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Abstract

With the popularity of Virtual Reality (VR), Augmented Reality (AR),
and other 3D applications, developing methods that let everyday users
capture and create their own 3D content has become increasingly essen-
tial. Current 3D creation pipelines, however, often require tedious man-
ual effort or specialized capture setups. Furthermore, resulting assets
frequently suffer from baked-in lighting, inconsistent representations,
and a lack of physical plausibility, limiting their use in downstream
applications.

This dissertation addresses these challenges by developing methods
that leverage data-driven priors to significantly lower the barrier for 3D
content creation. By utilizing information from other modalities, large
datasets, and pre-trained generative models, the work presented here
reduces the burden on user input to casually captured photos, simple
sketches, and text prompts.

We first show how depth priors can enable users to digitalize 3D scenes
without dense data capture, and discuss how to enable interactive 3D
editing and generation through 2D user inputs such as sketches. We
then propose an end-to-end text-to-3D generation pipeline that gener-
ates both the geometry and texture of 3D assets. For geometry gener-
ation, we propose an octree-based adaptive tokenization scheme that
allocates representational capacity based on shape complexity, enabling
higher-fidelity and more efficient reconstruction and generation of 3D
shapes. Moreover, we address appearance modeling by utilizing data
and diffusion model priors to generate relightable textures on meshes
using text input, ensuring that generated 3D objects are functional in
downstream production workflows. Finally, to ground digital designs
in reality, we introduce BrickGPT, which incorporates manufacturing
and physics constraints to generate physically stable and buildable toy
brick structures from text prompts.

Collectively, these contributions bridge the gap between high-level user
intent and the creation of editable, functional, and physically realizable
3D content by addressing the core challenges in geometry representa-
tion, appearance modeling, and physics-aware generation.
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Two ways of creating 3D content. (a) 3D Digitization captures
real-world environments through photogrammetry or 3D scanning,
requiring dense camera views or specialized equipment setups to
achieve high-fidelity results. (b) 3D Modeling involves artists us-
ing professional software to handcraft virtual content from scratch,
including both geometry and texture creation. Both approaches
require specialized expertise and remain inaccessible to everyday
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Dissertation Overview. This dissertation is organized in three parts:
(a) Sparse-view 3D Reconstruction (Part I) enables high-quality 3D
scene reconstruction from as few as two casually captured photos.
(b)(c) 3D Asset Generation (Part II) creates 3D content from intuitive
inputs: generating editable 3D objects from 2D segmentation maps
or sketches for category-specific generation (Chapter 3), and diverse
3D asset creation from text descriptions (Chapters 4 and 5). (d)
Physical Asset Generation (Part III) extends beyond virtual assets
to generate physically stable and buildable brick structures from
text prompts, providing step-by-step construction sequences for
real-world implementation. . . ... ... ... Lo L0

Training NeRFs can be difficult when given insufficient input images.
We utilize additional supervision from depth recovered from 3D
point clouds estimated from running structure-from-motion and
impose a loss to ensure the rendered ray’s termination distribution
respects the surface priors given by the each keypoint. Because our
supervision is complementary to NeRF, it can be combined with any
such approach to reduce overfitting and speed up training. . . . . .
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Few view NeRF. NeRF is susceptible to overfitting when given few
training views. As seen by the PSNR gap between train and test
renders (left), NeRF has overfit and fails at synthesizing novel views.
Further, the depth map (right) and depth error (middle) for NeRF
suggest that its density function has failed to extract the surface
geometry and can only reconstruct the training views’ colors. Our
depth-supervised NeRF model is able to render plausible geometry
with consistently lower depth errors. . . . . . ... ... .... ...

Ray Termination Distribution. (a) We plot various NeRF compo-
nents over the distance traveled by the ray. Even if a ray traverses
through multiple objects (as indicated by the multiple peaks of den-
sity o(t)), we find that the ray termination distribution h(t) is still
unimodal. We find that NeRF models trained with sufficient super-
vision tend to have peaky, unimodal ray termination distributions
as seen by the decreasing variance with more views in (c). We posit
that the ideal ray termination distribution approaches a § impulse
function. . . ... L

View Synthesis on DTU and Redwood. PixelNeRF, which is pre-
trained on DTU, performs the best when given 3-views, although
we find DS-NeRF to be visually competitive when more views are
available. On Redwood, DS-NeRF is the only baseline to perform
well on the 2-views setting. . . . ... ... .. ... ... ... ..

Qualitative Comparison on NeRF Real. We render novel views and
depth for various NeRF models trained on 2, 5, and 10 views. We
tind that methods trained with DTU struggle on NeRF Real while
methods that use depth-supervision are able to render test views
with realistic depth maps, even when only 2 views are provided.
Please refer to Table 2.1 for quantitative comparisons. . . . ... ..

Depth Supervision Ablations. We render novel views for NeRF
and DS-NeRF trained on 2 views and 5 views. NeRF fails to render
novel views as evident by the many artifacts. Using MSE between
rendered and sparse depth improves results slightly, but with KL
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Divergence, DS-NeRF is able to render images with the fewest artifacts. 22

Faster Training. We train DS-NeRF and NeRF under identical condi-
tions and observe that DS-NeRF is able to reach NeRF’s peak PSNR
quality in a fraction of the number of iterations across. For 2 views,
we find that NeRF is unable to match DS-NeRF’s performance. . . .
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Given a 2D label map as input, such as a segmentation or edge map,
our model learns to predict high-quality 3D labels, geometry, and
appearance, which enables us to render both labels and RGB images
from different viewpoints. The inferred 3D labels further allow
interactive editing of label maps from any viewpoint, as shown in
Figure3.10. . . ... ... ... ...

Overall pipeline. Given a 2D label map (e.g., segmentation map), a
random latent code z, and a camera pose Pas inputs, our generator
renders the label map and image from viewpoint P. Intuitively, the
input label map specifies the geometric structure, while the latent
code captures the appearance, such as hair color. We begin with
an encoder that encodes both the input label map and the latent
code into style vectors w'. We then use w* to modulate our 3D
representation, which takes a spatial point x and outputs (1) color
¢ € R3, (2) density o, (3) feature ¢ € R/, and (4) label s € R°. We
then perform volumetric rendering and 2D upsampling to get the
high-res label map I and RGB Image 1. For those rendered from
ground-truth poses, we compare them to ground-truth labels and
images with an LPIPS loss and label reconstruction loss. We apply
a GAN loss on labels and images rendered from both novel and
original viewpoints. . . ... ... ..o L o Lo oL

Cross-View Consistency Loss. Given an input label map I and its
associated pose P, we first infer the geometry latent code wg. From
wg, we can generate a label map {s from the same pose P, and
from a random pose P'. Next, we infer wg from the novel view f,
and render it back to the original pose P to obtain /. Finally, we
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add a reconstruction loss: Lcye = AcveLs(T7, 1) .. ... ... ..

Qualitative Comparison with Pix2NeRF [13], SOFGAN [20], and
SEAN [298] on CelebAMask dataset for seg2face task. SEAN fails
in multi-view synthesis, while SOFGAN suffers from multi-view
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method renders high-quality images while maintaining multi-view
consistency. . . ... ...

Qualitative ablation on seg2face and seg2cat. We ablate our method
by removing the branch that renders label maps (w/o 3D Labels). Our
results better align with input labels (e.g., hairlines and the cat’s ear).
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3.8 Semantic Mesh. We show semantic meshes of human and cat faces
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3.9 We study the effect of random pose sampling probability p during
training. Without random poses (p = 0), the model achieves the best
alignment with input semantic maps, with reduced image quality.
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quality, while results fail to align with input maps. We find p = 0.5
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3.10 Cross-view Editing of Edge2Car. Our 3D editing system allows
users to edit label maps from any viewpoint instead of only the input
view. Importantly, our feed-forward encoder allows fast inference of
the latent code without GAN-inversion. Typically, a single forward
pass of rendering takes only 40 ms on a single RTX A5000, which
enables interactive editing. Please check our demo video on our
website. ... 45

3.11 Multi-modal Synthesis. The leftmost column is the input segmen-
tation map. We use the same segmentation map for each row. We
generate multi-modal results by randomly sampling an appearance
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bottom right are generated from the input maps next to them. Each
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(a) Adaptive Shape Tokenization. Given an input mesh with sur-
face point samples, we partition 3D space into a sparse octree that
adapts to the local geometric complexity of the surface. We then use
a Perceiver-based transformer [77] to encode the shape into a tree of
latent codes, where a child node need encode only the (quantized)
residual latent relative to its parent [100]. Latents can then be de-
coded into an occupancy field from which a mesh can be extracted.
(b) Autoregressive Shape Generation. We define an autoregressive
model for generating a tree of quantized shape tokens given a tex-
tual prompt, following a coarse-to-fine breadth-first search traversal.
Similar to variable-length generation of text via end-of-sentence to-
kens, we make use of structural tokens to generate variable-size tree
structures. . . . . ...
We plot reconstruction quality (IoU) against latent size in both dis-
crete (left) and continuous (right) scenarios. We use KiloBytes (KB)
for continuous latent representations for a fair comparison. Our
method consistently outperforms baseline approaches at equivalent
latent sizes and achieves comparable reconstruction quality with
much smaller latent representations. . . . ... ... .. ... ....
Shape reconstruction with discrete latent. We compare our full
method against Craftsman-VQ [106] as well as an ablation with-
out Adaptive Subdivision (A.S.). With comparable or lower token
budget, our method generally outperforms the baseline regarding
reconstruction fidelity. Meanwhile, without adaptive subdivision,
the vanilla octree only allocates the token budget efficiently for ob-
jects of small volume (bottom) but wastes tokens on geometrically
simple objects that occupy large space (middle). . . ... ... ...
Shape reconstruction with continuous latent. We include the visual
comparison between our continuous VAE (OAT-KL) and other base-
lines. In general, our reconstruction preserves more details using
similar or smaller number of latent vectors. . . . ... ... ... ..
Ablation study on token length. With an increasing number of
tokens, our method achieves better quality while consistently out-
performing the baseline at a comparable token length. . . . . . . ..
Shape Generation Results. We compare OctreeGPT with a GPT
baseline trained on Craftsman-VQVAE (Section 4.4.1), text-to-3D
model XCube [188], and image-to-3D methods InstantMesh [262]
and Craftsman [106]. Our results have smoother surfaces, finer
details, and fewer artifacts than baselines. For image-conditioned
methodst, we use FLUX.1 [96] to generate condition images from
inputtext. . ... .. ... .o o
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We propose an efficient approach for texturing an input 3D mesh
given a user-provided text prompt. Our generated texture can be
relit properly in different lighting environments. The light probe
shows the varied lighting environment. We suggest the readers
check our video results of rotating lighting in our supplementary
material. . . ...

Given a 3D mesh of a helmet (a) and a lighting environment L, the
reference rendering (b) depicts the “correct” highlights on the mesh
due to L, by treating its surface reflectance as half-metal and half-
smooth with a gray diffuse color. (c) The texture generated by the
leading method Fantasia3D [24] is not properly relit as Fantasia3D
bakes most of the lighting into the diffuse texture for the mesh and
does not capture the bright highlights in the specular texture. (d)
In contrast, our pipeline disentangles lighting from material, better
capturing the diffuse and specular components of the metal helmet
in this environment. Text prompt: “A medieval steel helmet.”

Our Text-to-Texture pipeline. Our method efficiently synthesizes re-
lightable textures given an input 3D mesh and text prompt. In stage
1 (top left), we use multi-view visual prompting with our LightCon-
trolNet model to generate four visually consistent canonical views
of the mesh under fixed lighting, concatenated into a reference im-
age I.¢. In stage 2 we apply a new texture optimization procedure
using [..f as guidance along with a multi-resolution hash-grid repre-
sentation of the texture I'(B(-)). For each optimization iteration, we
render two batches of images using I'(B(-) ) — one using the canonical
views and lighting of I to compute a reconstruction loss Lecon and
the other using randomly sampled views and lighting to compute
an SDS loss Lgpg based on LightControlNet. . . .. ... ... ...

(a) LightControlNet requires a conditioning image that specifies de-
sired lighting L for a view C of a 3D mesh. To form the conditioning
image, we first render the mesh with the desired L and C using
three different materials: (1) non-metal, not smooth, (2) half-metal,
half-smooth, and (3) pure metal, smooth, and then combine the
renderings into a single three-channel image. (b) LightControlNet
is a diffusion model that is conditional on such light conditioning
images as well as text prompts. . . . . ... ... ... ... ...
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Multi-view visual prompting. (a) When we independently input
four canonical conditioning images to LightControlNet, it generates
four very different appearances and styles even with a fixed random
seed. (b) When we concatenate the four images into a 2x2 grid and
pass them as a single image into LightControlNet, it produces a far
more consistent appearance and style. Text prompt: “A hiking boot”.

Sample results from our method applied to Objaverse test meshes
(top half) and 3D game assets (bottom half). To illustrate the efficacy
of our relightable textures, for each textured mesh, we fix the envi-
ronment lighting and render the mesh under different rotations. As
shown above, our method is able to generate textures that are not

78

only highly detailed, but also relightable with realistic lighting effects. 82

Qualitative analysis. (a) We compare our method with Fantasia3D
[24] that also attempts to generate Physically Based Rendering (PBR)
texture. However, unlike ours, their results often exhibit baked-in
lighting, leading to artifacts when put into varied lighting environ-
ments. (b) We also compare our method with other baselines that
can only generate non-relightable (RGB) texture. For non-relightable
texture generation, we can replace our LightControlNet with depth
ControlNet and generate RGB textures with a shorter runtime. More
detailsarein Table 5.1. . . . . ... ... ... ... . ... ....

Overview of BRICKGPT. (a) Our method generates physically sta-
ble interconnecting brick assembly structures from text descriptions
through an end-to-end approach, showing intermediate brick-by-
brick steps. (b) The generated designs are buildable both by hand
and by automated robotic assembly. (c) We show example results
with corresponding text prompts. Besides basic brick designs (top),
our method can generate colored brick models (bottom right) and
textured models (bottom left) with appearance descriptions. We
highly recommend the reader to check our website for step-by-step
videos. . ...
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StableText2Brick Dataset. (a) From a ShapeNetCore [19] mesh,
we generate a brick structure by voxelizing it onto a 20 x 20 x 20
grid, then constructing its brick layout with a delete-and-rebuild
algorithm. (b) We augment each shape with multiple structural vari-
ations by randomizing the brick layout while preserving the overall
shape. (c) Stability analysis [119] is performed on each variation to
filter out physically unstable designs. (d) To obtain captions for each
shape, we render the brick structure from 24 different viewpoints
and use GPT-4o [2] to generate detailed geometric descriptions. (e)
Data samples from 5 categories in our StableText2Brick dataset.

Method. (a) Our system tokenizes a brick structure into a sequence
of text tokens, ordered in a raster-scan manner from bottom to top.
(b) We create an instruction dataset pairing brick sequences with de-
scriptions to fine-tune LLaMA-3.2-Instruct-1B. (c) At inference time,
BRICKGPT generates brick structures incrementally by predicting
one brick at a time given a text prompt. For each generated brick,
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our brick library, and does not collide with existing bricks. After
completing the design, we verify its physical stability. If the structure
is unstable, we roll back to a stable state by removing all unstable
bricks and their subsequent bricks, and resume generation from that
point. . . . ...
Force Model. (a) We consider all forces exerted on a single brick, in-
cluding gravity (black), vertical forces with the top brick (red/blue)
and bottom brick (green/purple), and horizontal (shear) forces due
to knob connections (cyan), and adjacent bricks (yellow). (b) The
structural force model F extends the individual force model to mul-
tiple bricks. Solving for static equilibrium in F determines each
brick’s stability score. . . . ... ... Lo oo oo
Result gallery and baseline comparisons. Our method gener-
ates high-quality, diverse, and novel brick structures aligned with
the given text prompts. Black bricks are colliding. For LLaMA-
Mesh [250], LGM [223], XCube [188], and Hunyuan3D-2 [288], an
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informed rollback help to ensure that the generated structure is both
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find that metaNeRF-DTU and pixelNeRF-DTU struggle to learn on
NeRF Real due to its domain gap to DTU. PixelNeRF, IBRNet and
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4.1

Seg2face Evaluation. Our metrics include image quality (FID, KID,
SG Diversity), alignment (mloU and acc against GT label maps), and
multi-view consistency (FVV Identity). Single-generation diversity
(SG Diversity) is obtained by computing the LPIPS metric between
randomly generated pairs given a single conditional input. To eval-
uate alignment, we compare the generated label maps against the
ground truth in terms of mIoU and pixel accuracy (acc). Alterna-
tively, given a generated image, one could estimate label maps via a
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achieves the best quality, alignment ACC, and FVV Identity while
being competitive on SG Diversity. SOFGAN tends to have better
alignment but worse 3D consistency. We also ablate our method
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multi-view consistency. Using pretrained models from EG3D (t)
also improves the performance. . . . . ... ... ... ... .....

Edge2car Evaluation. We compare our method with Pix2NeRF [13]
on edge2car using the shapenet-car [19] dataset. Similar to Table 3.1,
we evaluate FID, KID, and SG Diversity for image quality. We also
evaluate the alignment with the input edge map using AP. Similarly,
we can either run informative drawing [16] on generated images to
obtain edge maps (numbers in parentheses) or directly use generated
edge maps to calculate the metrics. We achieve better image quality
and alignment than Pix2NeRF. We also find that using 3D labels and

cross-view consistency loss is helpful regarding FID and AP metrics. 40

Seg2cat Evaluation. We compare our method with Pix2NeRF [13] on
Seg2Cat using AFHQ-cat dataset [34], with segmentation obtained
by clustering DINO features [3]. Similar to Table 3.1, we evaluate
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Chapter 1

Introduction

1.1 Background

The ability to capture, create, and interact with 3D content is fundamental to the
future of digital experiences. From the immersive environments in modern video
games and cinematic productions to the expansive virtual worlds of the meta-
verse [155], the demand for high-fidelity 3D content has never been greater. These
technologies promise to benefit fields ranging from entertainment to engineering
and robotics, enabling more realistic simulations and creative expressions.

However, a significant bottleneck exists between the demand for 3D content
and the ability of most people to produce it. Traditionally, creating high-quality
3D assets has been the domain of specialists, relying on two primary paradigms:
digitizing the real world and handcrafting from imagination.

One important method of creating 3D content is by digitizing the real world [85],
as shown in Figure 1.1(a). For example, many video games have their environ-
ments created by scanning real-world scenes, which brings a high level of realism.
This process, known as photogrammetry [6, 82, 102, 149, 167, 199, 263] or 3D scan-
ning [35, 76, 187, 219], can produce assets with unparalleled fidelity. Another way
of 3D content creation is handcrafting them as illustrated in Figure 1.1(b). Artists
use professional 3D modeling software, e.g., Blender, Maya, and 3DSMax, to de-
sign and build virtual worlds, shaping every detail from scratch. This approach

allows for boundless creativity, enabling the creation of fantastic objects and scenes
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Figure 1.1: Two ways of creating 3D content. (a) 3D Digitization captures real-
world environments through photogrammetry or 3D scanning, requiring dense
camera views or specialized equipment setups to achieve high-fidelity results. (b)
3D Modeling involves artists using professional software to handcraft virtual con-
tent from scratch, including both geometry and texture creation. Both approaches
require specialized expertise and remain inaccessible to everyday users.

that do not exist in reality.

However, both of these methods are mainly used by professionals and remain
out of reach for everyday users. 3D scanning and photogrammetry often require
densely captured views [6, 82, 102, 149, 167, 263] or even specialized equipment
setups [76, 219]. Meanwhile, 3D modeling demands significant expertise, and

mastering the software and techniques can be time-consuming and complex.

1.2 Challenges

Recent advances in Neural Radiance Fields (NeRF) [149] and Gaussian Splatting
(GS) [90] have made it possible to digitize 3D scenes using only 2D images. Simulta-
neously, the emergence of generative Al has revolutionized content creation across
multiple domains, from text generation with large language models [2, 44] to image
synthesis with GANSs [87] and diffusion models [192]. However, extending these

successes to usable 3D content creation, whether through reconstructing existing
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scenes or generating novel assets, presents unique and fundamental challenges.

Reconstruction Challenges. The most fundamental challenge in 3D reconstruc-
tion stems from the inherent ambiguity of inferring 3D structure from 2D observa-
tions. Multiple 3D configurations can produce identical 2D projections, creating
fundamental ambiguities that existing methods, e.g., NeRF [149] and GS [90], re-
solve by requiring hundreds of densely captured images from diverse viewpoints.
This dense view requirement severely restricts practical applications, as capturing
such extensive datasets is often impractical or impossible in real-world scenarios
where users want to quickly digitize objects or scenes with minimal effort. The
problem is compounded by the need for careful camera positioning, controlled
lighting conditions, and often specialized equipment to achieve the coverage and

quality necessary for high-fidelity reconstruction.

Generation Challenges. While 2D generation often focuses on visual appeal
from a single viewpoint, generated 3D content must appear coherent across all
possible views. This multi-view consistency requirement dramatically increases
the complexity of the generation task, as models must reason about the underlying
3D content that looks plausible from every perspective rather than optimizing
for a single view. The challenge is exacerbated by severe data scarcity in the 3D
domain. While 2D image datasets like LAION [201] contain billions of examples,
high-quality 3D datasets are orders of magnitude smaller and significantly more
expensive to create, requiring specialized equipment, e.g., LIDAR scanners, or
manually creating 3D assets. This data scarcity makes it challenging to train ro-
bust generative models that can handle the full diversity of real-world 3D content.
Additionally, 3D content creation involves multiple interconnected modalities,
geometry, appearance, and physics, each with its own representation challenges
and constraints. Unlike 2D generation where visual quality is often the primary ob-
jective, 3D content frequently needs to satisfy additional requirements depending
on its intended use, e.g., efficient geometry representations that adapt to different
levels of detail, correct material properties for realistic lighting and interaction, and

physical plausibility for downstream simulation or manufacturing purposes.



1. Introduction

Part I:
Sparse-view 3D
Reconstruction , o
Two casually captured photos Rendered RGB & Depth from a novel view
(a) Reconstruct a 3D Scene with 2 Input Views (Chap. 2)
o |
., | ) @
Input Seg. Map  Generated Results Input Sketch Generated Results
Part II: (b) 3D Generation from 2D User Input (Chap. 3)
3D Asset
Generation
“A unicorn with Chap. 4
rainbow mane
and tail”
Input Text Generated Shape Generated Texture
(c) Text-to-3D Generation (Chap. 4 and 5)

Input Text Prompt: “A streamlined vessel with a long, narrow hull.”

