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Abstract

Generalization remains a core challenge in robotics: enabling robots to adapt to new objects, envi-
ronments, and embodiments with minimal additional data. This thesis explores how human prior
knowledge, captured through both passive observation and active demonstration, can be used to
address this challenge. We propose two complementary approaches that scale robot learning using
large-scale human-derived data.

First, we present HRP: Human Affordances for Robotic Pre-Training, a method that learns
visual affordances from internet-scale human videos. By automatically extracting hand trajecto-
ries, contact points, and object labels, we pre-train a vision transformer with structured human
priors. When fine-tuned for robotic control, these representations yield over 15% absolute gains in
real-world tasks and generalize effectively across camera viewpoints and robot morphologies.

Second, we introduce DexWild: Dexterous Human Interactions for In-the-Wild Robot
Policies, which scales robot learning through in-situ human demonstrations. Using a lightweight
wearable device (DexWild-System), we collect diverse, high-fidelity demonstrations of natural
tasks. A co-training algorithm combines this human data with a smaller set of robot-specific exam-
ples, enabling generalization to new scenes, object categories, and robot hands. DexWild-trained
policies achieve 68.5% success on unseen tasks, nearly four times higher than robot-only training,
and show a 5.8 times improvement in cross-embodiment generalization.

Together, these results show that human priors, whether learned passively from video or ac-
tively through demonstration, significantly enhance a robot’s ability to generalize beyond its train-
ing domain. We conclude by outlining directions for combining these methods and incorporating
richer sensory inputs.
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Chapter 1

Introduction

Roboticists have long dreamed of creating robots that can perform tasks with the same dexterity
and adaptability as humans. We would like robots to deftly generalize to many different objects,
environments, and embodiments — yet this vision of truly versatile robot behaviors remains a
formidable challenge. Current robot learning paradigms struggle to scale, primarily due to the dif-
ficulty of collecting and generalizing from sufficiently large and diverse datasets [5, 6]. In contrast,
other fields like natural language processing and computer vision have achieved breakthroughs by
harnessing vast datasets [7].

This thesis addresses the question: How can we leverage human-derived data to bridge the

data diversity gap and enable extreme generalization in robotics?

Many recent efforts in robotics have focused on two broad strategies: leveraging large-scale
teleoperation to collect robot data, and exploiting human video datasets for representation learn-
ing. Teleoperation can provide high-quality, on-policy demonstrations for robot learning [8], but
it requires expert operators and specialized setups, making it labor-intensive and not easily scal-
able [9, 10]. Additionally, collecting robot data across diverse environments (each requiring mov-
ing hardware) is prohibitively slow and expensive [6].

On the other hand, internet-scale video collections of humans (e.g., [1], [11]) offer a rich
source of prior knowledge. Prior works have attempted to train visual encoders on human videos
and then transfer them to robots [12, 13]. While these approaches provide some benefits, recent
analyses showed that straightforwardly applying self-supervised learning on human video often
fails to outperform even ImageNet pre-trained features for downstream robotics [14, 15]. We hy-
pothesize that we need to inject more structured human knowledge into the learning process in
order to unlock generalization.

In this thesis, we explore two complementary approaches to inject human priors into robot
learning:

1



2 CHAPTER 1. INTRODUCTION

(1) Learning from Human Videos (Affordance-Based Pre-Training): In Part I of this the-
sis, we mine large-scale unlabeled human videos to extract meaningful affordance cues that can
guide robot perception. We develop a method to automatically annotate human videos with af-
fordance labels — such as contact points between hands and objects, the pose of human hands
during manipulation, and the identity and location of actively used objects. These labels, obtained
with off-the-shelf vision models applied to massive video datasets, serve as distilled human prior
knowledge about how humans interact with their environment. We then use these labels to pre-
train a visual representation (specifically, a ViT-based encoder) via auxiliary tasks: the model is
trained to predict the future hand trajectory, contact, and object usage from a single video frame.
This approach, called HRP: Human Affordances for Robotic Pre-Training [16], injects an in-

ductive bias for understanding hand-object interactions into the vision network. Part I (Chapter 2)
demonstrates that fine-tuning any baseline vision model with these human affordance losses yields
representations that dramatically improve downstream robot policy learning. We show across 5
real-world manipulation tasks (including block stacking, pouring, etc., using three different robot
embodiments) that adding HRP pre-training boosts success rates by a minimum of 15% and up to
25%, even in out-of-distribution test scenarios [? ? ]. Notably, these gains hold across multiple
camera views (e.g., egocentric and third-person) [? ], indicating a robust improvement in learned
visual representations.

(2) Learning from In-the-Wild Human Demonstrations (Motion Capture System): In
Part II, we focus on directly leveraging human demonstrations to teach robots, bypassing the need
for expensive teleoperation. We introduce DexWild, a framework in which human operators per-
form everyday manipulation tasks naturally, using their own hands, while wearing a lightweight
motion-capture system (DexWild-System). This system records high-fidelity 3D hand movements
and interactions at scale [? ? ]. We collect a large dataset of human multi-modal demonstrations
across many homes and settings, capturing a diversity of objects and action strategies far beyond
typical robot-collected data. To transfer these human skills to robots, we propose a co-training
approach where a policy is trained on both the human demonstration dataset and a smaller set of
matched robot demonstrations (to “ground” the policy in the robot’s embodiment) [? ? ]. The
resulting policies, trained with our DexWild framework, achieve striking generalization: in exper-
iments, DexWild-trained policies attain a 68.5% success rate on completely unseen environment-
task combinations — nearly four times higher than policies trained on robot data alone [? ]. They
also generalize across embodiments (e.g., a policy trained with one robot hand works on a dif-
ferent hand with minimal adaptation), showing 5.8× better cross-embodiment performance than
baselines [? ]. Part II (Chapter 3) details how combining human and robot data in training leads to
robust, versatile manipulation skills that outperform state-of-the-art single-dataset policies.

In summary, this thesis shows that human priors can be a powerful catalyst for robot gen-
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eralization. By pre-training on human video affordances and by co-training with human demon-
strations, we infuse robot learning with knowledge of how humans perceive and act on the world.
This yields robot policies that require less robot-specific data and yet excel in novel scenarios. In
the final chapter, we will discuss how these approaches complement each other and outline future
directions — such as integrating affordance-based pre-training with demonstration learning, incor-
porating human corrective feedback, and extending to multi-agent settings — that could further
exploit the rich well of human experience for robotic generalization.
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Part I

Human Affordances for Robotic
Pre-Training (HRP)
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Chapter 2

HRP: Human Affordances for Robotic
Pre-Training

2.1 Introduction

A truly generalist robotic agent must acquire diverse manipulation skills (ranging from block stack-
ing to pouring) that work with novel objects and remain robust to realistic environmental distur-
bances (e.g., lighting changes, small camera shifts). Due to the scale of this challenge, the field has
trended towards learning these agents directly from data [20, 21], particularly robot trajectories
collected either by expert demonstrators or autonomously by the agents themselves (via Rein-
forcement Learning [22]). Unfortunately, there are innumerable objects/environments, so roboti-
cists cannot tractably collect enough real-world demonstration data and/or design a simulator that
captures all this diversity.

One promising solution for this “data challenge” is for the robot to learn a suitable representa-

tion from Out-Of-Domain (OOD) data that can be transferred into the robotics domain. For exam-
ple, prior work [17, 18, 19] trained self-supervised image encoders on large scale datasets of human
videos (e.g., Ego4D [1]), using standard reconstruction objectives and contrastive learning [23]
objectives – e.g., Masked Auto-Encoders [24] (MAE) and Temporal Contrastive Networks [25]
(TCN) respectively – developed by the broader learning community. After pre-training, these rep-
resentations are used to initialize downstream imitation learning [26] algorithms. This formula is
extremely flexible, and can substantially reduce the amount of robot data required for policy learn-
ing. However, the representations are often only effective when using specific camera views and
robot setups. Furthermore, independent evaluations [14, 15] recently showed that these represen-
tations cannot improve (on average) over the most obvious baseline – a self-supervised ImageNet
representation [24, 27]!

7
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Figure 2.1: Pre-trained representations offer a scalable solution to the robotics data bottleneck [17,
18, 19], but existing methods fail to reliably improve over simple baselines like ImageNet [14, 15].
Thus, we present HRP, a method that mines affordances (e.g., contact, hand pose, and object
labels) from human videos and uses them to improve self-supervised visual encoders. Our best
HRP representation consistently outperforms 6 SOTA baselines by ≥ 20% across 5 diverse tasks
and 3 camera views.

This result is surprising since robot trajectories and human video sequences share so much
common structure: both modalities contain an agent (e.g., human or robot) using their end-effector
(e.g., human hand, robot gripper) to manipulate objects in their environment. Ideally, represen-
tations trained on this data would learn useful object attributes (e.g., where to grasp a mug), and
spatial relationships between the end-effector and target objects. We hypothesize that traditional
self-supervised learning objectives are unable to extract this information from human video data,
and that explicitly predicting these object/spatial features would result in a stronger robotic rep-
resentation (i.e., higher down-stream control performance). Our key insight is that abandoning
self-supervision comes at minimal cost – the necessary object and hand labels can be scalably
mined using off-the-shelf vision pipelines.
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Figure 2.2: HRP fine-tunes a pre-trained encoder to predict three classes of human affordance
labels via L2 regression. Specifically, the network must predict future contact points, human hand
poses, and the target object given an input frame from the video stream. These affordance labels are
mined autonomously from a human video dataset [1] using off-the-shelf vision detectors [2]. HRP
representations are then fine-tuned to solve downstream manipulation tasks via behavior cloning.

