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Abstract

Multi-agent robotic teaming is the only realistic solution to many large-scale
autonomous operations. Conventionally, operations are modeled as a set of tasks
that are largely decoupled from each other and the environment at execution
time. However, this operational model fails when the successful execution of a
task requires multiple agents to synchronize their actions and adapt those actions
to new operating information. This thesis addresses this limitation by explicitly
encoding these required inter-agent operational couplings as execution-time
synchronization constraints in a hierarchical task allocation and task execution
framework. We apply our multi-agent coordination framework to robotic convoy
operations to demonstrate its capability to realize solutions to operations with
a high degree of synchronized multi-agent collaboration.

We then discuss how environmental interaction fits into that framework, bypass-
ing common modeling assumptions which decouple environmental information
from the task model. These assumptions cause agents to passively react to or
avoid interactions with the environment, often leading to conservative agent
behaviors and a false understanding of action or task feasibility. By relaxing tra-
ditional notions of obstacle avoidance in interleaved motion planning strategies,
we enable an expanded feasibility of tasks that would otherwise be impossible
using traditional passive avoidance behaviors. We then apply the benefits of this
approach to robotic convoy operations in unstructured environments, demon-
strating how an interaction-aware framework gives rise to new opportunities for
synchronized multi-agent collaborations.

Finally, erroneous environmental information can have catastrophic effects on
task allocation and multi-agent coordination. To mitigate these effects, we imbue
our multi-agent team with the capability to communicate and adapt to newly
discovered environmental information. To ensure this communication capability
even in communication-deprived unstructured environments, we design a wireless
ad hoc network construction technique that maintains an observed minimum
signal strength between agents. With this assured communication, we can then
address dynamic task allocation problems arising from inaccurate environmental
data by utilizing the agents themselves as mobile environmental sensors. We
then demonstrate robotic convoy operations in an unstructured environment
where both agent and team reallocation and rerouting are required in response
to a priori unknown information about the environment. By addressing the
confluence of coupling effects, our framework effectively addresses a class of
synchronized task allocation and execution problems and extends the capabilities
of multi-agent robotic systems to new operational paradigms and requirements.
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Chapter 1

Introduction

Figure 1.1: A convoy of robotic agents traveling between points of interest.

NE fundamental aspect of multi-agent robotic systems is that any given agent does
O not exist solely in a state of isolation. The behavior or action of any given agent in a
multi-agent system is at least influenced by, or coupled to, the behaviors of the other agents.
This coupling forms the basis of multi-agent coordination, where multiple agents work
together to solve a task or set of tasks. When a task requires the synchronized behavior of
multiple agents, in order to perform efficient and effective multi-agent coordination, it is
necessary to address this coupling during both the task allocation and task execution phases.
Further complicating this problem are many practical constraints that couple the agent’s
actions with both the physical and information environments within which the agents
operate. The framework developed in this thesis presents a unified approach that addresses
multi-agent task coupling arising from synchronized tasks, information coupling resulting
from environmental dynamism, and environmental coupling resulting from interactions with
the environment. We provide a holistic approach to multi-agent coordination with a focus

on realizing off-road multi-agent convoying operations.
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1.1 Motivating Example - Convoy Operations

Figure 1.2: Examples of two different applications in the convoying domain. Multi-vehicle
convoying has historically taken place across both land (Figure 1.2a, “KSC Battalion
Conducts Convoy Movement Training [Image 10 of 19]” by Sang Yun Kim is in the Public
Domain [1]) and maritime (Figure 1.2b, “USCGC Bear (WMEC 901) Participates in
Operation Nanook [Image 5 of 14]” by Matthew Abban is in the Public Domain [2])
environments. Multiple vehicles may participate in a convoy to either satisfy large-scale
logistical mission requirements or for mutual protection. The appearance of U.S. Department
of Defense (DoD) visual information (Figure 1.2a, Figure 1.2b) does not imply or constitute
DoD endorsement.

During operations in Iraq, ground transports reportedly moved ninety-eight percent
of the military’s equipment and supplies in on-road and off-road environments [5]. This
reliance on ground transports, often organized into dedicated supply “convoys,” was not
unique to operations in Iraq and has been reflected in multiple conflicts since the Second
World War [6, 7]. Due to the scale of convoy logistics challenges and the associated
operational dangers to ground transport crews, the scientific community has conducted
research on replacing crewed vehicles with automated platforms, with a specific focus on
convoy formations [5, 8].

The majority of these previous works focus on the principal mechanism for executing
convoy tasks: formation-keeping. A multi-agent formation-keeping behavior couples the
spatial and temporal motions of individual robotic platforms to ensure that each agent
maintains its relative position with respect to the other agents. Although formation-keeping
is indeed an important first step towards realizing automated convoying systems, the nature
of the work itself suggests further study on how higher-level task allocation reasoning
frameworks embed low-level multi-agent coupled task execution behaviors. In the context
of robotic convoy, existing literature often considers the question of “how to convoy,” but

then fails to consider profound questions regarding “when and where agents should form



1. Introduction

a convoy.” Thus, allocations of agents to highly-coupled tasks (e.g., Which agents should
be assigned to which convoys?) must observe the initial conditions required to address

inter-agent coupling in the task execution phase.

For many task allocation algorithms, allocation mechanisms assign agents to tasks
under the assumption of information certainty. However, in many real-world allocation
problems, this certainty does not hold. Instead, there often exists an “evolutionary” aspect
to information availability [9], leading to information dynamism in the allocation problem.
This dynamism can then lead to an underlying infeasibility in the allocation phase or to
inefficiencies in the agent allocations. Unfortunately, as automated convoying operations
entail the synchronized behaviors of multiple robotic agents, the added coupling between
agents causes these inefliciencies to propagate to multiple assets. This operational risk
suggests the need for adaptive or dynamic responses to operational (e.g., environmental) data.
However, responding to operational data often requires the exchange of information between
agents. Given the commonality of information dynamism, agents are often equipped with
onboard communication systems to support the exchange of information between the agents.
Under certain conditions (e.g., small inter-agent distances), this communication system then
enables the transfer of task allocation and task execution data between agents. Thus, to
encourage adaptive multi-agent behaviors in response to information (e.g., environmental)
dynamism, the design of the robotic system must support information transfer to capture

the evolving environmental conditions during the system’s operation.

Finally, while many existing works have developed automated convoying systems for
on-road environments, these works do not address the challenges associated with off-road
or “unstructured” environments. One defining aspect of off-road operations is that there
is no guarantee of a single discernible paved track to the destination location [10]. In
on-road driving, this single discernible track provides environmental structure that the
agents may exploit during task allocation and execution. When this environmental structure
is nonexistent, automated systems need to consider how to incorporate interactions with
unique off-road environmental features (e.g., vegetation, gates, doors) not found in on-road
environments. Figure 1.3 illustrates two contrasting examples of environmental objects. In
Figure 1.3a, the agents observe a classical notion of obstacle avoidance to avoid interaction
with the environmental clutter. While the object interferes with the agents’ motion, the
agents do not have to interact with the object to travel around it. Figure 1.3b stands in
contrast to the scenario presented in Figure 1.3a, as the environmental objects prevent
the agents from progressing to their next task. The only way to progress would be to
interact with the door (e.g., opening it). Thus, to extend both task allocation and task

execution techniques to off-road environments, the effects of the interactions must be

3
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(a) (b)

Figure 1.3: A convoy of small wheeled platforms encounters different types of objects
during system operation. Figure 1.3a illustrates environmental clutter, which prompts
the convoy team to adjust its formation structure to pass. Figure 1.3b demonstrates an
environmental obstacle (a closed door), which can impede the motion of the agents. The
necessity for interaction strategies in the task execution phase is evident in both cases;
however, accounting for environmental interactions must also be incorporated into the task
allocation phase for allocation strategies to represent the task execution accurately.

captured by the underlying model. As such, convoys that operate in off-road environments
also exhibit a non-trivial coupling with the physical environment and must be augmented
with additional capabilities to handle the missing environmental structure provided by

on-road environments.

1.2 Generalized Multi-agent Teaming Research Questions

Given our discussion in the previous section, it is clear that multi-agent systems that
perform automated convoying operations demonstrate at least three types of coupling.
These are: 1) task allocation and task execution coupling, 2) information coupling, and
3) environmental coupling. In order to support a generalized framework for multi-agent
teaming in unstructured environments, we are thus concerned with the following three

research questions (RQ):

RQ 1: (Task Allocation and Task Execution Coupling): What are the properties
of and solution methods to multi-agent system operations that require the

synchronized actions of individual agents?

RQ 2: (Information Coupling): How does dynamism affect multi-agent system opera-

tions, and how can the design of automated network construction algorithms
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mitigate the influence of this dynamism?

RQ 3: (Environmental Coupling): How can relaxations of common environmental
assumptions (e.g., the obstacle avoidance paradigm) influence task allocation

and task execution in multi-agent systems?

1.3 Thesis Statement

The purpose of this thesis is to develop methodologies that may improve the command
and control capabilities for coalitions of automated platforms that must operate in convoy
formations. We argue that addressing the different forms of coupling outlined above is the
critical step towards realizing robotic convoying in unstructured environments. With this

perspective in mind, we assert the following thesis statement.

Thesis Statement:

The performance of multi-agent systems in unstructured environments with tasks

that have coupled execution requirements can be improved by:

1. forming representative task abstractions,

2. responding to evolving mission information, and

3. reasoning about environmental interactability.

Pertinent definitions to the thesis statement, above, are as follows:

* “performance ...improved” is considered within the context of traditional routing
problems (e.g., decreasing the total distance traveled by all agents or the total time

of the operation).

* “unstructured environments” are defined as operating environments where no dis-
cernible or object-free path-to-goal exists. Examples of such environments include
off-trail traversals in a natural landscape (e.g., with vegetative objects) or in-building

traversals (e.g., with furniture or door objects).

* “coupled execution requirements” is defined as a task that can only be satisfied if
multiple agents spatially and temporally couple their states or actions together during

the execution of the task.

* “representative task abstractions” are functional representations of tasks that accurately

capture the constraints and costs associated with task completion.

* “evolving mission information” is described as information pertinent to the conducted

operation that may be discovered during the operation.
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Figure 1.4: The interaction-aware synchronized task allocation and task execution framework
developed to support the above thesis statement

* “environmental interactability” is defined as the relaxation of obstacle avoidance re-
quirements such that an agent’s state may be co-located with a subset of environmental

objects under certain conditions.

The principal claim of this work is that for operations in unstructured environments that
require multiple agents to synchronize their actions, robotic agents must have effective task
abstractions, communication strategies that support the transfer of operation information,
and interaction-aware agent motion models. To support this hypothesis, we present a
multi-agent mission planning framework tailored specifically to address the challenges
associated with robotic convoy operations. Figure 1.4 depicts our two-layer task allocation
and task execution framework.

The core component of the framework is a centralized task allocation layer that casts
convoy operations as a variant of the vehicle routing problem with multiple synchronizations
(VRPMS). We introduce multi-agent coordinating constraints that require a specific number
of platforms to travel as a convoy to accomplish the task at each goal (waypoint). Our
particular formulation of the vehicle routing problem is named the Vehicle Routing Problem
with Multiple Synchronizations - Convoy Constraints (VRPMS-CC). This layer can also
reroute or reallocate agents to different convoying tasks in light of a priori unknown
environmental information.

The next component of the framework is a task execution layer. This layer consists of a
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series of individual behaviors implemented on each robotic agent. Each behavior enables
the agents to perform tasks central to automated convoying. In particular, we introduce a
coordinated motion behavior, a communications network construction behavior (“peel-off”),
and an obstacle override behavior. To address task execution coupling, the coordinated
motion behavior describes how agents must respond to a convoy assignment from the
task allocation layer. The communication network construction behavior enables agents
to monitor the communication environment and deploy communication-range-extending
nodes to maintain a minimum radio signal strength during system operations. We then
address information coupling by combining this capability with the agent re-allocation
capability in the previous layer. Finally, from the factors discussed above, the unstructured
environment may impact the agents’ routes in a manner that becomes apparent only during
the execution of the route. As this may lead to a routing problem where environmental
interactions influence the feasibility of executing the route (e.g., a “traversable” interaction
that allows the vehicle to travel along the route), we equip each robotic agent with an
interaction-aware task execution policy. This policy enables the agent to interact with a
subset of environmental objects, thereby addressing environmental coupling. Combining
this interaction-aware policy with our re-allocation capability enables our system to address
a wide range of real-world environments with different realistic constraints on environmental

interactability.

1.4 Research Question Discussion

In this section, we break down each research question into an associated set of technical
challenges. We aim to provide technical contributions to address these challenges in the

context of automated convoying in unstructured environments (e.g., off-road terrains).

Research Question 1

What are the properties of and solution methods to multi-agent system operations that

require the synchronized actions of individual agents?

Many multi-agent system architecture designs decompose the system operation (mission)
into atomic tasks that the individual agents then complete. The decision framework
underpinning such an architecture design thus assumes that the tasks it forms exhibit an
atomic nature, independent of inter-agent coupling. However, many crucial multi-agent
system operations require synchronicity (coupling) to exist between the states and actions

of multiple robotic agents. Further complicating synchronized robotic agent operations is

7
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that coupling may exist in both the task allocation (e.g., assigning multiple agents to a set
of synchronized tasks) and task execution (e.g., agents must couple their actions together
to complete a single task) aspects of the system operation. While monolithic frameworks
can ensure the observance of both task allocation coupling and task execution coupling,
pragmatic concerns surrounding high-rate coupling can make such frameworks difficult to
implement [8, 11]. In the context of automated convoying, the allocation of agents into
formations and the subsequent formation-keeping constraint represent task allocation and
task execution coupling, respectively. Upon inspecting these two aspects of autonomous
convoying, we notice a natural functional abstraction of the convoying task. This functional
abstraction represents convoys as their start and goal locations, along with the agents
assigned to each convoy. We note that the abstract representation of the convoying task
is distinct from the task itself, implying that we can also consider the synchronization of
the agents separately during task execution. Our observation then leads to the question of
whether we can leverage this natural functional abstraction to form a distinct task allocation

and execution framework for multi-agent convoying systems.

Research Question 2

How does dynamism affect multi-agent system operations, and how can the design of

automated network construction algorithms mitigate the influence of this dynamism?

Given Research Question 1, we note many practical concerns regarding the deployment
of such frameworks to real-world environments. In particular, task allocation schemes
optimize agent performance based on the available information at the time of the task
allocation. This optimization is often dependent on associating accurate costs with individual
tasks. Yet, in many robotics applications, predicting this task cost is non-trivial. This non-
trivial task cost estimation becomes even more challenging if, at the time of task allocation,
an unknown aspect that could significantly affect the task cost estimate is unknown (not
in the context of uncertainty, but rather an “unknown” unknown). Such matters are the
concern of the field of dynamic routing; however, implementing a dynamic routing algorithm
on a robotic agent team presents several impediments. The most significant impediment is
that in many robotic operations, inter-agent communication may not be inherently available
from the existing communications infrastructure in the environment. In such a scenario,
robotic agents can establish an ad hoc network to facilitate inter-agent communication.
We seek to answer questions regarding 1) how to facilitate the construction of this ad hoc
network, and 2) how task allocation and task execution coupling affect the construction of

this ad hoc network.
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Research Question 3

How can relaxations of common environmental assumptions (e.g., obstacle avoidance

paradigm) influence task allocation and task execution in multi-agent systems?

Traditional robotics paradigms indicate that robotic agents should not interact with
objects in the environment. While this paradigm may prove useful in highly-controlled
environments, allowing interactions with objects in the environment may alter the feasibility
and optimality of an agent’s motion through the environment [12, 13, 14, 15]. Yet, accurately
realizing and representing interaction-aware behaviors at both a task allocation and task
execution level is non-trivial. At the task allocation layer, environmental interactability may
lead to more accurate and representative estimates of costs associated with task execution.
These changing estimates are associated with the earlier discussed altered task feasibility
and optimality. Depending on the sensitivity of the task allocation to certain constraints,
modifying these estimates may lead to a larger feasible set of solutions at the task allocation
layer. However, interaction-aware behaviors are challenging to realize on robotic systems.
While previous methods often rely on perception mechanisms to classify the object space
into interactable-object classes, the interaction feasibility may depend on the agent’s state at
the point of interaction. For automated convoying systems interacting with environmental
vegetation, numerous works in the off-road mobility and modeling community confirm this
fact [16, 17, 18]. There are clear advantages to creating interaction-aware robotic agent
behaviors and incorporating these behaviors into both the task allocation and task execution
layers of the framework designed in Research Question 1. Creating an interaction-aware
control policy for common vegetative objects is invaluable for convoy operations, as such
operations often occur in environments where such objects are present. As such, vegetation

interaction forms the basis of our investigation in this thesis.

1.5 Thesis Organization

Given a short description of each challenge above, we divide this thesis into three parts.
Each part corresponds to a particular research question. We then further divide each part
into two individual chapters, tackling specific aspects of each respective research question.

The three parts of this thesis are as follows:

1. Part I: The thesis begins with Chapter 2, where we first consider how to perform
coordinated motion. The capability to perform this task forms the basis of the

task execution layer, where we address the primary expression of coupling for our

9
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task: convoy formation-keeping. In this chapter, we introduce an optimization-
based formation controller for a robotic convoying system and then utilize it to
abstract the formation control task into a functional robot behavior. We then leverage
this functional convoy task abstraction in Chapter 3 to perform the synchronized
routing of multiple agents. In Chapter 3, we investigate a variant of the vehicle
routing problem with multiple synchronization constraints (VRPMS) to ensure that
each agent meets the necessary initial conditions for convoy assignments. We name
this variant the Vehicle Routing Problem with Multiple Synchronizations - Convoy
Constraints (VRPMS-CC). We investigate multiple solution techniques to this vehicle
routing problem variant and demonstrate the effectiveness of a decomposition-based
heuristic for warm-starting the routing problem solver. By combining our convoy
controller with the VRPMS-CC, we form the basis for the framework illustrated in
Figure 1.4.

. Part II: Our work in Part I demonstrates the need for dynamic routing capabilities

during robotic system operation. To enable these dynamic routing capabilities in
communications-deprived environments, we introduce an ad hoc wireless network
construction technique in Chapter 4. This technique novelly combines a spanning
tree variant, which we call the Maximin Communications Spanning Tree (MCST),
with a node placement logic developed during the DARPA Subterranean Challenge.
We first introduce the MCST in Chapter 4, and conclude the section with several
simulation and hardware results. We then apply the MCST to convoy operations
in Chapter 5, where we develop additional application-specific behaviors to support
convoy operations in communications-deprived environments. We utilize this ad hoc
wireless network construction technique to support a demonstration of a dynamic
version of the VRPMS-CC (Dynamic VRPMS-CC) in Chapter 3.

. Part III: Finally, we consider the implications of environmental coupling in Part III.

In particular, we consider how the unstructured terrain enables aggressive behaviors
that would be unnecessary or impermissible in more structured terrains. We first
consider a common unstructured terrain: natural off-road environments, and introduce
a custom trajectory optimization controller for vegetation override in Chapter 6. This
custom controller utilizes a semi-analytical model to enable wheeled robotic systems
to override small obstacles, such as vegetation and posts. We then introduce an
interleaved motion planning and control scheme in Chapter 7 that selectively utilizes
the controller developed in Chapter 6 to plan paths to a goal. This interleaved motion

planning and control scheme combines the advantages of sampling-based planning
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with trajectory optimization to account for and balance interactions with objects in

the environment, thereby enhancing the overall system performance.
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2. A Distributed Optimal Control Framework for High-Speed Convoys

2.1 Introduction

HE first step in building a multi-agent system lies in understanding the fundamental
T tasks it must complete. Undeniably, the multi-agent system performing a convoy
operation must have the capability to travel as a convoy. Developing this fundamental
multi-agent convoying capability is the focus of this chapter. We develop this capability
with the understanding that the agents may be traveling in unstructured environments.
Operating in an unstructured environment yields an additional context that affects the
design of the underlying convoy formation-keeping algorithm (controller).

In particular, that additional context arises from the empirical observation that co-
ordinated fleets of mobile automated platforms (agents) in unstructured environments
benefit from small inter-platform distances, especially when these platforms move at higher
speeds. This yields a new challenge in that as speed increases, reducing the space between
platforms also reduces the time available to the platforms to respond to sudden motion
variations of the surrounding platforms. However, in specific examples, the benefits in
performance due to traveling at closer distances can outweigh the potential instability issues.
These benefits are well-documented for on-road environments, with the most highly cited
example being reduced fuel consumption resulting from a reduction in aerodynamic drag
[8, 19]. Small mobile robots can also achieve performance improvements by operating at
high speeds in close proximity to other agents in unstructured environments. A practical
challenge in search and rescue missions is maintaining consistent communication between

the robots, especially in cluttered environments where the loss of direct line of sight can
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Figure 2.1: Coordinated motion (convoy formation-keeping) forms the basis of the task
execution layer of our framework. We focus on the task execution layer in this section and
address the task execution requirements in Chapter 3.
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2. A Distributed Optimal Control Framework for High-Speed Convoys

hinder inter-robot communications [20].

To achieve this kind of closely coordinated fleet behavior, we introduce a model predictive
optimal control framework that directly accounts for the nonlinear dynamics of the agents
in the fleet while planning motions for each platform. The platforms can follow each other
closely at high speeds by proactively making predictions and reactively adjusting their
responses based on state information from the adjacent platforms. This control framework
is naturally decentralized and empirically demonstrates lower inter-platform distances at

higher speeds compared to existing formation-keeping controllers.

2.2 Literature review of convoying systems

To provide context for our control approach, we review relevant prior work that addresses the
convoy formation-keeping problem. We focus our discussion on convoy formation-keeping
controllers designed for unstructured and cluttered environments.

One of the earliest works in convoy control mimics a leader-follower behavior where each
vehicle estimates and stores the path of its predecessor as a set of points [21]. The follower
then estimates the predecessor’s path curvature around a selected target and follows the
trajectory. Nestlinger et al. [11] extends this work to store position measurements over
time and apply a spline-approximation technique to obtain a smooth reference path for the
underlying motion controllers. These methods force each agent in the convoy to track the
exact positions of its predecessors, a strict formation-keeping requirement that restricts
system flexibility in cluttered environments (e.g., around obstacles).

In contrast to these strict formation-keeping requirements, Albrecht et al. [22] provides
a framework for switching between exact pose tracking and a flexible path search and
tracking mode based on the environment. The added flexible path search mode relaxes the
strict formation-keeping requirements, yielding better performance in real-world conditions.
However, there is no interaction between the outputs of the two tracking methods, resulting
in potentially conflicting tracking requirements when switching between the modes.

Shin et al. [23] incorporates a dedicated obstacle avoidance module in the control
framework to tackle the challenges of unstructured environments. Here, the authors
approach the convoy problem using a passivity-based model predictive control method
that integrates a traversability map into the planner. However, this framework does not
incorporate feedback from the following vehicles, which can result in high inter-robot
distances on cluttered terrains. The framework also relies on continuous communication
between the vehicles and a central node to operate.

Finally, Turri et al. [19] presents an alternative to “follow-the-leader” style frameworks.
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2. A Distributed Optimal Control Framework for High-Speed Convoys

The authors in [19] adopt a centralized approach to designing their controller, with a
primary focus on straight-line velocity profiles. The goal of the presented approach is to
improve fuel efficiency while ensuring desired safe following distances between vehicles. As
formation size increases, the computational cost increases quadratically with the number
of agents. Furthermore, the approach needs to be solved on a single computer, creating a
single point of failure. As in Shin et al. [23], the approach in [19] also requires high-rate

continuous communications between the robots and the base node for safe convoying.

2.3 Convoy problem formulation

Consider a convoy consisting of at least three agents, structured in a column formation. In
a column formation, the agents position themselves spatially one after the other [7]. We
assume a fixed formation structure during system operation. In this formation structure,
we order the convoy such that every agent in the “interior” of the column (i.e., not the first
or last vehicle in the column) is preceded by a “leading” (lead) agent and is succeeded by
a “following” (follow) agent. Instead of requiring the agents to maintain the strict spatial
positioning between the lead and follow agents, we relax the problem such that the agents
must only maintain the formation ordering while trying to minimize their distance to a
fixed point along the desired path. We illustrate this idea in Figure 2.2, where agent ¢
(green) minimizes error e (given a metric, e.g., Euclidean distance) between its current

location and a target point of interest defined by d"¢f along the desired path.

i-1
X

i-1,1 0 lead

vehicle

Obstacle

follow X ‘
vehicle

Obstacle

Figure 2.2: Schematic for the convoy control problem from the perspective of an “interior”
agent i. Error e is defined as the difference between the agent’s desired position (e.g., d"¢
behind the lead agent as measured using the Euclidean distance) and its current location.
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Given a formation of L agents, we first define an agent index associated with that
agent’s position in the formation. The index is assigned such that it begins with a value of
1 (i.e., the first agent in the convoy) and increases with each subsequent agent. Thus, for
agent ¢ which is neither the first nor last agent in the formation, the neighboring preceding
(leading) agent and succeeding (following) agent are denoted as i — 1 and i + 1, respectively.
We can then represent the entire list of agents via an index set Z, = {1,2,--- , L}, where
t € Iy, represents agent ¢ through its index value.

Our goal is to design a convoy controller that generates a set of control outputs,
ub Vi € Iy, enabling the agents to travel to a waypoint of interest while maintaining the
provided convoy formation ordering. Thus, if we consider the convoy motion itself as a “task”
in a broader mission that agents must perform, this formation ordering constraint is an
example of task execution coupling that is present during system operation. In particular,
there are three desired objectives shaping each agent’s motion in the convoy. Each agent
should:

1. maintain a fixed distance d"¢f along the desired path from its lead vehicle;
2. travel at a specified desired speed;

3. react to disturbances (e.g., avoiding obstacles) in the environment.

However, we must also ensure that the execution of this task accurately represents the
behavior we wish the multi-agent system to exhibit. One challenge with “follow-the-leader”
style controller architectures is that the primary dependency (coupling) is often conditioned

only on the leading agent. We illustrate a scenario in Figure 2.3 to better understand the
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Figure 2.3: Comparison of convoys when following robots are neglected in the framework
(Case A) vs. when they are not (Case B). In Figure 2.3a, an environmental situation
where agent ¢ 4+ 1 is “stuck” is shown. In Figure 2.3b, a fleet response demonstrating the
“accordion” problem is shown.
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comparison of a “follow-the-leader” (Case A) behavior against our desired behavior (Case
B). In both scenarios, the obstacles in the environment force agent i + 1 to slow down. To
demonstrate the two behaviors, we modeled the convoy controller as a spring-mass-damper
system defined between agents in the convoy. In Case A, this spring-mass-damper system
is defined pairwise between subsequent agents in the convoy (e.g., between agent i — 1
and agent 7). This structure imposes a coupling between agents where each agent is only
affected by its lead agent. However, in Case B, both adjacent agents (leading (i — 1) and
following (i + 1)) exhibit a fictitious force on agent i.

Let us consider the effects of this difference in convoy modeling. Again, the goal of our
convoy controller design is to represent the desired behavior in the task execution. First,
of fundamental importance, consider if the obstacle field observed in Figure 2.3a caused
agent 7 + 1 to become permanently “stuck.” Under the “follow-the-leader” paradigm, such
a permanently “stuck” agent would “split” the convoy due to the presence of obstacles,
undoubtedly violating the desired behavior. However, even if agent i + 1 is not permanently
“stuck,” Figure 2.3b demonstrates that the agent impacted by the obstacle disturbance
induces an oscillatory effect in the convoy structure. Figure 2.3b further indicates that
under this oscillatory effect, Case B stabilizes faster and reduces oscillatory effects between
the agents. We hypothesize that this structure will enable the agents to maintain lower
inter-robot distances throughout the environment, thereby facilitating improved real-time

communication between them.

2.4 Convoy controller design

To achieve the desired behaviors, we pose the convoy problem presented in Section 2.3 as
an optimal control problem with a bi-objective cost structure. The terms in the controller
objective balance deviance from the ego-agent’s (e.g., agent i’s) desired trajectory along
the path, with a penalty associated with breaking the convoy formation structure. We now

describe the proposed controller in detail.

2.4.1 Posing the convoy problem in an optimal control framework

We consider a model-based framework, where each agent’s motion is captured by a discrete-
time state-transition model ¢ =1 (2, ul, At). Here, 2} € R™ represents the state of
agent ¢ at time step k, “2 € R” represents a control input for agent ¢ at time step k,
and At represents the assumed fixed time discretization of the state transition function

(At = tyy1 — t). For a finite time horizon consisting of N time steps, we can then define
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a state and control trajectory for each agent. For agent ¢, the agent’s state and control

trajectories are defined as X' = [z}, %, ...,x%] and U = [u, ul, ..., u’y_;], respectively.

For the i*" agent participating in the convoy formation, we pose the discrete-time

bi-objective optimal control problem framework as:

nin, Clraj( X", U") + Ceonpoy (X5, X1 X (2.1a)
subject to  x} 4 = f(x}, uf, At),V k=0,..., N—1, (2.1b)
zh = 2%(0), (2.1c)

uh = u'(0), (2.1d)

The first component of the cost function is defined in (2.2). This cost is a quadratic
trajectory tracking cost that penalizes deviations from a given convoy trajectory, denoted
as Tyrqj. In this chapter, the reference path 4.4, is provided to the controller as either
a predefined path (see Chapter 3, where these paths are provided in the task allocation
phase) or one created for each agent by observing the motion of other agents in the convoy
(as in [11, 21]). This cost is defined as

N-1
Ctraj (Xza UZ) = Z (1‘7]; - x%raj,k)TQ(xgﬁ - 'rffraj,k:)
k=0 (2.2)
+ (u%)TR(’U,Z) + (1"3\/ - $iraj,N)TQf(xZ]'V - xiraj,N)v

where both @ € R™*™ and Qy € R™*™ are symmetric positive definite matrices, and

R € R™™ is a positive definite matrix.

