
Tightly Coupled LiDAR-Inertial Odometry
Taylor Pool

CMU-RI-TR-24-17

May 2024

School of Computer Science
The Robotics Institue

Carnegie Mellon University
Pittsburgh, Pennsylvania

Thesis Committee
Michael Kaess, Chair
Zach Manchester

Shibo Zhao

Submitted in partial fulfillment of the requirements for the Degree of Master
of Science

Copyright ©2024 Taylor Pool



Abstract

In the age of self-driving, LiDAR and IMU represent two of the most ubiqui-
tous sensors in use. Kalman filtering and loosely coupled approaches domi-
nate industry techniques, while current research trends towards a more tighly
coupled formulation involving a joint optimization of IMU and LiDAR mea-
surements. After two years of experience working with and creating tightly
coupled LiDAR-inertial odometry (LIO) systems for offroad and indoor envi-
ronments, we detail our findings regarding such implementations. Moreover,
we present a general framework involving point-to-point based registration,
an adaptive robust kernel, and state-of-the-art preintegration for odometry.
Our method operates in real-time on a moderately powerful CPU, and we
showcase its capabilities in high speed offroad environments, as well as indoor
environments.

Furthermore, we provide an extensive section devoted to background in-
formation required to implement our version of LiDAR-inertial odometry. All
algorithms and equations (except for IMU preintegration) are given with the
goal of this document being completely self-contained. We provide robust
analysis of tradeoffs made along the way, and provide direction for future
improvements based on real-world observations on real hardware.

The key contributions were developed over two programs: DARPA RACER,
a program exploring high-speed off-road autonomy across desert and wooded
environments, and MMPUG, a program devoted to indoor navigation with
small mobile robots.

1



Acknowledgements

My advisor, Dr. Michael Kaess, has been a constant source of knowledge
and encouragement. This thesis would not have been possible if not for his
generous expertise. I also owe much to Dr. Matt Travers for gifting me
the opportunity to work on real robots. That has been so very rewarding.
Great thanks also goes to my committee members: Shibo Zhao and Dr. Zach
Manchester for their key insights and valuable feedback over the course of
writing this thesis. I would also be remiss if I didn’t acknowledge Darwin
Mick, Jay Maier, and Adam Johnson for their grit and intellectually stim-
ulating discussions. I am grateful for their patience with my mistakes, and
their selfless help to fix them. My labmates all provided valuable interactions
that made me a better student. Thank you (in no partiular order) Montiel,
Akshay, Joe, Dan, Easton, Mohamad, Akash, Suddhu, Ray, Chris, Lihong,
Tianxiang, and Andrew. My parents, Trevor and Heather also have been
a source of encouragement during times of frustration, and I owe much to
them. Finally, I would like to thank my wife Anna who has been invariably
supportive and unfailingly kind.

2



Contents

1 Background 10

2 Related Work 16

3 Mathematical Foundations 19
3.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Random Variables . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Cumulative Distribution Functions . . . . . . . . . . . 20
3.1.3 Finite Discrete Case: Probability Mass Functions . . . 21
3.1.4 Finite Discrete Case: Expectation . . . . . . . . . . . . 21
3.1.5 Continuous Case: Probability Density Functions . . . . 21
3.1.6 Continuous Case: Expectation . . . . . . . . . . . . . . 21
3.1.7 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.8 Normal Distribution . . . . . . . . . . . . . . . . . . . 22
3.1.9 Bayes Rule . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Differentiation over Groups . . . . . . . . . . . . . . . 26

3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Unconstrained Optimization . . . . . . . . . . . . . . . 27
3.3.2 Equality Constraints . . . . . . . . . . . . . . . . . . . 27
3.3.3 Taylor’s Theorem Applied to the Cost Function . . . . 28
3.3.4 First Order Necessary Condition for Global Optimum . 28
3.3.5 Second Order Necessary Conditions for Global Optimum 28
3.3.6 Robust Estimators (Geman-McClure) . . . . . . . . . . 32

4 LiDAR-Inertial Odometry Foundations 36
4.1 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3



4.2 The Inertial Measurement Unit . . . . . . . . . . . . . . . . . 37

5 Tightly Coupled LiDAR-Inertial Odometry 40
5.1 Dewarping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Constant Velocity Based Model . . . . . . . . . . . . . 42
5.1.2 Interpolation Model . . . . . . . . . . . . . . . . . . . . 43
5.1.3 Combining Dewarping Methods . . . . . . . . . . . . . 44
5.1.4 Parallelization . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Scan to Map Registration . . . . . . . . . . . . . . . . . . . . 44
5.3 Iterative Closest Point . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Extracting Edge and Planar Points . . . . . . . . . . . 48
5.3.2 Voxel Map . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.3 Outlier Rejection . . . . . . . . . . . . . . . . . . . . . 51
5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Pose Refinement 52
6.1 Building the Bayes Net . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 State Variables . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 Bias Propagation . . . . . . . . . . . . . . . . . . . . . 52
6.1.3 Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.4 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.5 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Forming the Cost Function . . . . . . . . . . . . . . . . . . . . 53
6.2.1 Normal Implies Nonlinear Least Squares . . . . . . . . 55
6.2.2 Probability of 3D Pose . . . . . . . . . . . . . . . . . . 55
6.2.3 Probability of 3D Velocity . . . . . . . . . . . . . . . . 56
6.2.4 Probability of Imu Bias . . . . . . . . . . . . . . . . . . 56
6.2.5 Fixed-lag Smoothing . . . . . . . . . . . . . . . . . . . 56
6.2.6 Factor Graphs . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.7 Preintegrated IMU Factor . . . . . . . . . . . . . . . . 59

6.3 Map Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Results 61
7.1 MMPUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 DARPA RACER . . . . . . . . . . . . . . . . . . . . . . . . . 62

4



8 Future Work and Conclusion 65
8.1 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 65
8.2 IMU Dropout Compensation . . . . . . . . . . . . . . . . . . . 65
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5



List of Algorithms

1 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . 30
2 Interpolation-based dewarping . . . . . . . . . . . . . . . . . . 44
3 Iterative closest point . . . . . . . . . . . . . . . . . . . . . . . 46
4 Finding the voxel coordinates . . . . . . . . . . . . . . . . . . 50
5 Insert into voxel grid . . . . . . . . . . . . . . . . . . . . . . . 51

6



List of Figures

1.1 An example of a mechanically rotating LiDAR (VLP-16); Credit:
Velodyne Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 A drone flying with LiDAR sensor attached on top; Credit:
Near Earth Autonomy . . . . . . . . . . . . . . . . . . . . . . 12

1.3 A self-driving car with LiDAR sensor attached to front; Credit:
Glydways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 A vehicle driving with LiDAR sensors attached; Credit: DARPA
RACER Website . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Various robots with LiDAR sensors attached; Credit: Matt Lab 15

3.1 Demonstration of outlier rejection scheme; From left to right,
naive least squares fitting without outliers, naive least squares
fitting with outlier present, robust estimator fitting with out-
lier present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Geman-McClure with various kernel values . . . . . . . . . . . 34
3.3 Geman-McClure induced weighting . . . . . . . . . . . . . . . 35

4.1 An example of a solid state LiDAR; Credit: Livox . . . . . . . 37
4.2 An Inertial measurement unit (Epson G330) . . . . . . . . . . 38

5.1 High-level architecture for LIO system . . . . . . . . . . . . . 41
5.2 Skewed point cloud with constant velocity model . . . . . . . 43
5.3 From left to right: point, planar, and edge features . . . . . . 47
5.4 Scan generated by a VLP-16 LiDAR sensor . . . . . . . . . . . 48

6.1 Building the Bayes net for LiDAR-inertial odometry . . . . . . 54
6.2 Factor graph For LiDAR-inertial odometry with relative pose

factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7



6.3 Factor graph for LiDAR-inertial odometry with global pose
factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Loosely coupled methods (red) take the registration hypothe-
sis for map update. In contrast, tightly coupled methods like
ours (blue) integrate information from the pose refinement step 60

7.1 MMPUG Results; Credit: Darwin Mick . . . . . . . . . . . . . 62
7.2 3D MMPUG Results; Credit: Darwin Mick . . . . . . . . . . . 63
7.3 Large MMPUG Results; Credit: Darwin Mick . . . . . . . . . 63
7.4 Result from DARPA RACER vehicle at Gascola . . . . . . . . 64

8.1 Factor graph for LiDAR-inertial odometry with IMU dropout
compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8



List of Tables

2.1 Comparison of various LiDAR frameworks . . . . . . . . . . . 16
2.2 Robust methods for LiDAR scan registration . . . . . . . . . . 17

3.1 Comparison of various m-estimators . . . . . . . . . . . . . . . 35

4.1 Comparison between LiDAR sensors . . . . . . . . . . . . . . 37

5.1 Various values of the Cantor hash function, c . . . . . . . . . . 50

9



Chapter 1

Background

In 2023, the total human population surpassed 8 billion people. This is a re-
markable achievement that also brings unprecedented challenges. As demand
for food, water, transportation, education, and communication continue to
increase, robots can and will provide essential capabilities to cope with these
rising needs, stemming largely from autonomous operation. In each situation,
robots need to understand their position and velocity. This is the principle
task of odometry, and is critical to all other areas of robot operation, includ-
ing perception, planning, and control. Key sensor technologies have enabled
advances in odometry estimation. Among these are LiDAR (Light Ranging
and Detection) and IMU (Inertial Measurement Unit).

LiDAR (see Figure 1.1) is a sensor that samples points made by the
intersection of nanometer-wavelength light with surfaces. A single LiDAR
scan contains thousands of such points, each collected at a discrete time.
Because of the small wavelength used, LiDAR ranges measurements are very
precise when no motion is present. However, high robot velocity during scans
causes motion distortion, which severely limits accuracy. Worse, LiDAR
scans have a frequency of 10-20 Hz, which is not sufficient for many real-time
controllers.

