
Optimal Control and Robot Learning on

Agile Safety-Critical Systems

Haoru Xue

CMU-RI-TR-24-21

May 2024

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Dr. John M. Dolan, Chair

Dr. Guanya Shi
Simin Liu

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2024 Haoru Xue. All rights reserved.





To my supportive advisor and hardworking collaborators.



iv



Abstract

We present a pipeline of optimal control methods to learn an optimal
control policy and locally accurate dynamics models for agile and safety-
critical robots using autonomous racing as an application example. We
introduce Spline-Opt, a fast offline/online optimization and planning
method that can produce a reasonably good initial optimal trajectory
given very little dynamics data. We then introduce EL-MPC, a residual
learning MPC that relies on prior data to estimate dynamics models
and learn the optimal control policy bounded by safe set constraints.
All together, the data-driven pipeline is a road map going from zero
understanding of a robot’s dynamics, to the mastery of its handling limit
and optimal performance.
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Chapter 1

Introduction

1.1 Robot Learning at the Limit

Robot learning studies techniques that enable robots to explore the environment,

acquire new skills, and adapt to changing conditions. Rooted in classic adaptive

control and early machine learning research, robot learning has taken off with recent

advancements in data-driven model predictive control (MPC), deep reinforcement

learning (RL), large language models (LLM) and vision-language models (VLM).

These technologies allow robot learning to be applied on complex, agile, hybrid robots,

and largely expand robots’ ability to interpret, reason, and plan tasks over longer

horizons. They have also improved robots’ ability to generalize and adapt to unseen,

uncertain, time-varying tasks and conditions.

We are specifically interested in studying robot learning ”at the limit”. This refers

to scenarios where the robot is learning to explore the extreme limit of its dynamics,

and obtain an optimal control policy that fully exploits such a limit. Racing (of

drones and cars) is a good example of such a task, where robots (or their human

expert counterparts) must take the vehicles to the edge of their handling limits, and

delicately explore control strategies at the limits.

Why is on-the-limit learning an interesting, relevant, and challenging research

area? First, we are presented with a task that cannot be adequately addressed by

existing robot learning paradigms. Traditional data-driven MPCs using parametric

mathematical system models often fail to factor in the unmodeled properties of the
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1. Introduction

robot and the environment. On the other hand, RL-based methods are often not

data-efficient enough to be applied on a safety-critical system, where the cost of failure

can be unboundedly high. When the system is already at the limit, any uninformed

exploration may immediately send the robot into an unstable and uncontrollable

state, and there is simply no reset button after crashing a million-dollar robot in the

real world. We will explain these drawbacks more in detail in the background section.

Second, we find that existing studies often actively avoid on-the-limit when

discussing robot learning. If a researcher wants to let the robot learn how to manipulate

an object on the table, their first instinct is to place the object comfortably in the

middle of the task space, and let the robot move as slowly as it can. If a humanoid

team is demonstrating robot walking, they often teach the robot to bend its knees at

all times to avoid dealing with singularities when the legs are fully stretched, which

is inefficient but easy to implement. We aim to contribute to the ongoing discussion

about limit-reasoning in robot learning techniques, and present a set of algorithms

that are explainable and data-efficient.

Third, we emphasize that even finding the limit itself is a challenging problem.

A limit is not drawn empirically by human experts, but is rather a result of safe

exploration carried out by the robot to find the system dynamics in various conditions

and understand the extreme at which it is still controllable. The limit is also often

not a clear-cut line and includes uncertainties and time-varying properties. Learning

the limit should also be incorporated into the robot learning problem itself.

1.2 Autonomous Racing

1.2.1 Introduction to the Racing Challenge

Autonomous racing is a growing research field in automotive technology and robotics.

Over the years, researchers have scaled up from miniature RC cars to full-size,

high-performance race cars traveling nearly as fast as human professional drivers;

algorithms that were previously only evaluated in simulations are now deployed onto

real-world autonomous race cars. For example, a vehicle in the Indy Autonomous

Challenge (IAC) [1], which is the target platform of this work, is capable of reaching

320 km/h (200 MPH). The platform uses the same vehicle as the IndyLights racing

2



1. Introduction

series, and is equipped with multiple LiDARs, cameras, radars, and RTK GNSS units,

enabling high-speed, head-to-head competitions. The platform represents the current

state of the art in the field.

Many characteristics can be used to define autonomous racing as a complex robotics

problem. First, an autonomous race car is an agile system with complex, uncertain,

and time-varying dynamics. With sophisticated tire dynamics and aerodynamics,

the accurate modeling of such a system is difficult and costly. This introduces two

challenges for model-based approaches such as MPC and RL: a large sim-to-real gap

is inevitable; and direct online evaluation of such a model, such as in a nonlinear

model predictive controller (NMPC), is computationally prohibitive. Adding to these

challenges, the dynamics of a race car also change over time due to, for example,

track surface temperature and tire degradation, requiring a control system that can

identify and adapt to these changing environment conditions and system parameters.

Second, real-world autonomous racing is a safety-critical task. Outside of rigorous

engineering efforts to design real-time software and hardware systems, algorithm

research must also steer towards robustness, explainability, and safety assurances.

With no room for error, there is no such thing as resetting and respawning in real-

world autonomous racing. Since we identify and exploit the full dynamical capability

of the vehicle, this creates a unique challenge compared to typical robotic systems

operating far within the safety limit.

With these characteristics and challenges, autonomous racing presents an oppor-

tunity to develop agile robotic systems in safety-critical tasks.

1.2.2 Racing and Robot Learning

What are the robots learning in a racing problem?

Learn a model : Commonly seen in data-driven MPC and model-based reinforce-

ment learning (MBRL), a robot can leverage online and offline data to refine its

dynamics model. Table 1.1 compares different classes of model learning methods that

will be covered in the background section. We specifically highlight that autonomous

racing requires real-time, online and transparent learning approaches, which is why

traditional approaches like system ID and Gaussian processes are favored in much

previous literature, working with MPC or reactive controllers (RC).

3
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Method Learning Objective When Where Related Work

System ID
specific model parameters
(mass, inertia, etc.)

Online /
Offline

MPC and
RC

[33]

Gaussian
process

Gaussian process model.
Online /
Offline

MPC and
RC

[53]

Full model
A complex nonlinear
system model.

Offline MBRL [34]

Local
linear model

The local linearization
of a nonlinear model.

Online LMPC [41]

Error model
Residual between a
prior model and data.

Online EL-MPC Our Work

Table 1.1: A comparison of model learning methods: objectives, applications, and
related works.

Learn a policy : Whereas RL policies are less structured functions constructed from

generic neural network layers, MPC policy components are structurally defined into

model, cost, constraint, and optimizer. In both cases, reasoning about the handling

limits via such methods as control barrier function (CBF) [4, 34] or reachability

constraints [40] can be fused into the policy to encourage limit-exploring behaviors

while considering the safety of the system.

1.2.3 Introduction to The Experiment Platform

In our real-world experiments, we will target two autonomous racing platforms:

F1TENTH [39], a 1/10-th scale vehicle platform; and AV-21, the primary full-size

racing vehicle by the IAC. For a list of autonomous racing vehicles in research for

comparison, we refer the reader to [5].

The F1TENTH [39] platform developed by the University of Pennsylvania uses

an off-the-shelf RC car chassis which has been heavily modified. Figure 1.1 visualizes

some of its major components. The main sources of localization and perception

are the 2D LiDAR scanner and depth camera mounted on the front of the vehicle.

System ID is conducted on the electronic speed controller system to command the

correct current amount (A) in response to an acceleration command in m/s2. We
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also thoroughly measure and calibrate the steering system dynamics to identify the

maximum steering rate as well as the steering angle at the wheel.

Figure 1.1: Components onboard an F1TENTH vehicle [39].

The AV-21 is modified from the Dallara IL-15, a human-driven race car chassis

for the IndyLights series. A drive-by-wire system has been engineered to allow

onboard autonomous operation. The cockpit hosts a x86-64 server with a 24-core

Intel Xeon D-2166NT CPU at 3 GHz, and an NVIDIA Quadro RTX 8000 GPU.

Perception is handled by 3 Luminar Hydra LiDARs and 6 cameras, complemented

by mmWave radars. This perception package can be visualized in Figure 1.2. In

addition, loccalization ground-truth is provided by two NovAtel RTK GNSS sensors.

In Table 1.2, we compare the specifications and peak performance of the two

platforms. We highlight that although the F1TENTH is only a fraction of the size of

an AV-21, it can achieve a similar level of peak longitudinal and lateral acceleration

on a much smaller track, making it an ideal platform for controlled experiments and

rapid prototyping.

1.2.4 Contribution of this Work

We present two novel optimal control frameworks for autonomous racing: spline-

based minimum-curvature trajectory optimization (Spline-Opt), and Error-Learning

Model Predictive Controller (EL-MPC). The two frameworks are connected in that
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Figure 1.2: Visualization of the perception ranges on AV-21 [44].