The second cost term, Ceongoy, Penalizes deviance from the convoy structure over the

"y o '
Zef * ’Z,xzef 1L are the desired

future time horizon. This cost is defined in (2.3), where x
reference positions of the i** agent given the positions of the i — 1 and i + 1 agents,
respectively. Given our interest in maintaining a position with respect to both the leading
and following agents, superscript ref refers to the reference point defined between the agents
with the indices following ref (i.e., , either (i — 1,4) or (i,7 + 1)). Here, Qeqq € R™*™ and
Q follow € R™*™ are tunable positive semi-definite constant matrices. The second cost term

is given as
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N-1
Cconvoy(Xi_l,XiaXi+1) _ Z (552 . x};ef,zfl,z)TQlead(x}'C . x;ef,zfl,z) 03
k=0 .

+ (xi N x;@f,i,i-&-l)TQfollow(x;'C o xzef,i,i—l—l).

As the run-time cost is evaluated over the same time interval, the run-time costs in (2.2)
and (2.3) may be collapsed into a single quadratic cost expression. This new expression is
defined as

g9(xh,up) = (2}, — Q7'yr)Qr(zh, — Q7'yr) — (yr)" Qryr) + Zr + (up) " R(up), (24)
where:

QT = Q + Qlead + Qfollow
] 7‘717‘ 7‘7‘ 1
yr = Qm?ﬁraj,k + Qleadl'?];ef ‘ ‘ + Qfollowlﬂ];ef R

. , 1 _y i1 i1
Zp = (‘r["%raj,k:)Tmefraj,k + (mzef,l ,Z)TQlead(xzefﬂ ,z) + (mvl;ef,l,z+ )TQfollow(xzef’MJr ).

A similar combination of quadratic expressions can be performed on the terminal cost,
yielding (Qr, yr, ZF), respectively. These parameters may be used to rephrase the terminal

cost:
$(Xn) = (zly — Qp'yr)Qr(ey — Qp'yr) — (yr) Qr(yr) + Zp.
Thus, the cost function for agent ¢ may be phrased as:
N—-1 o
J = Ctraj + Ccorwoy = Z {g(fﬂ;g, 'LL;C)} + (z)(XN)

k=0

Furthermore, by linearizing the system around zj, uj and defining A; = % f(zg, ug) and
B, = 8%,“7 the optimization problem can be interpreted and solved online as an iterative
Linear Quadratic Regulator (iLQR) ([24]). This yields a control law:

uj, = —[Rg + Bl Poy1 Bi) ' Bl Pey1 (2}, — Qrlyr) = —Ki(zh — Qplyr),

with Pj representing the solution to the Riccati Equation and K} being the optimal control

gain matrix.
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Figure 2.4: Agents (platforms) similar to those demonstrated in this chapter

2.4.2 Controller implementation and design discussion

In this chapter, we demonstrate our approach on a set of small wheeled vehicles, shown
in Figure 2.4. We modeled the vehicle dynamics as a nonlinear bicycle with the state:
X = [Pz, Py, ¥, v]. The elements of this state vector are the vehicle’s x-position, y-position,
heading, and velocity, respectively. The available vehicle controls included velocity and

steering angle: u = [a, §]. We model the continuous-time vehicle dynamics as

L
Pz = v * cos (1 + atan ( / ),

L%
. — 3 Lf
Py = v *ksin (llJ—i-ata;l(L*d))v (2.5)
v f
) = 7 cos(atan(L*é)) * tan ()
v =a,

and the characterizing platform parameters are listed in Appendix A in Table A.1.
The value of 2"¢/ depends on the desired inter-robot distance, d"¢/. We define the

desired inter-robot distance as

d™ef = Mg + Ao(v; —vi1) + K,

where v; is the desired target velocity and v; corresponds to current velocity for agent .
A1 and Ao are tunable parameters where A\ and Ay are non-negative values. K is a constant
minimum inter-robot distance for safe operation. In this implementation, we only consider
the current velocities of vehicle ¢ and the prior robot in the convoy structure.

As shown in Fig. 2.2, the reference positions for agents ¢ — 1 and ¢+ 1 over horizon 1 : N
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are recovered by performing an open-loop forward rollout using the linearized dynamics at
the ¢ — 1 or ¢ + 1 agent’s state. The + — 1 and 7 + 1 agents’ current velocity and steering are
assumed to be constant over the rollout. The reference positions for (2.3) are set by moving
backward d"¢/ along the convoy trajectory from the predicted i — 1 agent positions X!
and moving the same distance ahead of the i + 1 agent positions X**!. Thus, adjacent
agents experience task execution coupling in both the position and velocity space.

The desired reactivity discussed in Section 2.3 is needed to prevent collisions between
agents due to sudden variations in speed. To enable this behavior, the controller computes
a weighting factor, Weonvoy, between the costs (2.2) and (2.3) during run-time. We compute
this factor given the desired convoy spacing and the current Euclidean distance dist; ;
between agents i and j. These weights are multiplied to the @) matrices in (2.3) and the

weighting factor is computed as:

Qlead = Wj,i—1 * Qlead

Qfollow = Wji41 * Qfollow

”LUfarX(diStiyj_dTef) i ,St; s ref
o 1+ dist; j if szt%] =d
2% )
x(dref —dist; ; i
1 4 Wnear ( istij) otherwise.

dist,

The proposed formulation allows the robot to track its predecessor and follower through
the predicted 2"/ terms while also tracking its desired planned path. We can interpret
the proposed additional convoy cost provided in the optimal control formulation as a
modification of the local linearization point used in the LQR. This modification of the
coordinate transfer from the reference path (z44;) through both the user-defined weightings
(@, Qiead, Qfoliow) and reference trajectories of the leading (X lead) and following (X /olow)
robots in the fleet.

2.4.3 Local Planner and Trajectory Controller

In the absence of an obstacle-free path, Algorithm 1 ensures high-speed following and

maintains the convoy formation with the help of an additional velocity scaling term:
vp = (1 4+ a)vge
o = \3(dy — d") — Aydsy

Where the \’s are tunable parameters, vy is the desired target velocity from the convoy
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Algorithm 1 Convoy controller with obstacle avoidance for robot ¢
Input: Agent states (2§ ', xf, 25t)
Output: Control sequence (U")

while Agents ¢ € 7y, are in convoy do
Run convoy controller, Section 2.4
if Output path X’ is obstacle-free then
return Control sequence U*
else
Define Dy ook Anread Pased on velocity v
Calculate desired velocity vy and direction 67
Run the local planner [25]
Get the modified obstacle-free path X*
Send X' into a path following iLQR controller
return Control sequence U’
end if
end while

controller, vr is the modified desired target velocity for the planner, v, is the robot’s
velocity, v; is the leader’s velocity, d; is the distance between the robot and the leader
along the trajectory, and ds is the distance between the robot and the follower along the
trajectory. We select the desired direction (f7) using a look-ahead distance Dy ook Ahead
along the optimal trajectory. This is done to track the desired controller path to the greatest
extent before the robot switches back into the convoy controller mode.

The local planner takes these inputs and generates a feasible path that avoids obstacles
while tracking outputs from the convoy controller. The planner we use is based on the
planner defined in [25]. The selected path is then sent to an iLQR trajectory following

controller to generate the control sequence.

2.5 Performance in simulation

We characterize the performance of our proposed controller (“Convoy Controller”) in a
variety of simulated environments. We simulate these environments, shown in Figure 2.5,
using the Gazebo Physics Simulator [3]. As discussed in Section 2.2, there are many
different approaches to enforcing convoy structure at the control and planning level. To
develop a comparison between the presented methodology and existing literature, we
create a baseline “Base Controller” that combines the local planning and distance variation
behaviors from Zhao [26] with additional modifications [22, 27, 28]. This combination

creates a decentralized controller, similar to our proposed method, that outperforms the
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individual performance of each baseline work separately in terms of minimizing inter-agent

distances without compromising the convoy formation structure.

(a) o
© (d)

e
() 0

Figure 2.5: A depiction of the different simulation environments investigated in this chapter.
Figure 2.5a represents a straight line path. Figure 2.5b depicts a path with low-curvature
turns. Figure 2.5¢ shows a path with an oo loop track. Figure 2.5d reflects a sinusoidal path
with tight turns. Figure 2.5e shows a simulated tunnel environment from the Gazebo Physics
Simulator [3]. Finally, Figure 2.5f shows a racetrack environment, also from Gazebo [3]

2.5.1 Error metric design

We define two error metrics to compare the performance of our Convoy Controller with the
Base Controller. The first metric is

abs((di_l’i+1/2) — di—l,i) 1 € (I,L),
abS((dL_ZL/Q) — dL—l,L) i = L.

€m, =
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This metric aims to assess how well an agent can maintain a position midway between its
adjacent agents. Variation in this metric provides insight into the accordion-like behaviors
that negatively affect fleet performance when the individual agents continuously accelerate
and brake during the operation. However, this error metric can maintain a low value if all
agents maintain an equally large following distance, which is not desirable. To that end, we

define a second error metric as follows:

emy = abs(di—1,; — ddesired)

This metric measures distance from the desired gap between robots and, along with the

first metric, can provide a thorough understanding of the convoy performance.

2.5.2 Simulation results

We first consider the straight-line and low-curvature turn paths. Following this, we simulated
runs in environments with tight turns, including a tunnel environment and a racetrack
environment. We placed additional constraints on agent operability and speed on these
runs to understand formation performance in edge scenarios. Finally, to test controller
performance in continuous turns at different speeds, we tested the controller with commanded

speeds varying between 4 [m/s] and 8 [m/s] on an co loop track with a radius of 20 [m].

Straight line and low curvature runs

We performed the first set of simulations on a group of agents operating on simple paths while
starting from scattered initial locations. Our aim with this experiment was to understand
how quickly the various controllers settle and how the error values vary during that period.
As shown in Figure 2.6, our convoy controller settles faster while maintaining lower values
for both error metrics. These charts illustrate the faster formation of convoy structures

using our framework.

Tight turns - performance in constrained environments

In this simulated trial, we provided a series of waypoints only to the lead agent, not to the
subsequent agents. On running the Base Controller, the following agents would tend to
overshoot due to the presence of sharp turns. We observed this behavior even when we
tuned down the look-ahead value to zero, indicating an inherent difficulty in maintaining the
convoy structure with such sharp turns at high speeds. Figure 2.7a illustrates a comparison

between the controllers on the error metrics defined earlier in this section.
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Figure 2.6: Simulation results for the straight line and low curvature paths

Tunnel environments - performance with discrete disturbances

Agents might get temporarily stuck during operation, especially in indoor environments
at high speeds. To simulate this, we initially stopped the first robot in place for 8 [s] and
then reverted its operation to nominal conditions. In Figure 2.7b, the error metrics are
capped in our approach, whereas they continuously rise with the Base Controller as the
last robot is unable to get back into the convoy. The reason for this difference arises from
the cost terms corresponding to the convoy structural deviance penalty on both the leading
and following agents. As soon as one of the agents fails to maintain the desired convoy
structure, the inter-robot gaps increase, resulting in a corresponding rise in the cost term
associated with the structural penalty. To minimize the total cost, the sharp increase in
the penalty term causes the remaining agents to slow down and come to a stop until the

slowed-down follower agent rejoins, thereby capping the error metric.

Racetrack - performance with unexpected agent heterogeneity

We are also interested in simulating a trial that would mimic an agent with an operational
anomaly. To investigate this aspect, we commanded the convoy to travel at 4 [m/s] through
a constrained outdoor environment; however, one of the robots was unable to achieve speeds
higher than 3 [m/s]. We ran this setup in a racetrack environment, as shown in Figure 2.5f,
with the associated error metrics presented in Figure 2.7c. The initial performance between
the controllers is similar until the point where the leader makes a turn after the straight
section on the racetrack. On the straight section, the Base Controller notices a continuous
drop in performance that it is unable to recover past a turn, and the slow robot can no

longer track the lead along the racetrack. Our system, on the other hand, adapts to this
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agent and, despite a slight loss in performance, maintains an upper limit on the error metric,

allowing the convoy to continue along the desired path.
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Figure 2.7: Simulation results which reflect edge cases for the controller performance. Tight

turn environment performance is shown in Figure 2.7a, tunnel performance in Figure 2.7b,
and on the racetrack environment in Figure 2.7¢c

Figure-eight loop - checking error metrics at variable speed

Finally, we ran the agents in an oo loop environment at various speeds to understand system
capability limits. Figure 2.8 illustrates the error metrics at various target speeds between 4
[m/s] and 8 [m/s]. These figures demonstrate that at lower speeds, both controllers can
stabilize the convoy formation. However, as speeds increased, only our Convoy Controller
was capable of stabilizing the formation structure.

In summary, addressing all requirements from the problem definition in Section 2.3,
our convoy controller achieves lower inter-robot distances, quickly adapts to environmental
variations, and exhibits faster convergence for error metrics when compared to the Base

Controller. Table 2.1 summarizes the results of all simulated trials and demonstrates that,
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on average, our distributed convoy formation controller minimizes inter-agent distances

over the Base Controller.

Table 2.1: Overall results comparison

Average Error Metric 1 (m)

Average Error Metric 2 (m)

Environment Base Controller | Our Controller || Base Controller | Our Controller
Straight Line 1.35 0.31 1.08 0.44
Sine Curve 1.12 0.30 0.80 0.47
oo loop 1.69 0.32 2.82 0.73
Tight Turn 0.72 0.18 0.65 0.37
Tunnel 10.20 1.08 10.94 2.24
Race Track 3.77 1.45 2.29 1.02
Column Room 1.91 0.97 5.61 0.95
Long Corridor 3.78 0.89 5.14 0.68
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Figure 2.8: Speed changes in an oo loop. The speed increases by one meter-per-second from
four meters-per-second (Fig. 2.8a) to eight meters-per-second (Fig. 2.8e)
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Figure 2.9: A robot convoy posed to perform a search and rescue task.

2.6 Hardware Trials

To validate our controller performance, we conducted hardware experiments on a team of
three ruggedized wheeled autonomous convoying robots (Fig. 2.9). We specifically designed
the robots to operate in formations and perform search, rescue, and resupply missions.
Each platform is equipped with a Jetson AGX Xavier for on-board compute. Furthermore,
each platform is equipped with a custom payload that can be tailored for multiple possible
missions and environmental conditions. In our experiments, each sensor payload comprises
multiple RGB cameras (providing 360-degree coverage), an IMU, and a Velodyne 16 Lite
LiDAR. The flexibility of each chassis and the symmetry between multiple hulls make the
coalition of vehicles a convenient tool for multi-agent research. Please see Appendix A for

more details about the convoying system.

2.6.1 Hardware trial testing environments

We conducted tests in multiple environments representative of indoor urban spaces. These
environments not only contained long open corridors (Figure 2.10a and Figure 2.10c), but
also tight enclosed spaces (Figure 2.10b). As can be seen in these photos, each testing
environment had small environmental debris present throughout the operating area. The
author would like to note that none of this environmental debris fully obstructed the agents’

paths. We show different debris types in more detail in Figure 2.11.
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Figure 2.10: Pictures of the hardware trial environments. (Straight Line (Fig. 2.6a), Column
Room (Fig. 2.10b), and longer runs (Fig. 2.10c))
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(b)

Figure 2.11: Ground conditions for convoy testing which included puddles (Fig. 2.11a),
carpets (Fig. 2.11b), stones (Fig. 2.11c), and broken floors (Fig. 2.11d)

2.6.2 Straight line tests - validating simulation results

We first tested the Convoy Controller in similar conditions to those tested in Section 2.5.2.
The hardware trial results validate the simulations as the error metrics in Figure 2.12a and

Figure 2.12b vary similarly to those in Figure 2.6a and Figure 2.6b.

8 8
. —— Base Controller . —— Base Controller
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— o
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— —_
54 o4
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—_ —_
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0 0
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Figure 2.12: Straight line test performance depicting error metric 1 (e,,,) (Fig. 2.12a) and
error metric 2 (e,,,) (Fig. 2.12b).

2.6.3 Column room - convoy agility tests

We selected the environment shown in Figure 2.10b to test convoy agility. In particular,
we were interested in testing the Convoy Controller’s capability to maintain a stable convoy

structure during high-speed maneuvers in obstacle-dense environments. To safely travel
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through the columns, each agent must perform low-curvature maneuvers while continually
avoiding the environmental obstacles (columns). The room has dimensions of 35 [m] by 20
[m]. In the test, the operator commanded a general direction of motion to the lead vehicle,
and all three robots made use of the convoy controller to maintain the convoy formation
at 4 [m/s]. The agents make continuous turns to avoid hitting walls, columns, and other
obstacles. Over the span of the test, the agents covered a total distance of around 600
[m]. Figure 2.13a and Figure 2.13b illustrate the Convoy Controller’s performance and
the Base Controller’s performance on the error metrics defined in Section 2.5. The Convoy
Controller maintained an inter-agent gap of just over 5 [m] at a 4 [m/s] operating speed

compared to the 9 [m] gap achieved by the Base Controller.
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Figure 2.13: Hardware tests demonstrating agile driving scenarios in the column room.
error metric 1 (e, ) is illustrated in Figure 2.13a, and error metric 2 (e;,,) is illustrated in
Figure 2.13b.

2.6.4 Long corridors - endurance performance

In the final hardware trial, we demonstrate high-speed convoy performance in urban
environments with turns and doorways ( Figure 2.10c. Figure 2.14a and Figure 2.14b
again illustrate the performance difference between our Convoy Controller and the Base
Controller. The average inter-robot distances achieved by our Convoy Controller are just
under 4 [m] at high speeds, which is significantly lower than the lowest gaps of 9-15 [m]
maintained by the Base Controller. The deviations in the metrics occur only when the
robots make a turn into another corridor, move over rough terrain, or navigate through
doorways. The agents were able to navigate over 3 [km] in such environments without

running into each other or leaving a robot behind, displaying a robust and safe system.
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Figure 2.14: Hardware tests for long runs, including error metric 1 (e,,,) in Figure 2.14a
and error metric 2 (e,,,) in Figure 2.14b.

2.7 Conclusions

In this chapter, we designed an optimal control system capable of performing multi-agent
convoying tasks. Our design incorporates future predictions about the adjacent agent’s
motion, and considers both the leading and trailing agents, enabling the agents to operate
closer to each other at high speeds. This, in turn, enabled the agents to operate well
in environments that require continuous sharp turns and variations in speeds. We have
demonstrated, through simulation and hardware experimentation, an improvement in
performance over current state-of-the-art methods, and have reduced following distances
against state-of-the-art methods by half. The system can potentially be improved in the
future by incorporating environment-dependent control optimizations and integrating hybrid
communication control methods with increased data transfer to reduce computational loads

associated with state prediction.
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Chapter 3

A Synchronized Task Formulation

for Robotic Convoy Operations

The synchronized routing schema for robotic convoy operations outlined in this chapter

was accepted for publication in the IEEE Robotics and Automation Letters in 2025
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3.1 Overview

OW that we have designed a multi-agent convoying behavior that enables a team of
N agents to travel between two locations, we are interested in leveraging this behavior to
perform more complicated missions. Future ground logistics missions may require multiple
robotic agents to travel in a convoy between multiple locations of interest. As each location
may require a different number of agents (e.g., resupply vehicles), these missions will require
a mutable convoy formation structure that may be divided to meet operational needs at
each location. While we assume we know the number of different required robotic agents at
each location, allocating specific agents to a particular convoy and assigning that convoy to
a specific location is non-trivial. Addressing this mission-level allocation problem is the
focus of the top layer of our architecture, as shown in Figure 3.1. As such, we focus on the
development of the task allocation layer of our architecture in this chapter.

We model this mission type by modifying the vehicle routing problem with multiple
synchronizations (VRPMS) to enforce convoy constraints (VRPMS-CC). This centralized
approach to organizing and routing convoys is represented as a graph-based routing problem
and then solved as a mixed integer program. A solution of the VRPMS-CC forms convoys
by ensuring that agents participating in the same convoy remain spatially and temporally
coupled, traversing the same edge of the graph simultaneously. We demonstrate our
approach through numerical studies, where we route up to six simulated agents through
twenty convoying tasks, as well as on robotic hardware. These demonstrations motivate two

further contributions to specialize our approach to robotic systems. These contributions

Task Execution
Requirements

Task

=g - -

—

Qvironmeni Information J ) / |

TASK ALLOCATION LAYER 1

Figure 3.1: Task coordination forms the basis of the task allocation layer of our framework.
We focus on developing the task allocation layer in this section that leverages the functional
convoy task abstraction developed in Chapter 2.
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are:
1. a warm-starting heuristic that improves solver times by up to eighty-nine percent and

2. an online multi-depot variant of the VRPMS-CC that responds to a priori unknown

impassable environmental obstacles.

3.2 Introduction

For hundreds of years, convoy formations have served as the backbone of large economic
and military transport operations [5]. Although prior work has addressed challenges in
conducting robotic convoy operations, autonomously generating convoy formations (or
“convoy details”) and allocating routes to multiple robots remains a daunting challenge for
complex missions [8]. In complex missions, the number of required robotic platforms may
vary location-to-location (e.g., higher-risk areas), requiring multiple details or modifications
to the convoy formation topology. Modeling these missions and developing formation-aware
routing algorithms are the next steps toward solving this challenge.

The key challenge for formation-aware routing algorithms is synchronizing the routes
of individual agents participating in a formation. Classically, routing problems construct
each route as a sequence of tasks that an agent must visit, but few works require the
synchronized action of agents when traveling between tasks. As the optimal allocation
of routes to agents is a known NP-hard problem [29], adding additional synchronization
constraints can make an already complex problem even harder. While multiple works
enforce synchronization constraints between a pair of agents, convoy formation topologies
contain more than two agents. These topologies add complexity to the convoy operation as
they require the synchronization of multiple agents assigned to the formation.

To address this variable formation topology systematically, we introduce a set of “convoy
constraints” to the vehicle routing problem with multiple synchronizations (VRPMS). These
convoy constraints synchronize the motions of multiple agents into different-sized convoys
between locations of interest. Our first contribution is this VRPMS variant, known as the
vehicle routing problem with multiple synchronizations - convoy constraints (VRPMS-CC).
The solution to an instance of the VRPMS-CC is an optimal set of routes for all participating
agents. To our knowledge, this is the first work to employ VRPMS for convoy operations.

The convoy constraints inherently impose a spatial and temporal structure, effectively
clustering agents into synchronized groups (treated as distinct depots). This structure
enabled us to formulate a multi-depot vehicle routing problem (MDVRP-SV) heuristic, our
second contribution. By leveraging this clustering, we can search a reduced space of the

initial problem, albeit at the loss of guaranteed solution optimality. However, by leveraging
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Figure 3.2: A team of four agents routing through a sample floor plan (top) where each
room in the floor plan may require a different number of agents (black numeral) and the
agents must travel as a convoy. The approach forms a single large convoy (gold) before
dividing into two smaller convoys (red, blue), each containing two agents. The blue box
depicts two points in time at the location of the division. The image at the earlier time
(left) captures the arrival of the four-agent convoy, and the second image (right) depicts
the convoy’s division into two two-agent convoys. While not depicted in this figure, our
allocation scheme can continue this decomposition, serving different locations with different
needs. Note that specific mission requirements enforce this convoy decomposition strategy,
but different mission parameters could relax these requirements, enabling compositional
teaming as well.

this heuristic solution as a warm start, we can achieve a reduction of up to 89% in solver
time.

Finally, these planned routes can face disruptions when a priori unknown impassable
obstacles arise in multi-robot deployments. To address this, our final contribution is
the Dynamic VRPMS-CC (DVRPMS-CC), an approach that dynamically resolves the
VRPMS-CC in response to extroceptive stimuli reported by the robots. We demonstrate
our contributions through hardware trials on our custom fleet (Fig. 3.2) of robotic agents,

which are identical to those used in Chapter 2. This dynamic routing approach ensures
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robust convoy operations in real-world environments.

3.3 Literature Review

The core of formation-aware routing approaches for robotic convoys resides in routing-based
synchronization [30], where mathematical models enforce coordinated agent movement—the
primary focus of this paper. However, to contextualize our approach, we will also examine
multi-agent pathfinding (MAPF), market-based synchronization, multi-agent reinforcement
learning (MARL), and dynamic grouping. These alternative methods often lack the en-route

synchronization and dynamic formation management crucial for convoy operations.

3.3.1 Routing-based Synchronization

Routing problems often employ synchronization constraints within their mathematical
models to couple the actions of agents. We focus on two primary types: movement
(spatial) and operational (temporal) synchronization, both of which are relevant to convoy
operations. Movement constraints coordinate agents along the same route, forming dynamic
teams that work together. Research on these constraints is limited, with the tractor-
trailer routing problem (TTRP) being a notable exception [31]. While the TTRP, which
involves heterogeneous tractor and trailer agents, shares similarities with our problem, its
tractor-trailer pairing differs from our flexible homogeneous convoy formations.

On the other hand, operational constraints synchronize agent arrival times, common to
interlogistical applications such as the Traveling Salesman Problem with Drone (TSP-D)
[32]. The TSP-D problem seeks to periodically synchronize the motion of a drone with a
ground agent. However, unlike our convoy operations, the TSP-D allows for independent
operation and reward collection. Column generation and branch-and-cut algorithms [33, 34]
are commonly employed for exact solutions techniques, while heuristics such as local search

and greedy techniques address larger instances [32, 33].

3.3.2 Synchronization in multi-agent pathfinding (MAPF)

Synchronization in MAPF literature is contained mainly by two works: 1) multi-agent
teamwise-cooperative path finding (MA-TC-PF) [35] and 2) cooperative MAPF (Co-
MAPF) [36]. These works seek to assign and plan collision-free paths for teams of agents
to different goal locations. MA-TC-PF utilizes a modified conflict-based search (CBS) to
optimize actions for pre-organized teams, which makes it unsuitable for our problem, where

team formation is a core component. Alternatively, Co-MAPF performs simultaneous task
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assignment and pathfinding using a modified CBS for synchronization, but limits this to
agent pairs at meeting locations, similar to TSP-D solutions. Co-MAPF primarily focuses
on intralogistical applications, such as operations in warehouses using mobile manipulators,

and does not address en-route synchronization needed for convoy operations.

3.3.3 Market-based Synchronization

Market-based approaches utilize distributed auctioning protocols for decentralized task
assignment, incorporating synchronization constraints within their auction mechanisms [37].
While potentially underperforming traditional routing methods [38], they offer scalability
and inherent decentralization. Designing robust auction mechanisms poses challenges due
to potential agent misrepresentation and prioritization of individual rewards at the team’s
expense. Similar to the Co-MAPF, market-based approaches often prioritize operational
synchronicity at meeting points rather than continuous en-route synchronization, limiting

their applicability in scenarios requiring a maintained formation.

3.3.4 MARL Synchronization and Dynamic Grouping

Cooperative MARL learns policies for agent coordination. While scalable and adaptive,
these policies often lack guaranteed coordination and may converge to sub-optimal solutions.
Given the training complexity, many MARL methods focus on solving sequential rather
than combinatorial tasks [39]. Deep reinforcement learning applied to TSP-D [40] uses a
hybrid attention long short-term memory model for coordination. However, its effectiveness
with larger numbers of agents (only two are considered in [40]) or highly-coupled rewards
is unclear. Furthermore, the learned TSP-D policies do not generalize well to basic TSPs,
indicating strong problem constraint influence on policy performance. Dynamic grouping, a
crowd simulation technique, coordinates simulated agents into dynamic sub-crowds based on
relative movements of local agents [41]. This method assumes pre-defined task assignments,

similar to MA-TC-PF, and lacks a mechanism to enforce required group sizes.

3.4 Problem Formulation

In a VRP, multiple vehicles (also referred to as “agents” or “platforms”) are tasked with
visiting a set of locations within an environment. The platforms usually start and end at
a specific location known as a “depot.” A classic extension to the VRP is the VRP with
Time Windows (VRPTW)s [42], which incorporates two additional time-based constraints.

These constraints are:
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1. each location must be visited during a specified time window, and
2. each location must be visited for a set amount of time (known as the “service time”).

The proposed VRPMS-CC model is a further extension of the VRPTW that adds the
requirement that multiple platforms must visit a given location while traveling in a convoy.
We define the number of required platforms as a location’s “support value,” which may
vary between locations. In order to ensure that the agents travel as a single convoy between
locations, we place two additional constraints on the platform’s motion: C1) all platforms
in a convoy that arrive at a location must depart from the same location, and C2) all
platforms in a convoy must arrive at a location together (temporally). A reason for such a
motion restriction includes the requirement that convoy elements travel as a formation to
defend themselves [7].

For future work, we introduce the concept of “clustering rules” as a generalization of
convoy motion constraints C1 and C2. These rules serve as mission-specific customizable
constraints, enabling the VRPMS-CC to be tailored to specific problem contexts (e.g.,
relaxing C1 could liberate some routes from requiring convoy formation, while modifying

both C1 and C2 could enable compositional team formation at different locations.)

3.5 Problem Modeling

In this section, we formulate the VRPMS-CC as a mixed integer linear program (MILP), in
which a group of robotic platforms must be assigned to convoy details.

Consider a homogeneous fleet of robotic platforms, K = {kj, ko, .. ., k| ;q}, which must
complete a set of convoy details that end at locations: N = {nq,no,... 1Y M}. To complete
a convoy detail, a convoy containing v; € Z*, v; < |K| platforms must be assigned to
visit the location. We define v; as the support value of the convoy task that ends at the
location n; and define the set V = {v1,...,vy}. All platforms are required to begin and
end their routes at a depot location, denoted d~ and d, respectively. Thus, for each
robotic agent k, the action sequence ri = (lo,l1,1l2,...,lg, lg11) with lo = d 7, lg41 = dT,
and L = {l1,...,l;} € N not only describes the motion of the platform, but also implicitly
encodes the assignment of agent k to a convoy detail. To enforce convoy motion constraints,
we propose a routing model that atomizes a convoy detail into elements that can be assigned
to individual vehicles. Convoys are then implicitly modeled by synchronizing the movements
of individual vehicles across each vehicle’s action sequence.

