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Abstract
To enable robots to assist in everyday tasks in diverse natural environ-

ments such as homes, offices, and kitchens, it is critical to develop policies
that generalize to novel tasks in unseen scenarios. Practical utility demands
that these policies do not require task-specific adaptation at test time but can
instead execute directly given a natural task specification, such as a language
instruction. Moreover, such policies should be able to handle a broad spectrum
of tasks—such as manipulating articulated objects, pouring, reorienting ob-
jects, and wiping tables — without the need for explicit robot data collection
for every possible task, as required by the predominant paradigm of end-to-
end imitation learning. The difficulty in collecting large-scale, diverse robot
interaction datasets in natural scenarios makes this requirement impractical.

While typical approaches rely on a large amount of demonstration data
for such generalization, in this thesis we present approaches for effectively
leveraging web data to scalably augment robot interaction datasets. This
thesis pioneers the paradigm of conditioning robotic policies explicitly on
motion cues from predictive models trained on large-scale video datasets,
enabling the policy to perform new tasks with novel objects and novel motions
unseen in the robot-specific data. We formalize the notion of factorizing a
robotic policy into an embodiment-agnostic interaction plan that can now use
general internet data and embodiment-specific action execution conditioned
on the plan, which is substantially easier of a problem. Throughout the thesis
we develop common goal/language-conditioned policies that can perform
multiple tasks without relying on task-specific or scene-specific heuristics.
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Chapter 1

Introduction

Figure 1.1: Common goal/language-conditioned multi-task policy executions from this thesis
work with multiple robotic embodiments (Spot dog, Franka Panda, Everyday Robot) for
different tasks in diverse (unseen) real-world kitchens and offices.

Developing robots that can assist in daily activities has been a long-
standing goal in AI. However, achieving general-purpose robots that function
seamlessly out of the box, perform tasks without manual intervention, and
ensure safe human interaction remains an elusive challenge. The predominant
approach in robot learning has been end-to-end imitation learning, where
robots learn from interaction data across various tasks that humans effortlessly
perform in everyday life. However, collecting large-scale robot interaction
data for every task is highly challenging, requiring significant manual effort
and being constrained by the physical accessibility of diverse environments.
For instance, large-scale efforts such as RT-1 [22] required 17 months to col-
lect 130k demonstrations, yet the dataset remained largely limited to tabletop
pick-and-place tasks.

A fundamental challenge in robotics is enabling robots to perform new
tasks in novel environments without requiring extensive data collection for
each new scenario. This thesis proposes a scalable approach to address this
data scarcity by combining robot-specific data with predictive planning from
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diverse web videos—such as YouTube clips of humans performing everyday
tasks. While humans and robots differ in their embodiments, many tasks
share common motion patterns. For example, when pouring water from a
cup, both a human and a robot must grasp the object and tilt it in a similar
manner. Hence, we can extract information from web videos at multiple
granularities, capturing both high-level semantic and contextual cues, such as
how to approach the cup, and low-level motion cues, such as how to grasp
the handle and tilt the cup properly. Learning to predict such cues from
diverse web data can be directly useful for informing robotic policy learning,
providing a more scalable alternative to the traditional approach of scaling
robot data collection and vision-language pretraining. This paradigm allows
robots to explicitly infer how to perform an unseen task in a new scene rather
than simply imitating previously observed behaviors.

Image of the Scene Text/Image Goal Types of Visual Interaction Plan Predictions

“Wipe the Table”

Figure 1.2: Types of motion prediction
learned from web videos (hand trajectory,
hand-object trajectory, point tracks) that
are used in conjunction with a robot’s own
observations for closed-loop policy.

This thesis pioneers the paradigm of
leveraging motion and contextual cues
from diverse web data for generaliz-
able robotic manipulation, as opposed
to purely end-to-end imitation learning.
Since web video data is large-scale,
messy, and unstructured—and lacks ex-
plicit action labels—it presents unique
challenges in predicting task-relevant
cues useful for robotic control. We ad-
dress these challenges by training pre-
dictive models for structured visual inter-
action plans that capture actions in an embodiment-agnostic space and by
leveraging off-the-shelf visual generative models trained on web data. To this
end, we have developed systems for predicting interaction plans from web
videos, including hand-object trajectories [6, 13, 14] and point-tracks [16], and
have trained common unified robot policies capable of diverse manipulation
tasks in-the-wild [14, 16]. Additionally, we have demonstrated the effective-
ness of visual generative AI models in robotic policy learning. Our work [9]
represents the first demonstration of off-the-shelf video generation models
being useful for robot policy generalization to novel tasks with unseen objects
and motions. Furthermore, across a series of works we demonstrated how
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robotic policies can generalize to new scenes through semantic augmentations
via generative inpainting [17, 28, 101]. Such semantic augmentations can be
enabled at zero additional human/robot cost once a demonstration is collected,
by making use of pre-trained segmentation and in-painting approaches.

Figure 1.4: The interaction plan pre-
diction model with its diverse train-
ing generalizes well, and the robot ex-
ecution is tasked with a simpler job of
converting these plans to the robot’s
embodiment.

A key theme throughout the thesis is
how factorizing a robotic policy into two
key components: an embodiment-agnostic
interaction plan that leverages general
internet-scale data [13, 16] and embodiment-
specific action execution conditioned on the
plan, enables scalable robotic generalization
to unseen scenarios. Through this approach,
we develop common goal- and language-
conditioned policies capable of perform-
ing multiple tasks, demonstrating a scalable
and practical approach to robotic learning be-
yond traditional imitation-based paradigms.
In subsequent chapters, we will describe different ways of instantiating the
visual interaction plans, how we can learn to predict these interaction plans
from large-scale web video datasets, and enable close-loop robotic policy
learning conditioned on these plans. We will also describe how we can re-
purpose existing visual generative models like video prediction models, for
designing visual interaction plans for manipulation. Then we will describe
how predictive planning from web data can directly make robotic policy exe-
cution more efficient through semantic augmentations based on pre-trained
inpainting models. Finally, we will conclude with a vision of this paradigm of
predictive planning from web data to applications like dexterous manipulation

Task: “Close the 
Microwave Oven Door”

Zero-Shot Human Video Generation with an Off-The-Shelf  Model Closed-Loop Policy Execution Conditioned on the Generated Video and Robot’s Observations

Figure 1.3: Video Generation for Manipulation. We showed how casting language-
conditioned manipulation as zero-shot (human) video generation with a pre-trained Gen AI
model and closed-loop policy execution conditioned on the generated video and the robot’s
own observations enables a single policy to perform multiple tasks including those unseen in
the robot dataset involving novel objects and novel motions.
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in the wild, long-horizon mobile manipulation, and application to embodied
prediction tasks beyond robotics in the context of wearable devices.
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Chapter 2

Background

2.1 Imitation Learning for Robotics
Imitation learning (IL) is a powerful paradigm in robotics that seeks to en-
able robots to learn behaviors by observing expert demonstrations. Unlike
reinforcement learning (RL), where an agent learns through trial and error,
imitation learning directly leverages demonstrations to infer optimal policies,
reducing the need for extensive online interaction.
Behavior Cloning Behavior cloning (BC) is a direct form of imitation learning
where a policy is learned via supervised learning. Given a dataset of state-
action pairs (si, ai) collected from an expert, the goal is to learn a policy πθ
parameterized by θ that maps states to actions by minimizing the objective:

L(θ) = E(si, ai) ∼ D
[
∥πθ(si)− ai∥2

]
(2.1)

where D is the dataset of expert demonstrations.
Although behavior cloning is effective for tasks where sufficient expert

demonstrations are available, it suffers from the compounding error problem.
This occurs because the model is trained on states encountered by the expert
but, during deployment, it encounters states induced by its own imperfect
policy, potentially leading to cascading errors.
Visual Policy Learning. The choice of data modality is crucial for achieving
generalization in robot learning. Vision data, which captures intricate details
necessary for complex tasks such as spatial reasoning and object manipulation,
has emerged as a powerful modality for robotic control policies. Recent works
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have demonstrated the effectiveness of visual policies by training models
using visual inputs [45, 57, 59, 103, 111, 112, 122, 142, 168].

A critical step in training a generalizable visual policy is collecting and
training on diverse data. Most prior works collect data directly generated by
robots [22, 179], often limited to specific environments, posing challenges
for generalization across broader scenes. More recent studies explore learn-
ing image representations from large-scale videos and images beyond robot
demonstration data [98, 112], and leveraging language to learn representations
from videos [109, 175]. Our approach extends this line of research by lever-
aging pre-trained generative models to synthetically generate varied visual
scenes, enhancing the semantic richness and diversity of training data. Unlike
the constrained settings of direct robot-generated data or specific external
datasets, we argue that visual diversity is not only about volume but also
semantic richness.
Conditional Behavior Cloning. While behavior cloning is traditionally ap-
plied to single-task settings, conditional behavior cloning aims to generalize
across multiple tasks by conditioning the policy on additional context infor-
mation. Some prior works train robotic policies conditioned on human videos
but require paired in-domain human-robot data [54, 68, 143, 157, 158, 161]
and are not capable of leveraging web data. Others use curated datasets of
human hand motions for learning task-specific policies [124, 140].

Efforts to leverage web data often involve predicting visual affordances,
such as interaction points in an image or local information on how to inter-
act [5, 51, 95, 108, 172]. While useful for initialization, these methods are
typically combined with online learning to achieve high performance, requir-
ing extensive deployment-time training [4, 5, 18]. Our work demonstrates how
predicting motion from web data, using tools such as hand-object masks [10]
and point tracks [15], can be used for conditional behavior cloning without
reliance on online learning. Additionally, we explore how pre-trained gen-
erative models like video prediction can aid in generating interaction plans
for conditioned behavior cloning, thereby generalizing beyond robot-specific
interaction data.
Manipulation without deployment-time training. Recent advancements in
robotic manipulation have aimed at achieving effective performance without
requiring deployment-time training. Works such as RT-1 [22] and RT-2 [179]
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have demonstrated impressive results in training general-purpose robotic poli-
cies that can handle a wide variety of manipulation tasks purely from offline
data. These approaches collect large datasets of robot demonstrations, often
encompassing diverse tasks and environments, to learn robust policies capable
of generalizing to unseen scenarios without additional fine-tuning or online
adaptation. By contrast, other approaches [4, 5, 18] rely on deployment-time
training or adaptation, where the model continues to learn or refine itself
during deployment, typically requiring extensive robot interaction with the en-
vironment to achieve satisfactory performance. While online adaptation offers
the potential for continuous improvement, it also imposes significant practical
challenges related to data efficiency, safety, and computational resources.

Our thesis focuses on achieving robust performance across a wide range
of tasks without necessitating deployment-time training, thus enhancing prac-
ticality and scalability. With a goal similar to ours of using human videos
to learn models that can be directly deployed, some approaches leverage
curated data of human videos [124, 140] for learning task-specific policies
(instead of a single model across generic tasks). Others that train a single
policy across tasks require large in-domain perfectly aligned human-robot
data [143, 157, 161] and are not capable of leveraging passive web data for
conditional behavior cloning. Compared to these, our framework utilizes
diverse large-scale passive human video data on the web, combined with a
small amount of in-domain robot data, with a single model capable of tackling
different manipulation tasks zero-shot.

2.2 Alternate Data Sources in Robotics

Recent successes of large-scale self-supervised approaches within both lan-
guage and vision communities have showcased the advantage of large-scale
data. Many recent works propose using pre-trained visual representations
trained primarily on non-robot datasets [36, 53], for learning control policies
[100, 112, 118, 136, 142]. Most of these works focus on single-task set-
tings [62, 112, 118, 139], or simulated robot environments [62, 100]. Given
challenges with collecting large real-world robotics datasets, some works
focus on alternate data sources such as language [23, 97, 147, 151], hu-
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man videos [4, 5, 11, 13, 113, 138, 141, 176], and generative augmentations
[27, 76, 127, 171]. Our work on semantic augmentations is similar to the
latter set of works, using diffusion models to generate augmentations for
data collected in the real world. However, unlike [27] our approach is fully
automatic. We do not need segmentation masks or object meshes [27] for
generating augmentation data. In addition, our approaches do not require any
further fine-tuning of a separate module for open-vocabulary segmentation
and language grounding. In addition to augmenting robot-interaction data
with rich augmentations, we also learn to predict motion from web videos,
for conditional behavior cloning. While augmentations provide robustness to
scene variations for tasks within the robot interaction data, learning to predict
motion plans from web videos enables generalization to new tasks outside the
robot-specific data.

Learning Visual Representations for Manipulation. Visual imitation is a
promising technique for generalizable robot manipulation [12, 45, 103, 168].
Recent works that have scaled this approach for learning large-scale models
for manipulation require extremely high number of expert robot trajectories,
often demanding years for collection [17, 22, 179], and still suffer from limited
generalization to unseen scenarios for novel objects. Going beyond image
observations, prior works have also investigated structured representations
like point-clouds [24, 116, 134] and keypoints [125] for manipulation, but
are restricted to tasks in structured table-top scenarios. Some of these that
predict action in the form of flow-based representations [50, 134] require 3D
datasets of robot interactions (often from simulation) which constrain them
from generalizable real-world deployments. More recently, Vecerik et al. [154]
use point tracking for visual servoing, and the setup requires structured multi-
stage definitions of the task and is limited to only minor test-time variations
compared to training data. Concurrent work [158] that improves upon [154]
by predicting future tracks of points in the current image can learn a policy by
combining in-domain human videos with in-domain robot videos. However,
the framework is not directly amenable for leveraging web videos because the
policy relies on per-step image observations for track prediction. Compared to
this, and developed independently, we learn to predict trajectories of arbitrary
points from web videos given just an initial image and a goal. We show
how we can use these predicted tracks to infer rigid transforms of objects for
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open-loop execution, and further improve the open-loop plan by predicting
residuals over the actions, for closed-loop deployment. This enables much
diverse robot manipulation behaviors with a single model, that generalizes to
unseen novel objects and scenes in-the-wild.
Leveraging Non-Robot Datasets for Manipulation. One common way of
using data beyond robot interactions for efficient learning is to pre-train the
visual representations which serve as backbones for the policy models [98,
100, 112, 119, 160] with passive human videos [53, 80] and image data [36].
However, these methods still crucially rely on a lot of in-domain robot data or
deployment-time training, and are restricted to learning task-specific policies.
Some works that do not require deployment-time training, go beyond visual
representations and use curated data of human videos to leverage human hand
motion information [124, 140] for learning task-specific policies (instead of a
single model across generic tasks). Others that train a single policy across tasks
require large in-domain perfectly aligned human-robot data [143, 157, 161]
and are not capable of leveraging web data. Towards learning structure more
directly related to manipulation from web videos, some works try to predict
visual affordances in the form of where to interact in an image, and local
information of how to interact [5, 51, 95, 108]. While these could serve
as good initializations for a robotic policy, they are not sufficient on their
own for accomplishing tasks, and so are typically used in conjunction with
online learning, requiring several hours of deployment-time training and robot
data [4, 5]. In an early work, we learn to predict masks of hand and objects
in the scene [10] for conditional behavior cloning. More recently, we learn
to predict an approximate motion of how objects in the scene move in the
future through point tracks for the entire trajectory and combined with limited
robot interaction data develop a zero-shot manipulation system in terms of not
requiring any deployment-time training.
Frameworks for Scaling Robot Learning. Given the cost of supervision in
robot learning, self-supervised learning [8, 96, 123] methods leveraging large
unlabeled datasets have been a dominant paradigm towards building general-
purpose agents. Large-scale simulations [69, 107, 170, 177] have also been
leveraged with the hope of first learning a general multi-task policy [43, 72, 73,
128, 133, 144] and then transferring it to real world via sim2real[20, 61, 142,
152]. However, most multi-task RL works focus on narrow domains[43, 145],
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and those in the real-world show limited generalization and task diversity[55,
101]. While other works [72, 128, 169] focus on diverse multi-task scenarios,
they restrict to evaluating trained policies mostly in simulation. By contrast,
our work focuses on a large, diverse set of real-world manipulation tasks.
Many recent works use imitation learning with large-scale real-world robot
tele-operation datasets[33, 34, 42, 70, 102, 104]. While early works collect
limited real-world data [70, 104], more recent approaches [22, 42, 74] collect
much larger datasets. In fact, [22] gathers, possibly, the largest dataset (≈
130K demonstrations) outside bin and place settings and shows impressive
generalization with skills learned using this data. Our work is similar in spirit,
i.e., we focus on real-world manipulation tasks and aim to learn a multi-task
policy using limited real-world demonstrations. However, unlike [42], we
avoid toy environment setups and focus on realistic real-world kitchen setups
with clutter and multiple feasible tasks in a scene. Additionally, our robot
manipulation systems exhibit a much greater diversity of skills than [20, 22,
74] while being trained only on orders of magnitude less robot interaction
data.

