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Abstract

Try typing on your keyboard, hammering a nail, or using chopsticks. Our hands
are the key to manipulating the world around us. They have incredible strength
at the fingertips to be able to pinch and grasp in over 70 different ways. Its
ability to feel is unparalleled. This great sensing and adaptation is controlled
by the great capabilities of our brains. In fact, the development of our brains is
often attributed to the need to manipulate the world around us using our hands
[99].

In robotics, manipulation has been mostly limited to the claw gripper or suction
cup for pick-and-place in factories. However, our shared dream is to have
robot humanoids co-habitate with us and complete similar tasks that humans
do. Why don’t robotic humanoids with useful robot hands exist?

While there are a few robot hands available today, the popular opinion is that
they are difficult to use, expensive, and hard to obtain. We argue that this
is not an inherent problem of robot hands, but rather that these robot hands
are not designed with the right principles. In this thesis, we introduce a new
class of robot hands designed for machine learning and make them more
dexterous, lower cost, and easier to use than prevailing robot hands. They serve
as a significant, democratized entry point for many people entering dexterous
manipulation research. They foster conversations about robot hand design and
customization in the open-source community.

Next, how can robot hands imitate the human brain’s ability to complete
dexterous tasks in a human-like fashion? For instance, we must firmly grasp a
knife from the handle and not from the blade. While most robots used today
have fewer than 10 degrees of freedom, a humanoid with two hands has over
50 degrees of freedom with many points of contact with the environment. This
high dimensionality makes data-efficient learning extremely difficult. To rectify
this, we leverage internet-scale human experience from the web as training
data. Because robot hands have a similar morphology as human hands, we can
directly learn from retargeted human motion to teach robots with significantly
more data. In this thesis, we find that this unlocks the generalizable, human-like
behavior we seek.
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Chapter 1

Introduction

1.1 Background

Think about your hands for a minute. Just this morning you probably brushed your teeth,
cooked some eggs, poured a cup of coffee, typed on a keyboard and maybe did some
pullups. Easy right? Our hands can move smoothly from fine-grained actions to lifting
a heavy weight all in a day’s work. Our fingers can close extremely tightly on a pin, but
then stretch around a large bottle to grasp it. We can softly grasp an egg, and then firmly
grasp a hammer. Our hands can even withstand years of hard use without breaking a bone
or ligament. While this is amazing, our hands can also feel throughout their fingers and
palms. This touch can be used to interact with tools, ensure we grasp objects tightly, or
even identify objects.

Human hands are incredible biological ”hardware” that has been developed from
millions of years of evolution and Darwinism [79]. We have 14 phalanges for our fingers,
and 13 bones in our wrist and palm carefully arranged. We have a variety of joints,
including the MCP, PIP and DIP in the fingers held together with ligaments and lubricated
with synovial fluid. For actuation, we have many muscles connected to tendons which are
connected to bones. The sense of touch, temperature, pain and pressure is routed through
the Radial nerve, Median nerve and Ulnar nerve. Together, this multitude of parts unlocks
great hand capabilities [56, 120, 205].

Processing all of this touch and visual information and controlling our hands is the
human brain, another marvel of evolution. In fact, the development of the hand helped
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promote the development of our intelligence in evolution [233]. From a young age as
babies, we are constantly exploring. As quickly as a few months old, we learn how to
control our fingers together and hold tight onto things. Additionally, our parents can teach
using demonstration in a short amount of time [58, 98, 148]. This learning through grasping
helps develop our brains into adolescence [30]. We then generalize experiences to new
scenarios, a key part of intelligence [99, 233]. With this combination of exploration and
demonstration, our brains learn how to complete over 80 different grasps in everyday life
[153].

It is easy to imagine this dexterity in robots, especially in robotic humanoids. C-3PO
walks the galaxies to make witty banter with the Star Wars characters. Back in the 1960s,
the Jetsons imagined Rosey the humanoid helper doing chores for a family.

However, real robots have been dominated by 2 finger grippers or suction cups on robot
arms. These robots have seen much success in industrial settings such as in warehouses
or factories. In this setting, most of these tasks are limited to pick and place which can
be performed by a claw. The argument is that these end-effectors are easy to build and
program, and in these limited settings this is all that is needed.