The task-based model is generated using the location set N and the support value
of each location. Consider a set & where the elements of & are sets that describe the

atomized elements (“tasks”) of a convoy detail. A “task set” for a convoy detail that ends

45



3. A Synchronized Task Formulation for Robotic Convoy Operations

at location n; is defined as: §; = {{sl(-l), . ,sgvi)}}. The same task representation is also
made concerning the depot, with vg— = vg4+ = vk|. This produces two depot task sets:
Sg- = D™ and §;+ = DT. The set of all non-depot tasks is Sy = {Uicqu,..avp Si} and the
set of all tasks is S =Sy U D~ U D™T.

The task information above may be structured into a connected weighted symmetric task
graph Gy = (V;, Ey), where the vertex set V; = {s|s € S; € S} consists of all tasks contained
in S. The edge set E; = {e = {si,s;} = {sj,si}si € Sp,s; € 84,5y, Sq € S,p # ¢}
has an associated traversal cost cfj € RTV(i,7) € E;, which is incurred when a platform
moves between tasks i and j. Additionally, associated with each convoy detail ending at
location n; (and thus all tasks in the corresponding S; € S) is a time window for completion
TW; = |ai,b;] and required service time, st;, which denotes how long a task takes to
complete. Finally, the travel time between tasks (i,j) € E; is defined as t;;. Thus, an
instance of the VRPMS-CC is uniquely defined by the graph Gy = (V;, Ey, cfj, TW;, st;).

Our mixed integer programming model involves three types of decision variables. The
first variable is common in three-index platform flow routing problem formulations. For all
edges in the task graph (i,7) € Fy and platforms k € K, define a binary variable mfj, which
describes the edge-flow over the task graph for a platform (k).

1 if (4,7) € E,is traversed by platform &
= (i,7) € Ey Yy P (3.1)
0 otherwise.

The second type of variable is a binary flow variable capturing convoy flow across task sets

1 if(S,,S,) € Spis traversed by a convo
dpg = (Spr o) € S Y Y (3.2)
0 otherwise.

The last type of variable is a timing variable T;, ¢ € V; for each subtask and platform that

specifies the time when platform k£ begins subtask 1.
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We now present the Vehicle Routing Problem with Multiple Synchronizations -
Convoy Constraints (VRPMS-CC). This model incorporates the clustering rule, which
stipulates that the number of platforms traveling in convoy between two locations must be

equal to the support value at the successor location. The VRPMS-CC is formulated as:

_min J=> > dhal (3.3)

zijrdi Tk kEK (i,))€ By

st. Y > ak <1 VkeKk, (3.4a)
deD~ jEST
oY al <1 Vkek, (3.4b)
deD+ €St
Yoali— > aki=0 vjeSr kek, (3.4c)
1€ST 1EST
YooY afi=1 VjeSr (3.4d)

keK i:(i,j€ Ey)

(Tie + sti + tij — Tie) < My(1 — ay)

(3.5a)
Vk € K, (i,7) € Ex,

Ty, — Ty =0 VEk, K e K, €S8y, (3.6)
YN ali=vidyg V(S S,) € S, (3.7a)
kEK i€S; jES;

DD Dty < Ma(l—dyg)
kEK mESm JES; (3.7b)

V(Sp, Sy) €S,8m €S\ (Sp, Sy)

ddpg=1 VS €S, (3.7¢)
SpEeS
aj; €{0,1}, dpg €{0,1}, Ty €RT. (3.8)

Constraints (3.4a), (3.4b), and (3.4c) describe sequence constraints (platforms start at
the initial depot, platforms end at the final depot, and platform route-flow constraints).
Constraint (3.4d) ensures that each task is assigned to a single agent. Constraints (3.5a)
and (3.5b) ensure feasibility with respect to the task time windows. Temporal synchronicity
is provided by (3.6), which states that the start time of any given task is the same across
all platforms in a convoy. Movement synchronicity is enforced by (3.7a), (3.7b), and (3.7c).

Constraint (3.7a) ensures that v platforms are used to visit a location, (3.7b) ensures that
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all platforms arrive at a successor task from the same predecessor task, and (3.7c) ensures
that all platforms arrive only from one other task group. Hyperparameters M; and Mp are
two “Big-M” values that may be selected by finding the upper-bound of the left-hand side
of constraints (3.5a) and (3.7b) as outlined in [42, 43].

3.6 Numerical Studies

We tested the model presented in Section 3.5 on modified variants of both Solomon’s [44] and
multi-agent pathfinding [45] (MAPF) benchmarks. These studies motivate the introduction
of a warm-start routing heuristic (in Section 3.6.3) that empirically demonstrates a decrease

in solver time.

3.6.1 Experimental Design

Each VRPMS-CC instance is uniquely defined by the graph G; = (V;, E}, cfj,T Wi, st;).
We provide the information used to construct this graph to the solver in the form of an
environment map, a list of locations, the support value at each location, and the timing

information for each location. All instances considered in this chapter are solvable.

Environment Maps

Each VRPMS-CC instance was associated with an environmental map to introduce an idea
of environmental obstacle avoidance into the study. These obstacles directly affect the cost
associated with traveling between locations. We represent this environment map as a binary
2D occupancy grid that captures information regarding impassable obstacles. The “floor
plan” studies were associated with environmental maps that are presented in this chapter.
MAPF environments are referenced by name from the open-source MAPF benchmark [45].

All other trials are associated with environmental maps that do not include obstacles.

Task Graph Vertex and Edge Definitions

Graph vertices are populated by creating duplicate tasks at each location equal to the support
value associated with that location. Locations were either provided (Solomon’s benchmark)
or randomly sampled from non-occupied cells (Floor Plan, MAPF). For Solomon’s bench-
mark, we randomly select six to eight locations from [44]. Tests with designed location
layouts will be denoted in the discussion of that test. As neither the MAPF benchmark nor
the Solomon benchmark was initially constructed with the concept of support value, unless

noted otherwise, a random support value between S; € [2, K| was selected for each location.

48



J. £ ,lel(f ll‘()lljZG‘( asSK rormuia j()ll ;,)1‘ LODO j(' ,O1NNVOY DEra ,1.()11;8'
3. A Syncl ] Task Formulation for Robotic Convoy Operat

Graph edges are defined between all vertices. Each edge is weighted by finding the
shortest obstacle-free path between the locations (vertices). Vertices located at the same
location have a relative distance of zero. (Note that constraints (3.7a), (3.7b) ensure that
different agents are assigned tasks at the same location). All results are denoted with

straight arrows, which represent the obstacle-free paths of the vehicles.

Timing information

Unless specified in the benchmark (i.e., Solomon’s), locations are assigned time windows
with the width of the mission duration. Estimated traversal times were computed by finding
the shortest obstacle-free path distance between two locations and then dividing that path
distance by an assumed average velocity. Unless indicated otherwise, all locations have a

service time set at 10 [s].

Solver Information

Each VRPMS-CC instance was solved using the Gurobi Optimizer (Version 10.03) on
a mobile workstation with an AMD Ryzen 7 4800H CPU with 8 cores and 16 threads.
FEach test was conducted twice, once with Gurobi’s internal solver presolve accelerations
and once without. As Gurobi’s presolve accelerations decrease problem solve times by an
order of magnitude (average: 98% across all Solomon trials), we provide results with and
without the presolve accelerations. Such results are presented not only to demonstrate the
computational complexity empirically, but also to provide insight into solver performance
when the presolve is not available. For all trials, we set the solver time limit at 7200 [s] and
an optimality gap of 0.01. If a solver did not resolve in 7200 [s], it will be marked as “Did
Not Finish” or “DNF”.

3.6.2 VRPMS-CC Numerical Studies

As a solution to an instance of the VRPMS-CC may contain complex convoy routing
behaviors, we utilize the floor plan environment as an illustrative example. The individual
robotic platform behaviors captured in the floor plan environment are also present in the

tabulated solutions.

Demonstration: Floor Plan A Routing

Figure 3.3 depicts a patrol scenario in which five robotic agents must visit three locations
of interest with different support values. The routes taken by each platform are shown

in Fig. 3.3a, and the aggregate convoy routes are shown in Fig. 3.3b. The alignment of
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Figure 3.3: An example security patrol mission on “Floor Plan A” where a team of five
robotic platforms must visit three locations of interest.

the task commencement times in Fig. 3.3c demonstrates the temporal synchronicity in the
movements of the agents.

The agents start at the depot and are initially organized into two separate convoy details
of sizes two and three. The size-two detail travels to Location 3 before returning to the
depot (marked by a bidirectional arrow). The size-three detail first travels to Location 1
before splitting into a new detail of sizes one and two. The singular agent returns to the
depot as it is not needed at Location 2. The size-two detail proceeds to service the task at
Location 2 before returning to the depot. Compared to maintaining a static size-three detail,
splitting the convoy details decreases the total distance traveled by 1.3%. The amount of

savings increases for every robot that is prevented from making unnecessary trips.

Study: Solomon’s benchmark

In this chapter, a non-capacitated version of Solomon’s benchmark was used to evaluate
the VRPMS-CC. Two variants of each trial were considered: one that maintains Solomon’s
original timings and one that replaces these timings with wide windows and service times
of magnitude zero. While the first variant represents missions or operations with tight time
schedules, we have found the second variant to be a representation of many robotic missions
where such tight time window constraints may not naturally emerge. Each instance was
conducted for a team of six robots with twenty-eight tasks.

The results of the studies demonstrate that the modeled approach correctly routes
convoys in the presence of timing constraints. An interesting trend is that loose timing
constraints yield longer solve times than tight timing constraints. Table 3.1 shows that
both the presolve accelerated and the non-accelerated cases take advantage of the strict
timing constraints to order the visitation of the convoys across the environments (e.g., the

solve times for wide time windows in C'101 are greater in both columns). On average, wider
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Table 3.1: Numerical Studies demonstrate that the VRPMS-CC instance can route convoys
with and without timing constraints

Map Solve Time: (Normal / Wide) Solve Time: (Normal / Wide)
Name (No Presolve) [s] (Presolve) [s]
C101 26.7 / DNF 1.9 / 43.8
Cc102 1222.7 / 6772.9 14.1 / 15.1
C201 168.8 / DNF 3.9 /268
R101 39.8 / 1062.1 1.5 / 16.6
R102 426.4 / 529.5 12.6 / 18.1
R201 149.7 / 6731.7 2.8 /19.6

time windows required an increase in solve time of 77.6% and 80.4% with and without the
presolve, respectively. The observation inspires the use of wide time windows in all the

following investigations in this chapter.

Study: MAPF Benchmark Performance

The MAPF benchmarks are tailored to represent environments in which robotic systems
are expected to operate. The required obstacle avoidance behavior, considered in these
maps, is included during the evaluation of the edge weights, as each edge is weighted by the
obstacle-free path distance that a robotic platform would take if that edge were included in
the route.

We observe from the MAPF tests that, when using the associated pre-solve techniques
on problems of the size considered in the simulation section, an empirical worst-case
performance of 45.2 [s] is achieved. For our application, which is similar to the DARPA
Subterranean Challenge, missions take between 30-60 minutes [46]. Thus, this empirically
observed worst-case performance is sufficient for task allocation. Compared to the dynamic
convoy topologies determined by the VRPMS-CC, simple fixed convoy topologies equal
to the largest support value found at any location demonstrate significant increases in
total distance traveled by all agents. In the generated missions, the total convoy travel
distance can be decreased by as much as 56% (Maze-32_32_6). This large decrease in total
traveled distance arises from the structure of the instance, as only two agents are needed
at all locations except for a single location, which requires the entire team. This result
indicates that the set and relative magnitude of different support values highly influence the
resulting convoy behaviors. This observation was also tested on the Hex environments, as

the locations are held fixed while the support values are changed. Noticeably, trials where
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Table 3.2: Tests on MAPF benchmarks demonstrate VRPMS-CC reduces total distance

traveled by all agents in the system

Name Route Length Solve Time [s] Solve Time [s]
(Robots/Tasks) % Decrease (No presolve) (Presolve)
Berlin_0-256 (5/24) -10.2% 2900.5 15.8
Boston_0_256 (6/22) -15.2% 1315.8 10.2
Paris_1-256 (6/21) -20.3% 315.6 7.7
Maze_32_32_2 (6/46) 0.0% 2430.1 31.1
Maze 82326 (6/50) -56.2% 2543.1 45.2
Hex_ CLUSTER (6/24) -28.6% 338.9 36.2
Hex_ MIX (6/24) -15.7% 7184.0 6.3
Hex ALT (6/24) -4.3% 11424 4.2

similar support values are clustered (HEX_CLUSTER) yield lower solve times (without

presolve) than randomized support values (HEX_ALT). Figure 3.4 is a visual representation
of the determined set of routes plotted on both the “Hez” (Fig. 3.4a) and “Berlin_1_256"

(Fig. 3.4b) environments.
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Figure 3.4: Two solutions depicted considered on a “Hez” environment (Fig. 3.4a) and a
MAPF environment (Fig. 3.4b). Support values for each location (green) are indicated in
red next to the location. The gold star indicates the depot node. Convoy routes that return
to the depot are indicated with blue arrows, while convoy routes that progress to further

nodes are in red.
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3.6.3 MDVRP-SV Routing Heuristic

It is clear from Table 3.2 that additional solver accelerations could be introduced to improve
solver performance. Noticeably, finding an initial feasible solution proves difficult in many
of the MAPF trials. If an initial feasible solution could be found, we hypothesize that the
data would reflect a decrease in solver time of a magnitude similar to the time it took
to find a feasible solution. We introduce a decomposition-based multi-depot warm-start
heuristic to achieve this decrease in solver time.

The intuition for this heuristic arises from the structure of the convoy constraints. The
constraints provide routing restrictions that may be exploited to form a valid set of initial
motions for each convoy detail. Specifically, the clustering rules described in Section 3.4
suggest that only a single convoy can visit one location from any other location. The
consequence of this clustering rule is that convoys of agents can only be split from a larger
convoy and not combined with smaller convoys. Thus, a convoy is largest when it leaves
the depot, and all agents in the convoy are assigned tasks at locations with the highest
support values first.

Our approach takes the form of a decomposition-based heuristic in which a set of multi-
depot vehicle routing problems (MDVRP) are solved sequentially in order of descending
support value. While it is clear that requiring the solution of an MDVRP inside the
MDVRP-SV heuristic procedure indicates the heuristic is itself NP-hard, the advantage of
posing the MDVRP-SV heuristic on the location space rather than the task space is that
the location space is a smaller space by construction. Effectively, this solves for the motion
of entire formations, rather than any particular platform. This process is detailed using

Python syntax in Algorithm 2 on the following page.
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Algorithm 2 MDVRP-SV Heuristic

: Define: MDVRP-SV(N,V,d~,d")
L+ 0, SV 0D<+d,N+0
: SV < sorted(set(N), reverse=True)
: for sv € SV do
for v; € V do

if v; = sv then

N « Ni]

end if
end for
L + VRP(N, D) > Perform VRP on sv locations
L.pop() > Remove Depot Return
D+ 0, N+ 0,D <« L[-1]
: end for
: L+ d+

© P NPT

e e
Ll T

Given the set of locations, N, the support value set, V, and the initial depot, the
heuristic first searches through the support value list to extract all unique support values
(Line 3). Next, the heuristic iterates through the unique support value list L, to build
partial routes at each support value level. This procedure is completed by first storing all
locations with a particular support value (Line 7) in a set N. Following this, a procedure
that solves the multi-depot Vehicle Routing Problem (VRP in Line 10) on set N starting
from one or more depots stored in D. The result of solving the VRP is used to populate the
sequence of locations for each formation containing sv platforms to visit, denoted L. The
last element in L is removed (Line 11) to extract the last location visited by the formation
with sv platforms (Line 12). After cycling through all support values, the final locations in

L are connected to the return depots d.

The heuristic itself is designed for instances of the VRPMS-CC that are not time-
constrained, as the expectation is that the convoy movement constraints and not the
timing constraints drive the solution of the problem. For a problem with |SV| unique
support layers with a max of V' nodes at any layer, the heuristic can be solved |SV/| times
using both Yang’s [47] multi-depot multiple traveling salesman transformation and the
Held-Karp Algorithm [48] to yield an exponential worst case complexity of O(|SV|-(V?22")).
Note that the heuristic still retains its exponential complexity in the number of nodes.
Alternatively, to overcome scalability challenges, the MDVRP-SV could be solved via
heuristic or metaheuristic methods. Note that the heuristic is myopic to each layer, as the
solved MDVRP does not ensure that the last location in the previous layer is necessarily

closer to the first location in the next layer. Consequently, symmetrically placed locations
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Table 3.3: VRPMS-CC Benchmarks demonstrate formation-based routing heuristic decreases
solver time

Map Name Solwzlr\I 3‘11:1)1;28(/) lzi)C[il]ange Solver(%‘iz;i 1{, e‘?) [ghange
Berlin_0_256 1381.9 / -52.4 % 21.2 /335 %
Boston_0_256 1264.6 / -51.4 % 4.3 /-43.2 %
Paris_1.256 319.3 /1.2 % 6.5 /-15.5 %
Hex CLUSTER 157.8 / -53.5 % 2.7/-925 %
Hex_MIX 758.5 / >-89.4 % 58 /-7.5%
Hex ALT 251.3 / -78.0 % 4.1 /-24 %

in the previous layer can adversely affect the optimality of the heuristic solution.

The influence of the heuristic on the solver performance was demonstrated on both the
MAPF benchmark and the Hexagon (Hez) environments. All warm-starts were solved in
less than 0.02 [s]. The first solution produced by Algorithm 2 (suboptimal or not) was used.
The results of the rerun numerical studies are presented in Table 3.3. Notably, almost all
maps exhibit a marked decrease in solver time for tests both with and without presolve.
The only exceptions are the non-presolve Paris_1_256 and presolved Berlin_0_256 cases.
Both warm-starts provided in these tests are highly suboptimal (<40%). The greatest
improvement arises from the Hex_12 case, which achieves an improvement in the solver time
of more than 89%. This performance improvement directly results from the warm-start,

which provides the optimal solution.

3.7 Four-platform Team Hardware Trials

A significant concern regarding the use of operations research models is whether the solved
problem instance accurately represents the modeled robotic system(s) or environment. We
illustrate the validity of this concern by considering how an unmarked environmental feature
(a closed door) yields an a priori unknown infeasible set of routes. We then address this
concern by demonstrating that an agent’s onboard sensing can augment the representation
in order to populate an instance of the VRPMS-CC.

3.7.1 Hardware Trial Environment Overview

All hardware trials were carried out in the indoor multi-hallway environment depicted in

Fig. 3.5. Of note are two terrain features (doors) that, in certain configurations (closed),
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are impassable to the agents. The existence of these features is not denoted in the initially
provided representation (occupancy map). The locations of these doors are highlighted in
Fig. 3.5b (south) and Fig. 3.5¢ (north). Clutter present in the environment was not dense

enough to completely obstruct the motion of any agent.

Hardware Trial Robotic Agent Autonomy System

The team of four robotic agents (Fig. 3.2) was tasked with completing the convoy operation.
The multi-agent team utilized in this chapter was first described in Chapter 2. Further
details can be found in Appendix A and in [49]. The route of each agent was determined
by solving an instance of VRPMS-CC on the operator interface. This solution was then
provided to an agent-based convoy formation controller developed in Chapter 2, which
formed the agents into a convoy and conducted the mission. During operations, each
agent provides map and odometry information back to the base station over a wireless

communication network.

3.7.2 Dynamic VRPMS-CC (DVRPMS-CC)

If the initial environmental representation is inaccurate, the initial route allocation may be
suboptimal or infeasible. In this work, the inaccurate representation produces an inaccurate
measure of cf] As this representation does not have an indication of the impassable feature,
we utilize reactive “dynamic” vehicle routing problem (DVRP) techniques to address the
potential infeasibility [42].

Our extension to a Dynamic VRPMS-CC (DVRPMS-CC) introduces a process that
addresses two aspects common to DVRPs. The first aspect is that (3.4a) must be modified
such that the platforms start from the locations they currently occupy rather than the original
depot. Redefining the starting depot set as D~ = {dF1 ,d*2, ... ,dkk_'}, this modification
yields a new route that starts from the agent’s initial position (dk’E for platform k). The
second modification involves updating the environment representation to ensure accurate
measures of cf] The agent’s SLAM system provides real-time mapping capabilities that may
be compared to the occupancy grid used to generate the routes initially. In the presence
of an impassible obstacle, the local planner does not yield a viable forward path for the
system. This information is provided to the base station, which can then construct a new
VRPMS-CC instance. The base station receives a map update from the agents over the
communication network and then uses the updated map to recompute ci-“j and populate the
new VRPMS-CC instance. Solving the new VRPMS-CC instance yields an updated set of

routes for the agents.
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Figure 3.5: A diagram showing the final routes performed by each convoy in the hardware
trials. Figure 3.5a depicts the convoy routes when no impassable terrain features are present.
In Fig. 3.5b, the routes taken by the light blue and red agents are replanned once the doors
(in pink) are observed and block forward progress. Fig. 3.5¢ demonstrates a similar scenario
where the doors (in blue) are closed, requiring the green and purple agents to finish the last
task.

3.7.3 Accurate Environment Representation

Consider an application of the VRPMS-CC framework to a patrol mission consisting of five
locations (Fig. 3.5, in green), where one of the locations requires four robotic agents and all
other locations require only two agents. Agents must visit all locations while minimizing
the total distance traveled by all agents. The service time for each task is negligible, and
the time window for task completion is the mission duration.

Given an accurate environmental representation, only a single instance of the VRPMS-
CC must be solved on the base station. As shown in Fig. 3.5a, the agents first form
a four-vehicle convoy formation that then splits into two two-vehicle convoy formations

(green-purple and blue-red). The agents collectively traveled a total distance of 358.1 [m].

3.7.4 Inaccurate Environment Representation

If either the north or the south set of doors is closed in the test environment (Fig. 3.5b
and 3.5¢), the initial routes prove to be infeasible. They are either replanned (i.e., the same
agents perform the task) or re-allocated (i.e., a different set of agents perform the task).
In Trial 2, the southern doors obstruct the motion of the robotic agents toward Tasks 3-5,
as shown in Fig. 3.5a. The DVRPMS-CC process outlined above produces the new set of
routes shown in Fig. 3.5b. The total distance traveled by all vehicles increased by 46.7% as
a result of the re-solve. In Trial 3, instead of the southern door being closed, the northern
door was closed. The new routes re-allocate the task at Location 5 to the convoy that

completed the task at Location 2, resulting in an increase in total distance traveled by all
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Figure 3.6: An image from Trial 3 depicting a convoy encountering the northern closed
door (blue). The bottom figure shows the onboard occupancy map, reflecting that the front
agent has no forward paths (red) due to the door.

vehicles of 48.3%. Note that the difference in total distances traveled for Trial 2 and Trial 3
is due to navigation around environmental clutter. An image from the trial is shown in
Fig. 3.6

3.8 Conclusions

This VRPMS-CC utilizes the structure of routing problems, along with synchronicity
constraints, to solve a multi-platform convoy coordination problem. The presented con-
straints enable a team of vehicles to coordinate their routes both spatially and temporally,
allowing them to travel as a convoy. We utilize these synchronization constraints to define
the VRPMS-CC, which is solved using off-the-shelf mixed integer programming solvers.
Numerical studies and hardware results demonstrate the applicability of the model in both
simulated and real-world cluttered environments, but the model inherits the challenges
associated with scalability common to combinatorial search problems. We further contribute
the MDVRP-SV heuristic, which improves solve times of off-the-shelf commercial solvers,
and the DVRPMS-CC for online replanning when the initial environmental representation
is inaccurate.

Although the results demonstrate the effective routing of a small team of robotic agents,
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future work must incorporate additional realistic constraints and address solver performance
limitations, particularly for large-scale problem instances. Investigating clustering rules that
allow compositional teaming and constraints derived from the limitations of the communi-
cations system (e.g., range, drop-out) are critical priorities. In particular, the incorporation
of information-transfer rendezvous points seems particularly relevant [50]. The performance
of the heuristic implies that additional information regarding the problem structure (e.g.,
unique support value(s)) and the homogeneous nature of the agents (symmetry breaking)
may lead to improved solve times of the VRPMS-CC. Furthermore, hybrid approaches that
approximately solve the VRPMS-CC offline and use an alternative suboptimal method (e.g.,

reinforcement learning [40]) for online reactivity play to the strength of both approaches.
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Automated Construction of Ad hoc

Wireless Networks
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4.1 Overview

ELIABLE communication networks are essential for the remote operation of automated
R teams of robotic agents. For unknown (no prior map) and communications-deprived
(no existing communication infrastructure) environments, the robotic agents must construct
the network as they move through the terrain. These constructed networks can then enable
agents to transfer essential data to one another and share decision-making assets within
the team. For our work in Chapter 3, this included updating the central optimizer with
environmental data and passing re-solved plans back to the agents. We see that to support
our bi-level task allocation and task execution framework, we need to ensure communications
between the agents. We highlight this requirement in Figure 4.1.

We present a novel method for automated network construction tailored for mobile
robotic teams that require communication with a central base station. Our key innovation
is the introduction of a maximin spanning tree structure, which guarantees a minimum
level of signal strength between nodes. By directly optimizing node placement based on
signal-based metrics, rather than relying on geometric surrogates such as distance and
visibility, we also achieve significant decreases in agent utilization while maintaining coverage
for the traversed area. By using the robotic agents themselves as mobile repeaters in a
communication network, each robotic agent can be individually assigned to prioritize network
connectivity during critical operations. Numerical simulations on standard multi-agent

pathfinding benchmarks demonstrate a reduction of up to 36% in the number of required

Information Sharing: Task and Environment Updates

ey

Task Execution
Requirements

1
1
|
|
I
5 S |
\ Task Information ) : c N
I omm(u;lcuhons
1) I [:
|
|
|
|
|
1

Buupyg uolpWIOU|

(L1
0/
—

Unvironmeni Information)

—

TASK ALLOCATION LAYER TASK EXECUTION LAYER

Figure 4.1: Communicating information between agents and the central solver is an
essential capability required for the DVRPMS-CC. In this chapter, we focus on develop-
ing communication network construction behaviors to ensure effective communication in
communication-deprived environments.

64



4. Automated Construction of Ad hoc Wireless Networks

nodes compared to existing techniques. Furthermore, our method guarantees robust network
connectivity in dynamic environments, outperforming strongest-neighbor approaches that
are vulnerable to link disruptions. Lastly, hardware tests confirm the robustness of our

method in challenging scenarios encountered in real-world deployments.

4.2 Introduction

Many complex missions in dangerous environments, e.g., wildfire firefighting, battlefield
triage, and search-and-rescue, will be revolutionized by the use of coordinated multi-agent
robotic systems. Currently, high-performing multi-agent coordination relies on robotic
agents that reliably exchange information with one another and with other decision-makers.
However, many environments lack the communication infrastructure to support agent
communications. Recent efforts have enabled robotic systems to construct this network
during operations. Yet, ensuring a minimum quality of service across participants in the
multi-agent system during network construction remains challenging. We propose that
by augmenting network construction techniques with communication-strength-aware tree
search on the network, a quality-assured ad hoc robotic network topology can be established
to support multi-robot operations in hazardous environments.

Abandoned buildings or subterranean caverns are examples of potentially hazardous
environments with little to no existing communication infrastructure. Exploration of these
environments was the focus of the Defense Advanced Research Projects Agency (DARPA)
Subterranean Challenge (SubT) [46]. During exploration, vehicles were often expected to
maintain contact with a central base station to communicate information back to a set of
human operators. Multiple SubT performer teams approached this communication challenge
by creating a mobile ad hoc wireless mesh network (MANET) by deploying “relay nodes”
throughout the environment they traversed. These relay nodes can establish communication
throughout the environment; however, node placement strategies may result in variable
communication quality or a high number of dropped nodes.

We introduce an automated MANET construction technique for a small team of agents
that aims to minimize the number of dropped nodes while ensuring quality communications
(see Fig. 4.2). As the network grows, whether through the deployment of additional nodes
by different robots or simply due to extended operation, multiple communication paths to
the base station emerge. To ensure robust connectivity and maximize the minimum link
quality across the diverse paths, we present a complete algorithm to compute a maximin
metric-based spanning tree, which explicitly quantifies the connection quality of the MANET

between an agent (or formation) and a base station. To our knowledge, no previous robotic
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Figure 4.2: A four-agent robotic convoy builds a communications network in a
communications-deprived environment starting from a base station (black computer) and
ending at a goal location (green circle). To ensure all agents remain in communication with
the base station, the agents leave the convoy to become communications nodes as the convoy
reaches the communications boundary. As the convoy leaves the communications area
supported by the base station (black), Agent 4 leaves the convoy to act as a communications
node (pane 2), extending the communications-accessible area further. In subsequent panes,
Agent 3 and Agent 2 similarly leave the convoy, enabling Agent 1 to reach the goal location
with communication.
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MANET construction technique enables this capability.

Furthermore, the maximin tree provides a reliable method for determining the connec-
tivity of any node to the base station, even when one or more intermediate nodes stop
responding. This demonstrates its resilience to node failures, a key aspect of dynamic
network environments. We demonstrate the effectiveness of our maximin spanning tree
in improving communication quality through simulations on standard Multi-Agent Path
Finding benchmark maps [45] and physical experiments involving formations of robotic
agents. Therefore, to address the challenges of reliable MANET construction for teams of
mobile robotic agents in dynamic environments, we contribute:

1. a quality-assured maximin tree-based communication construction algorithm for

MANET generation;

2. a communication relay deployment behavior for network construction in a priori

unknown environments.