2.3 Understanding and Predicting Interactions
from Web Videos

Several recent approaches in computer vision have focused on understanding
human activities, captured in large-scale datasets of human-object interac-
tions in diverse everyday settings [30, 32, 35, 52, 53, 91, 137]. Specifically,
prior work has investigated learning self-supervised visual representations [2,
64, 106], human pose estimation [3, 19, 48, 63, 67, 88, 94, 131, 146, 178],
object pose estimation [65, 66, 81, 126, 159], interaction hotspot predic-
tion [51, 95, 110], prediction of plausible hand grasps [21, 108], and activity
understanding [26, 149]. Our future hand-object mask prediction module
is inspired by these developments in visual understanding, where we focus
on learning motions of hands and objects from passive human videos that
are directly relevant for manipulation, and abstract out task-irrelevant visual
details through semantic masks.
Reconstructing Hand-Object Interactions. Reconstructing 3D represen-
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tations of hand-object interactions from images or videos is a complex task
due to challenges like occlusions and the intricate articulations of the human
hand. Recent approaches have sought to address these challenges by lever-
aging advancements in computer vision and machine learning. For instance,
some methods employ compositional articulated implicit models to jointly
reconstruct hands and objects from monocular videos without relying on ex-
tensive 3D annotations. Others integrate large language and vision models
to retrieve and align 3D object models with observed interactions, enhancing
reconstruction accuracy [25]. Additionally, diffusion-guided frameworks have
been proposed to infer 3D shapes of hands and objects from short video clips
by optimizing neural representations per video [166].
Predicting Hand-Object Interactions. Predicting future hand-object interac-
tions involves forecasting hand movements and identifying potential contact
points with objects. This predictive capability is essential for applications such
as assistive robotics and augmented reality. Some methods focus on forecast-
ing hand motion trajectories and future contact points, known as interaction
hotspots, from egocentric video inputs [90]. Others utilize vision-language
models to generate textual responses and predict future hand trajectories
through natural language conversations, integrating high-level reasoning with
low-level motion prediction [7]. These approaches aim to equip systems with
the ability to anticipate and respond to human actions in real-time.
Learning Affordances. Towards learning structure more directly related to
manipulation, some works try to predict visual affordances in the form of
where to interact in an image, and local information of how to interact [5,
51, 95, 108]. While these could serve as good initializations for a robotic
policy, they are not sufficient on their own for accomplishing tasks, and so are
typically used in conjunction with online learning, requiring several hours of
deployment-time training and robot data [4, 5]. Our work differs from this
in terms of predicting an approximate motion of how a human hand and the
object is likely to move for the entire trajectory (not just at/near contacts unlike
affordances) and is zero-shot in terms of not requiring any deployment-time
training.
Understanding Generic Object Motion in Videos Understanding generic
object-centric motion in videos has gained significant traction with the de-
velopment of more advanced techniques for point track prediction. These
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approaches aim to understand and anticipate generic motion patterns across
diverse scenes, rather than being restricted to specific tasks or environments.
Point tracking systems, such as TAPIR [38] and CoTracker [78], have made
substantial progress by enabling robust tracking of arbitrary points throughout
video sequences. These systems work by identifying points of interest in an
initial frame and predicting their motion across subsequent frames, allowing
for the generation of continuous motion trajectories. Such approaches are
particularly effective for understanding broad categories of motion interactions
that do not necessarily conform to predefined task templates.

Recent approaches have investigated generating videos given a description
of the task, and often conditioned on a scene [40, 56, 163, 165]. Other
works have attempted understanding generic videos by identifying visual
correspondences between frames [50, 93]. Building on these advancements,
our track prediction model leverages video tracking methodologies to generate
ground-truth tracks from web videos. We then train models to predict future
point tracks of arbitrary points given an initial image and a goal, paving the
way for improved understanding and manipulation in real-world scenarios.
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Chapter 3

Hand-Object Interaction
Plan prediction from Web
Videos for Robotic
Manipulation

A central goal in the rapidly growing area of robot learning is to develop
generalist robots capable of performing a plethora of everyday manipulation
tasks in diverse unseen real-world scenarios. In addition, to be practically
useful, they should be able to accomplish these tasks out of the box when
deployed in unseen scenarios. Towards this goal, our work pursues learning
diverse core skills like manipulating articulated objects, picking, placing,
scooping, pouring, twisting, stacking, and swiping, among others that humans
can effortlessly perform during everyday interactions. Moreover, we want
these skills to be generalizable to unseen scenes with new objects, and be
executable in a “zero-shot manner” i.e. without deployment-time training.

An unsophisticated way to attempt this goal is to collect a gigantic robot
interaction dataset for imitation learning. Albeit simple, this is not scalable
for diverse real-world generalization because it would require collecting data
not just for different tasks but for interaction across different objects with
different skills, and is bottle-necked by physical access constraints. Indeed,
recent approaches that attempt at developing diverse manipulation capabilities
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Figure 3.1: A subset of different manipulation behaviors generated by our framework
HOPMan . By learning task-agnostic human-plan prediction and robot-action translation
models, our system can interact with generic objects and execute diverse skills e.g. unrolling,
scooping, pouring, re-orientation, articulated object manipulation, etc.

require years of on-robot data collection [22], and are still largely limited to
picking, placing, and pushing skills. Our solution is to factorize the task of
learning a generalizable policy into 1) learning an interaction plan that captures
changes that the object and the manipulator can undergo, 2) translate the plan
into actions that can be executed on a robot. Our key insight is that the first
module can leverage non-robot data, and in particular large passive datasets of
human videos on the web. Given this human-interaction-plan, acting in the
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Figure 3.2: HOPMan consists of a human-interaction-plan prediction model (left), and a
robot-action translation model (right). Given an initial image of a scene X0 and a goal image
Xg, a diffusion model hallucinates plausible future hand and object masks M1:K . These
predictions along with current RGB observations of the scene Xt go as input to a translation
model (instantiated as a closed-loop policy π(·)) that outputs robot actions at for executing
the motions on a robot. Additional details on the approach are in section 3.1.

real world reduces significantly in complexity as we only need to instantiate
the human plan in a robot’s context as robot-actions. This translation model
can be trained with limited paired human-robot data and generalizes to objects
and scenarios that are unseen in the robot data since the human-interaction
plan generalizes by virtue of diverse training.

Some prior robot learning approaches have also investigated leveraging
out-of-domain (human) data, primarily for learning visual representations [98,
100, 112] and robotic affordances [4, 5, 51, 110]. However, these approaches
require a lot of further robot demonstrations for policy learning and typically
also require a lot of deployment-time training. Other approaches learn task-
specific action priors [124, 140] for a few categories of manipulation tasks,
with separate policies for each task. Compared to these, our approach of
factorizing the overall policy can enable zero-shot manipulation over a range
of diverse tasks, with a single policy that can be appropriately goal-conditioned
and doesn’t require any deployment-time training.

We consider semantic masks of hands and objects as a structured space
for defining the human-plan, since it abstracts out task-irrelevant details of
the environment. Given an image of a scene and a goal image, we train the
prediction model to predict the human-plan as plausible future hand and object
masks. We train this model across clips in diverse passive videos on the web
and show that it generalizes to new scenes in our real-robot experiments. In
order to transform the predictions to a physical embodiment’s robot-actions
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, we train a translation module on a small amount of paired data (∼600
trajectories). We abbreviate our framework as HOPMan (Hand Object Plan
for robotic Manipulation).

Through experiments on a set of 100 tasks, involving 16 skills and 40 ob-
jects, we show HOPMan can help distill information about manipulation from
passive human videos on the web to physical scenes in a robot’s workspace,
as evaluated through generalization across five different axes. In summary, we
make the following contributions:

• Present an approach for learning goal-conditioned prediction of hand-
object interaction plans using everyday interaction videos.

• Develop a framework that casts robot manipulation as translation of
(predicted) hand-object plans, thus allowing the use of easily available
human videos for learning diverse manipulation.

• Demonstrate the overall framework across 100 manipulation tasks in-
volving 40 objects with 16 skills, while evaluating generalization in a
structured manner for table-top manipulation and in-the-wild manipula-
tion in unseen scenes.

3.1 Approach
We aim to develop a robot manipulation system that can accomplish diverse
skills zero-shot with a plethora of different unseen objects in the real world.
Our key insight is to leverage a factorized policy model (see Fig. 3.2) that
consists of two stages: a) a goal-conditioned human plan prediction model
that predicts future masks for plausible hand and object motions, and b) a
translation model that learns to transform the corresponding predicted plans
into actions that can be executed with a robot for real-world manipulation. We
show how we can train the human-plan prediction model on diverse passive
human videos from existing large scale datasets, and use it for predicting
plausible plans in a robot’s environment. In contrast, the translation model can
be trained with a small amount of paired human-robot data. This factorization
allows us to generalize to scenarios that are unseen in the robot data, because
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the human-interaction-plan model with its diverse training generalizes well,
and the translation model is tasked with a simpler job of converting these plans
to the robot’s embodiment.

3.1.1 The Human-Plan Prediction Model
Instead of predicting the future in the image space, we focus on predicting only
the motion of the human hand and the object being interacted with, in terms
of respective semantic masks. We enable this prediction through a diffusion
model trained on diverse human videos on the web. For each video in the
training data, we extract hand-object masks for each frame. Let M1:K denote
the respective mask frames from time steps 1 to K. For simplicity we consider
each mask frame to be an image, where all the hand pixels are green, all the
object pixels are red, and the rest of the pixels are black. Let X0 denote the
first frame (RGB) of the video, Xg denote the last frame (RGB) of the video,
which will act as a goal frame, and V(X0,Xg) denote the prediction model.
In the forward diffusion process, all the mask frames M1:K are corrupted by

Figure 3.3: Detailed illustration of a training pass through the future prediction model. This
is a diffusion model, with a U-net that predicts per-frame noise at each step p of the diffusion
process. Additional details on the model and training are in Section 3.1.1.

incrementally adding noise, and converging to a unit Gaussian distribution
N(0, I). New samples can be generated by reversing the forward diffusion
process, by going from Gaussian noise back to the space of mask frames. To
solve the reverse diffusion process, we need to train a noise predictor ϵθ(·|t)
which is a time-conditioned U-net [129, 155] trained to predict the noise at
each step of the diffusion process. The input to the network at step t of the
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diffusion process is a channel-wise concatenation of the conditioning frames
and noisy mask frames [X0,Xg,M

t
1:K], the output is the predicted noise of

same dimensionality as the input. Fig. 3.3 illustrates this visually, and equation
1 shows the training objective L(θ).

Et,[X0,Xg,M1:K]∼ptrain,ϵ∼N (0,I)[
||ϵ− ϵθ(

√
αtM1:K +

√
1− αtϵ|X0,Xg, t)||2

]
Here αt is a hyper-parameter that depends on the noise schedule of the dif-

fusion process. During inference, given X0,Xg we obtainM1:K = V(X0,Xg)
through reverse diffusion.

3.1.2 The Robot-Action Translation Model

Figure 3.4: Architecture of the translation model that transforms predicted future hand-object
masks to a robot trajectory, described in section 3.1.2

We use the human-plan predictor discussed in Section 3.1.1 to hallucinate
plausible future hand and object masks for interaction in a robot’s physical
scene. However, this human-plan doesn’t directly inform what actions the
robot should execute to be able to perform the desired interaction. To enable
robot manipulation in the context of the predicted plans, we learn a translation
model. The translation model is a transformer that is conditioned on the
outputs of the future prediction model M1:K and for each observation Xt, and
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predicts actions for H steps in the future. The model behaves as a closed-
loop policy π(X≤t,Xg, a<t,M1:K) that is queried at each time-step t during
deployment. Predicting multiple time-steps H in the future and averaging
actions during deployment, helps in executing smooth robot motions, with
less compounding errors [174]. We describe the architecture of the translation
model in Fig. 3.4 and additional details in Appendix 3.3.2.

For training the translation model, we need some paired human-robot data,
where we have pairs of trajectories that involve a robot manipulating an object,
and a human manipulating a similar object. To obtain such paired trajectories,
we develop two approaches:

Figure 3.5: Illustration of the different steps in generating hallucinated human hand trajec-
tories from robot trajectories. This is an alternate data source for the translation model in
addition to collecting paired human-robot data.

Collecting paired demonstrations: A human operator tele-operates a
robot in scene, and after reset, or in a parallel identical setup, a human manip-
ulates a similar object with an approximately similar motion as the robot arm.
Collecting this paired data is not very expensive, and we spent around 3 days
to collect 600 trajectories.

Hallucinating paired data: To augment the paired demonstrations, we
also propose to leverage (more easily collectable) robot-only data. To ob-
tain hallucinated pairs, we can convert videos of a robot trajectory into a
videos of a human trajectory through recent advances in hand in-painting
techniques [129, 167] . Specifically, we obtain robot masks per frame through
simulation, and perform inpainting to remove the robot from the scene. We
then perform guided in-painting of a plausible human hand [167] around the
location of the robot end-effector in the scene. Fig. 3.5 visually illustrates
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this process of hallucinated data generation. In the experiments, we show
how hallucinated paired data generated through this approach can be used
to boost the performance of the translation model. Additional details on the
hallucinated data generation are in the Appendix 3.3.3.

3.2 Experiments

Through experiments with diverse real-world objects in unseen scenarios, we
demonstrate generalization of our framework for several robot manipulation
tasks.

3.2.1 Experiment Settings

We consider two different types of manipulation settings for experiments -
table top scenarios with a fixed robot and camera, and in-the-wild manipulation
with the same robot and camera on a mobile base.
Table-Top Manipulation. We consider several everyday objects with different
plausible manipulations for our experiments. We demonstrate results on a total
of 16 skills: pouring, plunging, pushing, picking/placing, slide-opening, slide-
closing, hinge-opening, hinge-closing, swiping, dragging, flipping, scooping,
in-place re-orientation, unrolling, and stacking, and 40 object types, with 2-3
instantiations per object type, comprising around 100 tasks. Detailed list of
objects and tasks are in the Appendix section 3.3.1
In-the-Wild Manipulation. We drag a Franka Panda arm on a mobile base
across natural kitchen and office scenes. The camera is also attached to
the base, and moves along with it. For these experiments we fine-tune the
translation model used for the table-top experiments, on ∼200 additional
paired trajectories collected with the mobile robot. For evaluation, we consider
the same generalization levels described above. This setting is much more
challenging because in addition to object and skill variations, we also have
scene variations, including completely new scenes never seen in the paired
data. Details of variations are in the supplementary website.
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Figure 3.6: Distribution of skills across tasks in our experiments. The diversity of skills is
more representative of real-world distributions, compared to pushing/pick and place that is
predominant in robot learning papers.
3.2.2 Training data
The training data for our framework consists of a large set of passive web
videos, a small amount of paired human-robot in-domain data, and some
unpaired robot-only data.
Passive Human Data. For the future prediction model, we use existing
passive human videos [31, 52, 53] and obtain ground-truth semantic masks
for the right hand and the object being interacted with the right hand in each
frame [31, 173]. We sample short video clips, each lasting a few seconds and
do not curate the videos in any way with tasks or language labels.
Paired Data. For the translation model, we use a small amount of paired
collected by us (∼400 trajectories in-lab and ∼200 trajectories in-the-wild)
and a larger robot-only data (∼1000 trajectories) combined with hallucinated
hand masks through the approach described in section 3.1.2. All the robot
data are collected through an adaptation of the tele-operation stack proposed
in [89].

3.2.3 Defining Tasks and Evaluating Generalization
Prior works in robot learning adopt widely different and oftentimes inconsis-
tent definitions of generalization criteria. Some prior works [22, 101, 124, 148]
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Figure 3.7: Qualitative results for the entire framework. We show qualitative results
for the predicted hand-object trajectory given an initial image of a scene and a goal image,
followed by translation of the predictions to a robot trajectory for execution in the real world.

Figure 3.8: Examples of robot evaluations. We show qualitative results for robot evaluations,
with an intermediate image and the image corresponding to the final state reached by the
robot, for a given initial scene and a goal image. Subscripts show the type of generalization
for each evaluation, as described in sec 3.2.3. More robot videos of evaluations are in the
linked website.

consider seen vs. unseen objects, where the unseen objects often involve differ-
ent instantiations of the seen objects, with shape, color, and texture variations,
with skills (e.g. pushing, picking etc.) that are always seen in the training
data. Others [29, 60] only consider generalization in terms of position and
configuration variations of seen objects. In light of this, in this paper, we
develop a structured criteria for evaluating generalization in terms of object
categories, object instantiations, object configurations, and skills. We adopt
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the following definitions

• Task definition: Each task is a tuple consisting of (object category,
object instance, skill). Here, object category denotes the type of the
object e.g. ‘drawer’, ‘mug’, ‘toaster’ etc. While, object instance defines
a particular object within a category, with a specific instantiation of color,
shape, size, and texture. Finally, skill defines the particular behavior e.g.
‘open’, ‘flip’, ‘push’ etc. that can be done with an object.

• Mild generalization (MG): This involves generalizing among unseen
configurations (i.e. position and orientation variations) for seen object
instance and seen skills, along with mild variations in the scene like
lighting changes.

• Standard generalization (G): We have the following types of general-
ization in this category

– instance generalization (Ga): In addition to variations in MG,
in Ga we evaluate unseen object instance for seen skills. For
example, only a red mug is seen with the push skill in training,
and we generalize to pushing motions for green, and purple mugs
of different shapes and textures.

– unseen combinations (Gb): This includes scenarios with unseen
(object category, skill) pairs but each seen independently in train-
ing. So atleast one instance of an object category is seen during
training, and the skillis also seen during training but not in relation
to this object. For example, ‘open’ is seen, and ‘close door’ is seen
but ‘open door’ is not seen in training.

• Strong Generalization (SG): We categorize the following types of gen-
eralization that involve either a completely unseen object category or
an unseen skill into this category. These are very challenging tests of
generalization.

– object category completely unseen (SGa): This includes sce-
narios where a particular object category e.g. microwave is never
seen in training
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– skill completely unseen (SGb): This includes scenarios where
a particular skill e.g. re-orientation is never seen in any context
during training.

Note that our formalization of generalization is centered around objects
being interacted with and the skills that are possible for interaction, and we do
not consider scene variations of the background in the definitions, unlike some
prior work [17, 22, 27, 101, 171]. However, for experiments, we consider
diverse scenes, both for table-top manipulation and manipulation of objects
in-the-wild in unseen kitchens and offices.

3.2.4 Baselines and Ablations:
We consider a goal-conditioned behavior cloning baseline (BC) trained on
all the robot data (∼1600 trajectories). The architecture of the policy is
a transformer similar to our translation model without the conditioning on
human-interaction-plans. The next baseline (MP) uses paired human-robot
data, and is an adaptation of [157]. We compare with VRB [5] by using the
affordance model from the paper to do affordance conditioned imitation learn-
ing. We also consider a baseline that is trained entirely with passive human
videos, for coarse manipulation (H2R) [13]. In addition to these, we consider
variations of our translation model trained on only in-lab paired human-robot
data (∼400 trajectories), only hallucinated data (∼1000 trajectories), and
combined paired and hallucinated data (∼1400 trajectories).

3.2.5 Evaluating Goal-conditioned Manipulation
In this section, we evaluate HOPMan for robot manipulation. Given an image
of a scene in the robot workspace and a goal image, we use the human-
interaction-plan predictor to output a sequence of plausible hand-object masks,
which are input to the translation model that performs closed-loop control
for executing a sequence of actions on the robot. We evaluate across diverse
unseen objects exhibiting several plausible skills, and unseen scenes in-the-
wild, and tabulate success rates by aggregating over objects for each skill.
We define success in terms of whether the object is brought to the desired
configuration in the goal image.
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Figure 3.9: Summary of results. The numbers represent success rates for goal-conditioned
evaluations, in terms of % of trials that correspond to manipulating objects in the scene to
bring them to the desired goal configurations. We perform evaluations separately for the
table-top manipulation and in-the-wild manipulation experiments.