There has been recent interest in robotic humanoids and prosthetics that can complete
real-world tasks in our homes. In this case, robot hands must often need hands to use
tools, complete more complex manipulation and manipulate objects designed for humans.
In the early 2000s, Asimo was often seen demoing soccer, walking up stairs or pouring
coffee with its hands [6]. The Boston Dynamics Atlas, while showing incredible acrobatics,
does not have any hands [7]. Tesla Optimus can balance on one foot, but its manipulation
so far has been limited to sorting large toddler-sized LEGO blocks [20] . In general, the
locomotion capabilities of these humanoids have been increasingly robust. However, the
capabilities of their hands are still woefully behind the capabilities of human hands.

In this thesis, we try to make robot hands more capable. First, how can we efficiently
emulate as much of the human hand ”hardware” as possible? How can we build robot hands
that are anthropomorphic, strong, and inexpensive for anyone to use? Second, we must
process sensing information as the human brain does. The solution here lies in improving
the robot brain, learning from diverse human videos and real-world experience.
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1.2 Building Robot Hands

The prevailing belief of the robotics community has been that replicating the human hand
kinematic structure is extremely difficult. As discussed, the human hand is very complicated
and is not easy to emulate in robot hardware. However, we still would like our robot hands
to have a small size, many degrees of freedom, and incredible strength/durability. How can
we design anthropomorphic robot hands intelligently to have dexterity?

The conventional robot hands available today have prevented ubiquitous usage. The
main purchasable hands have been the Shadow Hand [3] and Allegro Hand [5] for quite a
few years. They are $15k and $150k respectively but are still considered to be notoriously
difficult to use except for a few experts. On the other hand, there are a number of custom
robot hands that show results in their own lab but cannot be reproduced. This is because
they are very complicated to build or are not open-source [60, 128, 235]. Finally, there are
a few open-source robot hands such as Inmoov [16] and DexHand [10], but these are often
too weak or have too few DOF.

I believe that good robot hands should be everywhere. How do we do this? Similar to
the popular 2-finger gripper counterpart, robot hands must be strong and repairable. Robot
hands must be low-cost and easy to obtain. We need them to be extremely dexterous and
anthropomorphic so that they can complete a variety of manipulation tasks successfully.

Following this strong belief, I introduce two dexterous hands. LEAP Hand is a useful
robot hand that costs under $2k, is 3D printable, easy to assemble, and contains a full
simulation. I release not just the hardware, but assembly instructions and a suite of useful
software tools. DASH hand is a smaller tendon-driven hand. While it has more parts,
it is still relatively easy to assemble and is very good for teleoperation and fine-grained
manipulation.

Just a few months after its release, LEAP Hand has a large community around it and
is one of the leading robot hands in academic research. Students all around the world are
using it for their machine learning research such as tool use, human-like grasping or in-hand
reorientation. This has enabled many researchers who were not involved in dexterous
manipulation to get their first experience with it at a lower cost without difficult engineering.
We have created a whole ecosystem of useful tools and a community around this platform.
LEAP Hand is proof that following these design principles can help truly democratize robot
hands.
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1.3 Learning Dexterity

How do we emulate the human brain to control robot hands? Conventional robotics says to
use first principles in physics and create an intricate model of the robot and the world. While
this works often in low level controls or locomotion, it is difficult to model the intricate
contacts of the robot hand on objects. And how do we even estimate the object state and its
parameters? While there has been some early work in this area going back to the 90s, this
does not generalize to new objects or increasingly complex behaviors [125, 145, 146].

Recently, there have been great developments in robot learning especially in learning
from demonstration or experience. In the most naive approach, a human demonstrates to
the robot how to complete a task. The robot then learns a policy on the behavior seen in
the data. While this often works, the key problem is that robots will struggle to generalize
to test scenarios it hasn’t seen before in training. This necessitates humans laboriously
collecting demonstrations for every task and environment that the robot might encounter
which does not scale. To get around this, learning from real-world autonomous experience
can be useful, it is often too slow to learn in the real world with.