This paper proposes Human affordances for Robotic Pre-training (HRP), a semi-supervised
pipeline to learn effective robotic representations from human video. HRP works in two stages:
first, it extracts hand-object “affordance” information – i.e., which objects in the scene are gras-
pable and how the robot should approach them – from human videos using off-the-shelf tracking
models [2, 28]. These affordances are then distilled into a pre-existing representation network (e.g.,
ImageNet MAE [24]), before the policy fine-tuning stage. This paradigm allows us to inject useful
information into the vision encoder, while preserving the flexibility of self-supervised pre-training
– i.e., all labels are automatically generated and the network can be easily slotted into downstream
robotic policies/controllers via fine-tuning. To summarize, we learn stronger robotic represen-
tations by predicting object interactions and hand motion from human video dataset images
(see Fig. 2.1). Our investigations and experiments lead to the following contributions:

1. We present a semi-supervised learning algorithm – HRP– that leverages off-the-shelf hu-
man affordance models to learn effective robotic representations from human video. The
proposed pipeline strongly outperforms representations learned purely via self-supervision.

2. Applying HRP to 6 pre-existing representations (including ImageNet [27, 24], VC-1 [19],
and DINO [29]) substantially boosts robot performance. This conclusion is backed by 3000+
robot trials, and replicates across 3 camera views, 3 distinct robotic setups, and 5 manipu-
lation tasks!

3. Our ablation study reveals that HRP’s three affordance objectives (hand, object, and contact
based loss terms) are all critical for effective representation learning.
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4. We show that HRP representations generalize across different imitation learning stacks –
HRP improves diffusion policy [3] performance by 20%!

5. Our best representation, which increases performance by 20% over State-of-the-Art (SOTA),
will be fully open-sourced, along with all code and data.

2.2 Related Work

Representation Learning in Robotics End-to-end policy learning offers a scalable formula for
acquiring robotic representations: instead of hand-designing object detectors or image features, a
visual encoder is directly optimized to solve a downstream robotic task [20]. Numerous works
applied this idea to diverse tasks including bin-picking [30, 31, 21], in-the-wild grasping [32, 33],
insertion [5, 20], pick-place [34], and (non-manipulation tasks like) self-driving [35, 36, 37]. Fur-
thermore, secondary learning objectives – e.g., dynamics modeling [38, 39], observation recon-
struction [40], inverse modeling [41], etc. – can be easily added to improve data efficiency. While
this paradigm can be effective, learning purely from robot data requires an expensive data collec-
tion effort (e.g., using an arm farm [31, 30], large-scale tele-operation [34], or multi-institution
data collection [42, 43]), which is infeasible for (most) task settings.

To increase data efficiency, prior work applied self-supervised representation learning algo-
rithms on out-of-domain datasets (like Ego4D [1]), and then fine-tuned the resulting representa-
tions to solve downstream tasks with a small amount of robot data – e.g., via behavior cloning
on ≤ 50 expert demonstrations [17, 19, 18], directly using them as a cost/distance function to
infer robot actions [44, 45], or directly pre-training robot policies from extracted human actions.
[46, 47, 9]. While this transfer learning paradigm can certainly be effective, it is unclear if these
robotic representations [19, 17, 18] provide a substantial boost over pre-existing vision base-
lines [14, 15], like ImageNet MAE [24] or DINO [29]. One potential issue is that roboticists
often use the same exact pre-training methods from the vision community, but merely apply them
to a different data mix (e.g., VC-1 [19] applies MAE [24] to Ego4D [1]). Thus, the resulting rep-
resentations are never forced to key in on object/agent level information in the scene. This paper
proposes a simple formula for injecting this information into a vision encoder, using a mix of hand
and object affordance losses, which empirically boost performance on robotic tasks by 25%.

Affordances from Humans HRP is heavily inspired by the affordance learning literature in
computer vision [48, 49]. These works use human data as a probe to learn environmental cues
(i.e., affordances) that tell us how humans might interact with different objects. These include
physical [50, 51, 52, 53, 54, 55, 56] and/or semantic [57, 58] scene properties, or forecast fu-
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Hand ObjectContact

Figure 2.3: We extract 3 affordances – contact heatmaps, hand poses and active object bounding
boxes – from human videos.

ture poses [59, 60, 61, 62, 63, 64, 65, 66, 67, 1, 68, 69, 70] Affordances can also be learned at
object or part levels [71, 72, 73, 74, 75, 76]. Usually such approaches leverage human video
datasets [1, 77, 78, 79] or use manually annotated interaction data [80, 81, 2]. In addition to these
cues, robotic affordances must consider how to move before and after interaction [82, 83]. A sim-
ple, scalable way to capture this information is by detecting these cues from human hand poses
in monocular video streams [84, 83, 28, 85], which show robots reaching for and manipulating
diverse, target objects. Our method combines these three approaches to create a human affordance
dataset automatically from human video streams. The labels generated during this process are
distilled into a representation and used to improve downstream robotics task performance.

2.3 Preliminaries

2.3.1 Visual Representation Learning

Our goal is to learn a visual encoder network fθ that takes an input image I and processes it into
a low-dimensional vector fθ(I) ∈ Rd. This resulting “embedding vector” would ideally encode
important scene details for robotic policy learning – like the number and type of objects in a scene
and their relationship to the robot end-effector. In this paper, fθ is a transformer network (specifi-
cally ViT-B [86], with patch size 16 and d = 768) parameterized with network weights θ. But to
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Figure 2.4: We present our policy training pipeline, which uses Behavior Cloning (BC) to train policy
π, using optimal expert demonstrations. The image observation (ot) is processed using our HRP repre-
sentations resulting in a latent vector z. The policy uses z to predict end-effector velocity actions (delta
ee-pose/gripper), which are directly executed on the robot during test-time.

be clear, all our methods are network architecture agnostic.

Self-Supervised Learning The computer vision community has broadly adopted self-supervised

representation learning algorithms that can pre-train network weights without using any task-
specific supervision. This can be accomplished using a generative learning objective [87], which
trains fθ alongside a decoder network D that reconstructs the original input image input from the
representation. Another common approach is contrastive learning [23, 88], which optimizes fθ to
maximize the mutual information between the encoding and the input image (i.e., place “similar”
images closer in embedding space). In practice, these methods can learn highly useful features
for downstream vision tasks [24, 88], but struggle in robotics settings [14, 15]. Our goal is to in-
ject these features into an existing self-supervised network, with an affordance-driven fine-tuning
stage.

2.3.2 Extracting Affordance Labels from Human Data

Before we can do any fine-tuning, we must first curate a suitable human affordance dataset DH .
Thankfully this task can be done automatically using off-the-shelf vision modules, applied to a
set of 150K human-object interaction videos from Ego4D (originally sampled by (author?) [17]).
These are subsets of larger videos (around 1.2K) videos, which were further broken down into
shorter clips. Each clip contains a semantically meaningful action by the human. Each video clip
V contains image frames V = {I1, . . . , IT} that depict human hands performing tasks and moving
around in the scene. From these images, we obtain contact locations, future hand p-oses, and
active object labels (examples in Fig. 2.3) that capture various agent-centric properties (how to
move and interact) and environment centric properties (where to interact) at multiple scales, i.e.
contact-level and object-level. The following sections detail how each of these labels were gener-
ated.
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Contact Locations To extract contact locations for an image It (with no object contact), we find
the frame Ij; j > t where contact with a given object will begin, using a hand-object interaction
detection model [2]. Then, we use Ij to find the active object Oj and the hand mask Mj . The points
intersecting Mj and Oj (acquired via skin segmentation) are our contact affordances (Cj). To ac-
count for motion between It and Ij , we compute the homography matrix between the frames and
project those points forward. This is done using standard SIFT feature tracking [89]: Ct = Hj,tCj .
In other words, the contact locations denote where in It the human will contact in the future. Note
that there could be a different number of points for each contact scenario, which is non-ideal for
learning. Thus, we fit a Gaussian Mixture Model with k = 5 modes on Ct to make a uniform
contact descriptor – defined as the means ct of the mixture model.

Future Hand Poses This affordance label captures how the human moves next (e.g., to complete
a task or reach an object), as the video V progresses. Given a current frame It, we detect the
human hand’s 2d wrist position (ht+k) in a future frame It+k, where usually k = 30 (empirically
determined). This is done using the Frank Mocap [28] hand detector. To correctly account for
the human’s motion, these wrist points are back-projected (again using the camera homography
matrix) to It to create the final “future wrist label,” ht = Ht+k,tht+k.

Active Object Labels In a similar manner to the contact location extraction, we run a hand-object
interaction detection model [2] on V to find the image where contact began Ic. The same detector
is used to find the four bounding box coordinates of the object that is being interacted with, which
we refer to as the “active object.” These coordinates bc are then projected to every other frame It,
using the homography matrix (see above). This results in an active bounding box bt for each image
in V .