Fig. 3.7 shows qualitative results for HOPMan where we see that the gen-
erated human-interaction-plans are plausible and correspond to manipulating
the object to obtain the specified goal configuration. In Fig. 3.8 we show more
robot evaluations in terms of an intermediate frame in the trajectory and the
final frame reached at the end of robot evaluation, for different initial and goal
images.

In Fig. 3.9 we summarize quantitative evaluations across the different
generalization axes. For standard generalization G and strong generaliza-
tion SG, we see that HOPMan achieves significantly high success rate. This
demonstrates the effectiveness of learning plausible manipulation trajectories
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Figure 3.10: Translation model ablations. Ablation results for the translation model alone
with specified masked hand-object trajectories instead of future predictions. Here, P denotes
paired data, and H denotes hallucinated data, described in section 3.1.2. and the numbers
represent success rates.

of hands and objects from internet videos combined with small paired data, for
generalization to diverse settings, in comparison to relying on only in-domain
data (BC, MP baselines), on predicting visual affordances combined with
robot data (VRB) or on only passive data (H2R).

3.2.6 Ablations of the Translation Model

In this section, we evaluate the translation model in isolation independent
from the prediction model. Specifically we evaluate how good is the transla-
tion model in translating the motion of a ground-truth hand-object trajectory
into robot trajectories. Here, we introduce different objects in the scene and
manually execute a motion with a human hand to reach the goal, and then pass
the video through the hand-object segmentation model. We ablate over three
variations of the the translation model, trained with paired data and halluci-
nated data, trained with only paired data, and trained with only hallucinated
data, in table-top settings. From Fig. 3.10, we observe that training the model
with combined paired and hallucinated data (P+H) leads to better performance
than training with just paired data (P) indicating that the translation model
is able to effectively utilize imperfect hallucinated trajectories for improving
generalization.
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3.3 Additional Details

3.3.1 List of Tasks

Figure 3.11: Summary of the different tasks for table-top manipulation experiments in terms
of object types, number of instantiations per object type (variations in shape, size, color
,texture) and verbs denoting the type of possible skill with each object type
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3.3.2 Additional details on the models

Human-Plan Prediction model:

Instead of predicting the future in the image space, we focus on predicting
only the motion of the human hand and the object being interacted with, in
terms of respective semantic masks. We enable this prediction through a
diffusion model trained on diverse human videos on the web. For each video
V in the training data, we extract hand-object masks for each frame . Let M1:K

denote the respective mask frames from time steps 1 to K. We set the value
of K = 7 for our experiments, which amounts to choosing 7 uniformly space
frames in a 2 second window of a video clip. For simplicity we consider each
mask frame to be an image, where all the hand pixels are green, all the object
pixels are red, and the rest of the pixels are black. the Let X0 denote the first
frame (RGB) of the video, and Xg denote the last frame (RGB) of the video,
which will act as an optional goal frame. The diffusion model operates at a
resolution of 64x64 for the predicted masked frames.

In the forward diffusion process, all the mask frames M1:K are corrupted
by incrementally adding noise, and converging to a unit Gaussian distribution
N(0, I). New samples can be generated by reversing the forward diffusion
process, by going from Gaussian noise back to the space of mask frames. To
solve the reverse diffusion process, we need to train a noise predictor ϵθ(·|t)
which is a time-conditioned U-net trained to predict the noise at each step
of the diffusion process. The input to the network at step t of the diffusion
process is a channel-wise concatenation of the conditioning frames and noisy
mask frames [X0,Xg,M

t
1:K], and the output is the predicted noise of same

dimensionality as the input. The training objective is as follows:

Et,[X0,Xg,M1:K]∼ptrain,ϵ∼N (0,I)

[
||ϵ− ϵθ(

√
αtM1:K +

√
1− αtϵ|X0,Xg, t)||2

]
Here α is a constant hyper-parameter that depends on the noise schedule

of the diffusion process. The architecture of the U-Net for the Diffusion
model is based on prior works [130, 155], and it uses a combination of 2D
convolutions, multi-head self-attention layers, and adaptive group-norm. The
noise levels (p ∈ [0, 1]) use positional encodings that are adapted to the correct
dimensionality for each residual block through fully connected layers. The
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individual residual blocks in the U-Net consist of GroupNorm, conv layers,
fully connected layers, and dropout, and follow the architecture in [155].

For training the prediction model we obtain 2 second video clips from
EpicKitchens [30] and Ego4D [53]. To obtain ground-truth hand-object masks,
we use Visor annotations [31] for EpicKitchens and an off-the-shelf predic-
tor [173] for obtaining the masks from Ego4D videos. In total, we curate
around 150,000 video clips for training. The prediction model takes about 70
hours to train for 250,000 iterations on 8 2080Ti GPUs with a batch size of
64, and learning rate 1e-5.

The Translation model

The translation model is a transformer that is conditioned on the outputs of the
future prediction model M1:K and for each observation Ot, predicts actions
for H steps in the future. The model behaves as a closed-loop policy that is
queried at each time-step t during deployment. The horizon lengths for each
trajectory is 40, and we predict for H = 10 horizon at each time-step. The
observations are of resolution 224x224, and we process them with ResNet18
backbones to obtain features. We upsample the predicted masks from 64x64
to to 224x224 dimension images and process them also with ResNet18 CNNs.
At each time-step we feed in a history of 3 steps, i.e. the past two observations
and actions, and the current observation. The actions are of dimension 8 (7 for
joint positions, and the 8th dimension for end-effector open/close). We directly
predict target joint positions instead of delta positions, as shown to be helpful
by recent work [174]. The transformer encoder has 4 self-attention blocks,
and the decoder has 7 cross-attention blocks, and the hidden dimensions are
of size 512. We use a learning rate of 1e-5, batch size of 32, and dropout 0.1.

3.3.3 Hallucinated Data Generation Details
To augment the paired demonstrations, we develop an approach of using (more
easily collectable) robot-only data. Given a robot trajectory video, we want
to obtain a corresponding video where the robot in the scene is replaced by a
human hand. To obtain such hallucinated pairs, we convert videos of robot
trajectories into videos of human trajectories through recent advances in hand
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in-painting techniques [129, 167]. Given a robot trajectory, we first obtain
robot masks per frame by bringing the robot to the specific joint position per-
timestep in MuJoCo simulation [153]. Based on the per-frame robot masks,
we inpaint each image in the trajectory to remove the robot from the scene,
using an off-the-shelf inpainting model [129]. After we have removed the
robot from each frame of the trajectory, we want to place a human hand where
the robot end-effector used to be in each image. To do this, we perform guided
in-painting of a plausible human hand around the location of the robot end-
effector in the scene, using the approach in [167]. So finally, a video of a robot
trajectory is thus converted to a video of an approximate human trajectory,
such that the robot arm is replaced with a human hand at approximately the
location where the end-effector used to be.

3.3.4 Baselines and Ablations
We consider a goal-conditioned behavior cloning baseline that is not condi-
tioned on the predicted masks, and is directly trained on all the robot data
collected in-lab (∼1400 trajectories). For the in-the-wild experiments, we
additionally fine-tune the model with the 200 paired trajectories collected for
these experiments. The architecture of the policy is a transformer similar to
our translation model without the conditioning on hand-object masks, and
keeping everything else the same.

We consider another baseline that uses paired in-lab human-robot data, to
be an adaptation of MimicPlay [157] . We train the latent planner model of
MimicPlay (MP) with the human-data in the paired data of 400 trajectories
we have collected for the experiments. For the in-the-wild experiments, we
additionally fine-tune the model with the 200 paired trajectories collected for
these experiments. Note that in the original paper [157], there are a limited
number of tasks (14) and human hand data is collected for 10 minutes per
scene. In comparison, our paired data of 400 trajectories is much smaller
and encompass around 40 tasks, since we focus mostly on learning from
out-of-domain passive human videos from the web. We cannot use this large
passive data for MimicPlay baseline as their framework relies on having the
human videos in the exact same setup as the robot teleop data.

We compare with two baselines that use passive human videos in different
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ways. The first comparison is with VRB [5] by using the affordance model
from the paper to do affordance conditioned imitation learning. The second
comparison is a baseline that is trained entirely with passive human videos,
for coarse manipulation (H2R) [13].

In addition to these, for the table-top experiments we consider variations
of our translation model trained on only paired human-robot data (∼400
trajectories), only hallucinated data (∼1000 trajectories), and combined paired
and hallucinated data (∼1400 trajectories). These ablations are on the same
translation model architecture, and use manually specified hand trajectories
transformed to hand-object masks through [173]. We manually provide masks
instead of the predictions from the human plan prediction model, in order to
evaluate the translation model in isolation independent from the prediction
model.

3.3.5 Table-Top Robot Experiment Setup Details
For the robot experiments, we use several everyday objects like doors, mi-
crowaves, bowls, spatulas, boxes, french presses etc. (Fig. 3.11 has the overall
list of objects), a fixed Intel Realsense camera in the scene, and a Franka
Emika Panda arm operated through joint position control. We do not im-
pose any artificial constraints on the robot’s motions beyond what is possible
without reaching joint limits. The action space of the translation model is 8
dimensional (7 for joint controls, and the 8th dimension for open/close of the
gripper) We attach a Robotiq gripper to the arm with two festo finger grippers
(for flexible grasps), so the overall end-effector is a two-finger gripper. As
is the convention with image goals in real-robot experiments, we evaluate
success by manually inspecting proximity of the final object configuration
after robot execution, with that in the corresponding goal image.

3.3.6 In-The-Wild Robot Experiment Setup Details
We use the same Franka Emika Panda arm with flexible two finger grippers
as the previous table-top experiments. The only difference is that the robot is
now mounted on a mobile base with four wheels that can be moved around.
The same Intel Realsense camera is mounted next to the robot on the mo-
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bile base. We drag the robot across different kitchen and office scenes and
perform experiments with the same setup described previously. Importantly,
we do not modify the scenes and directly test on existing office and kitchen
scenes. Please refer to the evaluation videos on the website for the diversity
of manipulation skills and behaviors we are able to demonstrate with our
framework.

3.4 Discussion and Limitations
In this work, we developed a framework for learning generalizable robot
manipulation by combining internet-scale human videos of everyday inter-
actions with limited in-domain robot demonstrations. Leveraging these, our
framework can accomplish diverse tasks by predicting plausible hand-object
plans and translating these to the robot’s embodiment. Broadly, our work is
indicative of how rich out-of-domain datasets like human videos can alleviate
the data paucity that greatly bottlenecks robot learning by helping learn hand-
object interaction plans, and enable wide generalization of manipulation skills
to unseen scenarios. While our framework does allow strong generalization
to unseen tasks, these are still limited in their complexity and it would be an
interesting future direction to extend our approach for tacking long-horizon
tasks that requiring composing multiple skills. Moreover, our framework may
struggle with dexterous manipulation tasks as recovering precise hand and
finger articulations from web videos remains a challenge in computer vision.
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Chapter 4

Predicting Point Track Plan
from Web Videos for Robotic
Manipulation

Figure 4.1: Glimpse of some of the diverse robot manipulation capabilities across physical
office and kitchen scenes enabled by our framework. We learn to predict point tracks from
web videos for learning interaction plans that can be used for inferring robot actions in
unseen scenarios. This enables a common goal-conditioned policy to perform everyday tasks
like closing microwaves, pulling out drawers, flipping open toasters, pouring from jars etc.
Columns show first and last images of rollouts from our policy.

Going beyond hand-object interaction plans from web videos, this chapter
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explores point track predictions that serve as an embodiment-agnostic space
for interaction plan prediction from diverse web videos, beyond just human
videos. The overall framework still enables the previously articulated zero-shot
execution capabilities i.e. being able to execute a task out-of-the-box without
requiring any test-time training through demonstrations or self-practice before
solving a specified task. This is an important desiderata for the system to
be repeatedly usable without any downtime, and safe to work alongside
humans without performing any exploratory actions. We pursue the goal of
developing such zero-shot robot manipulation systems that can perform a
broad set of everyday tasks. In addition to being deployable zero-shot, to be
widely accessible, we aim to make the robot manipulators generalizable to
diverse offices, and kitchens in the real world.

Developing zero-shot manipulation capabilities has been attempted by
prior works, through behavior cloning on robot interaction datasets [17, 22,
71, 179]. While this approach is in-principle scalable with data, collecting
diverse real-world robot interaction data is challenging due to operational
constraints. Indeed, recent works that have attempted to scale robot datasets,
including cross-robot and cross-domain datasets [17, 44, 114] still suffer from
task diversity issues and are mostly restricted to lab-like structured scenarios.
Instead of learning a single-policy that can be zero-shot deployed, some recent
works aimed at in-the-wild deployment have adopted the method of test-time
training [4, 99]. They require either a video of a human performing the task [4]
followed by online exploration, or a demo through a robot end-effector held
by a human [99]. These approaches are not very convenient for diverse
deployments because they require a human to solve the task first, and several
hours after that for the robot to learn how to solve that exact task in the exact
scene. Thus, such approaches are not zero-shot deployable for new tasks in
new scenes.

Our insight to develop an in-the-wild manipulation strategy that is also
zero-shot deployable is to factorize a manipulation policy into an interaction-
plan that can leverage diverse large-scale video sources on the web and a
residual policy that requires a small amount of embodiment-specific robot in-
teraction data. Such a factorized structure is inspired by prior works (e.g. [10]),
however, unlike hand-object masks in [10], we instantiate this interaction-plan
in an embodiment agnostic-manner by predicting how points in an image of
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the initial scene move in future frames. This choice of an interaction-plan is
more expressive compared to hand-object masks adopted by Bharadhwaj et
al. [10], as it directly captures point correspondences across time, while at
the same time being easier to compute than full RGB frames [40]. Given an
initial image of the scene, a goal image defining the task to be performed, and
a random set of points in the initial image, we define the interaction plan to
be a 2D trajectory of the locations of the points in future frames, such that
the goal is achieved. Importantly, we can train this model purely from the
abundantly available RGB videos on the web without any data specific to the
robot embodiment, by using off-the-shelf point-tracking approaches [78] for
generating the ground-truth point trajectories. For deployment in a robot’s
environment, we can convert the 2D interaction-plan to a sequence of 3D
end-effector poses, by having a depth image of the initial scene as an addi-
tional input and solving an optimization problem to obtain rigid transforms of
the object being manipulated. Finally, with a small amount of embodiment-
specific robot interaction data for different tasks (∼ 400 trajectories overall),
we can learn a goal-conditioned residual policy that corrects for errors in the
predicted plan at each time-step and allows for closed-loop deployment.

In summary, this chapeter’s contributions are three-fold:

• We develop a framework for predicting embodiment-agnostic interaction-
plans in the form of point tracks from diverse web videos.

• We show how the interaction-plan prediction model can be used for
obtaining 3D rigid transforms in a robot’s environment for zero-shot
manipulation without using any robot data or online exploration.

• Given a few (∼ 400) embodiment-specific task demonstrations, we
show how to learn a goal-conditioned residual policy that can correct
for errors in the predicted plan at each time-step. The interaction-plan
prediction model combined with the residual policy correction can then
be used for zero-shot closed-loop deployment for new tasks in new
scenes.

Our real-world robot manipulation results with a Spot robot (highlighted
in Fig. 5.1) show broad generalization across diverse tasks involving unseen
objects in unseen scenes, and demonstrate the potential for leveraging easily
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Figure 4.2: Illustration of the pipeline for learning track prediction from web video datasets,
inferring rigid transforms of objects based on the predicted tracks in a robot’s environment,
and fine-tuning with a residual policy learned with limited robot data. This approach allows
us to learn a single goal-conditioned policy for diverse (unseen) tasks.

available passive videos on the web for learning embodiment-agnostic interac-
tion plans. This is significant as it enables zero-shot robot manipulation with
a common goal-conditioned policy, that generalizes to unseen tasks without
requiring collection of large scale in-domain manipulation datasets.

4.1 Approach
We aim to develop a zero-shot robot manipulation system that can scalably
leverage diverse video data for generalizable real-world manipulation. Our
key insight (Fig. 4.2) is to have a factorized policy for 1) learning embodiment-
agnostic interactions plans of how points in an image of a scene should move
in subsequent time-steps to realize a specified goal, followed by 2) inferring
robot actions based on the interaction plan through a residual policy. We
show how this approach allows us to generalize to diverse scenarios involving
unseen tasks and objects, since the prediction model by virtue of being trained
on web data generalizes well to new scenes, and the residual policy has a
much simpler task of correcting the robot actions derived from the interaction
plan.

4.1.1 Overview and Setup
Given a scene specified by an RGB image I0 and a goal image G denoting
what task should be performed, we want to have a robot manipulator execute
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Figure 4.3: Architecture of the Diffusion Transformer Vθ for denoising track predictions
given initial image I0, goal G, and an initial set of p points P0.

actions a1:H in the scene to achieve the desired goal. To achieve this in
unseen scenarios, we leverage web video data by learning a model τ =
Vθ(I0,G, P0) to predict future locations (tracks) of p random points P0 in
the initial image. Given a depth image for the initial frame, we leverage
a subset of the predicted tracks τobj (corresponding to moving points) to
infer rigid-transforms of the object being manipulated [Tt]

H
t=1 and show that

these allow obtaining an open-loop plan in the form of robot end-effector
poses [āt]

H
t=1. Finally, we consider training a closed-loop residual policy

πres(It,G, τ, [āt]Ht=1) that corrects the open-loop action sequence [āt]
H
t=1 by

predicting residual actions at each timestep ∆at, such that the executed action
sequence is [at = āt + ∆at]

H
t=1. In the subsequent sections, we explain the

architecture and algorithm design for each of the three stages in our approach.