On the other hand, IMU has a higher output rate (hundreds of Hz),
correlated with acceleration and angular velocity in the body frame. Unfor-
tunately, the IMU does not observe these quantities directly, instead measur-
ing specific force: a combination of acceleration and the normal force due to
gravity that depends on the orientation of the IMU itself. Additionally, IMU
tends to suffer from biases that cannot be factory calibrated because they
slowly change over time. Naive reliance on IMU for odometry estimation will

10



Figure 1.1: An example of a mechanically rotating LiDAR (VLP-16); Credit:
Velodyne Lidar

almost inevitably diverge due the double integration of discrete acceleration
measurements and slowly varying biases.

Fortunately, combining LiDAR and IMU into a single odometry pipeline
mitigates the issues specific to each individual sensor, and creates a robust
solution. This is our approach.

Companies such as Near Earth Autonomy (Figure 1.2) and Glydways
(Figure 1.3) rely on LIDAR sensors for navigation and perception.

In this document, we explore LiDAR-inertial odometry and detail our
findings on a novel algorithm that makes a significant departure from the
existing literature.

Over the course of two years, projects such as DARPA RACER (Figure
1.4) and MMPUG (Figure 1.5) have utilized LiDAR-inertial odometry to
great effect. The development of this odometry algorithm is the main topic
of our thesis. It should be noted that the fusion of IMU and LiDAR has
been the study of many research papers in robotics. We seek to push the
design of LiDAR-inertial odometry even further through the introduction
of a tightly-coupled framework. We present results, and show that we are
able to achieve robust results on a number of different environments. The
combination of IMU and LiDAR is especially advantageous in long feature-
less hallways, which traditionally stymie LiDAR. We present the approach of
simpler but more robust methods in order to demonstrate that less is more,
even in robotics. While we acknowledge that sophistication may yield state

11



Figure 1.2: A drone flying with LiDAR sensor attached on top; Credit: Near
Earth Autonomy

Figure 1.3: A self-driving car with LiDAR sensor attached to front; Credit:
Glydways

12



of the art results, this often comes at the cost of environment-based tuning,
and in some cases, loss of robustness in the algorithm itself. We feel that a
single odometry pipeline that works across a variety of sensor configurations
and environments is of more benefit to the robotics community at large a
highly specialized architecture that performes well within a single environ-
ment. This key insight motivates the formulation of our framework. Our
core quest is to integrate LiDAR and IMU into a single odometry framework
in a tightly coupled fashion that achieves a synergistic effect.

13



Figure 1.4: A vehicle driving with LiDAR sensors attached; Credit: DARPA
RACER Website

14



Figure 1.5: Various robots with LiDAR sensors attached; Credit: Matt Lab

15



Chapter 2

Related Work

For ease of reference, we provide Table 2.1 for a survey of relevant LiDAR
and LiDAR-inertial odometry frameworks. We also provide Table 2.2 for a
survey of robust methods applied to state estimation.

Table 2.1: Comparison of various LiDAR frameworks

Work Year Contribution IMU

LOAM [33] 2014 Feature extraction and dewarping Optional
LeGO-LOAM [19] 2018 Segment for group plane features No

Ye [31] 2019 Tightly coupled feature-based LIO Yes
LIO-SAM [20] 2020 Smoothing for multiple scans Yes
FAST-LIO [29] 2021 Extended Kalman filter Yes
F-LOAM [27] 2021 Faster performance No
LVI-SAM [21] 2021 Combines IMU, LiDAR, vision Yes
CT-ICP [9] 2022 Continuous time trajectory estimation No

FAST-LIO2 [28] 2022 Incremental KD-tree Yes
KISS-ICP [25] 2023 Adaptive threshold over point-to-point ICP No
Point-LIO [13] 2023 Sequential processing point-by-point Yes

The foundations for LiDAR odometry began with [2], which specified the
basic iterative closest point algorithm. This method allowed for matching
of two separate point clouds that did not have the same number of points.
Chen and Medioni added an additional residal corresponding to point-to-
plane elements [6]. The seminal textbook, Probabilistic Robotics, [24], re-
mained a go-to source for filtering approaches to LiDAR state estimation.

16



Table 2.2: Robust methods for LiDAR scan registration

Work Year Contribution

Generalized ICP [18] 2009 Probabilistic Residuals for ICP
M-estimators [16] 2019 M-Estimators for residual

Teaser [30] 2020 Graduated Non Convexity
General Adaptive Robust Kernel [1] 2019 Generalized Robust M-Estimator
Adaptive Robust Kernels for NLS [5] 2021 Nonlinear Least Squares

However, vanilla point-to-point registration suffered greatly from outliers.
To combat this issue, authors in [18] proposed mapping uncertainty of each
LiDAR point position into uncertainty associated with the registration al-
gorithm. However, this approach still did not address how to robustly deal
with outliers. In order to decrease the number of outliers, authors of [33] pro-
posed an intelligent extraction of keypoints from a scan. However, instead
of simply extracting keypoints using a nearest-neighbor scheme, the authors
searched along individual scan lines, which provided more robust feature se-
lection. Variant of LOAM include F-LOAM [27], and LeGO-LOAM [19].
These methods could be combined with a Kalman filtering-based approach
like the Unscented Kalman Filter [26].

Orthogonally, methods for large-scale incremental inference like [15] al-
lowed for fast computation over many variables of interest.

However, other approaches sought to find more optimal estimates for
larger sets of nonlinear data. These approaches relied on smoothing over
multiple timesteps using factor graphs [8]. These factor graphs were borne
from Bayes nets [17], and represented a new method for describing cost func-
tions in state estimation.

Other approaches to combine IMU and LiDAR were integrated with vi-
sion, resulting in [34].

In an effort to address robustness, Zhang attempted to analyze the de-
generacy associated with a given cost function by examining the spectral
decomposition of the function [32].

In 2016, a major breakthrough for efficient IMU integration in the smooth-
ing framework was released in [11]. However, people still tried to understand
how to resolve outliers by using means such as m-estimators from robust
statistics [16]. Additionally, other algorithms such as [30] approached it from

17



a perspective of graduated non convexity, but this was unsuitable for high-
rate online estimation.

Many of these more recent approaches sought to leverage Lie theory [23]
for more efficient constraints, especially over rotations. In order to properly
talk about rotations, Sola released a brief guide for the roboticist [22].

More tightly coupled approaches like [31] sought to integrate IMU and
LiDAR on a larger scale in hope of obtaining more accurate results. Super
Odometry [35] and LIO-SAM [20] pioneered efforts for a more tightly coupled
framework. Fast-LIO [29] and Fast-LIO 2 [28] attempted to use an incremen-
tal KD-tree for efficient hashing and matching of LiDAR points. CT-ICP [9]
proposed using continuous time trajectories for estimation. KISS-ICP [25]
demonstrated the power of point-to-point ICP, using an intelligent robust
cost function that automatically adapted to various different environments.
This was possible due to the nature of an adaptive kernel threshold based
on the size of the correction assumed from the ICP. Point-LIO [13] showed
the power of incorporating IMU measurements as real measurements in the
Kalman Filter.

18



Chapter 3

Mathematical Foundations

3.1 Probability

In order to reason about the state of a robot, the concept of probability
is relevant. Rarely, if ever, do we know with exact certainty the position,
orientation, or velocity of any agent. Indeed, at the most fundamental level,
Heisenberg’s Uncertainty Principle [3] asserts that is impossible for one to
simultaneously know the position and velocity of any particle.

Thus, we leverage probability theory to quantifiably declare the state of
the robot and our confidence respecting said state. A useful reference is [10].

Definition 1. Define a probability space as a triple of (Ω, E, p) where

1. Ω is a set of outcomes.

2. E is a σ-algebra (collection of well-behaved subsets) of events taken
from Ω

3. p : E → [0, 1] is a probability measure

Note that p must satisfy the following three properties:

p(Ω) = 1 (3.1)

p(∅) = 0 (3.2)

p (∪ni=1Ai) ≤
n∑

i=1

p (Ai) (3.3)

19



Example 1 (Fair Coin Toss). Consider the onetime act of tossing a fair coin.
Take Ω = {H,T}, E = {∅, {H}, {T},Ω}. Since the coin is fair,

p (∅) = 0 (3.4)

p ({H}) = 1

2
(3.5)

p ({T}) = 1

2
(3.6)

p ({H,T}) = 1 (3.7)

3.1.1 Random Variables

Because it is difficult to directly observe and manipulate expressions of raw
events from E, it is useful to define a mapping between E and another space
where usual mathematical concepts operate. A random variable is such a
mapping.

Definition 2 (Random Variable). X : E → Rn is a random variable if it
is bijective. Then, with z ∈ Rn, we say p (X−1(z)) = p(z ∈ X) = p(z).
Furthermore, define support (X) = {z ∈ Rn : p(z) > 0}.

Example 2 (Fair Coin Toss). Consider again the onetime act of tossing a
fair coin. One possible random variable X : E → R is the following:

X ({T}) = 0 (3.8)

X ({H}) = 1 (3.9)

(3.10)

Random variables allow us to take summations and integrals along paths
of events. In robotics, this is critical to estimate the state of the robot.

3.1.2 Cumulative Distribution Functions

Recall that the probability of the set of outcomes, Ω is 1. Many times, we
would like to understand in terms of random variables how much of the set
of outcomes lies below a given outcome, mapped to a random variable. The
cumulative distribution function is exactly this:

FX(x) : Rn → [0, 1] , FX(x) = p ({z ∈ Rn : z ≼ x}) (3.11)

Note that FX(inf supportX) = 0, and FX(sup supportX) = 1.

20



3.1.3 Finite Discrete Case: Probability Mass Func-
tions

Let X be a discrete random variable with a finite number of corresponding
outcomes. We define the probability mass function fX(x) = p(x), and we
have

FX(x) =
n∑

k=1

fX(sk)(sk ≼ x) (3.12)

3.1.4 Finite Discrete Case: Expectation

Now, we will define the expectation, or expected value of the finite discrete
random variable, X.