2.4 Introducing HRP

A variety of visual pre-training tasks have been shown to help with downstream robotic performance–
ranging from simple ImageNet classification [90] to self-supervised learning on human video [18,
17, 44, 19, 91]. Although these approaches operate on human videos and simple image frames,
they fail to explicitly model the rich hand-object contacts depicted. In contrast, we believe explic-
itly modeling the affordances [49] in this data could allow us to learn useful information about the
agent’s intents, goals, and actions. Indeed, past work has shown that affordances can act as strong
prior for manipulation [92, 93, 94, 95, 82, 96, 97, 98] in general. Moreover, this information can
be represented in many different formats, such as physical attributes, geometric properties, inter-
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Franka xArm Dexterous Hand

Toasting Pouring Stacking Pot on Stove Lift Cup
Ego Cam EndEgo Cam Ego Cam
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Figure 2.5: Our experiments consider 5 unique manipulation tasks, ranging from classic block-
stacking to a multi-stage toasting scenario. These tasks are implemented on 3 unique robot setups,
including a high Degree-of-Freedom dexterous hand (right). The 3 camera views shown – front,
ego, and side views (for xArm/dexterous hand) – are the same views ingested by the policy during
test-time. Note that 3 of the tasks consider 2 unique camera views in order to test for robustness!

actions, object bounding boxes, or motion forecasting. We observe that most tasks of interests
humans perform are with their hands. We thus focus on training our model to predict hand-object
interactions and hand motion.

We present HRP, a simple and effective representation learning approach that injects hand-
object interaction priors into a self-supervised network, fθ, using an automatically generated hu-
man affordance dataset, DH (see above for definitions and dataset mining approach). HRP is
illustrated in Fig. 2.2, and the following sections describe its implementation in detail.

2.4.1 Training HRP

The initial network fθ is fine-tuned using batches sampled from the human dataset: (It, ct, ht, bt) ∼
DH , where ct, ht, and bt are contact, hand, and object affordances corresponding to image It (see
Sec. 2.3.2 for definitions). Some frames may not include all 3 affordances, so we include 3 mask
variables – m

(c)
t ,m

(h)
t ,m

(b)
t – so the missing values can be ignored during training. We add 3 small

affordance modules – pc, ph, pb – on top of fθ that are trained to regress the respective affordances
for It. This results in the following three loss functions:

Lct = ||ct − pc(fθ(It))||2 (2.1)

Lhand = ||ht − ph(fθ(It))||2 (2.2)

Lobj = ||bt − pb(fθ(It))||2 (2.3)
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The full loss is:

L = m
(c)
t λctLct +m

(h)
t λhandLhand +m

(b)
t λobjLobj (2.4)

Where the λs are hyper-parameters that control the relative weight of each affordance loss. We
empirically found λobj = 0.05, λct = 0.005, λhand = 0.5 to be optimal for downstream performance
(see Appendix ??).

2.4.2 Implementation Details

Our affordance dataset (DH) is at least an order of magnitude smaller than the pre-training image
dataset initially used by the baseline representation (e.g., ImageNet has 1M frames v.s. our 150K).
To preserve the useful features learned from the larger pre-training distribution, we keep most of
the parameters in θ fixed during HRP fine-tuning. Specifically, we only fine-tune the baseline
network’s normalization layers and leave the rest fixed, which has been shown to be an effective
approach [99, 100]. In the case of our ViT-B this amounts to fine-tuning only the LayerNorm
parameters γ and β:

LayerNorm(x) =
x− µ

σ
γ + β (2.5)

These parameters are fine-tuned to minimize L using standard back-propagation and the ADAM [101]
optimizer.

2.5 Experimental Details

Our contributions are validated using a simple empirical formula: first, HRP is applied to each
baseline model (listed below). Then, (following standard practice [17, 19, 14]) the resulting rep-
resentation is fine-tuned into a manipulation policy using behavior cloning. Details for each stage
are provided below, and the HRP is illustrated in Fig. 2.2.

Baseline Representations We chose 6 representative, SOTA baselines from both the vision and
robotics communities:

1. ImageNet MAE was pre-trained by applying the Masked Auto-Encoders [24] (MAE) al-
gorithm to the ImageNet-1M dataset [27]. It achieved SOTA performance across a suite of
vision tasks, and is the first self-supervised representation to beat supervised pre-training.
We use the standard Masked Auto Encoder training scheme for this, using hyperparmaeters
from MAE [24].
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2. Ego4D MAE was trained by applying the MAE algorithm to a set of 1M frames sampled
from the Ego4D dataset [1]. For consistency with prior work, we use the same 1M frame-
set sampled by the R3M authors [17]. We use the standard Masked Auto Encoder training
scheme for this, using hyperparmaeters from MAE [24].

3. CLIP [102] is a SOTA representation for internet data. It was learned by applying contrastive
learning [23] to a large set natural language - image pairs crawled from internet captions. We
used publicly available model weights.

4. DINO [29] was trained using a self-distillation algorithm that encourages the network to
learn local-to-global image correspondences. DINO’s emergent segmentation capabilities
could be well suited for robotics, and it has already shown SOTA performance in sim [15].
We used publicly available model weights.

5. MVP [18] was trained by applying MAEs to a mix of in-the-wild datasets (100 DoH [2],
Ego4D [1], etc.). The authors showed strong performance on various manipulation tasks.
We used publicly available model weights.

6. VC-1 [19] was trained in a similar fashion to MVP, but used a larger dataset mix. It showed
strong performance on visual navigation tasks. We used publicly available model weights.

Note that each baseline is parameterized with the same ViT-B encoder w/ patch size 16 (see
Sec. 2.3.2), to ensure apples-to-apples comparisons.

Policy Learning Each representation is evaluated on downstream robotic manipulation tasks, by
fine-tuning it into a policy (π) using Behavior Cloning [36, 103, 104]. Note that π must predict the
expert action (at – robot motor command) given the observation (ot – input image and robot state):
at ∼ π(·|ot). And π is learned using a set of 50 expert demonstrations D = {τ1, . . . , τ50}, where
each demonstration τi = [(o0, a0), . . . , (oT , aT )] is a trajectory of expert observation-action tuples.
In our case, π is parameterized by a small 2-layer MLP (p) placed atop the pre-trained encoder
p(f(ot)) that predicts a Gaussian Mixture policy distribution w/ 5 modes. Both the policy network
and visual encoder are optimized end-to-end (using ADAM [101] w/ lr = 0.0001 for 50K steps)
to maximize the log-likelihood of expert actions: maxp,f log(π(at|p(f(ot)))). During test time ac-
tions are sampled from this distribution and executed on the robot: at ∼ π(·|p(f(ot))). This is a
standard evaluation formula that closely follows best practices from prior robotic representation
learning work [4, 14].
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Figure 2.6: We apply HRP to 6 different baseline representations and plot how it affects performance on
average across the toasting, pouring, and stacking tasks. This evaluation procedure is repeated using two
distinct cameras (shown in Fig. 3.3) in order to test if HRP representation are robust to view shifts. We
find that HRP representations consistently and substantially outperform their vanilla baselines, and that this
effect holds across both the front (left) and ego (right) cameras. In fact, our strongest representation –
ImageNet + HRP– delivers SOTA performance on both views!

Real World Tasks We fine-tune policies for each representation on the 5 diverse tasks listed
below, which are implemented on 3 unique robotic setups, including a dexterous hand (illustrated
in Fig. 3.3). 50 expert fine-tuning demonstrations were collected for each task via expert tele-
operation. Note that the stacking, pouring, and toasting tasks were evaluated twice using different

camera views to test robustness!

• Stacking: The stacking task requires the robot to pick up the red block and place it on
the green block. During test time both blocks’ starting positions are randomized to novel
locations (not seen in training). A trial is marked as successful if the robot correctly picks
and stacks the red block, and half successful if the red block is unstably placed on the green
block. This task is implemented on a Franka robot and uses both an Ego and Front camera
viewpoint.

• Pouring: The pouring task requires the robot to pick up the cup and pour the material (5
candies) into the target bowl. During test time we use novel cups and bowls and place each in
new test locations. This task’s success metric is the fraction of candies successfully poured
(e.g., 2/5 candies poured → 0.4 success). This task was also implemented on the Franka
using Ego and Front cameras.

• Toasting: The toasting task requires the robot to pick up a target object, place it in the toaster
oven, and shut the toaster. This is a challenging, multi-stage task. During test time the object
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type, and object/toaster positions are both varied. A test trial is marked as successful if the
whole task is completed, and 0.5 successful if the robot only successfully places the object.
This is the final task implemented on Franka w/ Ego and Front camera views.

• Pot on Stove: The stove task requires picking up a piece of meat or carrot from a plate and
placing it within a pot on a stove. During test time, novel “food” objects are used and the
location is randomized. A trial is marked as successful if the food is correctly placed in the
pot. This task is implemented on a xArm and uses the side camera view.

• Hand Lift Cup This task requires a dexterous hand to reach, grasp, and lift up a deformable
red solo up. The hand’s high dimensional action space (R20) makes this task especially
challenging. A trial is marked successful if the cup is stably grasped and picked. This task
is implemented on a custom dexterous hand using a side camera view.