Part IlI:

Physical Asset o .. || P
ysical A b &
Generation

Sequence of Building Steps Generated Brick Structure
(d) Generate Physically Stable and Buildable Assets (Chap. 6)

Figure 1.2: Dissertation Overview. This dissertation is organized in three parts: (a)
Sparse-view 3D Reconstruction (Part I) enables high-quality 3D scene reconstruc-
tion from as few as two casually captured photos. (b)(c) 3D Asset Generation (Part
IT) creates 3D content from intuitive inputs: generating editable 3D objects from 2D
segmentation maps or sketches for category-specific generation (Chapter 3), and
diverse 3D asset creation from text descriptions (Chapters 4 and 5). (d) Physical
Asset Generation (Part IIT) extends beyond virtual assets to generate physically
stable and buildable brick structures from text prompts, providing step-by-step
construction sequences for real-world implementation.
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1.3 Dissertation Overview

To address the challenges outlined above, this dissertation proposes to integrate
classical 3D understanding with modern generative models across the core aspects
of 3D content: geometry, appearance, and physics. Rather than relying purely on
data-driven learning, our approach leverages well-established geometric principles,
structural knowledge, and physical constraints developed over decades of 3D com-
puter vision and graphics research. By grounding generative models in classical
3D principles, e.g., multi-view geometry, octree hierarchy, material representations,
and structural stability, we can create more robust, efficient, and practically useful
3D generation systems.

Specifically, this dissertation is structured in three parts. We begin by mak-

ing real-world capture easier, then move to simplifying creative generation, and
conclude by bridging the gap between digital designs and physically realizable
objects.
Part I: Sparse-View 3D Reconstruction. It is vital to develop a generic and easy-to-
use method to reconstruct objects and scenes in real life. Neural Radiance Fields
(NeRF) [149] make this possible using only 2D images. However, plain NeRF and
many of its follow-up works [263] require dense views from hundreds of images,
which restricts its usage. Part I aims to lower the bar of using 3D reconstruction in
our daily life by relieving the burden of taking dense view data.

As shown in Figure 1.2(a), Chapter 2 introduces Depth-Supervised NeRF (DS-
NeRF) [39], a method that utilizes geometric priors using “free” depth information
obtained from standard Structure-from-Motion (SFM) pipelines [199]. By super-
vising the geometry learning process, DS-NeRF reduces overfitting, accelerates
training, and enables high-quality view synthesis from as few as two images, mak-
ing high-fidelity capture accessible from casual photos. Building on this foundation,
our follow-up work Total-recon [212], while not included in the thesis, shows that
depth supervision can also help improve 4D reconstruction from monocular videos.
Part II: 3D Asset Generation. In addition to capturing 3D scenes from the real
world, we also want to lower the skill barrier for creating novel 3D content. Part
IT explores methods that generate rich 3D assets from intuitive, low-effort inputs
such as 2D sketch maps and text prompts.
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Chapter 3 presents a method for 3D-aware conditional image synthesis [40],
which can generate editable 3D objects of specific categories, e.g., cars, from a single
2D semantic input like a segmentation or sketch map, as shown in Figure 1.2(b).
Notably, by interactive editing of the semantic maps projected onto user-specified
viewpoints, our system can be used as a tool for 3D editing of the generated
content.

Expanding beyond visual inputs and category-specific asset generation, the
following two chapters explore natural language as an interface for generic 3D
asset creation. Similar to how artists create 3D assets, we divide the problem
into a two-stage process, geometry generation (Chapter 4) and texture generation
(Chapter 5), as shown in Figure 1.2(c).

Specifically, chapter 4 introduces a more efficient way to represent and generate
3D shapes with Octree-based Adaptive Tokenization (OAT) [42]. This method
dynamically allocates representational capacity based on geometric complexity.
Building on this, OctreeGPT can generate diverse, high-quality 3D shapes from
text descriptions, advancing on prior text-to-3D methods [106, 179, 223].

Chapter 5 addresses the crucial challenge of appearance modeling by generating

high-quality relightable texturing. The proposed method, FlashTex [41], textures an
input 3D mesh given a user-provided text prompt, improving upon prior texturing
methods [23, 24, 189]. Notably, our generated texture can be relit properly in
different lighting environments, which makes our results widely applicable in
downstream tasks.
Part III: Physical Asset Generation. In addition to virtual assets, we also explore a
novel direction by considering the physical realizability of generated designs [133].
While most generative models produce objects that are only visually plausible, this
tinal part of the thesis explores how to create designs that are structurally sound
and buildable in the real world.

Chapter 6 introduces BrickGPT [181], a system that generates physically stable
and buildable brick structures directly from text prompts. By repurposing a large
language model [44] for “next-brick prediction” and incorporating physics-aware
checks for stability [121], BrickGPT produces complex and creative designs that
are not only imaginative but also physically stable and buildable, as shown in
Figure 1.2(d).
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1.4 Other Research

In addition to the thesis work, I also contributed to other relevant research projects

in 3D content creation, including monocular video reconstruction [212], texture

generation with tactile input [48], stability analysis [119], 3D reconstruction with

materials [113], and scene generation [191]:

1.

Chonghyuk Song, Gengshan Yang, Kangle Deng, Jun-Yan Zhu and Deva
Ramanan. Total-Recon: Deformable Scene Reconstruction for Embodied View
Synthesis. ICCV 2023. [212]

. Ruihan Gao, Kangle Deng, Gengshan Yang, Wenzhen Yuan, Jun-Yan Zhu.

Tactile DreamFusion: Exploiting Tactile Sensing for 3D Generation. NeurIPS
2024. [48]

. Ruixuan Liu, Kangle Deng, Ziwei Wang, Changliu Liu. StableLego: Stability

Analysis of Block Stacking Assembly. RA-L 2024. [119]

. Yehonathan Litman, Or Patashnik, Kangle Deng, Aviral Agrawal, Rushikesh

Zawar, Fernando De la Torre, Shubham Tulsiani. MaterialFusion: Enhancing
Inverse Rendering with Material Diffusion Priors. 3DV 2025. [113]

Roblox Foundation AI Team: Kangle Deng (core contributor). Cube: A Roblox
View of 3D Intelligence. Technical Report 2025. [191]
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Sparse-view 3D Reconstruction






Chapter 2

Depth-supervised NeRF: Fewer Views
and Faster Training for Free

We begin our exploration of 3D content creation by addressing the challenge of
sparse-view 3D reconstruction. As established in the challenges section, traditional
3D reconstruction methods suffer from inherent ambiguity when inferring 3D
structure from limited 2D observations, typically requiring hundreds of densely
captured images to achieve high-quality results.

The key insight driving this chapter is that we can resolve reconstruction ambi-
guity not by requiring more data, but by incorporating complementary geometric
priors that are readily available from standard reconstruction pipelines.

The following chapter demonstrates how this integration of classical multi-
view geometry with modern neural rendering can dramatically reduce view re-
quirements while maintaining reconstruction quality, making 3D scene capture

accessible from casual photographs.

2.1 Introduction

Neural rendering with implicit representations has become a widely-used tech-
nique for solving many vision and graphics tasks ranging from view synthesis [32,
149, 210], to re-lighting [134, 143], to pose and shape estimation [169, 195, 271],
to 3D-aware image synthesis and editing [17, 124, 202], to modeling dynamic
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Figure 2.1: Training NeRFs can be difficult when given insufficient input images.
We utilize additional supervision from depth recovered from 3D point clouds
estimated from running structure-from-motion and impose a loss to ensure the
rendered ray’s termination distribution respects the surface priors given by the
each keypoint. Because our supervision is complementary to NeRF, it can be
combined with any such approach to reduce overfitting and speed up training.

scenes [108, 172, 180]. The seminal work of Neural Radiance Fields (NeRF) [149]
demonstrated impressive view synthesis results by using implicit functions to

encode volumetric density and color observations.

In spite of this, NeRF has several limitations. Reconstructing both the scene
appearance and geometry can be ill-posed given a small number of input views.
Figure 2.2 shows that NeRF can learn wildly inaccurate scene geometries that still
accurately render train-views. However, such models produce poor renderings
of novel test-views, essentially overfitting to the train set. Furthermore, even
given a large number of input views, NeRF can still be time-consuming to train; it
often takes between ten hours to several days to model a single scene at moderate
resolutions on a single GPU. The training is slow due to both the expensive ray-
casting operations and lengthy optimization process.

In this work, we explore depth as an additional, cheap source of supervision to
guide the geometry learned by NeRF. Typical NeRF pipelines require images and
camera poses, where the latter are estimated from structure-from-motion (SFM)
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Figure 2.2: Few view NeRF. NeRF is susceptible to overfitting when given few
training views. As seen by the PSNR gap between train and test renders (left),
NeRF has overfit and fails at synthesizing novel views. Further, the depth map
(right) and depth error (middle) for NeRF suggest that its density function has
failed to extract the surface geometry and can only reconstruct the training views’
colors. Our depth-supervised NeRF model is able to render plausible geometry
with consistently lower depth errors.

solvers such as COLMAP [199]. In addition to returning cameras, COLMAP also
outputs sparse 3D point clouds as well as their reprojection errors. We impose a
loss to encourage the distribution of a ray’s termination to match the 3D keypoint,
incorporating reprojection error as an uncertainty measure. This is a significantly
stronger signal than reconstructing only RGB. Without depth supervision, NeRF is
implicitly solving a 3D correspondence problem between multiple views. However,
the sparse version of this exact problem has already been solved by SFM, whose
solution is given by the sparse 3D keypoints. Therefore depth supervision improves
NeRF by (softly) anchoring its search over implicit correspondences with sparse
explicit ones.

Our experiments show that this simple idea translates to massive improvements
in training NeRFs and its variations, regarding both the training speed and the
amount of training data needed. We observe that depth-supervised NeRF can
accelerate model training by 2-3x while producing results with the same quality. For
sparse view settings, experiments show that our method synthesizes better results
compared to the original NeRF and recent sparse-views NeRF models [220, 273]
on both NeRF Real [149] and Redwood-3dscan [33] We also show that our depth
supervision loss works well with depth derived from other sources such as a depth
camera. Our code and more results are available at https://www.cs.cmu.edu/
~dsnerf/.
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2.2 Related Work

NeRF from few views. NeRF [149] was originally shown to work on a large
number of images with the LLFF NeRF Real dataset [148] consisting of nearly 50
images per scene. This is because fitting the NeRF volume often requires a large
number of views to avoid arriving at degenerate representations. Recent works
have sought to decrease the data-hungriness of NeRF in a variety of different
ways. PixelNeRF [273] and metaNeRF [220] use data-driven priors recovered
from a domain of training scenes to fill in missing information from test scenes.
Such an approach works well when given sufficient training scenes and limited
gap between the training and test distribution, but such assumptions are not
particularly flexible. Another approach is to leverage priors recovered from a
different task like semantic consistency [78] or depth prediction [254].

Similar to our insight that the primary difficulty in fitting few-view NeRF is
correctly modeling 3D geometry, MVSNeRF [21] combines both 3D knowledge
with scene priors by constructing a plane sweep volume before using a pretrained
network with generalizable priors to render scenes. One appeal of an approach
that utilizes 3D information is the lack of assumptions it makes on the problem
statement. Unlike the aforementioned approaches which depend on the availability
of training data or the applicability of prior assumptions, our approach only
requires the existence of 3D keypoints. This gives depth supervision the flexibility
to be used not only as a standalone method, but one that can be freely incorporated
into existing NeRF methods easily.

Faster NeRF. Another drawback of NeRF is the lengthy optimization time required
to fit the volumetric representation. Indeed Mildenhall ef al. [149] trained a single
scene’s NeRF model for twelve hours of GPU compute. Many works [186, 272]
have found that the limiting factor is not learning the radiance itself, but rather
oversampling the empty space during training. Indeed this is a similar intuition to
the fact that the majority of the volume is actually empty, but NeRF’s initialization
is a median uniform density. Our insight is to apply a supervisory signal directly
to the NeRF density to increase the convergence of the geometry and to encourage
NeRF’s density function to mimic the behavior of real-world surface geometries.

14
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Depth and NeREFE. Several prior works have explored ways to leverage depth
information for view synthesis [205, 234] and NeRF training [108, 114, 158,172, 254].
For instance, 3D keypoints have been demonstrated to be helpful when extending
NeRFs with relaxed assumptions like deformable surfaces [172] or dynamic scene
flows [108]. Other works like DONeRF [158] proposed training a depth oracle
to improve rendering speed by directly smartly sampling the surface of a NeRF
density function. Similar to DONeRF, NerfingMVS [254] shows how a monocular
depth network can be used to induce depth priors to do smarter sampling during
training and inference.

Our work attempts to improve NeRF-based methods by directly supervising
the NeRF density function. As depth becomes a more accessible source of data,
being able to apply depth supervision becomes increasingly more powerful. For
example, recent works have demonstrated how depth extracted from sensors like
time-of-flight cameras [4] or RGB-D Kinect sensor [5] can be applied to fit implicit
functions. Building upon their insights, we provide a probabilistic formulation of
the depth supervision, and show this results in meaningful improvements to NeRF

and its variants.

2.3 Depth-Supervised Ray Termination

We now present our proposed depth-supervised loss for training NeRFs. We first
revisit volumetric rendering and then analyze the termination distribution for rays.

We conclude with our depth-supervised distribution loss.

2.3.1 Volumetric rendering revisited

A Neural Radiance Field takes a set of posed images and encodes a scene as a
volume density and emitted radiance. More specifically, for a given 3D point
x € R? and a particular viewing direction d € R3, NeRF learns an implicit function
f that estimates the differential density ¢ and RGB color c like so: f(x,d) = (o, ¢).

To render a 2D image given a pose P, we cast rays r originating from the P’s
center of projection o in direction d derived from its intrinsics. We integrate the

implicit radiance field along this ray to compute the incoming radiance from any

15



2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

o(t) at :1,‘,“,[,/’*”’,,‘“1,,.) -
- 5

W by / "/\4[

}|u hn | \M/ \

n oWk I
S Y

t
T(t :\‘xp(f/n s)ds) h(t) =T(t)o(t)
Jo

All-view: Unimodal

A

NeRF: Multi-modal

Log of average variance
| ) ] .

Ours: Unimodal

A

1 2 3 4 5 6 7 8 % 100110120 130 140 150 160 170 150 150 200
Number of training views

(@) (b) (©

Figure 2.3: Ray Termination Distribution. (a) We plot various NeRF components
over the distance traveled by the ray. Even if a ray traverses through multiple
objects (as indicated by the multiple peaks of density o (t)), we find that the ray
termination distribution h(f) is still unimodal. We find that NeRF models trained
with sufficient supervision tend to have peaky, unimodal ray termination distribu-
tions as seen by the decreasing variance with more views in (c). We posit that the
ideal ray termination distribution approaches a § impulse function.

object that lies along d:

¢ - /0 T T () o(t)e(t)dt, 2.1)
where ¢ parameterizes the aforementioned ray as r(t) = o+ td and T(t) =
exp(— fo s)ds) checks for occlusions by integrating the differential density be-
tween 0 to t. Because the density and radiance are the outputs of neural networks,
NeRF methods approximate this integral using a sampling-based Riemann sum
instead. The final NeRF rendering loss is given by a reconstruction loss over colors
returned from rendering the set of rays R(P) produced by a particular camera
parameter P.

L"Color = rER HC (1‘) H; . (2-2)

Ray distribution. Let us write h(t) = T(t)co(t). In the appendix, we show that
it is a continuous probability distribution over ray distance t that describes the
likelihood of a ray terminating at t. Due to practical constraints, NeRFs assume
that the scene lies between a near and far bound (t,, ts). To ensure h(t) sums to
one, NeRF implementations often treat ¢ as an opaque wall. With this definition,
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the rendered color can be written as an expectation:

A,

& - /Oooh(t)c(t)dt = By [e(t)]

Idealized distribution. The distribution /(t) describes the weighed contribution
of sampled radiances along a ray to the final rendered value. Most scenes consist
of empty spaces and opaque surfaces that restrict the weighted contribution to
stem from the closest surface. This implies that the ideal ray distribution of image
point with a closest-surface depth of D should be é(t — D). Figure 2.3(c) shows
that the empirical variance of NeRF termination distributions decreases with more
training views, suggesting that high quality NeRFs (trained with many views) tend
to have ray distributions that approach the J-function. This insight motivates our

depth-supervised ray termination loss.

2.3.2 Deriving depth-supervision

Recall that most NeRF pipelines require images with associated camera matrices
(P1,Py,...), often estimated with SFM packages such as COLMAP [199]. Impor-
tantly, SFM makes use of bundle adjustment, which also returns 3D keypoints
{X: x1,x2,... € R3} and visibility flags for which keypoints are seen from camera
j: X; C X. Given image [; and its camera P;, we estimate the depth of visible
keypoints x; € X; by simply projecting x; with P;, taking the re-projected z value
as the keypoint’s depth D;;.

Depth uncertainty. Unsurprisingly D;; are inherently noisy estimates due to spuri-
ous correspondences, noisy camera parameters, or poor COLMAP optimization.
The reliability of a particular keypoint x; can be measured using the average repro-
jection error ¢; across views over which the keypoint was detected. Specifically, we
model the location of the first surface encountered by a ray as a random variable
ID;; that is normally distributed around the COLMAP-estimated depth D;; with
variance 0;: ID;; ~ IN(D,-]-, ;). Combining the intuition regarding behavior of ideal
termination distribution, our objective is to minimize the KL divergence between
the rendered ray distribution /;;(t) of x;’s image coordinates and the noisy depth
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distribution:
min Ep, KL[5(t — Djj)|[h;(t)] (2.3)
if
, p(t;Dg..)
= argmhln]EDg_,_ /p(t; D, ;) log Tt)gdt (2.4)
& max[Ep, / 5(t — Dyj) log h;(£)dt 2.5)
i
= rr}lax IE]Dij log h1] (Dl]) (2.6)
i
log hi:(t) (t-Dy)* 2.7
@n}sx/ og hij exp—T . (2.7)
< min KL[N(Djj, ;) || hij(t)]- (2.8)

g

Ep, KL[5(t — IDjj)|[hij(t)] = KLIN(Dyj, ;)| |hij ()] + const.

Ray distribution loss. The above equivalence (see our appendix for proof) allows
the termination distribution /(t) to be trained with probabilisitic COLMAP depth

supervision:

(t — Dy)?
2(A7i2
(t — Dyj)?

i

Loepn = ~Exex; [ logh(t) exp (- )dt

~ —Eyex; Zlog hiexp (—
k

Our overall training loss for NeRF is £ = Lcolor + ApLpepth where Ap is a hyper-
parameter balancing color and depth supervision.

2.4 Experiments

We first evaluate the input data efficiency on view synthesis over several datasets
in Section 2.4.3. For relevant NeRF-related methods, we also evaluate the error of
rendered depth maps in Section 2.4.4. Finally, we analyze training speed improve-

ments in Section 2.4.5.
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PSNR?T SSIM?T LPIPS|
NeRF Real [148] 2-view 5-view 10-view ‘ 2-view 5-view  10-view ‘ 2-view 5-view  10-view
LLFF 14.3 17.6 223 0.48 0.49 0.53 0.55 0.51 0.53
NeRF 13.5 18.2 22.5 0.39 0.57 0.67 0.56 0.50 0.52
metaNeRF-DTU 13.1 13.8 14.3 0.43 0.45 0.46 0.89 0.88 0.87
pixelNeRF-DTU 9.6 9.5 9.7 0.39 0.40 0.40 0.82 0.87 0.81
finetuned 18.2 22.0 24.1 0.56 0.59 0.63 0.53 0.53 0.41
finetuned w/ DS 18.9 22.1 244 0.54 0.61 0.66 0.55 0.47 0.42
IBRNet 144 21.8 24.3 0.50 0.51 0.54 0.53 0.54 0.51
finetuned w/ DS 19.3 22.3 24.5 0.63 0.66 0.68 0.39 0.36 0.38
MVSNeRF - 17.2 17.2 - 0.61 0.60 - 0.37 0.36
fintuned - 21.8 229 - 0.70 0.74 - 0.27 0.23
fintuned w/ DS - 22.0 229 - 0.70 0.75 - 0.27 0.25
DS-NeRF
MSE 19.5 22.2 24.7 0.65 0.69 0.71 0.43 0.40 0.37
KL divergence 20.2 22.6 249 0.67 0.69 0.72 0.39 0.35 0.34

Table 2.1: View Synthesis on NeRF Real. We evaluate view synthesis quality
for various methods when given 2, 5, 10 views from NeRF Real. We find that
metaNeRF-DTU and pixelNeRF-DTU struggle to learn on NeRF Real due to its
domain gap to DTU. PixelNeRF, IBRNet and MVSNeRF can benefit from incorpo-
rating the depth supervision loss to achieve their best performance. We find that
our DS-NeRF outperforms these methods on a variety of metrics, but especially for
the few view settings like 2 and 5 views.

PSNR? SSIM?T LPIPS|

DTU [79] 3-view 6-view 9-view ‘ 3-view 6-view 9-view ‘ 3-view 6-view 9-view
NeRF 9.9 18.6 221 0.37 0.72 0.82 0.62 0.35 0.26
metaNeRF-DTU 18.2 18.8 20.2 0.60 0.61 0.67 0.40 0.41 0.35
pixelNeRF-DTU 19.3 20.4 211 0.70 0.73 0.76 0.39 0.36 0.34
DS-NeRF

MSE 16.5 20.5 222 0.54 0.73 0.77 0.48 0.31 0.26

KL divergence 16.9 20.6 22.3 0.57 0.75 0.81 0.45 0.29 0.24

Table 2.2: View Synthesis on DTU. We evaluate on 3, 6, and 9 views respectively
for 15 test scenes from the DTU dataset. pixelNeRF-DTU and metaNeRF-DTU
perform well given that the domain overlap between training and testing. This is
especially true for the few view setting as the lack of information is supplemented
by exploiting dataset priors. In spite of this, DS-NeRF is still competitive on view
synthesis for 6 and 9 views.
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DTU Redwood
3-view 6-view 9-view 2-view 5-view 10-view

pixelNeRF metaNeRF
DTU DTU NeRF

DSNeRF

Figure 2.4: View Synthesis on DTU and Redwood. PixelNeRF, which is pre-
trained on DTU, performs the best when given 3-views, although we find DS-NeRF
to be visually competitive when more views are available. On Redwood, DS-NeRF
is the only baseline to perform well on the 2-views setting.