E [X] =
n∑

k=1

fX(sk)sk (3.13)

3.1.5 Continuous Case: Probability Density Functions

For some continuous random variables, we can represent the cumulative dis-
tribution function as the integral over another function, which is not a prob-
ability, but which is called a probability density function.

FX(x) =

∫ x

inf support (X)

fX(s)ds (3.14)

3.1.6 Continuous Case: Expectation

In the continuous case, we can also define the expectation as the following:

E [X] =

∫
support (X)

sfX(s)ds (3.15)

Note that not all continuous random variables have an expected value.

Example 3 (Cauchy Distribution). The probability density function for the
Cauchy distribution, with support R, is:

fX(x) =
1

π (1 + x2)
(3.16)

21



Then computing the expectation of this distribution yields:

E [X] =

∫
R
fX(x)xdx (3.17)

=

∫ ∞

−∞

x

π (1 + x2)
dx (3.18)

=
1

2π
log

(
1 + x2

)
|∞−∞ (3.19)

The last expression is undefined, and so the expectation of the Cauchy dis-
tribution is also undefined.

3.1.7 Covariance

Across both continuous and finite discrete random variables, the concept of
covariance is useful. It is defined as:

Σ = E
[
(X − E [X]) (X − E [X])T

]
(3.20)

Note that the diagonal entries of Σ are called variances and denote how
much spread exists in that particular dimension. Meanwhile, off-diagonal
entries of Σ measure the amount that each dimension varies with other di-
mensions.

It should be noted that Σ is a symmetric matrix.

3.1.8 Normal Distribution

The normal distribution is of seminal importance in robotics. This is due to
its possessing special properties, a few of which we list below:

1. It maximizes differentiable entropy (defined as E [− log (fX(X))]) among
all continuous random variables with a mean and covariance [7]

2. Sampling from the normal distribution is easy via Gibb’s sampling

3. It corresponds to solving a linear system of equations, as we will see
later

4. It has a closed form propagation through a linear operator correspond-
ing to another normal distribution

22



We denote random variable X as being normally distributed with expec-
tation µ and covariance Σ by X ∼ N (µ,Σ). Then support (X) = Rn, and
the probability density function is:

fX(x) = (2π detΣ)−
1
2 exp

[
−1

2
(x− µ)T Σ−1 (x− µ)

]
(3.21)

3.1.9 Bayes Rule

Oftentimes we wish to incorporate prior information into probabilities of
other events. Other methods in robotics include maximum likelihood esti-
mation and variants of the Bayes filter. In this case, Bayes rule provides a
way to do so:

Let x ∼ X , y ∼ Y , z ∼ Z

p(x|y, z) = p(y|x, z)p(x|z)
p(y|z)

(3.22)

3.2 Rotations

Most robots need to estimated orientation as well as position. In three-
dimensional space, the set of rotations is not a vector space. To see this fact,
note that the commutative property is not satisfied for two arbitraty rota-
tions: a yaw of 90 degrees followed by a pitch of 90 degrees is not equivalent
to a pitch of 90 degrees followed by a yaw of 90 degrees. Instead, rotations
form a group, which means that they satisfy the following properties:

Definition 3 (Group). Let G = (X , ◦) be a pair consisting of a set and an
operator ◦ : X × X → X . We say x ∈ G if x ∈ X . Now take x, y, z ∈ G.
Then G is a group if

x ◦ y ∈ X (closure) (3.23)

∃I ∈ G, x ◦ I = I ◦ x = x (identity) (3.24)

∀x ∈ G;∃x−1 ∈ G : x ◦ x−1 = x−1 ◦ x = I (inverse) (3.25)

(x ◦ y) ◦ z = x ◦ (y ◦ z) (associativity) (3.26)

Example 4 (H: Group of Quaternions).

23



The group of quaternions, H = (R4 \ {0}, ◦) is defined as follows: with

x =
[
x1 x2 x3 x4

]T
, y =

[
y1 y2 y3 y4

]T

x ◦ y =


x1y1 − x2y2 − x3y3 − x4y4
x1y2 + x2y1 + x3y4 − x4y3
x1y3 − x2y4 + x3y1 + x4y2
x1y4 + x2y3 − x3y2 + x4y1

 (3.27)

Trivially, x ◦ y ∈ R4. Furthermore, let e1 =
[
1 0 0 0

]T
. Then x ◦ e1 =

e1◦x = x. Finally, x−1 = 1
||x||22

[
x1 −x2 −x3 −x4

]T
We leave confirmation

of the identity, inverse, and associativity properties as an exercise to the
reader.

To talk about rotations, we must build upon the group of quaternions by
examining a special subgroup: that of quaternions of unit norm.

Example 5 (H̄: Group of Unit Quaternions).

H̄ represents all quaternions of unit length.

H̄ = {x ∈ H : ||x||2 = 1} (3.28)

Proving that H̄ is a group is an exercise for the reader.
Notably, we can also define an operation between a unit quaterion q and

a point p ∈ R3 that corresponds to rotating p by q.

p = q ∗ p = q ◦ q(p) ◦ q−1 (3.29)

Note that q(p) =
[
0 pT

]T
Example 6 (S3: Group of 3D Rotations). We note that the set of unit
quaternions forms a double cover of the set of 3D rotations. Namely, quater-
nions q and −q correspond to the same 3D rotation. Because of this, we
constrain the quaternions we use to represent rotations to those where the
first non-zero element is positive.

3.2.1 Lie Groups

A Lie group is a mathematical construct that has a rich history, spanning
back to Sophus Lie.

24



Definition 4 (Lie Group). A Li group is a group that is also a smooth
manifold (locally appears similar to a vector space). A very brief introduction
is given here, but further information may be found in [22], [23].

The tangent space to the manifold of a Lie group is isomorphic to Rn for
some n. Thus, we say that a Lie group has dimension n. The key mappings
between a Lie group X and Rn are as follows:

1. Exponential map from Rn to the Lie group (denoted Exp : Rn → X )

2. Logarithmic map from the Lie group to Rn (denoted Log : X → Rn)

The key value of Lie theory is in taking nontrivial group structures and
providing a framework for calculus, incremental updates, and cost functions.

Example 7 (Unit Quaternions). Unit Quaternions form a Lie group. They
have a 3-dimensional tangent space. Given ω ∈ R3, the exponential is as
follows, with θ = ||ω||

2
:

Exp(ω) =


[
cos θ
ω
θ
sin θ

]
θ ̸= 0

I otherwise
(3.30)

Now, suppose we are given q ∈ H̄. Let θ = 2 ∗ arccos q1. Then the
logarithmic map is

Log(q) =

{
θ

sin θ
q2,3,4 θ ̸= 0

0 otherwise
(3.31)

Example 8 (3D Poses). 3D poses form another Lie group, and have a 6 di-
mensional tangent space corresponding to angular and linear velocities (called

a twist). Given a twist ξ =
[
ωT vT

]T ∈ R6, the exponential map is as fol-
lows:

Exp(ξ) = (Exp(ω), V (ω)v) (3.32)

V (ω) = I +
1− cos θ

θ2
⌊ω⌋× +

θ − sin θ

θ3
⌊ω⌋2× (3.33)

θ = ||ω|| (3.34)

The logarithmic map is

Log(R, t) =

[
ω

V −1 (ω) t

]
(3.35)

ω = Log (R) (3.36)

25



3.2.2 Differentiation over Groups

In order to properly optimize over rotations, we need to respect the spe-
cial structure they posses. One method of doing so is to specially define
derivatives with respect to rotations along a tangent space. By doing so, we
ensure that all rotations remain valid throughout the optimization. We take
inspiration for our approach from [22] and [14].

Let X be group of dimension n. We define box-plus to be a function

⊞ : X × Rn → X (3.37)

Let Y be a group of dimension m. We also define box-minus to be a
function

⊟ : Y × Y → Rm (3.38)

Let f : X → Y be a function.
Then the Frechet derivative of f is defined as Df : X → Rm×n if the

following limit exists:

lim
h→0

|| (f(x⊞ h)⊟ f(x))−Df(x)h||
||h||

= 0, h ∈ Rn (3.39)

Example 9 (Vectors in Rn). Let x, y ∈ Rn. Then ⊞,⊟ are trivial operators:

x⊞ y = x+ y (3.40)

x⊟ y = x− y (3.41)

Example 10 (3D Rotations). Let R,R1, R2 ∈ H̄. Furthermore, let ω ∈ R3.
We define ⊞,⊟ as follows:

R⊞ ω = R ◦ Expω (3.42)

R1 ⊟R2 = Log(R2
−1 ◦R1) (3.43)

Example 11 (3D Poses). Let T ∈ SE (3) , T = (R, p). Moreover, let ξ ∈
R6, ξ =

[
ωT, vT

]T
.

T ⊞ ξ = (R⊞ ω, p+ v) (3.44)

T1 ⊟ T2 =

[
R1 ⊟R2

p1 − p2

]
(3.45)

Note that this choice of ⊞,⊟ does not conform to the motion of a rigid
body, and is not the exponential map for SE (3). We can use this more effi-
cient operation within an optimization framework, but not for actual motion
propagation.

26



3.3 Optimization

In state estimation we seek to find the most likely state of the robot (Max-
imum Likelihood Estimation) or the most likely state of the robot given
some prior information (Maximum A Posteriori). Both of these problems
may be formulated in terms of optimization, and so it is critical to have an
understanding of this topic.

We will additionally discuss equality constraints, as these are necessary
for rotations. However, we will not discuss inequality constraints.

3.3.1 Unconstrained Optimization

Let X be a group of dimension n with operations ⊞,⊟ defined.
Let f : X → R. We seek to find the global optimum x⋆

x⋆ = min
x

f(x) (3.46)

Then we define the (Frechet) derivative Df : X → R1×n where the fol-
lowing limit is defined

lim
h→0

|| (f(x⊞ h)⊟ f(x))−Df(x)h||
||h||

= 0, h ∈ Rn (3.47)

We define the gradient of f as ∇f = DTf .
Finally, we define the Hessian of f as D2f = D

[
DTf

]
= D [∇f ]. Note

that the Hessian is symmetric.