Our key insight is that we do not have to collect demonstration data for every task that
we want the robot to complete. Dexterous hand behavior happens all the time by humans.
To get these dexterous demonstrations, one way is through internet video. The internet
contains a wide variety of videos of humans using their hands in a huge variety of scenarios.
In this thesis, our robot hands learn from this human behavior.

While it would be appealing to learn from any human behavior, often there is a large
embodiment gap between human hands and robots. However, because our robot hands
are designed to be anthropomorphic, there is a much smaller gap. Still, we must learn
how to retarget, or to traverse this gap between human and robot hands and convert the
behavior from one to the other. Our key insight is that our retargeters can actually learn
from human videos and experiences from the internet. This enables us to learn from noisy
or hard-to-detect human behavior.

First, we learn a teleoperation system from a single RGB webcam. Our key insight
is to use models trained from internet-data to guide our robot to perform useful behavior.
We call this ”Robotic Telekinesis”. Second, we find that learning dexterous policies to
complete tasks from direct human demonstration alone requires too many demos. How
can we improve this sample efficiency? In VideoDex, we use internet videos and extract
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robot trajectories from them to use as pseudo-robot experience. We then use this data as a
prior to pretrain robot behavior. Finally, in DEFT, we learn an affordance prior from human
motion in video. This affordance learns where and how to grasp objects only from human
video. Then, we use real-world learning to learn a residual policy that fine-tunes our robot
behavior. These learning from human methods and the data they leverage are integrally
important to teaching dexterity.
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Part I

Designing Dexterous Robot Hands
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Chapter 2

LEAP Hand: Low-Cost, Efficient, and
Anthropomorphic Hand for Robot
Learning

2.1 Abstract

Dexterous manipulation has been a long-standing challenge in robotics. While machine
learning techniques have shown some promise, results have largely been currently limited to
simulation. This can be mostly attributed to the lack of suitable hardware. In this paper, we
present LEAP Hand, a low-cost dexterous and anthropomorphic hand for machine learning
research. In contrast to previous hands, LEAP Hand has a novel kinematic structure that
allows maximal dexterity regardless of finger pose. LEAP Hand is low-cost and can be
assembled in 4 hours at a cost of 2000 USD from readily available parts. It is capable
of consistently exerting large torques over long durations of time. We show that LEAP
Hand can be used to perform several manipulation tasks in the real world—from visual
teleoperation to learning from passive video data and sim2real. LEAP Hand significantly
outperforms its closest competitor Allegro Hand in all our experiments while being 1/8th
of the cost. We release detailed assembly instructions, the Sim2Real pipeline and a
development platform with useful APIs on our website at https://leaphand.com/
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Figure 2.1: Relative size of popular robot hands to scale. Left to right, adult human hand, Allegro
Hand [5], LEAP-C Hand, LEAP Hand, Inmoov [16], D’Manus [51]. LEAP Hand is similar in size
to Allegro and ∼ 30% larger than a human hand. D’Manus is considerably larger than the rest.
Because of the tendon-driven nature, Inmoov is the smallest robotic hand. The hands are accurate to
scale.

2.2 Introduction

Hand dexterity has been critically responsible for human cognition through active manipu-
lation, tool use, and governing how humans learn from the world [58, 98, 148]. Replicating
the dexterity of the human hand with a robot hand has been a long-standing challenge
in robotics. Machine learning techniques have recently shown promise in areas such as
learning from humans. However, unlike the learning successes in locomotion [31, 170]
across truly diverse terrains, robotic manipulation results in the real world have mostly been
limited to one degree-of-freedom parallel jaw grippers [48, 82, 222]. In contrast, dexterous
manipulation has largely been limited to simulation [71, 116] with comparatively fewer
real-world results [36, 72, 110, 171, 214].

A major bottleneck in democratizing dexterous manipulation has been the hardware.
Tendon-based hands like Shadow [3], while impressively capable [36], cost over 100K USD
and often require significant maintenance [34] due their complicated nature. While Inmoov
[16] is inexpensive and open source, it only has 5 actuators on weak tendons. Therefore,
direct-driven hands have been the popular alternative for many applications [5, 138]. The
Allegro Hand has been a popular direct-driven hand, but it is often unreliable, difficult to
repair, and does not have an anthropomorphic kinematic structure, (see Fig 2.1) and is
expensive at over $16K. Please see Section 2.3 for further analysis.