Spline-Opt provides an offline optimization prior, which can be leveraged to initialize

the EL-MPC in its online learning of optimal dynamics model and control policy.

In Spline-Opt, we consider the unavailability of sophisticated race car and race

track dynamics in early-stage autonomous motorsports development and derive tra-

jectory optimization techniques that work with limited dynamics data and additional

conservative constraints. We formulate a minimum-curvature optimization problem

with only the spline control points as optimization variables. We then compare the

current state-of-the-art method with our optimization result, which achieves a similar

level of optimality with a 90% reduction on the decision variable dimension, and

in addition offers a mathematical smoothness guarantee and flexible manipulation

options. We concurrently reduce the problem computation time from seconds to

milliseconds for a long race track, enabling future online adaptation of the previously

offline technique.

In EL-MPC, we present a novel Learning Model Predictive Control (LMPC)

strategy for autonomous racing at the handling limit that can iteratively explore

and learn unknown dynamics in high-speed operational domains. We start from

existing LMPC formulations and modify the system dynamics learning method. In
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Specification F1TENTH AV-21

Mass 2.2 kg 800 kg
Wheelbase 0.26 m 4 m
Top Speed 20 km/h 320 km/h
Top Lateral Acceleration 10-15 m/s2 15-20 m/s2

Top Longitudinal Acceleration 10-15 m/s2 10-15 m/s2

Top Braking 10-15 m/s2 20-30 m/s2

Max Engine Power 100 W 340 kW

Table 1.2: Vehicle specifications of F1TENTH and IAC platforms used in this work.

particular, our approach uses a nominal, global, nonlinear, physics-based model with

a local, linear, data-driven learning of the error dynamics. We conducted experiments

in simulation and on 1/10th-scale hardware, and deployed the proposed LMPC on

a full-scale autonomous race car used in the Indy Autonomous Challenge (IAC)

with closed loop experiments at the Putnam Park Road Course in Indiana, USA.

The results show that the proposed control policy exhibits improved robustness to

parameter tuning and data scarcity. Incremental and safety-aware exploration toward

the limit of handling and iterative learning of the vehicle dynamics in high-speed

domains is observed both in simulations and experiments.

The rest of this work is organized as follows. Chapter 2 discusses some previous

literature on Learning Model Predictive Controller (LMPC) and spline-based trajec-

tory optimizations; Chapter 3 introduces Spline-Opt; Chapter 4 introduces EL-MPC;

and finally Chapter 5 gives conclusion remarks.
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Chapter 2

Background

2.1 Deep Learning in Adaptive Control

An adaptive control system is designed to modify control policies online based on

some discrepancies between a prior model’s prediction and real-world observation.

An illustration of such a process is presented in figure 2.1, which shows a reactive

controller with adaptation capabilities against model deviations.

Figure 2.1: A classic adaptive control system that updates some controller parameter
p̂ based on the difference between some observation y and model prediction yref .

These adaptive control systems have been widely used, for example, in the control

of unmanned aerial vehicles (UAVs) under variable and unpredictable environmental

9



2. Background

conditions, such as strong winds [21, 24, 50]. These methods, while effective in steady,

nondynamic wind conditions, fall short in adaptability and precision when faced with

changing aerodynamics.

There has been a growing interest in leveraging deep learning for aerodynamic

modeling, aiming to capture the complex, nonlinear interactions between UAVs and

their operating environments [45, 46, 47]. Neural-Fly [38] introduced a deep learning-

based trajectory tracking controller that rapidly adapts to changing wind conditions.

By employing a Domain Adversarially Invariant Meta-Learning (DAIML) algorithm,

Neural-Fly learns a wind condition-independent representation of aerodynamics, which

is then adapted online through linear coefficients for precise control in various wind

conditions. This method not only improves upon the data efficiency of previous

models but also ensures robustness and generalizability across different UAVs and

wind conditions.

Furthermore, the integration of meta-learning techniques in Neural-Fly aligns with

current research trends in robotic control, where learning to quickly adapt to new

tasks or environments using efficient data models has shown great promise [3, 23, 28,

36, 49]. This approach, emphasizing the separation of a common representation from

environment-specific adaptations, enhances real-time adaptability and performance

in dynamic conditions.

2.2 Learning Model Predictive Controller

For controller architectures responsible for trajectory tracking at the edge of vehicle

dynamics handling, a variety of MPC methods continue to be the state of the art in

full-size race car systems. These MPC algorithm variations address a finite-horizon

optimal control problem (FHOCP) by calculating optimal actuation instructions for a

vehicle represented by kinematic or dynamic models, subject to specific track boundary

and state constraints [6, 25, 31, 52]. However, when it comes to high-speed racing,

the performance of traditional non-adaptive MPC techniques is ultimately limited

by the accuracy of the vehicle dynamics model. Faulty vehicle models can not only

lead to less optimal behaviors like weaving, hunting, and steady-state tracking error,

but can also become hazardous at the handling limit, particularly when the model

overestimates this limit. This presents a paradox for autonomous racing research at

10



2. Background

the handling limit: to safely reach higher speed levels, more vehicle dynamics data is

needed; but to gather high-speed data, the controller must first attain higher speed

levels. Hence, the aim of this work is to resolve the aforementioned circular problem

by conducting incremental and safety-conscious exploration towards the handling

limit and repetitively learning the vehicle dynamics in high-speed environments.

Learning unknown or changing system dynamics has been studied within some

classic control frameworks such as adaptive control [14, 43]. System identification is

usually part of the controller design, which reasons about some modeling error or

noise in the system and adapts the system model to account for them. In autonomous

racing, previous works have proposed dynamics learning strategies using Gaussian

Processes [27, 30, 37] or implicitly with Gaussian noise assumption [32]. The method

is further extended to model multi-vehicle interactions and solve for the optimal

overtaking maneuver [13, 53].

Another branch of works exploits the repetitive nature of autonomous racing

in a single-vehicle scenario, and improves controller performance without any prior

assumption about the distribution of the modeling error or noise. Data-driven

methods, such as iterative learning control, can optimize the tracking of a repetitive

trajectory given data from previous iterations by solving for control variable corrections

[11]. More recently, the learning model predictive control (LMPC) framework has

been proposed with a direct regression of local affine dynamics [12, 40, 42]. This

combination of LMPC and regressive dynamics learning can iteratively learn the

unknown system dynamics and reduce lap-time without an explicit prior reference

trajectory or a nominal dynamics model. The approach has also been demonstrated

on scaled vehicle hardware platforms in [40].

2.3 Offline Trajectory Optimization in

Autonomous Racing

Recent advancements in high-speed autonomous racing present new challenges and

opportunities for evaluating Offline Trajectory Optimization (OTO) algorithms. Lack

of prior race car and race track data is a significant challenge for university-level

research and racing development. For example, although autonomous race cars in

11



2. Background

the Indy Autonomous Challenge (IAC) have reached a top speed of over 320 km/h,

the teams still have limited access to critical data such as tire model parameters and

load transfer characteristics, especially in the earlier stages of development, when

estimation of these parameters is not viable with the limited data gathered. Therefore,

a simple trajectory optimization algorithm should account for this data-scarce use

case and support early development efforts.

OTO is often used to generate a reference safety set in the development phase of

an autonomous race car, which is often desired when the handling limit of the vehicle

is yet to be determined. Instead of directly applying an experimental tire model as

the optimization limit, it is often desired to work with more conservative handling

constraints. The traction circle (ellipse, or diamond) is an intuitive and effective

alternative to the raw tire parameters. By controlling the maximum acceptable lateral

and longitudinal acceleration in each direction as hyper-parameters, an OTO approach

can generate different trajectories subjected to additional dynamics constraints. In

addition, the track geometry constraints can be altered to impose extra track limits,

and generate trajectories that pass through the non-optimal part of the race track,

which provides a planning and control reference when the vehicle is forced into these

regions.

Prior to autonomous racing, the generation of an optimal velocity profile given a

fixed trajectory was first studied in the motorsports domain. Quasi-steady state (QSS)

approaches have been developed since the 1980s [9, 10, 15, 48]. The full trajectory

is broken down into small segments, through which the race car is assumed to have

steady-state behavior. The algorithm starts with segments corresponding to peak

curvature on the trajectory, which are considered the ”bottlenecks”. The algorithm

then proceeds to generate a full velocity profile entering and exiting these bottlenecks,

considering only the neighboring vehicle states subject to the dynamic limits, until

the velocity profiles of these bottlenecks meet each other [18]. This method is known

for its robustness and fast run time, but it fails to capture transient effects such as

load transfer characteristics and damper dynamics [18]. We adopt a similar method

in our work, whose algorithm will be formally proposed in a later section.