2.6 Results

Our experiments are designed to answer the following:

1. Can HRP improve the performance of the pre-trained baseline networks (listed above)?
Does the effect hold across different camera views and/or new robots? (see Sec. 3.5.1)

2. Our affordance labels are generated using off-the-shelf vision modules – does distilling their
affordance outputs into a representation (via HRP) work better than simply using those
networks as encoders? (see Sec. 2.6.2)

3. How does HRP compare against alternate forms of supervision on the same human video
dataset? (see Sec. 2.6.3)

4. How important are each of the three affordance losses for HRP’s final performance? And
is it really best to only fine-tune the LayerNorms and leave the other weights fixed? (see
Sec. 2.6.4)

5. Can HRP handle scenarios with OOD distractor objects during test time? (see Sec. 2.6.5)

6. Can HRP representations work with different imitation learning pipelines, like diffusion
policy [3]? (see Sec. 2.6.6)

Note that all experiments were conducted on real robot hardware, and the models were all tested
back-to-back (i.e., using proper A/B evaluation) using 50+ trials per model to guarantee statistical
significance. Note that all of our figures and tables report success rates (sometimes averaged across
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Figure 2.7: This chart applies an ablated HRP method (full fine-tuning) to the 6 baseline representations
and compares their average performance v.s. standard HRP representations on the toasting, pouring, and
stacking tasks (front cam). We find that LayerNorm only fine-tuning is almost always superior.

the toasting, stacking, and pouring tasks) alongside std. err. to quantify experimental uncertainty
– i.e. success%± std. err..

2.6.1 Improving Representations w/ HRP

To begin, we evaluate the 6 baseline representations (detailed in Sec. 2.5) on the toasting, pouring,
and stacking tasks using the front camera view. Then, we apply HRP to each of these baselines,
and evaluate those 6 new models on the same tasks. Average success rates across all 3 tasks
are presented in Fig. 2.6 (left). First, this experiment demonstrates that ImageNet MAE is still
highly competitive on real-world manipulation tasks when compared to other self-supervised rep-
resentations from the vision [1, 29], machine learning [102], and robotics communities [13, 19].
Second, we show that HRP uniformly boosts performance on downstream robotics tasks – i.e.,
baseline + HRP > baseline for every baseline representation considered! Thus, we con-
clude that the affordance information injected by our method is highly useful for robot learning,
and (for now) cannot be learned in a purely self-supervised manner.

Second Camera View A common critique is that robotic representations perform very differently
when the camera view (even slightly) changes. To address this issue, we replicated the first exper-
iment using a radically different ego view, where the camera is placed over the robot’s shoulder
(i.e., on its “head”). While perhaps a more realistic view, it is significantly more challenging due
to the increased robot-object occlusion. Average success rates are presented in Fig. 2.6 (right).
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Figure 2.8: We drop each of the 3 losses in HRP, and compare the ablated method’s average performance
(across the toasting, pouring, stacking tasks) against full HRP representations. Due to the number of abla-
tions involved, this experiment is only run on the Ego4D, ImageNet, and VC-1 base models. We find that
the object and hand losses are critical for good performance, but the contact loss only makes a significant
impact on the Ego4D base model.

Note that our findings replicate almost exactly from the front camera view. The ImageNet MAE
representation is still competitive with the other baselines, and applying HRP uniformly improves
the baseline performance. In addition, we find that HRP injects a higher level of robustness to
camera view shifts, when compared to the baselines. For example, we find that ImageNet +

HRP performs the same on the ego and front camera, even though the ImageNet baseline clearly
prefers the front cam. This general effect holds (to varying degrees) across all six baselines!

Scaling to More Robots Finally, we verify that HRP representations can provide benefits on
other robotic hardware setups. Specifically, we compare Ego4D + HRP and ImageNet + HRP

versus the respective baselines on the Pot on Stove (xARM) and Hand Lift Cup (dexterous hand)
tasks. Results are presented in Table 2.3. Note that HRP representations provide consistent and
significant performance during policy learning on these radically different robot setups, which both
also use a unique side camera view. This gives us further confidence in HRP’s view robustness and
demonstrates that these representations are not tied to specific hardware setups, and can scale to
complex morphologies like dexterous hands.

2.6.2 Distillation w/ HRP Improves Over Label Networks

It is clear that applying HRP to self-supervised representations results in a consistent boost. How-
ever, the hand, object, and contact affordance labels for HRP themselves come from neural net-
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Teacher ResNet HRP Models
Front Cam 100DoH [2] w/ Ego4D w/ ImageNet w/ CLIP

Toasting 35%± 15% 83% ± 9% 75%± 10% 50%± 11%
Pouring 34%± 13% 60% ± 11% 48%± 12% 39%± 11%
Stacking 0% 77% ± 10% 70%± 11% 57%± 11%

Average 35%± 10% 73% ± 6% 64%± 7% 48%± 6%

Table 2.1: This table compares 3 representations trained w/ HRP against the teacher ResNet [2] that gen-
erated our human affordance dataset (see Sec. 2.3.2). We find that the ResNet teacher under-performs even
the worst HRP representation (fine-tuned from CLIP), even after excluding the stacking task, which it failed
on.

Ego4D ImageNet CLIP
+ HRP + Semantic + HRP + Semantic + HRP + Semantic

Toasting 83% ± 9% 25%± 13% 75%± 10% 40%± 14% 50% ± 11% 20%± 13%
Pouring 60% ± 11% 30%± 13.4% 48% ± 12% 26%± 11% 39% ± 11% 22%± 10%
Stacking 77% ± 10% 30%± 11% 70% ± 11% 40%± 12% 57% ± 11% 30%± 13%

Average 73% ± 6% 28%± 7% 64% ± 7% 35%± 7% 48% ± 6% 24%± 7%

Table 2.2: We create Semantic representations by fine-tuning the Ego4D, ImageNet, and CLIP base-
lines using a classification loss, instead of HRP’s affordance loss. Note that the exact same Ego4D clips
(see Sec. 2.3.2) are used during semantic fine-tuning, thanks to object class labels generated automatically
by Detic [105]. The sematic representations were evaluated (using the same BC pipeline) on the Toasting,
Pouring, and Stacking tasks, and compared against their HRP counterparts. Success rates (and standard
error) are reported above. We find that the affordance supervision provided by HRP is vastly superior to the
semantic alternative.

works (see Sec. 2.3.2) – specifically we use the ResNet-101 [107] detector from 100DoH [2] as a
label generator for our active object and contact affordance. The hand affordance we use comes
from FrankMocap [28], which uses 100DoH [2] as a base model. Thus, does distilling labels from
this detector via HRP actually provide a benefit over simply using the 100DoH model itself as a
pre-trained representation? To test this question, we fine-tune policies on the toasting, pouring,
and stacking (front cam) tasks and compare them against HRP applied to ImageNet, Ego4D,
and (the weakest model) CLIP (see Table 2.1). In all cases, our representation handily beats the
100DoH policy. So while the affordance labels can dramatically boost policy learning (via HRP),
the source/teacher models are not at all competitive on robotics tasks.

2.6.3 Comparing Against Alternate Forms of Supervision

We now analyze if HRP’s losses are better suited for robotics tasks than an alternate supervision
scheme. To be clear, the previous results already demonstrated that HRP + Ego4D out-performed
the Ego4D baseline by up to 20% (see Fig. 2.6; left), despite being sourced from the same image
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Ego4D ImageNet
w/ HRP Baseline w/ HRP Baseline

Pot on Stove 50% ± 17% 40%± 16% 60% ± 16% 40%± 16%
Hand Lift Cup 50% ± 17% 40%± 16% 50% ± 17% 30%± 15%

Table 2.3: We present results of Ego4D + HRP and ImageNet + HRP, as well as the respective base-
lines on the x-Arm (Pot on Stove) and a dexterous hand task (Lift Cup). We see that HRP can even boost
performance in multiple morphologies, including a high-degree of freedom dexterous hand [106].

Initialization w/ HRP MAE Initialization

Ego4D 40% ± 15% 15%± 11%
ImageNet 40% ± 15% 40% ± 15%

Table 2.4: This table compares Ego4D + HRP and ImageNet + HRP representations against their
respective baselines on a stacking w/ distractors task. Here the robot must successfully complete the usual
stacking task, when extraneous objects (an orange carrot, and a green bowl) are added to the scene. We find
that Ego4D + HRP improved over its baseline on this task, but ImageNet + HRP performed the same
as its baseline.

data. However, it could be that the additional fine-tuning step with the 100K filtered interaction
clips is responsible, and the specific affordance losses are not key. To test this, we ran a modified
version of HRP using a semantic classification loss, instead of our affordance hand-object losses.
The ground-truth labels for each image were obtained using the Detic object detector [105]. We
then similarly fine-tuned the ImageNet, Ego4D, and CLIP baseline representation using these
labels, and compared them against the respective HRP models on the toasting, pouring, and stack-
ing tasks. The results are presented in Table 2.2 We find that the HRP models perform significantly
better on every task. Thus, we conclude that HRP’s affordance losses play an important role in
boosting performance (i.e., it’s not just data or extra fine-tuning).

2.6.4 What Design Decisions are Important?

The following section ablates the key components of HRP to evaluate their relative importance.
First, we apply HRP to each of the 6 baseline representations again, but this time none of the
weights are kept fixed (see Sec. 2.4.2). These representations are fine-tuned on the toasting,
stacking, and pouring tasks (front cam), and compared against the original HRP representations
in Fig. 2.7. Note that fine-tuning all the layers results in a substantial performance hit on average,
and this trend is consistent regardless of the base representation! Thus, we conclude fine-tuning
only the layer norms when applying HRP is the correct decision.