4.3 Related Works

Given the lack of available communications infrastructure in the DARPA SubT Challenge,
multiple performer teams employed network construction techniques to ensure commu-
nication. These techniques would construct a “communication backbone” that supports
robotic operations by “dropping” communication nodes, thereby extending the effective
coverage of a wireless communication network [51]. For Team CERBERUS, a human
operator was primarily responsible for determining the drop points [52]. For Team Explorer,
this “dropping” behavior was primarily controlled by distance-based limits and line-of-sight
(LOS) requirements between nodes [20]. Given their simplicity, geometric communications
models are commonly used in robotic systems, where physical distance and LOS take
precedence over communications-based signal strength metrics [53]. However, SubT Teams
also considered communication-based metrics, including a Radio Signal Strength Indicator
(RSSI) threshold, as one of the determining factors for deploying both mobile and stationary
communication nodes [54, 55]. As an alternative to RSSI, Team CoSTAR utilized the
signal-to-noise ratio (SNR) in conjunction with other environmental and communication
factors [56].

The aforementioned approaches and metrics investigated in the DARPA SubT Chal-
lenge broadly capture aspects of the sensor coverage problem. For known environments,
computational geometry approaches that frame the sensor coverage problem as a variant
of the Art Gallery Problem (AGP) have proven extremely successful [55]. To address the

computational complexity of the AGP, suboptimal polynomial-time approximations, such
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as polygonal decomposition or partitioning, are frequently employed [57]. Many variants of
the AGP place additional restrictions on the coverage model used in the AGP, including
limited range [57], range fading [58], or k-visibility through boundaries (i.e., the problem
of k-transmitters) [59]. In accordance with the AGP, these approaches often seek to
provide coverage of polygonal areas and may rely on geometry-based communication models
to derive the optimal sensor placements. Such models lie in contrast to a recent model
presented by [53], which specifies that only certain areas of the state space must be made

” Such an approach provides the unique ability to represent

“communication-accessible.
realistic (i.e., non-polygonal) environments that robotic systems operate in, and often more
closely aligns with the robotic operations (i.e., non-coverage problems).

Finally, the relay placement problem does not exist far outside of previous work in
the communications-aware motion planning space. Many of these works focus on the
development of control or planning algorithms that place requirements on maintaining
specific distances (e.g., coverage area, visibility) or on metrics of network connectivity
[60, 61]. These works are often structured around a fixed network topology and check for
connectivity quality or reachability using a tree-based analysis. However, these works do
not address the crucial aspect of constructing extensible network topologies that guarantee

a minimum communication strength criterion [62].

4.4 Problem Definition

In this chapter, we consider a variant of the relay placement problem detailed in [53]. The
objective of the relay placement problem is to determine the minimum set of communication
relay locations required to form a valid network topology that covers a specified area of
interest within the environment. In order to solve the problem, we require: 1) a defined
area of interest, 2) a coverage model, which describes the conditions for communications
coverage, and 3) a network model, which states the set of constraints required to form a
valid network topology. The area of interest (denoted by Z) in the relay placement model
represents an area that is to be made “communications-accessible” to the agents trying to
traverse or explore the environment [53].

Consider a planar environment W C R? that is divided into object-free space (F) and
object-occupied space. All elements of the environment can be delineated into one of the
two spaces through the use of an occupancy function F' : W — {0, 1}. Here, “0” denotes
that a spatial element is contained in the object-free space. Using this categorization, we
can define F = {z € W : F(z) = 0}. Our defined area of interest, Z, is a subset of the

object-free space F. Specifically, it is the region within which robotic agents will traverse for
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mission objectives, necessitating uninterrupted communication with the base station. For
convenience, we define another indicator function I : 7 — {0, 1}, which maps elements of
the object-free space to the area of interest (a value of “1” indicates an area must be covered).
This indicator function enables us to define the area of interest Z = {x € F : I(x) = 1},
such as the light blue region around the planned path in pane 1 of Fig. 4.2. Note that
W, F,T are connected spaces.

To maintain communication coverage, we consider a communication criterion inspired
by our field experiences in the DARPA SubT Challenge [20]. Unlike [53], which considers an
{o-boundedness and a visibility constraint between a pair of relays to maintain connectivity,
our communication criterion depends directly on the measured communications strength
between a pair of relays. For a total of N deployable relays, the relay set R = {ry,...,rn}
is defined as a set of 3-tuples: r; = (i, z;,y;) € N x R x R, where i is the relay index and
pi = (;,y;) € R? is the relay position. To measure the communication strength between
relays in the relay set, we define a function, Cya(r4,7;) — R, that returns a measure
of communication strength (e.g., SNR, RSSI) between nodes ; € R, and r; € R. If

Cyal(ri,75) = 0, then relays r; and r; are not connected.

We consider a pair of relays r; and r; to be mutually covered by each other if the
observed communication strength, Cya1(r;, 75), is greater than a threshold value: Cinresh € R
(Cyal(ri,Tj) > Cthresh). For convenience, we extend our definition of coverage to include
positional arguments as well: Cya1(p,7;) — R, which captures the signal strength between

a (potentially fictitious) relay placed at location p € R? and a relay r; € R.

We then construct a network from the relays in the relay set R by placing the relays at
different locations in the object-free space. Our goal is to create a valid network topology
N = {r,...,m}, n < N to cover space Z. Space Z is covered if Vz € Z,3r € N :
Cyal(x,7) > Cthresh. Finally, we define a valid network topology as one that is “connected.”
Simply put, a network is connected if, for all pairs of relays r; € N,r; € N, there exists
a progression of relays starting from r; and ending at r; such that relays are sequentially

mutually covered.

In this chapter, we are interested in enabling communications between a starting position,
xs, and a goal location, x4, in the environment. We define the optimal planar planning
problem over a state space VW with permissible states F, requiring z, € 7 and x4, € F. We
assume that there is at least one relay at x5. We define o : [0,1] — W as a sequence of
states (a path) from the set of paths ¥. The optimal planning problem is therefore to find
a path o* that minimizes a cost function s : ¥ — R and connects z5 to x,. We define the
condition for optimality in a general manner, as our approach is not preconditioned on any

specific measure. We define the optimal path as follows:

69



4. Automated Construction of Ad hoc Wireless Networks

o =arg H}Tigz{s(a)] 0(0) = xs,0(1) = 24,Vt € [0,1],0(t) € F}. (4.1)

In a known environment, where a robotic team aims to travel between two points
while maintaining continuous communication with the base station, the area of interest
7 can be defined as the optimal path ¢* connecting these points. While selecting 7 = o*
does not necessarily minimize the number of communication nodes required, it guarantees
connectivity between the base station and the goal position. Minimizing the number of
communication nodes in a known environment is a variant of the minimum covering set
problem, which is NP-hard and falls outside the scope of this thesis [63].

In this chapter, we do not assume any prior knowledge of the environment’s structure,
specifically the decomposition of the workspace W into free and occupied space. Thus,
given a motion planning policy m(z) that yields a feasible path o between z, and z,4, we
propose a network construction algorithm that procedurally covers the area of interest Z.
By employing a placement strategy that ensures a connected network topology, we enable
the robotic agents to traverse the environment while maintaining continuous communication

with the relay at .

4.5 Methodology Overview

A communication network topology can be modeled as a simple weighted undirected graph
G = (V, E). In this model, the vertices V' of this graph represent physical assets participating
in a network topology N, including deployed relays and any communications-enabled agents.
These assets are collectively referred to as “communication nodes.” While we define any
given communication node as v, € V', we split the set of vertices V' into two unique sets: 1)
the set of mobile “non-deployed” agents P and 2) the set of static “deployed” nodes S (i.e.,
V =PUS). For a team of p robotic agents P = {p1,p2,...pp} and N available nodes in
the communication network, we define Jy = {1,..., N}. Here, n € Jy represents a specific
communication node index. We also overload the definition of v, € V' to be equivalent to
the physical location of p,, € R?. The communication graph is initialized with v; as the
only starting node, which often represents a central base station (see Fig. 4.2).

The edges of the communication graph have an associated positive weight, e(v;, vj) —
RY, v;,v; € V, which represents a communication link between the vertices. For example,
in Team Explorer’s original approach and Zoula and Faigl [53], a positive distance function
d(vi,vj) : R?xR? — R, which measured the physical /5 distance between two communication
nodes in the graph, was utilized for e(-). Although physical distance may be used as a

surrogate measure of communication strength, recent advances in communication technology
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have enabled the direct use of communication strength metrics (e.g., RSSI, SNR) for relay
placement. For ease of notation, we denote all communication strength metrics between
two vertices (vj,vj) using our communication coverage model notation: Cyu(vi,v;) —
R*,v;,v; € V. Note that in this chapter, as e(-) may take the form of d(-) or Cyai(+), the

particular use will be indicated as required.

4.5.1 Maximin Communications Graph Spanning Tree

To ensure that communications are maintained between the base station and all assets, we
design a reactive node placement behavior that deploys a communications node in response
to an imminent loss of communication coverage. To ensure the connectivity of all assets
vn, € V to the base station (v1), we require the existence of at least one nodal path in the
communications graph G that starts at the base station v; and ends at every asset v,, where
all relays are progressively sequentially mutually covered. By defining a path through G
between the base station v; and any vertex v, € V as m(v1,vp) = V1,...,0,...,Un, U E
V,v1 # vy, we impose the condition Cya1(vi, vit1) > Cehresh V (Vi, vit1) € m(v1,vp), Vo, €V
where the pairing (v;, v;+1) represents every pair in the sequence of nodes defined by the
path w. This condition generates a tree structure T on G, i.e., T' C G, with vertex v; as
the root vertex of the tree. Given this structure, we choose to simplify the path notation
between node v; and vy, into a single argument (i.e., w(vi,v,) = w(vy)).

To enforce the single-path communications coverage constraint to all mobile agents, we
pose T as a minimum spanning tree where the edge weights capture the strongest “weakest”
link (i.e., the widest-path) on a path between the root vertex and a non-root vertex in the
tree. We refer to this metric as the “maximin communications metric.” For each non-root
vertex, v,,, connected by a path m(v,) to the root vertex vy, a value Cpet(v1,vy,) € RY is
calculated using Algorithm 3. This is done to find the maximum minimum edge value
Cyal(+) for all nodal paths between v; and v, in the communication graph G. By definition,
the spanning tree 1" spans all vertices included in the communications graph. Thus, by
ensuring Cpet (v1,Un) > Cthresh, Un € V, we ensure that there is at least one path between
v1 and v, such that the minimum edge weight is observed for all edges in the tree.

We utilize several helper data structures to construct the maximin tree. The first
structure is a real-valued n-tuple, CV € R, which represents the minimum communication
value experienced between the n'! communication node and the root node v;. Next, we
define another n-tuple, SPT € {0, 1}, which tracks the inclusion of vertices in the spanning
tree. Finally, (PATH, TEMP) € Z*t¥ tracks the structure of the tree. All tuple indices
correspond to node indices, with index 1 representing the central base station.

We additionally introduce a supporting routine, MCV(CV,SPT, V) that parses CV

71



4. Automated Construction of Ad hoc Wireless Networks

Y

Figure 4.3: A communications graph (G) on the left and its corresponding maximin tree
(T') on the right. The edge colors demonstrate the relative strength of the inter-vertex
communications connection.
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for the maximum value of a node not already in the tree and returns that node’s index
or —1 if all nodes are already included in the tree. Algorithm 3 exists in the family of
single-source shortest path algorithms (making it a complete algorithm). With a naive
array implementation, the time complexity of the presented algorithm is O(|V|?). This
logic takes the set V' and root node vy as input where 1 € Jp, determines the maximin tree
for the graph, and then publishes a message identifying the vertices with a Cpet(-) below
Cthresh- For convenience, define: MIN(-) = CV[y| <= min(CV{z], Cyal(vz, vy))-

By running Algorithm 3, the value of Cy,i(+) may be monitored to ensure communication
capabilities. An example of the maximin spanning communications tree for a communica-
tions graph is shown in Fig. 4.3. In Fig. 4.3a, the vertices in the communications graph
are demonstrated in both green (v1) and blue (v € (V' \ {v1})), with edges demonstrating
connection strengths greater than cynresh. The edge colors reflect varying communications
strengths, from low strength in red to high strength in blue. Using Algorithm 3, a spanning
tree structure can be imposed on the graph presented in Fig. 4.3a, which is shown in
Fig. 4.3b.

4.5.2 Communication Relay Deployment Behavior

In this chapter, we limit each agent of the multi-agent team to act as at most one communi-
cation node (as opposed to the carrier agents in [20]). Once the maximin communications
spanning tree is found, the communication relay deployment behavior in Algorithm 4
periodically checks to ensure that no agent has a Cyet value below cipresh- Note that if
multiple agents (e.g., 7,7 € P) have a Cpe value below cinresh, and if Cyai(7,7) > Cthresh,
then before both agents deploy nodes, only the agent with the lowest ID (e.g., i < j implies
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Algorithm 3 Maximin Communication Spanning Tree
Define MCST (v, V)
Input vy, V > Index 1 is the assumed root
Output CV
Require: CV = {0}, CV[1] = oo, SPT = {0}V
Require: PATH = {1}V, TEMP = {1}¥
1: for i € Jy do

2: if 3 icqy.izi Cval(vi, v;) = 0 then
3: SPT[i]| =1, CV[i] =0, PATH[i] = ¢
4: else > if not disconnected
5: x = MCV(CV,SPT, V)
6: if x # —1 then > i.e., still have nodes in tree
7: SPT[z] = 1, PATH[:] = TEMP]i]
8: for y € Jy do
9: if (Cyai(vg,vy) > 0, SPT[y] =0, and
10: CV]y] < MIN(-)) then
11: CV[y] = MIN(-), TEMP[y] = =
12: end if
13: end for
14: else > if all nodes already in the tree
15: for y € Jy do
16: if SPT[y] =0 then
17: SPT[y] =1, CV[y] =0,
18: PATH[y| =y > Set self as parent
19: end if
20: end for
21: end if
22: end if
23: end for
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Algorithm 4 Communication Relay Deployment Behavior
Input P, G, v, 0, t
1: while p, #0(1) Vp € P do > while no agent at z,
2: Cmet — MCST(Ul,V(G))
3 for k€ P do
4 if Cmet[k] < Cthresh then
5: agent k deploys a communication relay
6: end if
7
8
9

end for
Move along o > for ¢ seconds
: end while

agent i) deploys a relay. This ensures that multiple agents do not redundantly deploy nodes

at the same location.

Thus, the experienced automated behavior is that an agent stops to become a stationary
communication repeater (relay) if its experienced cipresn value falls too low. In practice,
the “true” minimum value of cipresh is buffered by some amount, § € R™, to conservatively
approximate a communications boundary. This ensures that the system does not experience
an unexpected dropout or cause oscillatory behaviors near the communications boundary
(i-e., Clpresh = Cthresh + 0). The magnitude of ¢ is highly dependent on the system hardware
and the rate ¢t at which Algorithm 4 is checked.

4.6 Comparative Simulations

To evaluate the performance of our proposed maximin communication-metric tree con-
struction technique, we conducted simulations within Multi-Agent Path Finding (MAPF)
benchmark environments [45]. These benchmarks are employed solely to generate realistic
communication strength layouts, enabling the simulation of communication graphs without
relying on prior environmental knowledge. Crucially, from a communication perspective,
we are still operating within unknown environments. We begin by comparing our maximin
approach with the network construction method used by Team Explorer, demonstrating
that our method yields a reduction in the number of deployed nodes. Furthermore, our
simulations indicate that the maximin tree’s ability to condense multiple nodal paths into a

single representative value provides a more informed assessment than a myopic approach.
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4.6.1 Simulation Environment

In cluttered environments, the effectiveness of communication networks is significantly
impacted by distance and obstacles. To model this, we adopt an inverse square law for
signal attenuation, approximating signal strength as inversely proportional to the square of
the distance with an additional linear decline through the obstacles. The communication
model used in this simulation section is given as

1

Cval(rlv T2) =C— —C- dobst'
172

Note that this model is adopted solely for simulation purposes and is not utilized to pre-
process the environment for communication node placement. The algorithm’s performance
with a real communications system will be demonstrated in the subsequent hardware trials
section. The simulations in this section assume a value of ¢; = 100 for obstacle-free space
and an additional constant co = 20 when considering obstacles. For example, a robot 2
units away from the source with an obstacle that is 0.5 units thick in between experiences a

signal strength of 25 — 10 = 15 units.

4.6.2 Visibility vs. Communications-Metric Graph Construction

This section compares the performance of two communication network construction ap-
proaches: the visibility-based method used by Team Explorer in SubT [20] (Algorithm 5)
and our maximin communications-metric-based construction approach (Algorithm 4). Team
Explorer’s approach adds nodes to the graph G depending on their relative distance and
visibility to previously deployed nodes, as detailed in Algorithm 5. To check visibility, we
define a procedure, LOS(v,p),v € V, which returns “True” if p is within the line of sight
of any other node in V' and otherwise returns “False.” Furthermore, two hyperparameters:
dros € R* and dypos € RT, were defined to capture the maximum allowable distance (e.g.,
in an /3 sense) for a node to be placed with respect to any previous node in G. The first
parameter, drog, represents the furthest allowable distance an agent p is allowed to be
from any other vertex v € V(G) while LOS(v, p) is “True.” Similarly, dnros, represents the
furthest allowable distance an agent p is allowed to be from any other vertex v € V(G) if
LOS(v,p) is “False.” Team Explorer’s procedure for adding nodes to the communication
network topology is presented in Algorithm 5.

We evaluate their effectiveness by navigating a robot from a random start to a goal
location. Along the path, communication nodes are deployed whenever the signal strength
falls below a threshold (cinresh) of 10. A key difference lies in how signal attenuation is

modeled. To ensure connectivity in Algorithm 5, we model a visibility-based approach that
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Algorithm 5 Explorer Communication Graph Construction
Input N, P, dpLos, dxros
Require: N > 1, {v;} =9

1: while n < N do > Exit if run out of nodes
2 for pe P do

3 s = argmind(s;,p),s; € S > Find closest node
4 if LOS(s,p), and d(s,p) > dpos then

5: S=SUp, P=P\{p}, n=n+1

6: “Establish Node” > Drop Node for SubT
7 else if d(s,p) > dnros then

8 S=SUp, P=P\{p}, n=n+1

9: “Establish Node” > Drop Node for SubT
10: end if

11: end for

12: end while

assumes an immediate and complete signal loss (infinite attenuation, dyros = 0) when the
line of sight between the communications nodes is broken.

To evaluate the performance difference, we conducted extensive simulations across a
diverse set of maps from the MAPF benchmark dataset. For each map, we randomly
generated 100 different start and goal locations for the robot, ensuring a comprehensive
assessment across varying environmental configurations and path requirements. These
experiments measure the number of nodes required to maintain communication between the
start and goal points, with fewer nodes indicating a more efficient approach. The results
are presented via Fig. 4.4 where the node construction approach from Algorithm 4 (in blue)
consistently outperforms (has fewer nodes) the approach from Algorithm 5 (in red). The
largest decrease in required nodes was observed in the maze-128-128-1 environment, where

the average reduction in deployed nodes across all trials was 36%.

4.6.3 Efficacy of Maximin Communication Spanning Tree

Algorithm 3 optimizes the maximin communication metric across nodal paths, ensuring
the weakest link to the base station exceeds a threshold for higher network quality. While
intuitively beneficial for practical robotic applications, we found no prior architectures
offering comparable network quality guarantees. To evaluate the efficacy of our algorithm, we
introduce a baseline approach: the strongest neighbor communication metric (Algorithm 6).
This method assumes an ideal, disruption-free network, where connectivity to the strongest
neighbor directly implies connectivity to the base station. Such a simplified strongest-

neighbor strategy reflects common practices observed in the SubT Challenge, providing a
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Figure 4.4: A summary of network construction tests demonstrating the effect of com-
munication metrics on network growth. Both metrics demonstrate the capability to con-
struct the network through all maps, but dropping line-of-sight constraints and utilizing
communication-based metrics decreases total node usage.

comparative benchmark for our maximin algorithm.

To illustrate the algorithmic differences, consider Fig. 4.5a, which depicts already
deployed nodes (blue) and a base station (pink). We examine a point (blue star, which
represents v*) along the path between the red and green dots, which in turn represent x
and x4, respectively. In this instance, Algorithm 3 computes Cpet(:) > Cthresh indicating
sufficient connectivity for v* to the base station. In contrast to Algorithm 3’s use of
Cet(+) to determine connectivity, all intermediate links exceed the required threshold,
correctly indicating sufficient connectivity for v*. In contrast, Algorithm 6 relies on the
strongest neighbor link (e.g., node v,). In Fig. 4.5a, this also results in a correct connectivity
assessment, which we denote as a true positive.

However, Fig. 4.5b shows a potential failure scenario. Here, three nodes, including v,,
experience intermittent connection issues, rendering them nonfunctional. Consequently, the
star node’s strongest link shifts to vy, which still exceeds the threshold. Algorithm 6, in this
case, incorrectly infers base station connectivity via vp, resulting in a false positive when
compared to the true connectivity determined by Algorithm 3. This example highlights the
vulnerability of the strongest neighbor approach to link disruptions, which the maximin
tree is robust against.

To rigorously evaluate the performance of Algorithm 3 and Algorithm 6, we conducted

77



4. Automated Construction of Ad hoc Wireless Networks

Algorithm 6 Strongest Connection Metric
Input v*, G, Cihresh

Output IfConnected

Require: MAXCV =0

1: add v* to G

2: MAXCV = max(Cyu1(v*,v;), Vi € In)
3: if MAXCV > cCipresh then

4: IfConnected = True

5: else

6: IfConnected = False

7: end if

(a) All nodes are functional ~ (b) Three nodes (X) are disconnected

Figure 4.5: Comparison of Algorithm 3 and Algorithm 6.

an extensive study across multiple MAPF benchmark maps, each with randomized node
configurations. Specifically, we generated 100 random pairs of start and goal locations (x4
and z4) within each map and tested both algorithms at discrete points between them. Each
environment is seeded with 30 relays that form a valid, connected network. We simulated
network disruptions by randomly disconnecting 3 of the 30 nodes. We also randomly select
a base node from the remaining set of non-disconnected relays. This methodology allowed
us to assess the effectiveness of the algorithms across a diverse range of dynamic network
conditions. We quantified performance by calculating the rate of false positives produced by

Algorithm 6 relative to the total positives identified by Algorithm 3. This metric represents
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Figure 4.6: Multiple MAPF environments demonstrate advantages in using Algorithm 3
over Algorithm 6.

the percentage of instances where Algorithm 6 yields an incorrect connectivity assessment.

The results of this study are presented in Fig. 4.6. Notably, in the den520d map,
Algorithm 6 exhibited zero errors, highlighting its potential for significantly faster compu-
tation compared to Algorithm 3 in static environments. This observation aligns with the
algorithm’s adoption in prior work, which has used static network assumptions. However,
across the broader dataset, we observed a substantial increase in false positives, reaching
up to 100% in some cases. This dramatic decline in performance highlights the need for a
base-station-centric, critical strength-aware communication tree, as outlined in Algorithm 3,

to support robust decision-making in dynamic and mission-critical scenarios.

4.7 Hardware Trials

The network construction algorithms presented in Section 4.5 were tested on a convoy of
robotic platforms in the context of an automated patrol mission through a hospital-like
building without any available network infrastructure. The testing environment is illustrated
in Fig. 4.7, which depicts the building’s floor plan as mapped by the agents during the
hardware trials. Figure 4.7 shows that this environment consists mainly of two long
corridors (viewpoints 1 and 3), a sharp turn (viewpoint 2), and an exit point to the exterior
of the test facility (viewpoint 4). In all experiments, the convoy started at the operator base

station near viewpoint 1. The path o was implicitly constructed using a frontier exploration
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algorithm governed by a greedy heuristic to minimize the total distance traveled [20, 64].

Base Station (Start) Location

Exit (Goal) Location

Traveled Path

Yiewpoint

Figure 4.7: Hardware Trial Environmental Overview

The convoy consisted of three mobile robotic agents (Fig. 4.2) that were all equipped
with a communications radio. Each agent’s radio enabled it to communicate with all other
agents or the base station, provided the corresponding radio was also in range. Constant
communication between the base station and the convoy was ensured by procedurally
building a communications network using Algorithm 4 and Algorithm 5. Further discussion

of the mobile agents can be found in Appendix A.

4.7.1 Visibility vs. Communications-Metric Graph Construction

The results of the comparative simulations reflect that distance-based metrics may perform
poorly in complex environments with high densities of line-of-sight blocking terrain features.
For the given environment in this set of experiments, a singular limit could be observed
such that the multi-agent team of robots would have at least one platform reaching the
egress point without LOS constraints. This limit is denoted d,,;, (shown in Fig. 4.7), and
was measured to be at least 75 [m] (thus, dLos = dnrLos = dmin = 75 [m] for the given
tests). Any value above 75 [m]| would allow the agents to reach the goal. However, given a
suboptimal parameter choice for djog or dnros, the mobile platform team was unable to
reach the exit point of the facility. This is reflected in Fig. 4.8a. Here, a suboptimal choice
was selected (dpos = 65 [m], dyrpos = 0 [m]) which caused platform “RC1” and platform
“RC3” to stop at points where the system lost line-of-sight to the previous nodes. Note that

line-of-sight to the base station relay was available in the starting hallway. In contrast,
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leveraging Algorithm 3 with a communication-based metric (selected as falling below a
“signal strength” threshold) provides a different spatial distribution of deployed platforms.
Note that the selection of the communication-based metric also required empirical testing to

determine the hyperparameter threshold, but did allow for the dropping of the line-of-sight

Good Communication Link
Ineffective Communication Link

Broken Communication Link -‘ nd Viewpoint

(a) Test I: Ending state in Algorithm 5 evaluation

Good Communication Link
Ineffective Communication Link
Broken Communication Link -‘ -»

(b) Test II: Ending state in Algorithm 4 evaluation

Figure 4.8: The testing environment for all hardware experiments. Note that each camera
view taken from the multi-agent team is also labeled on the map. The closest red arrow is
an approximate position for the image, and the image was taken in the pointing direction
of the arrow’s head. Hardware evaluations comparing Algorithm 5 and Algorithm 3. Figure
Fig. 4.8a reflects the end positions for the agents using Algorithm 5 and a distance-based
metric. Figure Fig. 4.8b reflects the end positions for the agents using Algorithm 3 and a
communications-based metric.
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constraint, which is advantageous in complex geometries.

4.7.2 Failed Node Robustness Test

Disconnected Node

Base Station Location

Good Communication Link
0 Ineffective Communication Link
N

, —— Broken Communication Link -’ w» Viewpoint

Figure 4.9: The presence of the disconnected node in the environment affects each agent
differently. Agent “RC2” does not realize that it cannot communicate with the base
station and continues out of range. This contrasts with agent “RC3,” which recognizes the
communication failure and stops.

In addition to the performance tests, additional robustness tests were performed to
handle disconnected or “failed” nodes. Here, a failed node does not communicate with the
base station but can communicate with the agents in the convoy. On one agent, “RC3,”
the maximin communications spanning tree is used to construct the network (Algorithm 4)
while “RC2” only uses Team Explorer’s strategy (Algorithm 5).

The position of the failed node in the environment is shown in Fig. 4.9 and is labeled
“RC1.” The placement of this node satisfies both the distance and LOS constraints required
for Algorithm 5. Without the maximin communications spanning tree, “RC2” does not
stop until the position marked as “RC2” in Fig. 4.9, as this is where the communication
range (determined by drog) is reached. When “RC2” moves beyond the “RC1” position,
communication with the agent began to fail and became intermittent. The post-trial
analysis shows that the agent which stopped at the “RC2” position had almost half the
“signal strength” needed to communicate with the base station (Chresh). However, with the
presence of the maximin communications spanning tree, “RC3” observed this drop in signal
strength near the “RC1” position, causing it to deploy as a communications node. That

threshold was reached at the position listed as “RC3” in Fig. 4.9. Thus, the presence of
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the maximin communications spanning tree restrained platform “RC3” from leaving the

communications-accessible area.

4.8 Conclusions

This chapter presents a maximin communication spanning tree approach for ensuring
communication between a multi-agent robotic team and a base station. We demonstrate
the approach in both simulation and hardware to generate network topologies in complex
environments, and show how the maximin communications spanning tree provides additional
robustness to disconnected or “failed” nodes in the environment. Immediate future works
relate primarily to two areas: 1) map-predictive communication network construction and
2) the development of communication-quality-constrained exploration-based planning and
control algorithms for robotic convoying. While the problem definition discussed in Sec-
tion 4.4 dismissed the effectiveness of minimum set coverage approaches for robotic systems,
the use of machine learning to predict environment layout and communications strengths
would be a vital step towards generating more optimal relay placements. Works such as
Tatum [55] initiated this effort, but more powerful environmental prediction algorithms (e.g.,
MapEx [65]) could provide a significant improvement over Tatum’s baseline. Furthermore,
communication-quality-constrained motion planning and control for exploration have been
proposed in prior works, but their realization on hardware remains to be seen. Specifically,
utilizing perception systems which predict drops in communication quality (e.g., observing
known-communication blocking materials or geometries) and then enforcing constraints
in the reachable space of a low-level controller provides a unique online benefit towards

ensuring the system never leaves communication range.
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5.1 Introduction

OBOTIC teams have repeatedly demonstrated the capability to effectively search

dangerous or difficult-to-reach areas. Such results were most prominently demon-
strated during the Defense Advanced Research Projects Agency (DARPA) Subterranean
(SubT) Challenge [46]. Given that many of the DARPA SubT test environments lacked
communications infrastructure, performer teams often simultaneously completed search
and rescue tasks while building a mobile wireless ad-hoc network (MANET). The con-
structed MANET was often dependent on “drop nodes” —communication relays that were
physically “dropped” from robotic platforms— as they explored the environment. In many
applications, including dismounted operations, the need for communication between robotic
agents remains, but relying solely on drop-node-based strategies has several undesirable
features. Such approaches can be time-consuming for human operators, as the operators
may need to clean up or collect the drop nodes, and modifying the network topology
can be challenging once the nodes are deployed. In this chapter, we build on our SubT
experience by truly observing the “mobile” name of a MANET. We introduce and integrate
a series of MANET construction and modification behaviors for teams of robotic agents
that travel in a convoy formation into our framework (see Figure 5.1). We aim to begin a
discussion on how to develop automated communications-aware robotic systems that can
operate in communications-deprived environments without relying on human operators
(e.g., the warfighter, disaster response team members, etc.). We argue that operating as a

MANET is a core underlying technology for multi-agent operations, and we demonstrate
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Figure 5.1: In Chapter 4, we developed an ad hoc wireless network construction technique.
In this chapter, we focus on further refining and testing those communication network
construction behaviors for formations of agents.
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the application of such technologies to multi-robotic-agent formation movement problems
in cluttered environments.