The optimization of the trajectory geometry in autonomous racing has been

studied in Braghin et al. and Kapania et al. with the ”minimum curvature” heuristic,

which states that an optimal racing trajectory minimizes the sum of curvatures
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around the track to minimize lap time [8, 35]. Heilmeier et al. extend the idea to

a quadratic programming (QP) formulation with improvements to the curvature

calculation. They also apply spline interpolation to the noisy raw data and the final

output to obtain a smooth trajectory [26]. Their work was extensively used by the

TUM team in recent high-speed autonomous racing events such as Roborace and

IAC. However, to guarantee that the continuity of the trajectory during and after

optimization is at least C2 (continuous position, velocity, and acceleration), it is

insufficient to optimize with respect to discrete samples along the trajectory (3.0 m

interval in [26]), although spline interpolation could be applied in post-processing.
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Chapter 3

Spline-Based Minimum Curvature

Trajectory Optimization

3.1 Background

A single B-spline of order n is a parameterized curve, denoted as Bi,n(x). It can

be uniquely constructed from a series of non-descending knot points t0, t1, . . . , tN ,

subjected to

N−n∑
i=1

Bi,n(x) = 1 (3.1)

A B-spline has non-zero values only in the range of knot vectors ti < x ≤ ti+n.

Higher-order B-splines can be recursively defined.

Bi,n+1(x) = wi,n(x)Bi,n(x) + (1− wi+1,n(x))Bi+1,n(x)

where wi,k(x) =

 x−ti
ti+k−ti

, ti+k ̸= ti

0, otherwise
(3.2)

The resulting basis functions are Cn−2 continuous and overlap throughout the

knot sequence, which is visualized in Figure 3.1.

These basis functions allow us to define a spline on t0, tN that is a linear combina-
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Figure 3.1: Visualization of basis functions Bi,n(x) of order 2 to 5 [29]

tion of the basis functions:

Tn(x) =
N−n∑
i=1

αiBi,n(x) (3.3)

The weights α0 . . . αN−n are also known as control points, which can be visualized

in Figure 3.2. We use S = N − n to denote the number of control points. The shape

of the curve can be manipulated by moving the control points while keeping the basis

functions constant. The movement of the control points is the main subject of interest

in this work, and we aim to derive an optimization formulation that optimizes their

placement to form a curvature-optimal trajectory for autonomous racing.

To extend the 1D B-spline to handle a trajectory in the 2D plane, we take two

sets of control points to parameterize the x and y coordinates separately on the same

basis functions. That is, given a trajectory T (t) : R → R2 and a sequence of control

points z = [α1, . . . , αS, β1, . . . , βS]
T

T (t, z) = (
S∑
i=1

αiBi,n(t),
S∑
i=1

βiBi,n(t)) (3.4)

where αi, βi respectively denote the x and y coordinates of the control point. Conven-

tionally, we use t ∈ [0.0, 1.0] to parameterize the trajectory and denote progress along

the track. We can also denote the two resulting 1D B-splines as Tx(t.z), Ty(t, z).
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Since we will be optimizing with respect to the control points, it is useful to take

the derivative of a spline with respect to the control points, which is simply the

corresponding basis function.

∂T (t, z)

∂αi
=
∂T (t, z)

∂βi
= Bi,n(t) (3.5)

The curvature of a B-spline trajectory, as of any parametric curve equation, can

be calculated as [26]

k(t) =
T ′x(t)T

′′
y (t)− T ′y(t)T

′′
x (t)

(T ′x(t)
2 + T ′y(t)

2)
3
2

(3.6)

B-Splines have certain advantageous properties for trajectory optimization prob-

lems with respect to the control point movements. First, each control point can

manipulate a piece of segment holistically. Intuitively, given the same knots t0 . . . tn, a

control point has a longer influence range along the curve as the degree of the B-spline

increases. Visually in Figure 3.1, the basis function corresponding to that control

point spans more intervals of knots. Second, since the basis function is evaluated to

zero outside of its intervals according to (3.2), we can perform partial optimizations to

a specific section of the trajectory without affecting the others. Lastly, the resulting

trajectory from the control point movements is guaranteed to have the same order of

continuity as the original trajectory since it is still a B-spline of the same order.

These features of B-splines make them suitable for autonomous racing applications.

For a vehicle to have continuous velocity and acceleration profiles, the trajectory

should be at least C2 continuous, subject to additional curvature constraints since

vehicle kinematics is not omnidirectional. To optimize the vehicle’s trajectory through

a specific segment of the race track, we can control the scope of the optimization by

controlling the number of control points to be included in the optimization problem,

and obtain results that are perhaps more locally optimized for a particular turn, or

more globally optimized through a combination of turns.
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3.2 Problem Formulation

3.2.1 Generating and Evaluating a Spline Trajectory

As an example, in this work we will use the Monza Circuit, which is a 5.8 km (3.6

mile) long race track used in the Indy Autonomous Challenge. It has a combination

of long straights, high-speed turns, and chicanes. We will also show experiments on

an other race track in a later section.

We obtain the race track geometries from satellite images and geographical surveys.

We represent the track using a reference center line, with left and right offsets to

denote the distances to the track boundaries at every waypoint. We then draw a

cubic B-spline interpolation of the reference center line using the least square periodic

spline interpolation algorithm discussed in [19], which forms a closed-loop spline on

t ∈ [0.0, 1.0].

Figure 3.2: Turn 1 and 2 of Monza Circuit after interpolation

We then discretize the trajectory by taking waypoints at a constant 3-meter

interval. This is done by performing a numerical integration to calculate the length

of the trajectory:

L(tmin, tmax) =

∫ tmax

tmin

T ′x(t)
2 + T ′y(t)

2dt (3.7)

and solving a subsequent root-finding problem to find ti such that the trajectory
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3. Spline-Based Minimum Curvature Trajectory Optimization

advances by 3 m.

ti = argmin
ti

L(ti−1, ti)− 3 (3.8)

We note that the optimization is done on the continuous spline, and these dis-

cretization points are simply used for sampling the curvature throughout the trajectory.

The discrete trajectory is also useful in the evaluation process to be described below.

3.2.2 Configuring the Vehicle Parameters

As the main constraint on vehicle dynamics, we use a traction ellipse, which considers

the longitudinal and lateral accelerations of the vehicle when accelerating, braking

and cornering, or a combination of them. To characterize the shape of the ellipse, four

parameters are used, which correspond to the maximum longitudinal acceleration,

longitudinal deceleration, and left and right lateral accelerations. For the purpose of

autonomous racing development, these parameters are easily adjustable to impose

additional safety constraints within tire limits. For race cars with asymmetrical

setups, such as those racing on an oval racing circuit, the left and right lateral

accelerations can be adjusted separately. In our example, shown in Figure 3.3, we

impose a maximum acceleration of 10 m s−2, deceleration of -20 m s−2, and symmetric

maximum cornering load of ±15 m s−2.

3.2.3 Simulating a Spline Trajectory

We perform a simulation for the best lap time on the spline trajectory to obtain the

velocity profile, which will be used in the evaluation. The QSS algorithm starts by

examining the curvature profile of the discretized trajectory and using the minimum-

curvature points as constraints for this simulation. The relationship between the

vehicle’s tangential velocity v and curvature k satisfies

v =
√
alat/k (3.9)

where alat is the lateral acceleration. Therefore, to maximize vehicle velocity through

the bottleneck, the vehicle should have zero longitudinal acceleration to maximize
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Figure 3.3: Geometry of traction ellipse used as constraint (blue), and actual tire
constraints (red, simulated)

lateral acceleration according to the traction ellipse.

After obtaining this initial condition, the algorithm proceeds to generate an entry

and exit velocity profile around the bottleneck points, until the two profiles of two

bottlenecks converge. The trajectory is then further adjusted to ensure a smooth

acceleration and velocity transition at the meeting points. Figure 3.4 shows a baseline

simulation done on the reference center line trajectory, with a heatmap indicating

the velocity levels that the vehicle can achieve in various sections of the track.

3.2.4 Spline-Based Minimum Curvature Problem

Building on [8] and [26], we consider the minimum-curvature optimization problem

with respect to all control point coordinates z.

min
z

M∑
j=1

k2j (t) (3.10)

where k1 . . . kM are the curvatures of the discretization points within the span of

the corresponding basis function of z. The difference from the previous work in the

formulation is the optimization variable, which is the lateral movements of individual

discretization points in the previous work, but is replaced with the control point
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Figure 3.4: Example simulation on the center line trajectory. The heatmap shows
the velocity levels (m/s) at individual track sections.
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placements in our work. This reduces the dimension of the decision variable from M ,

the number of discretization points, to 2S, twice the number of control points. For

Monza Circuit with 3-meter interval discretization, the dimension reduces from 1932

to 204.

We then substitute (3.6) into (3.10) and omit the constant terms in the problem.