Next, we ablate each of the affordance losses in Eq. 2.4, by applying HRP three times: once
with λct = 0, then with λhand = 0, and finally λobj = 0. This process is repeated using 3 different
base models; ImageNet, Ego4D, and VC-1. This creates 9 ablated models (3 losses x 3 ini-
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Figure 2.9: This figure tests if HRP representations can boost performance when using a radically different
imitation learning framework – namely Diffusion Policy [3]. We evaluate diffusion policies (following the
U-Net + state action formula described by Chi et. al [3]) on the toasting, pouring, and stacking tasks using
3 different visual encoders: the default ResNet encoder from RoboMimic [4], the ImageNet + MAE
baseline, and our HRP + ImageNet features. We find a clear improvement when using HRP weights,
which suggests that HRP is applicable to different imitation learning frameworks!

tializations) that are compared versus the full HRP models on the toasting, pouring, and stacking
tasks. The average results are presented in Fig. 2.8. We find that removing the object (Eq. 2.3)
and hand (Eq. 2.2) losses uniformly results in significant performance degradation. Meanwhile,
the contact loss (Eq. 2.1) only provides a significant boost for the Ego4D base model but does not
affect the others. Thus, we conclude that object and hand losses are critical for our method, while
the contact loss is more marginal, most likely due to the fact that the extraction of contacts is a
relatively noisy process.

2.6.5 Novel Distractors During Test-Time

We evaluate the performance of HRP and baseline approaches in OOD settings, by adding ex-
traneous “distractor” objects (an orange carrot and a light green bowl) in the stacking task. The
robot must successfully ignore the distractor and complete the task. Results are presented in Ta-
ble 2.4. We found that both ImageNet + HRP and ImageNet had the same level of robustness
to distractors. Meanwhile, Ego4D’s performance dropped substantially, while Ego4D + HRP

remained robust. Our hypothesis is that human data by itself does not contain enough information
to allow for OOD tasks. However, using HRP allows for more focus on task-relevant features, even
when the representation is trained on less diverse data.
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2.6.6 Evaluating w/ Diffusion Policy

Finally, we analyze if HRP representations offer improvements when using a radically different
imitation learning framework, like diffusion policy [3]. Specifically, we adopt the original U-Net
action prediction head and environment setup from Chi et. al. [3], but replace their ResNet vi-
sual encoder (inspired from RoboMimic [4]) with our HRP + ImageNet ViT-B model. Then
we compare this HRP enhanced diffusion policy implementation, against (diffusion agents which
use) both the original ResNet encoder and the baseline ImageNet ViT-B. Results for the (Franka)
stacking, pouring, and toasting tasks are presented in Fig. 2.9. We find that HRP + ImageNet

significantly improves over both alternatives (76% for HRP v.s., 56% for Chi et. al.’s implementa-
tion [3]), despite using a radically different imitation learning objective/setup! Thus, we conclude
that HRP representations can boost performance across different setups.

2.7 Discussion

In HRP, we investigate human affordances as a strong prior for training visual representations.
Thus, we present, a semi-supervised pipeline that extracts contact points, hand poses, and activate
objects from human videos, and uses these affordances for fine-tuning representations. HRP im-
proves base model performance drastically, for five different, downstream behavior cloning tasks,
across three robot morphologies and three camera views. All components of our approach, includ-
ing LayerNorm tuning, our three affordances, and our distillation process (from affordance labels
to representations) are important for the model’s success. One key limitation of this approach is
that it has only been tested on imitation settings in this paper. In the future, we hope to not only
scale this approach to many more tasks and robot morphologies, but also incorporate HRP in other
robot learning paradigms such as reinforcement learning or model based control.



Part II

Dexterous Human Interactions for
In-the-Wild Robot Policies

25





Chapter 3

DexWild: Dexterous Human Interactions
for In-the-Wild Robot Policies

3.1 Introduction

Roboticists have long envisioned creating systems that exhibit the dexterity and adaptability of hu-
man behavior. Ideally, such robots would generalize across a wide range of objects, environments,
and embodiments. However, this level of versatility remains a core challenge. Unlike recent ad-
vances in language [108, 109, 110] and vision-language models [111, 112], which are fueled by
massive internet-scale datasets, robotics lacks data at comparable scale and diversity. This data
scarcity makes it difficult to train general-purpose models or collect new data safely—creating a
bottleneck that limits progress.

One common solution is teleoperation [43, 113, 114], where skilled operators generate high-
quality demonstrations. While effective, these systems are expensive and time-consuming, often
requiring specialized equipment and significant human effort. Data collection in diverse environ-
ments further compounds these issues, as it demands physically relocating hardware or replicating
setups.

To address scalability, another line of work taps into internet videos [1, 115], which offer
rich, diverse scenes of human interaction. Yet, these videos often lack the precision needed for
fine-grained robotic learning, especially around hand-object interactions. While recent methods
attempt to extract usable cues using pose or affordance models [116, 82, 117], these signals remain
noisy and insufficiently grounded for training high-fidelity policies.

Wearable gripper systems [118, 119] offer more direct mapping to robotic control, but are
cumbersome, fatiguing, and limited in their ability to capture natural human dexterity at scale.

In this paper, we introduce DexWild, a system that co-trains on both human and robot demon-

27
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Figure 3.1: Left: DexWild efficiently capture high-fidelity data using an individual’s own hands across
various environments. Right: Robot hands are equipped with cameras aligned with the human cameras. We
test DexWild on two distinct robot hands and robot arms.

strations to enable robust, generalizable manipulation policies. Our contributions include:

1. Scalable Data Collection System: We propose DexWild-System, a human-embodiment
platform that enables 10 untrained users to collect 6,621 demonstrations across 66 environ-
ments, achieving a 4.6× speedup over robot-only collection.

2. Efficient Co-training Framework: We design a method for integrating human and robot
data that improves policy generalization, yielding a 75.1

3. Cross-Embodiment and Multi-Task Transfer: Our system achieves an 8.3× improvement
in cross-embodiment policy transfer and supports generalization across multiple tasks.

3.2 Related Works

3.2.1 Generalization for Imitation Learning

Learning generalizable policies for robot manipulation has seen rapid progress, driven largely by
advances in visual representation learning and imitation learning from large-scale datasets. On
the visual side, embodied representation learning has benefited from egocentric datasets such as
Ego4D [1] and EPIC-KITCHENS [115], with recent methods [12, 14, 16, 120] leveraging these
datasets to train scalable visual encoders. However, these approaches still require substantial down-
stream robot demonstrations to train control policies.

In parallel, robot-only demonstration datasets have grown significantly in scale and diver-
sity [113, 43, 114], fueling research in behavior cloning and enabling generalist policy architec-
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tures [121, 43, 122]. While these policies show impressive performance across many tasks, they
often struggle to generalize to unseen object categories, scene layouts, or environmental condi-
tions [123]. This lack of robustness remains a key limitation of current systems.

3.2.2 Data Generation for Robot Manipulation

Overcoming the robot data bottleneck has become a central challenge in robot learning.

One approach leverages internet videos to extract action information. Several works, such as
VideoDex [117] and HOP [124], utilize large scale human videos to learn an action prior through
retargeting, which they use to bootstrap policy training. Others, such as LAPA [125], use un-
labelled videos to generate latent action representations that can be used for downstream tasks.
While these video-based schemes enjoy vast visual diversity, they typically fall short at capturing
the precise, low-level motor commands needed for real-world manipulation.

Simulation enables rapid generation of action data at scale. However, creating diverse, realistic
environments for many tasks and addressing the sim-to-real gap is challenging. Recent successes
in transferring manipulation policies from simulation [126] have been confined to tabletop settings
and lack the generalization needed for deployment in diverse environments.

Direct teleoperation on physical robots yields the highest fidelity, but scales poorly. Recent
works have shown impressive dexterity and efficient learning in fixed scenarios [127, 128, 129,
130], yet collecting enough demonstrations to generalize across diverse scenes quickly becomes
prohibitively expensive.

Recently, there has been a growing body of work that utilizes purpose-collected high quality
human embodiment data without the tedious teleoperation. We discuss these approaches in the
next section.

3.2.3 Human Action Tracking Systems

In order to acquire high-quality data from human motions, accurate hand and wrist tracking is of
paramount importance. To bypass the complexities of hand pose estimation, several works equip
users with handheld robot grippers [118, 131, 33]. While this approach simplifies retargeting, it
constrains users to the specific morphology of the robot gripper, limiting the diversity of captured
behavior. Moreover, many of these systems rely on SLAM-based wrist tracking, which can fail in
feature-sparse environments or when occlusions occur [118, 132]—such as during drawer opening
or tool use.

Other approaches aim to estimate both hand and wrist poses directly from visual input [133,
134, 135, 136, 137, 138, 139]. These methods are easy to deploy and require no instrumentation,
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but their performance degrades significantly under occlusion—an unavoidable situation in manip-
ulation. Alternative strategies for wrist tracking, such as IMU-based [140, 141] and outside-in
optical systems [142], come with their own limitations: IMUs are lightweight and portable but
prone to drift, while optical systems are accurate yet require laborious calibration and controlled
environments.DexWild leverages calibration-free Aruco tracking—significantly improving relia-
bility and minimizing setup time as it requires a single monocular camera.

While vision-based methods often attempt to track both the wrist and fingers simultaneously,
many recent systems decouple the two to improve accuracy. Kinematic exoskeleton gloves can
provide high-fidelity joint measurements and even haptic feedback [143], but are bulky and un-
comfortable for long-term use. Instead, DexWild, along with prior works [129, 119], adopts a
lightweight glove-based solution that uses electromagnetic field (EMF) sensing to estimate finger-
tip positions. This allows for accurate, real-time hand tracking that is robust to occlusions and
readily retargetable to a wide range of robot hands.

3.3 DexWild

Many believe that leveraging large, high-quality datasets is the key for creating dexterous robot
policies that generalize [43, 121, 117, 14]. We introduce DexWild-System, a user-friendly, high-
fidelity platform for efficiently gathering natural human hand demonstrations across diverse real-
world settings. Compared to traditional teleoperation-based approaches, DexWild-System enables
4.6× faster data acquisition at scale.

Building on this system, we propose DexWild, an imitation learning framework that co-trains
on large-scale DexWild-System human demonstrations alongside a small number of robot demon-
strations. This approach combines the diversity and richness of human interactions with the
grounding of the robot embodiment, enabling policies to robustly generalize across new objects,
environments, and embodiments. Figure 2.1 displays our high level approach.

3.3.1 Data Collection System

A scalable data collection system for dexterous robot learning must enable natural, efficient, and
high-fidelity collection across diverse environments. To this end, we design DexWild-System: a
portable, user-friendly system that captures human dexterous behavior with minimal setup and
training. While previous in-the-wild data collection approaches have typically relied on sensorized
grippers, we aimed to create a more intuitive hardware interface that mirrors how humans naturally
interact with the world. From delicate fine-motor actions to powerful grasps, humans possess
dexterity across a wide range of manipulation tasks. By learning from this intrinsic capability,
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DexWild-System captures rich, diverse data applicable to a broad range of robot embodiments.

DexWild-System is designed around three core objectives:

• Portability: Allow rapid, large-scale data collection across diverse environments without
requiring complex calibration procedures.

• High Fidelity: Accurately capture fine-grained hand and environment interactions essential
for training precise dexterous policies.

• Embodiment-Agnostic: Enable seamless retargeting from human demonstrations to a wide
variety of robot hands.

Portability:
To collect data in diverse real-world settings, a system must be portable, robust, and usable by

anyone. We design DexWild-System with these goals in mind: it is lightweight, easy to carry, and
can be set up in just a few minutes—enabling scalable data collection across many locations.

As shown in Figure 3.1, DexWild-System consists of only three components: a single track-
ing camera for wrist pose estimation, a battery-powered mini-PC for onboard data capture, and a
custom sensor pod comprising a motion-capture glove and synchronized palm-mounted cameras.

Unlike traditional motion capture systems [144, 145, 146, 147] that often rely on complex
outside-in tracking setups that require calibration, DexWild-System is truly calibration free, mak-
ing it versatile for any scenario and foolproof for untrained operators.

This is achieved by adopting a relative state-action representation, where each state and action
is captured as the relative difference from the previous time step’s pose. This eliminates any need
for a global coordinate frame, allowing the tracking camera to be freely placed—either egocen-
trically or exocentrically. Additionally, the palm cameras are rigidly mounted in fixed positions
across both human and robot embodiments. This ensures visual observations are aligned across
domains, eliminating the need for further calibration at deployment. The external tracking cam-
era, when carefully positioned, can also capture supplementary environmental context useful for
learning robust policies.

High Fidelity:
To learn dexterous behaviors, fine-grained, nuanced motions must be captured in the training

dataset. Although DexWild-System consists of only a few portable components, we make no
compromises on data fidelity. Our system is designed to accurately capture both hand and wrist
actions, paired with high-quality visual observations.

For wrist and hand tracking, vision-only methods are easy to setup. However, what they gain in
portability, they often lose in accuracy and robustness—yielding noisy pose estimates that degrade
policy learning [129, 148, 139, 118].
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For hand pose estimation, we use motion capture gloves, which offer high accuracy, low la-
tency, and robustness against occlusions [129]. For wrist tracking, we mount ArUco markers on
the glove and track them using an external camera. This avoids the fragility of SLAM-based wrist
tracking, which often fails in feature-sparse environments or during occlusion-heavy tasks (e.g.,
drawer opening).

Unlike many datasets that rely on egocentric or distant external cameras, we place two global-
shutter cameras directly on the palm. As illustrated in Figure 3.1, these stereo cameras capture
detailed, localized interaction views with minimal motion blur and a wide field of view. This wide
field of view enables policies to operate using only the onboard palm cameras, without any reliance
on static viewpoints.

Embodiment-Agnostic:

To ensure the longevity and versatility of DexWild data, we aim for it to remain useful across
different robot embodiments—even as hardware platforms evolve. Achieving this goal requires
careful alignment of both the observation space and the action space between humans and robots.

We begin by standardizing the observation space. Although our palm-mounted cameras have
a wide field of view, we intentionally position them to focus primarily on the environment, min-
imizing the visibility of the hand itself. Importantly, the camera placement is mirrored between
the human and robot hands. As shown in Figure 3.2, this design yields visually consistent ob-
servations across embodiments, allowing the policy to learn a shared visual representation that
generalizes across both human and robot domains.

For action space alignment, we build on insights from prior work [149, 150], optimizing robot
hand kinematics to match the fingertip positions observed in human demonstrations. We note
that this method is general and can work for any robot hand embodiment. It operates with fixed
hyperparameters across users and is robust to variations in hand size—eliminating the need for
user-specific tuning.

Collecting data using natural human hands offers benefits beyond ease of use. The diversity
in hand morphology across human demonstrators introduces useful variation, which we hypothe-
size helps policies learn more generalizable grasping strategies—particularly important given the
inherent mismatch between human and robot hand kinematics.

In summary, DexWild is a portable, high quality, human-centric system that can be worn by
any operator to collect human data in real-world environments. Next, we explain how we use the
data collected by DexWild to enable dexterous policies to generalize to in-the-wild scenarios.
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Figure 3.2: DexWild aligns the visual observations between humans and robots to bridge the embodiment
gap. This incentivizes the model to learn a task-centric rather than embodiment-centric representation.

3.3.2 Training Data Modalities and Preprocessing

Generalization in dexterous manipulation demands both scale and embodiment grounding. With
this goal, DexWild collects two complementary datasets: a large-scale human demonstration dataset
DH using DexWild-System, and a smaller teleoperated robot dataset DR. Human data offers broad
task diversity and ease of collection in real-world settings, but lacks embodiment alignment. Robot
data, while limited in scale, provides crucial grounding in the robot’s action and observation spaces.
To harness the strengths of both, we co-train policies using a fixed ratio of human and robot data
within a batch, (wh, wr)—balancing diversity with embodiment grounding to enable robust gener-
alization during deployment.

At each training iteration, we sample a batch consisting of transitions xh and xr from DH and
DR, respectively, according to the co-training weights. Each transition xi at timestep i contains:

• Observation oi: An observation at a given timestep consists of two synchronized palm cam-
era images Ipinky and Ithumb captured at the current timestep, as well as a sequence of histori-
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Figure 3.3: Using DexWild-System, humans can effortlessly collect accurate data with their own hands
across a wide range of environments. This data is directly used to train any robot hand to perform dexterous
manipulation in a human-like way in any environment. We validate this approach on five representative
tasks. Please see videos of these tasks on our website at https://dexwild.github.io

cal states, sampled at a step size up a given horizon H , comprising of {∆pi,∆pi−step, ...,∆pi−H}.
Each ∆p consists of relative historical end-effector positions.

• Action ai:i+n−1: An action chunk of size n that includes actions {ai, ai+1, . . . , ai+n−1},
where ai is the action at the current timestep. Specifically, ai is a 26-dimensional vector
consisting of:

– aarm: A 9-dimensional vector describing relative end-effector position (3D) and orien-
tation (6D).

– ahand: A 17-dimensional vector describing the finger joint position targets of the robot
hand.

For bimanual tasks, the observation and action spaces are duplicated, and the inter-hand pose
is appended to the observation to facilitate coordination.

While our retargeting procedure brings human and robot trajectories into a shared action space,
a few additional steps are necessary to make the human and robot datasets compatible for joint
training:

• Action Normalization: The actions of human and robot data are normalized separately to
account for inherent distribution mismatches.

• Demo Filtering: Since human demonstrations are collected by untrained operators in un-
controlled environments, we apply a heuristic-based filtering pipeline to automatically de-
tect and remove low-quality or invalid trajectories. This filtering step significantly improves
dataset quality without manual labeling.

https://dexwild.github.io
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3.3.3 Policy Training

Through the careful design of our hardware, observation, and action interfaces, we are able to
train dexterous robot policies using a simple behavior cloning (BC) objective [36, 103, 104]. To
effectively learn from our multimodal, diverse data, our training pipeline leverages large-scale
pre-trained visual encoders and shows strong performance across different policy architectures.

Visual Encoder: Training on DexWild data exposes our policy to significant visual diver-
sity—across scenes, objects, and lighting—requiring an encoder that generalizes well to such vari-
ability. To address this, we adopt a pre-trained Vision Transformer (ViT) backbone, which has
shown superior performance over ResNet-based encoders on in-the-wild manipulation tasks [151,
132]. Pre-trained ViTs, especially those trained on large internet-scale datasets, are particularly
effective at extracting rich, transferable features [12, 152, 16, 14], making them well-suited for our
setting.