We consider missions where the robotic agents are required to move throughout an
environment while remaining in constant contact with a central base station. Both the
base station and the robotic agents are equipped with wireless communication capabilities
(nodes) that allow the base station and the agents to communicate with each other at
a distance under nominal conditions. Agents move through the environment as part of
a formation, typically a convoy, to provide mutual support to one another during their
traversal of the environment. As agents move through the environment, the quality of
the inter-agent communications is affected by objects in the environment and the distance
between the agents. We require that connections between the base station and a multi-agent
formation maintain a certain level of signal strength to ensure constant communication
between the agents and the base station.

To achieve this operating concept, we introduce two behaviors: 1) the MANET con-
struction technique for formations, and 2) a set of individual agent behaviors to reconnect

the network topology if a node in the network fails.

5.2 Related Work

As noted in Section 4.3, we build upon designs originating from the DARPA Subterranean
Challenge [46]. As the “Systems” SubT performer teams were required to complete a
challenge with similar requirements to our work (i.e., operating in communications-deprived
environments), we first provide a brief overview of the different systems developed by
each of the SubT performer teams before surveying other relevant communications-aware
multi-agent systems literature.

In particular, we would like to highlight the approaches taken by Team CERBERUS [52],
Team CoSTAR [56, 66], Team NCTU [54], and Team Explorer [20]. The solutions designed
by these teams relied on both inter-agent and agent-operator communication to explore
the environment and locate objects of interest. The developed communication solution
resulted in teams constructing a “communication backbone” that would allow information
sharing (e.g., environmental maps, odometry information, detected objects, etc.) with the
other agents in the team [51]. Each of the aforementioned teams relied on both robotic
agents and a set of “dropped” communication nodes to ensure that the agents in the
system remained in communication with the base station. Certain teams, such as Team
CERBERUS, relied on a “Human Supervisor” to command agents to drop communication

nodes. This decision was attributed to the team’s observations regarding challenges with
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ascertaining consistent measures of communication performance in SubT environments [52].
Team CoSTAR designed a robotic behavior that considered both environmental factors,
relative line-of-sight (LOS), coverage, and network conditions to determine whether a drop
should occur [66]. Team NCTU’s solution evolved over the course of the DARPA SubT
challenge. The original approach designed by Team NCTU, consisting solely of dropped
communications nodes, was augmented with mobile communication nodes mounted to
small wheeled robotic platforms. The mobile nodes could be moved in response to poor
communication environments, producing a flexible approach that was not dependent on
large numbers of dropped nodes [54]. Team Explorer designed a set of distance-based
heuristics for both LOS and non-line-of-sight (NLOS) operations, which, when combined
with a map prediction algorithm, could be used to minimize the number of dropped
nodes [20, 55]. Our proposed system takes lessons learned from each of the SubT performer
teams: human supervision (CERBERUS), network-conditioned-based drops (CoSTAR),
mobile communications nodes (NCTU), and NLOS (Explorer) operations in order to improve

overall system performance.

The design of network construction algorithms is highly dependent on the placement of
communication relays throughout the environment. This placement is influenced not only by
the environment itself, but also by the current known information about the environment and
the communications system. Although both our operating conditions and the environments
in which SubT agents performed were a priori unknown, a priori known environments give
rise to computational geometry techniques for sensor placement strategies in wireless sensor
networks [67]. Specific techniques frame the problem as a variant of the Art Gallery Problem:
a visibility-based approach to predicting sensor placement. Solutions to the Art Gallery
Problem minimize the number of sensors (guards) required to cover a (classically) polygonal
area [57]. Different sensor models modify the expected visibility of the guards, resulting in
varying solutions to these optimization problems. Common modifications include limiting
the visible range of any placed sensor [57], distance-based visibility fading [58], and visibility
through a limited number of walls (k-transmitter problem) [59]. Although some of these
geometric approaches translate to robotic systems, the quality of the information that

travels through the communication system also comes into play.

The different performer teams considered multiple measures of wireless communications
quality for use in the DARPA SubT Challenge. Certain teams (CERBERUS) side-stepped
the issue entirely by relying on human operators, noting that common radio signal strength
indicators (RSSI) were often not reliable in subterranean environments [68, 69]. However,
other teams (NCTU and Explorer) relied on RSSI to determine the locations of the node
drops [20, 54]. Finally, utilizing signal-to-noise (SNR) has been considered in multiple
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works adjacent to Team CoSTAR [56], primarily with a focus on planetary exploration.
Predicting these communications metrics is challenging, with recent work relying on machine
learning techniques to predict the strengths of a 5G signal in indoor environments [70]. Such
techniques can be helpful if direct access to SNR values is not provided by the communication
system or if the expected SNR value at a specific position in the environment needs to be
predicted.

Finally, while many of the approaches deployed in the DARPA Subterranean Challenge
demonstrate the requirement to maintain communication with a central communication
node, this requirement is often relaxed to reflect the mission context. If agents can operate
independently or with limited oversight, this could allow for operations with intermittent
connection between the agents or between the agents and a base station or human operator.
The acceptability of intermittent communication yields a fundamentally different problem
from those previously considered. Although the application considered in this chapter focuses
on developing robotic agents that directly support dismounted operators when required,
in the interest of completeness, we also wish to detail several recent works that enable
intermittent communications. Wang et al. [71] demonstrates a unique solution approach
that develops a communication signal map online. In particular, an uncrewed aerial vehicle
learns a signal-to-interference-plus-noise map while avoiding an adversarial communication
jammer. Although such an approach may be extensible to a communication relay node
placement problem, the presented formulation is predicated on a fixed communications
environment and allowable finite-time communication service interruptions to facilitate
exploration in the communication signal space. Similarly, Woosley et al. [72] uses a Gaussian
process to model information entropy and communication signal strength for simultaneous
exploration and information collection, but again does not require the exploring agents
to maintain communication with a central base station or operator. Finally, we would
also like to highlight an approach that requires information transfer between agents but
does so by intermittently sharing maps at scheduled rendezvous locations. This approach
enables agents to share information without needing a relay network to maintain continuous
connectivity with a base station [50]. This method works well to explore an unknown area
quickly, but does so at an increased operational independence of the agents themselves (i.e.,

the agents may not be able to communicate with each other until a rendezvous occurs).

5.3 Technical Approach

In order to ensure communications during a robotic mission, we propose a graph-based

mobile ad hoc network (MANET) construction system inspired by our experience in the
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Figure 5.2: An operator commanded “peel-off” in an urban environment.

DARPA Subterranean Challenge. We build on these experiences by replacing dropped

“communication nodes” with a formation of cooperative ground agents.

5.3.1 System Overview

We demonstrate our approach on the developed robotic convoying system first discussed in
Part I and further detailed in Appendix A. The team consists of multiple heterogeneous
robotic platforms (agents) and an operator interface. As the agents themselves have been
discussed in the previous chapters, we will focus primarily on the operator interface. The
operator interface displays information about each robotic platform (e.g., position, current
waypoint, relative experienced radio signal strength) and serves as the primary interface for
sending commands to the agents. For robotic behaviors that require centralized decision-
making, the operator interface also serves as the central point to coordinate the actions of
each platform. For convenience, we may abbreviate the operator interface as “BST” (“base

station”) in the remainder of this chapter.

Operating Concept: Automated Peel-Off

We desire a methodology to ensure that the convoy of agents remains in communication with
the base station throughout the operation. Initially, we relied on an operator to manually
“peel-off” an agent from the convoy when the convoy was about to leave communication
range. Measurements of relative inter-agent communication strength (e.g., RSSI or SNR)

were displayed on the operator interface to assist the operator in determining “peel-off”
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locations. Triggering a peel-off would cause the last agent in the convoy to leave the convoy
and stop. When the agent stops, it acts as a communication node, extending the effective
communication boundary by relaying information and commands between the operator
interface and all robotic convoys or agents in communication range. In order to minimize
the number of network connections, convoys are treated as a single “composite” entity,
where all information and commands to a convoy are filtered by and passed through the lead
agent of the convoy. The lead agent then distributes commands to the remaining convoy
agents until the agent leaves the convoy or the convoy is split by the operator. An example
of such a peel-off is shown in Figure 5.2. We thus define an automated peel-off behavior
as a behavior executed by an agent participating in a convoy that causes the agent to 1)
leave the formation, 2) come to a complete stop, and 3) relay communications to other
assets in the system. We modified this manual peel-off to be callable by the lead agent of
an autonomous convoy. This enables the lead agent to direct the following agents to act as
communication nodes if a set criterion is met. We describe this behavior as an “automated

peel-oftf” behavior and define the criterion for initiating a peel-off in the following section.

5.3.2 Network Construction Behavior

Determining when to “peel-off” agents in an automated manner is fundamentally connected
to the connectivity and interactions between the system assets. Graph data structures
provide a convenient means of representing the interrelatedness of assets in our system. In our
communications systems, this interrelatedness of assets exists in at least two representative
aspects. There is an inherent coupling between 1) the physical (spatial) representation and
2) the signal strength representation of the communication network. For a MANET, the
“mobile” nature of a robotic system makes this coupling even more prevalent. As such, we
pose our network construction behavior as a graph analysis problem in which the network
topology changes as the robotic agents navigate through the environment.

The network topology is constructed from a set of n communications-enabled assets,
including: 1) the operator interface, 2) existing friendly environmental communication
infrastructure (if any), 3) individual robotic agents, and 4) formations/teams of robotic
agents. For simplicity, we enumerate the total list of assets as C = {cg, c1,¢2,...,¢n-1,¢n}
with index set Z = {0,1,2,...,n — 1,n}. We define the set of agents in the asset list as
A C I with corresponding index set Z, C Z, and, for simplicity, denote asset cg as the
operator interface. As these assets represent physical entities (e.g., a robotic agent), we
define a mapping p : C — R”, which takes an asset index and returns its physical location
with respect to a predetermined common reference frame (e.g., the coordinate frame of the

lead vehicle).
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We represent the relationships between the assets using a pair of undirected weighted
graphs. The first graph, G4 = (V, E4,wg), captures the physical distances between the
assets (i.e., the relative spatial positions). In this graph, each vertex v; € V C C,i € Z
represents an asset. The edges connecting all vertices are assigned a weight equivalent to
the /-distance between agents (i.e., wq = d(v;,v;) = l2(p(vi), p(vj)), vij € V). Note that
while we overload the notation of p(-), we intend for its meaning to remain the same.

Each asset may also be represented in the network logical layer topology, which describes
the communication connections and relative signal strength that the asset has with other
assets. We name this representation a “communications graph” and define it as:
G. = (V,E;,w.). In this definition, the vertex set (V') remains consistent with G4 (i.e.,
vertices represent assets), but the definition of the edge set does not. In the communications
graph, the edges represent the ability for two assets to communicate with each other. These
edges are weighted by a corresponding weighting function w, = COMM(v;, v;), vi; € V. As
discussed in Section 5.2, this COMM(+) function can represent several different indicators
for signal strength. Finally, note that both graphs are dynamic in-so-much that the
relationships between the agents may change during operation (e.g., agent motion through

the environment).

Although the communications graph captures the relative communications strengths
between assets, it does not inherently indicate when an agent should be “peel-off” from
a convoy. We propose that the establishment of a communication node (i.e., a “peel-off”)
should occur in response to a potential loss of communication between the agents and
the base station. We model the proposed mechanism as a restriction on the allowable
edge weights assumed in the communications graph. Specifically, for every agent ¢ in
the agent list 74, there must exist at least one path in the communications graph that
starts at the operator interface (vg) and ends at the agent (v;) where all edge weights
maintain a value greater than a minimum allowable edge weight. If we define this minimum
allowable edge weight as Ctpyresy and a path in the communications graph as a set of
edges between two different vertices (w(vs,v;), v; € V,v; € V,v; # v;), then we seek to
ensure that w.(e) > Cruresu Ve € m(vo,v;), Vi € Z4. For notational simplicity, we drop
the dependence on vy and choose to represent the paths between the operator interface and
an agent ¢ using a single argument (i.e., w(vg, v;) = m(v;)).

To ensure this restriction is observed, we construct a maximin spanning tree, T' C G,
on the communications graph rooted at the operator interface (vg). The tree is constructed
such that the edge weights associated with edges included in tree 7' maximize the strongest
“weakest” link between a parent node and its child node in the tree. Concretely: for each non-

root vertex, v;, connected by edge (v;,v;) to its parent node, v;, an associated edge weight
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CMET(v;,v;) € RY is chosen such that CMET (v, v;) represents the strongest “weakest”
link for v; in the communications graph. As the spanning tree T spans all vertices included
in communications graph, and by ensuring that CMET (v, v;) > Cruresh, vi € V € T, we
ensure that at least one path between vy and v; exists such that the minimum edge weight
is observed for all edges in the tree.

We describe any communication nodes that represent the operator interface or an agent
that has performed a peel-off behavior as a central node. For ease of reference, we collate
these central nodes into a set, denoted as CN. Note that, initially, CN <« {vg} as the list
of central nodes always includes the node representing the operator interface. Thus, these
central nodes represent our version of the vital “communications backbone” described by
many DARPA SubT works [51]. Maintaining a connection to at least one central node
guarantees a communication pathway to the operator interface.

Thus, we can define the network topology N of the system by considering elements
of the communications graph. The network topology itself consists of a “communications
backbone” of central nodes and the remaining mobile agents. There exists an effective
communications boundary B(N) created by all the assets in the system. The strength of
the system’s communications within this boundary, as observed by the system assets, is
not less than Cryrpsy. That is, B forms a level set L = {& € R™ | B(x) = Cruresn},
where x € R™ denotes a spatial location in the environment. This communication boundary
delineates the limit of the MANET coverage area, crossing which will result in the loss of
communication for the agent that crosses the boundary. The automated peel-off behavior
described above enables agents to, methodologically, extend the communications boundary
B by tasking an agent to act as a communication node. This communication node extends
the current communication boundary, thus ensuring that the remaining agents remain in

contact with the operator interface with a minimum communication strength Crgresy.

5.3.3 Network Repair Behavior

During real-world operations, robotic systems are prone to failure (e.g., agent onboard
power loss). If such a failure occurred, the resulting communications graph may include an
edge with an insufficient edge weight (i.e., below Crprgsn). In order to improve system
robustness against such failures, we propose a communication network repair behavior
that repositions agents to reestablish communication with the root node of the maximin
communication tree.

We adopt an approach that repositions at least one agent back to the communications
boundary of the failed node. The proposed communications network repair behavior is

described in Algorithm 8. The algorithm runs locally on each agent (v,) and is activated
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Algorithm 7 Closest Central Node (CCN)
Require: CN;, V, x

Ensure: z., € CNy, > Closest central node
1: ¢ = argmin(d(x,z;)Vi € CNp,i € V)
2: return x., = CN[i] > get i from C Ny,

when the signal strength between the agent and the agent’s parent node (vj) in the maximin
communications tree falls below the threshold value (i.e., CMET(v,, vp) < Cthresu). Note
that this implies that central nodes may also move to repair the network if their signal
strength falls below Crgresg. Given that Algorithm 8 runs on each agent, the motion
of an agent acting as a central node could activate the recovery behaviors of any agents
dependent on v,, causing a potentially large number of nodes to reposition in response to a
singular node failure. We recommend further study of repair methodologies that minimize

the number of agents impacted by the repair behavior (further discussed in Section 5.6).

Before providing an overview of the algorithm, we outline the underlying assumptions
of our approach. We first assume that the root node of the maximin communications tree
(i.e., the base station) does not fail and that all nodes have the same communications
capabilities. To enable an agent to return to the communications boundary of its parent
central node, each agent stores the locations of all central nodes in the network. Define
the set of central node locations as CNp, = {z§", ..., 5"}, where z{" € R" represents the
location of central node i (e.g., 2" € R? for a planar environment) and o represents the
position of the root node. In the event of a central node failure, these locations represent
the most likely locations to reestablish the network. Finally, we assume that all locations in

C Ny, are reachable by all robotic agents from any location in the environment.

For convenience, we define a subroutine (Algorithm 7) to find the central node closest
to robotic agent a. Define agent a’s position as xz, € R™ and the set of central nodes visited
by agent a as V C CNp. We first find the index of the central node closest (based on
Euclidean distance) to a position z (e.g., agent z,) that is yet to be visited (Line 1), and
then return that node’s location (Line 2).

Given these assumptions and Algorithm 7, we propose the Network Repair Behavior in
Algorithm 8. We first target the parent node of the agent in the maximin communications
tree (Line 2), which is guaranteed to exist via our earlier assumptions. We then check if we are
“close enough” (less than a threshold, dp,y) to the target node’s location, 4, on Line 3, and
continue moving towards x, if we are not (Line 9). If the distance between the target node x4
(initially, x,, (Line 1)) and agent a becomes less than dy,i, and CMET (v,, vp) < CTHRESH,

we assume the current central node location is not a suitable location to repair the network,
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Algorithm 8 Network Repair Behavior

Require: z,, z,, CNp, t, COMM(v,, vp)

1: Initialize V < 0, 24 =

2: while COMM(’L)a,’Up) < Crgresg do

3: if d(xq,24) < dmin then
if d(zq,x0) < dpin then

break > reached root node

end if
V<« VU {u,}
xg < CCN(CNL,V,z,)
v, = CNg] > update v, to v
10: end if
11: Move towards z, > for ¢ seconds
12: end while

and we must target a different central node. We then check on Line 4 to ensure we are not
at the root node (and terminate the algorithm if we are), before adding node v, to the
list of visited central nodes (Line 6). Following this, we then get the next closest central
node position (Line 7) and update the next closest central node (Line 8). Consequently,
the agent sequentially explores all these locations until it either establishes communication
or all locations have been explored (i.e., CMET (v, vj) > Cruresu or V= CNp).

An important point to note is that the algorithm is guaranteed to recover communications
as long as a path exists to the root node of the maximin tree. This is due to the fact that
the agent will ultimately reach the location of the base station (root node, xg) if it cannot

regain communication elsewhere.

5.4 Numerical Simulations

The proposed communications network construction techniques and recovery behaviors were
first implemented in simulation. Numerical simulations were conducted in environments
representative of various real-world scenarios, including buildings, cities, and natural
environments. Unless noted otherwise, none of the test environments includes existing
communications infrastructure that the robotic team could utilize during its movement
through the environment.

We first demonstrate our network construction capabilities on a set of maps from a
Multi-Agent Pathfinding (MAPF) benchmark [45]. These results illustrate the evolution of
network topology in complex environments, utilizing a communications model to guide the

placement of the communication nodes. We also demonstrate our network repair behavior
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in simulation. The network repair simulation environments are modeled in Gazebo. These

studies reflect how communication node failure is addressed using Algorithm 8.

5.4.1 Network Construction Studies

We first simulate a series of missions that require a team of robotic agents to travel through
different environments with no existing communications infrastructure. The objective
of this set of tests is to determine the required number of robotic agents needed to
construct a communications network between an initial start location and a goal location.
The environments are drawn from Stern’s multi-agent pathfinding benchmark [45]. Each
environment is represented as an occupancy map, where the measure of occupancy denotes
whether a robotic agent may traverse a cell in the occupancy map. Although the network
construction algorithms described in Section 5.3 are not dependent on an a priori possession
of each environment’s occupancy map, each map is assumed to be known beforehand to
compute the shortest path between the start and goal states (e.g., via Dijkstra’s Algorithm).
Given this shortest path between the start and goal states, a communications model is
then propagated from an agent (or the base station at the initial start state) along the
path. Every robot deployed as a communication node then acts as a further communication
source in this communication model, enlarging the communication-accessible area for the
other robotic agents.

Although robotic agents are incapable of traversing through occupied cells, in these
studies, we assume that the communications model is capable of such obstacle penetration.
We represent our communications system using a communication model with distance
fading, wherein the communication signal strength is inversely proportional to the distance
between the source and receiver. This model is further augmented with additional signal
attenuation arising from occupied cells. This additional signal attenuation is assumed at a
rate of 20 [cell 1] (e.g., a 20 [unit] reduction in signal strength every 1 [cell] encountered).

We include several reference images for three maps, including: 1) lak303d, 2) Boston_0-256,
and 3) Berlin_1_256, to depict the constructed network topologies. For each map, we gen-
erate one hundred different start-goal configurations on the same occupancy map. These

results are shown in Fig. 5.3.
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Figure 5.3: An overview of different constructed networks from trials completed on common
MAPF benchmark environments.

Each starting position is denoted with a green circle, and each ending position is denoted

with a red circle. Using the communication model above, communication nodes are deployed

whenever the signal strength falls below the threshold of 10 (i.e., Crgresy = 10). Each

communication node that is deployed is represented by a gold circle. The path along which

the team travels is shown in orange.

Each environment demonstrates a varying amount of object clutter that the robotic
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agents must navigate. Large numbers of deployed nodes appear to arise in environments
with sharp corners and on objects that must be traversed around that continuously block
line-of-sight (Berlin_1_256, Fig. 5.3c). We also observe that tight corridors, such as those
near the goal location in Fig. 5.3a, typically require a large number of communication nodes

to ensure communication quality along the route.

Remark (Re-optimization). We additionally include a re-optimization of the nodal positions
considered in Figure 5.3c to a new configuration in Figure 5.3d. The configuration change
is motivated by the new goal location that the agents are required to visit. The result reflects
a difference in the required number of nodes (29 to 26), but the remaining agents largely

remain in their original positions.

5.4.2 Network Repair Studies

This section demonstrates the efficacy of Algorithm 8 in different simulation environments.
As in the previous simulation section, we adopt a scaled inverse model for our communications
system. The communication metric, COMMY(-), was defined to be inversely proportional
to distance and scaled by a scaling factor k. This scaling factor is a tunable parameter
that changes the effective range of the communication model, with a larger scaling factor
corresponding to a larger communication boundary. For example, for an agent 10 [m]
away from a communications signal source with k£ = 500, our model would predict a signal
strength of % x 500 = 50. For each test demonstrated in this section, the value of the
scaling factor and the threshold Crgrgsg are specified.

We first present a scenario with five robotic agents and a base station (the root node)
in an indoor environment. The results of this test are shown in Figure 5.4. For this test,
k = 500 and Cpgresy = 20. Figure 5.4a shows both the starting configuration of the
agents in the communications graph alongside the COMM(+) values for each node with its
parent. In this scenario, as “RC1,” “RC2,” and “RC5” have already peeled-off, the agents
are included in the list of central nodes. To test the network repair behavior, we simulate
the failure of “RC1” which causes the agent to lose connectivity with all other agents and
the base station. As seen in Fig. 5.4b, this sudden failure of “RC1” causes the CMET(+)
value of “RC2” to drop below Crygresu. Given the logic of Algorithm 8, the network repair
behavior is activated in Agent “RC2,” compelling “RC2” to move towards the next closest
central node (in this case, “RC1”). As seen in Fig. 5.4d, “RC2” takes the place of the failed
“RC1” agent, effectively repairing the network. However, as seen in Fig. 5.4c, as agent “RC2”
moves the CMET(+) value of “RC3” decreases below Cryrgsy. This, in turn, triggers the

network repair behavior in “RC3,” causing “RC3” to take the previous position of “RC2.”
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Criresi = 20

LEGEND

Above CrHresH

At CrrresH

= Below CTHRrESH

(b) Failure of agent “RC1”

Criresu = 20

el H ...A,,,\...._,_

(c) Agent “RC2” moves to repair the network  (d) Agent “RC3” goes below Cruresu & repairs net-
work

Figure 5.4: The first simulation study demonstrates the network repair behavior described
in Algorithm 8. The study demonstrates the cascading effect of the network repairing
process on multiple agents (“RC2” and “RC3”).

While this experiment contains only five agents, it demonstrates the expected cascading
effect associated with the network repair behavior on all agents influenced by the failure of
a central node.

The second simulation study is shown in Fig. 5.5. For this test, &k = 1000 and Crpresg =
25. As in the previous simulation experiment, Fig. 5.5a shows the initial configuration of
the communications graph along with the COMM(+) values for each node with its parent.
In this study, “RC5” acts as the only non-root central node (i.e., excluding the base station)
in the network. As such, we simulate the failure of agent “RC5” to investigate the system’s
response. Figure 5.5b demonstrates the effect of the failure of “RC5.” The failure of “RC5”
triggers the network repair behavior in “RC4,” causing it to take the place of “RC5” and
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LEGEND

CrhresH = 25 CrhresH = 25

Above Craes+

At Crisesst

Below Crisesn

(a) Agent starting configuration (b) Failure of “RC5”

Crhrest = 25 CrhresH = 25

(c) Agent “RC4” moves to its closest central node (d) Agent “RC4” repairs the network
(“R/CE)”)

Figure 5.5: The second simulation study demonstrates how the network repairing process is
only initiated by agents affected by the communication dropout (“RC4”).

repair the network (Fig. 5.5¢). Note that none of the other robots were affected by the
failure of “RC5” as “RC4” moved to repair the network, enabling the other agents to
continue their tasks. This experiment demonstrates the effectiveness of the network repair

behavior in scenarios where only a single communication node fails.
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5.5 Hardware Trials

This section details a set of hardware trials that were conducted on a team of wheeled
robotic platforms. We demonstrate both our network construction technique and network
repair behavior on the small robotic team. We conclude the section with a discussion on

computation time.

*

i

o) LEGEND =

= Above Crues
At Cresn

—— Below Criesu

7 Objective

(c) “RC2” & “RC3” continue to different waypoints  (d) “RC1” fails disrupting “RC2”

CrhresH = 20

(e) “RC3” returns to repair the network (f) “RC2” continues on its mission

Figure 5.6: A system hardware test for the network construction and network repair
behaviors. Each image is composed of a full-color aerial image on the left and a corresponding
RViz visualization on the right. The RViz screen displays the base station (BST), the
agents, the environmental point cloud as mapped by the agents, and the communication
boundaries for each node in the communication graph.
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5.5.1 Convoy & Network Repair Trials

We choose to demonstrate both the network construction behavior and the network repair
behavior on a three-agent robotic team. Fig. 5.6 shows the time lapse of a mission in a
city environment using the hardware described in Section 5.3.1. For this hardware trial,
k = 500 and Cryrrsuy = 20.

In Fig. 5.6, each real-world image is accompanied by the corresponding point cloud
map —visualized in RViz— that is seen by the operator at the base station. The RViz images
illustrate how each node contributes to expanding the communications boundary, enabling
the team to achieve objectives that were initially beyond the reach of the communications
system. The subfigures also demonstrate the progression of the network construction
throughout the mission. Specifically, the different images illustrate how the agents modify
their behavior to function as communication nodes, thereby ensuring communication with

the base station.

Figure 5.6a shows the agents starting as a convoy (formation) in the vicinity of the
base station. The agents are tasked with achieving the waypoints marked by the pink stars
in Fig. 5.6. The behaviors and formation structure associated with the agent convoy are
further detailed in Chapter 2 and in our previous work [49]. As the mission progresses,
“RC1” “peels-oftf” as it reaches the communications boundary created by the base station
and establishes itself as a central node (Fig. 5.6b). This enables “RC2” and “RC3” to
continue on the mission, as they can now use “RC1”, which is stationary, to relay messages
to the base station. “RC1” effectively “extends” the communications boundary, enabling
“RC2” and “RC3” to reach the first waypoint.

Agents “RC2” and “RC3” then encounter a fork in the road that requires the two agents
to travel in different directions to achieve two new waypoints. The agents diverge to explore

each route, as shown in Fig. 5.6c.

To demonstrate the network repair behavior (Algorithm 8) during active operations, we
then trigger a failure in “RC1” that causes it to drop from the communications network.
This is shown in Fig. 5.6d. The failure of “RC1” causes “RC2” and “RC3” to leave the
communications-accessible area, as the signal strength experienced by both robots drops
below Cryrrsg. The network repair behavior causes “RC3” to replace “RC1,” enabling
“RC2” to continue its mission (Fig. 5.6e & Fig. 5.6f). This experiment demonstrates the
functionality of both the network construction and network repair behaviors in real-time on

robotic hardware for a real-world mission.
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5.5.2 Network Construction Trials

This section discusses the results of the network construction trials using both the “auto-
mated peel-off” behavior described in Section 5.3.1 and the maximin criterion described in
Section 5.3.2.