Discarding the (t, z) notation in T (t, z) for simplicity, we arrive at a similar QP

formulation to that in Heilmeier et al. [26]:

min
z

T ′′Tx PxxT
′′
x + T ′′Ty PxyT

′′
x + T ′′Ty PyyT

′′
y (3.11)

where

Pxx =


(Ty1 )

′2v1
((Tx1 )

′2+(Ty1 )
′2)3

0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · (TyM )′2vM
((TxM )′2+(TyM )′2)3



Pxy =


−2(Tx1 )

′(Ty1 )
′v1

((Tx1 )
′2+(Ty1 )

′2)3
0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · −2(TxM )′(TyM )′vM
((TxM )′2+(TyM )′2)3



Pyy =


(Tx1 )

′2v1
((Tx1 )

′2+(Ty1 )
′2)3

0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · (TxM )′2vM
((TxM )′2+(TyM )′2)3



We now need to correlate T ′′x and T ′′y with the location of the j-th control point

zj =
[
αj βj

]T
through the second-order derivative of the underlying B-spline basis.

These lower-order bases also have a recursive closed-form solution and can be treated
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as constants [17].

T ′′x =

j−1∑
i=1

d2Bi,n(t)

dt2
xi +

d2Bj,n(t)

dt2
xj +

S∑
i=j+1

d2Bi,n(t)

dt2
xi

:= Fx +
d2Bj,n(t)

dt2
xj (3.12a)

T ′′y =

j−1∑
i=1

d2Bi,n(t)

dt2
yi +

d2Bj,n(t)

dt2
yj +

S∑
i=j+1

d2Bi,n(t)

dt2
yi

:= Fy +
d2Bj,n(t)

dt2
yj (3.12b)

This shows that the relation between T ′′x and xj , or T
′′
y and yj , is affine. If optimization

is done with respect to all the control points at once, then Fx and Fy reduces to zero,

since (3.12a) and (3.12b) now become

T ′′x =
S∑
i=1

d2Bi,n(t)

dt2
xi (3.13a)

T ′′y =
S∑
i=1

d2Bi,n(t)

dt2
yi (3.13b)

In which {x0, . . . , xS} and {y0, . . . , yS} are all decision variables.

Substituting (3.13a) and (3.13b) into (3.11), we can formulate this problem as a

standard QP.

min
z

1

2
zTHz + gTz (3.14a)

where

H = BT
x PxxBx +BT

y PxyBx +BT
y PyyBy (3.14b)

g = (F T
x PxxBx + F T

y PxyBy + F T
y PyyBy)+

(BT
x PxxFx +BT

y PxyFx +BT
y PyyFy)

T (3.14c)
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Figure 3.5: Optimization visualization at Monza Turn 8-10. The figure on the left
visualizes the movements of the control points which shift the center line spline into a
minimum-curvature spline. The figure on the right compares the optimization results
of ours and [26].

and where

Bx =
[
B2 0M×S

]T
(3.14d)

By =
[
0M×S B2

]T
(3.14e)

B2 =


d2B1,n

dt2
(t1) · · · d2BS,n

dt2
(t1)

...
. . .

...
d2B1,n

dt2
(tM) · · · d2BS,n

dt2
(tM)

 (3.14f)

Note that (3.14c) is evaluated to zero when considering all the control points since

Fx = Fy = 0.

Finally, we obtain the constraints for the optimization, which is the distance to the

left and right boundaries. For the i-th discretization point, we use l =
[
l0 · · · lM

]T
and r =

[
r0 · · · rM

]T
to denote the center line’s distances to the left and right

boundaries. Then we use a local frenet frame approximation to find the distance

between the optimized discretization point and the original center line. This is done

by applying a rigid body transformation to the boundary point from the fixed map

frame into the center line’s local frame.
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Figure 3.6: Optimization visualization at Putnam Road Course, Indiana, USA. The
left figure shows the movement of the control points and the optimal trajectory shape
as a result. The right figure compares ours and Heilmeier et al.’s trajectory through
the chicane.

A2M×2S =

[
B 0M×S

0M×S B

]

RM×2M =


cos θ1 0 0

0
. . . 0

0 0 cos θM

sin θ1 0 0

0
. . . 0

0 0 sin θM


where

B =


B1,n(t1) · · · BS,n(t1)

...
. . .

...

B1,n(tM) · · · BS,n(tM)


and where θi ∀i ∈ {1, . . . ,M} denotes the orientation of the center line at discretiza-

tion point pi. The linear constraint is therefore

r ≤ RAz ≤ l
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Breaking down this equation, Az computes the discretization coordinates from the

control points, which is rotated by R to compute its projection on the left or right

side of the center line.

Now we have all the components for our constrained QP problem, which we can

solve with qpOASES [22].

min
z

1

2
zTHz+ gTz

s.t. r ≤ RAz ≤ l (3.15)

3.3 Experiments and Results

Before presenting the results, it is beneficial to discuss the evaluation metrics for OTO

methods. Since this is an open-loop offline method, it is insufficient to show the end

trajectory achieved by a vehicle driving on the track, since there are other processes

down the pipeline such as online dynamic planning and optimal control calculations.

These modules also have a significant impact on the outcome of the experiment.

Therefore, we will directly compare the OTO result with the current state-of-the-art

method in minimum-curvature optimization in [26] to see if our method has achieved

our objective, which is to offer an alternative minimum-curvature optimization

formulation for autonomous racing that uses significantly fewer decision variables,

guarantees continuity and still offers a trajectory comparable to previous work.

To this end, we will perform minimum-curvature optimization using our formula-

tion and the Heilmeier et al. formulation [26]. The discretization intervals are the

same in both experiments. We then simulate lap times with the QSS simulation

method described in III.A to show that we have reached comparable results with the

previous work.

We first compare the overall lap time performance of our method with the reference

center line and Heilmeier et al. [26] in Table 3.1. The optimization algorithms produce

7.65% (ours) and 8.94% (Heilmeier et al.) lap time reduction, respectively, offering

comparable maximum velocity and acceleration profiles. The percentage difference

of the metrics is shown in the right column, which suggests that we achieved a level

of optimality similar to [26]. However, our result produces a C2 continuous B-spline
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curve that can be easily re-discretized and even artificially manipulated afterwards

by dragging the control points, which is a very useful feature in the developmental

stage of autonomous racing, whereas [26] only produces a discretized trajectory with

no guarantee of continuity level due to its discrete decision variables. We also see

a significant reduction in the dimension of the decision variable. Our QP problem

has 204 decision variables (102 control points), down from 1932 using [26] with a

3 m discretization interval. The resulting QP computation time is 3.8 ms, down

from 8.225 s using [26]. This shows that our method not only gives a more compact

formulation that captures the essence of the minimum-curvature problem, but also

enables the possibility of adopting such a method in online planning on a very long

track.

Looking turn by turn, Figure 3.5 zooms in on the optimization at turns 8-10.

The control points of the center-line spline are shifted to form a minimum-curvature

trajectory. For turn 7 in the zoomed-in section, we are able to optimize the full

trajectory with only four control points.

Table 3.1: Simulation Results on Monza

Center Heilmeier Ours Delta
Line et al. (%)

Lap Time (s) 131.33 119.59 121.28 -1.4
Ave Speed (m/s) 43.72 48.60 47.73 1.8
Max Speed (m/s) 93.69 95.12 94.33 0.8
Min Speed (m/s) 6.04 10.51 9.44 11.3
Max Lat G (m/s−2) 13.96 13.78 14.48 -4.8
Max Throttling (m/s−2) 9.74 9.62 9.68 -0.6
Max Braking (m/s−2) -19.87 -19.27 -19.85 -2.9

We then move on to a different race track and apply the same OTO method to

see how our method transfers to a new track. Figure 3.6 visualizes the optimization

results done on Putnam Road Course, Indiana, USA, which is a test track of the

Indy Autonomous Challenge. The zoomed-in portion of the graph visualizes the

movement of control points which leads to a curvature-optimal trajectory. Table

3.2 shows metrics similar to 3.1, in which comparable lap time reduction of 13.9%

and 15.67% are respectively achieved by [26] and our work. The difference in the
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Table 3.2: Simulation Results on Putnam Road Course

Center Heilmeier Ours Delta
Line et al. (%)

Lap Time (s) 79.63 68.55 66.91 2.4
Ave Speed (m/s) 36.36 41.57 42.75 -2.7
Max Speed (m/s) 73.93 86.54 88.07 -1.7
Min Speed (m/s) 8.02 13.83 12.0 15.2
Max Lat G (m/s−2) 15.0 15.0 15.0 0.0
Max Throttling (m/s−2) 9.75 9.18 9.52 -3.6
Max Braking (m/s−2) -16.95 -17.84 -18.22 -2.1

simulation metrics between ours and [26] remains close, suggesting that the outcome

of the optimization is very comparable.

3.4 Summary

In this chapter we present a B-spline OTO method for autonomous racing which solves

a minimum-curvature optimization problem. Compared to previous works, which only

output a discretized trajectory, this work outputs a fully parameterized trajectory of

C2 continuity, which ensures a smooth control profile for high-speed vehicle handling.