As a result, only a few labs have access to hardware capable of complex dexterous
tasks. This is in stark contrast to 2-finger grasping or locomotion [4, 13, 14, 27] where
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readily available hardware allows results to be easily reproduced and improved upon by
the community. Following this analogy, good hand hardware for machine learning must be
durable, repeatable, low-cost, versatile, and ideally anthropomorphic to enable easy transfer
learning from humans.

We propose LEAP Hand– a dexterous, extremely low-cost and robust hand for robot
learning, built from off-the-shelf or 3D-printed parts. Our hand can be assembled in under
4 hours at a cost of 2000 USD, which is 1/8th the cost of the Allegro Hand and 1/50th to
that of ShadowHand. While we acknowledge this is still not affordable for all, we believe
it is a step towards democratizing dexterous manipulation research. We show through a
number of rigorous experiments that LEAP Hand is both robust, durable, and able to exert
large torques over long periods of time. Additionally, our robot hand it is easily repairable
in-house just using a standard $250 3D printer and does not need to be sent out for repair.

Although robustness and low-cost is critical, they should not come at the cost of dexterity
and anthropomorphism. We believe a good versatile hand is the one that is both dexterous

as well as anthropomorphic because much of the world around us, for instance, doors,
kitchens, tools, or instruments, are designed with human hands in mind, making it easier to
learn by watching humans act. In LEAP Hand, we aim to maximize dexterity while being
kinematically similar to a human hand.

Since the ball joint at the human knuckle (Metacarpophalangeal aka MCP) cannot be
replicated with direct-driven hands, it must instead be approximated using two separate
motors. Prior work in direct driven hands has converged primarily to two designs, see
Fig 2.2, one that allows abduction-adduction of fingers in open hand pose and the other
that only allows with the finger flexed upwards. However, both of these lose one degree
of freedom (DoF)—either in the flexed or extended position of the finger. In LEAP Hand,
we propose a new kinematic mechanism to facilitate universal abduction-adduction for
direct-driven hands that retain all degrees of freedom in all finger positions. We demonstrate
that this leads to higher dexterity and for improved grasping and in-hand manipulation.

Finally, we show that LEAP Hand easily integrates with existing results in robot learning.
For instance, YouTube video-based learned teleoperation and behavior cloning. In addition
to the physical robot hardware, we also release an Isaac Gym-compatible simulator for the
LEAP Hand and show sim2real transfer for a contact-rich task of blind in-hand rotation of
a cube [160]. This shows that the hardware and simulation are accurate and that complex
tasks trained in simulation can be transferred to the real hand. We open source the URDF
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model, assembly instructions, ROS/Python API, mapping methods from human hands to
LEAP Hand, and an Isaac Gym simulation environment at https://leaphand.com/.

2.3 Related Work

Robot Hands Shadow [3] and ADROIT [137] hands paved the way to enable complex,
contact-rich dexterous tasks with an anthropomorphic ball joint MCP. [34, 36]. However,
they are costly (100k USD) and require constant maintenance. In contrast, the Inmoov hand
is 3D printable, tendon-driven, and human-like[16]. It has only one DoF per finger and
is reliant on tendon actuation which is difficult to calibrate and can be inaccurate. Bauer
et. al. [47] present a soft tendon-driven hand that is very flexible for many configurations.
Unfortunately, it is difficult to simulate due to its deformable nature [90, 93]. In contrast
to tendon-driven hands, which have motors in the wrist, the Allegro Hand [5] has its
motors in the finger joints. It is most popular in research labs [38, 109, 217, 220, 225]
because it is relatively cheap (16k USD). However, users find the motors in the fingers to
be weak for many everyday tasks. Moreover, the closed-source components are difficult to
repair or replace. Additionally, its kinematic structure is not anthropomorphic or dexterous
as we demonstrate. The ROBEL suite (which includes D’Manus) [51] is more robust,
open-sourced, and easy to build. However, it has only two fingers and a thumb—making
it significantly different from a human hand. Yuan et. al. [241] accomplish within-hand
manipulation using rollers attached to the fingers. Humans lack this degree of freedom and
manipulate objects in a very different manner. [8, 127, 128] have shown impressive results
and hold a lot of promise by using fluids and linear actuators to move the fingers, but these
hands are not readily available and too complicated to quickly produce, use, and maintain
for robot learning.