2.4.1 Datasets

DTU MVS Dataset (DTU) [79] captures various objects from multiple viewpoints.
Following Yu et al.’s setup in PixelNeRF [273], we evaluated on the same test scenes
and views. For each scene, we used their subsets of size 3, 6, 9 training views.
We run COLMAP with the ground truth calibrated camera poses to get keypoints.

Images are down-sampled to a resolution of 400 x 300 for training and evaluation.

NeRF Real-world Data (NeRF Real) [148, 149] contains 8 real world scenes cap-
tured from many forward-facing views. We create subsets of training images for
each scene of sizes 2, 5, and 10 views. For every subset, we run COLMAP [199]

over its training images to estimate cameras and collect sparse keypoints for depth
supervision.

Redwood-3dscan (Redwood) [33] contains RGB-D videos of various objects. We
select 5 RGB-D sequences and create subsets of 2, 5, and 10 training frames for
each object. We run COLMAP to get their camera poses and sparse point clouds.

20



2. Depth-supervised NeRF: Fewer Views and Faster Training for Free

10-view

NeRF

metaNeRF

pixeINeRF
pretrained

pixelNeRF
-finetuned w/ DS

DS-NeRF
(ours)

Figure 2.5: Qualitative Comparison on NeRF Real. We render novel views and
depth for various NeRF models trained on 2, 5, and 10 views. We find that methods
trained with DTU struggle on NeRF Real while methods that use depth-supervision
are able to render test views with realistic depth maps, even when only 2 views are
provided. Please refer to Table 2.1 for quantitative comparisons.

To connect the scale of COLMAP’s pose with the scanned depth, we solve a least-
squares that best fits detected keypoints to the scanned depth value. Please refer to

our appendix for full details.

2.4.2 Comparisons

First we consider Local Lightfield Fusion (LLFF) [148], an MPI-based representation
that learns from multiple view points. Next we consider a set of NeRF baselines.

PixelNeRF [273] expands upon NeRF by using an encoder to train a general
model across multiple scenes. pixeINeRF-DTU is evaluated using the released DTU
checkpoint. For cases where the train and test domain are different, we finetune
using RGB supervision for additional iterations on each test scene to get pixelNeRF
finetuned.
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DS-NeRF
(MSE) NeRF

DS-NeRF
(KL divergence)

Figure 2.6: Depth Supervision Ablations. We render novel views for NeRF and
DS-NeRF trained on 2 views and 5 views. NeRF fails to render novel views as
evident by the many artifacts. Using MSE between rendered and sparse depth
improves results slightly, but with KL Divergence, DS-NeRF is able to render
images with the fewest artifacts.

2-view 5-view 10-view

20 { — NeRF —— NeRF
~—— DS-NeRF 22 1 —— DS-NeRF
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Figure 2.7: Faster Training. We train DS-NeRF and NeRF under identical conditions
and observe that DS-NeRF is able to reach NeRF’s peak PSNR quality in a fraction
of the number of iterations across. For 2 views, we find that NeRF is unable to
match DS-NeRF’s performance.

MetaNeRF [220] finds a better NeRF initialization over a domain of training scenes
before running test-time optimization on new scenes. Because DTU is the only
dataset large enough for meta-learning, we only consider the metaNeRF-DTU
baseline which learns an initialization over DTU for 40K meta-iterations and
then finetunes for 1000 steps on new scenes. We follow metaNeRF’s ShapeNet
experiments to demonstrate its susceptibility to differences between training and
testing domains.

IBRNet [245] extends NeRF by using a MLP and ray transformer to estimate

radiance and volume density.
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PSNR? SSIMt LPIPS|

Redwood-3dscan [33] | 2-view 5-view 10-view | 2-view 5-view 10-view | 2-view 5-view  10-view
NeRF 10.5 224 23.4 0.38 0.75 0.82 0.51 0.45 0.45
metaNeRF-DTU 14.3 14.6 15.1 0.37 0.39 0.40 076 0.76 0.75
pixelNeRF-DTU 12.7 129 12.8 0.43 0.47 0.50 0.76 0.75 0.70
MVSNeRF-DTU - 17.1 17.1 - 0.54 0.53 - 0.63 0.63

finetuned - 22.7 23.1 - 0.78 0.78 - 0.36 0.34
DS-NeRF | 181 229 238 | 062 0.78 081 | 040 0.34 0.42
DS-NeRFw/RGB-D | 20.3 23.4 239 | 073 0.77 0.84 | 0.36 0.35 0.28

Table 2.3: View Synthesis on Redwood. We evaluate view synthesis on 2, 5,
and 10 input views on the Redwood dataset. DS-NeRF (with COLMAP [199]
inputs) outperforms baselines on various metrics across varying numbers of views.
Learning DS-NeRF with the RGB-D reconstruction output [276] further improves
performance, highlighting the potential of applying our method alongside other
sources of depth.

MVSNEeREF [21] initializes a plane sweep volume from 3 views before converting
it to a NeRF by a pretrained network. MVSNeRF can be further optimized using
RGB supervision.

DS-NeRF (Ours). To illustrate the effectiveness of KL divergence, we include a
variant of DS-NeRF with an MSE loss between the SEM-estimated and the rendered
depth. Figure 2.6 qualitatively shows that KL divergence penalty produces views
with less artifacts on NeRF Real sequences.

DS with existing methods. As our DS loss does not require additional annotation
or assumptions, our loss can be inserted into many NeRF-based methods. Here,

we also incorporate our loss when finetuning pixelNeRF and IBRNet.

2.4.3 Few-input view synthesis

We start by comparing each method on rendering test views from few inputs. For
view synthesis, we report three metrics (PSNR, SSIM [251], and LPIPS [285]) that
evaluate the quality of rendered views against a ground truth.

DTU. We show evaluations on DTU in Table 2.2 and qualitative results in Figure 2.4.
We find that DS-NeRF renders images from 6 and 9 input views that are competitive
with pixelNeRF-DTU, however metaNeRF-DTU and pixelNeRF-DTU are able

to outperform DS-NeRF on 3-views. This is not particularly surprising as both
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Depth err%] NeRF real-world Redwood-3dscan
2-view  5-view  10-view ‘ 2-view  5-view  10-view
NeRF 20.32 15.00 12.41 25.32 24.34 21.34
metaNeRF-DTU 22.23 22.07 22.30 20.84 21.12 20.96
pixelNeRF-DTU 22.12 22.09 22.06 19.46 19.87 19.54
DS-NeRF 10.41 8.61 8.15 11.42 10.43 9.43
DS-NeRF w/ RGBD - - - 5.81 5.31 4.22

Table 2.4: Depth Error. We compare rendered depth to reference “ground-truth”
depth obtained from NeRF Real and Redwood RGB-D. DS-NeRF is able to extract
better geometry as indicated by the lower depth errors from test views. We also
show DS-NeRF trained with Redwood’s dense supervision can significantly im-
prove NeRF’s ability to model the underlying geometry.

methods are trained on DTU scenes and therefore can fully leverage dataset priors.

NeRF Real. As seen in Table 2.1, our approach renders images with better scores
than than NeRF and LLFF, especially when only two and fives input views are
available. We also find that metaNeRF-DTU and pixelNeRF struggle which high-
lights their apparent weakness. These DTU-pretrained models struggle to perform
well outside of DTU. Our full approach is capable of achieving good rendering
results because we do not utilize assumptions on the test scene’s structure. We also
add our depth supervision loss to other methods like pixelNeRF and IBRNet and
tind their performances improve, showing that many methods can benefit from
adding depth supervision. MVSNeRF has an existing geometry prior handled
by its PSV-initialization, thus we did not see an improvement from adding depth

supervision.

Redwood. Like NeRF Real, we find similar improvements in performance across
the Redwood dataset in Table 2.3. Because Redwood includes depth measurements
collected with a sensor, we also consider how alternative sources of depth supervi-
sion can improve results. We train DS-NeRF, replacing COLMAP supervision with
the scaled Redwood depth measurements and find that the denser depth helps

even more, achieving a PSNR of 20.3 on 2-views.
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24.4 Depth error

We evaluate NeRF’s rendered depth by comparing them to reference “ground truth”
depth measurements. For NeRF Real, we use reference depth of test keypoints
recovered from running an all-view dense stereo reconstruction. For Redwood
[33], we align their released 3D models with our cameras by running 3dMatch [276]
and generate reference depths for each test view. Please refer to our arXiv version
for more details regarding depth error evaluation. As shown in Table 2.4, DS-NeRF,
trained with supervision obtained only from depth in training views, is able to
estimate depth more accurately than all the other NeRF models. While this is
not particularly surprising, it does highlight the weakness of training NeRFs only
using RGB supervision. For example, in Figure 2.5, NeRF tends to ignore geometry

and fails to produce any coherent depth map.

RBG-D inputs. We consider a variant of depth supervision using RGB-D in-
put from Redwood. We derive dense depth map for each training view using
3DMatch [276] with RGB-D input. With dense depth supervision, we can ren-
der rays for any pixel in the valid region, and apply our KL depth-supervision
loss. As shown in Table 2.3 and Table 2.4, dense depth supervision produces even
better-quality images and significantly lower depth errors.

2.4.5 Analysis

Overfitting. Figure 2.2 shows that NeRF can overfit to a small number of input
views by learning degenerate 3D geometries. Adding depth supervision can assist

NeRF to disambiguate geometry and render better novel views.

Faster Training. To quantify speed improvements in NeRF training, we compare
training DS-NeRF and NeRF under identical settings. Like in Section 2.4.3, we
evaluate view synthesis quality on test views under various number of input views
from NeRF Real using PSNR. We can compare training speed performance by
plotting PSNR on test views versus training iterations in Figure 2.7.

DS-NeRF achieves a particular test PSNR threshold using 2-3x less training
iterations than NeRF. These benefits are significantly magnified when given fewer

views. In the extreme case of only 2-views, NeRF is completely unable to match
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O

DS-NeRF’s performance. While these results are given in terms of training iteration,
we can translate them into wall time improvements. On a single RTX A5000, a
training loop of DS-NeRF takes ~ 362.4 ms/iter while NeRF needs ~ 359.8 ms/iter.
Thus in the 5-view case, DS-NeRF achieves NeRF’s peak test PSNR around 13

hours faster, a massive improvement considering the negligible cost.

2.5 Discussion.

We introduce Depth-supervised NeRF, a model for learning neural radiance fields
that takes advantage of depth supervision. Our model uses “free” supervision
provided by sparse 3D point clouds computed during standard SFM pre-processing
steps. This additional supervision has a significant impact; DS-NeRF trains 2-3x
taster and produces better results from fewer training views (improving PSNR
from 13.5 to 20.2). While recent research has sought to improve NeRF by exploiting
priors learned from category-specific training data, our approach requires no
training and thus generalizes (in principle) to any scenes on which SFM succeeds.
This allows us to integrate depth supervision to many NeRF-based methods and
observe significant benefits. Finally, we provide cursory experiments that explore

alternate forms of depth supervision such as active depth sensors.
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3D Asset Generation
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Chapter 3

3D-aware Conditional Image

Synthesis

While Chapter 2 demonstrated that depth supervision can dramatically reduce the
view requirements for 3D reconstruction, enabling scene capture from as few as
two images. However, these approaches are inherently limited to digitizing what
already exists in the physical world, offering no path for creating novel 3D content
that exists only in imagination.

This limitation motivates a shift from reconstruction to generation: What if
we want to create entirely new 3D scenes and objects from scratch? However,
as discussed in the challenges section, 3D generation presents its own unique
difficulties, particularly around multi-view consistency and the requirement for
expensive 3D training data.

The following chapter explores how we can train a 3D-aware generative model
leveraging only posed 2D images to enable controllable generation of new 3D
objects.

3.1 Introduction

Content creation with generative models has witnessed tremendous progress in
recent years, enabling high-quality, user-controllable image and video synthe-
sis [45, 54, 64, 86]. In particular, image-to-image translation methods [75, 174, 295]
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GT View Novel View GT View Novel View

Input Seg Map Input Seg Map

GT View Novel View

Input Edge Map ; [ /\“‘/ J ;?
g &

Figure 3.1: Given a 2D label map as input, such as a segmentation or edge map,
our model learns to predict high-quality 3D labels, geometry, and appearance,
which enables us to render both labels and RGB images from different viewpoints.
The inferred 3D labels further allow interactive editing of label maps from any
viewpoint, as shown in Figure 3.10.

Input Edge Map

allow users to interactively create and manipulate a high-resolution image given a
2D input label map. Unfortunately, existing image-to-image translation methods
operate purely in 2D, without explicit reasoning of the underlying 3D structure
of the content. As shown in Figure 3.1, we aim to make conditional image syn-
thesis 3D-aware, allowing not only 3D content generation but also viewpoint
manipulation and attribute editing (e.g., car shape) in 3D.

Synthesizing 3D content conditioned on user input is challenging. For model
training, it is costly to obtain large-scale datasets with paired user inputs and
their desired 3D outputs. During test time, 3D content creation often requires
multi-view user inputs, as a user may want to specify the details of 3D objects
using 2D interfaces from different viewpoints. However, these inputs may not be
3D-consistent, providing conflicting signals for 3D content creation.

To address the above challenges, we extend conditional generative models with
3D neural scene representations. To enable cross-view editing, we additionally
encode semantic information in 3D, which can then be rendered as 2D label maps

from different viewpoints. We learn the aforementioned 3D representation using
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only 2D supervision in the form of image reconstruction and adversarial losses.
While the reconstruction loss ensures the alignment between 2D user inputs and
corresponding 3D content, our pixel-aligned conditional discriminator encourages
the appearance and labels to look plausible while remaining pixel-aligned when
rendered into novel viewpoints. We also propose a cross-view consistency loss to
enforce the latent codes to be consistent from different viewpoints.

We focus on 3D-aware semantic image synthesis on the CelebAMask-HQ [99],
AFHQ-cat [34], and shapenet-car [19] datasets. Our method works well for various
2D user inputs, including segmentation maps and edge maps. Our method outper-
forms several 2D and 3D baselines, such as Pix2NeRF variants [13], Sof GAN [20],
and SEAN [298]. We further ablate the impact of various design choices and
demonstrate applications of our method, such as cross-view editing and explicit

user control over semantics and style.

3.2 Related Work

Neural Implicit Representation. Neural implicit fields, such as DeepSDF and
NeRFs [149, 170], model the appearance of objects and scenes with an implicitly
defined, continuous 3D representation parameterized by neural networks. They
have produced significant results for 3D reconstruction [214, 299] and novel view
synthesis applications [110, 134, 139, 153, 280] thanks to their compactness and
expressiveness. NeRF and its descendants aim to optimize a network for an
individual scene, given hundreds of images from multiple viewpoints. Recent
works further reduce the number of training views through learning network
initializations [21, 221, 273], leveraging auxiliary supervision [39, 78], or imposing
regularization terms [163]. Recently, explicit or hybrid representations of radiance
fields [22, 153, 196] have also shown promising results regarding quality and speed.
In our work, we use hybrid representations for modeling both user inputs and
outputs in 3D, focusing on synthesizing novel images rather than reconstructing an
existing scene. A recent work Pix2NeRF [13] aims to translate a single image to a
neural radiance field, which allows single-image novel view synthesis. In contrast,

we focus on 3D-aware user-controlled content generation.

31



3. 3D-aware Conditional Image Synthesis

Conditional GANSs. Generative adversarial networks (GANSs) learn the distribu-
tion of natural images by forcing the generated and real images to be indistinguish-
able. They have demonstrated high-quality results on 2D image synthesis and
manipulation [1, 7, 12, 54, 86, 87, 88, 177, 203, 232, 293, 294]. Several methods adopt
image-conditional GANs [75, 150] for user-guided image synthesis and editing
applications [70, 72, 99, 115, 174, 175, 200, 248, 295, 298] . In contrast, we propose a
3D-aware generative model conditioned on 2D user inputs that can render view-
consistent images and enable interactive 3D editing. Recently, SOFGAN [20] uses
a 3D semantic map generator and a 2D semantic-to-image generator to enable

3D-aware generation, but using 2D generators does not ensure 3D consistency.

3D-aware Image Synthesis. Early data-driven 3D image editing systems can
achieve various 3D effects but often require a huge amount of manual effort [27, 91].
Recent works have integrated the 3D structure into learning-based image genera-
tion pipelines using various geometric representations, including voxels [61, 297],
voxelized 3D features [159], and 3D morphable models [227, 269]. However,
many rely on external 3D data [227, 269, 297]. Recently, neural scene repre-
sentations have been integrated into GANs to enable 3D-aware image synthe-
sis [17, 18, 55, 162, 166, 168, 202, 266]. Intriguingly, these 3D-aware GANs can
learn 3D structures without any 3D supervision. For example, StyleNeRF [55]
and EG3D [18] learn to generate 3D representations by modulating either NeRFs
or explicit representations with latent style vectors. This allows them to render
high-resolution view-consistent images. Unlike the above methods, we focus on
conditional synthesis and interactive editing rather than random sampling. Several
works [38, 74, 131, 260] have explored sketch-based shape generation but they do
not allow realistic image synthesis.

Closely related to our work, Huang et al. [67] propose synthesizing novel
views conditional on a semantic map. Our work differs in three ways. First,
we can predict full 3D labels, geometry, and appearance, rather than only 2D
views, which enables cross-view editing. Second, our method can synthesize
images with a much wider baseline than Huang et al. [67]. Finally, our learning
algorithm does not require ground truth multi-view images of the same scene. Two
recent works, FENeRF [216] and 3DSGAN [279], also leverage semantic labels for

training 3D-aware GANSs, but they do not support conditional inputs and require
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additional efforts (e.g., GAN-inversion) to allow user editing. Three concurrent
works, IDE-3D [215], NeRFFaceEditing [80], and sem2nerf [31], also explore the
task of 3D-aware generation based on segmentation masks. However, IDE-3D and
sem2nerf only allow editing on a fixed view, and NeRFFaceEditing focuses on real
image editing rather than generation. All of them do not include results for other
input modalities. In contrast, we present a general-purpose method that works

well for diverse datasets and input controls.

3.3 Method

Given a 2D label map I, such as a segmentation or edge map, pix2pix3D generates
a 3D-volumetric representation of geometry, appearance, and labels that can be
rendered from different viewpoints. Figure 3.2 provides an overview. We first
introduce the formulation of our 3D conditional generative model for 3D-aware
image synthesis in Section 3.3.1. Then, in Section 3.3.2, we discuss how to learn the
model from color and label map pairs {I, Is} associated with poses P.

3.3.1 Conditional 3D Generative Models

Similar to EG3D [18], we adopt a hybrid representation for the density and appear-
ance of a scene and use style vectors to modulate the 3D generations. To condition
the 3D representations on 2D label map inputs, we introduce a conditional en-
coder that maps a 2D label map into a latent style vector. Additionally, pix2pix3D
produces 3D labels that can be rendered from different viewpoints, allowing for

cross-view user editing.

Conditional Encoder. Given a 2D label map input Is and a random latent code
sampled from the spherical Gaussian space z ~ N (0, I), our conditional encoder
E outputs a list of style vectors w* € RP*2%,

w' = E(I, z),

where | = 13 is the number of layers to be modulated. Specifically, we encode I

into the first 7 style vectors that represent the global geometric information of the
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Figure 3.2: Overall pipeline. Given a 2D label map (e.g., segmentation map), a
random latent code z, and a camera pose Pas inputs, our generator renders the
label map and image from viewpoint P. Intuitively, the input label map specifies
the geometric structure, while the latent code captures the appearance, such as
hair color. We begin with an encoder that encodes both the input label map
and the latent code into style vectors w'. We then use w' to modulate our 3D
representation, which takes a spatial point x and outputs (1) color ¢ € R3, (2)
density o, (3) feature ¢ € R/, and (4) label s € IR°. We then perform volumetric
rendering and 2D upsampling to get the high-res label map I} and RGB Image 1.
For those rendered from ground-truth poses, we compare them to ground-truth
labels and images with an LPIPS loss and label reconstruction loss. We apply a
GAN loss on labels and images rendered from both novel and original viewpoints.
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scene. We then feed the random latent code z through a Multi-Layer Perceptron
(MLP) mapping network to obtain the rest of the style vectors that control the

appearance.

Conditional 3D Representation. Our 3D representation is parameterized by tri-
planes followed by an 2-layer MLP f [18], which takes in a spatial point x € R3
and returns 4 types of outputs: (1) color ¢ € R3, (2) density o € RT, (3) feature
¢ € R for the purpose of 2D upsampling, and most notably, (4) label s € RR°,
where c is the number of classes if I is a segmentation map, otherwise 1 for edge
labels. We make the field conditional by modulating the generation of tri-planes
F! with the style vectors w'. We also remove the view dependence of the color

following [18, 55]. Formally,
(¢;5,0,¢) = f(Fyt (x)).

Volume Rendering and Upsampling. We apply volumetric rendering to synthe-
size color images [84, 149]. In addition, we render label maps, which are crucial
for enabling cross-view editing (Section 3.4.3) and improving rendering quality
(Table 3.1). Given a viewpoint P looking at the scene origin, we sample N points
along the ray that emanates from a pixel location and query density, color, labels,
and feature information from our 3D representation. Let x; be the i-th sampled
point along the ray r. Let ¢;, s; and (E; be the color, labels, and the features of x;.
Similar to [216], The color, label map, and feature images are computed as the
weighted combination of queried values,
N N N
(r) =) ma, I(r) =) usi, 1g(r) =) t, (3.1)
i=1 i=1 i=1

where the transmittance 7; is computed as the probability of a photon traversing
between the camera center and the i-th point given the length of the i-th interval J;,

7= [Texp (-035)(1 — exp (60
L

Similar to prior works [18, 55, 166], we approximate Equation 3.1 by 2D Upsampler
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U to reduce the computational cost. We render high-res 512 x 512 images in two
passes. In the first pass, we render low-res 64 x 64 images i, I, iE. Then a CNN
up-sampler U is applied to obtain high-res images,

i — Uy ie), 1 = U i)

3.3.2 Learning Objective

Learning conditional 3D representations from monocular images is challenging
due to its under-constrained nature. Given training data of associated images,
label maps, and camera poses predicted by an off-the-shelf model, we carefully
construct learning objectives, including reconstruction, adversarial, and cross-view

consistency losses. These objectives will be described below.