The algorithm also considers the data scarcity of early-stage autonomous motorsports

development and requires minimal vehicle dynamics data. Compared to previous

work [26], the dimension of the problem is significantly reduced from thousands of

discretization points down to a few dozens of control knot points. The problem

computation time is also drastically reduced as a result. This enables future work to

explore the online application of minimum-curvature OTO for autonomous racing.

The work from Spline-Opt is also directly applicable to the Error-Learning MPC

paradigm to be introduced in the next chapter. The curvature-optimal reference

could serve as a reasonably good starting point for further online learning of the

robot’s true dynamics limit.
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Chapter 4

Error-Learning MPC

4.1 Background

4.1.1 Sampled Safe Set

Learning from previous data often requires that the robot’s state is not too out of

distribution from the dataset. Previous work in Learning Model Predictive Control

(LMPC) formalizes this idea into sampled Safe Set, which is a control invariant set

[40]. Given a robot at its j-th iteration of completing a task, its sampled Safe Set is

defined as

SSj =

{ ⋃
i∈Mj

∞⋃
t=0

xit

}
(4.1)

which represents the set of all robot states for all iterations indexed i ∈ M j. Here

M j is the set of indices k ≤ j that successfully completed the iterative task before

the current iteration:

M j =
{
k ∈ [0, j] : lim

t←∞
xkt = xF

}
(4.2)

where xF represents some final state. In racing, for example, xF can be easily thought

of as all states of the robot past the finish line, which we will formalize in the next

section.
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A sampled Safe Set is interesting in real-world robot learning, because it offers

invariance and reachability. If the environment has not changed, then we know that

as long as the robot can reach a state in the sampled Safe Set, it is guaranteed to

complete the task, because the previous iterations of data have proven that this

trajectory will lead to the final state xF . This property motivates us to impose a Safe

Set constraint in optimal control, such that any exploration of a better trajectory

always ends in the safe set:

min
u0,...,u∞

∞∑
k=0

h(xk, uk) (4.3a)

s.t. xk+1 = f(xk, uk), ∀k ≥ 0 (4.3b)

x0 = xic (4.3c)

xk ∈ X , uk ∈ U ,∀k ≥ 0 (4.3d)

x∞ ∈ SSj (4.3e)

where h(xk, uk) represents some stage cost, f(xk, uk) represents the discrete robot

dynamics, X and U represent the primal bound, and (4.3e) constrains the robot’s

terminal state to be within the Safe Set.

4.1.2 Convex Safe Set and Linear System

One drawback of the sampled Safe Set is that it is comprised of discrete robot states

rather than a subspace which can continuously represent constraints for a robot’s

state. Without some relaxation, using the sampled Safe Set in optimial control

directly would result in a mixed integer programming problem that is computationally

prohibitive. Therefore, we investigate some techniques to relax this constraint.

Let’s consider f(xk, uk) in (4.3b) to be linear time-invariant (LTI), i.e.

xk+1 = Axk +Buk (4.4)

Then, if the primal bounds X and U in (4.3d) are convex, which is often the case with

simple maximum and minimum limits, then the convex combination of the states in

SSj would also have some control sequence that leads the robot into the final state
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xF . This is defined as the convex Safe Set CSj[40]

CSj =


|SSj |∑
i=1

αizi : αi ≥ 0,

|SSj |∑
i=1

αi = 1, zi ∈ SSj
 (4.5)

where |SSj| is the cardinality of SSj . CSj is also a control invariant set [7]. α0, α1, . . . ,

which are the convex combination coefficients, become decision variables in the optimal

control problem. This relaxed version of the problem states that, for an LTI system,

if the robot ends in the convex hull formed by states in SSj, then the terminal state

xF is reachable via some sequence of control commands.

However, this formulation leaves some important questions unanswered:

• How to apply the convex hull relaxation to a nonlinear system?

• When SSj contains a large number of states, how do we choose its subset to

allow efficient computation of the convex safe set?

We will explore these questions in the next section.

4.2 Problem Formulation

4.2.1 State-Space Representation of Vehicle Dynamics

A prior, closely-matched vehicle dynamics model would significantly improve the

base MPC performance and satisfy algorithm transparency, explainability, and safety-

fallback requirements for deploying model predictive controllers on a full-scale vehicle.

We also theorize that, compared to previous work in [42] in which dynamics learning

is performed without a model a priori, incorporating the vehicle model prior is key

to reduce parameter tuning sensitivity and modeling error exploitation in EL-MPC.

First, we consider the state and control variables for the modeling. We can

represent the vehicle’s 2D dynamics with 6 state variables corresponding to the

vehicle’s position in a local Cartesian coordinate system.

xc = [vx, vy, ωz, ψ, px, py]
⊤ (4.6)

where px, py, ψ represents the vehicle’s 2D pose, and vx, vy, ωz represents the vehicle’s
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2D body velocity. To enable a simple expression of the road boundary constraint, and

to assist with the linearization and normalization of dynamics models later on, we

will mainly use a Frenet frame system [21] to express the 2D pose. This is illustrated

in figure 4.1. A curvilinear Frenet frame works by denoting s, ey, and eψ as the pose

of the vehicle expressed w.r.t. a parametric path τ : [0, L] 7→ R2, which is assumed

to be continuously twice differentiable and of total length L. In particular, when

given an arclength s ∈ [0, L], τ returns the global x-y position of the path. In the

case where τ forms a closed circuit, i.e., τ(0) = τ(L), τ ′(0) = τ ′(L), τ ′′(0) = τ ′′(L),

where τ ′ and τ ′′ are the element-wise first and second derivatives of τ , we define the

circuit as τ̄(s) = τ(mod(s, L)) for s ≥ 0, where mod is the modulo operator. Given a

path τ and a vehicle with global position p = (x, y) and heading ψ, the Frenet frame

pose is defined as the vehicle’s path progress s(p) = argmins ∥τ(s)− p∥2, its lateral
deviation from the path ey(p) = mins ∥τ(s)− p∥2, and its heading deviation from the

path tangent eψ(p, ψ) = ψ − arctan(τ ′(s(p))).

xf = [vx, vy, ωz, eψ, s, ey]
⊤ (4.7)

We will omit the subscript and write the vehicle state xf as x in the rest of this

chapter.

We further note that any dynamics represented in a global Cartesian coordinate

system (ṗx, ṗy, ψ̇) can be easily transformed into the Frenet frame (ṡ, ėy, ėψ), without

affecting the body velocity dynamics (v̇x, v̇y, ω̇z) [16]. This can be achieved given the

Frenet frame curvature k at the vehicle’s location:

ṡ =
vx cosψ − vy sinψ

1− eyk
(4.8a)

ėy = vx sinψ + vy cosψ (4.8b)

ėψ = ωz − k
vx cosψ − vy sinψ

1− eyk
(4.8c)

This property of the Frenet frame allows the general expression of any robot dynamics.

The inputs to the model are the longitudinal acceleration a and the front steering
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Figure 4.1: Illustration of the Frenet frame pose states.

angle δ.

u = [a, δ]⊤ (4.9)

4.2.2 Prior Vehicle Dynamics Model

We employ a single-track vehicle dynamics model that is specifically designed to

consider race car characteristics that have significantly more impact on vehicle

performance than on passenger vehicles. This includes aerodynamic down-force and

non-linear tire model. [16]

We start by describing the fundamental tire forces, considering a rear-wheel-drive,

four-wheel-brake race car. The force calculated is per wheel and is decomposed into

longitudinal and lateral tire forces. The front and rear longitudinal tire forces are

Fx,f =
1

2
(kbmab − frmg

lr
l
) (4.10a)

Fx,r =
1

2
(mad + (1− kb)mab − frmg

lf
l
) (4.10b)

where kb denotes the front brake bias (0-100%); fr denotes rolling resistance; m

denotes the vehicle mass; l denotes wheelbase; lf , lr denotes the distance between

center-of-gravity and the two axes; ad, ab are derived from control variable a to enable

the modeling of different longitudinal dynamics under driving and braking with an
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activation function:

ad = a(0.5 tanh(a) + 0.5) (4.11a)

ab = a(0.5 tanh(−a) + 0.5) (4.11b)

Then we describe normal tire loads considering longitudinal load transfer.

Fz,f =
1

2
(mg

lr
l
− hcog

l
max + fDcl,f ) (4.12a)

Fz,r =
1

2
(mg

lr
l
+
hcog
l
max + fDcl,r) (4.12b)

where fD =
1

2
CDAv

2
x (4.12c)

ax = a− fD
m

− frg (4.12d)

hcog denotes the center-of-gravity height; cl,fcl,r denotes the lift coefficients at the

axles; fD denotes the air resistance; CD denotes the drag coefficient; A denotes the

frontal area of the car; ax denotes the overall longitudinal acceleration.

We can now compute the lateral tire forces Fy via normal tire forces Fz using

a pure lateral slip Pacejka tire model [2]. We take note that the pure lateral slip

assumption will not hold when the race car is employing a ”trail braking” technique

and carrying longitudinal acceleration when cornering, but it is part of the EL-MPC’s

goal to learn such fine-grained control from data.