3.3.2 Equality Constraints

We note that including equality constraints is relatively simple.
We assume that the equality constraints are formulated as g(x) = 0, g :

X → Rm.
Then we introduce the dual variable λ ∈ Rm, and create the Augmented

Lagrangian (so named because we augmented the variables with dual ones):

L (x, λ) = f(x) + λTg(x) (3.48)

The original optimization problem then becomes argminx,λ L (x, λ). All
previous machinery still applies. We note that optimization over rotations
can be carried out in this form without relying on the ⊞,⊟ operators. How-
ever, due to the popularity of this approach in state estimation, and its use
in our nonlinear optimization library GTSAM, we emphasize that approach.

27



3.3.3 Taylor’s Theorem Applied to the Cost Function

We next examine Taylors Theorem applied twice over for a cost function:

Theorem 1 (Taylor’s Theorem). Let f : X → R be twice-differentiable. Let
x ∈ X ,∆x ∈ dim(X ).

f(x⊞∆x) = f(x) +Df(x)∆x+
1

2
∆xTD2f(x)∆x+O

(
∆x3

)
(3.49)

≈ f(x) +Df(x)∆x+
1

2
∆xTD2f(x)∆x (3.50)

3.3.4 First Order Necessary Condition for Global Op-
timum

In order for a twice-differentiable function to have a global optimum, the
following condition must hold.

∀x ∈ Rn, f(x∗) ≤ f(x) =⇒ Df(x∗) = 0 (3.51)

It should be noted that this is not a sufficient condition to certify that
x ∈ X is a global optimum.

3.3.5 Second Order Necessary Conditions for Global
Optimum

We begin with some notation for a matrix A ∈ Rn×n:

A > 0 ⇐⇒ xTAx > 0, ∀x ∈ Rn (3.52)

A ≥ 0 ⇐⇒ xTAx ≥ 0, ∀x ∈ Rn (3.53)

We say A is positive definite if A > 0, and A is positive semi-definite if
A ≥ 0.

Then, a necessary second order condition for global optimum pertains to
the Hessian of the cost function:

∀x ∈ Rn, f(x∗) ≤ f(x) =⇒ D2f(x∗) ≥ 0 (3.54)

Again, this is not a sufficient condition to certify that x is a global opti-
mum.

28



First and Second Order Sufficient Conditions for Local Optimum

Now, we provide first and second order sufficient conditions for local opti-
mum. In other words, if x⋆ satisfies the conditions below, it is an optimum
within a local neighborhood. However, x⋆ is not guarenteed to be the globally
optimum solution.

Df(x∗) = 0 ∧D2f(x∗) > 0 =⇒ (3.55)

∃ϵ > 0 s.t 0 < ||x− x∗|| < ϵ =⇒ f(x∗) ≤ f(x) (3.56)

Analytic Solutions

In order to find the globally optimal solution, we can find all the local opti-
mum according to the first (and second order) sufficient conditions. Then the
global optimum is the local optimum that has the smallest cost. To restate,
finding the global optimum involves the following steps:

1. Find the set S = {x ∈ Rn : Df(x) = 0 ∧D2f(x) > 0}

2. Find the set T = {x ∈ S : D2f(x) > 0}

3. x∗ = minT

Newton’s Method

Unfortunately, finding the analytical solution to optimization problems in
robotics is often impossible. Instead we turn to numerical methods for finding
the optimal value. The branch of numerical methods we consider are iterative
ones that operate given local information. Other global methods for finding
optimal values are out of scope for this thesis.

Recall that

f(x⊞∆x) ≈ f(x) +Df(x)∆x (3.57)

Df(x⊞∆x) ≈ Df(x) + ∆xTD2f(x) (3.58)

We set Df(x⊞∆x) = 0 and solve for ∆x.

0 = Df(x) + ∆xTD2f(x) (3.59)

D2f(x)∆x = −DTf(x) (3.60)

This forms the basis for Newton’s method as described in Algorithm 1.

29



Algorithm 1 Newton’s method

1: function Newton’s Method(f,Df,D2f, x0)
2: k ← 0
3: δ ← δmax + 1
4: while k < max iterations and δ > δmax do
5: solve D2f(xk)∆xk = −DTf(xk)
6: xk+1 ← xk ⊞∆xk

7: δ ← ||∆xk||
8: k ← k + 1
9: end while

10: end function

Nonlinear Least Squares

The nonlinear least squares problem is the following:
Minimize f : X → R,

f(x) =
1

2

l∑
i=1

rTi (x)ri(x), ri : X → Rn (3.61)

We will leverage Newton’s method to optimize over f .
Note that differentiation is a linear operator, and so Df : X → R1×n is:

Df(x) =
l∑

i=1

rTi (x)Dri(x) (3.62)

Now, we must compute the Hessian, D2f . Note that

D2f(x) =
l∑

i=1

D
[
DT[ri]ri

]
(x) (3.63)

From here on, we drop the i-th index notation from ri, Dri to make the
reading simpler.

To aid computing D
[
DT[r]r

]
(x) we introduce two operators: vec and ⊗.

First, let vec : Rm×n → Rmn be the operator which vectorizes a matrix

30



by sequentially stacking its columns.

A =
[
a1 a2 · · · an

]
(3.64)

vec(A) =


a1
a2
...
an

 (3.65)

Second, let ⊗ : Rm×n × Rl×p → Rml×np be the Kroneker Product:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

 (3.66)

With In ∈ Rn×n as the identity matrix, we have

D
[
DT[r]r

]
(x) = DTr(x)Dr(x) +

(
rT(x)⊗ In

)
D [vec (Dr)] (x) (3.67)

Gauss-Newton Method

Due to the second term in Equation 3.67, computing the Hessian D2f is
prohibitively expensive for many applications in state estimation. This is
because the size of the Hessian scales quadratically with the number of states
to be estimated.

To recify this issue, the Gauss-Newton method simply omits the second
term, and approximates

D
[
DT[r]r

]
(x) ≈ DTr(x)Dr(x) (3.68)

It then proceeds through Newton’s Method (Algorithm 1) as normal.

Levenberg-Marquardt Method

While Gauss-Newton performs reasonably well, it can be overconfident due
to its approximation of the Hessian. This can result in steps that lead to
increases in the value of the objective function, which is undesirable.

To resolve this issue, Levenberg proposed regularizing the approximation
of the Hessian with a single parameter λ ∈ R.

D
[
DT[r]r

]
(x) ≈ DTr(x)Dr(x) + λI (3.69)

31



In practice, one changes λ each iteration over the course of the opti-
mization, increasing it if more regularization is needed, and decreasing it
otherwise.

Marquardt rediscovered Levenberg’s algorithm and proposed scaling λ
by the diagonal of the approximated Hessian, which aims to address scaling
discrepancies between different coordinates.

D
[
DT[r]r

]
(x) ≈ DTr(x)Dr(x) + λ · diag

(
DTr(x)Dr(x)

)
(3.70)

For full details, see [8].

3.3.6 Robust Estimators (Geman-McClure)

In its naive formulation, nonlinear least squares is susceptible to outliers.
Outliers occur in many places in state estimation, from wrong correspon-
dences between points, to bad measurements. For example, see Figure 3.1,
where the objective is to fit a straight line to noisy points. A single outlier
in the top right corner is enough to severely degrade the curve fitting. A
standard method to reduce the impact of outliers is robust estimation using
M-Estimators.

Mathematically, M-Estimators modify the cost function associated with
nonlinear least squares to

f(x) =
n∑

i=1

ρ

(
1

2
rTi (x)ri(x)

)
(3.71)

ρ : R+ → R+ (3.72)

One such M-Estimator is the Geman-McClure function with kernel κ > 0:

ρ(x) =
1

κ+ x
x (3.73)

Figure 3.2 shows that the Geman-McClure function asymptotically ap-
proaches 1 as x approaches ∞.

Thus, the Geman-McClure function induces a weight w(x) = 1
k+x

. For
small κ, outliers are extremely deweighted. For large κ, outliers are allowed
to affect the result much more.

Figure 3.3 shows the weighting effect for various values of κ.
While a closed form solution to the naive least-squares problem exists as

ATAx = ATb, adding an M-Estimator generally removes the possibility of

32



Figure 3.1: Demonstration of outlier rejection scheme; From left to right,
naive least squares fitting without outliers, naive least squares fitting with
outlier present, robust estimator fitting with outlier present

such a direct path. Hence, we fall back to Newton’s method for optimization,
and note the following formulations for the first and second derivatives of f :

yi(x) =
1

2
rTi (x)ri(x) (3.74)

Df(x) =
n∑

i=1

Dρi(yi(x)) Dyi(x) (3.75)

Dyi(x) = rTi (x)Dri(x) (3.76)

D2yi(x) ≈ DTri(x)Dri(x) (3.77)

33



Figure 3.2: Geman-McClure with various kernel values

D2f(x) = D
[
DTf

]
(x) (3.78)

= D

[
n∑

i=1

DTyi(x)Dρi(yi(x))

]
(3.79)

=
n∑

i=1

D
[
DTyi(x)Dρi(yi(x))

]
(3.80)

=
n∑

i=1

[
D2yi(x)Dρi(yi(x)) +DTyi(x)D

2ρi(yi(x))Dyi(x)
]

(3.81)

≈
n∑

i=1

[
DTri(x)Dri(x)Dρi(yi(x)) +DTyi(x)D

2ρi(yi(x))Dyi(x)
]

(3.82)

=
n∑

i=1

[
DρiD

TriDri +D2ρiD
TyiDyi

]
(3.83)

Table 3.1 displays various M-Estimators and their respective first and
second derivatives.