LEGEND

~ Above Crresi

At Crinesn

=~ Below Cruress

% Objective

BST RC1

24
y 36
sl 56

RC3

3 RC2
--

(c) “RC2” peels-off as central node (d) “RC3” reaches objective

Figure 5.7: A depiction of the automated peel-off behavior showing how robots in a convoy
“peel-off” and act as relays to enable mission completion. This behavior forms a crucial part
of the network construction technique. Each image showcases the communication graph
representing the network topology on the bottom right, and the physical layer representation
of the same tree overlaid on each image.

Fig. 5.7 demonstrates the “automated peel-off” behavior for a convoy of robots. For
this hardware trial, we set k = 500 and Crprgsn = 24. Fig. 5.7a shows the convoy starting
in the vicinity of the base station. Next, Fig. 5.7b shows the convoy progressing towards
the objective (represented as a pink star). As the convoy progresses to the objective, “RC1”
peels-off as its COMM(-) = Crgrgsn. Fig. 5.7c then shows the convoy’s progression until it

reaches the communications boundary, causing “RC2” to peel-off. Finally, Fig. 5.7d shows
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“RC3” reaching the objective, using “RC1” and “RC2” as communication relays.

The behavior of the maximin spanning tree is demonstrated in Fig. 5.8. For this
hardware trial, k¥ = 500 and Crgrgpsgy = 25. Each image shows the COMM(-) values
between pairs of nodes and the CMET(+) value for each node given by the maximin tree.
Fig. 5.8¢c and Fig. 5.8d show the two different outcomes of the experiment, with the former

being when all nodes are active and the latter being when “RC4” fails.

= Below Crsesn

* Objective

, ke 29
'-‘
RC5 i
(L]
(c) “RC2” reaches objective (d) “RC4” drops out, causing “RC1” to reach

CruresH and stop

Figure 5.8: Demonstration of the maximin criterion for constructing the tree. This criterion
considers weak links in the chain of relays (represented by the CMET(-) values for each
node), and not just the strongest connection. Fig. 5.8d shows “RC1” stopping despite
having a strong direct connection with “RC2”. This is because the connection between
“RC2” and “RC5” is weak, causing “RC2” to connect to “RC1” instead. Note that links
with zero signal strength have not been shown.

In Fig. 5.8a, “RC1” connects to the base station via “RC3.” As “RC1” moves towards
its objective, it finds a better connection through “RC2” as seen in Fig. 5.8b before reaching
its objective as seen in Fig. 5.8c. However, if “RC4,” which acts as the link between “RC2”
and the base station, fails, it weakens the connection between “RC2” and the base station.

This causes “RC1” to connect to “RC3” instead, causing COMM(-) = CrurrsH, triggering
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a peel-off. This causes “RC1” to fail to reach its objective, which is reflected in Fig. 5.8d.

The difference between the two cases is evident in Fig. 5.8b and Fig. 5.8d. In Fig. 5.8b
the CMET(-) value of “RC2” is 29 whereas it is 26 for “RC3.” Hence, as “RC1” approaches
“RC2,” it connects via “RC2” because its CMET(+) value is stronger than the “RC3” CMET (")
value. However, in Fig. 5.8d the failure of “RC4” causes “RC2” to connect to “RC1” instead,
as the “RC1” CMET(-) value is 25, which is higher than any of the other possible values
for “RC2. As a result, “RC1” remains connected to “RC3” and peels-off.

5.6 Conclusions

In this chapter, we have demonstrated how collaborative mobile robotic teams can be
utilized to create a mobile ad-hoc network (MANET) that enables communications in
communications-deprived environments. After demonstrating the ability to form a network
during a mobile robotic operation, we then showed a network recovery and repair behavior
that we have developed to address challenges associated with real-world operations. While
the presented hardware demonstrations demonstrate the technical competence of the system,
multiple avenues for improvement can be explored to enhance the robustness and capabilities
of the system.

Our experiments have demonstrated that accurate communication and signal strength
models can be utilized to inform the design of a communications network construction
technique. Realistic models of a robot’s communications systems are often highly coupled to
the hardware used in the system. As simple geometric models are presented in this chapter,
the robotics and communications community should continue to strive to develop increasingly
accurate models of signal and communications strength. Specifically, incorporating a more
accurate model of the communications system that accounts for object interference could
help identify better locations during the re-optimization process.

Second, but along the same line of reasoning, the lack of an available environmental
map before system operation requires the presented approach to be reactive in nature. By
this, we mean that agents must monitor the strength of the communication signal and
then “peel-off” as a reaction to poor signal strength. Developing a system that predicts
the environment map from a partial observation of the environment could be utilized to
decrease the required number of agents by allowing the agents to predict the edge of the
communication boundary before reaching it. Finally, developing an adaptive construction
policy that enables the system to estimate a communication model online could provide
additional benefits if environmental conditions cause the “true” communications model to

be out of distribution with the deployed model.
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The network repair experiments suggest that a more sophisticated graph optimization or
search approach should be employed to determine which agent is responsible for repairing
the network. The presented approach has high agent utilization, which is neither reactive
to nor predictive of environmental threats. It is clear that exploitative adversarial strategies
could be employed to compromise a team of robotic agents using the network repair strategy
presented in this chapter. Instead of requiring agents to reach the location of the parent
node in the maximin communications tree, a possible avenue for future research could
include reorganizing the communications graph topology by employing the computational
geometry techniques discussed in Section 5.2 on the already explored map. Alternatively,
relaxing the constraint on continual network connectivity could enable the use of techniques
such as intermediate or “repair” rendezvous points similar to those discussed in [50]. This
can result in a more effective agent utilization with minimal changes to the network topology.
Furthermore, our approach relies on the A* path planner to find a feasible path back into
the communications boundary. However, there can be scenarios where the planner does not
find a valid path because of unobserved regions of the environment. This limitation may

also be overcome by using the same aforementioned map prediction algorithm.
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6. Interaction-aware Control for Robotic Vegetation Override

6.1 Overview

When [I am] going through vegetation and driving through or over it, [I] always have it in
the back of my head how I am going to hit it. Typically, that is head-on with the front
bumper, as that will be the strongest point on the vehicle and gives me the best leverage

to run over [the vegetation] and go through it.

Ryan Arciero, Professional Off-road Driver

HE execution of off-road vehicle operations is influenced by the decision of whether
T to take a deliberate action to “avoid” or “strike” environmental objects [14]. As
seen in the quote above, when striking vegetation, professional off-road racing drivers
carefully internally model and allow for certain collisions to ensure safe travel off-road. It
stands to reason that in order to emulate the high performance of professional drivers in
off-road conditions, robotic vehicles will also need to consider the same decisions about
collisions. However, there is a significant imbalance of work in the development of the
“avoid” and “strike” actions for robotic platforms, with the majority of work focusing on
the “avoid” action. We believe that this imbalance has led to a capability gap in robotic
off-road operations that require vegetation override. Specifically, we claim that robot control
policies that rely solely on avoiding environmental objects exist within a paradigm that
both inadequately represents and models the challenges associated with off-road terrains

and environmental objects.

The goal of this chapter is to develop an interaction-aware control system that models the
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Figure 6.1: In this chapter, we focus on developing an interaction controller for vegetation
override. We draw inspiration from Ryan Arciero’s quote, which suggests that professional
racing drivers interact with vegetation in order to achieve their goals.
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effects of object interactions on the motion of a robotic platform. In particular, we focus this
development in the task execution layer of our architecture (see Fig. 6.1). This system must
provide a principled methodology for reasoning about interactions with vegetative objectives
(i.e., “striking”) and accurately capture the system’s motion when such interactions occur.

The system accomplishes this by:

1. efficiently modeling vegetation interactions through the use of existing low-

computation-cost vegetation override models,

2. generating dynamically-feasible interaction trajectories through the imposition

of collocation constraints on the vehicle’s motion model, and

3. operating in real-time to enable the maneuver of a nonholonomic wheeled robotic

platform through a cluttered off-road environment.

6.2 Introduction

For tasks such as on-road [73] and on-trail robotic operations, robotic vehicles generally
only demonstrate the need for avoidance capabilities. Requirements reaching back to the
Defense Advanced Research Projects Agency (DARPA) Grand and Urban Challenge(s)
[74, 75] reflect the need for certain areal or object avoidance behaviors. Thus, many
methods have evolved in the field robotics, planning, and control domains to address such
requirements. Expressing object avoidance as a general constraint in the state space for
both state-based planning [76] and for optimal-control-based approaches [77, 78] is well-
established [73]. Furthermore, the use of penalty-based methods for object avoidance [79]
and avoidance-guaranteed “proof-by-construction” techniques has seen renewed attention
in recent years [80, 81]. However, the quote above highlights the need to traverse objects,
and thus, only taking avoidance actions or forbidding contact may not accurately reflect
expert driving behavior.

Although works that develop the “strike” action set are fewer in number, the field
robotics, planning, and control communities have all evolved different means to reason
about collisions. The approaches from the field robotics community, such as classifying
objects as “strikeable” via visual measures of object geometry or through the use of virtual
and physical bumpers [82], draw from the practical needs of robotic platform operation.
High-level planning methods, such as those described by Rybansky [14], develop collision
rules that depend on the vehicle configuration and environmental structure to govern
expectations (for example, maximum traversal speed through an area) on vehicle operations.

Outside of treating contacts as disturbances, control approaches generally fall into two
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categories: through-contact models and hybrid-contact models. Through-contact models
attempt to capture the non-smooth physics of the interaction and directly evaluate those
physics during the determination of the control [83, 84, 85, 86]. Hybrid-contact models
develop rules-based functional mappings to model the changes of state associated with
a discrete event [87] such as a collision. These methods are commonly used in direct
collocation trajectory optimization problems for legged locomotion [88]. Unfortunately,
many of the techniques that enable contact for a “strike” action primarily focus on the
geometric representations of the terrain or object and do not capture all the necessary

aspects for traversing or “overriding” an object.

Due to the prevalence and need to interact with vegetation in the operating environment,
the off-road mobility and cross-country movement communities have a long history of mod-
eling such nongeometric requirements for vegetation with low computational requirements.
The U.S. Army Engineer Waterways Experiment Station [16] and the U.S. Army Engineer
Research and Development Center [89] have developed models for the override of different
post and vegetation classes. These studies contribute to larger mobility models, such as
the North Atlantic Treaty Organization (NATO) Reference Mobility Model (NRMM) [18],
which are used to analyze the capabilities of both crewed vehicles and robotic platforms
[17]. The NRMM continues to see advancements and refinements to develop higher-fidelity
representations of vegetative objects, with recent work focusing on improving override-force
modeling using a robotic test platform [90]. Yet, advancements in the vegetation-interaction
modeling domain are not solely captured within the NRMM. Rybansky [15] performed
a significant study that conducted several vegetation overrides with different classes of
vehicles. However, Rybansky’s mobility models remain confined to the domain of vehicle
mobility analysis and were not used in an online capacity for reasoning in robotic platform

operations.

Finally, work in the traversability-prediction domain for off-road robotic driving has also
demonstrated the capability to implicitly represent vegetative objects to a robotic system.
While many off-road driving datasets include multi-modal sensory data depicting vegetative
objects [91], other datasets may include vegetation interaction data itself [92] or label the
traversability of vegetative objects by considering the vegetation models from the NRMM
or Mason et al. [89] in the labeling process [93]. Implicit (model-free) representations of
vegetative objects can then be captured in the learned off-road mobility and traversability
policies for off-road operations [94, 95, 96, 97]. In particular, online learning methodologies
can leverage observed proprioceptive data [94] or human demonstrations [95] to adapt the
system’s behavior online in response to environmental stimuli; however, these works do not

often directly model collisions.
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In particular, the current state-of-the-art for off-road robotic systems that perform
traversal with collisions utilizes haptic feedback to update the robotic system’s confidence
in its environmental obstacle model online [98]. Undoubtedly, when model confidence
is low, such a learning-based approach provides a robust foundation for constructing a
model representation online. However, the approach does not leverage pre-existing collision
models, which enable aggressive maneuvers that exploit awareness of the model during

online operation.

6.3 Method (Algorithm) Overview

This section begins with a description of direct collocation methods for trajectory opti-
mization and then discusses vegetation and vehicle modeling. The proposed trajectory

optimization control technique is then motivated by the description and models.

6.3.1 Direct Trajectory Optimization Techniques

Trajectory optimization problems determine an optimal state and control sequence that
minimize an objective function [88]. Equation (6.1) shows an objective function of the
trajectory optimization problem where the boundary term is not explicitly dependent on
time
Ly
J(to, tr,x(t),u(t)) = Jp(x(to), x(tr)) + t w(x(7),u(r))dr, (6.1)
0
and where decision variables to,t¢,x(t), u(t) are, in order: the initial time, the final time,
and the state and control trajectories. Terms Jf(-) and w(-) are the boundary and integral

cost terms. The objective function is then minimized in a mathematical program

o, ot x(B)u(), (6.2)
subject to  x(t) = f(¢,x(¢), u(t)), (6.2b)
(. x(t), u(t)) < 0. 620

g(to, ty, x(to), x(ts)) <0, (6.2d)

where (6.2b) are the system dynamics and (6.2c) and (6.2d) represent general path and
boundary constraints, respectively.

Direct trajectory optimization techniques approximately solve the mathematical program
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for the trajectory optimization proposed in (6.2) by discretizing and transcribing the problem

into a more general nonlinear program. A standard-form nonlinear program is

min R(z), (6.3a)
subject to ¢(z) =0, (6.3b)
d(z) <0, (6.3¢)

where all functions are assumed to be at least C? smooth. Direct collocation methods
represent continuous-time trajectories with a spline of N time-parameterized polynomial
segments; thus, the methods discretize the continuous-time trajectory via the N + 1 knot
points. To ensure that the solution to the program posed in (6.2) is feasible with respect to
the system dynamics as described in (6.2b), an integral form of the dynamics is approximated
through numerical quadrature. Through the use of different quadrature rules, classically
trapezoidal or Simpson quadrature, different approximating polynomials are recovered.
These approximate integrals are thus posed as collocation constraints in (6.3b). Additional
integral (6.2c) and boundary constraints (6.2d) are posed as constraints in (6.3b) and (6.3c).
Finally, a discrete-time representation of the objective function in (6.1) must be posed for
the nonlinear program (through approximations such as quadrature) and via an augmented

state variable z containing all the decision variables at the knot points.

6.3.2 Vegetation Override Models

The vegetation override models developed by the off-road mobility and cross-country move-
ment communities, including those by Blackmon and Randolph [16] and Mason et al. [89],
abstract complex collision interactions into useful low-computational-cost approximations.
These approximations generally characterize the required force, work, or velocity a vehicle
needs to override a subset of vegetation, given some parameterization of the vehicle or

environment.

2012 Mason Override Model

Mason et al. [89] presents a model for vertically embedded objects in the ground. These
objects consist of posts and small trees. Equations are introduced in Mason et al. [89]
to capture the necessary override force for post-like objects, which were then validated
primarily through pull tests. The model in [89] is mainly characterized by vehicle mass and

geometry (pushbar height), vegetation and emplacement geometry, soil parameters, and a
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series of regression coefficients. Mason et al. [89] then relates a series of energy expenditure
and traversal velocity equations from collected data and provides a force model. Equation
10 from [89] describes the minimum velocity at which the vehicle is required to travel in

order to override a post, voyer, and is given as

2k DL
Vover = \/ 2d L (64)

m(h+ 0.5 L)’

where L; is the burial depth, m is the vehicle mass, h is the height from the ground surface
at which the override force is applied, D is the post diameter, 4 is the dry density of soil,
and « and k are empirical factors derived as described in Mason et al. [89]. As seen in (6.4),
weather conditions directly influence the required minimum velocity for override, given that

a decrease in the dry density of soil yields a lower override velocity.

1968 Blackmon Override Model

The model presented in Blackmon and Randolph [16] was derived from a series of vegetation
override tests conducted on different vegetation types in various environments. Blackmon
and Randolph [16] provide unique regressions for force and energy expenditure for these
different vegetation types, including singular coniferous and hardwood trees, arrays of
multiple trees struck in unison, and “clumps” of bamboo. From continuous measurements
of pushbar force, drivetrain metrics, distance traveled, time, measurements of the impacted
trees, and characterizations of the aftermath of the collision, Blackmon and Randolph [16]
construct a model primarily parameterized by the geometry of individual or multiple trees
(for example, the radius of a tree or the clump diameter).

In this chapter, the authors consider only experiments that require the override of a single
tree or post. While Blackmon and Randolph [16] provide additional override models, this
simplification to a single class of vegetation was drawn from limitations in the perception of
the necessary characterizing features for arrays of trees. Thus, the methodologies presented
herein are not limited in scope to single standing trees, aside from the limits discussed
in the original [16] manuscript itself. Given this simplification, equations B10-B12 from
[16], which describe the force and work required to override a single standing tree, are of

particular interest. These equations largely take the form
Fy = K;d3, (6.5)

and
W = K,d, (6.6)
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where Fj, is the horizontal pushbar force, W is the work required to fail a single standing
tree, d, is the stem diameter, and Ky, K, are constants that are dependent on vehicle
geometry (e.g., pushbar height).

Note that one advantage of Blackmon’s model over Mason’s model for use onboard
robotic systems is that the model is dependent solely on a visibly measurable quantity (the
stem diameter). This single-parameter dependency yields a significantly lower requirement
for robotic sensing capabilities and a priori soil characterization, likely at the expense of
model fidelity.

The measure of work produced from Blackmon’s models may then be combined with
additional vehicle information (e.g., the operating mass) to generate a suitable vyye, for
a sensed piece of vegetation. The equivalent relations to determine this v,y may be
calculated in the manner discussed in Mason et al. [89]. This allows for either model to be

used in the presented trajectory optimization techniques.

6.3.3 Vehicle Modeling

Figure 6.2: The modified Polaris RZR UTV

Although the mathematical outline provided above can be applied to multiple dynamical
systems, the platform used in this chapter is shown in Figure 6.2. The platform is a modified
Polaris RZR utility task vehicle (UTV) that can travel up to 20 [m/s| in cluttered off-road
terrains. The vehicle is ruggedized to withstand collisions and is equipped with an onboard

sensor suite that contains monocular and stereo cameras, as well as multiple Light Detection
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Property Unit Magnitude

Ly [m] 3.785
L [m] 2.972
Ly (1] 1.412
Lnose [m] 0.915
Bnose [m] 0.533
w [m] 1.828
m [kg] 901.0

Table 6.1: Platform Parameters

and Ranging (LiDAR) sensors. A nonlinear bicycle model was used to represent the vehicle
dynamics. The vehicle state was modeled as: X = [pg, py, ¥, d,v]. In order, the elements of
this state vector are the vehicle: x-position, y-position, heading, steering angle, and velocity.
The model of the vehicle controls includes acceleration and steering rate: u = [a, 6]. The

continuous-time vehicle dynamics are

Pz = v * cos (¢ + atan ( Ly ))s

Lx6
) . L
Py = v *sin (¢+atan(L*f6)),
v Ly (6.7)
= Lcos(atan(L*é)) * tan(d),
§=19,
V= a,

and the parameter values may be found in Table 6.1. The vehicle’s total length is L,
wheelbase length is L, front axle to center of mass distance is L, front axle to nose distance

is Lnose, lower bull-bar strut height is hyose, width is w, and the mass of the vehicle is m.

6.3.4 Direct Collocation for Vegetation Override

A central aspect of the collision models presented in the previous section is that each model
captures the loss of kinetic energy due to the collision, corresponding to the failure of the
vegetation or post. However, the structure of the trajectory optimization problem and the
nonlinear program in (6.2) and (6.3) require at least C? smooth functions to represent the
dynamics in the collocation constraints accurately. Thus, to incorporate the previously
mentioned vegetation models in the trajectory optimization, the impact dynamics must be

accounted for. From the formulation, the collocation constraints are evaluated at specific

117



6. Interaction-aware Control for Robotic Vegetation Override

collocation points, which need not be the same as the knot points described earlier. This
realization gives rise to the idea of introducing a pointwise-in-time discontinuity in the form
of a functional map, commonly referred to as a “jump” map, between the two states that
represent the collision. This concept exists at the center of hybrid-contact representations
of collisions and multi-phase direct collocation methods, and is discussed in more detail
in [87] and [88]. These approaches have not been implemented using the aforementioned

vegetation models.

To capture the effects of the collision at a knot point, a mapping must be defined to
transition the state at the time of collision, x(t.,), to a new post-collision state. That knot
point representing the pre-collision state, Xcol = X(tc0), is mapped to the next knot point
via the mapping

Xk+1 = fcol(xk)a (6'8)

where subscript k is a general indexing of the knot points, instead of via the selected
quadrature rule. While the technique is compatible with the different collision models as
described in the vegetation modeling section, this work represented the collision as a loss of

velocity at the point of collision. More specifically,
X1 = feol(Xk) = Xk — [050; 0 0; Voper ], (6.9)

where vgper could be defined (for example, via Mason et al. [89)’s model) in (6.4), where the
last element of xj corresponds to the velocity in (6.7). However, enforcing such a mapping
at the point of collision does not solely account for the effects of the collision. For the simple
jump map in (6.9), collisions could propel the system in reverse at low speeds, so either
a guard function or a lower bound on the minimal allowable velocity must be enforced
to ensure compliance with physical laws. A natural requirement to ensure the vegetation
is overridden is to enforce that the velocity reaches at least voper at the time of collision.
Just as the velocity constraint is imposed at the point of collision, additional constraints or

allowances may be associated with the knot point x¢c-

Unfortunately, specifying the time of contact or the contact sequence is a non-trivial
matter. For the posed collision problem, although the time of collision is unknown, the
point in space at which the contact occurs is known. Fixed time-stepping methods that
discretize the problem posed in (6.2) with a constant time step are challenging to use, as
specifying which particular knot point (if any) will represent X0 is equivalent to knowing
the specified contact sequence at best and may result in an unsolvable problem at worst.
However, by incorporating the time step used during the determination of the collocation

constraints into the decision variables and allowing the solver to determine a unique time
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step for each segment, the knot point that specifies the collision takes on new meaning.
Instead of representing a specific time of collision, the knot point x.o1 can now be enforced

as a specific state at the point of collision through an equality constraint
Xcol = Xobj (610)

where X,p; is a positional representation of the object in the state space. Equation (6.10)
is then added as a general equality constraint in (6.3b). Selecting the specific index of X¢e)
is a method hyperparameter. Associated with this additional time decision variable is the
need to provide bounds on the sizes of the time steps. Simple inequality bounds may be
posed as hjpy < h < hpign and hyg, > 0. This constraint on the time step lower bound
ensures that the solver does not take unphysical actions.

Finally, if no feasible trajectories are found, such as when the required velocity to
override a piece of vegetation is not obtainable before collision, the platform is commanded
to remain stationary or to take an emergency avoidance action. While no uncertainty in the
position of the object was considered in this chapter, uncertainty in the measurements of
the vegetation was addressed by taking the maximum vy, as prescribed by the vegetation

model during the time the vegetation was observed.

6.3.5 Algorithm Overview

For a given vegetation model (such as Mason et al.’s 2012 post-override model), a set of
vehicle dynamics, and the interaction model capturing the “jump map” in the prior section,
an operational logic can be implemented on a robotic platform to override vegetation-like
objects in the environment. The approach is outlined in Figure 6.3. Note that this approach
assumes that any vegetation considered for override may be overridden if the override
velocity can be reached from the initial state, given the dynamics (6.2b).

This logic is demonstrated in an example case motivated by the presented experiments.
Given the vehicle’s starting location (position “A” in Figure 6.3), a target (goal) location
(position “B” in Figure 6.3) and a single intervening piece of vegetation (located at x; in
Figure 6.3), the vehicle computes the override velocity (voyer) from the selected override
model. Different characteristics of the observed piece of vegetation may imply that different
override velocities are required at the point of collision (x¢1). For the example figure,
assume that the vegetation located at x; has an override velocity that scales with trunk size.
For the given trunk size, the required override velocity is ve, outlined in purple. In order to
be successfully traversed, the vehicle must reach a velocity of at least vy at the point of

collision. For vegetation with smaller trunk sizes (for example, vegetation that requires an
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override velocity vy corresponding to the green line), a smaller velocity may be achievable
given the initial velocity of the vehicle. For vegetation that requires a large override velocity,
the required velocity (vs > veor, in red) may not be overridden safely, as the required velocity
can never be reached. The vehicle then executes the corresponding action set determined by
the trajectory optimization technique that corresponds to the velocity profile that achieves
a velocity equal to or higher than the override velocity (vo in this example instance). In the
example, either velocity trajectory that takes a velocity higher than the override velocity
is thus valid, and a further selection of which velocity is taken depends on other design
choices. For example, an emphasis on an added margin of safety may prefer the velocity
trajectory corresponding to v., while a preferred minimum-kinetic-energy approach may
take the velocity trajectory corresponding to vs. In this chapter, we select the trajectory
that minimizes the point-wise £s-distance evaluated at the knot points between a reference

velocity (nominal travel speed) and the trajectory.

Speed Required vs. Trunk Size \

P |
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Figure 6.3: Control logic diagram of a vehicle performing a vegetation override in the
presented control framework

6.4 Simulated Vegetation Override

Before running on the vehicle hardware, a series of tests were conducted in simulation. For
all simulation tests, the Mason et al. [89] model was utilized, with modifications limited to
the vehicle and post parameters (L, m, h, D).

An example override for a 31.75 [mm] post that is embedded 0.3048 [m] into the ground
is shown in Figure 6.4. The post is placed 20 [m] in front of the robot in the x-direction. In

the figure, the top plot represents distance from the goal, and the bottom represents the
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simulated velocity. Of particular interest in this simulation is the collision that occurs at the
20 [m] mark, where the velocity drops substantially due to the collision with the simulated
post. In the velocity graph included in Figure 6.4, this drop in velocity is labeled vgyer.
To decrease the time needed to solve the trajectory optimization problem, the problem
was initialized by dissecting the trajectory into m segments, where m is the number of
expected collisions plus one. For a scenario with a singular object that must be overridden,
such as in Figure 6.4, the entire trajectory that is generated is coupled together at the
collision points. This is shown by the two colored areas in Figure 6.4. The bifurcation
of the trajectory requires that an additional boundary be generated for each section. For
the presented scenario, the initial candidate solution was then constructed by linearly
interpolating between the start position and Xqpj, and then between Xqp,; and the end
position. While additional optimization could be performed, for the problems considered in
this chapter, the initialization dropped the number of solver iterations by around a third.
Note that the one exception to this statement is in the initialization of the control trajectory,

in which the initialization held constant values.
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Figure 6.4: Simulated vegetation override for 31.75 [mm] post. The controller achieves an
actual velocity (green) above the required threshold.
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6.5 Vegetation Override Hardware Results

Three hardware results are presented in this section. The first two results utilize post-
override models from Mason et al. [89], and the third result employs the longitudinal override
model for a single standing tree, as described in Blackmon and Randolph [16]. In the
experiments, the vehicle was commanded to travel at a nominal speed of 5 [m/s] for the first
two experiments and 3 [m/s] in the final experiment. A model predictive controller, similar
to the unconstrained version presented in Jianyu et al. [77], was implemented as a tracking
controller. The results presented in Figure 6.6, Figure 6.8, and Figure 6.10 demonstrate that
the tracking controller follows the trajectory as determined by the trajectory optimization
controller.

The reported velocity for each run was calculated using a feature-based Simultaneous
Localization and Mapping (SLAM) methodology known as “Super Odometry” [99]. Su-
per Odometry fuses multiple sensing modalities, including LiDAR, Inertial Measurement
Unit(s) (IMU), and Global Navigation Satellite System (GNSS) to simultaneously provide a
registered pointcloud map of the environment and an estimate of the system odometry. An
XSens MTI-630 AHRS IMU (“XSens”, one onboard) and Carnegie Robotics Duro GNSS
(“Duro”, one onboard) were fused in the SLAM setup to generate a state estimate with
a position accuracy greater than 0.4 [m] and a velocity accuracy greater than 0.08 [m/s].
While operations in Experiment 1 and Experiment 2 were conducted in environments where
GPS could sufficiently localize the robotic system, in regions with heavier canopy cover,
such as in Experiment 3, localization from GPS data alone may be difficult. However, the
large number of unique environmental features (e.g., tree trunks) captured by the onboard
LiDAR provided sufficient environmental characterization to localize the robotic system.
Initial concerns that matched features existed primarily on the overridden object proved to

be unfounded in sufficiently dense forest environments.

6.5.1 Experiment 1 - Straight Line Test

The first experiment that was conducted on hardware was a straight-line test. The object
that the platform collided with was a 31.75 [mm)] pine dowel rod that stood 0.914 [m] above
the ground and was embedded around 0.305 [m] below the ground. The soil surrounding
the dowel rod was compacted by hand. It had not rained for more than a week, and soil
conditions were dry, even at a depth of 0.305 [m]. See Mason et al. [89] for further discussion
on the influence of weather conditions on required minimum override velocity. The minimum
required override velocity computed using Mason et al.’s 2012 model was 2.7118 [m/s]. The

post was placed around 11.70 [m] from the front of the robotic platform. The red arrow in
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Figure 6.6 marks the position of the object as seen by the robotic platform’s perception
system. In Figure 6.6, the vehicle began its trajectory at viewpoint zero. GPS had the
vehicle localized at the center of the blue circle in Figure 6.6 at the time of collision. The

vehicle’s end goal is depicted as a red square.

In order to constrain the platform into overriding the vegetation, “keep-out zones” were
enforced around the vehicle. These zones are all areas shown in bright pink in Figure 6.6.
The gray regions in Figure 6.6 indicate all the surrounding objects that are above a height
limit of 0.5 [m]. The planned vehicle trajectory is shown in green. Platform viewpoints are
provided in Figure 6.6, which are captured along the executed trajectory. A subset of key
viewpoints corresponds to the numbers located on the obstacle and collision map subfigure
in Figure 6.6. Note that the vegetation in each photo is highlighted with a bounding box
for better visibility of the extremities of the vegetation.