Reconstruction Loss. Given a ground-truth viewpoint P associated with the color
and label maps {I, Is}, we render color and label maps from P and compute
reconstruction losses for both high-res and low-res output. We use LPIPS [284] to
compute the image reconstruction loss L. for color images. For label reconstruction
loss L, we use the balanced cross-entropy loss for segmentation maps or L2 Loss

for edge maps,
LI'GCOII = /\C£C(IC/ {iC/ i;’_}) + ASES(IS/ {iS/ i;_})/

where A, and A balance two terms.

Pixel-aligned Conditional Discriminator. The reconstruction loss alone fails to
synthesize detailed results from novel viewpoints. Therefore, we use an adversarial
loss [54] to enforce renderings to look realistic from random viewpoints. Specif-
ically, we have two discriminators D. and Ds for RGB images and label maps,
respectively. D, is a widely-used GAN loss that takes real and fake images as input,
while the pixel-aligned conditional discriminator Ds concatenates color images and
label maps as input, which encourages pixel alignment between color images and
label maps. Notably, in Ds, we stop the gradients for the color images to prevent a
potential quality downgrade. We also feed the rendered low-res images to prevent

the upsampler from hallucinating details, inconsistent with the low-res output.
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Multi-view Generation of Seg Maps

Input I Rendered Is  Rendered i’s Rendered i’sl
from Pose P from Pose P from Pose P’ from Pose P

W,

Love |

Figure 3.3: Cross-View Consistency Loss. Given an input label map I and its
associated pose P, we first infer the geometry latent code wg. From wg, we can

generate a label map 5 from the same pose P, and I/, from a random pose P'. Next,
we infer wy from the novel view I, and render it back to the original pose P to

obtain 1. Finally, we add a reconstruction loss: Lcyc = AcycLs(1,1s).

The adversarial loss can be written as follows.

N

Lcan = Ap Lp (15, 1) + Ap Lp, (I, 1, 17, 1s).

where Ap_and Ap_ balance two terms. To stabilize the GAN training, we adopt the
R1 regularization loss [141].

Cross-view Consistency Loss. We observe that inputting label maps of the same
object from different viewpoints will sometimes result in different 3D shapes.
Therefore we add a cross-view consistency loss to regularize the training, as illus-
trated in Figure 3.3. Given an input label map Is and its associated pose P, we
generate the label map 1, from a different viewpoint P/, and render the label map
1” back to the pose P using 1} as input. We add a reconstruction loss between 1/
and Is:
Leve = AeveLs(3],1s),

where L, denotes the reconstruction loss in the label space, and Acyc weights the
loss term. This loss is crucial for reducing error accumulation during cross-view

editing.
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Input Seg Map Pix2NeRF

Figure 3.4: Qualitative Comparison with Pix2NeRF [13], SoOFGAN [20], and
SEAN [298] on CelebAMask dataset for seg2face task. SEAN fails in multi-view
synthesis, while SOFGAN suffers from multi-view inconsistency (e.g., face identity
changes across viewpoints). Our method renders high-quality images while main-
taining multi-view consistency.

Optimization. Our final learning objective is written as follows:

Liotal = Lrecon + Lcan + Lcve.

At every iteration, we determine whether to use a ground-truth pose or sample a
random one with a probability of p. We use the reconstruction loss and GAN loss

for ground-truth poses, while for random poses, we only use the GAN loss.

Input Seg Maj w/o0 3D Labels Input Seg Maj
p g Map P g Map

Figure 3.5: Qualitative ablation on seg2face and seg2cat. We ablate our method
by removing the branch that renders label maps (w/o 3D Labels). Our results better
align with input labels (e.g., hairlines and the cat’s ear).
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Quality Alignment
SG FVV
CelebAMask FID | KID | Diversity 1| mloU 1 accT |Identity |

Seg?Face

SEAN 32.74 0.018 0.29 0.52 0.85 N/A
SoFGAN 23.34 0.012 0.33 0.53 0.89 0.58
Pix2NeRF 54.23 0.042 0.16 0.36 0.65 0.44

pix2pix3D (Ours)
w/0 3D Labels  12.96 0.005 030 |N/A(0.43) N/A (0.81)] 0.38

w/o CVC 11.62 0.004 030 |0.50(0.50) 0.87 (0.85) | 0.42
full model 11.54 0.003 028 |0.51(0.52) 0.90(0.88)| 0.36
full model® 11.13 0.003  0.29 0.51 (0.50) 0.90 (0.87) | 0.36

Table 3.1: Seg2face Evaluation. Our metrics include image quality (FID, KID,
SG Diversity), alignment (mloU and acc against GT label maps), and multi-view
consistency (FVV Identity). Single-generation diversity (SG Diversity) is obtained
by computing the LPIPS metric between randomly generated pairs given a single
conditional input. To evaluate alignment, we compare the generated label maps
against the ground truth in terms of mloU and pixel accuracy (acc). Alternatively,
given a generated image, one could estimate label maps via a face parser, and
compare those against the ground truth (numbers in parentheses). We include
SEAN [298] and SoFGAN [20] as baselines, and modify Pix2NeRF [13] to take
conditional input. Our method achieves the best quality, alignment ACC, and FVV
Identity while being competitive on SG Diversity. SOFGAN tends to have better
alignment but worse 3D consistency. We also ablate our method w.r.t the 3D labels
and the cross-view consistency (CVC) loss. Our 3D labels are crucial for alignment,
while the CVC loss improves multi-view consistency. Using pretrained models
from EG3D (1) also improves the performance.

3.4 Experiment

We first introduce the datasets and evaluation metrics. Then we compare our
method with the baselines. Finally, we demonstrate cross-view editing and multi-
modal synthesis applications enabled by our method.

Datasets. We consider four tasks: seg2face, seg2cat, edge2cat, and edge2car in our ex-
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Edge2Car Quality Alignment
FID | KID | SG Diversity t| AP 71
Pix2NeRF 23.42 0.014 0.06 0.28

pix2pix3D (Ours)

w/03DLabels  10.73 0.005 0.12 0.45 (0.42)
w/0 CVC 9.42  0.004 0.13 0.61 (0.59)
full model 8.31 0.004 0.13 0.63 (0.59)

Table 3.2: Edge2car Evaluation. We compare our method with Pix2NeRF [13] on
edge2car using the shapenet-car [19] dataset. Similar to Table 3.1, we evaluate FID,
KID, and SG Diversity for image quality. We also evaluate the alignment with the
input edge map using AP. Similarly, we can either run informative drawing [16]
on generated images to obtain edge maps (numbers in parentheses) or directly
use generated edge maps to calculate the metrics. We achieve better image quality
and alignment than Pix2NeRF. We also find that using 3D labels and cross-view
consistency loss is helpful regarding FID and AP metrics.

periments. For seg2face, we use CelebAMask-HQ [99] for evaluation. CelebAMask-
HQ contains 30,000 high-resolution face images from CelebA [126], and each image
has a facial part segmentation mask and a predicted pose. The segmentation masks
contain 19 classes, including skin, eyebrows, ears, mouth, lip, etc. The pose associ-
ated with each image segmentation is predicted by HopeNet [193]. We split the
CelebAMask-HQ dataset into a training set of 24,183, a validation set of 2,993, and
a test set of 2,824, following the original work [99]. For seg2cat and edge2cat, we
use AFHQ-cat [34], which contains 5,065 images at 512 x resolution. We estimate
the viewpoints using unsup3d [256]. We extract the edges using pidinet [213] and
obtain segmentation by clustering DINO features [3] into 6 classes. For edge2car,
we use 3D models from shapenet-car [19] and render 500,000 images at 128 x
resolution for training, and 30,000 for evaluation. We extract the edges using infor-
mative drawing [16]. We train our model at 512 x resolution except for 128 x in the
edge2car task.

Running Time. For training the model at 512 x resolution, it takes about three
days on eight RTX 3090 GPUs. But we can significantly reduce the training time to
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Rendered RGB images & edge maps
Input Edge Map GT View Novel View

Figure 3.6: Results on edge2cat. Our model is trained on AFHQ-cat [34] with
edges extracted by pidinet [213].

4 hours if we initialize parts of our model with pretrained weights from EG3D[18].
During inference, our model takes 10 ms to obtain the style vector, and another 30
ms to render the final image and the label map on a single RTX A5000. The low

latency (25 FPS) allows for interactive user editing.

3.4.1 Evaluation metrics

We evaluate the models from two aspects: 1) the image quality regarding fidelity
and diversity, and 2) the alignment between input label maps and generated
outputs.

Quality Metrics. Following prior works [55, 173], we use the clean-fid library [176]
to compute Fréchet Inception Distance (FID) [63] and Kernel Inception Distance
(KID) [10] to measure the distribution distance between synthesized results and
real images. We also evaluate the single-generation diversity (SG Diversity) by
calculating the LPIPS metric between randomly generated pairs given a single
input following prior works [20, 296]. For FID and KID, we generate 10 images per
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Figure 3.7: Qualitative comparisons on edge2car. pix2pix3D (Ours) and
Pix2NeRF [13] are trained on shapenet-car [19], and pix2pix3D achieves better
quality and alignment than PixX2NeRF.

label map in the test set using randomly sampled z. We compare our generated

images with the whole dataset, including training and test images.

Alignment Metrics. We evaluate models on the test set using mean Intersection-
over-Union (mloU) and pixel accuracy (acc) for segmentation maps following
existing works [173, 200], and average precision (AP) for edge maps. For those
models that render label maps as output, we directly compare them with ground-
truth labels. Otherwise, we first predict the label maps from the output RGB images
using off-the-shelf networks [99, 213], and then compare the prediction with the
ground truth. The metrics regarding such predicted semantic maps are reported
within brackets in Table 3.1 and Table 3.2.

For seg2face, we evaluate the preservation of facial identity from different view-
points (FVV Identity) by calculating their distances with the dlib face recognition
algorithm!.

Ihttps://github.com/ageitgey/face_recognition
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Seg2Cat Quality Alignment
AFHQ-cat FID | KID | SG Diversity 7| mloU 1 acc T
Pix2NeRF 43.92 0.081 0.15 0.27 0.58
Ours

w/03D Labels 10.41 0.004 0.26 N/A (0.49) N/A (0.69)
w/o CVC 9.64 0.004 0.26 0.66 (0.63) 0.76 (0.73)
Full Model 8.62 0.003 0.27 0.66 (0.62) 0.78 (0.73)

Table 3.3: Seg2cat Evaluation. We compare our method with Pix2NeRF [13] on
Seg2Cat using AFHQ-cat dataset [34], with segmentation obtained by clustering
DINO features [3]. Similar to Table 3.1, we evaluate the image quality and align-
ment. Ours performs better in all metrics.

3.4.2 Baseline comparison

Baselines. Since there are no prior works on conditional 3D-aware image synthesis,
we make minimum modifications to Pix2NeRF [13] to be conditional on label maps
instead of images. For a thorough comparison, we introduce several baselines:
SEAN [298] and SoFGAN [20]. 2D baselines like SEAN [298] cannot generate
multi-view images by design (N/A for FVV Identity), while SOFGAN [20] uses
an unconditional 3D semantic map generator before the 2D generator so we can
evaluate FVV Identity for that.

Results. Figure 3.4 shows the qualitative comparison for seg2face and Table 3.1
reports the evaluation results. SOFGAN [20] tends to produce results with slightly
better alignment but worse 3D consistency for its 2D RGB generator. Our method
achieves the best quality, alignment acc, and FVV Identity while being competitive
with 2D baselines on SG diversity. Figure 3.5 shows the qualitative ablation on
seg2face and seg2cat. Table 3.4 reports the metrics for seg2cat. Figure 3.6 shows
the example results for edge2cat. Figure 3.7 shows the qualitative comparison for
edge2car and Table 3.2 reports the metrics. Our method achieves the best image
quality and alignment. Figure 3.8 shows semantic meshes of human and cat faces,

extracted by marching cubes and colored by our learned 3D labels.
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Input Seg Map Generated Semantic Mesh

Figure 3.8: Semantic Mesh. We show semantic meshes of human and cat faces
from marching cubes colored by 3D labels.

Ablation Study. We compare our full method to several variants. Specifically, (1)
W /0 3D LABELS, we remove the branch of rendering label maps from our method,
and (2) w/0 CVC, we remove the cross-view consistency loss. From Table 3.1,
Table 3.2, and Figure 3.5, rendering label maps is crucial for the alignment with
the input. We posit that the joint learning of appearance, geometry, and label
information poses strong constraints on correspondence between the input label
maps and the 3D representation. Thus our method can synthesize images pixel-
aligned with the inputs. Our CVC loss helps preserve the facial identity from
different viewpoints.

Seg2Car Quality Alignment

Shapnet-car FID | KID | SG Diversity 1 ‘ mloU 1 acc 1
Pix2NeRF 25.86 0.018 0.08 ‘ 024 0.59
Ours 9.35 0.004 0.14 ‘ 0.58 0.88

Table 3.4: Seg2car Evaluation. We compare our method with Pix2NeRF [13]. Ours
performs better in all metrics.

Analysis on random sampling of poses. We study the effect of the different
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Figure 3.9: We study the effect of random pose sampling probability p during
training. Without random poses (p = 0), the model achieves the best alignment
with input semantic maps, with reduced image quality. In contrast, only using
random poses (p = 1) achieves the best image quality, while results fail to align
with input maps. We find p = 0.5 balances the image quality and input alignment.

Multi-view Generation Multi-view Generation
of RGB & Edge maps of RGB & Edge maps

Inj;t_‘i—ic;ap» # j D Edited]ége Map-> D ﬁ j
i § @ I @ D @

Figure 3.10: Cross-view Editing of Edge2Car. Our 3D editing system allows users
to edit label maps from any viewpoint instead of only the input view. Importantly,
our feed-forward encoder allows fast inference of the latent code without GAN-
inversion. Typically, a single forward pass of rendering takes only 40 ms on a single
RTX A5000, which enables interactive editing. Please check our demo video on our
website.

probabilities of sampling random poses during training, as shown in Figure 3.9.
When sampling no random poses (p = 0), the model best aligns with input label
maps with suboptimal image quality. Conversely, only sampling random poses
(p = 1) gives the best image quality but suffers huge misalignment with input label
maps. We find p = 0.5 achieves the balance between the image quality and the
alignment with the input.

3.4.3 Applications

Cross-view Editing. As shown in Figure 3.10, our 3D editing system allows users

to generate and edit label maps from any viewpoint instead of only the input view.
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Appearance

Geometry

Figure 3.11: Multi-modal Synthesis. The leftmost column is the input segmenta-
tion map. We use the same segmentation map for each row. We generate multi-
modal results by randomly sampling an appearance style for each column.

The edited label map is further fed into the conditional encoder to update the 3D
representation. Unlike GAN inversion [294], our feed-forward conditional encoder
allows fast inference of the latent code. Thus, a single forward pass of our full
model takes only 40 ms on a single RTX A5000.

Multi-modal synthesis and interpolation. Like other style-based generative mod-
els [18, 55, 86, 87], our method can disentangle the geometry and appearance
information. Specifically, the input label map captures the geometry informa-
tion while the randomly sampled latent code controls the appearance. We show
style manipulation results in Figure 3.11. We can also interpolate both the geom-
etry styles and the appearance styles (Figure 3.12). These results show the clear
disentanglement of our 3D representation.
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3.5 Discussion

We have introduced pix2pix3D, a 3D-aware conditional generative model for
controllable image synthesis. Given a 2D label map, our model allows users to
render images given any viewpoint. Our model augments the neural field with
3D labels, assigning label, color, and density to every 3D point, allowing for the
simultaneous rendering of the image and a pixel-aligned label map. The learned
3D labels further enable interactive 3D cross-view editing. We discuss the broader

impact and limitations in the appendix.
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Appearance

Geometry

Figure 3.12: Interpolation. In each 5 x 5 grid, the images at the top left and bottom
right are generated from the input maps next to them. Each row interpolates two
images in label space, while each column interpolates the appearance. For camera
poses, we interpolate the pitch along the row and the yaw along the column.
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Chapter 4

Efficient Autoregressive Shape
Generation via Octree-Based Adaptive

Tokenization

Chapter 3 demonstrated that by incorporating 3D awareness into the generation
process, we can create editable 3D objects from simple 2D semantic inputs like
sketches or segmentation maps. However, this approach is designed for category-
specific generation. It works well for cars, faces, or other well-defined object
categories with sufficient training data, but cannot easily generalize to the vast
diversity of objects and scenes users might want to create. Furthermore, the reliance
on 2D semantic inputs, while expressive and intuitive, is not as accessible as simple
text descriptions.

The following chapter explores how to scale our training to generic text-to-3D
generation that automatically creates arbitrary high-fidelity 3D shapes based on
text descriptions.

4.1 Introduction

Recent advances in generative models have revolutionized the field of 3D content
creation, enabling diverse applications, including shape generation [106, 142, 235],
text-to-3D generation [111, 179, 249], text-driven mesh texturing [23, 41], single-
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Fewer Tokens for Simple Shapes Better Reconstruction for Complex Shapes
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9 tokens (1.7%) 17 tokens (3.3%) 72 tokens (14%) 173 tokens (34%) 473 tokens 494 tokens 526 tokens 547 tokens

Figure 4.1: We propose an Octree-based Adaptive shape Tokenization (OAT) that
dynamically allocates tokens based on shape complexity. Our approach achieves
better reconstruction quality with fewer tokens on average (439 compared to 512 on
the full test set) by intelligently distributing more tokens to complex shapes while
saving on simpler ones.

image 3D generation [123, 128], and 3D scene editing [59, 124]. One popular
paradigm among state-of-the-art methods employs 3D-native diffusion or au-
toregressive models [106, 188, 261, 282, 288] on top of 3D latents learned from
large-scale datasets. As a result, the effectiveness of these models heavily depends
on how well 3D shapes are represented and encoded as latent representations.

Effective latent representations for 3D shapes must address several fundamen-
tal challenges. First, 3D data is inherently sparse, with meaningful information
concentrated primarily on surfaces rather than distributed throughout the volume.
Second, real-world objects vary in geometric complexity, ranging from simple prim-
itives to intricate structures with fine details, requiring representation structures
that can adapt accordingly. Third, the encoding process must take into account
capturing fine local details while preserving the global geometric structure.

Most existing shape VAEs [106, 278, 282, 288] encode shapes into fixed-size
latent representations and fail to adapt to the inherent variations in geometric
complexity within such shapes. As shown in Figure 4.1 (bottom), objects are en-
coded with identical latent capacity regardless of their scale, sparsity, or complexity,
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resulting in inefficient compression and degraded performance in downstream
generative models. While some approaches [188, 261] leverage sparse voxel repre-
sentations like octrees to account for sparsity, they still subdivide any cell contain-
ing surface geometry to the finest level, thus failing to adapt to shape complexity.
As illustrated in Figure 4.2, a simple cube with only eight vertices requires similar
representation capacity as a highly detailed sculpture in traditional octree struc-
tures. Ideally, hierarchical shape representations should adapt to the complexity
of different regions within a shape. For instance, in the bottom right of Figure 4.2,
complex structures like a tree canopy should require finer subdivision than simpler
regions like the trunk.

To address these challenges, we propose an Octree-based Adaptive Tokeniza-
tion. Our approach dynamically adjusts the latent representation based on local
geometric complexity measured by quadric error, efficiently representing both sim-
ple and intricate regions with appropriate detail levels. As shown in Figure 4.1, our
approach achieves better reconstruction quality with comparable or fewer shape
tokens. By developing an Octree-based autoregressive generative model, we verify
that our efficient variable-sized shape tokenization is beneficial to downstream
generation tasks. Experiments show our generated results are generally better than
those of existing baselines regarding FID, KID, and CLIP scores.

4.2 Related Work

3D Generation. Recent 3D generation methods have achieved remarkable results
by leveraging pre-trained large-scale 2D diffusion models [192]. Approaches like
DreamFusion [179] and DreamGaussian [222] use 2D diffusion priors to optimize
3D representations, such as Neural Radiance Fields [149] and Gaussian Splats [90].
Subsequent works have improved performance with new loss functions and 3D rep-
resentations [24, 89, 105, 111, 127, 130, 135, 144, 147, 217, 233, 249, 270]. However,
these methods often require extensive iterative optimizations, making them imprac-
tical for real-world applications. To reduce inference time, feed-forward methods
have been developed that synthesize multi-view consistent images of the same
object followed by 3D reconstruction [66, 103, 116, 117, 122, 223, 231, 267, 281, 301].

51



4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Input Traditional Octree Our Adaptive Octree
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Figure 4.2: Traditional octree construction subdivides each octant based on whether
the octant contains any mesh element. This construction always subdivides to
the maximum depth (set to 6 in this example), leading to a similar amount of
nodes for simple (top) and complex (middle) shapes. In contrast, our approach
terminates subdivision when the local geometry is simple (e.g., a plane), leading to
an adaptive octree that better reflects the shape complexity.

Nonetheless, approaches leveraging 2D diffusion priors alone without 3D-native
supervision tend to suffer from challenges in modeling refined geometric structures

and complex surfaces, especially for shapes of high concavity.

More recently, a wave of 3D-native generative models [106, 118, 188, 259, 261,
282, 288] has emerged, aiming to train directly on raw 3D assets rather than relying
on 2D diffusion priors. These methods have achieved superior generation quality
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compared to their predecessors thanks to the 3D-native architecture design. An-
other line of work explores auto-regressive methods for direct mesh generation
with artist-like topology [28, 29, 58, 209, 224, 255]. Due to tokenization inefficiency
and challenges in scaling up the context window, these methods are still struggling
to model high-poly meshes with complex surfaces. In contrast, our work aims to
explore more efficient tokenization schemes that encode shapes into compact yet

expressive representations for 3D-native generation.

Compact 3D latent representations. Representing 3D shapes with compact latent
representations has become increasingly popular in 3D generative modeling. One
line of work, pioneered by 3DShape2VecSet [171], advocates encoding 3D shapes
into latent vector sets that can be decoded into diverse geometry representations
such as occupancy fields [106, 171, 257, 282, 287], signed distance fields [25, 288],
and meshes [224]. These methods encode all shapes into a fixed-length vector, and
do not adaptively adjust the representation budget based on shape complexity.
Other work [206, 258] learns latent space from triplanes, but achieving high-fidelity
triplane representations remains challenging, which limits their accuracy, especially
for complex shapes.