34



Figure 3.3: Geman-McClure induced weighting

Table 3.1: Comparison of various m-estimators

Name ρ Dρ D2ρ Bounded?
Geman-McClure y

y+κ
κ

(y+κ)2
− 2κ

(y+κ)3
Yes

Welsch 1− exp
(
− y

κ

)
1
κ
exp

(
− y

κ

)
− 1

κ2 exp
(
− y

κ

)
Yes

Cauchy log
(
y+κ
κ

)
1

y+κ
− 1

(y+κ)2
No

35



Chapter 4

LiDAR-Inertial Odometry
Foundations

4.1 LiDAR

LiDAR, short for LIght Detection and Ranging, is a key sensor present in
robotics today. The core technology that enables LiDAR is precise mea-
surement of time, specifically the time taken for an emitted light pulse to
return to the sensor. Because the speed of light is constant, we are able to
deduce the range of the object off of which the light reflected. Because of the
high power requirements associated with LiDAR to overcome the background
noise from other light sources, most LiDAR sensors do not fire beams in all
directions at the same moment in time. Rather, LiDAR sensors fire a small
number of concentrated beams, and then quickly shift the directions of those
beams over time in order to obtain greater coverage of a given area.

There are two main methods for moving the beam direction over time.
The first is through mechanically rotating the lasers themselves. This is
the more common and established approach. One popular vendor in this
area is Velodyne (presently acquired by Ouster). The Velodyne Puck has
16 lasers stacked vertically, with varying degrees of pitch. The lasers are
rotated around 10-20 Hz for a 360°coverage of the space. Unfortunately, these
systems are also reliant on reliable spinning, and need continuous calibration
for optimal performance.

The other method for movement of the beams requires no moving parts.
Solid state LiDAR sensors, such as those manufactured by Livox (see Figure

36



4.1), rely on digital technology to manipulate the direction of output of the
beams. Table 4.1 displays the various characteristics of two of the most
popular sensors.

Figure 4.1: An example of a solid state LiDAR; Credit: Livox

Table 4.1: Comparison between LiDAR sensors

Velodyne Puck Livox AVIA
Points/sec 300,000 240,000

Cost $4,600 $1,600
Horizontal FOV 360° 70.4°
Vertical FOV 30° 77.2°

4.2 The Inertial Measurement Unit

An inertial measurement unit is a high rate sensor that is responsible for the
short-term state estimation in LiDAR-inertial odometry. It outputs mea-
sured angular velocity, ω̃ and specific force ã (the sum of linear acceleration

37



and the normal force in the IMU frame r). An example of an IMU is shown
in Figure 4.2.

Figure 4.2: An Inertial measurement unit (Epson G330)

We choose to model the angular velocity, rω and linear acceleration ra in
the body frame with two forms of corruption. The first is a slowly varying
bias term, bω, ba, i.e. a random walk associated with a Wiener process [10].
The second source of corruption is normally distributed white noise, ηω, ηa.
This choice of modeling stems from [11], which was leveraged with great
success.

In summary

ω̃ = rω + bω + ηω (4.1)

ã = ra− rRw
wg + ba + ηa (4.2)

38



where

ḃω ∼ N (0,Σbω) (4.3)

ηω ∼ N (0,Σηω) (4.4)

ḃa ∼ N (0,Σba) (4.5)

ηa ∼ N (0,Σηa) (4.6)

Because of the bias associated with the IMU, it is impossible to precisely
use the IMU for dead reckoning over long periods of time, hence the value of
a LIDAR sensor.

39



Chapter 5

Tightly Coupled
LiDAR-Inertial Odometry

Our contribution can be described in a high level architecture shown in 5.1.
It begins the following key assumptions:

1. IMU messages come in at a continuous stream with no dropout

2. LiDAR and IMU messages are time-synchronized

3. IMU message rate is > 200 Hz

4. LiDAR message rate is > 10 Hz

At the outset, we leverage the IMU sensor, fused together with the current
pose estimate to propagate our state forward at a high rate.

The measurement model of the IMU from Equation 4.1 helps us under-
stand how to do so. Suppose that our robot’s pose and body velocity is
known at time tk. Then suppose that we recieve an IMU measurement,
(ω̃, ã) at time tk+1. Then we have in the continuous sense where ∗ represents
the quaternion group operator:

wṘr =
1

2
wRr ∗

[
0
rω

]
(5.1)

wṗr = wv = wRr
rv (5.2)

rv̇ = ra (5.3)

(5.4)

40



Figure 5.1: High-level architecture for LIO system

41



We can discretize the continuous equations above into a first order forward
Euler update using the 3D pose exponential map from Equation 3.32:

∆t = tk+1 − tk (5.5)
rvk+1 = rvk + rak+1∆t (5.6)

= rvk + ãk+1 + rRk
w
wg − ba (5.7)

(wRr,
wpr)

k+1 = (wRr,
wpr)

k ∗ Exp
([

rωk+1 rvk+1
]T

∆t
)

(5.8)

= (wRr,
wpr)

k ∗ Exp
([

ω̃k+1 − bω
rvk+1

]T
∆t

)
(5.9)

The approach above is taken directly from GTSAM [8]. If extra computa-
tion is available, then higher order methods may be used. These include
Runge-Kutta-Munthe-Kass methods, which we will not cover in this doc-
ument but [4] is an excellent introduction. Other more efficient methods
include Adams-Bashforth; however, these require constant time intervals be-
tween measurements which may not hold in practice.

5.1 Dewarping

Because of the nature of mechanical spinning LiDARs, individual points reg-
ister at different times. This disparity causes motion distortion if the robot is
in motion, and this distortion must be corrected for the best possible odom-
etry. Fortunately, each point return from the LiDAR contains a timestamp,
which we can use to correct the distortion. We will discuss two methods of
conducting the distortion compensation, or dewarping.

5.1.1 Constant Velocity Based Model

The first method makes the assumption that the twist of the vehicle in the
body frame rkξ =

[
rkω rkv

]
is known at some time tk. Then, suppose we

receive a lidar point rjp in the body frame of the vehicle at time tj. We
further assume that tj − tk is small enough to be modeled by a constant
twist.

Then the location of the point given in the frame rk is:

rkp = Exp (rkξ · (tj − tk))
rjp (5.10)

42



Figure 5.2: Skewed point cloud with constant velocity model

This method is simple, and does not require extremely accurate time
synchronization between the IMU and the LiDAR sensor. It works rather
well for small accelerations, but struggles significantly when large ones oc-
cur, which invalidate the constant velocity assumptions. Such invalidation
appeared in our testing during an aggressive turn of a ground vehicle robot
in a narrow hallway, as shown in 5.2. For this reason, we switched to a more
accurate model based on interpolation.

5.1.2 Interpolation Model

The second method for dewarping relies on a high rate odometry stream
(usually provided by IMU fusion). We store this stream of odometry (pose
and twist) measurements in a buffer for later access.

Suppose again that we receive a point at time tp,
rpp from a scan at time

ts.
We find the odometry measurements wTri ,

wTrj that are immediately be-
fore and after tp respectively. Then, we have

rsp = rsTw ∗ interpolate
(

wTri ,
wTrj ,

ts − ti
tj − ti

)
(5.11)

Algorithm 2 describes the full interpolation scheme.

43



Algorithm 2 Interpolation-based dewarping

1: function Dewarp({ripi} , {wTj})
2: for all {ripi} do
3: Find k = supj tj < ti, l = infj tj > ti.
4: ∆← ti−tk

tl−tk
5: Use Equation 5.11 to dewarp pi
6: end for
7: end function

5.1.3 Combining Dewarping Methods

While the interpolation model discussed above works well, it relies on having
the timestamp for each lidar point contained between two already existing
odometry measurements. In reality, this may not be the case due to lag be-
tween the IMU and LiDAR sensor. To resolve this issue, it becomes necessary
to choose between the following options:

1. Wait for additional high rate odometry measurements to arrive (in-
creases lag time, more accurate)

2. Use the constant velocity model to account for any lidar points that
fall outside of high rate odometry measurements (less lag time, less
accurate)

5.1.4 Parallelization

It should be noted that the dewarping schemes presented here are highly
parallelizable. It is highly advantageous to parallelize this section so that
as much time as possible is left for scan-to-map registration. However, the
extent to which it should be parallelized depends on the processing power
available. For our purposes, C++ 17 provides a native interface to parallel
algorithms within its standard library, which is built off of Intel’s oneAPI
Threading Building Blocks (oneTBB) library.

5.2 Scan to Map Registration

The registration problem seeks to compute the optimal transform between
two point clouds, one of them being the most recent LiDAR scan. More

44



formally, let aX, bY be two sets of points, not necessarily of equal cardinality.
Then we seek to find aTb such that

∑
i ||aTb

bY − aX|| is minimized. In the
most general case, there are two different categories for the other point cloud:
the first being the previous scan. Unfortunately, pure scan-to-scan matching
can be difficult due to the sparse nature of the LiDAR point clouds generated
by each scan. At high speeds, perceptual aliasing (the idea that two different
places can look the same under a given sensor) can significantly degrade such
estimation. Because of these issues, we opt for the second approach: scan-to-
map registration. A map contains an accumulation of points from previous
scans, not limited to just one before. Because of this accumulation, the
map contains much more information, decreasing the likelihood of perceptual
aliasing and generally improving results. Unfortunately, the map also encodes
implicit transform assumptions between previous LiDAR scans. If any of
those previous transforms are imprecise, the map will be degraded, and the
registration of the current scan will be affected. However, given an IMU and
a sufficiently good registration algorithm, we can significantly decrease the
risk associated with scan-to-map registration, as we will demonstrate later.

All registration algorithms compute matches, or correspondences between
elements of the two point clouds. Some algorithms, like Fast Global Registra-
tion [36], never change these correspondences throughout the optimization.
Unfortunately, if too many bad correspondences are found, this can lead
to bad registration. In contrast, our method recomputes correspondences
throughout each step of the optimization, safely ensuring better optimality.
Methods like our own are descendents of Iterative Closest Point (ICP) [2],
which we willl now discuss in more detail. Iterative closest point [2] represents
the conventional approach.