Rapid Manufacturing Aluminum machining is traditionally used to create strong
parts but is prohibitively difficult and expensive. Manufacturing plastic parts includes
a cumbersome process of mold making, casting, curing, and support removal [21]. In
contrast, additive manufacturing can be used to create parts very quickly for prototyping.
In our paper, we leverage recent advancements in extruders, hot-ends, and motors made
by the open-source Reprap Community [22]. This allows us to directly print soft flexible
filaments like Ninjaflex [2]. We use this to create many parts for LEAP Hand like the hard
palm and soft rubber fingertips.
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Figure 2.2: Comparison of MCP joints in different robot hands and their dexterity and two different
positions. (A) In LEAP-C Hand there is a large range of motion at extended but not flexed position
(B) In LEAP Hand, at flexed and extended positions, the fingertip has a large range of motion. (C)
In Allegro, there is a large of motion at flexed but not extended position.

Learning Dexterity Using a Shadow hand and Sim2real, Andrychowicz et. al. [34, 36,
134] accomplish in-hand rotation for a variety of objects. Policies that scale to thousands of
objects can also be trained in simulation [71, 115]. [175] uses the D’Hand to reposition
a valve. In-hand rotation of Baoding Balls using the Shadow Hand trained purely in the
real-world [173], and pipe insertion using the D’Hand [103] are other notable examples of
dexterous manipulation.

Several recent works focus on supervising policies of robot hands [95, 123, 200, 230].
from MANO [199] parameters which parameterize a human hand. Closely related is the
teleoperation of robot hands from real-time video [109, 216], which can be used to guide
learning and improve sample-efficiency [192, 196]. Hand poses can be extracted from video
data available on the web to learn manipulation policies [163, 192]. Large-scale pre-training
using internet videos is helpful for efficiently training robot hands for downstream tasks
using a few task specific-demos [212] and also on non-dexterous manipulation [45, 179].

2.4 Kinematic Design and Analysis

The kinematic structure of a hand refers to the arrangement of its joints which determines
the different poses and forces of motion it can apply. First, LEAP Hand should be as
anthropomorphic as possible so that data from humans can be used to learn skills [45, 192,
212] with machine learning. This can be done using methods such as teleoperation with
VR gloves or extracting keypoints from videos of human hands [216]. In addition, LEAP
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Hand should be dexterous for tasks such as in-hand manipulation from sim2real. In this
section, we propose a robot hand design that is both anthropomorphic and dexterous.

In the human hand, there are four main degrees of freedom in each finger (Fig. 2.3).
The knuckle or metacarpophalangeal (MCP) is a ball joint with two degrees of freedom that
allows abduction/adduction and flexion/extension. The joint closest to the knuckle is called
the proximal interphalangeal (PIP) joint. The last joint, closest to the fingertip, is the distal
interphalangeal (DIP). The PIP and DIP are hinge joints, each with one degree of freedom.
The human hand features an opposable thumb which allows the application of force in
opposition to other fingers. This enables a variety of power and precision grasps [153]. To
easily map motions, a robot hand must have analogous joints to a human hand.

To replicate this structure, it is alluring to use tendons like robot hands such as the
ShadowHand [3]. Such tendon-driven hands can store the large motors needed to drive them
in the wrist, enabling greater flexibility in joint design and introduce ball joints. However,
they are very expensive (100K USD), complicated or hard to maintain. As a result, cheaper
direct-driven alternatives [5, 138] have been more popular.

Figure 2.3: The human hand kinematics above has ball joints at the MCP and CMC joints. These
are difficult joints for low-cost hands to include. Left Figure from [65]. Comparison of MCP joints
in different robot hands. (A) In LEAP-C Hand there is a large range of motion at extended but not
flexed position (B) In LEAP Hand, at flexed and extended positions, the fingertip has a large range
of motion. (C) In Allegro, there is a large of motion at flexed but not extended position.
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Figure 2.4: We compare the possible positions of opposability of the thumb and each of the other
fingers on each of the three hands. We find that LEAP Hand has the best even spread on top of the
palm and a very large contact area.