αf = δ − arctan((lfωz + vy)/vx) (4.13a)

αr = arctan((lrωz − vy)/vx) (4.13b)

Fy,f = µFz,f sin(Cf arctan(Bfaf )) (4.13c)

Fy,r = µFz,r sin(Cr arctan(Brar)) (4.13d)

where αf , αr denotes tire side slip angles; µ denotes tire-road friction coefficient; C,B

are Pacejka tire parameters.

Finally, these equations describe the evolution of state variables as a function of

state variables (4.7) and control variables (4.9).
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v̇x =
1

m
(2Fx,r + 2Fx,f cos δ − 2Fy,f sin δ − FD) + ωzvy (4.14a)

v̇y =
1

m
(2Fy,r + 2Fy,f cos δ + 2Fx,f sin δ)− ωzvy (4.14b)

ω̇z =
1

Jzz
((2Fy,f cos δ + 2Fx,f sin δ)lf − 2Fy,llr) (4.14c)

ėψ = ωz − k
vx cos eψ − vy sin eψ

1− eyk
(4.14d)

ṡ =
vx cos eψ − vy sin eψ

1− eyk
(4.14e)

ėy = vx sin eψ + vy cos eψ (4.14f)

where Jzz denotes the vehicle’s yaw moment of inertia.

We note that despite the level of complication, the vehicle dynamics described by

these parameters and equations are not accurate enough for safe high-speed handling

at the limit. This is the aforementioned chicken-and-egg problem at play: Some

parameters such as tire models and brake characteristics are not available before the

controller has reached the high-speed region in the first place and, therefore, need to

be roughly estimated. Bridging this gap would require the dynamics learning process

to be formulated below. We also note that the kinematic part of the state evolution,

namely ėψ, ṡ, ėy, depends purely on the geometry of the vehicle and not on dynamics

parameters such as weight or moment of inertia. Since the geometry of the vehicle

can be measured rather accurately, there is very little practical motivation to employ

dynamics learning on these state variables.

4.2.3 Learning MPC Problem

We write the discretized nonlinear dynamics as:

xk+1 = f(xk, uk) (4.15)

The vehicle’s state and input are subject to the constraints X = {x | −W/2 ≤ ey ≤
W/2} and U = {u | ul ≤ u ≤ uu}, which describe the boundary constraints for a

track of constant width W and the limits on achievable acceleration and steering
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angle.

The objective of this work is to design a control policy which solves the infinite-

horizon, minimium lap time, optimal control problem:

T = min
u0,u1,...

∞∑
k=0

1F(xk) (4.16a)

subject to x0 = x̄, (4.16b)

xk+1 = f(xk, uk), (4.16c)

xk ∈ X , uk ∈ U , (4.16d)

where x̄ ∈ S = {x | s = 0} is a state at the start of the track and F = {x | s ≥ L} is

the set of states beyond the finish line of the circuit. If for some time step k, xk ∈ F
for the first time, then the vehicle has finished the lap and has transitioned onto the

next lap. 1F is the indicator function for the set F , which is defined as

1F(x) =

0 if x ∈ F

1 otherwise

Due to the infinite horizon cost in (4.16a), it should be clear that the optimal

control problem posed in (4.16) is not amenable to online implementation. Moreover,

it is likely that there is mismatch between the vehicle model in (4.16c) and the true

vehicle dynamics, the effects of which would be especially apparent at high speeds,

where the vehicle is operating at the limit of handling. To address these challenges,

previous work on LMPC [12, 40] proposed a finite-horizon convex approximation of

(4.16), which uses state and input trajectories from prior laps to synthesize a convex

terminal cost-to-go function and target set. The same data are additionally used to

identify affine time-varying (ATV) models which approximate the true dynamics of the

vehicle. In this work, we carry over the same approach for terminal cost-to-go function

and target set synthesis, but propose a modification to the system identification

procedure which results in an LMPC control policy that achieves similar performance

to [12, 40] w.r.t. minimum lap time, while exhibiting a significant improvement in

robustness to tuning parameters.
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4.2.4 Local Error-Learning MPC

In this section, we briefly describe the procedure for synthesizing EL-MPC policies

over iterations (or laps) of the minimum time control task. For further details, we

refer the reader to [12, 40].

The main idea of EL-MPC is to use the data from iterations 1 to j−1 to synthesize a

finite-horizon local convex approximation of (4.16) for iteration j, which is then solved

in a receding horizon manner. Let us first denote the available dataset at iteration

j as Dj = (xj,uj) ∪ Dj−1, where xj = {xj0, x
j
1, . . . , x

j
T j} and uj = {uj0, u

j
1, . . . , u

j
T j}

are the closed-loop state and input sequence for iteration j and T j denotes the time

step at which the lap was completed for iteration j, i.e., the first time step where

1F(xk) = 0. Note that on the first iteration, the dataset D0 may be initialized using

human-driven laps or closed-loop trajectories from a simple low-speed center-line

tracking controller. In addition, we assume that the trajectories stored in Dj are

feasible w.r.t. the constraints (4.16d) and reach the finish line in a finite amount of

time.

Local Convex Target Set

As the closed-loop trajectories stored in Dj are from the actual vehicle, it is straight-

forward to see that if we can control the vehicle to any state in Dj , then there exists a

known feasible control sequence which can be used to complete the lap from that state.

EL-MPC uses this fact to construct a safe set as a discrete collection of the states

in Dj, which is then used as the terminal set for a FHOCP [40]. In this work, we

construct convex terminal sets which are local about a given state x. These terminal

sets sacrifice the theoretical guarantee of persistent feasibility for the FHOCP in favor

of reduced computational complexity for fast online control. In particular, for a given

x, we take the K-nearest neighbors from each of the previous P laps by evaluating

the weighted Euclidean distance over the relevant states:

(xik − x)⊤D(xik − x), ∀i ∈ {j, j − 1, . . . , j − (P − 1)},

k ∈ {0, 1, . . . , T i} (4.17)
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for some given P and D ⪰ 0. Letting Xj(x;Dj) ∈ Rn×KP denote the matrix formed

by the KP states closest to x, we then define the target set as the convex hull of these

states: X j
N(x;Dj) = {x̄ ∈ Rn | ∃λ ∈ RKP , 0 ≤ λ ≤ 1, 1⊤λ = 1,Xj(x;Dj)λ = x̄}.

Local Terminal Cost-to-go Function

By assumption, the closed-loop state trajectories stored in Dj reach the finish line

in a finite amount of time. We can therefore compute the cost-to-go for any state

xik in Dj as T i − k, which represents the time remaining to finish the i-th lap for

i ∈ {0, . . . , j}. Let J jN (x;Dj) ∈ RKP denote the vector of cost-to-go values calculated

for the states in Xj(x;Dj). We can therefore define the minimum cost-to-go function

for any x̄ ∈ X j
N(x;Dj) as:

Qj
N(x̄, x;D

j)

= min
λ∈RKP

J jN(x;D
j)⊤λ

subject to 0 ≤ λ ≤ 1, 1⊤λ = 1, Xj(x;Dj)λ = x̄

This function can be thought of as a local convex approximation to the optimal cost-

to-go (from solving (4.16)) at iteration j, which when incorporated as the terminal

cost-to-go function, allows an FHOCP to reason about infinite-horizon behavior of

the vehicle, to the extent that it is captured in the dataset.

Local EL-MPC

Using the terminal target set and cost-to-go function synthesized from the dataset

Dj−1, we may now construct the FHOCP at time step k of iteration j for our local
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LMPC policy as follows:

J jk(xk, uk−1, z̄k;D
j−1) =

min
x,u,λ

N−1∑
t=0

1F(xt) + cu∥ut∥22 + c∆u∥ut − ut−1∥22

+ J j−1N (x̄k+N ;Dj−1)⊤λ (4.18a)

subject to x0 = xk, u−1 = uk−1 (4.18b)

xt+1 = A(z̄k+t;Dj−1)xt +B(z̄k+t;Dj−1)ut

+ C(z̄k+t;Dj−1), t ∈ {0, . . . , N − 1}, (4.18c)

xt ∈ X , ut ∈ U , t ∈ {0, . . . , N} (4.18d)

Xj−1(x̄k+N ;Dj−1)λ = xN , (4.18e)

0 ≤ λ ≤ 1, 1⊤λ = 1 (4.18f)

where z̄k = (x̄k, ūk) and z̄k = {z̄k, . . . , z̄k+N} is a state and input sequence which

is used to form the local convex approximation. In practice, this is chosen as the

solution to (4.18) from the previous time-step. Construction of the A, B, and C

matrices in the ATV dynamics (4.18c) is the main contribution of this work and will

be discussed in the next section. Note that (4.18) is a convex program which can be

solved efficiently using existing solvers.