4.1.2 Point Track Prediction from Web Videos
We instantiate track prediction as a denoising process through a DiT based
diffusion model [120]. Let I0 denote the first frame of a video, and G denote
the goal, which we consider to be the last frame of the video. For longer
videos, we obtain multiple video clips of 4-5 seconds each for training. Let
there be p points in the initial frame to be tracked, such that P0 denotes the
set of those points and let H be the prediction horizon. [Pt]

H
t=1 denotes the

future locations of those points in the subsequent time-steps that we want to
predict. In the forward diffusion process, all the points Pt are corrupted by
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Algorithm 1 Predicting Rigid Transforms from Point Tracks

1: procedure RIGID TRANSFORMS(τ, I0,G, P 3D
0 ,K, H)

2: {{(xit, yit)}
p
i=1}Ht=1 = τobj = filter(τ) ▷ Filter moving point tracks

3: Unknown rigid transforms [Tt]
H
t=1 ▷ Tt has dimension 3x4

4: Run RANSAC on τobj to filter outliers ▷ optional
5: for t← 1 to H do
6: Tt =Tt

∑N
i (||xit − uit||+ ||yit − vit||)

7: where (uit, v
i
t, 1) ≃ KTtPt ▷ projections in homogeneous

coordinates
8: return {Tt = (Rt, tt)}Tt=1

incrementally adding noise ϵk (k denotes the diffusion time-step), to obtain P̃t,
and converging to a unit Gaussian distribution N(0, I). New samples can be
generated by reversing the forward diffusion process, by going from Gaussian
noise back to the space of point locations. To solve the reverse diffusion
process, we need to train a noise predictor Vθ(I0,G, P0, k). We design a DiT
Transformer based architecture [120] for Vθ illustrated visually in Fig. 5.2.
Different from the original DiT model, we condition on embeddings of initial
(z0) and goal (zg) images in addition to that of the diffusion step (zk). The
input to the Transformer in each batch is a sequence of p tokens corresponding
the number of points specified for tracking. The initial P0 points are not noisy,
as is the convention in training conditional diffusion models on time-series
data.

We train the prediction model with web videos by considering variable
number of initial points p that need to be tracked. For flexible modeling, the
locations of the p points are also randomized, such that at test-time any set of
points in the initial image can be specified. We do not make any assumptions
on objects to be tracked or camera motions in the videos, and do not curate
the training videos in any way apart from ensuring they are of 4-5 second
duration. If the goal image is such that multiple objects have moved from the
initial scene, or the camera has moved, the track prediction model will predict
different groups of motions for different objects and also predict motions
of background points to account for camera motion. However, for robot
experiments, we consider only a single object to be manipulated at a time,
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Figure 4.4: Architecture of the residual policy that predicts corrections at each time-step over
the predicted open-loop plan, and enables closed-loop deployment.

which is indeed the case with several diverse real-world tasks.

4.1.3 Inferring Coarse Manipulator Trajectory from Inter-
action Plan

Given an image of a scene in a robot’s environment I0, a goal G, and a random
set of points P0 in the initial image, we can use the trained track prediction
model to obtain future 2D locations of these points P̂t. As we consider
scenarios with only a single object being manipulated under a fixed camera,
only a subset of the points have a large predicted motion. We identify these p
points and denote their predicted trajectories as τobj = [{(xit, yit)}

p
i=1]

H
t=1. We

consider the robot to be equipped with an RGBD camera, so we also have
depth for the points P0 in the first frame. Let us denote these 3D points as
P 3D
0 = {(xi0, yi0, zi0)}

p
i=1.

We seek to infer a (smooth trajectory of) per-time rigid transforms Tt of
the object to be manipulated at time t relative to first frame, given 3D points
in the first frame P 3D

0 , predicted 2D trajectory of points on the object τobj,
and the camera intrinsic matrix K. As described in Algorithm 1, these can
be obtained by ensuring that the projection of the transformed 3D points i.e.
KTtP0 matches the predicted 2D tracks {(xit, yit)}

p
i=1 as closely as possible at

each time-step t. Let KTtP0 ≃ {(uit, vit, 1)}
p
i=1. So the 2D projection of the

ith point at time t is (uit, v
i
t). Alternatively, we have the same coordinate for

the point from the predicted track i.e. (xit, y
i
t). In order to determine the rigid

transforms Tt, we can solve the optimization problem in line 6 of Algorithm 1
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Algorithm 2 Closed-Loop Deployment with Residual Policy Correction

1: procedure RESIDUAL CORRECTION(Vθ(·), I0,G, P0, P
3D
0 ,K, h, e0,πres)

2: τ = Vθ(I0,G, P0) ▷ Predict future point tracks
3: [Tt]

H
t=1 = RIGID TRANSFORMS(τ, I0,G, P 3D

0 ,K, h)
4: for t← 0 to H do
5: āt = Tte0 ▷ Infer Open-Loop Plan
6: for t← 1 to H do
7: ∆at:t+h = πres(It,G, τ, [āt]t+h

t=t ) ▷ Predict residual correction
8: ât = āt +∆at ▷ Corrected action at time t
9: Execute action ât with the robot ▷ with IK and gripper action

10: if t == H then
11: Gripper Open; Reset end-effector to home

(e.g. with PnP solvers). This optimization is not under-constrained because
the same 3D rigid transform Ti must explain the 2D motions of several points
P0 in the initial scene. Note that the obtained rigid transforms are embodiment-
agnostic and describe how the object should move in the scene.

Now, to actually manipulate the object in the scene, we need to bring the
robot end-effector1 near the object, and optionally execute a grasp to hold on
to the object, followed by transforming the end-effector based on the predicted
rigid transforms [Tt]

H
t=1. For the first step, we use a heuristic such that given

initial end-effector pose e0 we define the first transform T0 to be such that the
end-effector moves to the center of the 3D points {(xit, yit)}

p
i=0 with the same

orientation as e0. After moving the end-effector to this pose e1 we execute a
grasp to hold the object. We obtain subsequent end-effector poses (open-loop
action trajectory) by applying the rigid transforms āt = Tte1.

4.1.4 Closed-loop Manipulation with Residual Policy Cor-
rection

The open-loop execution of the predicted 3D end-effector transforms described
in the last section [āt]

H
t=1 might fail due to small errors in the prediction. In

1by end-effector we mean the part of the robot that interacts with an object
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addition, since the approach does not use any embodiment-specific data, it
does not have accurate information for reasoning about contact with objects
and might suffer from failures like being unable to grasp the object, in spite
of executing the rest of the predicted trajectory correctly. To remedy this, we
propose learning a residual policy πres(It,G, τ, [āt]Ht=1) shown in Fig. 4.4 to
correct the predicted end-effector poses in each time-step. So the end-effector
pose at time t is

ât = āt +∆at ; where ∆at = πres(It,G, τ, [āt]Ht=1) (4.1)

Instead of predicting just a single residual action ∆at we predict residuals h
steps in the future ∆at:t+h and during deployment execute just the first action.
This multi-step prediction has been shown to mitigate compounding errors in
behavior-cloning based training [17, 174]. We can learn the residual policy
with a small amount of robot demonstrations (∼ 400 trajectories overall) of
representative tasks through behavior cloning. The data for each trajectory
consists of observation-action pairs of the form [(It, at)]

H
t=1. Here, It denotes

images observed from the robot’s camera and at denotes actions in the form
of end-effector poses.

Crucially, since the aim of this policy is to learn only small corrections
to the predicted waypoints [āt]Ht=1, we do not need to learn this policy with
data from the exact scenarios that the system will be deployed in and the
prediction model is expected to generalize to unseen scenarios by virtue
of diverse training. The rationale is that having some embodiment-specific
demonstration data in a few scenarios will help correct for the open-loop
predictions from web-only data. For evaluation, we consider different levels
of generalization with unseen object instances and completely unseen objects
in unseen scenes.

4.2 Experiment Setup
We focus our experiments on in-the-wild manipulation scenarios where a
mobile manipulator needs to manipulate objects in different living rooms,
offices, and kitchens based on specified goals. For all the robot experiments,
we use a Boston Dynamics Spot robot equipped with a manipulator (hand) and
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a front facing Intel RealSense camera [82]. We manipulate the arm through
end-effector control based on the outputs of our policy.

4.2.1 Evaluation Details

Track Prediction. For quantitative evaluation of the track prediction model,
we adopt a modification of the metric developed by prior works [38, 78], δxt .
For evaluation videos, we consider the output of Co-Tracker [78] to be the
ground-truth and compare the difference with respect to the predictions, based
on the δxt metric. We define δxt to be the fraction of points that are within a
threshold pixel distance of x of their ground truth in a time-step t. We report
the area under the curve ∆ with δxt by varying x from 1 to N = 10 and taking
the average across the prediction horizon H i.e. ∆ = (

∑H
t=1

∑N
x=1 δ

x
t )/H .

Hence, ∆ can vary from 0 to 1 with higher being better.
Track Prediction. As is the convention in goal-conditioned robot learning, we
perform evaluations by quantifying success rate, where a successful trajectory
is defined to be one where the final pose of the object in the scene to be
manipulated is identical to the pose of the object in the goal image. We
categorize results based on different levels of generalization, the definitions of
which are inspired by prior works [10, 17, 22, 179]:

• Mild Generalization (MG): unseen configurations of seen object in-
stances in seen scenes; organic scene variations like lighting and back-
ground changes

• Standard Generalization (G): unseen object instances in seen/unseen
scenes

• Combinatorial Generalization (CG): unseen activity-object type combi-
nations in seen/unseen scenes

• Type Generalization (TG): completely unseen object types, or com-
pletely unseen activities, in unseen scenes
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4.2.2 Baselines and Comparisons
For quantitative evaluations, we first compare our track prediction approach
with other related baselines and then perform comparisons with baselines for
robot manipulation experiments.
Track Prediction. We perform comparisons with two baselines that have the
same inputs as our track prediction model, i.e. an initial image, a goal image
and points specified on the initial image, and the same output type i.e. point
tracks in between the initial and goal images. We compare with a flow-based
baseline that directly predicts flow between the initial and goal images, and
then performs a per-timestep interpolation of the flow vectors [162]. The
second baseline performs video-infilling given initial and goal images [46],
and then uses Co-Tracker [78] to obtain tracks on the generated video.
Robot Experiments. We perform several comparisons with baselines and ab-
lation studies for goal-conditioned robot manipulation. For baselines, we use
the same embodiment-specific demonstrations as Ours, the goal-conditioned
policy that predicts residuals over open-loop actions at each time-step (Algo-
rithm 2).

• Goal-Conditioned BC is a baseline for multi-task policy learning, similar
to prior works [17, 22, 179].

• Affordance-Conditioned BC is the approach from [5] that conditions the
policy on predicted affordances in the initial image.

• Video-Conditioned BC based on [40, 46, 86] first predicts RGB video
and then does tracking on top of it.

• Hand-Object Mask Conditioned BC from [10] conditions the policy on
a predicted interaction plan consisting of masks of hands and objects.

Ours (Open Loop) is the approach for track prediction followed by open-loop
execution as described in Algorithm 1. This does not use any embodiment-
specific data for training. To understand the benefit of predicting residuals
over actions as opposed to predicting complete actions, we compare with an
ablated variant Ours (actions; not residuals) that predicts actions ât directly
without predicting residuals ∆at and not relying on an open-loop plan as
input.
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4.2.3 Training Data
For training the track prediction model, we leverage diverse passive videos
available on the web that are not collected by us. Specifically, we use human
video clips from EpicKitchens [30] (clipping videos to ensure they are of 4-5
seconds duration), human videos on YouTube sourced in SmthSmthv2 [52],
and large-scale robot videos released in RT1 data [22] and BridgeData [156].
To obtain ground-truth tracks for training the prediction model, we run Co-
Tracker [78] on the resulting 400,000 video clips. Note that the robot datasets
(RT1 and Bridge) are on completely different robots and scenarios than the
robot we use for experiments (Spot). For training the residual policy, the
embodiment-specific data we collect consists of ∼ 400 trajectories obtained
by tele-operating the Spot, for solving 10 tasks of manipulating everyday
objects like doors, drawers, bottles, jugs. Note that this embodiment-specific
data we collect is 3-4 orders of magnitude less than that what related works [17,
22, 179] require for policy learning.

4.3 Results
We present qualitative results of the predicted tracks, and robot evaluations,
followed by quantitative comparisons with the metrics defined in section 4.2.1.
Please refer to the supplementary zip for detailed qualitative results and robot
evaluation videos.

4.3.1 Point Track Prediction Results
We first look at some qualitative results of the track prediction model in
different unseen scenes. In Fig. 4.7 we show visualization of track predictions
on unseen initial and goal images across diverse datasets. We choose points
on a grid in the initial frame, as shown in the third row. The prediction model
is conditioned on the initial image, the goal image, and the set of points in
the initial image whose future tracks are to be predicted. We can see that
the predictions (shown in the fourth row) are plausible and correspond to
manipulating the objects in the scene as described by the respective goal
images. We can also see that when multiple entities (e.g. human and object or
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Figure 4.5: We show visualizations of point track predictions for different tasks, followed by
closed-loop execution with the residual policy. We can see that the predictions are plausible
and the robot execution successfully realizes the predictions to complete the respective tasks
specified by the goal images. The bottom row shows the generalization level for each task,
defined in section 4.2.1.

Table 4.1: Evaluation of track prediction performance on held-out videos from different
datasets on the web. EpicKitchens [30] and SmthSmthv2 [52] are datsets of human videos,
and BridgeData [156] and RT1 data [22] are datasets of robot videos. Note that we train
a single model that we evaluate on these different datasets. The metric ∆ is defined in
section 4.2.1. Higher is better and the range is from 0 to 1.

EpicK [30] SSV2 [52] Bridge Data [156] RT1 Data [22]

Flow [162] 0.21 0.27 0.42 0.38
Video [46] 0.30 0.17 - -

Ours 0.67 0.70 0.77 0.75

robot and object) or the camera moves between the initial and goal images,
there are different sets of point tracks predicting the respective motions.

In Table 4.1 we perform evaluations for track prediction by comparing with
the flow-based [162] and video-based [46] baselines. We can see that both the
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Figure 4.6: Qualitative results showing robot executions (from a third person view) with
the residual policy for different tasks with respect to the generalization levels defined in
section 4.2.1. We show the first and last images of a rollout. The robot executions are best
viewed as videos in the supplementary zip.

baselines have much lower accuracy compared to our approach of predicting
point tracks. This is because flow is too coarse to capture large non-linear state
changes in between the initial and goal images. Whereas, predicting an RGB
video followed by tracking suffers due to issues of implausible generation
because video generation is a much more complex task than predicting the
tracks of a set of points where the details about appearance, texture etc. are
abstracted out. For reference, not predicting any movement for any point at all
time-steps scores 0.03, 0.05, 0.36, 0.28. This suggests the benefit of directly
predicting future point tracks as done by our approach if the aim is to capture
motion of objects in the scene between an initial and a goal image.

4.3.2 Robot Manipulation Results

We visualize results of point track predictions using the trained prediction
model in a robot’s environment, followed by residual policy executions based
on the predictions. In Fig. 4.5 we show the track predictions overlayed on
the initial image, corresponding to the goal image shown in the top row. The
bottom row shows robot execution with the first frame (1), two intermediate
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frames (2,3) and the last frame (4) of a rollout. We can see that the predicted
tracks correspond to points on the object moving in a way that satisfies the goal,
and the policy is able to manipulate the object to the desired goal configuration.
Since the camera doesn’t move between the initial and goal images, we can
see that background (non object) pixels remain stationary in the predictions,
which is useful for accurate prediction of rigid transforms of the object.

In Table 4.2 we show comparisons for robot manipulation experiments,
respectively for each level of generalization. We evaluate each approach for
20 rollouts in each level, across a total of 25 tasks in 5 different physical
kitchen, office, and living room locations. We first note that our residual
policy outperforms our approach for directly executing an open-loop plan
based on predicted rigid transforms. This suggests that the residual policy is
able to correct for inaccuracies in the open-loop plan by virtue of leveraging
some embodiment-specific data that helps in performing accurate grasps on
objects and recovering from potential failures during a trajectory.

We observe that for mild generalization (MG), the goal-conditioned BC
baseline has slightly lower success rate compared to our residual policy, and
significantly lower (or zero) success rates for standard (G), compositional
(CG), and type (TG) generalization. This suggests the benefit of leveraging
web video data for learning interaction plans that helps our approach gen-
eralize effectively. Finally, compared to baselines that also leverage web
data like affordance-conditioned BC, video-conditioned BC, and hand-object
mask-conditioned BC, we observe significant gains from our approach in the
higher levels of generalization (CG and TG). This suggests that predicting
static affordances without reasoning about motion trajectories, hallucinating
RGB videos that suffer from incorrect generations and produce implausible
artifacts in the scene, or predicting 2D masks of hands and objects without
reasoning about correspondences are insufficient cues for effectively leverag-
ing web videos. Compared to these, our interaction plan learned through track
prediction provides sufficient cues for solving unseen manipulation tasks by
virtue of allowing inference of 3D rigid transforms, and the residual policy
helps correct for errors in the predictions.
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Figure 4.7: We show qualitative results of the track predictions for Track2Act on unseen
initial and goal images across diverse datasets. Given specified points on the initial image we
predict future tracks of these points, corresponding to the goal image. We can see that the
predictions are plausible and correspond to manipulating the object(s) in the scene.

Table 4.2: Evaluation of goal-conditioned robot manipulation experiments, per the protocol
described in section 4.2.1. The numbers denote success rate averaged over 20 rollouts for
different tasks within each generalization axis (Higher is better). Detailed list of tasks are in
the Supplementary pdf. Refer to Fig. 4.6 for visualizations of some task rollouts corresponding
to each of the four generalization axes.

MG G CG TG

Behavior Cloning (BC) 60% 20% 0% 0%
Affordance-Conditioned 65% 30% 10% 5%

Video-Conditioned 60% 25% 0% 0%
Hand-Object Mask-Conditioned 70% 40% 25% 20%

Ours (Open-Loop) 35% 25% 30% 25%
Ours (Ablation; actions not residuals) 70% 45% 30% 30%

Ours 70% 60% 55% 40%
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4.3.3 Analysis of Failures
Here we discuss the failures displayed by our framework. For the open-loop
plan based on residual transforms, the main failure modes we observe are
inability to grasp the object at the right location, and inability to recover from
intermediate failures. The residual policy corrects for these behaviors by virtue
of leveraging some embodiment-specific data, and thus has higher success
rates. We note that the success rate for higher levels of generalization CG
and TG) is still not very high since these are very challenging settings and
the residual policy sometimes fails by incorrectly grasping the object, getting
stuck during the execution by trying to execute a non-feasible motion, or by
executing a trajectory that does not conform with the goal image specified.

Additional Details and Results

4.3.4 Additional Qualitative results
Please refer to the supplementary website website.html for detailed qual-
itative results of our framework including robot video evaluations, as well as
comparisons to baselines. The video glimpse.mp4 contains a summary of
the diverse robot manipulation capabilities enabled by our framework.