2.4.1 Universal Abduction-Adduction Mechanism

Direct-driven hands must store the motors inside the fingers so they are limited in kinematic
structure and cannot precisely imitate the human hand. Since the PIP and DIP joints are
hinge joints, they are easily modeled, each with a single actuator. A ball joint cannot
be modeled in this way and is typically approximated using two motors (MCP-1, MCP-
2) arranged close together [138]. Prior seminal work has proposed two designs for this
(Fig. 2.2). However, both of these designs, Allegro and LEAP-C Hand, lose one degree
of freedom in either the extended or closed position. As a result, Allegro is less dexterous
when extended whereas LEAP-C Hand (like C-Hand in [138]) is less dexterous when
closed.

The reason for the lost dexterity in both LEAP-C Hand and Allegro is that the axis of
the motor responsible for adduction-abduction (MCP-2) is fixed to the palm of the hand. In
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LEAP-C Hand, the axis is perpendicular to the plane of the palm, whereas, in Allegro, it
lies in the plane of the palm. Thus, when the finger becomes parallel to this axis, that DoF
is ineffective. Please see Figure 2.2 and the kinematic tree in the supplemental.

In LEAP Hand, we propose a new universal abduction-adduction mechanism for the
fingers such that they can retain all degrees of freedom at all MCP positions. Instead of the
MCP-2 axis being fixed to the palm (i.e., of motor responsible for adduction-abduction), the
key idea is to bring the axis to the frame of reference of the first finger joint and arrange it
such that it is always perpendicular to it. This allows the finger to have adduction-abduction
in all positions (Fig. 2.2). Thus, LEAP Hand has adduction-abduction in the extended
position (similar to LEAP-C Hand) as well as pronation/supination in the flexed position
(similar to Allegro).

2.4.2 Evaluating Manipulability via Thumb Opposability

Chalon et.al. [66] and Lee et.al. [138], have shown that what makes a hand more versatile is
not merely the degree of abduction-adduction but also its thumb opposability volume. We
test our design against Allegro and LEAP-C Hand, a baseline hand we manufacture with
the same motors and parts as LEAP Hand. In Fig. 2.4, we plot the intersection of the thumb
and finger workspaces for each hand and compute a thumb opposability metric [66]. In
Table 2.2, we show that LEAP Hand combined with the new MCP joints in the secondary
fingers is better placed and is more dexterous compared to other available hands because of
the increased opposable volume.

Next, manipulability measures the ease with which the fingertip can be moved in various
directions at a particular joint pose. We use metrics introduced by Yoshikawa et. al. [239].
To evaluate this, many calculate the manipulability ellipsoid from the end-effector Jacobian
which models the directions in which the end-effector can move. We compute the volume
of this ellipsoid using the following equation:

w =
√
det (J(q)J(q)T)

where q is the joint configuration and J is the Jacobian of the end-effector. Note that
because we are calculating volumes, a hand that can only move in one or two cartesian
directions will have a volume close to zero at that pose. In three key poses, we show that
LEAP Hand has consistently larger ellipsoids of greater volume for both the cartesian and
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Robot/Position Down (m3) Up (m3) Curled (m3)

Allegro Hand
Linear 8.11× 10−9 3.98× 10−13 2.39× 10−5

Angular 0 0 0

LEAP-C Hand
Linear 1.60× 10−12 1.23× 10−10 9.28× 10−5

Angular 1.02× 10−13 1.02× 10−9 2.02× 10−13

LEAP Hand (ours)
Linear 2.02× 10−6 2.42× 10−6 4.51× 10−5

Angular 1.20× 10−5 1.20× 10−5 1.20× 10−5

Table 2.1: We show the manipulability ellipsoid volume for both the linear and angular component
at three different finger positions, down, all the way up, and then halfway/curled. We find that LEAP
Hand has a large manipulability ellipsoid at all three configurations.

angular components of the jacobian. This means that LEAP Hand has better movement
at the fingertips in these few poses and a higher manipulability metric leading to more
dexterity (Table 2.2).