Policy Class: While several imitation learning architectures have been proposed recently [127,
3], we adopt a diffusion-based policy. Diffusion models are particularly well-suited for dexterous
manipulation, as they can capture multi-modal action distributions more effectively than alterna-
tives such as Gaussian Mixture Models (GMMs) or transformers. This capability becomes in-
creasingly important in DexWild, where demonstrations are collected from multiple humans with
diverse strategies, resulting in inherently multi-modal behaviors. As the dataset scales, modeling
this variability becomes critical for robust policy learning. Specifically, DexWild uses a diffusion
U-Net model [3] to generate action chunks.

Concretely, the training procedure is outlined in Algorithm 1.

Algorithm 1 DexWild Imitation Learning Procedure

Require: Human dataset DH , Robot dataset DR, Co-training weights {ωh, ωr}
1: Initialize policy πθ with ViT encoder ϕvit
2: while not converged do
3: Sample a batch of transitions {xh}, {xr} from DH ,DR using weights {ωh, ωr}
4: for each transition xi in the batch do
5: Extract observation oi
6: Encode images: Zi = ϕvit(oi)
7: Extract ground truth action chunk ai:i+n−1 = {ai, . . . , ai+n−1}
8: Sample noise scale t ∼ U(1, T )
9: Add noise ϵt ∼ N (0, σt) to ai:i+n−1

10: Predict noise ϵ̂θ = πθ(Zi, ai:i+n−1 + ϵt, t)
11: Compute diffusion loss Lθ = ∥ϵt − ϵ̂θ∥22
12: end for
13: Update policy parameters θ
14: end while

An important finding in our training framework is that tuning the human-to-robot data weight-
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Figure 3.4: We collect data using a diverse set of objects across categories. Spray Bottle Task – 25 Train,
11 Test; Toy Cleanup Task – 64 Train, 9 Test; Pour Task – 35 Train, 5 Test; Florist Task - 6 Train, 2 Test;
Clothes Folding Task - 17 Train, 6 Test.

ing significantly affects real-world performance. We discuss these effects in Section 3.5.1.

3.4 Experiments

Our experimental evaluation encompasses extensive real-world deployment across diverse envi-
ronments and robots, utilizing both human demonstrations and robot teleoperation data. Below,
we outline our data collection process, experimental setup, and evaluation tasks.

3.4.1 Scaling up Data Collection

Our hardware system was deployed to 10 untrained users to collect data across a wide range of
real-world environments. These settings included indoor and outdoor locations, day and night
conditions, crowded cafeterias and quiet study areas, with varied tables, objects, and lighting se-
tups. The collectors themselves varied in hand sizes and demonstration styles, enabling us to learn
from a wide distribution of environments and interactions.

We constructed two datasets through our collection efforts: DH (human-collected data) and
DR (robot-collected data). The human dataset DH comprises 9,290 demonstrations across five
tasks: 3,000 demonstrations from 30 different environments for each of the Spray Bottle and Toy

Cleanup tasks, 621 trajectories from 6 environments for the Pour task, 1,545 demonstrations from
15 environments for the Florist task, and 1,124 demonstrations from 12 environments for the
Clothes Folding task.

The robot dataset DR includes 1,395 demonstrations: 388 for Spray Bottle, 370 for Toy Cleanup,
111 for Pour, 236 for Florist, and 290 for Clothes Folding tasks. Robot data was collected using
an xArm and LEAP hand V2 Advanced. Our training and test objects are detailed in Figure 3.4.
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Figure 3.5: How does co-training help with scaling up in the wild performance? We evaluate our policy
across three scenarios: (a) In-Domain scenes where robot training data was collected but with novel objects,
(b) In-the-Wild scenes present in DexWild but not in robot data, and (c) In-the-Wild Extreme scenes absent
from both datasets. Displayed ratio is Robot:Human.

3.4.2 Evaluation Tasks

We evaluate our approach on five diverse manipulation tasks, each designed to assess specific
aspects of dexterous manipulation: functional grasping, long-horizon planning, cross-task transfer,
bimanual coordination, and deformable object manipulation. A task visualization is provided in
Figure 3.3.

In the Spray Bottle task, the robot grasps a spray bottle by the handle and sprays a target cloth,
testing functional grasping and affordance understanding. In Toy Cleanup, the robot picks up
scattered toys and places them in a bin, evaluating generalization and long-horizon planning. The
Pouring task involves tilting a bottle to pour into a container, demonstrating skill transfer from the
spray bottle task. In Bimanual Florist, the robot hands over a flower between its arms and inserts it
into a vase, testing precise bimanual coordination. Finally, in Bimanual Clothes Folding, the robot
uses both hands to fold a clothing item, assessing manipulation of deformable objects.

These tasks systematically evaluate HRP functional grasping capabilities, generalization across
object types, transferal of skills across tasks, coordination between arms, and adaptability to de-
formable objects. Success requires the policy to adapt to varying object properties, environmental
conditions, and task constraints.

3.4.3 Evaluation Environments

For robot experiments, we employed an xArm robot and Franka system, both equipped with either
LEAP hand or LEAP hand V2 Advanced [? 129]. Unless explicitly mentioned, xArm and LEAP
hand V2 Advanced was used. We evaluate our approach across three scenarios:

1. In-Domain: Environments where robot training data was collected, testing with novel objects

2. In-the-Wild: Environments present in DexWild but absent from robot training data
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3. In-the-Wild Extreme: Unseen environments absent from both datasets.

3.5 Analysis and Results

In our evaluations, we seek to investigate the following key questions:

1. How effectively does DexWild leverage human data to achieve strong in-the-wild perfor-
mance?

2. Does DexWild enable policy transfer across tasks and robot embodiments?

3. Does policy performance scale effectively with increasing amounts of DexWild-System
data?

3.5.1 Zero Shot In the Wild Policies w/ DexWild

DexWild enables strong policy generalization in novel scenes. We evaluate policies in envi-
ronments with increasing novelty to assess their generalization. As shown in Figure 3.5, policies
trained exclusively on robot data perform well in in-domain settings (64.7% success rate) but de-
grade significantly in more challenging scenarios—in-the-wild (28.5%) and in-the-wild extreme
(22.0%). This 36-point performance drop suggests that robot-only policies overfit to environment-
specific features and fail to develop robust, transferable representations. In contrast, policies
trained only on human data learn high-level object affordances and approach objects reliably, even
in complex scenes. However, without robot-specific action grounding, they struggle to execute
precise manipulation, resulting in poor performance across all scenarios (3.6% in-domain, 7.3%
in-the-wild).

To combine the strengths of both modalities, we adopt a co-training strategy—jointly training
on both robot and human data—a method validated in prior works [43, 121, 113, 138, 139]. This
encourages the policy to learn task-relevant features rather than overfitting to specific embodiments
or environments. We experiment with different robot-to-human data ratios (1:1 to 1:5) per train-
ing batch. Our empirical analysis reveals that a 1:2 ratio yields optimal performance across all
scenarios:

1. In Domain: 79.8% vs. 64.7% (robot-only)

2. In-the-wild: 75.1% vs. 28.5% (robot-only)

3. In-the-wild Extreme: 62.7% vs. 22.0% (robot-only)
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Interestingly, increasing the human data ratio further (e.g., 1:5) degrades performance (54.5%
in-domain, 50.9% in-the-wild), indicating that robot data remains essential for grounding fine-
grained control.

DexWild extends to complex bimanual coordination tasks. To evaluate whether DexWild
generalizes beyond single-arm tasks, we test it on bimanual tasks that demand precise coordina-
tion between two hands. We compare co-trained policies (1:2 ratio) against robot-only policies
in in-the-wild extreme settings. DexWild policies achieve a strong 68.1% average success rate,
compared to just 13% for the robot-only baseline. Even when failures occur, DexWild policies
exhibit meaningful attempts at task execution—while robot-only policies often produce erratic or
unstructured behavior.

These results demonstrate that DexWild not only enables robust generalization across environ-
ments but also scales to more complex manipulation behaviors.

3.5.2 Robust Cross-Task and Cross-Embodiment Generalization

DexWild enables transfer of low-level skills across tasks. Many manipulation tasks share foun-
dational motor skills—such as lifting, orienting, and rotating objects—which opens the door to
skill reuse across related tasks. For example, opening a microwave and opening a cupboard both
involve similar coordination and control. We evaluate this form of cross-task transfer using the
pouring task, which shares many motion primitives with the spray task. Crucially, we use no robot
data for pouring and instead combine human (DexWild-System) demonstrations of pouring with
robot demonstrations from spraying. This setup enables zero-shot generalization to pouring in in-
the-wild extreme environments. Using a 1:2 robot-to-human co-training ratio, our policy achieves
a 94% success rate, far exceeding policies trained with only robot (0%) or only human data (11%).

DexWild enables transfer across robot embodiments. Since DexWild data is not tied to any
specific embodiment, it naturally supports cross-platform transfer. This prolongs the value of our
data, as collecting platform-specific data for every new robot is resource-intensive and impractical.
We test two transfer scenarios in in-the-wild extreme scenes:

• Cross-arm: Transferring from an xArm to a Franka Panda arm. We achieve a 37.5% success
rate, compared to 4.5% for the robot-only baseline—an 8.3× improvement.