In order to perform good scan to map registration, one must account for
the presence of outliers. Outlier techniques such as Graduated Non Con-
vexity are too slow to apply to the registration problem, and so we must
use m-estimation techniques. Because of the changing environment, any m-
estimator kernel chosen must be able to adapt online. In order to do so, it is
useful to measure the norm of the ICP-derived scan-to-map registration [1],
[5].

Initialization of the scan registration is very important. This is because
scan registration is an iterative method. Like any other iterative method,
scan registration is very important. In order to get an initial guess of the
transform, we use the IMU.

45



5.3 Iterative Closest Point

As with any iterative algorithm, the first step in the algorithm is a good initial
guess. In the case of pure LIDAR Odometry, typical methods employ the
constant velocity model. Unfortunately, such approaches quickly fail when
fast disturbances influence the motion of the robot. This was especially
true in our case, where the slightest bump in the road would invalidate our
constant velocity assumption. Fortunately, the IMU provides a high rate
odometry output, which can be used to establish an initial guess with much
greater precision. This was our approach.

For each iteration of ICP, matches are computed, followed by computa-
tion of residuals and then minimizing said squared residuals with respect to
some ∆T . It is important to note the minimization described above is also
generally a nonlinear and iterative procedure, except for the special case of
pure point-to-point matching. In our case, it is more valuable to recompute
matches and step in the right direction, rather than proceed to convergence
with wrong correspondences. Thus, only one step was taken in the inner
minimization routine to compute ∆T .

These ∆T are then chained together to form the final registration trans-
form estimate. ICP terminates when appropriate convergence criteria are
met. Algorithm 3 gives the general procedure.

Algorithm 3 Iterative closest point

1: function Iterative Closest Point(aX, bY ; δ,N)
2: i← 0
3: while ||Log (∆T )|| > δ and i < N do
4: compute matches

(
aX, bY

)
5: compute residuals from matches
6: compute ∆T that minimizes the sum of squares of residuals
7: bY ← ∆T ∗ bY
8: aTb ← ∆T ∗ aTb

9: i← i+ 1
10: end while
11: end function

Figure 5.3 displays various types of features that can be used for the
matching process in iterative closest point.

46



Figure 5.3: From left to right: point, planar, and edge features

The easiest method is to simply match points from one scan to points
from other scans. The typical metric to accomplish this is defined by the
residual

(x, y) = x− y (5.12)

However, this method ignores the fact that LiDAR points usually rep-
resent the detection of a surface at discrete points where the rays of light
intersect said surface. Because of this, point-to-point metrics may overcon-
strain the estimated motion of the vehicle.

In order to rectify this issue, researchers introduced the point-to-plane
metric. Given three points, p1, p2, p3 that lie on a plane, we seek to minimize
the orthogonal distance from point x to the plane. It is important to note
that p1, p2, p3 should not be colinear, and should not be too close togther, as
this will induce unstable computation of the plane normal.

The point-to-plane residual is:

rp(x, p1, p2, p3) =
(x− p1)

T [(p1 − p2)× (p1 − p3)]

||(p1 − p2)× (p1 − p3)||
(5.13)

Finally, as seen in the middle and right sections of Figure 5.3, large surface
curvature can make planar approximations rather poor. To this end, the
point-to-line residual seeks to minimize the orthogonal distance from a point
to the line formed by the area of highest curvature of a given surface. Given

47



two points, e1, e2 on the line, its residual is

re(x, e1, e2) =
||(x− e1)× (x− e2)||

||e1 − e2||
(5.14)

Again, e1 and e2 should not be too close together, otherwise numerical
instability may occur.

The natural next question is how one may discover planar and edge points.
This is the topic of the next section.

5.3.1 Extracting Edge and Planar Points

In the ideal case with points uniformly distributed across the LiDAR scan,
feature extraction consists of selecting nearest neighbors of any given point,
then classifying as an edge or planar point by a metric such as Principle
Component Analysis [12], [35].

Unfortunately, points from most LiDAR sensors are not uniformly dis-
tributed across the space of the scan. Instead, they tend to lie on lines that
are radially distributed across the space as shown in Figure 5.4.

Figure 5.4: Scan generated by a VLP-16 LiDAR sensor

48



The result is that naive nearest neighbor collection would only return
points on the same scan line, thus colinear and destroying any hope of mean-
ingful information.

LiDAR Odometry and Mapping [33] rectified this issue by establishing
much more robust criteria for edge and planar point detection. The approach
considers each scan line individually, with a sliding window of points within
the line evaluated for notions of curvature.

A few special cases exist:

1. If the plane fitted by a point is close parallel to the direction of the
scan itself, this plane is unreliable

2. If two feature points lie in the same ray from the LiDAR, then we only
select the closest point. This prevents potential occlusions.

Unfortunately, feature extraction is a hard problem that is very dependent
on the environment of choice. For this reason, we opted to utilize a point-to-
point metric that significantly simplified our approach.

5.3.2 Voxel Map

The purpose of a voxel map is to establish correspondences across the point
clouds. Simply speaking, each voxel contains a number of points, and is
associated with a hash. In data association, a given point, along with the
dimensions of each voxel cell, is computed to belong to a particular voxel at
some coordinates in N3. Then a hash is computed from those coordinates to
access the voxel’s points. Looping through each of the points in the voxel
establishes the correspondence.

In order to do fast data association, we need to optimize for the hashing
across voxels. Hashing typically consists of a tradeoff between collisions
(different voxels have the same hash) and speed.

A fast but high collision voxel hash function in 2D would be pure addition:

c(x, y) = x+ y (5.15)

This operation is very fast, but unfortunately will result in the voxels at
(0,1) and (1,0) having the same hash. This is very undesirable due to the
requirement that the correspondence algorithm loop through more points
unnecessarily.

49



Our hash function of choice is the Cantor function:

c(x, y) =
(x+ y) ∗ (x+ y + 1)

2
+ y (5.16)

While more complex than the simple addition hash, it guarentees the
absence of collisions, which is very desirable.

Table 5.1 shows various values for the Cantor function.

Table 5.1: Various values of the Cantor hash function, c

c(0, 0) = 0 c(0, 1) = 2 c(0, 2) = 5 c(0, 3) = 9
c(1, 0) = 1 c(1, 1) = 4 c(1, 2) = 8 c(1, 3) = 13
c(2, 0) = 3 c(2, 1) = 7 c(2, 2) = 12 c(2, 3) = 18
c(3, 0) = 6 c(3, 1) = 11 c(3, 2) = 17 c(3, 3) = 24

While the Cantor function, c : N2 → N, is only two-dimensional, we
can easily extend this to three dimensions with the double cantor function
d : N3 → N

d(x, y, z) = c(x, c(y, z)) (5.17)

We choose to use this function because it eliminates the entire possibility
of collisions.

In summary, our approach is the following.

Algorithm 4 Finding the voxel coordinates

function Get Voxel Coordinates(p ∈ R3, ϕ ∈ R3, ν ∈ R3, ϵ ∈ N)
p̄← int

(
p−ϕ
ν

)
coordinates ← uint (p̄+ ϵ)

end function

Given a point p ∈ R3, the center of the map ϕ, the voxel dimensions ν,
and the large number ϵ we use Algorithm 4 to calculate the coordinates of
the associated voxel.

In our implementation, we kept the voxel grid in the world frame, so

ϕ = 0, and we set ν =
[
1.0 1.0 1.0

]T
, and ϵ = 50, 000.

Once the voxel hash was calculated from the double Cantor hash function,
we performed the following insertion as demonstrated in Algorithm 5.

50



Algorithm 5 Insert into voxel grid

function Insert Point(p ∈ R3)
Compute hash associated with voxel
if voxel exists then

if size of voxel is less than maximum size then
append point to voxel

end if
else

Create voxel with point
end if

end function

5.3.3 Outlier Rejection

Because of our point-to-point metric, we needed a strong outlier rejection
approach to ensure good registration.

Our method of choice was transforming the registration problem into one
that utilized M-Estimator techniques. Specifically, we selected the Geman-
McClure kernel for its strong outlier rejection properties. The kernel, κ, was
set to a third of the standard deviation of a sliding window of maximum point
distances based on previous successful registrations. Our approach was based
off of [25].

5.3.4 Summary

In short, we utilized point-to-point matching along with an adaptive kernel
for robust registration.

51



Chapter 6

Pose Refinement

6.1 Building the Bayes Net

Throughout this section, we will construct the Bayes net that lies at the
heart of our pose refinement step. The Bayes net encodes causality into a
graphical structure, which is directed and acyclic in our case. We refer to
Figure 6.1 for the entire construction process.

6.1.1 State Variables

The states we will consider are poses, world velocities, and IMU biases.
Specifically, take two of each variable, which corresponds to the state of
the robot at two discrete points in time. The first is given by x0, v0, b0, while
the second by x1, v1, b1. Figure 6.1a displays the structure.

6.1.2 Bias Propagation

As previously stated, we assume that the bias of the IMU evolves according
to a random walk. Then b0 causes b1. This is shown in Figure 6.1b by a
directed arrow from b0 to b1.

6.1.3 Motion

We express the acceleration and angular velocity of the robot from time 0 to
time 1 using an additional variable, u. Due to the motion update equations,

52



it is clear that x0, v0, and u cause x1 and v1. We refer to Figure 6.1c for
visualization.

6.1.4 IMU

We model the IMU using terms previously stated. It is easy to see that x0, b0,
and u cause zI . Additionally, due to the Coriolis Effect, v0 also causes zI , as
shown in 6.1d.

6.1.5 LiDAR

A LiDAR registration fundamentally meausures the relative transform be-
tween two poses. To this end, x0 and x1 cause zL. See Figure 6.1e for the
complete Bayes net for LiDAR-inertial odometry.