4.3.5 Robot Experiment Details
We perform all robot manipulation experiments with a Boston Dynamics Spot
Robot, operated through end-effector control. The robot is a quadruped with
an arm attached to its base. We connect a front-facing Intel Realsense camera
to the base such that it always moves with the robot, and it static with respect
to the base. The end-effector of the arm is a two-fingered gripper. The horizon
H of rollouts is 50 steps, and we operate the robot at a frequency of 5 Hz. For
the residual policy, at each step we predict actions h = 4 time-steps in the
future, and execute the first action. We execute the predicted actions on the
robot through an Inverse Kinematics (IK) controller. This controller converts
the end-effector poses to robot joint actions for appropriately manipulating the
arm. We use the IK controller provided by Boston Dynamics for this purpose.
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4.3.6 Track Prediction Model details

We instantiate track prediction as a denoising process through a DiT based
diffusion model [120]. Let I0 denote the first frame of a video, and G denote
the goal, which we consider to be the last frame of the video. For longer
videos, we obtain multiple video clips of 4-5 seconds each for training. Let
there be p points in the initial frame to be tracked, such that P0 denotes the
set of those points and let H be the prediction horizon. [Pt]

H
t=1 denotes the

future locations of those points in the subsequent time-steps that we want to
predict. In the forward diffusion process, all the points Pt are corrupted by
incrementally adding noise ϵk (k denotes the diffusion time-step), to obtain P̃t,
and converging to a unit Gaussian distribution N(0, I). New samples can be
generated by reversing the forward diffusion process, by going from Gaussian
noise back to the space of point locations. To solve the reverse diffusion
process, we need to train a noise predictor Vθ(I0,G, P0, k). We design a DiT
Transformer based architecture [120] for Vθ illustrated visually in Fig. 5.2.
Different from the original DiT model, we condition on embeddings of initial
(z0) and goal (zg) images in addition to that of the diffusion step (zk). The
input to the Transformer in each batch is a sequence of p tokens corresponding
the number of points specified for tracking. The initial P0 points are not noisy,
as is the convention in training conditional diffusion models on time-series
data. We train the prediction model with web videos by considering variable
number of initial points p that need to be tracked. We vary p from 200 to 400.
For flexible modeling, the locations of the p points are also randomized, such
that at test-time any set of points in the initial image can be specified. We do
not make any assumptions on objects to be tracked or camera motions in the
videos, and do not curate the training videos in any way apart from ensuring
they are of 4-5 second duration.

The model has 24 DiT blocks, with a hidden size of 1024, and 16 heads.
The ResNet18 embeddings of initial image and goal image have dimensions
512. The condition to each DiT block consists of the sum of initial image em-
bedding, goal image embedding, and diffusion time-step embedding through
adaptive modulation (adaLN) layers. The adaptive modulation layers and final
MLP layers are zero-initialized, and the rest are Xavier uniform initialized.
We use Adam optimizer with default Adam betas = (0.9,0.999) and a constant
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learning rate of 1e-4 for experiments. The rest of the architecture and training
details are similar to DiT [120].

4.3.7 Residual Policy Model details

To correct the predicted open-loop plan, with a small amount of embodimen-
specific data, we propose learning a residual policy πres(It,G, τ, [āt]Ht=1) shown
in Fig. 4.4 to correct the predicted end-effector poses in each time-step. So
the end-effector pose at time t is ât = āt + ∆at ; where ∆at =
πres(It,G, τ, [āt]Ht=1) Instead of predicting just a single residual action ∆at we
predict residuals h steps in the future ∆at:t+h and during deployment execute
just the first action. This multi-step prediction has been shown to mitigate
compounding errors in behavior-cloning based training [17, 174]. We can
learn the residual policy with a small amount of robot demonstrations (∼ 400
trajectories overall) of representative tasks through behavior cloning. The data
for each trajectory consists of observation-action pairs of the form [(It, at)]

H
t=1.

Here, It denotes images observed from the robot’s camera and at denotes
actions in the form of end-effector poses.

The residual policy model is a Transformer based on the DiT architecture.
The model has 12 DiT blocks, with a hidden size of 512, and 8 heads. The
ResNet18 embeddings of initial image and goal image have dimensions 512.
The condition to each DiT block consists of the sum of current image em-
bedding, goal image embedding, and emebedding of the current time-step t
through adaptive modulation (adaLN) layers. The adaptive modulation layers
and final MLP layers are zero-initialized, and the rest are Xavier uniform ini-
tialized. We use Adam optimizer with default Adam betas = (0.9,0.999) and a
constant learning rate of 1e-4 for experiments. The input to the model consists
of the predicted tracks of p points in the initial image (we keep p = 400 to
ensure a dense grid in the initial image of dimensions 256x256x3) and the
predicted open-loop plan with h steps from t : t+ h. So there are p+ h input
tokens. We read off the final h tokens corresponding to the updated open-loop
plan for these h steps and after a final MLP layer, output actions for h steps .
We will release all code and models upon acceptance.
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4.3.8 Training Data for Track Prediction

We use four different web data sources for training the track prediction model -
videos from Something-Something-v2 [52], Epic-Kitchens [30], RT1 data [22],
and BridgeData [156]. Something-Something-v2 contains short YouTube
videos of people doing everyday activities. We consider videos from this
dataset as is, and choose the first frame as the initial image and the last
frame as goal image. Epic-Kitchens contains ego-centric videos of humans in
different locations performing diverse tasks in kitchens. Since these videos
are long (¿20 min each), we choose clips of duration 4-5 seconds by cutting
the long videos, and choosing clips where a human hand is visible in the scene
(so as to have clips where an object is being manipulated, instead of a person
just moving around). RT1 Data and Bridge Data are large-scale robot datasets
that contains rollouts of two different types of robots being tele-operated for
different tasks. For these datasets, we consider the first and last images to be
the first and last frames of a rollout, and each rollout to be a separate video.

In total we obtain around 400,000 videos clips from the above sources,
choose a dense grid of 400 points on the first frame and we run Co-Tracker [78]
on these clips, for obtaining the ground-truth intermediate tracks of points.
Our prediction model is conditioned on the first and last frames for each video,
and the task of predicting the tracks of random points on the initial frame is
supervised by the tracks we obtain from Co-Tracker (ground-truth).

4.3.9 Training Data for Residual Policy

For training the residual policy we collected tele-operated demonstrations with
the Spot robot by controlling it with a joystick across 10 tasks in 3 physical
locations. These scenarios correspond to only a subset of the diverse tasks,
objects, and scenes we consider for evaluation . Concretely, the evaluation
scenarios with same tasks as the collected data correspond to the mild gen-
eralization (MG) category. Rest of the generalization axes corresponding to
unseen instances and categories are described in detail in section 4.2.1.

The training data consists of 400 teleoperated trajectories, each consisting
ofH (observation,action) pairs (H = 50). The data for each trajectory consists
of observation-action pairs of the form [(It, at)]

H
t=1. Here, It denotes images
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observed from the robot’s camera and at denotes actions in the form of end-
effector poses. This data is collected at the same frequency of 5 Hz that
we deploy the policy for eventual evaluations. Note that this embodiment-
specific data we collect is 3-4 orders of magnitude less than that what related
works [17, 22, 179] require for policy learning. This is a major advantage
of our framework as it precludes the need to spend years on real-world data
collection, while achieving generalization to more diverse scenarios by virtue
of leveraging passive web videos for track prediction.

4.3.10 Details on baselines
We perform several comparisons with baselines and ablation studies for goal-
conditioned robot manipulation. For baselines, we use the same embodiment-
specific demonstrations as Ours, the goal-conditioned policy that predicts
residuals over open-loop actions at each time-step (Algorithm 2).

• Goal-Conditioned BC is a baseline for multi-task policy learning, similar
to prior works [17, 22, 179]. This is trained with the same data we use
for training our residual policy, and is conditioned on goal image, similar
to our residual policy.

• Affordance-Conditioned BC is the approach from [5] that conditions the
policy on predicted affordances in the initial image. These affordances
capture what is plausible to be manipulated in the scene, and so are
different from our time-series predictions of point tracks. We directly
adopt the affordance model from [5] that was trained on web data,
and use the same embodiment-specific data as our residual policy for
training through conditional behavior cloning.

• Video-Conditioned BC based on [40, 46, 86] first predicts RGB video
and then does tracking on top of it. We adopt the video prediction model
from [46] (without language conditioning) trained on web data, and use
the same embodiment-specific data as our residual policy for training
through conditional behavior cloning.

• Hand-Object Mask Conditioned BC from [10] conditions the policy
on a predicted interaction plan consisting of masks of hands and ob-
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jects. We use the hand-object plan prediction model from [10], and use
the same embodiment-specific data as our residual policy for training
through conditional behavior cloning. Note that this baseline is slightly
different from the translation model in [10] because we do not collect
paired human-robot demonstrations unlike [10] and so the policy is
conditioned on predicted hand-object plans as opposed to ground-truth
plans unlike [10].

Comparison to Goal-Conditioned BC helps understand the potential bene-
fits of leveraging web data for generalizable manipulation, and comparisons
to Affordance-Conditioned BC, Video-Conditioned BC, Hand-Object Mask
Conditioned BC help understand the potential of predicting point tracks from
web videos, compared to other ways of using web data for prediction geared
towards manipulation.
Ours (Open Loop) is the approach for track prediction followed by open-loop
execution as described in Algorithm 1. This does not use any embodiment-
specific data for training. To understand the benefit of predicting residuals
over actions as opposed to predicting complete actions, we compare with an
ablated variant Ours (actions; not residuals) that predicts actions ât directly
without predicting residuals ∆at and not relying on an open-loop plan as
input.

4.3.11 Qualitative Results for baselines
We provide qualitative comparisons of the baselines with our approach, in the
figures below. For detailed qualitative video results of our approach, please
refer to the attached video and local webpage.

4.4 Discussion and Conclusion
In this paper, we developed a framework for generalizable zero-shot robot
manipulation by leveraging large-scale web video data to learn embodiment
agnostic plans of how objects should be manipulated in a scene to satisfy a goal.
We combined this with a small amount of embodiment-specific data to learn
residual corrections over the predicted plans through a closed-loop policy. Our
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Figure 4.8: Type Generalization (TG). We show rollouts from baselines for the same goal.
The views are from a third person camera.

real world manipulation results across a range of diverse tasks with varying
levels of generalization demonstrate the potential of scalably leveraging web
data to predict plans for object manipulation. While our framework allows
for strong generalization to unseen tasks in-the-wild, the tasks are still of
short-horizon and involve manipulating a single object in the scene. It would
be an interesting direction of future work to extend our framework for tackling
long-horizon tasks that involve successive manipulations of multiple objects
in the scene.
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Figure 4.9: Compositional Generalization (CG). We show rollouts from baselines for the
same goal. The views are from a third person camera.
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Figure 4.10: Standard Generalization (G). We show rollouts from baselines for the same goal.
The views are from a third person camera.
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Figure 4.11: Mild Generalization (MG). We show rollouts from baselines for the same goal.
The views are from a third person camera.
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Figure 4.12: We show visualizations of predictions from the Hand-Object Mask Prediction
and Affordance Prediction baselines, on different initial and goal images in the robot’s
environment.
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Chapter 5

Zero-Shot Human Video
Generation for Robot
Manipulation

In order to mitigate issues with purely scaling robotic datasets, a line of recent
works have sought to incorporate additional behavioral priors in representation
learning by pre-training visual encoders with non-robotic datasets [79, 100,
112, 118, 160] and co-training policies with vision-language models [83,
115, 179]. Going beyond abstract representations, other works have learned
attributes from web videos more directly informative of motion in the form
of predicting goal images [12, 18, 77], hand-object mask plans [10], and
embodiment-agnostic point tracks [15]. These approaches show promising
signs of generalization to tasks unseen in the robot interaction datasets, but
training such specific predictive models from web video data requires utilizing
other intermediate models for providing ground-truths and thus are hard to
scale up.

Our key insight for enabling generalization in manipulation is to cast
motion prediction from web data in the very generic form of zero-shot video
prediction. This lets us directly leverage advances in video generation models,
by conditioning a robot policy on the generated video for new tasks that are
unseen in the robot datasets. We posit that as video generation models get
better due to large interest in generative AI [49, 87, 132] beyond robotics, an
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Figure 5.1: Gen2Act learns to generate a human video followed by robot policy execution
conditioned on the generated video. This enables diverse real-world manipulation in unseen
scenarios.
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Figure 5.2: Architecture of the translation model of Gen2Act (closed-loop policy πθ).
Given an image of a scene I0 and a language-goal description of the task G, we generate a
human video Vg with a pre-trained video generation model V(I0,G). During training of the
policy, we incorporate track prediction from the policy latents as an auxiliary loss in addition
to a behavior cloning loss. Dotted pathways show training-specific computations. During
inference, we do not require track prediction and only use the video model V in conjunction
with the policy πθ(It−k:t,Vg).

approach that relies on learning a policy conditioned on zero-shot video pre-
diction can effectively scale and generalize to increasingly diverse real-world
scenarios. For performing a manipulation task in a novel scene, a gener-
ated video conditioned on the language description of the task is particularly
useful for conveying what needs to be done and in capturing motion-centric
information of how to perform the task that can then be converted to robot
actions through a learned policy. Compared to a generated video, a language
description or a goal image alone only conveys what the task is.

We develop Gen2Act by instantiating language-conditioned manipulation
as human video generation followed by generated human video to robot
translation with a closed-loop policy (Figure 5.1). We opt for generating
human videos as opposed to directly generating robot videos since video
generation models are often trained with human data on the web, and they
are able to generate human videos zero-shot given a new scene. We then
train a translation model that needs some offline robot demonstrations and
corresponding generated human videos. We generate these corresponding
human videos offline with an off-the-shelf model [87] by conditioning on the
first frame of each trajectory (the first frame doesn’t have the robot in the
scene) and the language description of the task. We instantiate this translation
model as a closed loop policy that is conditioned on the history of robot
observations in addition to the generated human video so that it can take
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advantage of the visual cues in the scene and adjust its behavior reactively.
In order to capture motion information beyond that implicitly provided

by visual features from the generated video, we extract point tracks from
the generated human video and the video of robot observations (through an
off-the-shelf tracker [39]) and optimize a track prediction auxiliary loss during
training. The aim of this loss function is to ensure that the latent tokens of
the closed-loop policy are informative of the motion of points in the scene.
We train the policy to optimize the typical behavior cloning loss for action
prediction combined with this track prediction loss. For deployment, give a
language description of a task to be performed, we generate a human video
and run the policy conditioned on this video.

The diverse real-world manipulation results of Gen2Act (featured in Fig-
ure 5.1) demonstrate the broad generalization capabilities enabled by learning
to infer motion cues from web video data through zero-shot video generation
combined with motion extraction through point track prediction for solving
novel manipulation tasks in unseen scenarios. For generalization to novel
object types and novel motion types unseen in the robot interaction training
data, we show that Gen2Act achieves on average ∼ 30% higher absolute
success rate over the most competitive baseline. Further, we demonstrate
how Gen2Act can be chained in sequence for performing long-horizon activi-
ties like “making coffee” consisting of several intermediate tasks.

5.1 Approach

We develop a language-conditioned robot manipulation system, Gen2Act that
generalizes to novel tasks in unseen scenarios. To achieve this, we adopt
a factorized approach: 1) Given a scene and a task description, using an
existing video prediction model generate a video of a human solving the task,
2) Conditioned on the generated human video infer robot actions through
a learned human-to-robot translation model that can take advantage of the
motion cues in the generated video. We show that this factorized strategy is
scalable in leveraging web-scale motion understanding inherent in large video
models, for synthesizing how the manipulation should happen for a novel
task, and utilizing orders of magnitude less robot interaction data for the much
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simpler task of translation from a generated human video to what actions the
robot should execute.

5.1.1 Overview and Setup
Given a scene specified by an image I0 and a goal G describing in text the
task to be performed, we want a robot manipulation system to execute actions
a1:H for solving the task. To achieve this in unseen scenarios, we learn
motion predictive information from web video data in the form of a video
prediction model V(I0,G) that zero-shot generates a human video of the task,
Vg. In order to translate this generated video to robot actions, we train a
closed-loop policy πθ(It−k:t,Vg) conditioned on the video and the last k robot
observations, through behavior cloning on a small robot interaction dataset
Dr. In order to implicitly encode motion information from Vg in the policy
πθ, we extract point tracks from both Vg and It−k:t, respectively τg and τr, and
incorporate track prediction as an auxiliary loss Lτ during training. Figure 5.2
shows an overview of this setup.

5.1.2 Human Video Generation
We use an existing video generation model for the task of text+image con-
ditioned video generation. We find that current video generation models are
good at generating human videos zero-shot without requiring any fine-tuning
or adaptation (some examples in Fig. 5.3). Instead of trying to generate robot
videos as done by some prior works [40, 92], we focus on just human video
generation because current video generation models cannot generate robot
videos zero-shot and require robot-specific fine-tuning data for achieving this.
Such fine-tuning often subtracts the benefits of generalization to novel scenes
that is inherent in video generation models trained on web-scale data.

For training, given an offline dataset of robot trajectories Dr along with
language task instructions G, we create a corresponding generated human
video dataset Dg by generating videos conditioned on the first frame of the
robot trajectories and the language instruction. This procedure of generating
paired datasets {Dr,Dg} is fully automatic and does not require manually
collecting human videos as done by prior works [68, 117]. We do not require
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Figure 5.3: Visualization of zero-shot video generation for different tasks. The blue frame
and the language description are input to the video generation model of Gen2Act and the
black frames show sub-sampled frames of the generated video. These results demonstrate
the applicability of off-the-shelf video generation models for image+text conditioned video
generation that preserves the scene and performs the desired manipulation task.

the generated human videos to have any particular structure apart from looking
visually realistic, manipulating the relevant objects plausibly, and having
minimal camera motion. As seen in the qualitative results in Figure 5.3, all of
this is achieved zero-shot with a pre-trained video model.

During evaluation, we move the robot to a new scene I0, specify a task to be
performed in language G, and then generate a human video Vg = V(I0,G) that
is fed into the human-to-robot translation policy, described in Section 5.1.3.
Our approach is not tied to a specific video generative model and as video
models become better, this stage of our approach will likely scale upwards.
We expect the overall approach to generalize as well since the translation
model is tasked with a simpler job of inferring motion cues from the generated
human video in novel scenarios, and implicitly converting that to robot actions.
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Figure 5.4: Visualization of the closed-loop policy rollouts (bottom row) conditioned on the
generated human videos (top row) for four tasks. The red frame and the language description
are input to the video generation model of Gen2Act . The black frames show sub-sampled
frames of the generated video, and the blue frames show robot executions conditioned on the
generated video.