The vehicle reached a speed greater than the necessary threshold in order to impact
the vegetation. The collision with the pine dowel rod occurred at around 4.5 [m/s]. The
registered collision time was earlier than expected, but this is likely due to the fact that
the point of time of collision is calculated when the vehicle first makes contact with the
vegetation, and the vehicle models used in the collision planning did not account for the
length of the vehicle’s nose. The vehicle suffered no damage during the test, but the post

failed almost completely. A pair of figures depicting the post before and after the experiment

Pre-collision Object Post-collision Object

(a) (b)

Figure 6.5: Two images of the 31.75 [mm] post used in the first experiment. Figure 6.5a
demonstrates the condition of the object before being struck by the vehicle. Figure 6.5b
demonstrates the condition of the failed object after being struck by the vehicle.
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are shown in Figure 6.5.

After the collision, the post remained at an angle, with the end of the post that was
suspended in mid-air sitting around 0.20 [m] over the ground surface. The post had displaced
some soil, as evident in the post-collision subfigure in Figure 6.6. While the experimenters
compacted the soils before the tests, this displaced soil may be evidence of a lack of strong
compaction at the surface. The post failed roughly 0.271 [m] from its bottom-most point, a

little below the ground plane.
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6.5.2 Experiment 2 - Post Override Test

The second experiment used the model from Mason et al. [89] to represent the post for
override. This post is 25.4 [mm] in diameter, stands 0.914 [m] above the ground, and
is embedded around 0.305 [m] below the ground. The parameterization of the soil was
assumed consistent with the results found in Mason et al. [89]. This yielded an override
minimum velocity of 2.4255 [m/s]. The post’s position is marked with indicator “B” in
Figure 6.8. Additionally, the electrical pole in Figure 6.8 that may be seen in viewpoint
zero is indicated with an “A” in the collision map for localization. The vehicle began its
trajectory at viewpoint zero. GPS had the vehicle localized at the center of the blue circle
in Figure 6.8 at the time of collision.

The vehicle reached the target speed and x-coordinate position at the correct collision
time. Again, note that the vehicle’s nose is making contact with the pole at the time of the
collision. Another thing to note is that the vehicle did strike the post on the passenger side
of the front bull-bar. This is a near-head-on collision with the post, but the alignment was
meant to be towards the center of the bull-bar, not the side.

After the collision, the post was completely failed by the platform. Additionally, the
post had been slightly pulled out of the ground by around 50 [mm]. Figure 6.7 contains an
image of the failed post. As in Experiment 1, the platform was not harmed.

Pre-collision Object Post-collision Object

(a) (b)

Figure 6.7: Two images of the 25.4 [mm] post used in the second experiment. Figure 6.7a
demonstrates the condition of the object before being struck by the vehicle. Figure 6.7b
demonstrates the condition of the failed object after being struck by the vehicle.
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6.5.3 Experiment 3 - Small Tree Override Test

The final experiment employed a simplified model from Blackmon and Randolph [16]
to calculate the required override velocity for the small piece of vegetation (a tree). In
Blackmon’s model, the expression for the required work needed to fell a single standing
tree relies on the diameter of the stem. This information, combined with vehicle inertial
information, may then be used to calculate an override velocity in the manner presented in
Mason et al. [89]. As the tree does not maintain a uniform radius, the average width of the
tree at the point of impact (81.8 [mm]) was used as an approximation. This measurement
yielded a minimum override velocity of 0.758 [m/s]. The tree’s position is approximately at
the center of the yellow box in Figure 6.10. The vehicle began its trajectory at viewpoint

zero, and the GPS had the vehicle located within the blue circle at the time of collision.

Pre-collision Object Post-collision Object

(a) (b)

Figure 6.9: Two images of the 81.8 [mm]| tree overriden in the third experiment. Figure 6.9b
demonstrates the condition of the object before being struck by the vehicle. Figure 6.9b
demonstrates the condition of the failed object after being struck by the vehicle.

128



6¢1

Robot Obstacle and Collision Mapping

Aerial View of Testing Area

20

15

Position [m]

=
1=}

Wiewpoint 0 Viewpoint WViewpi Viewpoint 3

Figure 6.10: The third hardware experiment: a straight line trajectory through an embedded 81.8 [mm] tree.

Reported Vehicle Position vs. Time

Reported and Commanded Velocity vs. Time

—— Reported X Position

—— Reported Y Position

=== Collision Time

==~ Expected X-Coordinate Collision Position
=== Expected Y-Coordinate Collision Position
=== Nose Position at Collision Time

=== \ehicle Width Extremes

velocity [my/s]
i

—— Reported Velocity

— velacity from Integrated XSens
Velocity from Integrated Dure
wheel Encoder Velocity

— Commanded Velocity

=== Collision Time

=== Collision Min Velacity

Time [sec|

WViewpaint 4 Viewpoint §

Viewpaint &

OPLLIOA() UOIIBISIA 91300} I0f [OIJUO,) dIBRMEB-TUOIIORIIIU "]



6. Interaction-aware Control for Robotic Vegetation Override

The vehicle reached the target speed and x-coordinate position slightly before the
collision time (0.48 [s]), which was likely due to the poor velocity tracking exhibited by the
longitudinal controller at times 6-10 [s]. At around 12 [s], the vehicle’s nose made contact
with the stem of the tree, yielding an immediate slowdown that is reflected in the vehicle’s
reported velocity. The reported velocity loss from Super Odometry was 0.732 [m/s], which
is lower than the expected loss of 0.758 [m/s]. Expectantly, integrating the IMU and GNSS
output also directly reflects this slowdown in velocity. After colliding with the tree, the
vehicle continued to roll until it came to a complete stop.

At the point of collision, the tree was overridden as shown in the point-of-view camera
angles in Figure 6.10. However, after the vehicle traversed over the tree, the root structure
of the tree returned it to an upright position. The final resting position and orientation of

the tree after collision are shown in Figure 6.11.

Figure 6.11: A final location and orientation of the tree that participated in Experiment 3.

6.5.4 Discussion

The approach presented in this chapter utilizes existing low-computation-cost collision
models to capture the effects of interactions with vegetative objects in the environment,
enabling the design of a trajectory capable of overriding that vegetation. The approach
leverages the robotic platform’s onboard perception system to estimate the parameters of

the vegetation models (e.g., tree diameter), which is then used to fit the collision model.
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While there is inherent uncertainty in the measurement made by the onboard sensor
suite, a conservative approximation (e.g., taking the largest-observed diameter in a time
window) is utilized in this chapter to estimate the parameters of the vegetation model. Such
approximations could lead to overly conservative behaviors when overriding vegetation of
significant size, but allow for the system to model vegetation interactions solely through
its onboard sensors. The generated trajectory captures the environmental interaction by
modeling the expected loss of velocity experienced by the vehicle due to the interaction.
This capability enables the vehicle to make real-time decisions about whether to override
post-like environment objects and how to maneuver the wheeled robotic platform through
a cluttered off-road environment.

The hardware trials were expected to show losses in kinetic energy due to the collision;
however, surprisingly, no significant loss of kinetic energy was experienced during the
collision with the posts. While the vehicle engine was in use during the impacts presented
in this chapter, and the bull-bar had a compliant mount, the loss of energy associated
with both experiments was expected to have resulted in a larger drop in the kinetic energy
than was observed. The only experiment that reflects an observable drop in kinetic energy
results in an equivalent loss of velocity of 0.732 [m/s] on collision, which is lower than the
predicted value of 0.758 [m/s]. This final experiment suggests that a loss of kinetic energy
can occur during interaction with the post, and that a dynamically feasible interaction
trajectory should account for this loss to more accurately represent the real-world effects of

the vegetation override interaction chosen by the robotic system.

6.6 Conclusions

The off-road operation of robotic systems remains a challenging area of research. It is not
only clear from robotic-operated off-road vehicles, but also from human-operated off-road
vehicles, that the unstructured nature of the terrain and any associated uncertainty yields
a problem that is drastically different from on-road or on-trail driving. The presented work
advances the state-of-the-art in off-road navigation by addressing vegetation interactions
through the use of online hybrid dynamic optimization-based vehicle controllers that
leverage classical vegetation override models. This understudied area of off-road driving has
a wide range of applications and numerous areas for improvement to bring robotic platform
operations more in line with those of expert human operators.

In this chapter, we present a trajectory optimization method that combines hybrid
dynamics, a free-time formulation, and existing parameterized vegetation models from

the off-road mobility and cross-country movement literature to override environmental
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vegetation. Our method works by enforcing minimum velocity constraints, ensuring that
collisions with the vegetation occur at a minimum override speed. These collisions occur at
a designer-specified index of collision, but the designer need not select the time of collision,
as that is handled directly by the solver.

While the collisions modeled in this chapter occur at a unique instance in time, future
extensions should also look into addressing extended collisions with distributed objects,
such as dense foliage. General improvements to the algorithm include changing the vehicle
model to capture the frontal geometry and better representations of vegetative objects. Fur-
thermore, exploring the implications of the designer-selected collision index hyperparameter
and developing automated approaches to select that index optimally should be a priority.

In particular, we postulate that extending the study presented in this chapter to account
for environmental aleatoric and epistemic uncertainty directly could provide a means for
safer off-road behaviors. Of larger concern is that the provided vegetation models are
themselves approximations of the vehicle-vegetation interaction, with factors that can be
non-observable (e.g., root depth) or difficult to monitor (e.g., soil moisture) in real time.
The authors believe that incorporating information-seeking behaviors to investigate model
quality or including a measure of vehicle-vegetation interaction model confidence with
respect to previously overridden vegetation should be a priority for the wider community.

Finally, we urge the off-road mobility community to continue developing and refining low-
computational-cost vegetation interaction models and datasets for use by robotic systems.
The algorithm presented in this paper leverages low-computational-cost representations
of vegetation interactions to perform overrides; however, its extensibility to other types
of vegetative and commonly encountered non-vegetative objects is dependent on these
models. As an alternative to developing explicit vegetation-interaction models, the implicit
models developed in learning-based approaches continue to show powerful advances in
off-road vehicle control. However, many of these approaches are limited by the availability

of high-fidelity off-road interaction data or representative simulated data.
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Chapter 7

Interleaved Planning and Control

for Vegetation Override

Our second supporting work on interleaving planning and control methods for vegetation
override was presented at the 215' ISTVS International and 12th Asia-Pacific Regional
Conference of the ISTVS in Yokohama, Japan.
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Two-Level Robotic Planning and Control System for Vegetation Override,” in Proceedings
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Yokohama, Japan, October 2024
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URING off-road operations, mobile robotic platforms often encounter objects that

D influence the platform’s route. As determining the outcome of an interaction with an
object (e.g., overriding) is difficult, many robotic planners are designed to avoid interactions
with all environmental objects. Yet, this object-adverse planning behavior is not reflected in
the actions of expert human operators, who may interact with objects to find a viable path
towards their goal. In this chapter, our objective is to enhance the performance of robotic
traversals in off-road terrains by developing a planning paradigm that enables safe contact
with environmental objects. Not only will this enable our robotic agents to traverse complex
terrains, but we can then also leverage this planning paradigm to provide estimates of our
task allocation costs in the task allocation layer. As shown in Figure 7.1, this capability
provides a new context to the environmental information used in the task allocation layer.
Specifically, we design a two-level hierarchical planning and control system that couples a
contact-informed regional motion planner with contact-constrained local nonlinear trajectory
optimization techniques. The approach is demonstrated for classes of vegetative objects
that are characterized by existing parameterized collision models from the terramechanics
community. The top level of the hierarchy combines tree search with a set of override
(velocity) constraints derived from these collision models during the search for a minimum-
time trajectory towards the platform’s goal. This minimum-time trajectory is then passed
to the lower level of the architecture, which utilizes direct collocation and model predictive
control techniques to ensure that the velocity constraints are enforced during the execution
of the trajectory. The capabilities of the architecture are shown both in simulation and

onboard a robotic platform, where vegetation is sensed, reasoned about, and then overridden
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Figure 7.1: In this chapter, we focus on developing an interaction-aware planning system,
specifically for vegetation override. This task execution layer capability can then be leveraged
to provide more accurate task costs at the task allocation layer.
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depending on the environment, platform, and object geometry.

7.1 Introduction

When operating in the field, off-road vehicles encounter a wide range of complex terrains.
These terrains can vary greatly, demanding highly specialized and intelligent maneuvers
for each situation. Autonomous systems are increasingly used to complement the decision-
making of an expert driver and determine the “best” route (e.g., the fastest) through the
terrain. One class of terrain that poses a unique challenge for off-road vehicle drivers is
forest-like terrain, where vegetation is often encountered during operation. Rather than
navigating around this vegetation, expert drivers often decide to override or “strike” specific
pieces of vegetation to minimize the travel time to a destination.

However, determining when to strike objects in an off-road terrain is not a straightforward
decision, even for expert human operators. To guide operators and logisticians, the off-road
mobility and cross-country movement communities have produced models that consider
both the geometric and inertial properties of a collision to determine time-optimal routes
through complex environments [18]. Of particular note are the early experiments conducted
at the U.S. Army Engineer Waterways Experiment Station (WES) (later, the U.S. Army
Engineer Research and Development Center (ERDC)), which developed both data-driven
and first-principles models of collision [16, 89]. These models were developed for both
wheeled and tracked platforms and were characterized by extensive field tests [15, 16].
While the vehicles considered in these studies are often human-crewed, the broader adoption
of off-road-capable robotic platforms has driven interest in utilizing these off-road mobility
models in the design of robotic platforms [4, 17]. Vong et al. [17] considered these mobility
models to design and analyze the capabilities of robotic systems, while Noren et al. [4]
utilized these models in an online capacity to enable wheeled robotic platforms to override
vegetative objects during off-road operations.

Unfortunately, the work in Noren et al. [4] is limited to interactions in which the
collision is determined a priori necessary to reach the target goal. The limitation arises
from the mathematical structure of the posed trajectory optimization problem, as both the
point of collision and the goal state are provided as constraints in the underlying trajectory
optimization problem. While the inclusion of such constraints is not uncommon in trajectory
optimization works [83, 84, 85, 87, 88|, utilizing this framework imposes a limited myopic
view of the environment from the perspective of the robotic platform. Specifically, the
trajectory optimization problem specifies where the platform must travel in the environment,

regardless of whether a more efficient route exists.
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To provide a holistic consideration of the environment, we propose to re-frame the
problem space in a manner more consistent with that considered in robotic planning
algorithms [76]. Many robotic planning problems focus on developing a plan that connects
a start state and a goal state while avoiding objects in the operating environment. Classically,
this is performed by first separating the operating environment into “free” and “occupied”
space. In these classical approaches, the system designer assigns responsibility to the
platform’s perception system to determine what space is “occupied” and what space is
“free.” For problems where there is a clear separation between the “occupied” and “free”
spaces, deterministic or sampling-based planning methods can often find a path between
a start and end configuration [100]. However, in complex, cluttered environments (e.g.,
off-road environments), the free space may not contain a path connecting the start and end

configurations [10].

The planning problem where no object-interaction-free path exists is known as the
“navigation among movable obstacles” (NAMO) problem. In this particular problem, the
goal is to enable the planning entity to restructure or rearrange the environment to meet
its objectives [12]. Early approaches to the NAMO problem performed a state-space
decomposition to identify manipulation points, and then conducted a heuristic search
over the free-space configuration components to mitigate the complexity of multi-object
planning [13]. Recently, Saxena has demonstrated that connecting the problem to the
multi-agent pathfinding domain enables a decomposition of the problem into a configuration-
search step and a physics simulation step [101, 102]. These planning approaches provide
a framework for the planning problem considered in this thesis [10], but do not directly
assess the kinematics of the planning agent, which were shown in Noren et al. [4] to be

essential to account for the effect of the contact on the agent’s motion.

Approaches that account for the kinematics commonly combine planning and bound-
ary value control problems. An example combination includes combining the Linear
Quadratic Regulator (LQR) optimal control strategy with Rapidly Exploring Random Trees
(RRT) [100]. Recent work in this area has looked at combining LQR controllers with Control
Barrier Functions (CBF) and RRT planners. Still, these works do not consider planning

problems without free-space paths (i.e., consider only object-avoidance objectives) [103, 104].

In this chapter, we develop an interleaved interaction-aware robotic planning and control
system for vegetation override, combining the work presented in Noren et al. [4] with
classical sampling-based motion planning algorithms to generate interaction-aware plans in
complex environments. This two-level planning system incorporates the collision models
developed by the terramechanics community during the search process, modeling collisions

explicitly during the connections between two states of the configuration space. Given
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the result of this collision, a further determination may be made on whether or not the

in-collision path should be used during operation.

7.2 Method (Algorithm) Overview

A brief definition of the problem is provided to provide context for the off-road naviga-
tion problem considered in this chapter. Following this problem definition, the specific
implementation of a sampling-based planner, RRT”, is described, where the connecting
mechanism between points in the configuration space is described at a high level. Finally,
the last section presents an attenuated discussion of the controller and collision models
used in Chapter 6 before concretizing this controller as the specific connector used in the

proposed interleaved planning and control system.

7.2.1 Problem Definition

Consider a robotic platform represented by a state space, X € R", a control space, U € R™,
and a motion profile which is described by the C? smooth continuous-time dynamics

expression

(1) = £(t, x(t), u(t)). (7.1)

In this chapter, the variable t represents time. Specific instants in time will be indicated
via a subscript (e.g., to,t, may represent the start and end (goal) times of the trajectory).
Elements of the state and control spaces, x(t) € X and u(t) € U respectively, represent the
state and control of a robotic platform at a specific time.

The aim of our method is to determine a set of states x : [to,t,] — A and control
inputs u : [tg, ty) — U to minimize the total cost associated with a trajectory. This cost,
J(t,x(t),u(t)), may be evaluated along a specific trajectory

tg
J(to, tg, x(t),u(t)) = Jr(x(to), x(tg)) + \ w(x(7),u(r))dr. (7.2)
As described in Kelly [88], the boundary cost term, J¢(-), and the integral cost term, w(-),
may be selected by a designer to optimize specific behaviors of a system. We address a
common task found in many off-road applications: minimum-time traversals. As such, the
cost function described in (7.2) can be collapsed to J(to, tg, x(t), u(t)) = t,.

Given configuration space X, consider a decomposition of this configuration space

into an object-free space, Xtre. and object-occupied space, Xpp;. Assume that the space is

completely decomposable into these subspaces: X = Xy.cc U Xyp;. This decomposition is
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commonly used in robotic planning (e.g., [100]) to describe the states that a robot may

obtain during operation.

However, this standard approach yields a paradigm that neglects one of the unique
properties of off-road operations discussed in Noren et al. [4]: that off-road operations often
require interactions with objects. While “interaction” may be defined in many different ways,
given the mechanical design of most off-road vehicles, “interacting” with the environment
implies that the vehicle’s chassis physically strikes the object. A further decomposition of
AXop; is required to capture this aspect of off-road driving. That is, by decomposing X;
into two additional subspaces: the space of “interactable” objects, X;, and “noninteractable”
objects (obstacles), Xy, additional collision logic may be incorporated in the planning and
control layer. In this chapter, we assume that given sufficient characterization, all elements
of Xy; are determinable members of &j, or &0, thus implying that X, = &jp U Xpjo. In
reality, such a determination may be challenging given the perception systems available
onboard a robotic platform. Thus, a further unknown-interactable object class X,;, may
also be required. A conservative yet straightforward approach to addressing this problem

would be to incorporate objects of this class into the X,,;, class.

(a) RRT exploration, only Xop; (b) RRT exploration, both Xj, (c) Interaction-aware RRT explo-
and X0 ration

Figure 7.2: Consider a motion planning problem starting at the blue square and moving
through a two-dimensional configuration space to the end state at the gold square. In
classical sampling-based planning approaches, which treat any object-occupied area of
the configuration space as an obstacle (Xp; = Xpio), all obstacles must be avoided in
order to reach the goal point. However, if this obstacle-avoidance constraint is relaxed for
certain classes of obstacles, i.e., Xy = Xjo U Xpjo, shorter paths (e.g., through the green
zone representing a subset of Xj,), may be found. Finally, it is often insufficient to solely
sample through the space of X, to generate a physically-realizable trajectory. Instead, by
incorporating connectors between sampled states that enforce the dynamical constraints of
the system (e.g., collision dynamics as in Noren et al. [4]), a physically realizable trajectory
may be established between two points in the graph.
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7.2.2 Asymptotically Optimal Global Planning

Given the natural complexity of outdoor environments, few environments can be represented
through an explicit enumeration of objects found in the environment (X,;). An approach
that avoids this complication is sampling-based planning methods [100], which instead
rely on a collision-checking module to characterize whether a trajectory is in collision with
an environmental object. In traditional sampling-based planning approaches, points are
drawn pseudo-randomly from the configuration space of a robotic platform to build a
graph connecting an initial (starting) configuration to a desired (goal) configuration. A
simplified description of this process has the algorithm drawing different points from the
configuration space, checking to ensure membership in the obstacle-free subspace (Xfyee),
and then connecting this newly drawn point to a subset of prior-sampled points depending
on the output of the collision-checking module. A depiction of this simplified approach is
shown in Figure 7.2a, where it can be seen that any point sampled from the space &y, is
rejected (in red).

The traversal distance and traversal time (assuming a constant velocity motion) may
then be approximated by computing the cost-to-go from each point in the graph to the

goal state.

7.2.3 Collision-Checking Module

Instead of the behaviors shown in Figure 7.2a, we seck to take advantage of environmental
information to perform the object decomposition described in Section 7.2.1. This behavior

is incorporated into the collision-checking module.

Definition of “Interactable” Objects

Unfortunately, even with the above problem decompositions, it is not clear how the obstacle-
occupied space &,; should be decomposed for an individual environment and terrain.
Expectantly, interacting with certain objects (e.g., a concrete barrier) incorrectly may have
disastrous consequences for a robotic platform. In this context, “incorrectly” is defined on
a per-object basis (e.g., for the aforementioned concrete barrier, approaching at near-zero
speeds may be acceptable) through interaction rules. Thus, for specific object classifications
(e.g., single-standing tree, array of trees, etc.), an object may exist in either the Xj, subspace
or the X,;, subspace depending on the rules of interaction. At the same time, rules can be
defined as a series of logical statements (e.g., A robot may never interact with a concrete
barrier); such approaches do not scale with complex worlds. Instead, we utilize physics-

inspired empirical models to define the interaction rules on a procedural basis. For this
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work, these empirical models take the form of vegetation-override models.

1968 Blackmon Vegetation Override Model (from Chapter 6)

For completeness, we recall our discussion of the model presented in [16] in Chapter 6. The
model presented in Blackmon and Randolph [16] was derived from a series of vegetation
override tests conducted on different vegetation types in various environments. Blackmon
and Randolph [16] provide unique regressions for the force required and energy expenditure
to override these different types of vegetation, including singular coniferous and hardwood
trees, arrays of multiple trees struck in unison, and “clumps” of bamboo. From continuous
measurements of pushbar force, drivetrain metrics, distance traveled, time, measurements
of the impacted trees, and characterizations of the aftermath of the collision, Blackmon and
Randolph [16] construct a model primarily parameterized by the geometry of individual or
multiple trees (for example, the radius of a tree) or the clump diameter.

In this study, the authors consider only experiments that require the override of a single
tree or post. While Blackmon and Randolph [16] provide additional override models, this
simplification to a single class of vegetation was drawn from limitations in the perception of
the necessary characterizing features for arrays of trees. Thus, the methodologies presented
herein are not limited in scope to single-standing trees, aside from the limits discussed
in the original [16] manuscript itself. Given this simplification, equations B10-B12 from
[16], which describe the force and work required to override a single standing tree, are of

particular interest. These equations largely take the form
Fy, = K;d?, (7.3)

and
W = K,d3, (7.4)

where Fj, is the horizontal pushbar force, W is the work required to fail a single standing
tree, ds is the stem diameter, and Ky and K, are constants that are dependent on vehicle
geometry (e.g., pushbar height).

The measure of work produced from Blackmon’s models may then be combined with
additional vehicle information (e.g., the operating mass) in order to generate a suitable
override velocity, voper, for a sensed piece of vegetation. This override velocity is then
incorporated as a velocity target for a trajectory optimization problem defined on the
vehicle’s motion, as further detailed in [4]. The equivalent relations to determine this voyer
may be calculated in the manner discussed in Mason et al. [89].

The vegetation override models developed by the off-road mobility and cross-country
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movement communities, including those by Blackmon and Randolph [16] and Mason
et al. [89], abstract complex collision interactions into useful, low-computational-cost
approximations. These approximations generally characterize the required force, work, or
velocity needed for a vehicle to overcome a subset of vegetation, given some parameterization
of the vehicle and its environment. Furthermore, the models form an actionable criterion
as the basis of an interaction rule given the reachability of the override velocity from the
robotic platform’s current state. By evaluating whether or not the override velocity may
be reached, a robotic platform can determine if a specific vegetative object exists in the
class of objects defined by X}, (i.e., the necessary velocity is reachable) or Xy, (i.e., the

necessary velocity is not reachable).

7.2.4 Interaction-Aware Connectors

Given the above decomposition, incorporating this collision information into the connector
is necessary to ensure a physically realizable interaction. Ensuring such an interaction is
realizable is possible by enforcing differential constraints between nodes in the search graph.
Unfortunately, this particular requirement yields a planning problem of high computational
complexity [76], especially given the hybrid nature of the modeled contact dynamics.

In our prior work ([4], Chapter 6), a two-point boundary value problem was specified
that utilizes contact models to account for the hybrid dynamics experienced during collisions
in robotic platform control. This approach can be extended into our prescribed search
algorithm by running the two-point boundary value problem between all states, similar to the
work presented in Xie et al. [105]. Unfortunately, such an approach would quickly become
computationally intractable; thus, we move towards an approach where we selectively call the
controller, as in Noren et al. [4], to evaluate only specific segments of the connected graph.
The specifically evaluated segments are those where an object from class X}, is encountered,
such as in Figure 7.2b. This “interleaved” evaluation updates both the trajectory taken

between two points and the cost of the traversal.

7.3 Method Analysis

We first consider the situation where a vehicle must determine whether to override a piece
of vegetation. Such a determination in most circumstances may be challenging to compute.
Still, in certain simple scenarios, a pure kinematic analysis may be used to determine

whether to override a piece of vegetation.
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Figure 7.3: Top view of a simplified scenario in which a robotic platform must determine
whether to strike a piece of vegetation (in brown) to travel a more direct route, or avoid
interacting with any objects in the scene (brown or red) to reach a goal location.

Kinematic Analytical Formulation

Consider the scenario depicted in Figure 7.3, where a robotic platform must either choose
to override a piece of vegetation (in brown) or avoid the vegetation and an adjacent obstacle
(in red). Assuming that the vehicle initially travels at maximum velocity vy, and has a
maximum constant acceleration that it can sustain, @z, it is the goal of the combined
planning and control system to reach the position dy 4+ d; [units] directly ahead of the

platform in the shortest time.

By inspection, it is clear that if the vehicle is to avoid all objects in the scenario, the

time taken to travel the entire distance is

1 2
= h2 4\ + h?). .
Lavoid Vv (\/do + + \/dl + ) (7 5)

As this travel time represents the fastest time the platform can travel between the initial
position and the desired ending location, the determination of whether or not the vehicle
should override the post relies solely on whether or not the time required to reach the end
location, which travels through the post, ts¢rike, iS less than t,,44. Note that, according to
the discussion in Noren et al. [4], the velocity needed to override the post must still be
reachable from the initial configuration to have a valid trajectory. For this example, we

assume this to be true (e.g., Vmaz > Veol)-

Given the geometry of the above problem and the collision models discussed in 7.2, we
can bifurcate the trajectory into two distinct subsegments. The first segment represents the

pre-collision motion, and the second segment represents the post-collision motion. As such,
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the total travel time needed to override the post with respect to these two sub-segments is
tstrike = tO + tla (76)

where £y represents the travel time on sub-segment 1 and t; represents the travel time on
sub-segment 2.
Per the arguments above, the travel time on sub-segment 0 is determined to be

to= -0, (7.7)

Umazx

which means that to yield a faster time than ¢,,.;4, the constraint that

1 d
(B + 124\ d + 12) - 2, (7.8)

Umazx

1 <
Umaz
must hold.

The act of overriding the post results in the platform losing velocity to a value given by
Varop = 0. Depending on the value of v4qp, the platform can either continue to accelerate
until the end of sub-segment 2 or accelerate to v,,q, and cruise at this maximum speed until
the end of sub-segment 2. This disparity between behaviors can be captured by computing
the distance d} needed to reach the maximum speed.

2 2

(% — v
d = max drop 7.9
1= T (7.9)

With the help of d}, the travel time ¢; on sub-segment 2 and, subsequently, the constraint
to decide between avoiding and striking the piece of vegetation via (7.8) can be determined

as follows:

Umax —Vdrop + dl*dll lf dll S dl,

tl Amax Umazx ’ (710)

22d1 , otherwise.
Udrop"‘\/vdrop"l‘zamazdl

7.4 Numerical Simulation

The proposed method was tested in multiple simulated trials representing different config-
urations. In all simulated trials, a vehicle described by the dynamics presented in 7.4.1
and characterized by parameters in A.1 was initialized at a point, x;., and was required to
reach a given configuration, x,. In all tests, the vehicle starts at rest with a heading of zero
degrees (aligned with the x-axis).

One key limitation observed in Noren et al. [4] was that an interactable object needed to
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be selected for override before understanding the overall effect the object would have on the
robot’s traversal. This posed challenge arises from the associated “myopia” of local control
methods, which utilize only near-field objects and a limited preview horizon to determine
the platform’s control. Such controllers include the controller proposed in [4]. This myopia
appears in at least two clear scenarios: 1) where a vehicle must select between striking
multiple objects; and 2) where a vehicle must account for multiple object interactions. We

explore these cases in simulation in the next section.