6.2 Forming the Cost Function

We will now take the Bayes net and factor it into its individual components.
Let S = {x0, v0, b0, x1, v1, b1} be the set of states we wish to estimate. We
can factorize the joint probability of all variables using the causal information
encoded in the Bayes net from Figure 6.1. This factorization is as follows

p(S, u, zI , zL) = p(x0) (6.1)

p(v0) (6.2)

p(b0) (6.3)

p(x1|x0, v0, u)p(v1|x0, v0, u)p(zI |x0, v0, u)p(u) (6.4)

p(zL|x0, x1) (6.5)

We seek to find the most likely S that explains the IMU and LiDAR
measurements. In other words, we can formulate an optimization problem

S⋆ = argmax
S

p(S, u, zI , zL) (6.6)

Note that log : R+ → R is monotonically increasing; i.e. x < y ⇒

53



x0

v0

b0

x1

v1

b1

(a) State variables

x0

v0

b0

x1

v1

b1

(b) Bias propagation

x0

v0

b0

x1

v1

b1

u

(c) Motion

x0

v0

b0

x1

v1

b1

uzI

(d) IMU

x0

v0

b0

x1

v1

b1

uzI

zL

(e) LiDAR

Figure 6.1: Building the Bayes net for LiDAR-inertial odometry

54



log(x) < log(y). Thus,

S⋆ = argmax
S

p(S, u, zI , zL) (6.7)

= argmax
S

log(p(S, u, zI , zL) (6.8)

(6.9)

We now denote logp(x) = log(p(x)). Because log(xy) = log(x) + log(y),
we can transform the factorization from products into sums:

S⋆ = argmax
S

f(S) (6.10)

f(S) = logp(x0) (6.11)

+ logp(v0) (6.12)

+ logp(b0) (6.13)

+ logp(x1|x0, v0, u) + logp(v1|x0, v0, u) + logp(zI |x0, v0, u)(6.14)

+ logp(zL|x0, x1) (6.15)

Note that we have dropped the p(u) term because it is constant for all values
of S.

6.2.1 Normal Implies Nonlinear Least Squares

By assuming a random variable is normally distributed, we obtain a powerful
result:

logp(x) α
1

2
(x− µ)T Σ−1 (x− µ) (6.16)

=
1

2
rT(x)r(x), r(x) = Σ−1/2 (x− µ) (6.17)

Then we have formulated nonlinear least squares, which is a familiar
problem in optimization. Because of this simplification, we assume normally
distributed noise across our probability densities [8].

6.2.2 Probability of 3D Pose

Given a normal distribution of mean, y ∈ SE (3), and covariance, Σ ∈ R6×6,
the random variable X ∈ SE (3) is given by

Log
(
y−1X

)
∼ N (0,Σ) (6.18)

55



6.2.3 Probability of 3D Velocity

The probability of a 3D velocity is a standard quantity computed via a normal
distribution.

6.2.4 Probability of Imu Bias

The gyroscope bias and accelerometer bias are each normally distributed.

ba ∼ N (µba ,Σba) (6.19)

bω ∼ N (µbω ,Σbω) (6.20)

6.2.5 Fixed-lag Smoothing

While the Bayes net in Figure 6.1e only displays two frames, additional
frames may be sequentially added to the right of frame 1. Unfortunately,
naively appending frames for any reasonable amount of time will soon result
in solutions that are too slow for real-time performance. To mitigate this
issue, we utilize a fixed-lag smoothing approach, which keeps a sliding window
of N frames. The oldest states are towards the rear of the smoother, while
the newest states are added to the front. The smoother is ”fixed” in the sense
that the size of the window is constrained to be less than some maximum
number of frames. When the window is full and another frame must be
added, the oldest frame is marginalized out and added to the rear states
as a prior factor. This marginalization represents the unrecoverable loss of
information at the gain of real-time performance. Indeed, the Kalman Filter
can be shown as equivalent to a fixed lag smoother of unitary window size.

Specifically, our fixed-lag smoother is a window of poses, velocities, and
IMU biases at times corresponding to individual LiDAR scans. Improvements
can be made to the fixed-lag smoothing approach by means of keyframes,
which represent scans with new information, usually from significant motion
of the robot. We did not implement keyframes in our approach due to the
desire for simplicity and time constraints.

56



6.2.6 Factor Graphs

We can display the cost function from Equation 6.10 in graphical terms
through a factor graph. Formally, a factor graph is a bipartite graph consist-
ing of two types of nodes. The first type is variable nodes, which encode the
state of the robot we wish to estimate. The second type is factor nodes, which
represent cost functions associated with variable nodes. The only edges are
between variable and factor nodes.

The factor graph has useful properties for incremental smoothing and
mapping. However, in our case, we do not need the incremental smoothing
and mapping procedure [8], [15] because we rely on fixed-lag smoothing.
We simply use the factor graph to represent a cost function consisting of a
number of residual blocks for evaluation.

Option 1: Relative Pose Factor

Figure 6.2 shows our initial formulation for the optimization. It consists of
prior factors attached to the first pose, velocity in the world frame, and IMU
bias of the robot. Each successive LIDAR scan is represented by another
frame of pose, velocity, and IMU bias. The frames are connected sequen-
tially by relative pose factors, which are strictly taken from the scan-to-map
registration technique discussed earlier.

Let Tk represent the pose of the robot at time tk. Let
kLk+1 represent the

measured relative pose from LiDAR registration. Then the residual of the
relative pose factor is

r(Tk, Tk+1) = ||
(
Tk

−1 ◦ Tk+1

)
⊟ kLk+1||2Σ (6.21)

The factors follow directly from the rows of Equation 6.10.
Ideally, this would be the method of choice, as LIDAR does not provide

any global constraint over the course of the odometry. Unfortunately, this
method was very unstable, and did not perform well, leading to oscillatory
behavior in the pose estimation. Attempts to tune uncertainty parameters
associated with this formulation also did not yield satisfactory results.

Option 2: Global Pose Factor

The second formulation, shown in Figure 6.3 replaced the relative pose fac-
tors present in the first case with absolute pose factors, also taken from the

57



x0

v0

b0

x1

v1

b1

Pose Prior
Velocity Prior

Bias Prior
IMU Factor
LiDAR Factor

Figure 6.2: Factor graph For LiDAR-inertial odometry with relative pose
factors

scan-to-map registration. These absolute pose factors are necessarily over-
confident, but lead to better performance in the short term.

Let Tk represent the pose of the robot at time tk. Let
wLk represent the

measured global pose from LiDAR registration. Then the residual from the
global pose factor is

r(Tk,
wLk) = ||Tk ⊟

wLk||2Σ (6.22)

x0

v0

b0

x1

v1

b1

Pose Prior
Velocity Prior

Bias Prior
IMU Factor
LiDAR Factor

Figure 6.3: Factor graph for LiDAR-inertial odometry with global pose fac-
tors

While the reason behind this disparity between the relative and abso-
lute pose factors is still an active question, we present several of our most
promising hypothesis:

1. The relative pose constraint provides a constraint along less ”dimen-
sions” than an absolute pose constraint

58



2. The relative pose constraint may not provide total observation of the
state space

3. The relative pose constraint may be more sensitive to noise

6.2.7 Preintegrated IMU Factor

Because the previous state and a single IMU measurement determine the next
state, bundling many IMU measurements together into one factor means the
need to sequentially process (reintegrate) each IMU measurement every time
the previous state estimate changes. This can be extremely slow.

Preintegration [11] allows us to accumulate multiple IMU measurements
into a single factor as before, but avoid the reintegration. In order to do so,
it relies on first-order approximations, which may not be accurate enough if
the rate of the IMU is below a certain threshold. However, the discretization
of IMU measurements in the first place for integration is already first-order,
so performing a higher order numerical integration scheme is most likely
unwarrented.

6.3 Map Update

Once the pose refinement is complete, we need to update the map of LiDAR
points used for scan registration. Ideally, the map would not drift over time,
but we know that this will inevitably happen for odometry systems. As
such, we also remove old points from the map; in this way we can reduce the
possibility of incorrect loop closures. We refer the reader to the section about
Voxel Grids to gain a better understanding of the structure of our map.

In this sense, we are much more tightly coupled than other methods that
do not integrate information from the pose refinement into the map update.

Figure 6.4 displays this key difference between loosely coupled and tightly
coupled methods.

59



Figure 6.4: Loosely coupled methods (red) take the registration hypothe-
sis for map update. In contrast, tightly coupled methods like ours (blue)
integrate information from the pose refinement step

60



Chapter 7

Results

We display results from our LiDAR-inertial odometry method across two
projects. The reason for doing so was to ensure that our algorithm would
achieve satisfactory performance across both indoor and outdoor environ-
ments. Overall, we met this metric, but also were significantly more robust
to failure modes that plagued previous efforts.

7.1 MMPUG

The first project’s mission was to drive a small car through narrow cor-
ridors indoors at speeds between 2-6 m/s (see Figure 1.5). The car had
sudden changes in velocity that made it difficult or impractical for pure Li-
DAR odometry methods to produce reasonable results. For this reason, our
LiDAR-inertial system was needed to ensure optimal state estimation. Figure
7.1 displays the accumulation of individual scans over the length of the tra-
jectory to form a map of the environment. Overall, the figure demonstrates
the low drift of our approach, while edges naturally become less sharp as the
points are further away from the center of the robot.

Figure 7.2 displays the same environment as Figure 7.1, but from a 3D
perspective. The cars to the right of the robot are clearly visible, along
with their tires. This view enabled remote driving of the robot with better
ergonomics than a simple 2D camera stream provided.

Finally, Figure 7.3 shows the accumulated scans on a larger area of the
same hallway, even extending outside to the right of the building. Because of
this, we can conclude that our algorithm is able to operate while transitioning

61



Figure 7.1: MMPUG Results; Credit: Darwin Mick

from traditionally structured to unstructured environments.