An alternative direction focuses on structured 3D latent representations to better
leverage the spatial hierarchies inherent in the underlying geometry. For instance,
sparse voxel grids coupled with feature-rich latents or attributes, as proposed
in XCube [188], MeshFormer [118], LTS3D [140] and Trellis [259], enables more
efficient training for high-resolution shapes and scenes and better preservation
of high-frequency geometric details. Meanwhile, OctFusion [261] proposes to
represent a 3D shape as a volumetric octree with each leaf node encoded by latent
features. Although these approaches offer adaptiveness in the latent representation
similar to ours, their spatial structure is determined by volumetric occupancy
rather than surface complexity.

Octree-based 3D representation. Octree [136, 137] is an efficient 3D data structure
that recursively divides a 3D space into eight octants. It adapts to sparsity and
minimizes storage and computation in empty regions, making it both memory-
and computationally efficient. Compared to dense voxel grids, octrees signifi-
cantly reduce memory usage while preserving fine geometric details in complex

regions. Octree has been used in a wide range of geometric processing applications,
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including point cloud compression [198], 3D texturing [8], multi-view scene recon-
struction [218, 272], shape analysis [190, 242, 243], and shape generation [225, 261].
While similar adaptive octree [244] has been used for the shape classification and
prediction tasks, our work is the first to explore octree representation in the context
of 3D tokenization and autoregressive generation, which requires us to co-design
the encoding, decoding, and generation with octree data structure. Compared to
existing approaches [188, 259, 261] that use uniform tokenization schemes, our

method adapts tokenization according to shape complexity.
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Figure 4.3: (a) Adaptive Shape Tokenization. Given an input mesh with surface
point samples, we partition 3D space into a sparse octree that adapts to the local ge-
ometric complexity of the surface. We then use a Perceiver-based transformer [77]
to encode the shape into a tree of latent codes, where a child node need encode
only the (quantized) residual latent relative to its parent [100]. Latents can then be
decoded into an occupancy field from which a mesh can be extracted. (b) Autore-
gressive Shape Generation. We define an autoregressive model for generating a
tree of quantized shape tokens given a textual prompt, following a coarse-to-fine
breadth-first search traversal. Similar to variable-length generation of text via
end-of-sentence tokens, we make use of structural tokens to generate variable-size
tree structures.

4.3 Method

Figure 4.3 illustrates our text-based shape generation framework. Our approach
comprises two components: (1) a shape tokenization method (Octree-based Adap-
tive Tokenization, OAT) in Section 4.3.1 and Section 4.3.2 that efficiently compresses
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3D shapes into a compact latent space, and (2) an autoregressive generative back-
bone model, OctreeGPT in Section 4.3.3, which operates on these variable-length
shape tokens.

For each 3D shape, our approach begins by sampling a point cloud P, € RN*3
from the surface, along with its surface normal vectors P, € RN*3 following prior
work [278]. We then employ our novel adaptive octree construction algorithm that
partitions 3D space based on local geometric complexity to obtain an sparse octree
structure. We then leverage the Perceiver-based transformer architecture [77] to
encode the shape into an adaptive latent tree structure. The resulting variable-
length latent representation can then be decoded into an occupancy field, from
which a mesh can be extracted using marching cubes [129].

Unlike existing shape VAEs [106, 278, 282, 288] that learn fixed-size latent
representations for every shape using Variational Autoencoders [94], we propose
to encode shapes into variable-length latents based on their shape complexity. This
adaptive tokenization approach results in a more compact latent space that only
uses more latents by subdividing cells to finer resolution where the complexity
of the shape is higher — thereby leading to better reconstruction quality and

improved performance in downstream generative tasks.

4.3.1 Complexity-Driven Octree Construction

One of the core ingredients of our method is a sparse octree data structure which
subdivides octants according to local geometry complexity, unlike existing methods
subdividing cells based on occupancy.

An octree is a hierarchical spatial data structure that recursively subdivides 3D
space into eight equal octants. Starting with a root node representing a bounding
cube, each non-empty node can be further partitioned into eight child nodes,
creating a tree-like structure O = {V,€}. We use V = {v1,0y,...} to denote
the cells in an octree hierarchy, and £ C V x V defines parent-child relationships,
where (v;,v;) € € indicates that v; is the parent of v;. This representation is efficient
to represent sparse 3D data, as it allocates higher resolution only to occupied
regions.

In this paper, we consider the sparse octree by omitting empty child nodes,
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i.e., each node can have 0 to 8 child nodes, with all nodes being non-empty. This
structure can be compactly encoded by an 8-bit binary code x : V — {0,1}8. For
instance, x(v) = (01001000), indicates that node v has two non-empty child nodes
at its second and fifth slots. An octree structure can thus be uniquely represented as
a sequence of 8-bit binary codes in breadth-first order, [x(vo), x(v1), - - - |.

While octrees have previously been used to tokenize 3D shapes, earlier meth-
ods [188, 261] always subdivide up to the maximum depth unless empty. In
contrast, we subdivide an octant only when the local geometry is “complex”. In-
spired by the literature in mesh simplification [49] and isosurfacing [83], we use the
quadric error metric to measure shape complexity and guide octree subdivision.
This approach optimizes representational capacity, allocating tokens where they
provide the greatest benefit for shape fidelity.

Quadric error metric was first introduced to quantify local geometric complexity
for mesh simplification tasks [50]. Given a plane in R?, let p denote a point on the
plane with unit normal vector n. The plane can be defined by all points x € R3
satisfying

n' (x—p)=0. 4.1)

The quadric error measures the squared point-to-plane distance between any
point x and this plane, computed as

E() = (n"(x—p) =, 1]Q 17, 42)

where the quadric matrix Q € R*** is defined as

T _ T
Q:[ nn nn p]. 43)

(—nn'p)" p'nn'p

As a key property, the cumulative error from a point x to multiple planes can be
computed with a summed quadric,

E(x) =} Ei(x) = [x',1] (ZQ) X', 17 (4.4)
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We use the quadric error E* = miny E(x) to measure local geometric complexity.
As the energy is quadratic, the minimum E* can be efficiently computed by solving
a linear system, with details left in the appendix. Intuitively, when the planes form
common intersections (e.g., an edge, a cone, or being flat), the optimal quadric
error approaches zero, whereas complex regions usually yield higher quadric error
values. This property makes quadric error metrics suitable for guiding adaptive
geometric representations.

Specifically, for each octree cell v € V, we compute the cell quadric Q, by

summing up quadrics for all sampled points within v,

Q= ), Qp (4.5)

pePe(v)

where P.(v) = {p € P. | p is contained in cell v} denotes the subset of points that
lie within cell v, and Q) is the quadric matrix for point p with its corresponding
normal vector n € P,,. We then calculate the average quadric error

1

E; = min Ey(x) = P.(0) mxin[xT,l]Qv[xT,l]T. (4.6)

We recursively subdivide v into child cells only when both of these conditions are
met: (1) the maximum depth L has not been reached, and (2) the quadric error
exceeds our pre-defined threshold, E; > T. In regions with complex geometry,
cells are subdivided to the maximum depth L, while subdivision stops early in

areas with simpler (i.e., planar) geometry.

4.3.2 Adaptive shape tokenization with OAT

Following prior work [106, 278, 282, 287, 288], we adopt a Perceiver-based varia-
tional autoencoder (VAE) [77, 94] to encode the shape into latents. Specifically, we

compute:
P = Concat (PE(P.),P,), 4.7)
O = Concat (PE(Vicat), SE(Vicat)) , (4.8)
¢ (Vieat) = SelfAttn) (CrossAttn(0,P)), i =1, -, L,
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where the encoder ¢ outputs a latent vector ¢(v) for every leaf cell v € Vjgaf, where
¢ : V — R Here, PE denotes the positional encoding function [236], which
operates on point coordinates and octree cell centers, while SE denotes the scale
encoding function on the depth of octree cells. Vjoo¢ comprises all the leaf cells
within V, and L, refers to the number of Self Attention layers in the shape encoder.

Notably, the cross-attention operation is global, allowing each leaf cell to attend
to all points in P across the entire shape, rather than just points within its local
cell. This global attention enables the model to capture long-range dependen-
cies and contextual information beyond local neighborhoods. The subsequent
self-attention layers further refine these representations by allowing leaf cells to
exchange information.

Finally, we propagate latent vectors from leaf cells to their ancestors bottom-up.

Each non-leaf node computes its latent vector by averaging those of its child nodes.

Multi-scale octree residual quantization. The variable length of the encoded
latent motivates us to adopt an autoregressive model for downstream generation
in Section 4.3.3. This approach requires us to learn a quantization bottleneck in the
VAE. To achieve this, we propose an octree-based residual quantization strategy,
enabling a coarse-to-fine token ordering using residual quantization [100, 229].
Specifically, we start quantization from the root node and only process the residual
latent of every latent from its parent. We use a shared codebook and quantization
function for all of the nodes using vqtorch [73]. We summarize our residual
quantization algorithm in Algorithm 1.

Octree decoding. Given the multi-scale octree residual latent z : V — R?, we
recover the full latent ¢ : V — R? by adding the latent to every node from all
its ancestors. Motivated by prior work [106, 278, 287], we use a similar perceiver-
based transformer to decode the latent to an occupancy field. Specifically, given a

query 3D point x € R3, the decoder predicts its occupancy value:

S = Concat (¢(V),PE(V),S (V)), (4.9)
S = SelfAtn!)(§),  j=1,2,---,Lg, (4.10)
o(x,$, O) = CrossAttn (PE(x),S), (4.11)

where L; is the number of Self Attention layers in the shape decoder, and ¢ is the
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Algorithm 1 Multi-scale octree residual quantization

Input: Octree O = {V, £}, Latent ¢ : V — R%.
Output: Multi-scale residual quantized latent z : V — R, Quantized latent index
qg:V — Z.

1: z(vg),q(vg) = Quantize(¢(vy)) > v is the root node.
2: Zgec(v9) = z(vp) > Initialize accumulated latent.
3 ford=1,---,L—1do > L is the max depth of O.
4: forv e V;do > V; is the set of nodes at level 4.
5: Find the parent vparent of v according to €.

6: z(v),q(v) = Quantize(¢(v) — Zacc(Vparent) )-

7: Zace (V) = Zace(Vparent) + 2(0). > Update zg.
8: end for

9: end for

predicted occupancy value at the query point. At inference time, we query the
decoder using grid points and run marching cubes [129] to extract a mesh. During
training, we sample query points using uniform and importance sampling near the
mesh surface following prior work [106, 278, 287].We jointly optimize the networks
and codebook via the following loss functions.

Lvq = Eoelsg(@(v)) — ¢(0)[1* + [Isg(#(v)) — $(0)[%, (412)

where sg() is the stop-gradient operation. Additionally, we incorporate an occu-
pancy reconstruction loss to ensure that the latent codes accurately reconstruct the
input shape:

Erec - ]EXEBCE (U(x),ﬁ(x, 43/ O)) ’ (4-13)

where Lpcg is the binary cross-entropy loss for shape reconstruction, and o(x) €
{0,1} is the ground truth occupancy value of the query point, indicating whether
it is located inside the object. Our final loss function is:

Lrec + AvoLvo, (4.14)

where Ayg weights the vector quantization loss.

KL variant for continuous tokens. By replacing the quantization bottleneck with
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a KL regularization [94], our proposed OAT can learn continuous shape latent
instead, which provides a fair comparison with other continuous latent baselines
in Section 4.4.1.

4.3.3 OctreeGPT: Autoregressive Shape Generation

Building on our adaptive tokenization framework, we develop OctreeGPT, an
autoregressive model for generating 3D shapes conditioned on text descriptions.
Unlike previous approaches that operate on fixed-size representations [106, 282,
288], OctreeGPT models the joint distribution of variable-length octree tokens

while maintaining a hierarchical coarse-to-fine structure.

Shape Token Sequence. To enable autoregressive modeling, we first serialize
the octree structure by traversing it in a breadth-first manner as mentioned in
Section 4.3.2. For each node v, we include both its quantized index q(v) € Z
and a structural code x(v) € {0,1}® that encodes the presence or absence of
each potential child node. A latent octree can thus be uniquely represented by a
variable-length sequence of tokens:

[tOI t]/ e ItN] s
where each token t; = (q(v;), x(v;)), Vi € N.
We train an autoregressive model that predicts the next token in the sequence,
N
P(tOItll" tN|9 :HP t |t01"' i— 1/6)/ (415)

i=1

where 6 is our learned OctreeGPT model.

Model Architecture. Our architecture builds upon decoder-only transformers
similar to GPT-2 [45, 182]. Specifically, we compute the embedding for each shape
token t; as:

Embed(t;) = Embed,(q(v;)) + Embed, (x(v;)) + PEtree(vi), (4.16)

where X (v;) is interpreted as an 8-bit integer. The tree-structured positional encod-
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ing PEe(v;) captures both spatial and hierarchical information:
PEiree(v;) = Embed, (x(v;)) + Embed, (y(v;)) (4.17)
+Embed;(z(v;)) + Embed;(d(v;)), (4.18)

where x, y, z are quantized coordinates of the cell center, and d € {0,1,--- ,L — 1}
is the depth of the octree node. This multi-dimensional positional encoding helps
the model understand both spatial relationships and the hierarchical structure of
the octree. Our model employs dual prediction heads for predicting quantized
latent indices 4 and structural codes %, allowing the model to jointly reason about
geometry and tree structure. For text-conditioned generation, we prepend the
sequence with 77 tokens derived from the input text’s CLIP embedding [183].

Training and Inference. We train OctreeGPT using a combined loss function that

balances the reconstruction of latent tokens and structural codes:

Lorr = Lce(9,9) + A Lee(x, X), (4.19)

where Lcg is the cross-entropy loss for 28-way classification, and Ay are balancing
hyperparameters. During inference, we employ sampling with temperature T to
control the diversity and quality of generated shapes. We process the predicted
structural code x(v;) on the fly to determine the octree topology, which dynamically
establishes the final length of the token sequence. Further implementation details

and hyperparameter settings are provided in the appendix.

4.4 Experiments

We evaluate our method on shape tokenization and generation. We perform
qualitative and quantitative comparisons with existing baselines and conduct an

ablation study on the significance of each major component.

Dataset. We use the Objaverse [37] dataset, which contains around 800K 3D models,
as our training and test data. To ensure high-quality training and evaluation, we
filter out low-quality meshes, such as those with point clouds, thin structures, or
holes. This results in a curated dataset of around 207K objects for training and 22K
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Figure 4.4: We plot reconstruction quality (IoU) against latent size in both discrete
(left) and continuous (right) scenarios. We use KiloBytes (KB) for continuous latent
representations for a fair comparison. Our method consistently outperforms base-
line approaches at equivalent latent sizes and achieves comparable reconstruction
quality with much smaller latent representations.

objects for testing.

For preprocessing, each mesh is normalized to a unit cube. For each mesh, we
sample 1M points with their normals from the surface as the input point cloud. To
generate ground-truth occupancy values, we uniformly sample 500K points within
the unit volume and an additional 1M points near the mesh surface to capture fine
details and obtain the occupancy based on visibility following prior work [282].
We then construct an adaptive octree for each shape based on the sampled point
cloud using a pre-defined quadric error threshold T, which guides the subdivision
process according to local geometric complexity. To enable text conditioning, we
render nine views of each object under random rotations and use GPT-4o [2] to

generate descriptive captions from these renderings.

4.4.1 Shape Reconstruction

We first assess the reconstruction fidelity of different latent representations.

Baselines. We compare OAT with latent vector sets from Craftsman3D [106]. For
a fair comparison, we train both methods under identical conditions, using both

quantization for discrete tokenization and KL regularization for continuous latent
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Figure 4.5: Shape reconstruction with discrete latent. We compare our full method
against Craftsman-VQ [106] as well as an ablation without Adaptive Subdivision
(A.S.). With comparable or lower token budget, our method generally outperforms
the baseline regarding reconstruction fidelity. Meanwhile, without adaptive sub-
division, the vanilla octree only allocates the token budget efficiently for objects
of small volume (bottom) but wastes tokens on geometrically simple objects that
occupy large space (middle).

space. Additionally, we evaluate against two other recent approaches, XCube [188]
and Octfusion [261]. Due to computational resource constraints, we use publicly
available pre-trained models for these two baselines rather than retraining them
on our dataset. We exclude VAE models from Direct3D [257], CLAY [282], and
LTS3D [140] as their implementations are not available.

Results. We evaluate shape reconstruction quality using volume Intersection
over Union (IoU) and Chamfer Distance (CD) with 10K sampled surface points
in Table 4.1 and Table 4.2. Note that XCube [188] outputs an Unsigned Distance

Function (UDF), which cannot be evaluated with IoU metrics. Visual comparisons
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Figure 4.6: Shape reconstruction with continuous latent. We include the visual
comparison between our continuous VAE (OAT-KL) and other baselines. In general,
our reconstruction preserves more details using similar or smaller number of latent
vectors.

in Figure 4.5 and Figure 4.6 demonstrate our approach outperforms all baselines.

Ablation Study. We ablate our proposed adaptive subdivision in Figure 4.5. With-
out quadric-error-based adaptive subdivision, the octree representation subdivides
to the deepest level unless empty, wasting tokens on simple objects of large vol-
umetric occupancy (middle row). Figure 4.4 shows reconstruction quality (IoU)
versus latent size in both discrete and continuous scenarios, confirming our method
achieves better quality at equivalent latent sizes and requires significantly smaller
latent representations for comparable reconstruction quality. Figure 4.7 further
shows a qualitative comparison between our method and the baseline in recon-

struction quality with respect to the number of tokens used.

4.4.2 Shape Generation

This section evaluates our text-to-shape generation quality against multiple base-
lines. We train our OctreeGPT on top of OAT using 439 tokens on average, and
for comparison, train a GPT model on Craftsman-VQ with 512 tokens. We include
XCube [188]’s pre-trained Objaverse model as a native text-to-3D baseline. We also

64



4. Efficient Autoregressive Shape Generation via Octree-Based Adaptive
Tokenization

Ours

236 tokens 506 tokens 1045 tokens

Craftsman-
VQVAE

AN &
256 tokens 512 tokens 1024 tokens

Figure 4.7: Ablation study on token length. With an increasing number of tokens,
our method achieves better quality while consistently outperforming the baseline
at a comparable token length.

compare against two image-to-3D methods, InstantMesh [262] and Craftsman [106],
using FLUX.1 [96] to generate condition images from input text.

Results. We quantitatively evaluate generation quality in Table 4.3 by rendering
generated shapes and computing Frechet Inception Distance (FID) [63, 176], and
Kernel Inception Distance (KID) [10] against groundtruth renderings. We also
report CLIP-score [183] to evaluate text-shape consistency, and average generation
time to evaluate efficiency. In addition to quantitative measures, we also provide
qualitative comparisons in Figure 4.8. Overall, thanks to a more compact and
representative latent space, our OctreeGPT produces finer details with fewer ar-
tifacts compared to Craftsman-VQ with GPT, while also outperforming other 3D
generation baselines in both geometry quality and prompt adherence, with a faster

runtime.

4.5 Discussion

In this work, we propose an octree-based Adaptive Shape Tokenization, OAT,
a framework that dynamically adjusts latent representations according to shape
complexity. At its core, OAT constructs an adaptive octree structure guided by a
quadric-error-based subdivision criterion, allocating more tokens to complicated

parts and objects while saving on simpler ones. Extensive experiments show that
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Method Avg Token Cnt ToU 1 CD (x1073) ]
256 83.1 2.31
512 83.8 1.94
Craftsman-VQ [106] 768 84.2 1.88
1024 84.4 1.80
Ours (OAT) égg zgg iég
w/oAS. ' '
1726 89.9 1.37
266 86.7 1.94
439 88.6 1.78
Ours (OAT) 625 89.7 1.53
1284 90.2 1.27

Table 4.1: Quantitative analysis of shape reconstruction with discrete latent. We
compare our method against Craftsman-VQ [106] and ablation without Adaptive
Subdivision (A.S.). With comparable token counts, our approach outperforms both
baselines, showing the effectiveness of our proposed adaptive tokenization.

OAT reduces token counts by 50% compared to previous fixed-size approaches
while maintaining comparable visual quality. Alternatively, with a similar number
of tokens, OAT produces much higher-quality shapes. Building upon this tokeniza-
tion, we develop an octree-based Autoregressive generative model, OctreeGPT that
effectively leverages these variable-sized representations, outperforming existing
baselines.

Limitations. Our framework only addresses geometric shape reconstruction and
generation without incorporating texture information. We leave modeling both
shape and texture properties jointly for future work.
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Method Avg Latent Len IoU 1 CD (x1073%) ]
256 87.8 1.96
512 91.0 1.83
Craftsman [106] 768 901 133
1024 924 1.29
Octfusion® [261] 4096 88.9 1.87
XCube' [188] 4096 - 1.26
owsOaTkn 8 B 1
w/0 A.S. ) ’
1726 93.0 1.01
266 89.7 1.81
439 91.6 1.29
Ours (OAT-KL) 625 92.7 1.08
1284 93.1 0.97

Table 4.2: Quantitative analysis of shape reconstruction with continuous latent.
We replace the quantization with a KL regularization to learn continuous latent
(OAT-KL) as mentioned in Section 4.3.2. Our method outperforms all the baselines
with comparable or shorter latent code lengths. t indicates off-the-shelf models
that are pre-trained on different data sources than ours.

KID| CLIP- Runtime]

Method FID} (x1073) scoret  (secs)
Craftsman® [106] 65.18 6.42 0.27 54.8
InstantMesh' [153] 6793 723 0.31 215
XCube [188] 13256  9.83 0.23 32.3

Craftsman-VQ + GPT 85.10 7.49 0.26 154
Ours (OctreeGPT) 56.88 5.79 0.34 11.3

Table 4.3: Quantitative analysis of shape generation. We compare OctreeGPT
with a GPT baseline trained on Craftsman-VQVAE (Section 4.4.1), text-to-3D model
XCube [188], and image-to-3D methods InstantMesh [262] and Craftsman [106].
We compute FID [63], KID [10], and CLIP-score on the renderings of generated
shapes, and report the average generation time. Our method outperforms all the
baselines, showing higher quality and better consistency with the input text while
achieving the fastest runtime due to our efficient tokenization.
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Figure 4.8: Shape Generation Results. We compare OctreeGPT with a GPT baseline
trained on Craftsman-VQVAE (Section 4.4.1), text-to-3D model XCube [188], and
image-to-3D methods InstantMesh [262] and Craftsman [106]. Our results have
smoother surfaces, finer details, and fewer artifacts than baselines. For image-
conditioned methods’, we use FLUX.1 [96] to generate condition images from
input text.
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Chapter 5

Fast Relightable Mesh Texturing with
LightControlNet

Drawing inspiration from how professional artists create 3D content, we propose
decomposing the challenge into two sequential stages: geometry generation (Chap-
ter 4) and texture generation (This chapter). This decomposition allows each stage
to be optimized with appropriate structural priors while maintaining the flexibility
to create diverse, high-quality 3D assets from text descriptions.