• Cross-hand: Transferring from the LEAP Hand V2 Advanced to the original LEAP Hand.
We achieve 65.3% success versus 13.3% for the baseline, showing that DexWild generalizes
not only across arms, but across dexterous hands as well.

These results, shown in Figure 3.6, demonstrate that DexWild enables zero-shot generalization
to new tasks and hardware embodiments without any additional robot-specific data, making it
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Figure 3.6: Left: Cross-Task Performance – Evaluating DexWild on the pour task using robot data
exclusively from the spray task. Middle: Cross-Embodiment Performance – Testing DexWild policy on
the Original LEAP hand and a Franka robot arm. Right: Scaling Performance – Demonstrating improved
DexWild performance as dataset size increases. Displayed ratio is Robot:Human.

an efficient and general framework for dexterous policy learning on many robots.

3.5.3 Scalability of DexWild

Policy performance scales with dataset size. To understand how data scale impacts policy per-
formance in the wild, we randomly sample subsets of the full human dataset at varying sizes and
evaluate the resulting policies. We fix the size of the robot dataset. As shown in Figure 3.6, there is
a clear positive correlation between dataset size and average task performance—rising from 28.7%
at 20% dataset size to 67.8% with the full dataset, marking a 2.36× improvement. Interestingly, the
learning curve is nonlinear, with especially steep gains in the 25–50% range, suggesting a critical
threshold where the policy begins to reliably learn generalizable behaviors.

Importantly, performance continues to improve all the way to 100% data usage, indicating that
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Figure 3.7: DexWild-System offers 4.6× improvement over robot data
collection speed and nearly matches the human bare hands data collection
speed.
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the system has not yet plateaued. This suggests that even more capable policies could be learned
with continued data collection.

DexWild-System enables fast and scalable data collection. Given the observed benefits of
scaling, we evaluate the data collection efficiency of DexWild-System via a comparative user study
measuring demonstrations per hour. As shown in Figure 3.7, DexWild-System achieves an average
collection rate of 201 demos/hour across five representative tasks—nearly matching the rate of
demonstrations collected using bare hands and 4.6× faster than a traditional robot teleoperation
system based on Gello [129, 128], which achieves just 43 demos/hour.

We identify three key limitations of Gello-based collection that our system overcomes:

1. Lack of haptic feedback: Operators cannot feel objects, making fine manipulation difficult
for certain tasks.

2. Scene reset: Resetting the environment is cumbersome and often requires a second operator
or pauses in data collection.

3. Hardware setup overhead: Robots are heavy and require time-consuming setup at each
new location, whereas DexWild-System is portable and can be set up in minutes.

DexWild not only demonstrates strong scaling trends with increasing data volume, but also
offers a practical and efficient path to collecting diverse, high-quality data at scale—crucial for
real-world generalization.

3.6 Conclusion and Limitations

We introduce DexWild, a scalable framework for learning dexterous manipulation policies that ef-
fectively generalize to new tasks, environments, and robot embodiments. We introduce DexWild-
System, a portable, human-centric data collection device that significantly accelerates dataset cre-
ation (4.6× faster than conventional robot teleoperation). We propose DexWild cotraining method,
which leverages large scale human demonstrations alongside minimal robot data to achieve robust
generalization-reaching a success rate of 68.5% in completely unseen environments, nearly four
times higher than methods using robot data only. Furthermore, DexWild’s embodiment-agnostic
design enables strong cross-embodiment and cross-task transfer capabilities, reducing the need for
robot-specific data.

Despite these strengths, several limitations remain that motivate future research: First, our ap-
proach still depends on a limited number of teleoperated robot data to bridge the gap between
human and robot actions. Future work could explore improved retargeting or online policy adap-
tation to remove the need for teleoperated data. Next, because humans typically perform these
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tasks successfully, their demonstrations seldom include error recovery—causing trained policies
to struggle to recover from unexpected failures. Adding recovery examples or adaptive strategies
could boost real-world robustness. Finally, our method uses only visual and kinematic data, which
limits its performance in contact-rich tasks. Incorporating tactile or haptic sensing could improve
the handling of delicate interactions.

In summary, DexWild represents a significant step toward scalable, generalizable robot manip-
ulation policies. Our results highlight the promise of leveraging human interaction data at scale,
offering an exciting avenue toward truly dexterous and versatile robots operating in diverse, real-
world environments.



Chapter 4

Conclusion and Future Directions

In this thesis, we explored how human manipulation priors—both passive and active—can be
systematically leveraged to enable generalization in robotic learning. Part I introduced HRP, a
framework that distills structured knowledge from passive human video into visual representations
suitable for robot control. Part II introduced DexWild, a system for collecting and co-training
on large-scale in-the-wild human demonstrations to drive policy generalization across tasks, envi-
ronments, and embodiments. Together, these approaches offer complementary pathways toward
the broader goal of learning to generalize via human manipulation priors. In this chapter, we
summarize key contributions and highlight future directions that build on this foundation.

4.1 Summary of Contributions

Human Video Pre-Training (HRP): We showed that by mining affordance labels (hand-object
contact points, hand poses, etc.) from large-scale human videos, we can pre-train a robot’s vi-
sual encoder to be far more attuned to manipulation-relevant features. HRP-pretrained representa-
tions significantly improved downstream policy learning, boosting success across tasks and even
in unseen conditions. This contribution is important because it demonstrates a way to leverage
abundantly available passive human data (like YouTube videos or egocentric recordings) without
requiring any manual labeling or robot data. HRP essentially gives robots a “head start” by learn-
ing what to pay attention to in a scene (e.g., where hands tend to grasp objects) before the robot
even begins acting.

Wearable Human Demonstrations and Co-training (DexWild): We developed a practical
system for capturing human demonstrations in the wild and a co-training algorithm that integrates
this data with robot experiences. The resulting DexWild policies achieved unprecedented general-
ization: adapting to new environments, objects, and even different robot hardware with minimal to
no extra training. This contribution addresses the active side of learning from humans—learning
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not just from observation but from doing as humans do. By utilizing human demonstrations, we
circumvent the need for laborious teleoperation and tap into the intuition and efficiency of human
motor skills to directly program robot behavior. The co-training approach ensures that this wealth
of human skill is effectively translated into the robot’s context.

Complementarity of Approaches: The two approaches tackle the generalization problem
from different angles. HRP focuses on representation learning (perception), making sure the robot
interprets its sensory inputs in a human-like way. DexWild focuses on policy learning (action),
guiding the robot’s decisions using human strategies. Together, they form a powerful combination:
a robot could, for instance, use an HRP-pretrained visual encoder within a DexWild co-trained
policy. We expect that HRP’s visual understanding would enhance the policy’s ability to perceive
new scenarios, while DexWild’s human-derived action strategies would enhance decision-making.
An integrated system would effectively leverage human insight at both perception and control
levels.

4.2 Future Directions

Building on this work, there are several exciting directions to pursue:

• Unified Framework: As noted, combining HRP and DexWild more explicitly is a logical
next step. One could imagine a training pipeline where human videos not only pre-train the
visual encoder but are also used (via imitation or inverse reinforcement learning) to suggest
high-level goals or sub-tasks for the policy.

• Scaling and Diversity: Both methods likely benefit from more data. On the HRP side,
incorporating more complex affordances (like tool affordances, or human intent prediction)
could enrich the representation. On the DexWild side, expanding the dataset to more peo-
ple (diverse sizes, techniques) and tasks will make policies even more robust. A potential
future dataset could involve a crowd-sourced approach, where many users around the world
contribute demonstrations with a standardized kit.

• Interactive Fine-Tuning: One limitation of imitation learning (used in both parts) is that it
doesn’t handle novel failures by the robot after training. A future direction is to allow the
robot to fine-tune its skills through trial-and-error, while still guided by human priors. For
example, after HRP+DexWild training, the robot could perform reinforcement learning on
a new task; since it already has good representations and priors, it should learn much faster
(this could be tested and formalized as accelerating RL with human priors).
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• Multi-Modal Integration: Our HRP approach focused on visual inputs, and DexWild
mainly on kinematics (with some video). Humans also rely on touch, sound, and propri-
oception heavily. Extending our frameworks to multi-modal human data (e.g., wearable
tactile sensors on humans, audio of task execution) could inform robots about aspects of ma-
nipulation we have not yet utilized (like the feeling of a tight lid, or the sound of a snap-fit).

• Broadening Beyond Manipulation: The principle of leveraging human priors can extend
to navigation, locomotion, and interaction. For instance, HRP-like strategies could be used
to learn from driver dashcam videos for autonomous driving, or from human trajectories
in crowds for mobile robot navigation. DexWild-like co-training could apply to learning
from human teleoperation of drones or multi-robot systems. Our work lays a foundation
that human experiences (both observed and lived) are a rich resource for all kinds of robot
learning.

In conclusion, this thesis demonstrated that by leveraging human priors, robots can achieve
levels of generalization well beyond what is possible with robot data alone. We showed substantial
empirical gains and introduced scalable methods to attain them. The future is promising: as more
human data becomes available and our algorithms become more sophisticated, we inch closer to
robots that can seamlessly operate in our complex, ever-changing world, side by side with humans,
learning from us in every way possible.
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