, Bin Wang, He Wang, and Li Yi. Few-shot physically-aware
articulated mesh generation via hierarchical deformation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2023.

[126] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of International Conference on Computer
Vision (ICCV), 2015.

[127] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie
Liu, Yuexin Ma, Song-Hai Zhang, Marc Habermann, Christian Theobalt,
et al. Wonder3d: Single image to 3d using cross-domain diffusion. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

[128] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie
Liu, Yuexin Ma, Song-Hai Zhang, Marc Habermann, Christian Theobalt,
et al. Wonder3d: Single image to 3d using cross-domain diffusion. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

[129] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution
3d surface construction algorithm. In Seminal graphics: pioneering efforts that
shaped the field, 1998.

[130] Artem Lukoianov, Haitz Sdez de Océriz Borde, Kristjan Greenewald, Vi-
tor Campagnolo Guizilini, Timur Bagautdinov, Vincent Sitzmann, and Justin
Solomon. Score distillation via reparametrized ddim. In Advances in Neural
Information Processing Systems (NeurIPS), 2024.

[131] Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji,
and Rui Wang. 3d shape reconstruction from sketches via multi-view convo-
lutional networks. In International Conference on 3D Vision (3DV), 2017.

[132] Sheng-Jie Luo, Yonghao Yue, Chun-Kai Huang, Yu-Huan Chung, Sei Imai,

Tomoyuki Nishita, and Bing-Yu Chen. Legolization: optimizing LEGO
designs. In ACM Transactions on Graphics (TOG), 2015.

[133] Liane Makatura, Michael Foshey, Bohan Wang, Felix HihnLein, Pingchuan
Ma, Bolei Deng, Megan Tjandrasuwita, Andrew Spielberg, Crystal Elaine
Owens, Peter Yichen Chen, et al. How can large language models help
humans in design and manufacturing? arXiv preprint arXiv:2307.14377, 2023.

126

Bibliography

[134] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Bar-
ron, Alexey Dosovitskiy, and Daniel Duckworth. NeRF in the Wild: Neural
Radiance Fields for Unconstrained Photo Collections. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[135] David McAllister, Songwei Ge, Jia-Bin Huang, David W. Jacobs, Alexei A.
Efros, Aleksander Holynski, and Angjoo Kanazawa. Rethinking score dis-
tillation as a bridge between image distributions. In Advances in Neural
Information Processing Systems (NeurIPS), 2024.

[136] Donald Meagher. Geometric modeling using octree encoding. Computer
graphics and image processing, 1982.

[137] Donald JR Meagher. Octree encoding: A new technique for the representation,
manipulation and display of arbitrary 3-d objects by computer. Electrical and
Systems Engineering Department Rensseiaer Polytechnic, 1980.

[138] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan
Zhu, and Stefano Ermon. SDEdit: Guided image synthesis and editing
with stochastic differential equations. In International Conference on Learning
Representations (ICLR), 2022.

[139] Quan Meng, Anpei Chen, Haimin Luo, Minye Wu, Hao Su, Lan Xu, Xuming
He, and Jingyi Yu. Gnerf: Gan-based neural radiance field without posed
camera. In IEEE International Conference on Computer Vision (ICCV), 2021.

[140] Quan Meng, Lei Li, Matthias Niefsner, and Angela Dai. Lt3sd: Latent trees
for 3d scene diffusion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2025.

[141] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training
methods for gans do actually converge? In International Conference on Machine
Learning (ICML), 2018.

[142] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin,
and Andreas Geiger. Occupancy networks: Learning 3d reconstruction in
function space. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[143] Moustafa Meshry, Dan B. Goldman, Sameh Khamis, Hugues Hoppe, Rohit
Pandey, Noah Snavely, and Ricardo Martin-Brualla. Neural rerendering
in the wild. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[144] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-
Or. Latent-nerf for shape-guided generation of 3d shapes and textures. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

127

Bibliography

[145] Mariem Mezghanni, Malika Boulkenafed, Andre Lieutier, and Maks Ovs-
janikov. Physically-aware generative network for 3D shape modeling. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[146] Mariem Mezghanni, Théo Bodrito, Malika Boulkenafed, and Maks Ovs-
janikov. Physical simulation layer for accurate 3D modeling. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2022.