Finally, we show that increased dexterity leads to practical benefits as well. In the
grasping test (Sec. 2.7.1), we find that LEAP Hand is able to grasp more objects tightly. In
the blind in-hand cube rotation task (Sec. 2.7.4), we find that LEAP Hand is able to rotate
the cube much faster than Allegro.

2.5 Hand Design Principles

A good kinematic design must be realized effectively in hardware. In particular, the
hardware should be low-cost, easy to repair, and robust.

2.5.1 Low-cost and Easy to Repair

In contrast to locomotion or manipulation with two-fingered grippers, real-world research
in dexterous manipulation has been limited. This can be attributed in large part to the
lack of suitable dexterous hand hardware. Commonly used dexterous hands such as
ShadowHand [3] and AllegroHand [5] cost 100K and 16K USD, respectively, and must be
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Opposability Vol. Index (mm3) Middle (mm3) Ring (mm3)

Allegro 409,135 348,809 204,281
LEAP-C Hand 834,516 743,764 638,605
LEAP Hand (ours) 1,125,556 1,056,746 804,618

Table 2.2: We show the finger-to-thumb opposability volume in mm3 by randomly sampling
25,000 joint configurations and finding the instances at which both fingers touch and recording that
contact point. The volume of this area of contact is calculated and reported.

sent back to manufacturers for repair in case of damage. This hardware is out-of-budget
or impossible to maintain for many researchers allowing only a small fraction to work on
real-world dexterous manipulation. On the other hand, due to the availability of cheap and
reliable locomotion [4, 14] and manipulation [13, 25, 27] hardware, a large community of
researchers is able to build off of each others’ work and drive progress.

A suitable hand should therefore be as accessible as possible. This implies that it should
be low-cost and easy to repair. In LEAP Hand, we accomplish this by using as many
off-the-shelf parts as possible and fabricating the rest using only a commodity 3D printer
that costs around 200 USD. It can be assembled in under 4 hours.

LEAP Hand is designed to be modular. This allows key features of the robot hand to
be changed, such as the length or number of fingers and the distances between each of the
fingers in the palm for particular learning tasks or for analysis. Additionally, the modularity
makes the hand easily repairable with only a few distinct parts.

2.5.2 Robustness

Learning, whether via teleoperation, behavior cloning, or reinforcement learning, on a
robot hand can be notoriously harsh on hardware, especially when it is placed on a robot
arm [109, 217]. Due to the movement of the arm, the hand may repeatedly collide with the
table and objects it is trying to grasp. A robot hand should be robust to such treatment and
continue to function reliably without breaking. In addition, a robot hand must be able to
impart large torques. This is required for lifting heavy objects or using heavy tools like
drills or hammers.

While 3D printing is fast and inexpensive, the resulting parts are often not strong enough.
One alternative is custom metal machined parts. However, we avoid these as they add
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Allegro
Failure

Figure 2.5: Repeatability test. Left: An illustration of LEAP-C Hand performing repeating
grasp-ungrasp on a small plush dice using one joint for an hour. Right: Comparison of LEAP-C
Hand and Allegro [5]. After just 15 minutes, the Allegro Hand cannot maintain movement. In
contrast, LEAP Hand continues to maintain movement with minimal joint error (< 0.05 rad). Videos
at https://leaphand.com/

significant cost and require specialized skill and equipment to manufacture. We instead
rely on inexpensive ($10) off-the-shelf professionally extruded reinforced plastic brackets
from Robotis [23] that are designed to withstand wear and tear. We only print the palm and
smaller wire guide spacers using a commercial 3D printer.

The joints in LEAP Hand are designed to exceed the strength of the human hand. We
choose motors geared to high torque output for their size while still being capable of a
hand-like joint movement velocity of around 8 rad/sec. The amount of motor mass inside
the hand is maximized compared to the size of the hand, and every other component is
minimized. This enables the hand to be as strong as possible for its human-like form factor.
Because these motors are so powerful, we support current- or torque-limiting them as in
Section 2.6 to manipulate fragile objects and increase the durability of the hand.

Endurance test

To test the strength of the hand over a long period of time, we hang a 2kg weight on one
of the fingertips. This pose is similar to if a person was holding a half gallon of milk up
with one finger without using their palm as support. We find that LEAP Hand is able to
continuously hold the grasp for an hour with only a small angle error. While the current
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Figure 2.6: Endurance Test. We balance a heavy 2kg weight on only one fingertip of LEAP Hand
for one hour. On the left axis, we show that the angle error of commanded vs actual remains small.
The right axis shows that the current use does initially increase with the temperature of the motor.
However, it still withholds the weight and uses less than half of its maximum possible current of
600ma.

usage gradually increases initially, it stabilizes along with the temperature of the motors,
which remain cool. The current usage of the top motor reaches 250mA, which is still less
than half of the maximum possible. The Allegro Hand is not powerful enough to complete
this test. See Figure 2.6 for a plot of the results.

Repeatability test

We test the consistency and accuracy of LEAP Hand against Allegro Hand by running them
continuously for 1 hour in a grasping scenario as in Figure 2.5. We continuously raise and
lower a small (25g) plush dice strapped onto the finger by commanding one of the base
finger joints up and down at 5Hz. The error of the desired joint angle compared to the
actual joint angle is graphed through time.

LEAP Hand has a consistent error of 0.025 radians in the up position and 0.005 in the
down position (Fig. 2.5), which is reasonable given the PID controller and the 750mA
current limit. On the other hand, the Allegro hand starts at a much higher error. After 15
minutes, it begins to fail and then completely fails to move on one out of three grasps. This
was not a failure of the position sensor in the motor. The strain of the continuous grasping
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Hand Strength (N) Power Density N ×DOF/(cm2)

Bauer et. al [47] 37.4 0.677
Allegro Hand [5] 8.5 0.35
D’Manus [51] 27.8 0.313
Inmoov Hand [16] 5.8 0.116
Adult Human Hand 26.5 2.199

LEAP Hand 19.5 1.045
LEAP-C Hand 21.5 1.15

Table 2.3: Pullout Test. A resistance comparison of each hand to pullout force which correlates to
grasping strength. Power density is the total amount of motor force per square area of the hand.

on the motor caused overheating such that the motor was not able to apply required torques.

Pull-out force test

This test measures the amount of momentary outward force that can be resisted by a flexed
finger from a hooked force gauge before failure. Failure is defined as a motor or gear
slipping or a finger deviating more than 15 degrees from its commanded position (Fig.2.7).
The force returned correlates with the grip strength.

Tab. 2.3 compares force for robot and human hands. D’Manus [51] is the strongest
due to its large motors. Of the anthropomorphic hands, LEAP Hand performs the best,
exceeding the grip strength of a human. The Allegro Hand is weak because of smaller
motors explaining why it struggles in many grasping tasks. The tendon-driven hands, Bauer
et. al, and Inmoov do not perform that much better in this test even though they can store
large motors in their wrists and arms. We find that these tendons often slip and cannot
provide that much force at the end-effector.

2.6 Fabrication and Software

Fabrication First, each of the 3D printed components must be fabricated ( Fig. 6.1).
A $200 Ender 3 3D printer [12] was used with PLA plastic over a 2 day period, but any
consumer-grade FDM printer will suffice. Each of the two palm pieces is printed along with
fingertips and finger spacers. We collect the 3D printed parts, plastic extruded brackets, the
Dynamixel motors [11], U2D2 controller, and assorted cabling. The fingers are assembled
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individually using brackets, 3D-printed finger spacers, and motors. The assembly process
for LEAP Hand takes around 4 hours. Then each of the fingers is mounted onto the palm,
and their firmware is flashed for control. The hand interfaces with the computer using a
USB cable and ROS, Python, or C++. The 4-finger LEAP Hand weighs 595g and can be
easily mounted to a variety of robot arms. Full video instructions of the assembly process
is on our website.

Figure 2.7: Pullout Test. A pull-
out force is applied and the maxi-
mum force is recorded before the
hand has a 15 error or slipping.

Software A variety of control modes are supported on
LEAP Hand: position control, current control, current-
based position control, and velocity control. Position
control enables the hand to create torques to match a
desired position on the motors which is typical of many
PID-based controllers. