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Abstract— This paper introduces a novel transfer learning
framework for deep multi-agent reinforcement learning. The
approach automatically combines goal-conditioned policies with
temporal contrastive learning to discover meaningful sub-goals.
The approach involves pre-training a goal-conditioned agent,
finetuning it on the target domain, and using contrastive learn-
ing to construct a planning graph that guides the agent via sub-
goals. Experiments on multi-agent coordination Overcooked
tasks demonstrate improved sample efficiency, the ability to
solve sparse-reward and long-horizon problems, and enhanced
interpretability compared to baselines. The results highlight
the effectiveness of integrating goal-conditioned policies with
unsupervised temporal abstraction learning for complex multi-
agent transfer learning. Compared to state-of-the-art baselines,
our method achieves the same or better performances while
requiring only 21.7% of the training samples.

I. INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful
framework for solving decision-making problems by en-
abling agents to learn optimal policies through interactions
with the environments. It has achieved remarkable success in
various challenging domains, such as robotics [21], [22], [2]
and game-playing [38], [34]. Despite its impressive advance-
ments, RL often struggles with sample inefficiency, requiring
many interactions with the environment to learn effective
policies [41]. This problem is exacerbated in multi-agent
systems, where the size of the state and action space increase
combinatorially with the number of agents. Moreover, sparse
rewards and partial observability can further worsen the
sample inefficiency of RL algorithms [41].

Transfer learning (TL) has emerged as a promising ap-
proach to address these challenges and improve the sample
efficiency of RL. TL aims to leverage knowledge learned in a
task to accelerate learning and boost performance in a target
task [41]. The key idea behind TL is that related tasks often
share common structures or features, which can be extracted
and reused instead of learned from scratch. For example,
skills learned in previous navigation tasks can transfer to
new navigation goals or environment layouts [40].

This paper introduces a novel transfer learning frame-
work that integrates goal-conditioned reinforcement learning
(GCRL) policies [30] with unsupervised temporal abstraction
learning and graph-based planning to capture and exploit
reusable knowledge across tasks. Our approach employs
contrastive learning [7] to learn a compact representation
of the temporal structure from agent trajectories and then
transforms this learned latent space into a graph through
clustering. The resulting graph encodes abstract states as
nodes representing clusters of similar states and temporal

transitions between these clusters as edges. This graph
structure enables efficient planning and sub-goal generation,
guiding the GCRL policy in the target domain. Our approach
consists of three main steps: 1) First, we train a GCRL
agent by reaching diverse short-horizon goals in the source
domain, enabling it to acquire diverse skills for reaching
various goals. 2) Next, we finetune the GCRL agent on the
target domain, learn a latent space of the temporal structure
from the trajectories generated by the GCRL agent using
contrastive learning [7], and construct a planning graph from
the latent space. 3) Finally, we guide the GCRL agent using
sub-goals generated from the planning graph to complete the
task in the target domain.

We demonstrate the effectiveness of our proposed frame-
work through extensive experiments across multiple multi-
agent transfer scenarios on the Overcooked environment
[6]. Our approach offers several key benefits, including:
1) improved sample efficiency when learning new tasks,
2) the ability to solve challenging sparse-reward or long-hori-
zon tasks by leveraging the learned temporal abstractions
and 3) enhanced the learning process’s interpretability by
discovering meaningful sub-goals and skills.

The main contributions of this paper are:
1) We introduced a novel TL approach for RL that enables

agents to learn new tasks efficiently by leveraging prior
experience.

2) We combined goal-conditioned policies with unsuper-
vised learning of temporal abstractions, enabling more
sample-efficient and adaptable RL agents.

II. RELATED WORKS

GCRL agents learn policies for achieving specified goal
states [30], [1] instead of performing fixed tasks. Recent
works have extended GCRL to multi-goal scenarios [27],
hierarchical goal-setting [24], [19], and exploration in sparse
reward settings [9], [28], [20], [33], [23], [16].

Contrastive learning has been applied to robotics for
learning state and reward representations, improving sample
efficiency and generalization in control tasks [17], [39]. It
has also been used for learning invariant representations [18],
view-angle invariant representations [11], [4], and sim-to-real
transfer [5]. Recent works have used contrastive learning to
preserve temporal structure in latent representations [26].

Hierarchical reinforcement learning (HRL) learns a
hierarchy of policies at different abstraction levels to solve
complex tasks efficiently [35], [3]. Recent works have ex-
plored goal-conditioned hierarchical policies [24], [19] and
combined HRL with meta-learning [12].
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Fig. 1: Our method follows three steps: 1) pre-train the GCRL agent to acquire diverse transferable skills by achieving
short-horizon goals in the source environment; 2) finetune the GCRL agent on the target environment, learn a latent space to
encapsulate the temporal structure of trajectories form rolling out the finetuned GCRL agent, and construct a planning graph,
whose nodes are clusters from the latent space and edges are transitions between clusters observed in the expert trajectory;
3) and, execute task in the target environment by following sub-goals. We assume a single successful demonstration in the
target environment is given, which we utilize to guide agent finetuning and graph construction.