[147] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka.
Text2mesh: Text-driven neural stylization for meshes. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[148] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi
Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field
fusion: Practical view synthesis with prescriptive sampling guidelines. ACM
Transactions on Graphics (TOG), 2019.

[149] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural ra-

diance fields for view synthesis. In European Conference on Computer Vision
(ECCV), 2020.

[150] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784, 2014.

[151] Vihaan Misra, Peter Schaldenbrand, and Jean Oh. ShapeShift: Towards text-
to-shape arrangement synthesis with content-aware geometric constraints.
arXiv preprint arXiv:2503.14720, 2025.

[152] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying
Shan, and Xiaohu Qie. T2i-adapter: Learning adapters to dig out more
controllable ability for text-to-image diffusion models. arXiv preprint
arXiv:2302.08453, 2023.

[153] Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant
neural graphics primitives with a multiresolution hash encoding. In ACM
SIGGRAPH, 2022.

[154] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen,
Alex Evans, Thomas Miiller, and Sanja Fidler. Extracting Triangular 3D

Models, Materials, and Lighting From Images. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[155] Stylianos Mystakidis. Metaverse. Encyclopedia, 2022.

[156] Gimin Nam, Mariem Khlifi, Andrew Rodriguez, Alberto Tono, Lingi Zhou,
and Paul Guerrero. 3d-ldm: Neural implicit 3d shape generation with latent
diffusion models. arXiv preprint arXiv:2212.00842, 2022.

128

Bibliography

[157] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter Battaglia. PolyGen:
An autoregressive generative model of 3D meshes. In International Conference
on Machine Learning (ICML), 2020.

[158] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H.
Mueller, Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, and Markus
Steinberger. DONeRF: Towards Real-Time Rendering of Compact Neural
Radiance Fields using Depth Oracle Networks. Computer Graphics Forum
(EGSR), 2021.

[159] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-
Liang Yang. Hologan: Unsupervised learning of 3d representations from
natural images. In IEEE International Conference on Computer Vision (ICCV),
2019.

[160] Junfeng Ni, Yixin Chen, Bohan Jing, Nan Jiang, Bin Wang, Bo Dai, Puhao
Li, Yixin Zhu, Song-Chun Zhu, and Siyuan Huang. PhyRecon: Physically
plausible neural scene reconstruction. In Advances in Neural Information
Processing Systems (NeurIPS), 2024.

[161] Fred E Nicodemus. Directional reflectance and emissivity of an opaque
surface. Applied optics, 1965.

[162] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as com-
positional generative neural feature fields. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[163] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall, Mehdi SM Sajjadi,
Andreas Geiger, and Noha Radwan. Regnerf: Regularizing neural radiance
fields for view synthesis from sparse inputs. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[164] Sumiaki Ono, Alexis Andre, Youngha Chang, and Masayuki Nakajima.
LEGO builder: Automatic generation of LEGO assembly manual from 3D
polygon model. ITE Transactions on Media Technology and Applications, 2013.

[165] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc
Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco
Massa, Alaaeldin ElI-Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba,
Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat,
Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust vi-
sual features without supervision. Transactions on Machine Learning Research,
2024.

[166] Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, and Ira
Kemelmacher-Shlizerman. Stylesdf: High-resolution 3d-consistent image

129

Bibliography

and geometry generation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[167] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang,
Adarsh Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh
Khamis, Mingsong Dou, et al. Holoportation: Virtual 3d teleportation in
real-time. In Proceedings of the 29th annual symposium on user interface software
and technology (UIST), 2016.

[168] Xingang Pan, Xudong Xu, Chen Change Loy, Christian Theobalt, and Bo Dai.
A shading-guided generative implicit model for shape-accurate 3d-aware im-
age synthesis. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

[169] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and
Steven Lovegrove. Deepsdf: Learning continuous signed distance functions
for shape representation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[170] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and
Steven Lovegrove. Deepsdf: Learning continuous signed distance functions
for shape representation. In I[EEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[171] Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven M. Seitz.
Photoshape: Photorealistic materials for large-scale shape collections. In
ACM SIGGRAPH Asia, 2018.

[172] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B
Goldman, Steven M. Seitz, and Ricardo Martin-Brualla. Deformable neural
radiance fields. In IEEE International Conference on Computer Vision (ICCV),
2021.

[173] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic
image synthesis with spatially-adaptive normalization. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[174] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic
image synthesis with spatially-adaptive normalization. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[175] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive
learning for unpaired image-to-image translation. In European Conference on
Computer Vision (ECCV), 2020.

[176] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and
surprising subtleties in gan evaluation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

130

Bibliography

[177] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani
Lischinski. Styleclip: Text-driven manipulation of stylegan imagery. In
IEEE International Conference on Computer Vision (ICCV), 2021.

[178] Dario Pavllo, Jonas Kohler, Thomas Hofmann, and Aurelien Lucchi. Learning
generative models of textured 3d meshes from real-world images. In IEEE
International Conference on Computer Vision (ICCV), 2021.

[179] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfu-
sion: Text-to-3d using 2d diffusion. In International Conference on Learning
Representations (ICLR), 2023.

[180] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-
Noguer. D-nerf: Neural radiance fields for dynamic scenes. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2021.

[181] Ava Pun, Kangle Deng, Ruixuan Liu, Deva Ramanan, Changliu Liu, and
Jun-Yan Zhu. Generating physically stable and buildable brick structures
from text. In IEEE International Conference on Computer Vision (ICCV), 2025.

[182] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners.
OpenAl blog, 2019.

[183] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from natural language
supervision. In International Conference on Machine Learning (ICML), 2021.

[184] Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer, Nataniel Ruiz, Ben
Mildenhall, Shiran Zada, Kfir Aberman, Michael Rubinstein, Jonathan Bar-
ron, et al. Dreambooth3d: Subject-driven text-to-3d generation. In IEEE
International Conference on Computer Vision (ICCV), 2023.

[185] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125, 2022.

[186] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf:
Speeding up neural radiance fields with thousands of tiny mlps. In IEEE
International Conference on Computer Vision (ICCV), 2021.

[187] Fabio Remondino. Heritage recording and 3d modeling with photogramme-
try and 3d scanning. Remote sensing, 2011.

[188] Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and
Francis Williams. Xcube: Large-scale 3d generative modeling using sparse
voxel hierarchies. In IEEE Conference on Computer Vision and Pattern Recogni-

131

Bibliography

tion (CVPR), 2024.

[189] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or.
Texture: Text-guided texturing of 3d shapes. In ACM SIGGRAPH, 2023.

[190] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning
deep 3d representations at high resolutions. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[191] Foundation AI Team Roblox. Cube: A roblox view of 3d intelligence. arXiv
preprint arXiv:2503.15475, 2025.

[192] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Bjorn Ommer. High-resolution image synthesis with latent diffusion models.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[193] Nataniel Ruiz, Eunji Chong, and James M. Rehg. Fine-grained head pose
estimation without keypoints. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshop, 2018.

[194] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L
Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan,
Tim Salimans, et al. Photorealistic text-to-image diffusion models with deep
language understanding. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[195] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo
Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit function for high-
resolution clothed human digitization. In IEEE International Conference on
Computer Vision (ICCV), 2019.

[196] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin
Recht, and Angjoo Kanazawa. Plenoxels: Radiance fields without neural
networks. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[197] Sam Sartor and Pieter Peers. Matfusion: a generative diffusion model for
svbrdf capture. In ACM SIGGRAPH Asia, 2023.

[198] Ruwen Schnabel and Reinhard Klein. Octree-based point-cloud compression.
In ACM SIGGRAPH, 2006.

[199] Johannes Lutz Schonberger and Jan-Michael Frahm. Structure-from-motion
revisited. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[200] Edgar Schonfeld, Vadim Sushko, Dan Zhang, Juergen Gall, Bernt Schiele,
and Anna Khoreva. You only need adversarial supervision for semantic
image synthesis. In International Conference on Learning Representations (ICLR),

132

Bibliography

2020.

[201] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon,
Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis,
Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for train-
ing next generation image-text models. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[202] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Gratf:
Generative radiance fields for 3d-aware image synthesis. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[203] Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in
gans. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[204] Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie Li, and Xiao Yang.
Mvdream: Multi-view diffusion for 3d generation. In International Conference
on Learning Representations (ICLR), 2024.

[205] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 3d photog-
raphy using context-aware layered depth inpainting. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[206]] Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and
Gordon Wetzstein. 3d neural field generation using triplane diffusion. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[207] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan, Matthias Niefsner,
and Angela Dai. Texturify: Generating textures on 3d shape surfaces. In
European Conference on Computer Vision (ECCV), 2022.

[208] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi,
Daniele Sirigatti, Vladislav Rosov, Angela Dai, and Matthias Niefiner.
MeshGPT: Generating triangle meshes with decoder-only transformers. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
19615-19625, 2024.

[209] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi,
Daniele Sirigatti, Vladislav Rosov, Angela Dai, and Matthias NiefSner.
Meshgpt: Generating triangle meshes with decoder-only transformers. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

[210] Vincent Sitzmann, Michael Zollhofer, and Gordon Wetzstein. Scene rep-
resentation networks: Continuous 3d-structure-aware neural scene repre-
sentations. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

133

Bibliography

[211] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathain, and Surya Gan-
guli. Deep unsupervised learning using nonequilibrium thermodynamics.
In International Conference on Machine Learning (ICML), 2015.

[212] Chonghyuk Song, Gengshan Yang, Kangle Deng, Jun-Yan Zhu, and Deva
Ramanan. Total-recon: Deformable scene reconstruction for embodied view
synthesis. In IEEE International Conference on Computer Vision (ICCV), 2023.

[213] Zhuo Su, Wenzhe Liu, Zitong Yu, Dewen Hu, Qing Liao, Qi Tian, Matti
Pietikainen, and Li Liu. Pixel difference networks for efficient edge detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[214] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew Davison. iMAP: Implicit
mapping and positioning in real-time. In Proceedings of the International
Conference on Computer Vision (ICCV), 2021.

[215] Jingxiang Sun, Xuan Wang, Yichun Shi, Lizhen Wang, Jue Wang, and Yebin
Liu. Ide-3d: Interactive disentangled editing for high-resolution 3d-aware
portrait synthesis. In ACM Transactions on Graphics (TOG), 2022.

[216] Jingxiang Sun, Xuan Wang, Yong Zhang, Xiaoyu Li, Qi Zhang, Yebin Liu, and
Jue Wang. Fenerf: Face editing in neural radiance fields. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

[217] Jingxiang Sun, Bo Zhang, Ruizhi Shao, Lizhen Wang, Wen Liu, Zhenda Xie,
and Yebin Liu. Dreamcraft3d: Hierarchical 3d generation with bootstrapped
diffusion prior. In International Conference on Learning Representations (ICLR),
2024.

[218] Richard Szeliski. Rapid octree construction from image sequences. CVGIP:
Image understanding, 1993.

[219] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual slam algo-
rithms: A survey from 2010 to 2016. IPS] transactions on computer vision and
applications, 2017.

[220] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P.
Srinivasan, Jonathan T. Barron, and Ren Ng. Learned initializations for
optimizing coordinate-based neural representations. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[221] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P
Srinivasan, Jonathan T Barron, and Ren Ng. Learned initializations for
optimizing coordinate-based neural representations. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[222] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dream-
gaussian: Generative gaussian splatting for efficient 3d content creation. In

134

Bibliography

International Conference on Learning Representations (ICLR), 2024.

[223] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and
Ziwei Liu. LGM: Large multi-view gaussian model for high-resolution 3D
content creation. In European Conference on Computer Vision (ECCV), 2025.

[224] Jiaxiang Tang, Zhaoshuo Li, Zekun Hao, Xian Liu, Gang Zeng, Ming-Yu
Liu, and Qinsheng Zhang. Edgerunner: Auto-regressive auto-encoder for
artistic mesh generation. In International Conference on Learning Representations
(ICLR), 2025.

[225] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree gener-
ating networks: Efficient convolutional architectures for high-resolution 3d
outputs. In IEEE International Conference on Computer Vision (ICCV), 2017.

[226] Romain Pierre Testuz, Yuliy Schwartzburg, and Mark Pauly. Automatic
generation of constructable brick sculptures. Technical report, Ecole Poly-
technique Fédérale de Lausanne, 2013.

[227] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian Bernard, Hans-
Peter Seidel, Patrick Pérez, Michael Zollhofer, and Christian Theobalt. Sty-
lerig: Rigging stylegan for 3d control over portrait images. In I[EEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[228] Rylee Thompson, Elahe Ghalebi, Terrance DeVries, and Graham W Tay-
lor. Building lego using deep generative models of graphs. arXiv preprint
arXiv:2012.11543, 2020.

[229] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual
autoregressive modeling: Scalable image generation via next-scale prediction.
In Advances in Neural Information Processing Systems (NeurIPS), 2025.

[230] TobyLobster. ImportLDraw - blender add-on for importing LDraw models.
https://github.com/TobyLobster/ImportLDraw, 2025.

[231] Dmitry Tochilkin, David Pankratz, Zexiang Liu, Zixuan Huang, , Adam Letts,
Yangguang Li, Ding Liang, Christian Laforte, Varun Jampani, and Yan-Pei

Cao. Triposr: Fast 3d object reconstruction from a single image. arXiv preprint
arXiv:2403.02151, 2024.

[232] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or.
Designing an encoder for stylegan image manipulation. In ACM Transactions
on Graphics (TOG), 2021.

[233] Uy Dieu Tran, Minh Luu, Phong Ha Nguyen, Khoi Nguyen, and Binh-Son
Hua. Diverse text-to-3d synthesis with augmented text embedding. In
European Conference on Computer Vision (ECCV), 2024.

[234] Richard Tucker and Noah Snavely. Single-view view synthesis with multi-

135

https://github.com/TobyLobster/ImportLDraw

Bibliography

plane images. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[235] Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten
Kreis, et al. Lion: Latent point diffusion models for 3d shape generation. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

[236] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[237] Giuseppe Vecchio, Renato Sortino, Simone Palazzo, and Concetto Spamp-
inato. Matfuse: Controllable material generation with diffusion models.
arXiv preprint arXiv:2308.11408, 2023.

[238] Giuseppe Vecchio, Rosalie Martin, Arthur Roullier, Adrien Kaiser, Romain
Rouffet, Valentin Deschaintre, and Tamy Boubekeur. Controlmat: Controlled
generative approach to material capture. In ACM Transactions on Graphics
(TOG), 2024.

[239] Alexander Vilesov, Pradyumna Chari, and Achuta Kadambi. CG3D: Com-
positional generation for text-to-3D via Gaussian splatting. arXiv preprint
arXiv:2311.17907, 2023.

[240] Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao.
Clip-nerf: Text-and-image driven manipulation of neural radiance fields. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[241] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Greg
Shakhnarovich. Score jacobian chaining: Lifting pretrained 2d diffusion
models for 3d generation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

[242] Peng-Shuai Wang. Octformer: Octree-based transformers for 3D point clouds.
In ACM Transactions on Graphics (TOG), 2023.

[243] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong.
O-cnn: Octree-based convolutional neural networks for 3d shape analysis.
In ACM Transactions on Graphics (TOG), 2017.

[244] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. Adaptive o-cnn:
A patch-based deep representation of 3d shapes. In ACM Transactions on
Graphics (TOG), 2018.

[245] Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard
Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, and
Thomas Funkhouser. Ibrnet: Learning multi-view image-based rendering.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

136

Bibliography

[246] Ruocheng Wang, Yunzhi Zhang, Jiayuan Mao, Chin-Yi Cheng, and Jiajun Wu.
Translating a visual lego manual to a machine-executable plan. In European
Conference on Computer Vision (ECCV), 2022.

[247] Tengfei Wang, Ting Zhang, Bo Zhang, Hao Ouyang, Dong Chen, Qifeng
Chen, and Fang Wen. Pretraining is all you need for image-to-image transla-
tion. arXiv preprint arXiv:2205.12952, 2022.

[248] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and
Bryan Catanzaro. High-resolution image synthesis and semantic manipula-

tion with conditional gans. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[249] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and
Jun Zhu. Prolificdreamer: High-fidelity and diverse text-to-3d generation
with variational score distillation. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

[250] Zhengyi Wang, Jonathan Lorraine, Yikai Wang, Hang Su, Jun Zhu, Sanja
Fidler, and Xiaohui Zeng. Llama-mesh: Unifying 3d mesh generation with
language models. arXiv preprint arXiv:2411.09595, 2024.

[251] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image
quality assessment: from error visibility to structural similarity. In IEEE
Transactions on Image Processing (TIP), 2004.

[252] Zian Wang, Jonah Philion, Sanja Fidler, and Jan Kautz. Learning indoor
inverse rendering with 3d spatially-varying lighting. In IEEE International
Conference on Computer Vision (ICCV), 2021.

[253] Ethan Weber, Aleksander Holynski, Varun Jampani, Saurabh Saxena, Noah
Snavely, Abhishek Kar, and Angjoo Kanazawa. Nerfiller: Completing scenes

via generative 3d inpainting. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

[254] Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu, and Jie Zhou.
Nerfingmvs: Guided optimization of neural radiance fields for indoor multi-
view stereo. In IEEE International Conference on Computer Vision (ICCV), 2021.

[255] Haohan Weng, Zibo Zhao, Biwen Lei, Xianghui Yang, Jian Liu, Zeqgiang
Lai, Zhuo Chen, Yuhong Liu, Jie Jiang, Chunchao Guo, et al. Scaling mesh
generation via compressive tokenization. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2025.

[256] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised
learning of probably symmetric deformable 3d objects from images in the
wild. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

137

Bibliography

[257] Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun
Cao, and Yao Yao. Direct3d: Scalable image-to-3d generation via 3d latent
diffusion transformer. In Advances in Neural Information Processing Systems

(NeurIPS), 2024.

[258] Zhennan Wu, Yang Li, Han Yan, Taizhang Shang, Weixuan Sun, Senbo Wang,
Ruikai Cui, Weizhe Liu, Hiroyuki Sato, Hongdong Li, et al. Blockfusion:
Expandable 3d scene generation using latent tri-plane extrapolation. In ACM
Transactions on Graphics (TOG), 2024.

[259] Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen
Zhang, Dong Chen, Xin Tong, and Jiaolong Yang. Structured 3d latents for
scalable and versatile 3d generation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2025.

[260] Xiaohua Xie, Kai Xu, Niloy] Mitra, Daniel Cohen-Or, Wenyong Gong, Qi Su,
and Baoquan Chen. Sketch-to-design: Context-based part assembly. In
Computer Graphics Forum, 2013.

[261] Bojun Xiong, Si-Tong Wei, Xin-Yang Zheng, Yan-Pei Cao, Zhouhui Lian, and
Peng-Shuai Wang. Octfusion: Octree-based diffusion models for 3d shape
generation. arXiv preprint arXiv:2408.14732, 2024.

[262] Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying
Shan. Instantmesh: Efficient 3d mesh generation from a single image with

sparse-view large reconstruction models. arXiv preprint arXiv:2404.07191,
2024.

[263] Linning Xu, Vasu Agrawal, William Laney, Tony Garcia, Aayush Bansal,
Changil Kim, Samuel Rota Bulo, Lorenzo Porzi, Peter Kontschieder, Aljaz
Bozi¢, et al. Vr-nerf: High-fidelity virtualized walkable spaces. In ACM
SIGGRAPH Asia, 2023.

[264] Qingshan Xu, Jiao Liu, Melvin Wong, Caishun Chen, and Yew-Soon Ong.
Precise-physics driven text-to-3D generation. arXiv preprint arXiv:2403.12438,
2024.

[265] Xudong Xu, Zhaoyang Lyu, Xingang Pan, and Bo Dai. Matlaber: Material-
aware text-to-3d via latent brdf auto-encoder. arXiv preprint arXiv:2308.09278,
2023.

[266] Yinghao Xu, Sida Peng, Ceyuan Yang, Yujun Shen, and Bolei Zhou. 3d-aware
image synthesis via learning structural and textural representations. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[267] Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi,
Kalyan Sunkavalli, Gordon Wetzstein, Zexiang Xu, and Kai Zhang. Dmv3d:
Denoising multi-view diffusion using 3d large reconstruction model. In

138

Bibliography

International Conference on Learning Representations (ICLR), 2024.