Chapter 4 addressed the first stage by developing efficient octree-based repre-
sentations for generating diverse 3D shapes from text prompts.

The following chapter tackles the challenge of generating high-fidelity re-
lightable texture. Unlike simple flat texture, our approach generates physically-
based materials that exhibit realistic behavior under various lighting environments.
This capability is essential for downstream applications in games, films, and virtual
environments, where generated assets must integrate convincingly with existing

lighting setups and maintain visual consistency across different viewing conditions.

5.1 Introduction

Creating high-quality textures for 3D meshes is crucial across industries such as
gaming, film, animation, AR/VR, and industrial design. Traditional mesh texturing

tools are labor-intensive, and require extensive training in visual design. As the
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demand for immersive 3D content continues to surge, there is a pressing need to

streamline and automate the mesh texturing process (Figure 5.1).

In the past year, significant progress in text-to-image diffusion models [185, 192,
194] has created a paradigm shift in how artists create images. These models allow
anyone who can describe an image in a text prompt to generate a corresponding
picture. More recently, researchers have proposed techniques for leveraging such
2D diffusion models for automatically generating textures for an input 3D mesh
based on a user-specified text prompt [23, 24, 144, 189]. But these methods suf-
fer from three significant limitations that restrict their wide-spread adoption in
commercial applications: (1) slow generation speed (taking tens of minutes per
texture), (2) potential visual artifacts (e.g., seams, blurriness, lack of details), and
(3) baked-in lighting causing visual inconsistency in new lighting environments
(Figure 5.2). While some recent methods address one or two of these issues, none
adequately address all three.

In this work, we propose an efficient approach for texturing an input 3D mesh
based on a user-provided text prompt that disentangles the lighting from surface
material /reflectance to enable relighting (Figure 5.1). Our method introduces
LightControlNet, an illumination-aware text-to-image diffusion model based on
the ControlNet [283] architecture, which allows specification of the desired lighting
as a conditioning image for the diffusion model. Our text-to-texture pipeline uses
LightControlNet to generate relightable textures in two stages. In stage 1, we use
multi-view visual prompting in combination with the LightControlNet to produce
visually consistent reference views of the 3D mesh for a small set of viewpoints. In
stage 2, we perform a new texture optimization procedure that uses the reference
views from stage 1 as guidance, and extends Score Distillation Sampling (SDS) [179]
to work with LightControlNet. This allows us to increase the texture quality while
disentangling the lighting from surface material/reflectance. We show that the
guidance from the reference views allows our optimization to generate textures
with over 10x speed-up than previous SDS-based relightable texture generation
methods such as Fantasia3D [24]. Furthermore, our experiments show that the
quality of our textures is generally better than those of existing baselines in terms
of FID, KID, and user study.
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N . “Stone Groblet “Marble goblet with “Metal goblet intricatel
Noo;\_er Saiflef\sf&h carved with runes white base color designed to reflect a Light Probe
grath patter and symbols” and red veins” Van Gogh painting”

Figure 5.1: We propose an efficient approach for texturing an input 3D mesh
given a user-provided text prompt. Our generated texture can be relit properly
in different lighting environments. The light probe shows the varied lighting
environment. We suggest the readers check our video results of rotating lighting in
our supplementary material.

5.2 Related Work

Text-to-Image generation. Recent years have seen significant advancements in
text-to-image generation empowered by diffusion models [185, 192, 194]. Stable
Diffusion [192], for example, trains a latent diffusion model (LDM) on the latent
space rather than pixel space, delivering highly impressive results with affordable
computational costs. Further extending the scope of text-based diffusion models,
works such as GLIGEN [107], PITI [247], T2IAdapter [152], and ControlNet [283]
incorporate spatial conditioning inputs (e.g., depth maps, normal maps, edge maps,
etc.) to enable localized control over the composition of the result. Beyond their
power in image generation, these 2D diffusion models, trained on large-scale text-
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v 2

(a) Mesh (b) Reference Lighting Composne RGB Diffuse Specular Composite RGB Diffuse Specular
(c) Fantasia3D Texture (d) Our Texture

Figure 5.2: Given a 3D mesh of a helmet (a) and a lighting environment L, the
reference rendering (b) depicts the “correct” highlights on the mesh due to L, by
treating its surface reflectance as half-metal and half-smooth with a gray diffuse
color. (c) The texture generated by the leading method Fantasia3D [24] is not
properly relit as Fantasia3D bakes most of the lighting into the diffuse texture for
the mesh and does not capture the bright highlights in the specular texture. (d)
In contrast, our pipeline disentangles lighting from material, better capturing the
diffuse and specular components of the metal helmet in this environment. Text
prompt: “A medieval steel helmet.”

image paired datasets, also contribute valuable priors to various other tasks such as
image editing [62, 138], 3D generation [179, 184], and 3D editing [59, 95, 240, 300].

Text-to-3D synthesis. The success of text-to-image synthesis has sparked consid-
erable interest in its 3D counterpart. Some approaches [104, 156, 206, 291] train a
text-conditioned 3D generative model akin to 2D models, while others employ 2D
priors from pre-trained diffusion models for optimization [24, 105, 111, 144, 179,
217,241, 249] and multi-view synthesis [122, 204]. For instance, DreamFusion [179]
and Score Jacobian Chaining [241] were the first to propose Score Distillation
Sampling to optimize a 3D representation using 2D diffusion model gradients.
Zero-1-to-3 [122] synthesizes novel views using a pose-conditioned 2D diffusion
model. Yet, these methods often produce blurry, low-frequency textures that bake
lighting into surface reflectance. Fantasia3D [24] can generate more realistic tex-
tures by incorporating physics-based materials. However, the resulting materials
remain entangled with lighting, making it difficult to relight the textured object in
a new lighting environment. In contrast, our method effectively disentangles the
lighting and surface reflectance texture. Concurrent to our work, MATLABER [265]
aims to recover material information in text-to-3D generation using a material
autoencoder. Our method, however, differs in approach and improves efficiency.

3D texture generation. The area of 3D texture generation has evolved over time.

Earlier models either directly took 3D representations as input to neural net-
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Figure 5.3: Our Text-to-Texture pipeline. Our method efficiently synthesizes re-
lightable textures given an input 3D mesh and text prompt. In stage 1 (top left), we
use multi-view visual prompting with our LightControlNet model to generate four
visually consistent canonical views of the mesh under fixed lighting, concatenated
into a reference image I,.¢. In stage 2 we apply a new texture optimization proce-
dure using I, as guidance along with a multi-resolution hash-grid representation
of the texture T'(B(-)). For each optimization iteration, we render two batches
of images using I'(B(-)) — one using the canonical views and lighting of ¢ to
compute a reconstruction 1oss Lrecon and the other using randomly sampled views
and lighting to compute an SDS loss Lspg based on LightControlNet.

works [11, 207, 274] or used them as templates [171, 178]. While some methods
also use differentiable rendering to learn from 2D images [11, 60, 178, 274], the
learned models often fail to generalize beyond the limited training categories.
Closest to our work are the recent works that use pre-trained 2D diffusion mod-
els and treat texture generation as a byproduct of text-to-3D generation. Examples
include Latent-Paint [144], which uses Score Distillation Sampling in latent space,
Text2tex [23], which leverages depth-based 2D ControlNet, and TEXTure [189],
which exploits both previous methods. Nonetheless, similar to recent text-to-3D
models, such methods produce textures with entangled lighting effects and suffer
from slow generation. On the other hand, TANGO [30], generates material tex-

tures using a Spherical-Gaussian-based differentiable renderer, but struggles with
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complex texture generation. A concurrent work, Paint3D [277], aims to generate

lighting-less textures, yet it cannot produce material-based textures like ours.

Material generation. Bidirectional Reflection Distribution Function (BRDF) [161]
is widely used for modeling surface materials in computer vision and graph-
ics. Techniques for recovering material information from images often leverage
neural networks to resolve the inherent ambiguities when applied to a limited
range of view angles or unknown illuminations. However, these methods often
require controlled setups [109] or curated datasets [9, 47, 252], and struggle with
in-the-wild images. Meanwhile, material generation models like ControlMat [238],
Matfuse [237], and Matfusion [197] use diffusion models for generating Spatially-
Varying BRDF (SVBRDF) maps but limit themselves to 2D generation. In contrast,

our method creates relightable materials for 3D meshes.

5.3 Preliminaries

Our text-to-texture pipeline builds on several techniques that have been recently
introduced for text-to-image diffusion models. Here, we briefly describe these
prior methods and then present our pipeline in Section 5.4.

ControlNet. ControlNet [283] is an architecture designed to add spatially localized
compositional controls to a text-to-image diffusion model, such as Stable Diffu-
sion [192], in the form of conditioning imagery (e.g., Canny edges [14], OpenPose
keypoints [15], depth images, etc.). In our work, where we take a 3D mesh as input,
the conditioning image I.,,q(C) is a rendering of the mesh from a given camera

viewpoint C. Then, given text prompt y,
Iout = ControlNet(I.onq(C),v),

where the output image I,y is conditioned on y and I.,,q. ControlNet introduces
a parameter s that sets the strength of the conditioning image. When s = 0, the
ControlNet simply produces an image using the underlying Stable Diffusion model,
and when s = 1, the conditioning is strongly applied.

Score Distillation Sampling (SDS). DreamFusion [179] optimizes a 3D scene

representation conditioned on text prompts using a pre-trained 2D text-to-image
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diffusion model. The scene is represented as a NeRF [6, 149] parametrization 6.
A differentiable renderer R applied to 6 with a randomly sampled camera view
C then generates a 2D image x = R(6,C). A small amount of noise € ~ IN(0,1)
is then added to x to obtain a noisy image x;. DreamFusion leverages a diffusion
model ¢ (Imagen [194]) to provide a score function é¢(xt ;y,1), which predicts the
sampled noise € given the noisy image x;, text prompt y, and noise level t. This
score function can update the scene parameters 6, using the gradient calculated by
Score Distillation Sampling (SDS):

VoLsns(,x) = By |w(t) €y 1) — €) 0|
where w(t) is a weighting function. During each iteration, to calculate the SDS
loss, we randomly choose a camera view C, render the NeRF 0 to form an image
x, add noise € to it, and predict the noise using the diffusion model ¢. We run the
optimization for 5,000 to 10,000 iterations.

In our work, we introduce an illumination-aware SDS loss to optimize sur-
face texture on a 3D mesh to suppress inconsistency artifacts and simultaneously
separate lighting from the surface reflectance.

5.4 Method

Our text-to-texture pipeline operates in two main stages to generate a relightable
texture for an input 3D mesh with a corresponding text prompt (Figure 5.3). In
Stage 1, we use a multi-view visual prompting approach to obtain visually con-
sistent views of the object from a small set of viewpoints, using a 2D ControlNet.
Simply backprojecting these sparse views onto the 3D mesh could produce patches
of high-quality texture, but would also generate visible seams and other visual
artifacts where the views do not fully match. The resulting texture would also
have lighting baked-in, making it difficult to relight the textured mesh in a new
lighting environment. Therefore, in Stage 2, we apply a texture optimization that
uses a ControlNet in combination with Score Distillation Sampling (SDS) [179]
to mitigate such artifacts and separate lighting from the surface material proper-

ties/reflectance. In both stages, we introduce a new illumination-aware ControlNet
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Figure 5.4: (a) LightControlNet requires a conditioning image that specifies desired
lighting L for a view C of a 3D mesh. To form the conditioning image, we first
render the mesh with the desired L and C using three different materials: (1) non-
metal, not smooth, (2) half-metal, half-smooth, and (3) pure metal, smooth, and
then combine the renderings into a single three-channel image. (b) LightControlNet
is a diffusion model that is conditional on such light conditioning images as well
as text prompts.

that allows us to specify the desired lighting as a conditioning image for an un-
derlying text-to-image diffusion model. We call this model LightControlNet and
describe how it works in Section 5.4.1. We then detail each stage in Section 5.4.2
and Section 5.4.3, respectively.

5.4.1 LightControlNet

LightControlNet adapts the ControlNet architecture to enable control over the
lighting in the generated image. More specifically, we create a conditioning image
for a 3D mesh by rendering it using three pre-defined materials and under known
lighting conditions (Figure 5.4). These renderings encapsulate information about
the desired shape and lighting for the object, and we stack them into a three-channel
conditioning image. We have found that setting the pre-defined materials to (1)
non-metal, not smooth; (2) half-metal, half-smooth; and (3) pure metal, extremely
smooth, respectively, works well in practice. The specific material parameters are
in the appendix.

To train our LightControlNet, we use 40K objects from the Objaverse dataset
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[37]. Each object is rendered from 12 views using a randomly sampled camera C
and lighting L sampled from 6 environment maps sourced from the Internet. L
is also subject to random rotation and intensity scaling. For each resulting (L, C)
pair, we render the conditioning image using the pre-defined materials, as well as
the full-color rendering of the object using its original materials and textures. We
use the resulting 480K pairs of (conditioning images, full-color rendering) to train
LightControlNet using the approach of Zhang et al. [283].

Once LightControlNet is trained, we can specify the desired view and lighting
for any 3D mesh. We first render the conditioning image with the desired view
and lighting and then pass it along with a text prompt into LightControlNet, to
obtain high-quality images. These images are spatially aligned to the desired view,
lit with the desired lighting, and contain detailed textures (Figure 5.4).

Distilling the encoder. We improve the efficiency of LightControlNet by distill-
ing the image encoder in Stable Diffusion [192], the base diffusion model in the
ControlNet architecture. The original Stable Diffusion image encoder consumes
almost 50% of the forward and backward time of SDS calculation using the latent
diffusion model, primarily in downsampling the input image. Metzer et al. [144]
have found the image decoder from latent space to image space can be closely
approximated by per-pixel matrix multiplication. Inspired by this, we distill the en-
coder by removing its attention modules and training it on the COCO dataset [112]
to match the original output. This distilled encoder runs 5x faster than the original
one, resulting in an approximately 2x acceleration of our text-to-texture pipeline
without compromising output quality. An ablation study of our distilled encoder
is detailed in Table 5.3, with additional implementation specifics in the appendix.

5.4.2 Stage 1: Multi-view Visual Prompting

In Stage 1, we leverage LightControlNet to synthesize high-quality 2D images
for a sparse set of views of the 3D mesh. Specifically, we create conditioning
images for four canonical views C* around the equator of the 3D mesh using a
fixed lighting environment map L* sampled from a set of environment maps. One
approach to generating the complete texture for the mesh would be to apply the
LightControlNet independently with each such conditioning image, but using the
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Conditioning Images LightControlNet Outputs Conditioning Image LightControlNet Output

(a) Independent Inputs to LightControlNet (b) Concatenated Input to LightControlNet
produce visual inconsistencies produces more consistent output

Figure 5.5: Multi-view visual prompting. (a) When we independently input
four canonical conditioning images to LightControlNet, it generates four very
different appearances and styles even with a fixed random seed. (b) When we
concatenate the four images into a 2x2 grid and pass them as a single image into
LightControlNet, it produces a far more consistent appearance and style. Text
prompt: “A hiking boot”.

same text prompt, and then backprojecting the four output images to the surface
of the 3D mesh. In practice, however, applying the LightControlNet to each view
independently produces inconsistent images of varying appearance and style, even
when the text prompt and random seed remain fixed (Figure 5.5).

To mitigate this multi-view inconsistency issue, we take a multi-view visual
prompting approach. We concatenate the conditioning images for the four canoni-
cal views into a single 2 x 2 grid and treat it as a single conditioning image. We
observe that applying LightControlNet to all four views simultaneously, using this
combined multi-view conditioning image, results in a far more consistent appear-
ance and style across the views, compared to independent prompting (Figure 5.5).
We suspect this property arises from the presence of similar training data samples —
grid-organized sets depicting the same object — in Stable Diffusion’s training set,
which is also observed in concurrent works [253, 286]. Formally, we generate the
conditioning image I.ong(L*, C*) under a fixed canonical lighting condition L*
using four canonical viewpoints C*. We then apply our LightControlNet with text

prompt y to generate the corresponding reference image I,

Lo = ControlNet(I.onq(L*, C*),v).
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5.4.3 Stage 2: Texture Optimization

In Stage 2, we could directly backproject the four reference views output in Stage
1 onto the 3D mesh using the camera matrix C associated with each view. While
the resulting texture would contain some high-quality regions, it would also suffer
from two problems (1) It would contain seams and visual artifacts due to remaining
inconsistencies between overlapping views, occlusions in the views that leave
parts of the mesh untextured, and loss of detail when applying the backprojection
transformation and resampling the views. (2) In addition, as lighting is baked into
the LightControlNet’s RGB images, it would also be baked into the backprojected
texture, making it difficult to relight the mesh.

To address both of these issues, we employ texture optimization using SDS
loss. Specifically, we use a multi-resolution hash-grid [153] as our 3D scene rep-
resentation, instead of NeRF as in the original DreamFusion formulation [179].
Given a 3D point p € R? on the mesh, our hash-grid produces a 32-dimensional
multi-resolution feature. This feature is then fed to a 2-layer MLP I to obtain
the texture material parameters for this point. Similar to Fantasia3D [24], these
material parameters consist of metallicness k;; € R, roughness k, € R, a bump
vector k,, € R3 and the base color k, € R3. Formally,

(ke km, kr, kn) = T(B(p)),

where f is the multi-resolution hash encoding function. Notably, this 3D hash-grid
representation can be easily converted to 2D uv texture maps, which are more
friendly to downstream applications. Given the mesh M, the texture I'(B(-)), a
camera view C and lighting L we can use nvdiffrast [97], a differentiable renderer

R to produce a 2D rendering of it, x, as
x = R(M,T(B(),L,C).

More details about the rendering equation are in the appendix. Since the mesh
geometry is fixed, we omit M in the remainder of the paper.
Recall that the optimization approach of DreamFusion [179] randomly samples

camera views C, generates an image for C using diffusion model ¢, and supervises
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the optimization using the SDS loss. We extend this optimization in two ways.
First, we use four fixed reference images I.f with their canonical views C* and

lighting L* to guide the texture optimization through a reconstruction loss:

Lrecon = ||Iref - R(r(ﬁ())/ L, C*)HZ + £perceptual(lref/7—‘)'(1—‘(,3('))/ L, C*))/

where both L2 loss and perceptual loss [81] are used. For a non-canonical view C,
we sample a random lighting L and use the SDS loss to supervise the optimization,
but with our LightControlNet as the diffusion model ¢; cn;, so

ox

Vr,gLsps(Pren, x) = Bre |w(t) (€p ey (x4 Yt Teond (L, C)) — e)m '

where x = R(T'(B(+)), L, C) and w(t) is the weight.

Finally, we employ a material smoothness regularizer on every iteration to
enforce smooth base colors, using the approach of nvdiffrec [154]. For a surface
point p with base color k.(p), the smoothness regularizer is defined as

£reg = Z ‘kC(P) - kC(P +€)"
peSs

where S denotes the object surface and € is a small random 3D perturbation. We
use Arecon = 1000 and Areg = 10 to reweight the loss Lrecon and Lyeg.

Scheduling the optimization. We warm up the optimization by rendering the four
canonical views and applying Lyecon for 50 iterations. We then add in iterations
using the Lgpg loss and optimize over randomly chosen camera views and ran-
domly selected lighting from a pre-defined set of environmental lighting maps.
Specifically we alternate iterations between using Lsps and Lyecon. In addition, for
a quarter of the SDS iterations, we use the canonical views rather than randomly
selecting the views. This ensures that the resulting texture does not overfit to the
reference images corresponding to the canonical views. The warm-up iterations
capture the large-scale structure of our texture and allow us to use relatively small
noise levels (t < 0.1) in the SDS optimization. We sample the noise following a
linearly decreasing schedule [71] with tnax = 0.1 and tmin, = 0.02. We also adjust
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the conditioning strength s of our LightControlNet in the SDS loss linearly from
1 to 0 over these iterations so that LightControlNet is only lightly applied by the
end of the optimization. We also experimented with a recent variant Variational
Score Distillation [249], but did not observe notable improvement. We have ex-
perimentally found that we obtain high-quality textures after 400 total iterations
of this optimization and this is far fewer iterations than other SDS-based texture
generation techniques such as Fantasia3D [24] which requires 5000 iterations. More

details are in the appendix.

Faster pipeline without relightability. Our two-stage pipeline is also compatible
with off-the-shelf depth ControlNet and Stable Diffusion [192] as the backbone
replacement of LightControlNet. Specifically, we can replace the LightControlNet
in Stage 1 with a depth ControlNet that uses a depth rendering of the mesh as the
conditioning image, and uses Stable Diffusion based SDS in Stage 2. In scenarios
where texture relightability is not required, this variant offers an additional 2 x
speed-up (as shown in Table 5.1), since it eliminates the additional computation
required by LightControlNet forward pass in the SDS optimization.

5.5 Experiments

In this section, we present comprehensive experiments to evaluate the efficacy of
our proposed method for relightable, text-based mesh texturing. We perform both
qualitative and quantitative comparisons with existing baselines, along with an

ablation study on the significance of each of our major components.

Dataset. As illustrated in Figure 5.3, we employ Objaverse [37] to render paired
data to train our LightControlNet. Objaverse consists of approximately 800k objects,
of which we use the names and tags as their text descriptions. We filter out objects
with low CLIP similarity [183] to their text descriptions and select around 40k as
our training set. Each object is rendered from 12 views using randomly sampled
cameras and lighting from a specific set of environmental lighting maps. To
evaluate baselines and our method, we hold out 70 random meshes from Objaverse
[37] as the test set. We additionally gather 22 mesh assets from 3D online games

with 5 prompts each to assess our method, demonstrating its ability to generalize

81



5. Fast Relightable Mesh Texturing with LightControlNet

“Pinecone”

“A vintage space explorer “Jacket made from the “Hylian goblin soldier
Jacket with o matching fabrics of a ghost ship, from legend of zelda ..."
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“A stylish jackeb, ...” “Jacket that gives the “An astronaut wolf, ...” “Mermaid warrior, ...”
impression of a swirling

nebula, ...”