7.4.1 Vehicle Modeling

Figure 7.4: A modified small uncrewed ground vehicle with a similar configuration to the
one utilized in this chapter.

The proposed architecture is extensible to various dynamical systems; however, to
demonstrate its application, this paper considers a platform similar to the one shown in
Figure 7.4. The platform is a modified vehicle from Traxxas and is discussed in further
detail in Appendix A. The vehicle dynamics (7.1) were modeled as a nonlinear bicycle with
the state: x = [py,py, 1, v]. The elements of this state vector are the vehicle’s x-position,
y-position, heading, and velocity, respectively. The available vehicle controls included

velocity and steering angle: u = [v,4]. We model the continuous-time vehicle dynamics as
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L
Pz = v * cos (1 + atan ( f ))s

Lxo
By = v sin (1 + atan (—2L-)) (7.11)
Y Lx§""
;v Ly
= T cos (atan (L . 5)) * tan(d),

and the characterizing platform parameters are listed in Appendix A in Table A.1.

7.4.2 Scenario 1 - Obstacle Selection

The first considered scenario involved having the robotic agent determine between two paths
to reach a goal. Assume the vehicle is bounded in its y-position between 0 and 25. The first
path would require the platform to interact with a 38.1 [mm] (1.5 [in]) diameter vegetative
object, and the second path would require the platform to interact with a 25.4 [mm)] (1.0
[in]) diameter vegetative object. In both override scenarios, Blackmon and Randolph [16]’s
model was utilized as discussed in Section 7.2.3.

The example override for this scenario is shown in Figure 7.5. The starting configuration
of the robotic platform is located at the center of the blue marker (position: (1, 10) [m]).
Its initial heading is along the abscissa, and it starts with zero velocity. The desired ending
configuration (shown as a gold square) is placed 34 [m] in front of the robot (position: (35,
10) [m]), with a goal heading aligned with the abscissa and a goal velocity of 1.5 [m/s]. Note
that a line between the initial and desired spatial configuration generates a symmetric object
field outside of the vegetative objects. Such a configuration yields a choice of trajectory
in two distinct homotopy classes. Both objects appear 19 [m] ahead of the vehicle, offset
exactly 2.5 [m] above (38.1 [mm)]) and below (25.4 [mm]|) the starting configuration.

While a biased sampling schema exists that could lead to selecting a route through
the top object, using an unbiased sampler yielded paths that consistently passed through
the lower object. Given the analysis provided in Section 7.3, it is clear that even with a
perfect sampling schema, the geometric symmetry of the problem should bias the robotic
platform to travel through the lower object. Furthermore, that same analysis indicates that
a geometric configuration of vegetative objects exists in this schema, which would lead the
platform to override the 38.1 [mm] object because a 25.4 [mm]| object would require too
much time to deviate towards (i.e., typ may be higher).

Finally, considering the velocity diagrams, the vehicle initially maneuvers to align with
the vegetative object and then significantly increases its velocity to override the post. The
depicted initial speed up (around 2.5 [s]) and slowdown (around 7 [s]) correlate to large

changes in heading as the vehicle bounds through different curves at (x position) 2.5 [m] and
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Simulation Trial 1 - Overhead View of Robot Trajectory
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Figure 7.5: First simulated trial demonstrating both an object strike and avoidance.

(x position) 10.0 [m], respectively. The vehicle additionally accelerates into the vegetative
object before maneuvering towards the goal. This acceleration was achieved by biasing the
trajectory optimization to include a reference velocity (in this case, a travel speed of 1.5 [m]
set as a boundary condition at the end of the segment) with the expected required override

velocity computed with Blackmon’s model.
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7.4.3 Scenario 2 - Multiple Obstacle Avoidance

Simulation Trial 2 - Overhead View of Robot Trajectory
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Figure 7.6: Second Simulated Trial Demonstrating both an Object Strike and Avoidance.

The final simulated experiment demonstrates another extension of the work presented
in [4]: the ability to enable an obstacle override alongside other obstacle avoidance tasks.
In [4], a single obstacle was overridden to reach a desired goal state, but environments are
often much more complicated, with a single override affecting the entire resulting path. For
this depicted scenario, the vehicle starts at the blue square (position (2,8)) with the same
initial heading and velocity constraints as in the previous simulation and heads towards

a similar goal configuration. A single 25.4 [mm] object is placed in front of the robotic
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platform at position (10, 8), and Blackmon’s model is again used to determine the override
velocity.

The scenario presented in Figure 7.6 requires the vehicle to make a decision: whether to
travel out of an initial confined area via an open corridor, which takes it towards the goal
in the x-direction but away from the goal in the y-direction. Following this set of obstacles
is another larger object (starting at the x position 20 [m]) that requires the platform to
deviate from its initial heading. As shown in Figure 7.6, the platform biases its search away
from sampled points that would take it away from the desired location or require large
deviations from the goal point. Note that in this scenario, the vehicle’s speed is penalized
if it deviates from the provided reference speed (again, 1.5 [m/s]). The velocity graph
depicts a behavior in which the vehicle speeds up to strike the object (around 7 [s]) and

then maintains this reference velocity to the goal state.

7.5 Vegetation Override Hardware Results

This section details two hardware experiments, both utilizing the Blackmon and Randolph
[16] model in Section 7.2 and a platform similar to the one in Figure 7.4. The vehicle was
commanded to travel at a nominal 1.5 [m/s] in both experiments. A model predictive control
algorithm, specifically the iterative Linear Quadratic Regulator (iLQR), was implemented
to track a trajectory similar to those shown in the simulation. The results of these tests are

shown in Figure 7.7 and Figure 7.8.

7.5.1 Trial 1 - Obstacle Selection Test

The first trial scenario demonstrated on robotic hardware was an obstacle override selection
test. This test was conducted with an environment configuration similar to the simulation
test shown in Section 7.4.2. The object the robotic platform interacted with was a 25.4
[mm)] pine dowel rod. The pine dowel rod was embedded into the soil by hand.

The executed trajectory is shown in Figure 7.7. The vehicle started at a position of (1,
10) [m] and reached a target position at (10, 25) [m]. The robotic platform successfully
avoided all obstacles (in red) while overriding the dowel rod placed at position (20, 9.25)
[m]. The vehicle reached a collision velocity of around 1.492 [m/s] at the point of collision,
which is higher than the required override velocity calculated in Blackmon’s model. After
the collision, the post was pulled from the ground and fell onto the terrain surface. The
robotic platform was not damaged during the collision. Several viewpoints taken by the

robotic platform along the trajectory are also shown in Figure 7.7.
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Hardware Trial 1 - Overhead View of Robot Trajectory
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7.5.2 'Trial 2 - Multiple Obstacle Consideration

The second trial scenario was a multiple-obstacle consideration test. In this test, the
platform would not only need to perform an override similar to the test shown in the
simulations demonstrated in Section 7.4.3, but also to avoid additional zones that contained
objects the platform could not interact with. These zones are depicted in red in Figure 7.8.

In this particular test, a 25.4 [mm] diameter post was embedded in the ground. The
robotic platform started at position (2, 8) [m], the post was placed at position (9.0, 8.75)
[m], and the desired location (goal) was determined to be (35, 12.8) [m]. As in the first
hardware experiment, the vehicle reached a speed of 1.490 [m/s| at the point of collision.
After the collision, the post was again pulled from the ground and came to rest on the

surface. As in the first trial, the platform was not damaged.
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7. Interleaved Planning and Control for Vegetation Override

7.6 Conclusions

In this chapter, we presented a two-level motion planning architecture that combined
information from existing parameterized vegetation models from the off-road mobility
and cross-country mobility communities, controls from hybrid trajectory optimization,
and sampling-based planning methods to support robotic decision making in off-road
environments. The method extends the current state-of-the-art by incorporating collision-
aware hybrid dynamics as an intelligent connector during the planner’s graph construction.

The work that most closely matches the proposed work is presented in Xie et al.
[105]. Xie combines Batch Informed Trees (BIT*) search with a two-point boundary value
problem solver to perform optimal planning in time. However, Xie’s work also focused on
obstacle avoidance and thus does not account for the hybrid dynamics encountered during
environmental interactions. However, we draw inspiration from Xie’s work to propose an
extension to our method: namely, investigating other sampling-based planning methods
and comparing their computational performance on a robotic system.

While our work in this chapter also addressed many challenges identified in Noren et al.
[4], concerns identified therein still require further investigation. Specifically, identifying
additional collision models (e.g., for distributed vegetation such as dense foliage) and
adapting the solver hyperparameters (e.g., for the collision index) should be considered to

help minimize connector solve times.
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Chapter 8
Conclusion

S robotics continues to mature as a discipline, we see an ever-evolving demand for
A increased robotic capabilities (for both single-agent and multi-agent systems) arising
from complicated real-world challenges. Interestingly, some of the most public showings of
robotic capabilities, the DARPA Challenges, reflect this progression. Directly evident is how
early single-agent autonomous driving in the DARPA Grand Challenge and the DARPA
Urban Challenge, which laid the foundation for wheeled robotic mobility, led to the DARPA
RACER Challenge and much of the work in Part III. Alongside this, we also see how the
DARPA Subterranean Challenge laid the foundation for multi-agent system development
and created a set of baselines for much of the work in Part II. Undoubtedly, this progression
of ideas in field robotics has shaped this thesis. Specifically, the framework presented herein
advances the state of the art in the deployment of tightly coupled or coordinated robotic
systems, providing a capability baseline for robotic convoying systems.

The key challenge that persists throughout this thesis is the inherent coupling and
dependencies imposed by the unstructured environment, mission tasks, and the other robotic
agents that comprise the multi-agent robotic system. This thesis advances coordinated
robotic system operations by presenting a framework that abstracts components of the
problem space into succinct operational requirements. We then embedded these requirements
into the different functional and information layers of the framework. The approach
addresses each of the aforementioned types of coupling, and the effectiveness of our technical
contributions is demonstrated in both simulation and on robotic hardware.

We conclude this thesis by first summarizing the technical contributions of this work in
Section 8.1. We organize this summary around the three major components that we claim
are vital to improving the performance of multi-agent systems in unstructured terrains with

tasks that have coupled execution requirements. These components align with our thesis

153



8. Conclusion

statement:

Thesis Statement:

The performance of multi-agent systems in unstructured environments with tasks

that have coupled execution requirements can be improved by:

1. forming representative task abstractions,

2. responding to evolving mission information, and

3. reasoning about environmental interactability.

Following the summary in Section 8.1, we denote some limitations of our framework
in Section 8.2. Specifically, we speak to challenges where forming a representative task
abstraction may be difficult, indicating that our bi-level framework likely falls on a spec-
trum of framework designs that address both task allocation and task execution coupling.
Following this, we also highlight the limitations of our system in addressing communication
challenges and dynamism, as well as the influences of environmental interactability. Finally,
in Section 8.3, we offer future research directions that build and refine the framework
presented in this thesis. These directions not only highlight the limitations discussed
in Section 8.2 but also provide insight into improving the individual components of the

framework.

8.1 Thesis Summary

In Part I, we investigated operations that exhibit both task allocation and task execution
coupling. In particular, we considered an automated robotic convoying application in
unstructured terrains. We first introduced a low-level formation controller in Chapter 2,
where we showed that by relaxing strict formation-keeping constraints, a distributed control
schema can reflexively react to environmental and inter-convoy disturbances. This convoy
controller not only allowed us to decrease inter-agent convoy spacing by over 50%, but
more importantly, demonstrated an effective functional abstraction of the convoying task.
In Chapter 3, we then leveraged that functional abstraction by introducing a variant of
the vehicle routing problem with multiple synchronizations that included a set of “convoy
constraints” (VRPMS-CC). To the author’s knowledge, this is the first work to present
convoy operations in the context of synchronized routing problems. The advantage of our
approach is that a solution to the VRPMS-CC yields an optimal set of convoy assignments
that our lower-level formation-keeping controller can implement. This bifurcation of

responsibilities along the layers of the hierarchical framework arose from the abstraction
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of lower-level task execution requirements as explicit constraints in the higher-level task

allocation schema.

At the end of Part I, we noted how the VRPMS-CC could be affected by imperfect
environmental information. Our solution leveraged the onboard sensing and motion planning
systems of the robotic agents to formulate a dynamic vehicle routing problem. Just as in
Part I, we leveraged a central optimizer to solve the dynamic vehicle routing problem and
recover the optimal routes and assignments of each agent. This dynamic vehicle routing
problem procedure demonstrates an information coupling between the agents and the central
optimizer. As many of the unstructured environments we are interested in do not have
available communication infrastructure that agents can use, in Part II, we developed a
mobile ad hoc network construction technique that deploys nodes in response to low radio
signal strength. We first outline this algorithm in Chapter 4, where we use a maximin
metric to construct a spanning tree on the communications graph. This metric ensures that
agents always maintain a minimum communications signal strength, supporting the transfer
of information between assets in the multi-agent team. Furthermore, in Chapter 5, we
introduce and integrate a communications recovery behavior to ensure unexpected system
failures do not compromise the integrity of the communication system. We leveraged
this communication system during the execution of the Dynamic VRPMS-CC in Part I,
demonstrating the extensibility of the approach first outlined in Part I to dynamic routing
tasks.

Finally, in Part III, we considered how environment-agent coupling affects both the
task allocation and task execution layers of our framework. In particular, we relaxed
traditional notions of obstacle avoidance to enable robotic agents to interact with a subset of
environmental objects. We used this idea to introduce an “override” controller in Chapter 6,
where a robotic agent leveraged our override controller to override vegetation in a natural
environment. This override mechanism is motivated by classical terramechanics and off-
road mobility models, such as the data-driven works in Blackmon and Randolph [16] and
analytical models in Mason et al. [89], and demonstrates the need to represent the physical
process underpinning the nature of the task. Specifically, the override controller imposes
a pathwise constraint at the point of collision. To successfully override the object, the
agent must satisfy this pathwise constraint. In Chapter 6, our constraint took the form
of a minimum required override velocity “vgyer” conditioned on the object’s size. We
then introduced an interleaved motion planning and control algorithm in Chapter 7 that
selectively evaluated our interaction controller to “override” objects in the environment.
This relaxation improved the system’s reachability in complex, cluttered, and unstructured

(“off-road”) terrains, providing better estimates of task feasibility and optimality at the
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task allocation level of the framework.

This thesis demonstrates how all three coupled aspects of multi-agent operations can be
effectively designed and addressed within a task allocation and task execution framework.
Through both simulation and on hardware, we showed that the presented framework
is capable of realizing automated robotic convoying in unstructured environments. We
further demonstrated the necessity of each component in addressing challenges faced by
robotic systems, with each part of the thesis contributing to the introduction of a realizable

framework for automated robotic convoying missions.

8.2 Limitations

During our study, we encountered several limitations in the practical and organizational
aspects of our framework. These limitations often appeared either in modeling an element
of the coupling addressed in the framework or as reflections on our realization of the robotic

convoying system.

8.2.1 Limitations on Task Coordination

The framework presented in this thesis consists of two layers: a task allocation layer and
a task execution layer. Principally, there exists an assumed separation between the two
layers. As demonstrated in Part I, these two layers were motivated by the observation that
the task allocation coupling and the task execution coupling did not need to be solved
simultaneously. In particular, we leveraged the Convoy Coordinator’s (Chapter 2) capability
to act as an effective functional task abstraction for the robotic convoying problem. This
abstraction then enabled us to allocate agents to convoys using the VRPMS-CC (Chapter 3).
However, if forming this task abstraction independently of the task allocation problem
proves challenging, a single-level framework may prove more effective in representing the
task. Consider, for example, multi-agent pathfinding works. In combined task allocation
and pathfinding ((MA-TC-PF) [35] and (Co-MAPF) [36]), the pathfinding component can
be integral to determining feasible allocations. However, it is also clear that an allocation
algorithm can only determine the optimal task allocations by considering the feasibility
of the routes of individual agents, not just the coalition (“convoy”) teams. Effectively,
inter-agent coupling (e.g., path conflicts) may be a primary driver of the task coupling. If so,
we cannot form the framework presented in this thesis. Such tight coupling between the task
allocation and task execution layers requires the agents to address both types of coupling
simultaneously. Currently, missions with such tight coupling lie outside the scope of the

proposed framework. This set of extremely tightly-coupled missions, importantly, gives rise
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to the idea that a balance may exist between the two types of discussed frameworks (i.e.,

the framework presented in this thesis and the aforementioned MAPF-style framework).

8.2.2 Limitations on Communications and Dynamism

To address challenges associated with the evolution of information during mission progression,
we enforced a requirement that the agents must remain in communication with the base
station (central optimizer) at all times. This requirement led to the creation of an automated
communications network construction behavior that utilized the maximin communications
spanning tree (Chapter 4) to deploy individual wireless repeaters. We then customized
this behavior for robotic convoying applications in Chapter 5 by introducing a recovery
mechanism in case an agent failed (lost communication) during system operation. Notably,
the presented framework relies on the ability of agents to communicate information to
one another. In the most basic sense, agents must possess the necessary capabilities to
communicate information with one another; however, this limitation is much deeper than
this superficial observation.

Foremost, in all testing conducted in Chapter 4 and Chapter 5, all agents were equipped
with radio communication devices that enabled the transfer of information at a distance
and gave a measure of relative radio signal strength. Outside of a potential heterogeneous
communications capability across different agents in a multi-agent team —with the implica-
tion that some agents may not have the ability to transfer information by the designer’s
choice— the ability to communicate information at a stand-off distance can influence the
ability for the convoy to maintain a coherent structure or lead to an unreasonable number
of repeater placements. For example, should cinresh, dr,os, or dnp,0s be set too low, the
ability to maintain communications will interfere with the required agents ability to execute
the allocated tasks. At the current state of the work, communication constraints are present
solely in the execution layer, limiting the system’s response to allocation challenges. The
ability to pose specific communications tasks would alleviate this limitation, but would
require a balancing mechanism between the two layers of the framework.

Of additional note regarding this limitation is the impact of adversarial agents or
environments on inter-agent communications. Unless designed robustly, communications
systems are particularly susceptible to malicious information or actors. For example, while
the presented framework demonstrated robustness concerning nodal failures (Chapter 4),

an adversarial influence that:

1. incorrectly reports agent state information could indicate a perpetually “stuck” robotic

convoy (Chapter 2),
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2. provides inaccurate map information could consistently trigger a replan (Chapter 3),

3. inaccurately reports the measured signal strength could instigate an ineffective “peel-
oft” (Chapter 4), or

4. could create a “shell-game” of agent replacements due to a loss of communications
(Chapter 5).

In effect, a consensus mechanism that can verify the veracity of data across different

platforms is currently not present in the framework, but would be highly beneficial to

improve its robustness.

8.2.3 Limitations on Environmental Interactability

Framework limitations regarding interactability largely stem from the task allocation
component of the framework. It is clear from both our presented work and the literature
on navigation among movable obstacles that reconfiguring the environment can alter the
feasibility of tasks (consider simple children’s “traffic jam” style puzzles). In this thesis, there
is a strong notion of task independence regarding interactions. Namely, that interacting
with the environment does not negatively change the feasibility of any other task in the
environment. In particular, for problems with highly-coupled task allocation and task
execution phases (e.g., MAPF-style works), this specific assumption likely does not hold.
Furthermore, from the works presented in this document, the framework reduces envi-
ronmental interactions to a type of input data used in the task allocation layer. Specifically,
the problem instance provides this information to the allocation layer in the form of the
inter-location shortest path distances (i.e., replace an all-pairs obstacle-free shortest path
algorithm with the procedure outlined in Chapter 7). Relegating the influence of inter-
actability to merely a measure of task cost comes with certain limitations. In particular,
we may wish to pose specific environmental interactions as individual tasks instead of as
traversal costs (e.g., clearing an obstacle or removing an impediment). This representation
of interaction tasks could be an interesting avenue to pursue, as we do not currently consider

such tasks in our framework.

8.3 Looking Forward and Future Directions

The nature of scientific research is to evolve and progress over time. While much of this
progression is organic, we would like to provide a few comments that we hope will guide

future research.
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8.3.1 On task allocation/task execution coupling

In this thesis, we considered a convoying problem that allows for a delineation between
the task execution and task allocation layers. It is clear from certain applications (e.g.,
intra-logistical planning) that finding a suitable task abstraction may not be easy to identify,
blurring the delineation between the layers. Exacerbating this problem, certain tasks
exhibit high degrees of inter-agent coupling due to the required precision of execution
needed in the task execution layer (e.g., strict formation-keeping). These problems are
generally considered within the domain of multi-agent pathfinding (MAPF) [35, 45], as
the path-planning component can drive system operations as much as the task allocation
component. Understanding the stratification of problems on the spectrum between a
hierarchical framework and the solvers presented in many MAPF works could provide
helpful insight into the fundamental interplay between task allocation and task execution.
A thorough investigation into the intersectionality between the two frameworks should
reveal which framework naturally addresses which specific tasks. To align the framework
presented in this work with problems similar to those considered in the MAPF domain,
incorporating the convoy movement problem ([106]) could prove fruitful.

Furthermore, the convoying problem exhibited in this work demonstrated a low degree
of dynamism [42], enabling on-the-fly replanning. It is clear from the complexity of the
vehicle routing problem that our approach will struggle to scale to large, multi-agent
systems with high degrees of dynamism. Future investigations should investigate the
structure of these problems. While we demonstrated an exact methodology and a heuristic
warm-start for solving the VRPMS-CC, adapting the solution methodology depending on
mission constraints (e.g., planning time vs. needed accuracy) could be an interesting avenue
of direction. Furthermore, decentralized auction-based methods ([37]) or learning-based
methods ([39]) could provide an alternative to, or an augmentation of, the techniques
presented in this framework. Finally, in Chapter 3, we only considered a single clustering
rule (decomposition-based teaming). Investigating alternative clustering rules to model

different mission profiles would extend our approach to a larger array of mission profiles.

8.3.2 On information coupling

While our earlier discussion on the degree of dynamism highlights the need for better
information coupling, the design of the ad hoc network construction technique itself may
also be of further interest. In particular, Tatum [55] first introduced a communications-
aware map prediction algorithm for subterranean environments, which they utilized to

optimize the placement of individual communications repeaters. Recent works, including
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a maturation of prediction algorithms (see: Ho et al. [65]), have revitalized interest in
concepts originally explored by [55]. By developing a network construction technique that
is both predictive of the environment and reactive to the experienced signal strength, we
anticipate that the agents will experience a reduction in deployed communication assets.
Regarding the nature of the recovery behavior, it is clear that the current design generates
a significant bulk movement of communication nodes to maintain the communication chain.
Such bulk motions would be unsuitable for specific applications (e.g., defense), challenging

the applicability of our recovery behavior in environments with adversarial agents.

8.3.3 On environmental coupling

Our last suggestion is to consider our interaction-aware interleaved search in the broader
context of navigation among movable obstacles literature. In particular, we consider
interactions that can be solely evaluated and conditioned on a single ego-agent’s state
and action. This simplifying assumption enables the state of the environment to remain
untracked during system operation. Furthermore, by incorporating multi-agent interaction
policies, we could further increase the reachable space of the multi-agent team. Both
conventional and recent works [13, 101, 102, 107] demonstrate that the environment object
configuration can also preclude successful object manipulations, especially for dexterous
manipulators. Finally, while the interactions in this work are assumed to reflect a certain
determinism, uncertainty in environmental sensing should play a larger role in evaluating the
effectiveness of an agent in interacting with its environment. While parametric uncertainty
is perhaps the most obvious demonstration of this aspect of the problem, an inherent risk
is also associated with environmental interactions. We do not consider such uncertainties in
this thesis, but their inclusion in interaction-aware motion planning and control algorithms

is instrumental in developing mature interaction-aware robotic systems.
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Appendix A

Overview of Robotic Agents

Figure A.1: The team of robotic agents that forms the basis of many of the hardware
experiments demonstrated in this work. The quadruped agents are compatible with the
presented framework, but are often not demonstrated in each section.
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A. Overview of Robotic Agents

We demonstrate many of the technical contributions in this thesis on a novel robotic
convoying system first developed at Carnegie Mellon University. We created this system
based on the experiences of Team Explorer in the DARPA Subterranean Challenge [20]. We
have documented many of the insights gained during our design of the system in our 2024
IEEE International Conference on Robotics and Automation (ICRA) Workshop paper [49].
We specifically designed the system to focus on enhancing inter-agent teaming through a
robust and adaptable framework. The framework consists of extensible capabilities (e.g.,
the coordinated movement behavior in Chapter 2) that are realizable on the different agents
of a heterogeneous agent team. Potential applications include mapping unknown, complex
underground environments at high speed while maintaining accurate localizations and

real-time, persistent communications.

A.1 System Operating Concept

In order to decrease operator workload and improve system redundancy, we designed the
system to perform multi-agent platooning (convoying) in a linear formation (see Chapter 2).
This platooning behavior requires multiple agents to form into a linear formation and travel
together toward a common mission waypoint. The formation order can be determined
autonomously or by a human operator. The agents can then autonomously or in a guided
manner, where an operator only controls the lead robot, travel to the mission waypoint.
We embrace the concept of sliding-mode autonomy, enabling the operator to adjust the
level of autonomy required for a task while maintaining high-level control. Our sliding-
mode autonomy paradigm has different operational modes (similar to Team Explorer’s

implementation [108]) with increasing degrees of autonomy:

* Full Manual Mode: the operator commands directly control the robot

* Smart Joystick Mode: user-commanded direction is used in conjunction with a

planner to avoid obstacles and navigate through narrow spaces
* Waypoint Mode: the robot navigates to a target location provided by the operator

* Exploration Mode: the robot autonomously explores an area and operates with

the highest level of autonomy

A.2 Robotic Agents

The developed robotic system consists of a heterogeneous team of robotic platforms (agents)

and an operator interface. The agent team (shown in Fig. A.1) may consist of legged
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A. Overview of Robotic Agents

Property Unit Magnitude
L [m] 0.77
L [m] 0.48
Ly [m] 0.23
Liose [m] 0.14
hbumper [Hl] 0.18
w [m] 0.54
m [kg] 14.7

Table A.1: Traxxas Vehicle Platform Parameters

or wheeled platforms. Legged platforms that are compatible with our framework include
quadrupeds from Boston Dynamics. The wheeled platforms are sourced from Traxxas and
can obtain a top speed of 10 [m/s] in complex environments. While the vehicle is capable of
reaching speeds of 10 [m/s|, the nominal operating speed is limited to only 3 [m/s] for safe
operations. Relevant vehicle parameters include the platform’s length (L7 ), the wheelbase
length (L), the front axle to center of mass distance (Ly), the front axle to nose distance
(Lnose), the height of the middle of the attached bumper (Apymper), the platform width (w),

and the platform mass (m). These parameters are given in Table A.1.

A.3 Agent Payload

Each agent is equipped with a custom-built payload that contains onboard compute. In
Chapter 2, the onboard compute is a Jetson AGX Xavier. The onboard computer was
later upgraded to Jetson AGX Orin 64GB developer version in Chapter 3, Chapter 4,
Chapter 5, and Chapter 7. Furthermore, each platform is also equipped with a set of
exteroceptive sensors (both a Light Detection and Ranging (Velodyne 16 Lite LiDAR)
sensor and cameras (multiple 195-degree fisheye cameras from Leopard Imaging Inc.)), and
an inertial measurement unit (EPSON IMU line; possible options are: G365, G366, G370).
Additional payload camera options include the Zed series cameras (ZEDX, ZEDX-mini,
ZED-one, ZED2, etc.) from Stereolabs, as well as all Intel RealSense series cameras (D405i,
D435i, D455i). This payload enables the agents to simultaneously map their environment
and compute their odometry relative to their starting location (e.g., the position of the
operator interface) using a feature-based Simultaneous Localization and Mapping (SLAM)

methodology known as “Super Odometry” [99].
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Figure A.2: An overview of the system architecture

A.4 Agent Architecture

Each agent is also equipped with an onboard radio that allows it to communicate information
to the other agents and the operator interface. The system uses Robot Operating System
(ROS) and Data Distribution Service (DDS) middleware for communication between the
base station and robotic agents. Each agent maintains its own local motion-primitive-based
To

operate in environments without a supporting communication infrastructure, each agent is

obstacle avoidance planner and its own local receding-horizon tracking controller.

equipped with a communication radio that enables it to contribute to the communication
network construction techniques described in Chapter 4 and Chapter 5. The construction
behavior ensures all agents are connected to each other and to the operator interface. The

operator interface is also equipped with a communications radio.

Behavior trees are central to our architecture design, managing complex system-mode
transitions, enhancing modularity, and ensuring a clear structure [109]. Within our proposed
architecture, the behavior tree serves as the central authority, determining the robot’s
active mode. The behavior tree receives requests from the command interface, assesses

their viability, switches the robot to the requested mode, and enables the corresponding
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channel on the mux.

Each robot runs its own behavior tree, validating requests against predefined conditions.
These conditions are based on hardware availability, environmental constraints, subsystem
health, or the agent’s status. For instance, if the robot is not receiving joystick commands or
if SLAM is not initialized, a “smart joystick mode” request will be discarded, as the “smart
joystick mode” requires SLAM to function correctly. This structure of the behavior tree
makes it easier and faster to define and implement new modes, along with their activation
conditions.

Once the behavior tree determines the operational mode, it communicates this decision
to the mux. The mux filters the outputs from different subsystems, given the current robot
mode specified by the behavior tree. This ensures that the navigation layer does not receive
conflicting targets, promoting a centralized control flow throughout the system. It also
facilitates seamless integration of different subsystems.

The current behavior tree state (operational mode, authorized basestation, convoy order,
etc.) is sent back to the operator interface as feedback. This helps create an adaptive
interface that presents valid options to the user based on the operator’s selection and input

from robot behavior trees.
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