[268] Yandan Yang, Baoxiong Jia, Peiyuan Zhi, and Siyuan Huang. PhyScene: Phys-
ically interactable 3D scene synthesis for embodied Al. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

[269] Shunyu Yao, Tzu Ming Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, Bill
Freeman, and Josh Tenenbaum. 3d-aware scene manipulation via inverse
graphics. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[270] Junliang Ye, Fangfu Liu, Qixiu Li, Zhengyi Wang, Yikai Wang, Xinzhou
Wang, Yueqi Duan, and Jun Zhu. Dreamreward: Text-to-3d generation with
human preference. In European Conference on Computer Vision (ECCV), 2024.

[271] Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip
Isola, and Tsung-Yi Lin. iNeRF: Inverting neural radiance fields for pose

estimation. In IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS), 2021.

[272] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
Plenoctrees for real-time rendering of neural radiance fields. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2021.

[273] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. Pixelnerf: Neu-
ral radiance fields from one or few images. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[274] Rui Yu, Yue Dong, Pieter Peers, and Xin Tong. Learning texture generators
for 3d shape collections from internet photo sets. In The British Machine Vision
Conference (BMVC), 2021.

[275] Ye Yuan, Jiaming Song, Umar Igbal, Arash Vahdat, and Jan Kautz. PhysD-
iff: Physics-guided human motion diffusion model. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[276] Andy Zeng, Shuran Song, Matthias NiefSner, Matthew Fisher, Jianxiong Xiao,
and Thomas Funkhouser. 3dmatch: Learning local geometric descriptors

from rgb-d reconstructions. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[277] Xianfang Zeng, Xin Chen, Zhongqi Qi, Wen Liu, Zibo Zhao, Zhibin Wang,
BIN FU, Yong Liu, and Gang Yu. Paint3d: Paint anything 3d with lighting-

less texture diffusion models. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

[278] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka.
3dshape2vecset: A 3d shape representation for neural fields and genera-
tive diffusion models. In ACM Transactions on Graphics (TOG), 2023.

139

Bibliography

[279] Jichao Zhang, Enver Sangineto, Hao Tang, Aliaksandr Siarohin, Zhun Zhong,
Nicu Sebe, and Wei Wang. 3d-aware semantic-guided generative model for
human synthesis. In European Conference on Computer Vision (ECCV), 2022.

[280] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Ana-
lyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492,
2020.

[281] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan
Sunkavalli, and Zexiang Xu. Gs-Irm: Large reconstruction model for 3d
gaussian splatting. In European Conference on Computer Vision (ECCV), 2024.

[282] Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Angi Pang, Haoran
Jiang, Wei Yang, Lan Xu, and Jingyi Yu. Clay: A controllable large-scale
generative model for creating high-quality 3d assets. In ACM Transactions on
Graphics (TOG), 2024.

[283] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional
control to text-to-image diffusion models. In IEEE International Conference on
Computer Vision (ICCV), 2023.

[284] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
The unreasonable effectiveness of deep features as a perceptual metric. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[285] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
The unreasonable effectiveness of deep features as a perceptual metric. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[286] Minda Zhao, Chaoyi Zhao, Xinyue Liang, Lincheng Li, Zeng Zhao, Zhipeng
Hu, Changjie Fan, and Xin Yu. Efficientdreamer: High-fidelity and robust 3d
creation via orthogonal-view diffusion prior. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

[287] Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, Bin
Fu, Tao Chen, Gang Yu, and Shenghua Gao. Michelangelo: Conditional 3d
shape generation based on shape-image-text aligned latent representation.
In Advances in Neural Information Processing Systems (NeurIPS), 2023.

[288] Zibo Zhao, Zeqgiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui
Yang, Yifei Feng, Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hun-
yuan3d 2.0: Scaling diffusion models for high resolution textured 3d assets
generation. arXiv preprint arXiv:2501.12202, 2025.

[289] Guyue Zhou, Liyi Luo, Hao Xu, Xinliang Zhang, Haole Guo, and Hao Zhao.
Brick yourself within 3 minutes. In IEEE International Conference on Robotics
& Automation (ICRA), 2022.

140

Bibliography

[290] J. Zhou, X. Chen, and Y. Xu. Automatic generation of vivid LEGO architec-
tural sculptures. Computer Graphics Forum, 2019.

[291] Lingi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion
through point-voxel diffusion. In IEEE International Conference on Computer
Vision (ICCV), 2021.

[292] Mingjun Zhou, Jiahao Ge, Hao Xu, and Chi-Wing Fu. Computational design
of LEGO® sketch art. In ACM Transactions on Graphics (TOG), 2023.

[293] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain gan inver-
sion for real image editing. In European Conference on Computer Vision (ECCV),
2020.

[294] Jun-Yan Zhu, Philipp Krahenbiihl, Eli Shechtman, and Alexei A Efros. Gen-
erative visual manipulation on the natural image manifold. In European
Conference on Computer Vision (ECCV), 2016.

[295] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In
IEEE International Conference on Computer Vision (ICCV), 2017.

[296] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros,
Oliver Wang, and Eli Shechtman. Toward multimodal image-to-image trans-
lation. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[297] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Tor-
ralba, Josh Tenenbaum, and Bill Freeman. Visual object networks: Image
generation with disentangled 3d representations. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[298] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka. Sean: Image
synthesis with semantic region-adaptive normalization. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[299] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng
Cui, Martin R. Oswald, and Marc Pollefeys. Nice-slam: Neural implicit
scalable encoding for slam. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[300] Jingyu Zhuang, Chen Wang, Liang Lin, Lingjie Liu, and Guanbin Li.

Dreameditor: Text-driven 3d scene editing with neural fields. In ACM
SIGGRAPH Asia, 2023.

[301] Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Yan-
Pei Cao, and Song-Hai Zhang. Triplane meets gaussian splatting: Fast and
generalizable single-view 3d reconstruction with transformers. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

141

	1 Introduction
	1.1 Background
	1.2 Challenges
	1.3 Dissertation Overview
	1.4 Other Research

	I Sparse-view 3D Reconstruction
	2 Depth-supervised NeRF: Fewer Views and Faster Training for Free
	2.1 Introduction
	2.2 Related Work
	2.3 Depth-Supervised Ray Termination
	2.3.1 Volumetric rendering revisited
	2.3.2 Deriving depth-supervision

	2.4 Experiments
	2.4.1 Datasets
	2.4.2 Comparisons
	2.4.3 Few-input view synthesis
	2.4.4 Depth error
	2.4.5 Analysis

	2.5 Discussion.

	II 3D Asset Generation
	3 3D-aware Conditional Image Synthesis
	3.1 Introduction
	3.2 Related Work
	3.3 Method
	3.3.1 Conditional 3D Generative Models
	3.3.2 Learning Objective

	3.4 Experiment
	3.4.1 Evaluation metrics
	3.4.2 Baseline comparison
	3.4.3 Applications

	3.5 Discussion

	4 Efficient Autoregressive Shape Generation via Octree-Based Adaptive Tokenization
	4.1 Introduction
	4.2 Related Work
	4.3 Method
	4.3.1 Complexity-Driven Octree Construction
	4.3.2 Adaptive shape tokenization with OAT
	4.3.3 OctreeGPT: Autoregressive Shape Generation

	4.4 Experiments
	4.4.1 Shape Reconstruction
	4.4.2 Shape Generation

	4.5 Discussion

	5 Fast Relightable Mesh Texturing with LightControlNet
	5.1 Introduction
	5.2 Related Work
	5.3 Preliminaries
	5.4 Method
	5.4.1 LightControlNet
	5.4.2 Stage 1: Multi-view Visual Prompting
	5.4.3 Stage 2: Texture Optimization

	5.5 Experiments
	5.6 Discussion

	III Physical Asset Generation
	6 Generating Physically Stable and Buildable Brick Structures from Text
	6.1 Introduction
	6.2 Related Work
	6.3 Dataset
	6.4 Method
	6.4.1 Model Fine-tuning
	6.4.2 Integrating Physical Stability
	6.4.3 Brick Texturing and Coloring

	6.5 Experiments
	6.5.1 Implementation Details
	6.5.2 Brick Structure Generation Results
	6.5.3 Extensions and Applications

	6.6 Discussion

	7 Conclusions
	7.1 Discussion
	7.2 Future Work

	Bibliography