Finally, let u⋆ = {u⋆0, . . . , u⋆N−1} be the optimal control sequence which solves

(4.18) at time step k. The input uk = u⋆0 is applied to the vehicle and the FHOCP

(4.18) is repeated at time step k + 1 for the measured state xk+1 until the vehicle

reaches the finish line, at which point Dj will be constructed using the closed-loop

trajectory for lap j.

4.2.5 Learned Vehicle Dynamics Model

We now introduce the main contribution of our work, which is a learning strategy on

the dynamics states vx, vy, ωz based on regressive error. The learning process takes

as inputs the nominal dynamics model and a set of neighboring states, and outputs a

learned local affine approximation of the true vehicle dynamics. We assume that the

39



4. Error-Learning MPC

true dynamics of the system can be written as follows

x+ = f(x, u) + e(x, u), (4.19)

where f are the nominal dynamics from (4.15) and e denotes some unknown modeling

error which we would like to identify using data. For a given state and input x and

u, let us denote the prediction of the nominal model as x̂+ = f(x, u). We may now

linearize the error dynamics about a reference state and input z̄ as follows:

x+ − x̂+ = Aex+Beu+ Ce, (4.20)

where Ae and Be are the Jacobians of e w.r.t. x and u evaluated at z̄ and Ce =

e(x̄, ū)− Aex̄−Beū. It can be clearly seen from (4.20) that the linearization of the

unknown error term is related to the system state and input x and u, the actual state

evolution x+, and the prediction of the nominal model x̂+, which are all quantities

that can be easily obtained from the dataset Dj−1 at iteration j. As such, we query

Dj−1 to find the M nearest neighbors z = {z1, . . . , zM} of z̄ and their corresponding

state evolutions x+ = {x+1 , . . . , x+M} (using a technique similar to (4.17)). We then

compute the prediction of the nominal model at each of the state and input pairs in

z to obtain x̂+ = {x̂+1 , . . . , x̂+M}. As mentioned before, we are interested in learning

only the error dynamics associated with the velocity components of the state x, as

the kinematic components of the state are well-understood. Therefore, using the

datasets z, x+, and x̂+, we define the residuals for each velocity state as follows:

Ae[11 : 13]xm[1 : 3] +Be[11]am + Ce[1] = v+x,m − v̂+x,m,

Ae[21 : 23]xm[1 : 3] +Be[22]δm + Ce[2] = v+y,m − v̂+y,m,

Ae[31 : 33]xm[1 : 3] +Be[32]δm + Ce[3] = ω+
z,m − ω̂+

z,m, (4.21)

where m ∈ {1, . . . ,M} and we use the notation A[11 : 13] to index the first three

elements of the first row of matrix A. Note that we have injected additional structure

into the individual residuals by making explicit the dependence of each velocity state

on a certain subset of the input components. From these three expressions, we define
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the following regressor vectors:

Γvx =

Ae[11:13]

Be[11]

Ce[1]

 ,Γvy =

Ae[21:23]

Be[22]

Ce[2]

 ,Γωz =

Ae[31:33]

Be[32]

Ce[3]

 .

We solve the regression problem in a manner similar to [42], where we weigh

the importance of data point m using the Epanechnikov kernel function [20] with

bandwidth h:

K(u) =

3
4
(1− u2/h2), |u| < h

0, otherwise
.

such that larger penalties are assigned to the residuals for data points that are close

to the linearization point x̄. For l = {vx, vy, ωz}, the weighted least squares problem

is defined as follows:

Γ⋆l = argmin
Γl

M∑
m=1

K
(
||z̄ − zm||2Q

)
ylm(Γl) + ϵ∥Γl∥22, (4.22)

where Q ⪰ 0 denotes the relative scaling between the variables, ylm(Γl) are the

l2-norms of the residuals in (4.21), and ϵ > 0 is a regularization parameter.

Finally, we can construct the matrices Ae, Be, and Ce from Γ⋆l as follows:

Ae =


Γ⋆vx [1 : 3]

Γ⋆vy [1 : 3]

Γ⋆ωz
[1 : 3]

03×3

06×3

 , Be =


Γ⋆vx [4] 0

0 Γ⋆vy [4]

0 Γ⋆ωz
[4]

03×2

 ,
Ce =

[
Γ⋆vx [5] Γ⋆vy [5] Γ⋆ωz

[5] 01×3

]⊤
.

These are then added to the nominal ATV dynamics to obtain the complete ATV

model for (4.18c): A(z̄;Dj−1) = Af + Ae, B(z̄;Dj−1) = Bf +Be, and C(z̄;Dj−1) =

Cf + Ce, where Af and Bf are the Jacobians of f w.r.t. x and u evaluated at z̄ and

Cf = f(x̄, ū)− Af x̄−Bf ū. We note that the key difference between this procedure
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and that in [42] is that the regressive learning is performed on the error between the

prediction of the nominal model and the actual state evolution data instead of on the

entire model in (4.19).

To understand why our approach to model learning is more robust to scarce data,

consider the case where all ∥z̄− zm∥Q in (4.22) are close to or greater than the kernel

bandwidth h (i.e., when the data zm are far from the linearization point z̄ w.r.t. h).

When this occurs, K(∥z̄ − zm∥2Q) ≈ 0, which means that the regularization term in

(4.22) dominates the least squares objective and we can therefore conclude that the

optimal solution Γ⋆l ≈ 0. When regressing the nominal dynamics matrices directly, as

in [42], this would result in setting elements of those matrices to approximately zero,

which would be disastrous in terms of model accuracy. On the other hand, when

regressing the error matrices, setting elements to zero would simply correspond to

not applying any data-based correction to the nominal linearized dynamics. This

allows for a natural trade-off between the nominal and data-corrected models based

on the quality of the dataset. Of course, this could be mitigated by the selection of a

large enough bandwidth h. However, as this is a tuning parameter which is meant

to act as a threshold on a weighted distance metric in high dimensions, it may not

be immediately apparent what constitutes a good setting. Therefore, we want the

EL-MPC policy to be robust to values of h to allow for safe tuning of the controller.

4.3 Experiments and Results

We now present a set of experiments in simulation and hardware to demonstrate the

effectiveness of EL-MPC’s error dynamics regression in autonomous racing. The key

metrics throughout these experiments are

• 20th-iteration lap time (ILT-20): the average lap time after running the LMPC

and EL-MPC for 20 iterations.

• Iterations to fail (ITF): the average number of iterations before an experiment

fails due to loss of control or track boundary violation.
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Figure 4.2: Average error of the learned model (Top) and lap times (bottom) over
iterations for various settings of the bandwidth h. Red and blue lines correspond to
the error regression and full regression cases, respectively. A cross is placed where
failure occurs due to the vehicle leaving the track.

4.3.1 Robustness Study on Learning Parameters

This experiment aims to study how LMPC and EL-MPC parameter tunings affect the

safety of the learning process. The motivation is that there are not many trial-and-

error opportunities when tuning parameters on safety-critical hardware such as a race

car, and a robust control setup should be able to handle a broad range of parameter

settings without destabilizing the system. We set up simulation experiments to

compare our approach against the LMPC implementation in [42] in terms of their

robustness to the change in the bandwidth parameter h and the control-rate cost

(CRC) (c∆u in (4.18a)). Intuitively, the bandwidth h governs a tradeoff between
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the quality and quantity of the data used for model regression. Whereas a high

bandwidth allows for potentially more data points to be selected, they can be far (in

the sense of the norm ∥ · ∥Q) from the linearization point. On the other hand, a low

bandwidth requires that the data points be close to the linearization point, but could

result in few data points being selected when data is sparse. As for the CRC, it is

analogous to the “learning rate” for EL-MPC. A higher CRC will penalize drastic

changes in the control input and keep the vehicle closer to the safe set over the MPC

horizon. Both h and the CRC are therefore key parameters when tuning the behavior

of the EL-MPC policy. For all simulation studies, we use the L-shaped track shown

in Figure 4.5 and model the rigid body with the dynamic bicycle model. The tire

forces are modeled with the Pacejka tire model [2] with tire-road friction coefficient

µ = 0.9.

In our first simulation experiment, we set CRC = 0.1 and compare the effect

of the bandwidth h on the accuracy of the learned model for our error regression

EL-MPC and the full regression LMPC from [42]. In the error regression case, we

use the kinematic bicycle model as the nominal model in (4.15), which induces

mismatch with the simulation model. To measure accuracy of the learned model, we

compute the Frobenius norm of the difference between the learned dynamics matrix

A(z̄,Dj−1) and the linearized dynamics of the simulation model at each time step

and record the average over each iteration. The results for h = {3, 4, 5, 10} are shown

in Figure 4.2, where we may immediately observe that for high settings of h, both the

error and full regression cases perform similarly in both the learned model accuracy

and lap times. Importantly, we see that the error regression case can correct for

the mismatch between the nominal and simulation models, which is shown by the

green line. For low settings of h, it can be seen that while [42] fails after the second

iteration, the error regression EL-MPC is able to remain stable and converge to a

similar performance to that of the high-bandwidth cases. This is due to the reasons

discussed in Section 4.2.5, where sparsity w.r.t. h can result in significant model

inaccuracies in [42], but would naturally induce a fallback to the nominal model in the

error regression case. Sparsity in the regression data is especially acute in the initial

laps when the LMPC policy is rapidly improving vehicle performance, as there can be

significant differences in the data between successive laps. We note that the behavior

of the error regression case is largely dependent on the accuracy of the nominal model
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when data is sparse and stability cannot be guaranteed for arbitrary realizations

of the nominal model. However, especially in car racing, it is not unreasonable to

assume access to a fairly accurate nominal model, which can be obtained through

standard system identification approaches. Future work will examine the effect of

distance between the nominal and true system on the stability of the EL-MPC.