Transfer learning in RL leverages knowledge from source
tasks to improve learning efficiency and performance in
target tasks [41]. Approaches include Progressive Neural
Networks [29], learning invariant feature spaces [14], meta-
learning [10], learning transferable representations [15], pol-
icy distillation [8], [31], and curriculum learning [36].

III. METHOD

Our transfer learning framework facilitates the efficient
adaptation of trained agents to new environments through
a three-stage approach, as shown in Figure 1: 1) training
a GCRL agent on a source environment to acquire diverse
skills that can be leveraged in target environments, as shown
in subsection III-A; 2) finetuning the GCRL agent on the
target environment, learning a latent representation of the
agent’s behavior using contrastive learning to capture the
temporal structure of the agent’s trajectories, and construct-
ing a planning graph based on the learned latent space, as
shown in subsection III-B; and 3) execute the task in the
target environment by following sub-goals generated from
the planning graph using the finetuned GCRL agent as
shown in subsection III-C. We assume access to a single
demonstration of successful task completion in the target
environment, which we utilize to guide agent finetuning and
graph construction. During training the GCRL agent, by
resetting to states in the expert trajectory, we allow the GCRL
agent to focus on state regions related to completing the task
rather than searching over a much larger space for finding
the optimal policy, which improves sample efficiency [37].

A. Goal-Conditioned Reinforcement Learning Agent

To train the GCRL agents, we utilize the universal value
approximator [30] and Proximal Policy Optimization [32].
We assume we can sample goal states for a given initial state.
On each episode, we sample the initial state from the expert
trajectory τexpert and sample a goal state g ∼ P (s0|g), where

P (s0|g) is sampling a goal state by random walking from
s0. For a comprehensive algorithm description, we refer the
reader to [30] and [32]. Upon transferring, we first finetune
the GCRL agent on the target environment and perform
temporal contrastive learning and clustering.

B. Temporal Contrastive Learning and Clustering

Providing sub-goals guiding the GCRL agents to com-
plete tasks in target environments is a promising avenue to
efficiently transfer skills learned in the source environment
to the target environment. This motivates the efficient con-
struction of planning graphs grounded in agent behaviors.
To achieve this, we utilize contrastive learning to distill a
latent space representing temporal distances, specifically, the
minimal steps required for an agent to transition from one
state to another. However, obtaining the minimal temporal
distance between state pairs is hard because this requires
optimal control between every pair of states. Hence, we
use state pairs and corresponding temporal distances from
rollouts generated by the GCRL agent for approximation.
The resulting temporal distances are noisy. Hence, we
employ the InfoNCE [25] approach to learn a mapping
fw from the observational space to the embedding space,
where geometric proximities in the embedding space mirror
temporal distances in the trajectories. This relationship is
encapsulated in Equation 1, with d(·, ·) representing a metric
distance function. We choose d(·, ·) as the L2 distance
in this paper. Adopting a metric space as d(·, ·) enables
estimating temporal distances between unobserved state pairs
using the triangular inequality. This contrastive learning and
metric formulation, coupled with neural network modeling,
empowers our system to process and generalize from noisy
trajectory data. During training, we select state pairs within T
timesteps in a trajectory to be positive samples and randomly
sample states within the same batch to be negative samples.
T is a hyper-parameter governing the maximum temporal



threshold for positive sample pairs.

Ltc(x, xpos, X) = −E
[
log

exp(−d(fw(x),fw(xpos)))∑
x′∈X exp(−d(fw(x),fw(x′)))

]
(1)

Note that the learned latent space reflects the temporal
distances of the underlying trajectories used for training.
Thus, curating a dataset representative of the state and transi-
tion distribution for the designated task is crucial. Collecting
rollouts of states relevant to the desired task with temporal
distances close to the minimal temporal distances is essential
for learning latent space structures useful for the task.

In Algorithm 1, we sample initial states from an expert
trajectory τexpert to ensure we efficiently cover state regions
relevant to the completing the task; we use the trained GCRL
agent πθ to collect rollouts; furthermore, we sample state
pairs to balance the probabilities of sampling each state.
After training fw, we fit a cluster classifier to the latent
features fw(Dataset). Finally, we construct a graph where the
nodes are the clusters and edges are the cluster transitions
from the expert trajectory.

Algorithm 1 Training Temporal Latent Space

1: Input: env, fw, πθ, τexpert, P (s0|g)
2: s0 ∼ τexpert
3: g ∼ P (g|s0)
4: Dataset ← rollouts(πθ, env, s0, g)
5: while not converged do
6: x, xpos, X ← BalancedSampling(Dataset)
7: Optimize Ltc(x, xpos, X)
8: end while
9: ClusterClassifier ← Cluster fw(Dataset)

10: PlanningGraph ← construct graph(Dataset, fw, τexpert)

C. Task Execution

After finetuning on the target environment, we combine
the GCRL agent πτ , the temporal contrastive mapping fw,
the expert demonstration τexpert, and the cluster classifier to
execute tasks. As shown in Algorithm 2, on each step, we
predict the current cluster and select the next sub-goals g as
the state that transitions to the next cluster on the shortest
path from the current cluster to the target cluster, or the target
state if we are already in the target cluster, and execute the
action sampled from πθ(s, g).

Algorithm 2 Task Execution

1: Input: env, πθ, τexpert, fw, ClusterClassifier
2: s← env.reset()
3: while not done do
4: c← ClusterClassifier(fw(s))
5: g ← GetSubGoal(fw, c, τexpert)
6: action ∼ πθ(s, g)
7: s, done← env.step(action)
8: end while
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Fig. 2: The source and target Overcooked [6] tasks. The two
chefs need to coordinate to make soup and deliver soups.
In each environment, there are two chefs (the chef with the
green hat and the chef with the blue hat), onion dispensers,
plate dispensers, ovens (the grey box with a black top), a
serving area (the plain light grey box), walls (brown box)
and optionally cilantro dispensers.
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Fig. 3: Overcooked recipes. To make one soup, the two chefs
need to 1) fetch three onions from the onion dispenser and
put them into the oven one by one, and 2) turn on the oven
and wait for 20 steps, and 3) fetch a plate from the plate
dispenser, take the soup from the oven to the plate, and 4)
Optionally, to make a cilantro soup, fetch Cilantro from the
dispenser and put it on the soup plate.

IV. EXPERIMENTS

In this section, we evaluated our methods for transferring
to new environments. We aim to answer the following
questions: 1) Does our method enable learning in a new
environment for single-agent and multi-agents faster? 2) Are
the generated sub-goals qualitatively interpretable?

A. Setup

We evaluated our method and five baselines on four
transfer learning experiments in the Overcooked environment
[6]. Overcooked is a simplified version of the popular video
game Overcooked [13], where 2-4 players control chefs
cooking and serving dishes in a kitchen. We consider two-
player scenarios where the chefs must coordinate to prepare
and deliver soups. Each dish recipe contains several high-
level steps, as shown in Figure 3. We pre-trained agents
on a source environment envs and transferred them to each
experiment’s target environment envt. The target environ-
ments were designed as variants of the source environment,
differing in layout or task. The Cilantro and Cilantro left en-
vironments have different recipes and layouts, and the small
corridor and corridor environments have different layouts.
The source and target tasks are visualized in Figure 2. We
used partially observable agents in all experiments unless
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Fig. 4: Overcooked Learning Curves. Average soups delivered over 50 episodes throughout training. Most baselines in small
corridor and corridor do not deliver any soups, thus overlapping flat lines.

specified otherwise. Each episode consisted of 500 timesteps,
and the performance was evaluated based on the number of
soups delivered per episode. The Overcooked environment
has a fixed initial configuration and deterministic dynamics.
We randomly rolled out the agent for ten steps before execut-
ing the policy to introduce randomness to the environment.
We provide a single expert trajectory for each environment
via hard-coded policies.

We compare our method to the following five methods.
• Vanilla RL: Training an RL agent from scratch.
• Fine-tuning: Fine-tuning the agent trained on the source

environment.
• Policy Distillation (Loss): Policy distillation through an

auxiliary cross-entropy loss between the action proba-
bilities from the policy pre-trained in the source envi-
ronment and the learning policy [31].

• Policy Distillation (Reward): Policy distillation
through a reward shaping term captures the difference of
the pre-trained critic in the source environment between
current the previous timesteps [8].

• JumpStart RL: JumpStart RL uses a guiding policy
to form a curriculum learning, where we gradually
sample fewer actions from the guiding policy [36]. In
this paper, we evaluated eight variants of JumpStart
RL: 1) whether the curriculum schedule is random or
specified, 2) whether the policy is pre-trained on the
source environment and 3) whether the guiding policy
is trained on the source or target environment. Note that
using policies trained on the target environment as guide
policies might give it unfair advantages.