As we show through results in Section 5.1.3 only a small amount of diverse
robot trajectories (∼ 400) combined with existing offline datasets is enough
to train a robust translation model.

5.1.3 Generated Human Video to Robot Action Translation

We instantiate generated human video to robot action translation as a closed
loop policy πθ. Given a new scene and a task description, the generated human
video provides motion cues for how the manipulation should happen in the
scene, and the role of the policy is to leverage relevant information from
the generated video, combined with observations in the robot’s frame, for
interacting in the scene. Instead of attempting to explicitly extract waypoints
from the generated video based on heuristics, we adopt a more end-to-end
approach that relies on general visual features of the video, and general point
tracks extracted from the video. This implicit conditioning on the generated
video is helpful in mitigating potential artifacts in the generation and in
making the approach more robust to mismatch in the video and the robot’s
embodiment. Note that we perform human video generation and ground-truth
track extraction completely offline for training.
Visual Feature Extraction. For each frame in the generated human video
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Vg and the robot video It−k:k, we first extract features, ig and ir through a
ViT encoder χ. The number of video tokens extracted this way is very large
and they are temporally uncorrelated, so we have Transformer encoders Φg

and Φr that process the respective video tokens through gated Cross-Attention
Layers based on a Perceiver-Resampler architecture [1] and output a fixed
number N = 64 of tokens. These tokens respectively are zg = Φg(ig) and
zr = Φr(ir).

In addition to visual features from the generated video, we encode explicit
motion information in the human-to-robot translation policy through point
track prediction.

Point Track Prediction. We run an off-the-shelf tracking model [38, 39]
on the generated video Vg to obtain tracks τg of a random set of points in
the first frame P 0. In order to ensure that the latent embeddings from the
generated video zg can distill motion information in the video, we set up a
track prediction task conditioned on the video tokens. For this, we define a
track prediction transformer ψg(P

0, i0g, zg) to predict tracks τ̂g and define an
auxiliary loss ||τg − τ̂g||2 to update tokens ge.

Similarly, for the current robot video It−k:k, we set up a similar track
prediction auxiliary loss. We run the ground-truth track prediction once over
the entire robot observation sequence (again with random points in the first
frame P0), but during training, the policy is input a chunk of length k in
one pass. So here, the track prediction transformer ψr(P

t−k, it−k, r
t−k:t
e ) is

conditioned on the points in the beginning of the chunk Pt−k, the image
features at that time-step it−k and the observation tokens for the chunk zr.

BC Loss. For ease of prediction, we discretize the action space such that each
dimension has 256 bins. We optimize a Behavior Cloning (BC) objective by
minimizing error between the predicted actions ât:t+h and the ground-truth
at:t+h through a cross-entropy loss.

In Gen2Act, we incorporate track prediction as an auxiliary loss during
training combined with the BC loss and the track prediction transformer is
not used at test-time. This is helpful in reducing test-time computations for
efficient deployment.
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5.1.4 Deployment
For deploying Gen2Act to solve a manipulation task, we first generate a human
video conditioned on the language description of the task and the image of the
scene. We then roll out the generated video conditioned closed-loop policy.
For chaining Gen2Act to perform long-horizon activities consisting of several
tasks, we first use an off-the-shelf LLM (e.g. Gemini) to obtain language
descriptions of the different tasks. We chain Gen2Act for the task sequence
by using the last image of the previous policy rollout as the first frame for
generating a human video of the subsequent task. We do this chaining in
sequence as opposed to generating all the videos from the first image because
the final state of the objects in the scene might be different after the robot
execution of an intermediate task.

5.2 Experiments
We perform experiments in diverse kitchen, office, and lab scenes, across
a wide array of manipulation tasks. Through these experiments we aim to
answer the following questions:

• Is Gen2Act able to generate plausible human videos of manipulation in
diverse everyday scenes?

• How does Gen2Act perform in terms of varying levels of generalization
with new scenes, objects, and motions?

• Can Gen2Act enable long-horizon manipulation through chaining of the
video generation and video-conditioned policy execution?

• Can the performance of Gen2Act for new tasks be improved by co-
training with a small amount of additional diverse human tele-operated
demonstrations?

5.2.1 Details of the Evaluation Setup
Following prior works in language/goal-conditioned policy learning, we quan-
tify success in terms of whether the executed robot trajectory solves the task
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Figure 5.5: Robot executions for a sequence of tasks. The last frame of the previous execution
serves as the conditioning frame for next stage video generation.

specified in the instruction, and define success rate over different rollouts for
the same task description. We categorize evaluations with respect to different
levels of generalization by following the terminology of prior works [15, 22]:

• Mild Generalization (MG): unseen configurations of seen object in-
stances in seen scenes; organic scene variations like lighting and back-
ground changes

• Standard Generalization (G): unseen object instances in seen/unseen
scenes

• Object-Type Generalization (OTG): completely unseen object types, in
unseen scenes

• Motion-Type Generalization (MTG): completely unseen motion types,
in unseen scenes

Here, seen vs. unseen is defined with respect to the robot interaction data, and
the assumption is that the video generation model has seen diverse web data
including things that are unseen in the robot data.

5.2.2 Dataset and hardware details

For video generation, we use an existing video model, VideoPoet [87] by
adapting it to condition on square images in addition to language description
of tasks. We do not do any fine-tuning of this model for our experiments,
and find that it directly generalizes to human video generation in all the robot
experiment scenes.
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Table 5.1: Comparison of success rates for Gen2Act with different baselines and an ablated
variant for the different levels of generalization as defined in Section 5.2.1

Mild
(MG)

Standard
(G)

Obj. Type
(OTG)

Motion. Type
(MTG) Avg.

RT1 68 18 0 0 22
RT1-GC 75 24 5 0 26

Vid2Robot 83 38 25 0 37
Gen2Act (w/o track) 83 58 50 5 49

Gen2Act 83 67 58 30 60

For robot experiments, we use a mobile manipulator with compliant two
finger-grippers, and operate this robot for policy deployment through end-
effector control. The arm is attached to the body of the robot on the right.
We manually move the robot around across offices, kitchens, and labs and
ask it to manipulate different objects in these scenes. We operate the robot
for manipulation at a frequency of 3Hz. Before each task, we reset the robot
arm to a fixed pre-defined reset position such that the scene is not occluded
through the robot’s camera.

For training the video-conditioned policy, we use an existing offline dataset
of robot demonstrations collected by a prior work [22] and augment this
with some paired demonstrations of human videos collected by another prior
work [68]. In addition, we create pairs of the form (generated human vid,
robot demo) using the video generation model conditioned on the first
frame of the respective robot demo, to generate a corresponding human video.
For obtaining tracks on the generated human video and the robot demo, we
use an off-the-shelf tracking approach [38, 39]. Generating human videos, and
generating point tracks are done completely offline once and do not induce
any additional cost during policy training.

5.2.3 Baselines and Comparisons
We perform comparisons with baselines and ablations with variants of Gen2Act.
In particular, we compare with a language-conditioned policy baseline (RT1) [22]
trained on the same robot data as Gen2Act. We also compare with a video-
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conditioned policy baseline trained on paired real human and robot videos
(Vid2Robot) [68], a goal-image conditioned policy baseline trained with the
same real and generated videos of Gen2Act but by conditioning on just the last
video frames (i.e. goal image) of the generated human videos (RT1-GC). Fi-
nally, we consider an ablated variant of Gen2Act without the track prediction
loss.

5.2.4 Analysis of Human Video Generations
Fig. 5.3 shows qualitative results for human video generation in diverse scenar-
ios. We can see that the generated videos correspond to plausibly manipulating
the scene in the initial image as described by the text instruction. We can
see that the respective object in the scene is manipulated while preserving
the background and without introducing camera movements and artifacts in
the generations. This is exciting because these generations are zero-shot in
novel scenarios and can be directly used in a robot’s context to imagine how
an unseen object in an unseen scene should be manipulated by a human.

5.2.5 Generalization of Gen2Act to scenes, objects, motions
In this section we compare performance of Gen2Act with baselines and ab-
lated variants for different levels of generalization. Table 5.1 shows success
rates for tasks averaged across different levels of generalization. We observe
that for higher levels of generalization, Gen2Act achieves much higher suc-
cess rates indicating that human video generation combined with explicitly
extracting motion information from track prediction is helpful in unseen tasks.

5.2.6 Chaining Gen2Act for long-horizon manipulation
We now analyze the feasibility of Gen2Act for solving a sequence of ma-
nipulation tasks through chaining. Table 5.2 shows results for long-horizon
activities like “Making Coffee” that consist of multiple tasks to be performed
in sequence. We obtain this sequence of tasks through Gemini [150], and for
each task, condition the video generation on the last image of the scene from
the previous execution and execute the policy for the current task conditioned
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Table 5.2: Comparison of success rates for long-horizon activities via chaining of dif-
ferent tasks. We first obtain sub-tasks for activities with an off-the-shelf LLM and then
rollout Gen2Act in sequence for the different intermediate tasks.

Activity Stages (from Gemini)
Success %

Stage 1, Stage
2, Stage 3

St
ow

in
g

A
pp

le

1. Open the Drawer
2. Place Apple in Drawer
3. Close the Drawer

80, 60, 60

M
ak

in
g

C
of

fe
e

1. Open the Lid
2. Place K-Cup Pod inside
3. Close the Lid

40, 20, 20

C
le

an
in

g
Ta

bl
e

1. Pick Tissues from Box
2. Press the Sanitizer Dispenser
3. Wipe the Table with Tissues

60, 40, 40

H
ea

tin
g

So
up

1. Open the Microwave
2. Put Bowl inside Microwave
3. Close the Microwave

40, 20, 20

on the generated human video. We repeat this in sequence for all the stages,
and report success rates for successful completion upto each stage over 5 trials.
Figure 5.5 visually illustrates single-take rollouts from four such long-horizon
activities.

83



Table 5.3: Analysis of co-training with an additional dataset of diverse tele-operated robot
demonstrations (∼ 400 trajectories).

Co-Training
Mild
(MG)

Standard
(G)

Obj. Type
(OTG)

Motion. Type
(MTG) Avg.

Gen2Act (w/o co-train) 83 67 58 30 60
Gen2Act (w/ co-train) 85 75 62 35 64

5.2.7 Co-Training with additional teleop demonstrations

The offline dataset we used for experiments in the previous section had limited
coverage over scenes and types of tasks thereby allowing less than 60%
success rate of Gen2Act for higher levels of generalization (OTG and MTG
in Table 5.1). In this section, we perform experiments to understand if adding
a small amount of additional diverse tele-operated trajectories, for co-training
with the existing offline dataset, can help improve generalization. We keep
the video generation model fixed as usual. From the results in Table 5.3 we
see improved performance of Gen2Act with such co-training. This is exciting
because it suggests that with only a small amount of diverse demonstrations,
the translation model of Gen2Act can be improved to better condition on the
generated videos for higher levels of generalization where robot data support
is limited.

5.2.8 Analysis of Failures

Here we discuss the type of failures exhibited by Gen2Act. We observe
that for MG and to some extent in G, inaccuracies in video generation are
less correlated with failures of the policy. While, for the higher levels of
generalization, object type (OTG) and motion type (MTG), if video generation
yields implausible videos, then the policy doesn’t succeed in performing the
tasks. This is also evidence that the policy of Gen2Act is using the generated
human video for inferring motion cues while completing a task, and as such
when video generation is incorrect in scenarios where robot data support is
limited (e.g. in OTG and MTG), the policy fails.
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Additional Details

Here we provide additional details on the method and experiments of Gen2Act.

5.2.9 Human Video Generation

We use a pre-trained VideoPoet model [87] directly without any adaptation
or fine-tuning. The input to the model for video generation is a language
description of a task (the prompt) and a square-shaped image. By virtue of
being trained on diverse large-scale video datasets (> 270M videos) we find
that this model generalizes well to everyday tasks we develop Gen2Act for. It
can generate realistic and plausible videos of humans manipulating objects,
without introducing significant camera motions/artifacts in the generated
videos. We ensure that the image of the scene input to the model doesn’t have
the robot in the frame (the initial reset position of the robot is such that the
arm is mostly out of camera view). The language prompt to the model is of
the form “A person task-name, static camera” e.g. for the task ‘opening
the microwave’ the input prompt is “A person opening the microwave, static
camera.”

5.2.10 Closed-Loop Policy

For each frame in the generated human video Vg and the robot video It−k:k, we
first extract features, ig and ir through a ViT encoder χ. The number of video
tokens extracted this way is very large and they are temporally uncorrelated,
so we have Transformer encoders Φg and Φr that process the respective video
tokens through gated Cross-Attention Layers based on a Perceiver-Resampler
architecture [1] and output a fixed number N = 64 of tokens. We use 2
Perceiver-Resampler layers for both the generated video token processing and
the robot observation history video processing. These tokens respectively are
zg = Φg(ig) and zr = Φr(ir). During training we sample a fixed sequence of
16 frames from the generated video ensuring that we always sample the first
and last frames. For the robot history, we choose the last 8 frames of robot
observations. We resize all images to 224x224 dimensions.
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We run an off-the-shelf tracking model [38, 39] on the generated video Vg

to obtain tracks τg of a random set of points in the first frame P 0. In order to en-
sure that the latent embeddings from the generated video zg can distill motion
information in the video, we set up a track prediction task conditioned on the
video tokens. For this, we define a track prediction transformer ψg(P

0, i0g, zg)
to predict tracks τ̂g and define an auxiliary loss ||τg − τ̂g||2 to update tokens
ge. Similarly, for the current robot video It−k:k, we set up a similar track
prediction auxiliary loss. We run the ground-truth track prediction once over
the entire robot observation sequence (again with random points in the first
frame P0), but during training, the policy is input a chunk of length k in one
pass. So here, the track prediction transformer ψr(P

t−k, it−k, r
t−k:t
e ) is condi-

tioned on the points in the beginning of the chunk Pt−k, the image features
at that time-step it−k and the observation tokens for the chunk zr. The track
prediction transformer has 6 self-attention layers with 8 heads and its role
is solely to make the input tokens from generated video / robot observations
informative of motion cues. Note that any ground-truth track prediction model
can be used for this, and recent advances in point tracking can help improve
this step [78]

For ease of prediction, we discretize the action space such that each
dimension has 256 bins. So each action dimension can take values in the
range [0, 255]. The bins are uniformaly distributed within the bounds of
each dimension. We predict actions in the end-effector space, and also predict
whether to terminate the episode, and whether the gripepr should be open/close.
We optimize a Behavior Cloning (BC) objective by minimizing error between
the predicted actions ât:t+h and the ground-truth at:t+h through a cross-entropy
loss. This discrete action-space for prediction is based on prior works in
multi-task imitation learning [22].

5.2.11 Chaining Gen2Act for Long-Horizon Manipulation
For deploying Gen2Act to solve a manipulation task, we first generate a human
video conditioned on the language description of the task and the image of
the scene. We then roll out the generated video conditioned closed-loop
policy. For chaining Gen2Act to perform long-horizon activities consisting
of several tasks, we first use an off-the-shelf LLM (e.g. Gemini) to obtain
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language descriptions of the different tasks. We chain Gen2Act for the task
sequence by using the last image of the previous policy rollout as the first
frame for generating a human video of the subsequent task. We do this
chaining in sequence as opposed to generating all the videos from the first
image because the final state of the objects in the scene might be different
after the robot execution of an intermediate task. This iterative sequencing of
video generation after the previous robot execution is made possible by the
fast generation capabilities of the Video model we use, VideoPoet (it takes
less than 10 seconds to generate a new video after generating the very first
video).

We provide examples of the prompt to Gemini and the subsequent outputs
for task decomposition below:
Cleaning the Table. Q. What are the steps involved in cleaning a table with
sanitizer dispenser and tissues? (write three steps)

A: Steps for Cleaning a Table with Sanitizer Dispenser and Tissues:

• Gather materials: Pick tissues from the box.

• Apply sanitizer: Press the sanitizer dispenser onto the tissue.

• Wipe: Gently wipe the table surface with the sanitizer-dampened tissues.

Making Coffee. Q. What are the steps involved in making coffee with a Keurig?
(write first three steps)

A: Steps for Making Coffee with a Keurig:

• Open the lid: Open the lid of the Keurig machine.

• Insert K-Cup: Place a K-Cup pod into the machine.

• Close the lid: Close the lid of the Keurig machine.

Videos for these tasks are best viewed in the project website.
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Figure 5.6: Analysis of failures of Gen2Act. The tasks here correspond to object type
generalization. We can see that most of the failures of robot execution (top 3 rows) are
correlated with incorrect video generations. In the last row the video generation is plausible
but the execution is incorrect in following the trajectory of the generated video afetr grasping
the object.

5.2.12 Analysis of Failures
Here we discuss the type of failures exhibited by Gen2Act. We observe
that for MG and to some extent in G, inaccuracies in video generation are
less correlated with failures of the policy. While, for the higher levels of
generalization, object type (OTG) and motion type (MTG), if video generation
yields implausible videos, then the policy doesn’t succeed in performing the
tasks. This is also evidence that the policy of Gen2Act is using the generated
human video for inferring motion cues while completing a task, and as such
when video generation is incorrect in scenarios where robot data support is
limited (e.g. in OTG and MTG), the policy fails. Figure 5.6 shows some
examples of failures of Gen2Act in different tasks. Most of the failures are
correlated with video generation (first three rows) but generating a video
plausibly (fourth row) is not a guarantee of the policy succeeding because
there might be issues with grasping the object correctly and following the
trajectory of the object post grasp. This indicates potential for future work to
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explore recovering more dense motion information from the generated videos
beyond point tracks, like object meshes for mitigating some of the failures.

5.3 Discussion and Conclusion
Summary. In this work, we developed a framework for learning generalizable
robot manipulation by combining zero-shot human video generation from web
data with limited robot demonstrations. Broadly, our work is indicative of how
motion predictive models trained on non-robotic datasets like web videos can
be used to used to enable generalization of manipulation policies to unseen
scenarios, without requiring collection of robot data for every task.
Limitations. Our work focused on zero-shot human video generation com-
bined with point track prediction on the videos as a way for providing motion
cues to a robot manipulation system for interacting with unseen objects and
performing novel tasks. As such, the capabilities of our system are limited by
the current capabilities of video generation models, like inability to generate
realistic hands and thereby limited ability to perform very dexterous tasks.
Future Work. It would be an interesting direction of future work to explore
recovering more dense motion information from the generated videos beyond
point tracks, like object meshes for addressing some of the limitations. Another
important direction would be to enable reliable long-horizon manipulation by
augmenting chaining with learning recovery policies for intermediate failures.
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Chapter 6

Sample Efficient Robot
Manipulation with Semantic
Augmentations and Action
Chunking

Developing a robot manipulator with multiple skills requires exposure to
diverse experiences and the ability to acquire skills from a diverse data corpus.
Collecting such multi-skill data corpus in the real world requires substantial
effort and suffers from high operational costs and safety challenges. Given
the expense, efficiency in robot learning paradigms is necessary for real-world
training and deployment. While there are recent efforts in scaling real-world
robotic datasets despite these challenges [33, 42, 104], efficiency seems to be
overlooked in the attempts to scale [22, 71, 74, 75].

With the acknowledgment that robot learning will generally benefit as the
scale of the robotics dataset grows, the focus of this chapter is on investigating
generalization in developing capable agents under a given data budget. We
restrict ourselves to a dataset with 7,500 robot manipulation trajectories (an
order of magnitude less than related works [22]) containing a diverse collection
of manipulation skills across different tasks. As a robot under deployment in
real environments like homes, hospitals, etc., will always find itself in unseen
scenarios, we set out to develop the most capable agent with an emphasis on
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Figure 6.1: A glimpse of the diverse manipulation capabilities of RoboAgent– a single agent
capable of 12 manipulation skills across 38 tasks encompassing 6 activities. For videos, visit:
https://robopen.github.io/�

its ability to generalize to novel situations within this data budget.

At first sight, wide generalization with a data budget seems like wishful
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thinking - while it’s possible to provide large representation capabilities to
the agent’s policy, scaling without data diversity will likely lead to overfitting
and no generalization. Our insight is twofold: (1) collect a reasonably sized
dataset (7,500 trajectories) with diverse coverage of skills, and devise a se-
mantic augmentation strategy to rapidy multiply the dataset without additional
human / robot cost, (2) devise a language-conditioned multi-task multi-scene
policy architecture capable of handling the multi-modal data distribution. The
architecture leverages the fact that robot movements are temporally corre-
lated, by predicting action chunks [174] instead of per-step actions, leading to
smoother behaviors and mitigation of covariate shift commonly observed in
the low data imitation learning regime.

Overall, we emphasize that the data efficiency lessons we present are
general and will help in achieving generalizable agents independent of the
available data budget. Building on these insights, we make the following
contributions:

• We present an efficient method MT-ACT designed to recover generalist
agents on a data budget. MT-ACT leverages data multiplication via se-
mantic augmentations and action representations to drive efficiency gains in
low-data settings.

• MT-ACT’s architecture can effectively ingest multi-modal trajectory data to
recover RoboAgent – a single policy that can perform a diverse set of tasks
through language instructions. Through extensive real-world experiments,
we show RoboAgent is capable of exhibiting 12 manipulation skills.

• We perform extensive generalization studies to demonstrate that MT-ACT is
40 % more performant than alternatives, exhibits superior generalization
to diverse novel scenarios, is amenable to improvements and extensions
during deployment through fine-tuning and is robust for reproduction in
completely new geographical setups.

• We meticulously recorded all the data collected during the course of the
project which we are open-sourcing as part of RoboSet - one of the
largest open-source robotics dataset on commodity hardware. It contains
high-quality human teleOp trajectories spanning a balanced distribution of
12 skills across 38 tasks in diverse kitchen scenes.
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Semantic Augmentation via Foundation Models

Offline Training

Policy Architecture

Online Inference

Move Fruits from the 
place to the board

Move Fruits from the 
place to the board

Move Fruits from the 
place to the board

Move Fruits from the 
place to the board

Action Chunking  

Small Offline Dataset

  MT-ACT

CNN

Encoder
(text) User Input

Temporal Aggregation

FiLM

Figure 6.2: Two stage framework: [Left] Semantic augmentation stage diversifies the
robot data offline using inpainting augmentations at no extra human/robot cost. [Right]
Policy learning stage trains language-conditioned policy using MT-ACT – multi-task action-
chunking transformers – which leverages efficient action representations for ingesting multi-
modal multi-task data into a single multi-skill multi-task policy.

6.1 MT-ACT: Multi-Task Action Chunking Trans-
former

To learn generalizable manipulation policies, robots require rich and diverse
experiences, encompassing a wide range of skills and contextual variations.
However, operational costs and real-world challenges in collecting such ex-
tensive datasets pose a practical limit on their overall size. We address these
limitations by developing a paradigm that can learn effective multi-task agents
under a limited data budget. Our approach consists of two stages (Figure 6.2):

Semantic Augmentation – the first stage multiplies the pre-collected
dataset by creating a diverse collection of semantic augmentations over exist-
ing robot’s experiences. These semantic augmentations recreate a single robot
demonstration into several demonstrations, each with a different semantic
context (objects, textures, backgrounds, etc), at no extra robot or human cost.
Such data diversification incorporates real-world semantic priors to make the
multi-task agent robust to test-time out-of-distribution scenarios.

Policy Learning – the second stage learns robust skills from limited skill
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Trajectories Tasks Skills Scenes Source

RoboSet (MT-ACT) 7,500 38 12 10 TeleOp
RoboSet (kitchen) 30,050 38 12 10 TeleOp
RoboSet (bin) 70,000 10 4 1 Heuristics
RoboSet (full) 98,050 48 12 11 TeleOp+Heuristics

BridgeData [42] 33,200 72 8 10 TeleOp
BC-Z [71] 25,000 100 9 N/A TeleOp
RoboTurk [104] 2,100 N/A 3 1 TeleOp

Amazon Pick-Place [105] 100,000 N/A 1 1 Heuristics
RoboNet [33] 162,000 N/A 2 7 Heuristics
BAIR Pushing [41] N/A N/A 1 1 Heuristics

Table 6.1: Open-source real-world manipulation dataset landscape: RoboSet(ours) https:
//robopen.github.io/roboset/ is one of the largest open-source robotics datasets.
It contains high-quality demonstration, including human tele-operation, trajectories spanning
a balanced distribution of 12 skills across 38 tasks in diverse kitchen scenes.

data by adapting design choices from prior works limited to single-task settings
for large-scale generalization in multi-task multi-scene manipulation tasks.
We develop MT-ACT – a language-conditioned novel policy architecture to
train robust agents capable of recovering multiple skills from multi-modal
datasets.

6.1.1 Dataset (RoboSet)

Training a general agent capable of robustly exhibiting a diverse repertoire
of skills in novel scenes and tasks needs exposure to experiences matching
this diversity. To align with our goal of building a data-efficient robot learning
paradigm, we restrict ourselves to a frozen pre-collected small but diverse
dataset – RoboSet(MT-ACT). To capture behavioral diversity, we ensure
sufficient coverage over different core skills, where each skill if defined as
a temporally correlated sequence of actions that lead to plausible change in
an object’s pose. Example skills include closing/opening articulated objects,
sliding, wiping. Each skill is instantiated across a set of objects. We refer
to such (skill, object) combinations as a task. Our tasks are instantiated
in different kitchen scenes, visually illustrated in Appendix (see webpage).
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Instead of a random collection of tasks, we structure groups of tasks as
belonging to be part of a household activity, such that they can be executed in
sequence to obtain a meaningful outcome, such as cleaning a kitchen.
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Figure 6.3: Skill distribution in terms of % of trajectories with a certain skill used to train
RoboAgent. Number on top shows number of trajectories.

RoboSet(MT-ACT) – the dataset we used for this project (i.e. to train
RoboAgent) consists of 7,500 trajectories (Table 6.1)1 collected using human
teleoperation. The dataset involves 12 skills (see Figure 6.3 for skill distribu-
tion). While the common pick-place skills cover 40% of the dataset, we also
include contact-rich skills (Wipe, Cap) as well as skills involving articulated
objects (Flap-Open, Flap-Close). We collect the overall dataset across four
different physical setups. Each setup is instantiated with various everyday
objects to create a kitchen scene. We frequently vary each set up with different
variations of objects, thereby exposing each skill to multiple target objects and
scene instantiations. Figure 6.4 provides a glimpse of the overall setup and
a subset of objects. Overall, unlike previous datasets, RoboSet provides a
broad coverage of manipulations skills for generalist robots required to operate
in kitchen environments.

In Table 6.1, we compare our dataset with existing open-source robot
manipulation datasets. As noted above, we use RoboSet(MT-ACT) (7.5K)
trajectories to train RoboAgent. However, we release a much larger dataset,
RoboSet which includes more teleoperated data, data collected during policy
evaluation and data for non-kitchen settings. Overall, the entire RoboSet

1Note that the entire RoboSet is much larger and much more diverse. RoboAgent is trained on
RoboSet(MT-ACT) – a subset consisting of 7500 trajectories
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Figure 6.4: A zoomed-out view of the robot environment, showing all four cameras in the
scene. Right: A glimpse of the diverse objects in RoboSet. The objects include articulated
objects (drawers, ovens), smaller rigid objects (french press, bowls) and deformable objects
(towels, cloth).
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Figure 6.5: Illustration of the data augmentations used to rapidly multiply limited robot
datasets with diverse semantic scene variations. (a) shows the scene around the robot and the
interaction object changing. (b) shows the interaction object itself changing while preserving
the rest of the scene.

is one of the largest publically released datasets with commodity robots and
collected in real-world setup. RoboSet contains a large number of diverse
skills and scene variations.

6.1.2 Semantic Data Augmentation
Generally useful robot manipulation systems will need to be able to deal
with out-of-distribution scenarios (e.g. different homes and offices). Since
any dataset of a practical size will have a limited diversity of objects and
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scenes (due to physical access and operational constraints) compared to what
agents will encounter during deployment, we develop a fully automatic offline
process to multiply our dataset.

Given an initial dataset of robot behaviors, we multiply the dataset by
creating multiple semantic variations of the dataset while preserving the robot
behavior within each trajectory. These semantic variations are created by
applying augmentations per frame within the trajectory. Augmentations are
created by inpainting a part of the image frame introducing new objects and
scene variations. The inpainting locations are specified by a mask and are
informed by a text prompt. As opposed to [27, 101, 171] needing manual
masks, object templates, etc., our approach is fully automatic. We use the
SegmentAnything model [85] to automatically detect semantic boundaries
in the scene to create augmentation masks. See Section 6.1.3 for additional
details. We emphasize that our approach toward semantic augmentation is
fully automatic and offline. It takes advantage of and is also well poised
to continually benefit from rapidly advancing progress in segmentation and
in-painting models [85, 164]. Akin to fields of natural language process-
ing and computer vision, by distilling semantic real-world priors present in
internet images/videos into robotics datasets, it provides robot learning a
scalable mechanism to benefit from internet-scale data at no extra cost to
humans/robots.

6.1.3 MT-ACT Policy Learning
Recovery of a generalizable robot manipulation policy under a practical data
budget available in robotics demands an efficient policy architecture. In scenar-
ios that have sufficient coverage within the training data, we want the policy to
stay close to nominal behaviors (efficient imitation). The policy also needs to
be effective to new variations (effective generalization) and contexts (efficient
task conditioning) that are unseen during training . In addition, we want the
policies to exhibit temporally correlated smooth behaviors accomplishing
tasks with minimal errors and safety violations.

Our policy architecture – MT-ACT is designed to be a Transformer model
of sufficient capacity that can handle multi-modal multi-task robot datasets. In
order to capture multi-modal data, following prior works [174] we incorporate
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Figure 6.6: Policy architecture for MT-ACT . We use a CVAE that learns latent encodings z
for action sequences to implicitly identify different modes in the data. A transformer takes as
input a latent code, language embedding of the task, and image embeddings from four camera
views, to autoregressively output an action sequence at:t+H for chunk size H . On the right,
we shows details for the FiLM layer [121] that we use for language-conditioning.

a CVAE [84] that encodes action sequences into latent style embeddings z. The
decoder of the CVAE is the Transformer policy that conditions on the latents
z. This formulation of expressing the policy as a generative model helps in
effectively fitting to the multi-modal teleop data, without ignoring regions of
a trajectory crucial for precision, which are also likely to be more stochastic.
In order to model multi-task data, we incorporate a pre-trained language
encoder [47] that learns an embedding T of a particular task description.
To mitigate issues of compounding error and to achieve smooth temporally
correlated robot motions, at each time-step, we predict actions H steps in the
future and execute them through temporal-aggregation of overlapping actions
predicted for a particular time-step [174]. To improve effectiveness towards
scene variations and robustness towards occlusions in clutter, we provide the
policy with four different views of the workspace through four cameras.

At time-step t, the transformer encoder takes four camera views , o1:4t ,
the joint pose of the robot jt, the style embedding from the CVAE z, and
the language embedding T . We use a FiLM-based conditioning [22, 121], in
order to ensure that the image tokens are able to reliably focus on the language
instruction, such that the policy doesn’t get confused about the task when
multiple tasks are possible in a scene. The encoded tokens go to the decoder of
the Transformer policy with fixed position embeddings, which finally outputs
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the next action chunk (H actions) for the current time-step. For execution,
we average over all overlapping actions predicted for the current time-step
(As H > 1, the action chunks overlap), and execute the resulting averaged
action. Overall, our proposed architecture extends ACT [174] to multi-task
ACT (MT-ACT) using appropriate language conditioning (see Section 6.3.2).
Since RoboSet(MT-ACT) contains diverse skills we show that the VAE prior
can capture such behavior diversity. Finally, we demonstrate for the first time
that action-chunking and temporal aggregation are useful for learning diverse
multi-task behaviors for quasi-static (low-frequency control) tasks in diverse
scenes.

6.2 Experimental Design
Our experiments aim to understand the following questions

• How does MT-ACT perform, quantitatively and qualitatively, on a large set
of vision-based robotic manipulation tasks? How does it generalize to new
tasks, objects, and environments?

• Does semantic augmentation improve policy generalization (i.e. scenes with
new target objects)?

• Does action chunking help with temporally consistent trajectories, achieving
higher success?

To answer these research questions we instantiate our framework in the
real world using commodity hardware and objects commonly used in everyday
kitchens.

Robot hardware. As noted before, Figure 6.4 shows our robot environ-
ment, called RoboPen that consists of a kitchen setup with everyday objects, a
Franka Emika Panda arm with a two-finger gripper with adaptive fingers, three
fixed cameras (top, left, right), and a wrist camera. We utilize all cameras for
robust policy learning.

Data collection. As noted in (Section 6.1.1) our tele-operated dataset
is collected across four different physical setups with periodically changing
kitchen-like environments. Additional details regarding the dataset, along with

99



sample trajectories, and a link to the entire dataset are in the project website�.
We are publicly releasing this dataset, as part of RoboSet – a large multi-skill
robotics dataset. To our knowledge, this is one of the largest open-source
robot manipulation datasets with the most commonly used non-proprietary
robot hardware (Franka Panda [58]) containing diverse real-world behaviors
beyond pick and place.

/���2EMHFW�3RVHV��/LJKWLQJ

/���7H[WXUHV��1HZ�'LVWUDFWRUV

/���1HZ�7DVNV��1HZ�2EMHFW�6NLOOV

Figure 6.7: Visualization of different generalization axes, evaluating effectiveness with light-
ing variations and smaller scene changes such as object poses (L1), robustness to significant
scene variations (L2), generalization to unseen tasks (L3). Top-Right: Success rates for
commonly used L1-generalization. Bottom-Right: Multi-Task (universal policy) results for
different levels of generalization showing success rates. See 6.9 for L4-generalization results.

Generalization Axes. Following prior work [22, 71, 72], we define each
task to consist of a particular language command like ‘pick a cube of butter
from the drawer on the left’ that defines an object to be interacted with (butter),
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a skill to be executed (pick), and some context (drawer on the left). Each
activity consists of a collection of 4-5 close tasks that can be executed in
sequence. The policy trained to achieve (all tasks of) an activity is referred to
as activity policy and the policy trained over all the activities as the universal
policy. We consider different levels of generalization, illustrated visually
for a scene in Figure 6.7: L1(Effectiveness): Generalization of the agent to
variations in object positions and orientations, and in lighting conditions. L2
(Robustness): New background, different distractor object variations, and
unseen distractor objects introduced in the scene. L3 (Generalization): New
tasks never seen before, including new object-skill combinations. L4 (Strong
Generalization): New kitchen never seen before (see Figure 6.9 Left).

6.3 Experiments
Through detailed real-world robot manipulation experiments, we evaluate the
proposed framework for sample efficiency, and generalization of the agent to
diverse scenes. We provide further results (including videos and appendix) on
our webpage https://robopen.github.io/�.

Baselines. We compare multiple baselines that use visual policy learning
for robotics. Single Task Agents: We compare ACT-based policies [174]
trained for individual tasks, and evaluated on the respective tasks. These
policies don’t need to generalize across tasks and scene, and represent an
approximate oracle performance per task. Visual Imitation Learning (VIL):
We compare with regular language-conditioned multi-task visual imitation
learning. CACTI [101]: This baseline is a prior framework for multi-task
learning that also uses some scene augmentations for generalization. RT1 [22]:
We re-implement a baseline RT1-like agent. BeT [135]: We modify the
Behavior Transformer architecture with language conditioning and train it in
a multi-task manner.

6.3.1 Multi-Task Real-World Results
Performance. Figure 6.7 (Right) compares our proposed MT-ACT policies
against commonly used imitation learning architectures. We show success
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Figure 6.8: Results of success rate for MT-ACT, its ablated variant without semantic augmen-
tations, and baselines, averaged over tasks in activities, with L1, L2, L3 levels of generalization.
Each activity consists of 4-5 tasks, and the results average over the tasks in an activity. The
results show that semantic augmentations significantly improve performance of MT-ACT
over the baselines. In addition, even without augmentations, the MT-ACT policy achieves
much higher success rates compared to the baselines. Full results on all activities are in the
Appendix.

rates on the y-axis, with 20 evaluation rollouts per task, averaged over all
tasks. In this figure (Figure 6.7 Left-Bottom) we only plot results for L1-
generalization since this is the standard setting most other imitation learning
algorithms use. We observe that all approaches that only model next-step
actions (instead of sub-trajectories) exhibit weaker performance. Among these
approaches, we find that action-clustering-based approaches (BeT [135]) for
multi-task settings, perform significantly worse. We believe this happens
because naive clustering in very diverse action distributions may not result
in clusters that generalize across diverse skills. Additionally, since we are
operating under a data budget, we observe that RT1-like approaches that
require a lot of data do not perform well in the low data regime. By contrast,
our MT-ACT policy which uses action-chunking and CVAE to model multi-
modal sub-trajectories significantly outperforms all baselines.

Generalization and Robustness. Figure 6.7 (Bottom-Right) shows the

102



results for all methods across multiple levels of generalization (L1, L2, and
L3). Recall that these levels of generalization include diverse table back-
grounds, distractors (L2) and novel skill-object combinations (L3). From
Figure 6.7 (Bottom-Right) we see that by virtue of semantic augmentations
and action representations, MT-ACT significantly outperforms all the base-
lines we consider. More interestingly, we see that semantic augmentations
have less effect for L1-generalization (≈ 30% relative), they provide a much
more significant improvement for both L2-generalization (≈ 100% relative)
and L3-generalization (≈ 400% relative). Since semantic augmentations affect
both scenes (backgrounds and distractor objects) as well as target objects being
manipulated they provide useful support for the policy to achieve increasing
levels of generalization.

Additionally, in Figure 6.8 we also report generalization results for each ac-
tivity separately. From Figure 6.8 we see that our proposed semantic augmen-
tations positively affect each activity’s performance. Interestingly, we find that
for some of the harder activities (Making-Tea, Stowing-Bowl, Heating Soup)
the relative improvement in performance due to semantic augmentations is
much larger.

Figure 6.9: Only MT-ACT
policies perform tasks in a
completely new kitchen en-
vironment (L4).

Overall, our results show that traditional visual imita-
tion learning (without any augmentations), i.e., VIL
and RT1 trained on our relatively small dataset, com-
pletely fail for L2 and L3, indicating a lack of gen-
eralization to unseen scenarios, due to data paucity.
Finally, we also test our policy on a completely new
kitchen with novel objects, arrangements, distractors,
i.e., L4 generalization. Figure 6.9 (Left) visualizes
this new kitchen environment. We evaluate all meth-
ods in this new kitchen for 3 tasks. Figure 6.9 (Right)
shows the results for each method on this new envi-
ronment. Specifically, we obtain an average success
rate of 25% for MT-ACT (and 0 for all baselines). Even MT-ACT without se-
mantic augmentations fails completely on this new environment thus showing
the strong generalization ability of our approach.
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Figure 6.10: Results for different ablations (see section 6.3.2), showing the benefits of FiLM
conditioning, the effect of varying chunk sizes in the predictions, the number of augmentations
per frame for multiplying the dataset, and the feasibility of fine-tuning MT-ACT for improved
deployment.

6.3.2 Ablation studies

Language conditioning using FiLM. For language conditioned multi-task
policy, as described in section 6.1.3, we use a FiLM based conditioning [121]
for the language embedding of task descriptions [37]. We ablate this choice
by comparing with simple concatenation-based conditioning. We observe
around 10% drop in performance of the version of MT-ACT without FiLM
conditioning, across all 4 generalization levels.

Chunk Size for Action Representations. We ablate our choice of action
chunk size. Figure 6.10 (Left), shows that a chunk size of 20 performs the best,
with a 0-5% drop in performance with chunk size 10. However, a large chunk
size 40 performs significantly worse with more than 20% drop in performance
indicating the inability of the policy to correct errors as the chunks grow in
size.

Number of augmentations per frame. Figure 6.10 (Middle) ablates
the number of augmentations per frame, to see if more augmentations help
MT-ACT in learning a more performant policy. We see that number of aug-
mentations per frame is strongly correlated with overall performance gains.
Thanks to the real-world semantic priors injected via data augmentation, the
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gains are more notable for L2 and L3 levels where out-of-domain generaliza-
tion is required.

Robustness analysis. We perform robustness analyses of the universal
MT-ACT agent, by manually perturbing the scene during evaluation, and also
introduce system failures such as blocking camera views. On average, we
find that the policy is robust to these strong active variations, and can solve
the specified task in about 70% of the 20 evaluations we run for this analysis
(videos in the website).

Plasticity. We evaluate the feasibility of adding additional capabilities
to the universal MT-ACT agent, without requiring significant re-training. We
take the trained agent (on 38 tasks) and fine-tune on (1/10)th of the original
data combined with data for a new held-out task (placing toast in toaster oven).
The new task has 50 trajectories, multiplied with 4 augmentations per frame,
for a total of 250 trajectories. Fig. 6.10 (Right) shows that the fine-tuned
agent is able to learn this new task, without significantly deteriorating in
performance on the previous 6 activities. Also, it achieves slightly better L2,
L3 performance (≈ 10%) than a single-task policy trained only on augmented
data of the new task, indicating efficient data re-use.

6.3.3 Reproducibility Experiments
To better understand the generalization and plasticity capabilities of RoboAgent ,
we perform a challenging experiment by deploying the trained agent in a com-
pletely different location 3000 miles (5000km) away from where data was
collected, and observe comparable success rates of 30-60% on new tasks in
this setup both for zero-shot deployment and fine-tuning. Detailed results are
in the Appendix.

6.4 Dataset details
MT-ACT uses 7,500 human teleoperated demonstrations from the RoboSet
dataset 2. MT-ACT dataset consisted of RGB and depth frames from four

2The full RoboSet is much more diverse and consists of 9,500 teleoperated demonstrations, 20,500 kinesthetic
demonstrations in various kitchen and table-top settings. In addition, it contains about 70,000 trajectories in bin
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Heat Soup Serve Soup Baking Prep Making Tea Cleaning Up Stow Bowl

Flap-Open Oven Flap-Open Oven Slide-Open Drawer Uncap Lid Pick Lid Slide-Open Drawer
Pick Bowl Pick Bowl Pick Butter Place Lid Cap Lid Pick Bowl
Slide-In Bowl Slide-Out Bowl place Butter Pick Tea Slide-Close Drawer Place Bowl
Flap-Close Oven Flap-Close Oven Slide-Close Drawer Place Tea Flap-Close Oven Slide-Close Drawer

Pick Lid Pick Towel

Table 6.2: List of activities (Top Row) and the associated tasks for each activity.

camera views (right, left, top, and wrist) as shown in figure 6.4, Franka joint
positions and velocities, end-effector/gripper position and velocities, controls
applied to the Franka joints and end-effector/gripper, and the time-steps (40
steps).

The data was collected using an Oculus Quest 2 controller on a kitchen
table-top setup at 5Hz and saved in HDF5 format. Rollouts from the data
are shown in Figure 6.11 as well as in https://robopen.github.io/
roboset/.

6.4.1 Dataset Terminology
Skill Different works in robotics often assign different meanings when they
refer to “skills”. In our work, we refer to a skill when the robot performs a
similar motion across different object instances (both shape and size). For
instance, pick, place, open, close objects are considered as different skills.
Since our dataset contains articulated objects if the “open” skill with multiple
objects results in different motion we classify them as different skills. For
instance, “Open Drawer” requires interacting with a prismatic joint while
“Open Oven” interacts with a revolute joint. Hence, we classify these as
separate skills. Our definition is broadly similar to some previous works
[22]. We use 12 skills in RoboSet – Slide-Open, Slide-Close, Flap-Open,
Flap-Close, Cap, Uncap, Pick, Place, Wipe, Plunge, Slide-in, Slide-out.

Task: We define each instantiation of our skill with a particular object class
as a different task. For instance, “Pick Mug” and “Pick Butter” correspond to
the same “Pick” skill but are two different tasks.

Activity: A general robot agent will eventually need to perform a sequence

settings collected through heuristics
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of tasks, e.g. make tea. We refer to such sequence of tasks as activities.
Table 6.2 lists the activities used in our work as well as tasks corresponding
to each activity. Our final aim is to train a single robot agent to perform all
activities.

Policies: We train and compare different policies in our work. We classify
these policies into single-task policy, multi-task (single-activity) and multi-task
(universal) policies. As each name suggests, single-task policies are trained
on specific tasks. Multi-Task (single-activity) policies are trained on all tasks
belonging to an activity. Finally, Multi-Task (universal) policies are trained
on all tasks and activities. Our final RoboAgent is trained as a Multi-Task
(universal) policy.

Figure 6.11: Sample task demonstrations in the RoboSet(visualizing four views horizon-
tally, and five timesteps vertically), used for training.

6.4.2 Details on Semantic Augmentations
We enable two different types of scene augmentations for multiplying data,
for enabling generalization to different scenes with novel distractors, and to
scenes with different objects for interaction:
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• Augmenting interaction object: Given the joint angle of the robot in
a frame of a trajectory, we use forward kinematics to recover the robot
mask as well as the end-effector position of the robot. We use the end-
effector location to prompt SegmentAnything [85] for obtaining a mask of
the object being interacted with. We then inpaint the region of the object
being interacted with, based on a text prompt, and keep it consistent across
time by tracking with TrackAnything [164].

• Augmenting background: We use SegmentAnything [85] to randomly
choose a set of objects in the background that do not overlap with the robot
mask, and the mask of the object being interacted with, and inpaint the
scene based on the resulting overall mask over all the objects identified by
SegmentAnything.

Note that our augmentation approaches are all automatic and do not re-
quire any manual effort in specifying masks or object meshes etc. This is
in contrast to prior works that require manual specification of a fixed mask
per trajectory [101], and those that require templates of object textures and
meshes [27]. In addition, unlike [171], we do not require training any further
modules for identifying objects through open-vocabulary detection that relies
on language grounding.

6.5 Train and Evaluation Details
In this section we present training and evaluation details both for our methods
and the baselines.

6.5.1 Robot Environment and Evaluation Details

The robot environments for evaluation consist of table-top kitchen setups
with diverse real objects in the scene. There are 4 cameras providing com-
plementary views of the workspace. The robot is a Franka Emika Panda arm
operated with joint position control, with an action space dimension of 8 (7
joint positions, 1 dimension for end-effector open/close). The robot arm has a
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Figure 6.12: Qualitative results of rollouts for L2 and L3 levels of generalization, showing
tasks open drawer and pick a slab of butter. For L2 we introduce different distractors in the
scene, and change the background tiles. For L3, in addition to changes in L2 we introduce
different task objects, for example by replacing a slab of butter with a piece of watermelon, or
a banana.

two-finger gripper, and a wrist camera. The robot is operated at a frequency
of 5Hz.

6.5.2 Hyper-parameters for MT-ACT and baselines
Here we provide hyper-parameter details of the policy architecture. We train
all policies for 2000 epochs. For the overall MT-ACT agent, trained on the
augmented dataset, this takes about 48 hours on a single 2080Ti GPU with a
batch size of 8.

For our baseline implementations we did a hyperparameter search for rele-
vant parameters. For each baseline implementation we try to adapt them from
their officially released code. Specificially, for RT1 [22] we use https://
github.com/google-research/robotics_transformer for ref-
erence. On the other hand, for BET [135] we use https://github.com/
notmahi/bet. To provide language conditioning for both baselines we use
similar FiLM [121] implementation as our approach.

For hyper-parameters we use 3 different discrete action sizes – 64, 256
and 512, we vary the learning rates from (1e− 3, 1e− 4). We use the AdamW
optimizer with a weight decay range in (1e − 2, 1e − 3, 1e − 4). Our RT-1
transformer uses 6 layers with 8 parallel attention heads and each head with
size 64. Each transformer uses a feedforward layer with intermediate sie of
1024. On the other hand for [135] we experiment with 3 different action cluster
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Table 6.3: Hyper-parameters for MT-ACT

Name Value

learning rate 1e-5
batch size 8

feedforward size 3200
Attention heads 8

chunk size 20
dropout 0.1

Transformer encoder layers 4
Transformer decoder layers 7
Language Embedding size 384

Table 6.4: Hyper-parameters for RT-1 [22]

Name Value

learning rate 1e-4
discrete action tokens 256

batch size 64
feedforward size 1024
Attention heads 8

dropout 0.1
Transformer layers 6

Language Embedding size 384
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Figure 6.13: Single-Task vs Multi-Task comparison for Heat Soup activity. Multi-Task
(Single Activity) represents a multi-task policy trained on only 4 tasks in Heat-Soup activity.

sizes – 64, 256 and 512. We use a similar transformer implementation for
BET as RT-1. Finally, for real-world evaluation we use the hyper-parameters
with lowest validation loss.

6.6 Additional Results
In this section, we present some additional results. First, we present results and
discuss how well our multi-task policy performs when compared to single-task
policies. Figure 6.13 compares single-task policy performance against two sets
of multi-task policies for the Heat Soup activity. For the first multi-task Single-
Activity policy (MT Single-Activity) we only train it across all tasks within
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Heat Soup Success Serve Soup Success Baking Prep Success

Flap-Open Oven 80% Flap-Open Oven 90% Slide-Open Drawer 70%
Pick Bowl 60% Pick Bowl 50% Pick Butter 70%
Slide-In Bowl 70% Slide-Out Bowl 80% place Butter 90%
Flap-Close Oven 50% Flap-Close Oven 80% Slide-Close Drawer 90%

Making Tea Success Cleaning Up Success Stow Bowl Success

Uncap Lid 80% Pick Lid 70% Slide-Open Drawer 70%
Place Lid 90% Cap Lid 100% Pick Bowl 70%
Pick Tea 40% Slide-Close Drawer 90% Place Bowl 80%
Place Tea 60% Flap-Close Oven 80% Slide-Close Drawer 80%
Pick Lid 50% Pick Towel 90%
Cap Lid 70% Wipe Counter 90%

Table 6.5: Results for different tasks using the learned universal policy.

the same activity. For the latter multi-task universal multi-activity policy
(MT-Universal) we train it across all tasks in all activities. From Figure 6.13
we see that for most tasks MT Single-Activity is able to outperform single task
policies. Additionally, single-task policies are able to perform well on most
tasks (≈ 80%) except the more challenging constrained manipulation tasks
(slide-in-bowl) (≈ 20%). Finally, we also observe that MT-Single-Activity can
outperform MT-Universal for most tasks. This happens because the universal
agent is trained to perform a much larger variety of tasks. Given the very
large variety of skills (Figure 6.3), such multi-task training can result in some
negative transfer compared to training on a narrowly defined skills. We believe
these reduced multi-task results present useful avenues for future research.
Finally, in Table 6.5 we show results for all tasks in all activities using our
single universal policy. From the below table, we see that the universal policy
is able to perform well on most tasks except the more challenging tasks such
as grasping small deformable objects (Pick Tea: 40%, Pick Lid: 50%).

6.7 Discussion and Limitations
We develop a framework for sample-efficient and generalizable multi-task
robot manipulation in the real world. Our framework is based on rapidly
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multiplying a small robotics dataset through semantic augmentations, and
training a language-conditioned policy that can ingest the diverse multi-modal
data. We combine and adapt several design choices like action chunking and
temporal aggregation proposed in the context of single-task policies, and show
that they yield significant boosts in performance even in multi-task settings.
We also release one of the largest manipulation datasets to date involving over
12 skills in kitchen environments which we hope will facilitate further research
in developing diverse real-world robot manipulation systems. A limitation of
our work is that we do not consider composing skills across similar/different
activities. Another limitation is that we do not explore the axes of language
generalization, and use language embeddings from pre-trained encoders as
is. Future work could investigate better language conditioning that is more
flexibly adaptable to changes in task descriptions.

112



Chapter 7

Conclusion

In this thesis, we developed a scalable framework for learning generalizable
robotic manipulation policies by leveraging passive web videos—ubiquitously
available at scale—as a primary source of supervisory signal. Traditionally,
robotic policy learning has been bottlenecked by the need for large-scale
robot interaction data, which is expensive to collect and often limited in
diversity. In contrast, human videos on the web capture rich and varied
interactions with everyday objects across countless tasks and environments.
Our core insight is that, although human and robot embodiments differ, the
underlying structure of object interactions—what to manipulate, how it moves,
and how it changes state—remains largely consistent and can be abstracted
into transferable interaction plans. This insight forms the foundation for a new
learning paradigm: predictive planning from passive video.

We introduced several key instantiations of this paradigm. We developed
HOPMan (Hand-Object Plan for Manipulation), a framework that predicts
future hand-object interaction masks from goal-conditioned human videos.
These interaction plans are learned entirely from passive web video datasets
and then translated into robot actions using a policy trained with a small
amount of paired human-robot data. We also proposed a more expressive,
embodiment-agnostic alternative, Track2Act: predicting object-centric point
tracks from initial and goal images. This track-based interaction plan captures
how arbitrary points on the object move across time and can be used to infer
rigid body transformations for planning robot trajectories. A residual policy,
trained on limited robot data, corrects any execution errors in a closed-loop
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manner. We also show how pre-trained generative models like those for
video prediction can enable visual interaction plan prediction in the form
of generated human videos, in a zero-shot manner without requiring any
adaptation. Finally, in addition to enabling interaction plan prediction, we
show how web data can directly enable efficient imitation learning via semantic
augmentations of a robot interaction dataset. All of these approaches require
no online adaptation and support zero-shot execution in unseen scenes and
with novel objects.

Across a suite of more than 100 real-world manipulation tasks—ranging
from articulated object manipulation to tool use and non-prehensile actions—we
demonstrated strong generalization across object categories, object instances,
skills, and environmental scenes. Our systems performed manipulation in
both static tabletop setups and dynamic in-the-wild settings such as kitchens
and offices using a mobile robot base. Notably, we achieved this by using
orders of magnitude less robot-specific data than prior work, highlighting the
efficiency and practicality of our method.

Crucially, we show that web videos can serve as more than just a source
of representation learning; they can directly guide robot behavior through
learned interaction plans. This shifts the conventional view of generalization
in robotics—from merely building robustness to variations in seen tasks, to
synthesizing plausible trajectories for entirely unseen tasks using large-scale
passive supervision. Unlike prior approaches that require manually aligned
human-robot demonstrations or extensive fine-tuning during deployment, our
approach is fully zero-shot, requiring no task-specific adaptation at test time.

While our results are promising, several challenges remain. Accurately
capturing fine-grained contact dynamics and finger articulations remains dif-
ficult with passive videos, limiting performance on highly dexterous tasks.
Moreover, long-horizon task composition and reasoning remains an open area
for future work. Nevertheless, by demonstrating that predictive planning from
web data can serve as a viable foundation for robotic skill acquisition, this
thesis opens new avenues for building generalist, scalable, and practical robot
learning systems that operate beyond the confines of curated lab settings in
the open-world.
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