Figure 5.6: Sample results from our method applied to Objaverse test meshes (top
half) and 3D game assets (bottom half). To illustrate the efficacy of our relightable
textures, for each textured mesh, we fix the environment lighting and render the
mesh under different rotations. As shown above, our method is able to generate
textures that are not only highly detailed, but also relightable with realistic lighting
effects.

beyond Objaverse. Further details are in the appendix.

Baselines. We compare our approach with existing mesh texturing methods. Specif-
ically, Latent-Paint [144] employs SDS loss in latent space for texture generation.
Text2tex [23] progressively produces 2D views from chosen viewpoints, followed
by an inverse projection to lift them to 3D. TEXTure [189] utilizes a similar lifting
approach but supplements it with a swift SDS optimization post-lifting. Beyond
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these texture generation methods, text-to-3D approaches serve as additional base-
lines, given that texture is a component of 3D generation. Notably, we choose
Fantasia3D [24] as a baseline, the first to use a material-based representation for

textures in text-to-3D processing.

Quantative evaluation. In Table 5.1, we compare our method with the baselines
on the Objaverse [37] test set. For each method, we generate 16 views and evaluate
Frechet Inception Distance (FID) [63, 176] and Kernel Inception Distance (KID)
[10] compared with ground-truth rendered views. Two variations of our method
are assessed. Both variants use our proposed two-stage pipeline, and the first
employs a standard depth-guided ControlNet, while the second uses our proposed
LightControlNet. Our method significantly outperforms the baselines in both

quality and runtime.
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(a) Close-up Comparison with Fantasia3D.
Left Prompt: “A medieval steel helmelt” ; Right Prompt: "A leather horse saddle”.

PBR Texture RGB Texture

Untextured Mesh Ours Fantasia3D Ours
(reference lighting) (Non-relightable)

& AR
M b il b

Diclele

(b) Comparison with relightable and non-relightable baselines.
Top Prompt: “A hiking boot”; Bottom Prompt: “A leather horse saddle”.
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Figure 5.7: Qualitative analysis. (a) We compare our method with Fantasia3D [24]
that also attempts to generate Physically Based Rendering (PBR) texture. However,
unlike ours, their results often exhibit baked-in lighting, leading to artifacts when
put into varied lighting environments. (b) We also compare our method with other
baselines that can only generate non-relightable (RGB) texture. For non-relightable
texture generation, we can replace our LightControlNet with depth ControlNet
and generate RGB textures with a shorter runtime. More details are in Table 5.1.
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Objaverse test set Game Asset

Runtime |
FID | KID | FID | KID |
(x1073) (x1073) (mins)
Latent-Paint [144] 73.65 7.26 204.43 9.25 10
Fantasia3D [24] 120.32 8.34 164.32 9.34 30
TEXTure [189] 71.64 5.43 103.49 5.64 6
Text2tex [23] 95.59 4.71 119.98 5.21 15
Ours (w/ depth) 60.49 3.96 85.92 3.87 2
Ours 62.67 2.69 83.32 3.34 4

Table 5.1: Quantitative Evaluation. We test our methods and baselines on 70 test
objects from Objaverse [37] and 22 objects curated from 3D game assets. With
depth ControlNet, our method yields superior results to all baselines while being
three times as fast as the fastest baseline. Using LightControlNet (Ours) within
our model improves the lighting disentanglement while maintaining comparable
image quality.

Qualitative analysis. As shown in Figure 5.6, our method can generate highly-
detailed textures that can be rendered properly with the environment lighting
across a wide variety of meshes. We also visually compare our method and
the baselines in Figure 5.7. Our method produces textures with higher visual
fidelity than the baselines for both the relightable and non-relightable variants. In
particular, when compared with Fantasia3D [24], a recent work that also aims to
generate material-based texture, our results not only have superior visual quality,
but also disentangle the lighting more successfully.

User study. To further evaluate the texture quality quantitatively, we conduct a user
study comparing our results with each of the baselines on the Objaverse test set in
Table 5.2. We ask 30 participants to evaluate (1) the realism of the results, (2) the
consistency of the generated texture with the input text, and (3) the plausibility of
the results when placed under varying lighting conditions. Each result is presented
in the form of 360-degree rotation to display full texture details. The reference
lighting is provided alongside when participants evaluate (3). Across all three
aspects, participants consistently prefer our method over baselines.

Ablation study. We perform a thorough ablation analysis on different aspects
of our method as seen in Table 5.3.When substituting our distilled encoder with
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Preferred Percentage Objaverse test set

Realistic =~ Consistent with text =~ Relightable

Ours v.s. Latent-Paint [144] 92.6% 74.5% 84.3%
Ours v.s. Fantasia3D [24] 81.9% 67.6% 74.3%
Ours v.s. TEXTure [189] 70.8% 57.3% 87.1%
Ours v.s. Text2tex [23] 75.4% 61.6% 88.6%

Table 5.2: User study. We conduct a user preference study to evaluate (1) result
realism, (2) texture consistency with input text, and (3) plausibility under varied
lighting. Participants consistently prefer our results over all baselines in these
respects.

Objaverse test set FID| KID(x1073) | Runtime | (mins)
Ours (w/o dist. enc.)  60.34 2.84 8
Ours (w/0 m.v.v.p) 74.23 3.54 19
Ours 62.67 2.69 4

Table 5.3: Ablation study on algorithmic components. We analyze the role of our
distilled encoder (1st row) and multi-view visual prompting (2nd row). Replacing
the distilled encoder with the original VQ-VAE encoder doubles the running
time without a noticeable improvement. When removing the multi-view visual
prompting for initial generation, the system requires 2,000 iterations (5x compared
to our 400 iterations) to produce reasonable results, which produces slightly worse
texture quality.

Material Basis
non-metal, half-metal, puremetal, FID| KID(x1073)|

not smooth half-smooth smooth
v v ve 62.67 2.69
v v 66.34 3.11
v ve 64.32 3.42
ve v 67.43 412
v 72.13 4.53

Table 5.4: Ablation study on material bases. We verify the impact of the material
bases in rendering conditioning images. Omitting any one of these degrades
quality.
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Num. of canonical views FID| KID(x107%) ]
2 views (front, back) 67.43 3.47
4 views (Ours: front, back, left, right) 62.67 2.69
6 views (front, back, left, right, top, bottom) 70.14 3.72

Table 5.5: Ablation study on the number of canonical views. We analyze the
role of our canonical view selection in Section 5.4.2. Relying on only the left
and right views provides insufficient supervision. Interestingly, adding top and
bottom views leads to worse overall quality. This is likely due to the limitation of
pre-trained 2D diffusion models in synthesizing top and bottom views well for a
variety of objects. Furthermore, given the fixed resolution of the multi-view image,
stacking more views would result in a lower resolution for each view, leading to a
worse initialization for Stage 2.

the original VQ-VAE encoder, the performance is twice as slow, but the quality
of results is not noticeably superior. On the other hand, without the multi-view
visual prompting for the initial generation, the system requires 2000 iterations (a
5x slowdown compared to our 400 iterations) to produce reasonable results, while
still leading to slightly worse texture quality.

In Section 5.4.1, we render a conditioning image using 3 pre-defined materials to
encompass a broad range of feasible materials: (1) non-metal, not smooth (diffuse
effect); (2) half-metal, half-smooth (mixed effect); (3) pure metal, smooth (specular
effect). These material bases cover a large range of feasible materials. Table 5.4

shows omitting any one of these bases degrades quality.

As shown in Table 5.5, we also evaluate our selection of four canonical views
in Section 5.4.2. Relying on only the left and right views provides insufficient
supervision. Interestingly, incorporating top and bottom views degrades the
performance. We hypothesize that the degradation is likely due to the limitation
of 2D diffusion model backbones in generating top and bottom views reliably.
Furthermore, stacking more views within a single image results in a decreased

resolution for each view, given the fixed resolution of the multi-view image.
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5.6 Discussion

We proposed an automated texturing technique based on user-provided prompts.
Our method employs an illumination-aware 2D diffusion model (LightControlNet)
and an improved optimization process based on the SDS loss. Our approach is
substantially faster than previous methods while yielding high-fidelity textures
with illumination disentangled from surface reflectance/albedo. We demonstrated
the efficacy of our method through quantitative and qualitative evaluation on the
Objaverse dataset and meshes curated from game assets.

Limitations. Our approach still poses a few limitations: (1) Baked-in lighting can
still be found in certain cases, especially for meshes that are outside of the training
data distribution of Objaverse; (2) The generated material maps are sometimes not
tully disentangled and interpretable as metallicness, roughness, etc.; (3) Due to the
inherent limitation of the 2D diffusion model backbones, the generated textures

can fail to follow the text prompt in some cases.
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Chapter 6

Generating Physically Stable and
Buildable Brick Structures from Text

Chapters 4 and 5 established a complete pipeline for generating diverse, high-
quality 3D assets from text descriptions by decomposing the problem into geome-
try and texture generation stages. This approach successfully produces visually
compelling results that can be used in downstream virtual applications like games

and film production.

However, a critical gap remains between generating visually plausible virtual
3D content and creating designs that are physically realizable in the real world.
While our generated assets may look convincing on screen, they often violate
fundamental physical principles, e.g., lacking structural stability, containing impos-
sible geometries. This limitation becomes particularly important as 3D generation
moves beyond entertainment and visualization toward applications in manufac-
turing, architecture, robotics, and other domains where physical realizability is

essential.

The final chapter of this dissertation explores generating 3D content that is not
only visually appealing but also structurally sound and buildable. Using LEGO
brick construction as our testbed, the following chapter demonstrates how physical
structural analysis can be integrated into modern generative models, producing

designs that are simultaneously creative and physically stable.
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Input Text Prompt: “A streamlined vessel with a long, narrow hull.”

Generated Structure Intermediate Steps

following the st by Robot A
using LEGO Bricks ollowing the steps y Robot Arms

(a) Physically Stable Text-to-Brick Generation (b) Real-world Assembly using LEGO Bricks

YV

4
&Y
%

|

A bookshelf with A rectangular table with

A classic-style car with a A backless bench with . . A streamlined,
, . A classical guitar
horizontal tiers four legs

prominent front grille armrest elongated vessel

i
Gothic cathedral Walnut wooden Vintage floral tapestry with Rustic farmhouse chair Hot rod with flame Rustic stone bench with Parlor guitar with Weathered cargo ship
bookshelf][...] table [...] deep reds and golds [...] [...] paintwork [...] moss growth [...] ladder bracing][...]

(c) Result Gallery

A basic sofa A high-backed chair

Figure 6.1: Overview of BRICKGPT. (a) Our method generates physically stable
interconnecting brick assembly structures from text descriptions through an end-
to-end approach, showing intermediate brick-by-brick steps. (b) The generated
designs are buildable both by hand and by automated robotic assembly. (c) We
show example results with corresponding text prompts. Besides basic brick designs
(top), our method can generate colored brick models (bottom right) and textured
models (bottom left) with appearance descriptions. We highly recommend the
reader to check our website for step-by-step videos.

6.1 Introduction

3D generative models have made remarkable progress, driven by advances in
generative modeling [54, 211] and neural rendering [90, 149]. These models have
enabled various applications in virtual reality, gaming, entertainment, and scientific
computing. Several works have explored synthesizing 3D objects from text [179],
adding texture to meshes [41, 189], and manipulating the shape and appearance of
existing 3D objects and scenes [59, 124].

However, creating real-world objects with existing methods remains challeng-
ing. Most approaches focus on generating diverse 3D objects with high-fidelity
geometry and appearance [66, 282], but these digital designs often cannot be physi-
cally realized due to two key challenges [133]. First, the objects may be difficult to

assemble or fabricate using standard components. Second, the resulting structure
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may be physically unstable even if assembly is possible. Without proper support,
parts of the design could collapse, float, or remain disconnected.

In this work, we address the challenge of generating physically realizable objects.
We study this problem in the context of designing structures made of interlocking
toy bricks, such as LEGO® blocks. These are widely used in entertainment, edu-
cation, artistic creation, and manufacturing prototyping. Additionally, they can
serve as a reproducible research benchmark, as all standard components are readily
available. Due to the significant effort required to design brick structures manually,
recent studies have developed automated algorithms to streamline the process
and generate compelling results. However, existing approaches primarily create

structures from a given 3D object [132] or focus on a single object category [51, 52].

Our goal is to develop a method for generating brick assembly structures di-
rectly from freeform text prompts while ensuring physical stability and buildability.
Specifically, we aim to train a generative model that produces designs that are:

* Physically stable: Built on a baseplate with strong structural integrity, without
floating or collapsing bricks.

* Buildable: Compatible with standard interconnecting toy brick pieces and able
to be assembled brick-by-brick by humans or robots.

In this work, we introduce BRICKGPT with the key insight of repurposing
autoregressive large language models, originally trained for next-token prediction,
for next-brick prediction. We formulate the problem of brick structure design as an
autoregressive text generation task, where the next-brick dimension and placement

are specified with a simple textual format.

To ensure generated structures are both stable and buildable, we enforce physics-
aware assembly constraints during both training and inference. During training,
we construct a large-scale dataset of physically stable brick structures paired with
captions. During autoregressive inference, we enforce feasibility with an efficient
validity check and physics-aware rollback to ensure that the final tokens adhere to

physics laws and assembly constraints.

Our experiments show that the generated designs are stable, diverse, and
visually appealing while adhering to input text prompts. Our method outperforms
pre-trained LLMs with and without in-context learning, and previous approaches
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6. Generating Physically Stable and Buildable Brick Structures from Text

based on 3D mesh generation. Finally, we explore applications such as text-driven
brick texturing, as well as manual assembly and automated robotic assembly of
our designs. Our dataset, code, and models are available at the project website:
https://avalovelacel.github.io/BrickGPT/.

6.2 Related Work

Text-to-3D Generation. Text-to-3D generation has seen remarkable progress in
recent years, driven by advances in neural rendering and generative models.
Dreamfusion [179] and Score Jacobian Chaining [241] pioneer zero-shot text-to-3D
generation by optimizing neural radiance fields [149] with pre-trained diffusion
models [192]. Subsequent work has explored alternative 3D representations [24,
105,111,127, 144, 147, 217] and improved loss functions [89, 130, 135, 233, 249, 270].
Rather than relying on iterative optimization, a promising alternative direction
trains generative models directly on 3D asset datasets, with various backbones
including diffusion models [65, 104, 106, 156, 188, 206, 282, 288, 291], large re-
construction models [66, 103, 231, 267], U-Nets [118, 223], and autoregressive
models [26, 28, 29, 58, 157, 208, 224, 255].

However, these existing methods cannot be directly applied to generating brick
structures because they do not account for the unique physical constraints and
assembly requirements of real-world designs [133]. Our work bridges this gap
by introducing a method for generating physically stable and buildable brick
structures directly from text prompts.

Autoregressive 3D Modeling. Recent research has successfully used autoregres-
sive models to generate 3D meshes [26, 28, 29, 42, 58, 157, 208, 224, 255], often
conditioned on input text or images. Most recently, LLaMA-Mesh [250] demon-
strates that large language models (LLMs) can be fine-tuned to output 3D shapes
in plain-text format, given a text prompt. However, most existing autoregressive
methods focus on mesh generation. In contrast, we focus on generating brick
structures from text prompts, leveraging LLMs’ reasoning capabilities.

Brick Assembly and Design Generation. Creating brick structures given a ref-
erence 3D shape has been widely studied [92]. Existing works [164, 226, 290]
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(d) GPT-40 Caption Generation using the multi-view brick structure rendering | - N
This is a rendering of a 3D object built with LEGO bricks with 24 different views. The object belongs to the category of chair. You
£ @ will generate five different captions for this chair that: 1. Describes the core object/subject and its key geometric features ...” > B & & S =
= =
“1. High-backed seat with four straight legs. 2. Tall chair with a flat seat, high backrest, and simple legs. 3. Chair featuring a Camera | “j’ n‘l ﬁ \ P! i’. Y],
vertical back twice the seat height and four stout legs. 4. Seat with elevated backrest, approximately double the seat height ...” -

Figure 6.2: StableText2Brick Dataset. (a) From a ShapeNetCore [19] mesh, we gen-
erate a brick structure by voxelizing it onto a 20 x 20 x 20 grid, then constructing
its brick layout with a delete-and-rebuild algorithm. (b) We augment each shape
with multiple structural variations by randomizing the brick layout while preserv-
ing the overall shape. (c) Stability analysis [119] is performed on each variation
to filter out physically unstable designs. (d) To obtain captions for each shape,
we render the brick structure from 24 different viewpoints and use GPT-4o [2] to
generate detailed geometric descriptions. (e) Data samples from 5 categories in our
StableText2Brick dataset.

formulate the generation as an optimization problem guided by hand-crafted
heuristic rules. Such heuristics can include ensuring that all bricks are intercon-
nected, minimizing the number of bricks, and maximizing the number of brick
orientation alternations. Wang et al. [246] translate a visual manual into step-
by-step brick assembly instructions. Luo et al. [132] leverage structural stability
estimation to find weak structural parts and rearrange the local brick layout to
generate physically stable designs. Kim et al. [93], Liu et al. [121] formulate a
planning problem to fill the target 3D model sequentially. However, these methods
only generate designs given an input 3D shape, assuming a valid brick structure
exists, which is difficult to verify in practice.

Few works have explored learning-based techniques to generate toy brick
designs. Thompson et al. [228] use a deep graph generative model in which the
graph encodes brick connectivity. However, this method is limited to generating
simple classes, such as walls and cuboids, using a single brick type. More recently,
Ge et al. [52] use a diffusion model to predict a semantic volume, which is then
translated into a high-quality micro building. Their method produces impressive
results for a single category. Zhou et al. [289] and Ge et al. [51] generate compelling
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tigurine designs given an input portrait. They use machine learning to select
from a pre-made set of components that best match an input photo. Although
effective for faces, extending this selection-based approach to arbitrary objects is
challenging. Zhou et al. [292] formulate an optimization problem to create a brick
model from an input image. While their output is a 2D brick mosaic, we focus on
3D structures in this work. Goldberg et al. [53] query a vision-language model
to generate diverse 3D assembly structures. However, they use regular building
blocks instead of bricks with interlocking connections, and thus the structures have
limited expressiveness.

Our goal is closest to that of [101]. This work has three steps: (1) generating an
image using a text-to-image model, (2) converting the image into voxels, and (3)
using heuristics to create a physical brick model without considering physical con-
straints. In contrast, our method performs the text-to-brick task without requiring

intermediate image or voxel representations.

Physics-Aware Generation. Physics-aware 3D generation can be broadly cat-
egorized into two approaches: direct constraint enforcement and learned val-
idation. Simple physical constraints, such as collision avoidance and contact
requirements, can be incorporated directly through explicit penalty terms during
optimization [56, 69, 125, 151, 239, 268, 275]. More complex physical properties,
such as structural stability and dynamic behavior, typically require physics simula-
tors [46, 146, 160, 264] or data-driven physics-aware assessment models [43, 145].
To our knowledge, our paper is the first attempt to incorporate physics-aware
constraints into text-based brick assembly structure generation.

6.3 Dataset

Training a modern autoregressive model requires a large-scale dataset. Therefore,
we introduce StableText2Brick, a new large-scale dataset that contains 47,000+
different toy brick assembly structures, covering 28,000+ unique 3D objects from
21 common object categories of the ShapeNetCore dataset [19]. We select categories
featuring diverse and distinctive 3D objects while excluding those resembling
cuboids. Each structure is paired with a group of text descriptions and a stability
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Figure 6.3: Method. (a) Our system tokenizes a brick structure into a sequence
of text tokens, ordered in a raster-scan manner from bottom to top. (b) We cre-
ate an instruction dataset pairing brick sequences with descriptions to fine-tune
LLaMA-3.2-Instruct-1B. (c) At inference time, BRICKGPT generates brick struc-
tures incrementally by predicting one brick at a time given a text prompt. For each
generated brick, we perform validity checks to ensure it is well-formatted, exists
in our brick library, and does not collide with existing bricks. After completing
the design, we verify its physical stability. If the structure is unstable, we roll back
to a stable state by removing all unstable bricks and their subsequent bricks, and
resume generation from that point.

score, which indicates its physical stability and buildability. Below, we describe the

dataset construction, an overview of which is given in Figure 6.2.

Brick Representation. We consider brick structures built on a fixed baseplate.
Each structure in StableText2Brick is represented as B = [by,by,...,by] with N
bricks, and each element denotes a brick’s state as b; = [h;, w;, x;,y;,z;]. Here, h;
and w; indicate the brick length in the X and Y directions, respectively, and x;,
y;, and z; denote the position of the stud closest to the origin. The position has
x;el0,1,...,H-1],y;€][0,1,..., W—1],z;€[0,1,...,D — 1], where H, W, and
D represent the dimensions of the discretized grid world.

Mesh-to-Brick. We construct the dataset by converting 3D shapes from ShapeNet-
Core [19] into brick structures as shown in Figure 6.2(a). Given a 3D mesh, we
voxelize and downsample it into a 20 x 20 x 20 grid world to ensure a consistent
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scale,i.e., H =W = D = 20. The brick layout is generated by a delete-and-rebuild
algorithm similar to [132]. To improve data quality and diversity, we introduce
randomness and generate multiple different structures for the same 3D object, as
illustrated in Figure 6.2(b). This increases the chance of obtaining a stable structure
and more diverse layouts. We use eight commonly available standard bricks: 1 x 1,
1x2,1x4,1x6,1x8,2x2,2x4,and?2 x 6.

Stability Score. We assess the physical stability of each structure, as illustrated in
Figure 6.2(c), using the analysis method [119]. For a structure B = [by, by, ..., bn],
the stability score S € RN assigns each brick b; a value s; € [0, 1] that quantifies the
internal stress at its connections. Higher scores s; indicate greater stability, while
s; = 0 indicates an unstable brick that will cause structural failure. Calculating
the stability score requires solving a nonlinear program to determine the forces
acting on each brick to achieve a static equilibrium that prevents structural collapse,
as detailed in Section 6.4.2. For typically-sized (i.e., < 200 bricks) structures in
Figure 6.2, stability analysis takes ~0.35 seconds on average. A structure is stable
if all bricks have stability scores greater than 0; we only include stable structures in
the StableText2Brick dataset.

Caption Generation. To obtain captions for each shape, we render the brick
structure from 24 different viewpoints and combine them into a single multi-view
image. We then prompt GPT-40 [2] to produce five descriptions for these renderings
with various levels of detail. Importantly, we ask GPT-40 to omit color information
and focus only on geometry.

Figure 6.2(e) shows several data samples in StableText2Brick. The rich variations
within each category and the comprehensive text-brick pairs make it possible to

train large-scale generative models.