In our second simulation experiment, we fixed the bandwidth to h = 5, ran both

LMPC and EL-MPC implementations with CRC = {1.0, 0.5, 0.1, 0.05, 0.01}, and
recorded the lap time at every iteration. Like the previous study, we purposely

introduce mismatch in the nominal model, though for this study, we do so through

the tire-road friction coefficient. Whereas a value of 0.9 is used in the simulation

model, a value of 1.2 is chosen for the EL-MPC nominal dynamics model in (4.15),

which is typically only seen on full-scale race cars with racing slick tires. This would

have induced dangerous over-confidence in the model about the surface friction, as

shown in the following hardware experiments, if no dynamics learning is used. Table

4.1 presents the key results of this experiment, where we observe that with CRC

penalties of 1.0, 0.5, and 0.1, both [42] and our approach show similar performance at

the end of 20 laps, with [42] achieving slightly faster lap time reduction, as evidenced

in Figure 4.3. However, once we decrease the CRC below 0.1, we see that [42] fails to

complete the 20 laps, whereas our method exhibits greater robustness to different

settings of the CRC and can still converge to high-performing lap times within 20

iterations.

Overall, our simulation experiments suggest that EL-MPC with error dynamics

regression exhibits greater stability and robustness to key parameter settings and

works well even when scarce dynamics data are available, compared to LMPC. These

properties could potentially make the system more suitable for hardware deployment

in safety-critical applications.

4.3.2 Hardware Experiment Comparing Learning

Performance

In this section, we present results from physical experiments with the Berkeley

Autonomous Race Car (BARC) platform, which closely mimics the original F1TENTH

vehicle system presented in Chapter 2. EL-MPC computation is done on a laptop
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Control Rate Cost
ILT-20 ITF

[42] ours [42] ours

1.0 6.4 6.5 20+ 20+
0.5 6.0 6.2 20+ 20+
0.1 5.5 5.6 20+ 20+
0.05 - 5.2 6 20+
0.01 - 5.0 4 20+

Table 4.1: Results of the simulation robustness study. A hyphen in the 20th-Iteration
Lap Time (ILT-20) means that the algorithm fails before the 20th iteration. An
Iteration to Fail (ITF) of 20+ means that the algorithm did not fail in the 20-iteration
experiment.

Figure 4.3: Results from the CRC robustness study. The left and right plots show the
iteration lap times over different CRC tunings for [42] and our EL-MPC respectively.
A red cross is placed where failure occurs due to the vehicle leaving the track.

computer with a 2.6 GHz 9th-Gen Intel Core i7 CPU, localization is provided by a

motion capture system, and communication with the vehicle is handled with ROS2.

We conducted two sets of experiments to demonstrate the effect of the bandwidth h

on the stability and learning performance of [42] and our error regression EL-MPC.

Each set of experiments consists of 10 runs of at most 20 laps with CRC = 0.1. We

record the lap times and record any failure cases before the 20-lap threshold.

In the first experiment, we run [42] and our EL-MPC with h = 10. This cor-

responds to the high-bandwidth case in the simulation study, where both policies

achieved similar performance and were able to successfully complete 20 laps. The

results of this experiment are shown in the top row of plots in Figure 4.4 with [42]

on the left and ours on the right, where we again see that the two approaches show

similar performance in lap time reduction and are able to remain stable over 20
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Figure 4.4: Per-iteration results of the BARC hardware experiment. The four smaller
plots show the lap-time reduction of the 10 trials. The purple and blue plots on the
left are with [42], whereas the green and red plots on the right are with EL-MPC.
The combined plot on the right compares the average lap times achieved. A red cross
is placed where failure occurs due to the vehicle leaving the track. Note that the blue
plot has five overlapping failure marks.

Controller Configuration Avg. ILT-20 Avg. ITF

Full Regression ([42], h = 10.0) 6.69 20+
Error Regression (ours, h = 10.0) 6.82 20+
Full Regression ([42], h = 3.0) 6.53 10.5
Error Regression (ours, h = 3.0) 6.66 19.1

Table 4.2: Results of the BARC hardware experiment.

laps. This corroborates our simulation study and shows that with proper tuning,

our EL-MPC is essentially equivalent to [42]. In the second experiment, we run [42]

and our EL-MPC with h = 3. This corresponds to the low-bandwidth case in the

simulation study, where data sparsity has a destabilizing effect on [42]. The results

of our experiment are shown in the bottom row of plots in Figure 4.4, which also

supports our observations from the simulation study. In particular, we observe that

when a low-bandwidth setting is used, [42] failed in 5 of the 10 trials, whereas our

EL-MPC only failed in a single trial.
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Figure 4.5: Visualization of the 1st, 5th and 20th iteration’s trajectory of EL-MPC
with error dynamics regression on the BARC platform.

4.3.3 Hardware Demonstration on a Full-Size Race Car

In this demonstration, we deployed our EL-MPC and error dynamics regression

strategy on the AV-21 race car [51], which is the primary competition vehicle for

Indy Autonomous Challenge as stated in Chapter 1. The race track used for this

demonstration is the Putnam Park Road Course in Indiana, USA. We construct the

initial dataset D0 for the vehicle by running a tracking MPC on the center line of

the track at 10 m/s for 3 laps. We note that this step could also be done with a

more rudimentary controller. We then ran EL-MPC with error dynamics regression

for 10 iterations. Figure 4.6 visualizes the trajectory driven by the vehicle, with a

zoomed-in view to highlight how EL-MPC optimizes the shape of the trajectory for

a hairpin turn. It can be clearly seen in Figure 4.6 that the vehicle starts at lower

speeds closer to the center line and incrementally increases its speed through the

corners and approaches the track boundary constraint.

4.4 Summary

In this chapter, we proposes a new error dynamics learning approach under the

EL-MPC framework to iteratively and safely explore the boundary of vehicle handling

limit in autonomous racing. We based the learning on a nominal dynamics model,

which provides explanability and safety fallback for the learning process. We then

derived the regression method on top to learn a local approximation of the nonlinear

model mismatch. Through simulation and hardware experiments, we showed that

our method exhibits greater robustness against parameter tuning and data scarcity
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Figure 4.6: Overlay of the IAC car’s trajectory running EL-MPC with error dynamics
regression. The data are collected at the Putnam Park Road Course in Indiana,
USA. The zoomed-in image of the hairpin turn shows iterative improvement towards
optimal cornering in the 1st, 5th, and 20th lap.

compared with previous LMPC works, and offers new potential solutions to address

the challenge of vehicle dynamics data acquisition in high-speed autonomous racing.

We highlight the application of Spline-Opt in this chapter. In the experiment

section, in order to capture the entire dynamics and control policy learning process

from an unbiased prior, we have chosen to use the centerline of the race tracks as

the tracking reference to form the initial dataset D0. But we could also use the

result of Spline-Opt as the initial reference, which hypothetically would lead to faster

convergence of the learning algorithm, and higher likelihood in finding the globally

optimal trajectory.
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Chapter 5

Conclusions

This thesis introduces a pipeline of robot learning frameworks driven by optimal

control in autonomous racing. They are synthesized in Figure 5.1. During the offline

process, we use Spline-Opt to convert an un-optimized reference, such as the centerline

of a trajectory, into a curvature-optimal, fully-parameterized, and twice-differentiable

trajectory. This process relies on minimum dynamics data available to the user,

and produces a reasonably good initial guess for the true time-optimal trajectory.

We then run the EL-MPC online, which iteratively learns the locally approximated

error dynamics, and stores them as a dataset for querying. This allows the Learning

MPC policy to explore a convex safe set around the current-iteration trajectory, and

improve the vehicle lap time while considering the safety of the handling.

Future work would look into converting Spline-Opt into a tangible online trajectory

planning method, thanks to its superiority in optimization speed compared to discrete

trajectory optimization. In addition, the current EL-MPC formulation, like its

predecessor LMPC, fails to reason about changing dynamic conditions, as the dataset

of previous iterations cannot rapidly cope with sudden changes in the environment.

Deep adaptation based on [45] could be explored to let EL-MPC policy continue to

perform under time-varying dynamic conditions.
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Figure 5.1: A pipeline combining Spline-Opt with EL-MPC for offline trajectory
optimization and online learning of dynamics and control policy.
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