7.2 DARPA RACER

The second suite of tests was run in post-processing at real time on data
recorded on a Polaris ATV in Penn Hills, PA. The vehicle (displayed in Figure
1.4) was mounted with an Xsens IMU and a Velodyne VLP-32C, then driven
at speeds up to 50 miles/hour. Figure 7.4 displays the accumulated LiDAR
scans from the estimated robot trajectory, overlayed onto satellite imagery.
The overlay was conducted by hand and represents the author’s best guess
as to the true nature of the robot trajectory. We note that the path traced
by the robot closely matches the satellite image, showing that our system
has high performance even at high speeds outdoors.

62



Figure 7.2: 3D MMPUG Results; Credit: Darwin Mick

Figure 7.3: Large MMPUG Results; Credit: Darwin Mick

63



Figure 7.4: Result from DARPA RACER vehicle at Gascola

64



Chapter 8

Future Work and Conclusion

8.1 Numerical Evaluation

To provide more structured metrics, we plan to compare our estimated tra-
jectory against RTK GPS, which was recorded for several sequences run on
the Polaris ATV. Additionally, we plan to provide metrics evaluating the
Euclidean distance between the start and end location of the robot, as each
sequence ends where it began.

8.2 IMU Dropout Compensation

On DARPA RACER, IMU dropout played a significant factor in state esti-
mation issues. As opposed to variants of the Kalman Filter, preintegration
does not natively handle long periods with no measurement update. In order
to overcome this issue, we propose the following scheme for IMU dropout
shown in Figure 8.1.

∆t = tk+1 − tk (8.1)

vk+1 = vk + ak+1∆t (8.2)

xk+1 = xk Exp
([

ωk+1 vk+1

]T
∆t

)
(8.3)

bk+1 = bk (8.4)

65



x0

v0

b0

x1

v1

b1

x2

v2

b2

Pose Prior
Velocity Prior

Bias Prior
IMU Factor

LiDAR Factor

Constant Velocity Factor

Bias Factor

Figure 8.1: Factor graph for LiDAR-inertial odometry with IMU dropout
compensation

8.3 Conclusion

In this document, we have presented the necessary fundamentals of LiDAR-
inertial odometry. We bagan with a discussion of the nature of LiDAR and
IMU sensors. LiDAR is extremely precise but suffers from slow update rates
and discrete collection times for individual points. Meanwhile, IMU has a
hgih output rate corrupted by a slowly varying bias. Combining LiDAR and
IMU together yields a high rate and precise odometry solution. Probability,
rotations, and optimization are three indispensible mathematical concepts
central to our algorithm. For this reason, we provided a brief background
on these areas. Additionally, we highlighted the various methods for point
cloud registration, and discussed the use of robust estimators to deweight
the impact of potential outliers. Through a factor graph formulation, we
can optimize for the most likely set of states over a window of LiDAR scans.
Finally, we validated our approach by displaying results across two different
robots and environments. Prediction is difficult, but we expect that the con-
cepts outlined in this thesis will provide future readers with the foundational
understanding required to contribute in this rapidly developing field.

66



Bibliography

[1] Jonathan T Barron. “A general and adaptive robust loss function”.
In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 4331–4339.

[2] Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes”.
In: Sensor fusion IV: control paradigms and data structures. Vol. 1611.
Spie. 1992, pp. 586–606.

[3] Paul Busch, Teiko Heinonen, and Pekka Lahti. “Heisenberg’s uncer-
tainty principle”. In: Physics reports 452.6 (2007), pp. 155–176.

[4] Elena Celledoni, H̊akon Marthinsen, and Brynjulf Owren. “An intro-
duction to Lie group integrators–basics, new developments and appli-
cations”. In: Journal of Computational Physics 257 (2014), pp. 1040–
1061.

[5] Nived Chebrolu, Thomas Läbe, Olga Vysotska, Jens Behley, and Cyrill
Stachniss. “Adaptive robust kernels for non-linear least squares prob-
lems”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 2240–
2247.

[6] Yang Chen and Gérard Medioni. “Object modelling by registration of
multiple range images”. In: Image and vision computing 10.3 (1992),
pp. 145–155.

[7] Thomas M Cover. Elements of information theory. John Wiley & Sons,
1999.

[8] Frank Dellaert and Michael Kaess. “Factor graphs for robot percep-
tion”. In: Foundations and Trends® in Robotics 6.1-2 (2017), pp. 1–
139.

67



[9] Pierre Dellenbach, Jean-Emmanuel Deschaud, Bastien Jacquet, and
François Goulette. “CT-ICP: Real-time elastic lidar odometry with
loop closure”. In: 2022 International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2022, pp. 5580–5586.

[10] Lawrence C Evans. An introduction to stochastic differential equations.
Vol. 82. American Mathematical Soc., 2012.

[11] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scara-
muzza. “On-manifold preintegration for real-time visual–inertial odom-
etry”. In: IEEE Transactions on Robotics 33.1 (2016), pp. 1–21.

[12] Timo Hackel, Jan D Wegner, and Konrad Schindler. “Fast semantic
segmentation of 3D point clouds with strongly varying density”. In:
ISPRS annals of the photogrammetry, remote sensing and spatial in-
formation sciences 3 (2016), pp. 177–184.

[13] Dongjiao He, Wei Xu, Nan Chen, Fanze Kong, Chongjian Yuan, and
Fu Zhang. “Point-LIO: Robust High-Bandwidth Light Detection and
Ranging Inertial Odometry”. In:Advanced Intelligent Systems 5.7 (2023),
p. 2200459.

[14] Jeffrey Humpherys, Tyler J Jarvis, and Emily J Evans. Foundations of
Applied Mathematics, Volume 1: Mathematical Analysis. SIAM, 2017.

[15] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John
J Leonard, and Frank Dellaert. “iSAM2: Incremental smoothing and
mapping using the Bayes tree”. In: The International Journal of Robotics
Research 31.2 (2012), pp. 216–235.

[16] Ricardo A Maronna, R Douglas Martin, Victor J Yohai, and Mat́ıas
Salibián-Barrera. Robust statistics: theory and methods (with R). John
Wiley & Sons, 2019.

[17] Judea Pearl. Causality. Cambridge university press, 2009.

[18] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. “Generalized-
ICP.” In: Robotics: science and systems. Vol. 2. 4. Seattle, WA. 2009,
p. 435.

[19] Tixiao Shan and Brendan Englot. “LeGO-LOAM: Lightweight and
ground-optimized lidar odometry and mapping on variable terrain”.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 4758–4765.

68



[20] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti,
and Daniela Rus. “LIO-SAM: Tightly-coupled lidar inertial odometry
via smoothing and mapping”. In: 2020 IEEE/RSJ international confer-
ence on intelligent robots and systems (IROS). IEEE. 2020, pp. 5135–
5142.

[21] Tixiao Shan, Brendan Englot, Carlo Ratti, and Daniela Rus. “LVI-
SAM: Tightly-coupled LiDAR-visual-inertial odometry via smoothing
and mapping”. In: 2021 IEEE international conference on robotics and
automation (ICRA). IEEE. 2021, pp. 5692–5698.

[22] Joan Sola, Jeremie Deray, and Dinesh Atchuthan. “A micro Lie theory
for state estimation in robotics”. In: arXiv preprint arXiv:1812.01537
(2018).

[23] John Stillwell. Naive Lie theory. Springer Science & Business Media,
2008.

[24] Sebastian Thrun. “Probabilistic robotics”. In: Communications of the
ACM 45.3 (2002), pp. 52–57.

[25] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis Wiesmann,
Jens Behley, and Cyrill Stachniss. “KISS-ICP: In defense of point-to-
point ICP–simple, accurate, and robust registration if done the right
way”. In: IEEE Robotics and Automation Letters 8.2 (2023), pp. 1029–
1036.

[26] Eric A Wan and Rudolph Van Der Merwe. “The unscented Kalman fil-
ter for nonlinear estimation”. In: Proceedings of the IEEE 2000 adaptive
systems for signal processing, communications, and control symposium
(Cat. No. 00EX373). Ieee. 2000, pp. 153–158.

[27] Han Wang, Chen Wang, Chun-Lin Chen, and Lihua Xie. “F-LOAM:
Fast lidar odometry and mapping”. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2021,
pp. 4390–4396.

[28] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang. “Fast-
LIO2: Fast direct LiDAR-inertial odometry”. In: IEEE Transactions
on Robotics 38.4 (2022), pp. 2053–2073.

[29] Wei Xu and Fu Zhang. “Fast-LIO: A fast, robust LiDAR-inertial odom-
etry package by tightly-coupled iterated kalman filter”. In: IEEE Robotics
and Automation Letters 6.2 (2021), pp. 3317–3324.

69



[30] Heng Yang, Jingnan Shi, and Luca Carlone. “Teaser: Fast and certifi-
able point cloud registration”. In: IEEE Transactions on Robotics 37.2
(2020), pp. 314–333.

[31] Haoyang Ye, Yuying Chen, and Ming Liu. “Tightly coupled 3D LiDAR
inertial odometry and mapping”. In: 2019 International Conference on
Robotics and Automation (ICRA). IEEE. 2019, pp. 3144–3150.

[32] Ji Zhang, Michael Kaess, and Sanjiv Singh. “On degeneracy of optimization-
based state estimation problems”. In: 2016 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE. 2016, pp. 809–
816.

[33] Ji Zhang and Sanjiv Singh. “LOAM: Lidar odometry and mapping in
real-time.” In: Robotics: Science and systems. Vol. 2. 9. Berkeley, CA.
2014, pp. 1–9.

[34] Ji Zhang and Sanjiv Singh. “Visual-LiDAR odometry and mapping:
Low-drift, robust, and fast”. In: 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2015, pp. 2174–2181.

[35] Shibo Zhao, Hengrui Zhang, Peng Wang, Lucas Nogueira, and Sebas-
tian Scherer. “Super Odometry: IMU-centric LiDAR-visual-inertial es-
timator for challenging environments”. In: 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE.
2021, pp. 8729–8736.

[36] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Fast global registra-
tion”. In: Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam , The Netherlands, October 11-14, 2016, Proceedings, Part
II 14. Springer. 2016, pp. 766–782.

70