6.4 Method

Here, we introduce BRICKGPT, a method for generating physically stable intercon-
necting toy brick assembly structures from text prompts. Leveraging LLMs’ ability
to model sequences and understand text, we fine-tune a pre-trained LLM for the

brick structure generation task (Section 6.4.1). To increase the stability and build-
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ability of our designs, we use brick-by-brick rejection sampling and physics-aware
rollback during inference (Section 6.4.2). Figure 6.3 illustrates an overview of our
method.

6.4.1 Model Fine-tuning

Pre-trained LLMs excel at modeling sequences and understanding natural lan-
guage, making them promising candidates for our task. We further fine-tune a
pre-trained LLM on a custom instruction dataset containing text prompts and their

corresponding brick structures from StableText2Brick.

Pre-trained Base Model. We use LLaMA-3.2-1B-Instruct [44] as our base model.
This model is fine-tuned to give coherent answers to instruction prompts, making it
suitable for text-based brick structure generation. As shown in Figure 6.5, the base
model can generate brick structures through in-context learning, highlighting the
promise of using pre-trained LLMs for our task. However, the generated structures
fail to follow the input prompt, and they contain intersecting or disconnected
bricks, making them physically unstable and unbuildable. To address these issues,

we further fine-tune the pre-trained model using our StableText2Brick.

Instruction Fine-tuning Dataset. For each stable structure and its corresponding
captions, we construct an instruction in the following format: “(user) Create a
LEGO model of {caption}. (assistant) {brick-structure}.”

To simplify training and reuse LLaMA's tokenizer, we represent brick structures
in plain text. But what format should we use? The standard format LDraw [98]
has two main drawbacks. First, it does not directly include brick dimensions,
which are crucial for assessing the structure and validating brick placements.
Second, it contains unnecessary information, such as brick orientation and scale.
This information is redundant, as each axis-aligned brick has only two valid
orientations.

Instead of using LDraw, we introduce a custom format to represent each brick
structure. Each line of our format represents one brick as “{h} x{w} ({x}{y}.{z})”,
where I x w are brick dimensions and (x, y, z) are its coordinates. All bricks are
1-unit-tall, axis-aligned cuboids, and the order of i and w encodes the brick’s

orientation about the vertical axis. This format significantly reduces the number of

99



6. Generating Physically Stable and Buildable Brick Structures from Text

tokens required to represent a design, while including brick dimension information
essential for 3D reasoning. Bricks are ordered in a raster-scan manner from bottom
to top.

With our fine-tuned BRICKGPT model 6, we predict the bricks by, by, ..., by in

an autoregressive manner:

P(bl, b2,...,bN|9) = p(bi|b1,...,bi_1,9). (61)

N
i=1

6.4.2 Integrating Physical Stability

Although trained on physically stable data, our model sometimes generates designs
that violate physics and assembly constraints. To address this issue, we further

incorporate physical stability verification into autoregressive inference.

(a) Brick Force Model (b) Structural Force Model

* Gravity. Horizontal normal forces in +X and +Y
directions due to the connections.
Pressing and Pulling due to the top Horizontal normal forces due to
connection. adjacent bricks.

* ? Dragging and Supporting due to the bottom connection.

Figure 6.4: Force Model. (a) We consider all forces exerted on a single brick, includ-
ing gravity (black), vertical forces with the top brick (red /blue) and bottom brick
(green/purple), and horizontal (shear) forces due to knob connections (cyan), and
adjacent bricks (yellow). (b) The structural force model F extends the individual
force model to multiple bricks. Solving for static equilibrium in F determines each
brick’s stability score.
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A brick structure is considered physically stable and buildable if it does not
collapse when built on a baseplate. To this end, we assess physical structural
stability using the stability analysis method [119]. We briefly overview this method
below. Figure 6.4(a) illustrates all possible forces exerted on a single brick. We
extend the single brick model and derive the structural force model F, which
consists of a set of candidate forces (e.g., pulling, pressing, supporting, dragging,
normal, etc.), as shown in Figure 6.4(b). For a brick structure B = [by, by, ..., bn],
each brick b; has M; candidate forces Pij € Fi,j € [1, M;]. A structure is stable if all

bricks can reach static equilibrium, i.e.,
M; M Mo )
Y F=0 Y d=YLIxF=o (6.2)
j j J

where L{: denotes the force lever corresponding to Fij . The stability analysis is

formulated into a nonlinear program as

M;

y 7

J

_|_

N
argmin Z{ +aD" ™+ B Z D; }, (6.3)
F i

M;
Y F
j

subject to three constraints: 1) all force candidates in F should take non-negative
values; 2) certain forces exerted on the same brick cannot coexist, e.g., the pulling
(red arrow) and pressing (blue arrow), the dragging (green arrow) and support-
ing (purple arrow); 3) Newton’s third law, e.g., at a given connection point, the
supporting force on the upper brick should be equal to the pressing force on the
bottom brick. D; C F; is the set of candidate dragging forces (green arrow) on b;. «
and p are hyperparameter weights.

Solving the above nonlinear program in Equation 6.3 using Gurobi [57] finds
a force distribution F that drives the structure to static equilibrium with the
minimum required internal stress, suppressing the overall friction (i.e., }_ D;) as

well as avoiding extreme values (i.e., D"®). From the force distribution F, we
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obtain the per-brick stability score as

¢

LV E #0
=1’ VLo (64
v DM fy
\ FT_FYT)?aX otherwise,

where Fr is a measured constant friction capacity between brick connections.
Higher scores s; indicate greater stability, while s; = 0 indicates an unstable
brick that will cause structural failure: either F cannot reach static equilibrium
(Z]Mi Fij #0V Z;VI" ‘L'ij # 0) or the required friction exceeds the friction capacity of
the material (D" > Fr). Due to the equality constraints imposed by Newton’s
third law, Equation 6.3 includes only the dragging forces and excludes pulling
forces. For a physically stable structure, we need s; > 0,Vi € [1, N].

When to apply stability analysis? Our model generates structures sequentially,
one brick at a time. A straightforward approach to ensuring physical stability is
to apply stability analysis to each step and resample a brick that would cause a
collapse. However, this step-by-step validation, though efficient per check, could
be time-consuming due to the large number of checks required. More importantly,
many structures are unstable when partially constructed, yet become stable when
fully assembled. Adding a stability check after each brick generation could overly
constrain the model exploration space. Instead, we propose brick-by-brick rejection

sampling combined with physics-aware rollback to balance stability and diversity.

Brick-by-Brick Rejection Sampling. To improve inference speed and avoid overly
constraining the model generation, we relax our constraints during inference.
First, when the model generates a brick and its position, the brick should be well-
formatted (e.g., available in the inventory) and not lie outside the workspace.
Second, we ensure that newly added bricks do not collide with the existing struc-
ture. Formally, for each generated brick b;, we have V; N V; = &,Vi € [1,t —1],
where V; denotes the voxels occupied by b;. These heuristics allow us to efficiently
generate well-formatted brick structures without explicitly considering complex

physical stability. To integrate these heuristics, we use rejection sampling: if a brick
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Method % valid % stable mean brick stability min brick stability CLIP DINO
Pre-trained LLaMA (0-shot) 0.0% 0.0% N/A N/A N/A N/A
In-context learning (5-shot) 2.4% 1.2% 0.675 0.479 0.284 0.814
LLaMA-Mesh [250] 94.8% 50.8% 0.894 0.499 0.317 0.851
LGM [223] 100%  25.2% 0.942 0.231 0.300 0.851
XCube [188] 100% 75.2% 0.964 0.686 0322 0.859
Hunyuan3D-2 [288] 100%  75.2% 0.973 0.704 0.324 0.868
Ours w/o rejection sampling or rollback  37.2%  12.8% 0.956 0.325 0.329 0.888
Ours w/o rollback 100% 24.0% 0.947 0.228 0.322  0.882
Ours (BRICKGPT) 100% 98.8% 0.996 0.915 0.324 0.880

Table 6.1: Quantitative Analysis. We evaluate our method against several baselines
on validity (no out-of-library, out-of-bounds, or colliding bricks), stability, CLIP-
based text similarity, and DINOv2-based image similarity. Stability, CLIP, and
DINO are computed over valid structures only. For LLaMA-Mesh [250], validity
requires a well-formed OB] file. Our method outperforms all baselines as well as
the ablated setups on validity and stability using our proposed rejection sampling
and rollback, while maintaining high text similarity.

violates the heuristics, we resample a new brick from the model. Due to the relaxed
constraints, most bricks are valid, and rejection sampling does not significantly

affect inference time.

Physics-Aware Rollback. To ensure that the final design B = [by,by,...,bN]
is physically stable, we calculate the stability score S. If the resulting design
is unstable, i.e., s; = 0,i € Z, we roll back the design to the state before the first
unstable brick was generated, i.e., B’ = [by, b, ..., bminz_1]- Here, Z is the set of the
indices of all the unstable bricks. We repeat this process iteratively until we reach
a stable structure B’, and continue generation from the partial structure B’. Note
that we can use the per-brick stability score to efficiently find the collapsing bricks
and their corresponding indices in the sequence. We summarize our inference

sampling in Algorithm 2.

6.4.3 Brick Texturing and Coloring

While we primarily focus on generating the shape of a brick structure, color and
texture play a critical role in creative designs. Therefore, we propose a method that

applies detailed UV textures or assigns uniform colors to individual bricks.

UV Texture Generation. Given a structure B and its corresponding mesh M,
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Algorithm 2 BRICKGPT inference algorithm.

Input: Text prompt c; Autoregressive model 6.
Output: Brick structure following the text prompt.
1: B < empty brick structure
2: loop > Predict next brick w/ rejection sampling

3: fork =1,...,max rejections do
4: context <~ T @ B.to_text format()
5: b < 0.predict_tokens(context) (Equation 6.1)
6: if b is valid then
7: break
8: end if
9: end for
10: B.add brick(b)
11: if b contains EOF then > Structure complete
12: if B is stable or max rollbacks exceeded then
13: return B
14: end if
15: while B is unstable do > Rollback if unstable
16: I <+ indices of unstable bricks in B
17 i< minZ > idx of 1st unstable brick
18: B« [by,...,b;i_1]
19: end while
20: end if
21: end loop

we first identify the set of occluded bricks B that have all six faces covered
by adjacent bricks, and remove B for efficiency. The remaining bricks Byis =
B\ Bocc are merged into a single mesh M with cleaned overlapping vertices using
ImportLDraw [230]. We generate a UV map UV y by cube projection. The texture
map liexture is then generated using FlashTex [41], a fast text-based mesh texturing
approach:

Liexture = FlashTex(M, UV y, ¢), (6.5)

where text prompt ¢ describes the visual appearance. This texture can be applied
through UV printing or stickers.

Uniform Brick Color Assignment. We can also assign each brick a uniform color

from a standard color library [98]. Given a structure B, we convert it to a voxel
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Pre-trained LLaMA In-context learning LLaMA-Mesh LGM Xcube Hunyuan3D-2
(no training, zero-shot)  (no training, few-shot) + mesh-to-brick + mesh-to-brick + mesh-to-brick + mesh-to-brick

>

Input prompt

“Table featuring a flat
rectangular surface
over four evenly
spaced legs.”

~

- ,
Invalid (colliding bricks) J| Invalid (colliding bricks) Unstable Stable

“Compact sofa with a
geometric design.”

“Small car featuring a v
rectangular body, flat
top, and stepped T
edges.”
Invalid (colliding bricks) [| Invalid (colliding bricks) Unstable Unstable Stable
“Train with rectangular
body and geometric
components.”

invalid (colliding bricks) | ivalid (colliding bricks) Unstable

i3
m

“Square-seated chair ~
featuring an upright, ‘.
rectangular backrest
and straight legs.” .

Invalid (colliding bricks) [l Invalid (colliding bricks)
“Compact chair with a
tall backrest and N/A
serrated seat.”

Invalid (out-of-library
bricks) Invalid (colliding bricks)

Figure 6.5: Result gallery and baseline comparisons. Our method generates high-
quality, diverse, and novel brick structures aligned with the given text prompts.
Black bricks are colliding. For LLaMA-Mesh [250], LGM [223], XCube [188], and
Hunyuan3D-2 [288], an inset of the generated mesh is shown in the top-left corner.

SEaRLE

grid V and then to a UV-unwrapped mesh My,. For every voxel v € V, let

7,i=1,...,Nypbeits visible faces where 0 < N, < 6. Each face f/ is split into two
triangles and mapped to a UV region S7, creating a mesh M, with UV map UVy,.
We apply FlashTex [41] to generate a texture liexture:

Liexture = FlashTex(M,,, UVy,, ¢). (6.6)
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Input text Ours w/o rejection
prompt sampling or rollback

“Square-seated
chair featuring
an upright,
rectangular
backrest and
straight legs.”
Invalid (colliding bricks)

Ours w/o rollback Ours

“Boxy vehicle
featuring a
tiered facade
and angular
structure.”

Invalid (colliding bricks)

Figure 6.6: Ablation study. Brick-by-brick rejection sampling and physics-informed
rollback help to ensure that the generated structure is both valid and stable. Black
indicates colliding bricks.

The color of each voxel C(v) € R3 is computed as:

Ny
C(v) = Ni Yy o), voe, 67)

vi=1

where C(f?) = |Slﬁ Y(xy)e s Liexture (X, ¥) is the color of each visible face f, and
|S?| represents the number of pixels in region S7 in the UV map. For each brick b;
and its constituent voxels V;, we compute the brick color C(b;) = “ﬁ—” Yvey, C(0).
Finally, we find the closest color in the color set. While UV texturing offers higher-
fidelity details, uniform coloring allows us to use standard toy bricks.

6.5 Experiments

6.5.1 Implementation Details

Fine-tuning. Our fine-tuning dataset contains 240k distinct prompts and 47k+
distinct brick structures. We use 90% of the data for training and 10% for evaluation.
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Generated Brick Structure Generated Textured Brick Models
“A layered bookshelf [...]” “Gothic cathedral “Japanese sliding bookcase ~ “Victorian library shelving
bookshelf with arch details, with shoji screens, with carved moldings [...]"”
medieval style [...]” traditional design [...]"”

“A sofa with a rectangular “Rustic farmhouse “Cyberpunk holographic “Comfortable lounge chair
base [...]” armchair built from material with neon purple wrapped in Japanese
reclaimed wood [...]” and blue gradients [...]"” shibori fabric [...]”
Generated Brick Structure Generated Colored Brick Models
“An asymmetrical six-string “Electric guitar in metallic “Steel resonator with “Sunburst Les Paul with
guitar [...]” purple [...]” engraved body [...]"” amber finish [...]”

Figure 6.7: Brick Texture and Color Generation. Our method can generate diverse
textured (top two rows) and colored (bottom) brick structures based on the same
shape while using different appearance text prompts.

For efficiency, we include samples only up to 4096 tokens in length.

Inference. To evaluate our method, we generate one brick structure for each of 250
prompts randomly selected from the validation dataset. The nonlinear optimization
in Equation 6.3 is solved using Gurobi [57]. We set Fr = 0.98N with « = 1073 and
B = 107°. We allow up to 100 physics-aware rollbacks before accepting the brick
structure. The median number of required rollbacks is 2, and the median time to
generate one structure is 40.8 seconds.
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Generated Structure Automated Assembly Using LEGO Bricks Finished Assembly

Figure 6.8: Automated Assembly. We demonstrate robotic assembly of generated
structures using LEGO bricks.

6.5.2 Brick Structure Generation Results

Figure 6.5 shows a gallery of diverse, high-quality brick structures that closely
follow the input prompts.

Baseline Comparisons. As baselines, we use LLaMA-Mesh [250], LGM [223],
XCube [188], and Hunyuan3D-2 [288] to generate a mesh from each prompt, then
convert the meshes to brick structures with our delete-and-rebuild algorithm.
Additionally, we compare our method with pre-trained LLaMA models evaluated
in both a zero-shot and few-shot manner. For few-shot evaluation, we provide the
model with 5 examples of stable brick structures and their captions.

For each method, we compute the proportion of stable and valid structures
among the generated designs. Additionally, for each valid structure, we compute
its mean and minimum brick stability scores. To evaluate prompt alignment, we
compute the CLIP score [183] between a rendered image of each valid structure and
the text “A LEGO model of {prompt}”. We also calculate the alignment between
rendered images of the generated structure and the ground-truth structure for the
same prompt, as measured by the cosine similarity between DINOv2 features [165].
As shown in Table 6.1, our method outperforms all baselines in these metrics.
Figure 6.5 shows that our method generates brick structures of higher quality than
the baselines.

Ablation Study. We demonstrate the importance of rejection sampling and physics-
aware rollback. As seen in Figure 6.6, rejection sampling eliminates invalid bricks,

such as those with collisions, while rollback helps to ensure the final assembly
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structure is physically stable. The quantitative results in Table 6.1 show that our
full method generates a higher proportion of valid and stable brick structures,
while closely following the text prompts.

6.5.3 Extensions and Applications

Robotic Assembly of Generated Structures. We demonstrate automated assembly
using a dual-robot-arm system in Figure 6.8. The robots use the manipulation
policy [120] and the asynchronous multi-agent planner [68] to manipulate toy
bricks and construct the structure. Since the generated structures are physically
stable, efficient and automated assembly can be performed.

Brick Texture and Color Generation. Figure 6.7 shows both UV texturing and
uniform coloring results of brick structures, demonstrating our method’s ability to

generate diverse styles while preserving the underlying geometry.

6.6 Discussion

In this work, we have introduced BRICKGPT, an autoregressive model for generat-
ing interconnecting toy brick structures from text prompts. Our method learns to
predict the next brick sequentially while ensuring physical stability and buildability.
We have shown that our method outperforms LLM backbone models and several
recent text-to-3D generation methods.

Limitations. Though our method outperforms existing methods, it still has several
limitations. First, due to limited computational resources, we have not explored the
largest 3D dataset. As a result, our method is restricted to producing designs within
a 20 x 20 x 20 grid across 21 categories, while recent 3D generation methods can
create a wider variety of objects. Future work includes scaling up model training
at higher grid resolutions on larger, more diverse datasets, such as Objaverse-
XL [36]. Training on large-scale datasets can also improve generalization to out-of-
distribution text prompts.

Second, our method currently supports a fixed set of commonly used toy bricks.
In future work, we plan to expand the brick library to include a broader range of
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dimensions and brick types, such as slopes and tiles, allowing for more diverse

and intricate designs.
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Chapter 7

Conclusions

7.1 Discussion

In this dissertation, we have explored the central challenge of democratizing 3D
content creation. By leveraging powerful, data-driven priors, we can significantly
lower the barriers that have traditionally confined 3D creation to the realm of
experts. By developing models based on vast datasets of images, text, and shapes,
we can empower everyday users to capture, generate, and realize 3D content from
simple and intuitive inputs. The work presented here spans three parts, collectively

addressing the fundamental aspects of: geometry, appearance, and physics.

Sparse-View 3D Reconstruction. We began by addressing the capture of real-
world scenes. In Chapter 2, DS-NeRF [39] demonstrated that by using “free” depth
priors from Structure-from-Motion, we can achieve high-fidelity 3D reconstruction

from as few as two images, removing the need for dense, specialized data capture.

3D Asset Generation. We then turned to the creation of novel digital assets.
In Chapters 3, 4, and 5, we introduced methods for generating complex 3D con-
tent from simple inputs. This included generating editable 3D objects from 2D
sketches [40], using OctreeGPT [42] for efficient text-to-shape generation, and de-
veloping FlashTex [41] with LightControlNet to produce high-quality, relightable
textures. These contributions make the creative process more accessible, replacing
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complex manual modeling with intuitive commands.

Physical Asset Generation. Finally, we explored a novel direction by bridging
the gap between digital design and physical reality. In Chapter 6, BrickGPT [181]
showed that by integrating physics and manufacturing constraints, we can generate
designs from text that are not only visually compelling but also structurally stable
and buildable in the real world.

Collectively, we made small steps towards a future where 3D creation is as easy
as writing a sentence or drawing a sketch. Meanwhile, this work also opens up

new questions and reveals avenues for future exploration.

7.2 Future Work

While the methods in this thesis demonstrate considerable progress, several limita-

tions point toward exciting areas for future research.

Unified Generative Models. This thesis largely treats the generation of shape,
texture, and material as separate stages. While this modularity is practical, a key
next step is to develop unified generative models that can create complete, textured,
and relightable 3D assets in a single, end-to-end process. Such models could learn
the complex interplay between geometry and appearance, leading to even more
realistic and coherent results.

Large-scale 4D Scene Generation with Functional Assets. While Part II of this
thesis has primarily focused on generating individual objects, a crucial next step
is to scale these techniques to create large, dynamic 3D scenes. Our recent work,
Cube [191], represents a preliminary step in this direction by using a large language
model [2] as an agent to compose scenes from generated assets by techniques pre-
sented in Part II. However, the ultimate goal of generating expansive, functional
worlds, e.g., a cyberpunk city populated with drivable vehicles and autonomous
pedestrians, remains a significant and largely unexplored challenge. This will re-
quire not only scaling asset generation but also modeling the complex functionality,

behaviors, layout and interaction of 3D assets that bring a virtual world to life.
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Scaling and Generalization. The models presented were trained on large but
finite datasets like Objaverse [37] and ShapeNet [19]. As a result, their ability to
generalize to out-of-distribution objects or highly complex scenes is still limited.
Scaling these methods to train on even larger and more diverse datasets, such
as Objaverse-XL [37], is a crucial step for improving robustness. Furthermore,
large video generative models, such as Google Veo 3, have demonstrated stunning
results with reasonable 3D understanding. Exploring how to utilize 3D priors from
video generative models could be helpful to expand the variety of 3D content that

can be generated.

Advanced User Interaction and Control. While we have simplified the input
to text and sketches, a significant area for future work lies in creating more user-
friendly interactive systems. Imagine an interface where a user can iteratively refine
a generated asset with a combination of text prompts ("make the legs thinner”),
direct manipulation (pulling a vertex), and sketching (drawing a new handle).
Developing real-time models that can seamlessly interpret these multimodal inputs

would provide users with far more granular and intuitive control.

Generalizing Physics-Aware Generation. BrickGPT [181] represents a first step
toward physically plausible generation, but it is constrained to a single domain
of interlocking bricks. A grand challenge is to extend these ideas to a broader
range of materials and fabrication processes. Future systems could generate de-
signs optimized for 3D printing, considering material strength and printability
constraints, or even design functional robotic parts or architectural plans with

inherent structural integrity.
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