B. Transfer Learning Results

We show the average soups delivered for each method
throughout training on each environment in Figure 4. The
convergence speed and performance are at Table I and
Table II. We compare the normalized convergence speeds
and performances across all methods and all environments
at Figure 5. Time to convergence is defined as reaching 90%
of maximum performance. Our methods consistently learn
4.6 times faster on average than the fastest baselines across

Environment Cilantro Cilantro Left Small Corridor Corridor

Ours 680.5K 806.3K 1.1M 1.3M
Vanilla RL 5.0M 6.0M n/a n/a
Fine-tuning 3.0M 1.0M n/a n/a

Distill 9.0M 3.0M n/a n/a
JSRL 6.2M 5.8M 5.0M n/a

TABLE I: Overcooked training steps to convergence (reach-
ing 90% of the max steps per method per environment) table.
n/a means the method did not deliver any soup.

Environment Cilantro Cilantro Left Small Corridor Corridor

Ours 12.58 12.10 4.92 3.84
Vanilla RL 9.72 10.54 0.00 0.00
Fine-tuning 11.22 0.02 0.00 0.00

Distill 9.58 0.03 0.00 0.00
JSRL 8.28 5.97 0.42 0.00

TABLE II: Overcooked max soups delivered.

all experiments, reaching similar or better performances.
On experiments transferring to environments with similar
layouts but different tasks from the source environment, the
Cilantro and Cilantro left environments, the transfer learning
baselines perform poorly and, sometimes, even worse than
the vanilla RL. This is because the guidance from the
source environment policy can be biased toward the old
behaviors, making it challenging to learn behaviors needed
for the new environments. This is especially true in the
environments with the cilantro recipes because delivering
soups before putting Cilantro in can significantly hinder the
resulting performance. This also shows that our method can
effectively transfer to environments with tasks where slight
differences can result in significant performance degradation.
On experiments transferring to environments with similar
tasks but different layouts from the source environment,
the small corridor and corridor environments, our method
could effectively transfer to such environments. In contrast,
other methods struggle to deliver soups. This is because the
narrow and long corridors require agents to coordinate so as
not to block others from delivering soups successfully. This
demonstrates our method’s ability to perform long-horizon
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Fig. 5: The scatter plot for normalized performance and sam-
ple efficiency in the Overcooked environment. The maximum
number of soups delivered is normalized using the formula:
maximum number of soups delivered for a given method
/ maximum number of soups delivered for all methods in
an environment. The Sample efficiency is normalized using
the formula: 1 - (steps to convergence for a given method /
maximum steps to convergence in the environment). Steps to
convergence are determined by the steps at which a method
reaches 90% of its maximum performance. Variants of the
same method are grouped under a single plot category.

multi-agent planning and coordination.

C. Interpretable Sub-goals

The sub-goals generated from subsection III-B exhibit
semantically meaningful breakdown of tasks, e.g., fetching
onions, loading onion to the oven, and serving soups, as
shown qualitatively in Figure 6. This empirically demon-
strated that unsupervised temporal contrastive learning could
discover semantically meaningful structures from rollouts.
We provide a potential explanation for this. The connec-
tion between clusters in the latent space tends to be the
connection of a bottleneck structure, where the bottleneck
transitions are a sequence of actions that enable the agent
to reach previously impossible states. Such transitions often
correspond to sub-goals for a task since the agent can
advance to previously inaccessible states by following the
next sub-goal. One example of such a bottleneck is fetching
an onion when the agent has no onion. By fetching an onion,
the agent can reach states of carrying onions around that were
previously inaccessible.

V. CONCLUSION

This paper introduced a novel transfer learning frame-
work for deep reinforcement learning that combines goal-
conditioned policies with unsupervised learning of tempo-
ral abstractions. Experiments on Overcooked multi-agent
coordination tasks demonstrated the effectiveness of our
framework in terms of improved sample efficiency, the ability
to solve sparse-reward and long-horizon challenges, and

(a) Cilantro

(b) Cilantro Left

(c) Small Corridor

(d) Corridor

Fig. 6: Overcooked sub-goals. Samples of sub-goal se-
quences were generated for each overcooked environment.
Semantically meaningful breakdown of the task emerges
naturally from the temporal contrastive embedding clusters.
For example, the sub-goals qualitatively demonstrate the
intentions for handing over onions, fetching plates, putting
onions into the oven, and taking soups out of the oven.

enhanced interpretability through the automatic discovery
of meaningful sub-goals. These findings highlight the ad-
vantages of integrating goal-conditioned RL with unsuper-
vised temporal abstraction learning for successful transfer to
complex target domains, demonstrating superior performance
compared to baseline methods such as fine-tuning, policy
distillations, and curriculum learning methods. Compared
to state-of-the-art baselines, our method achieves the same
or better performances while requiring only 21.7% of the
training samples. Our work opens up exciting directions for
future research, such as integrating language guidance into
the contrastive learning process and applying our framework
to real-world robotics tasks, paving the way for more intel-
ligent, adaptable, and collaborative AI systems.
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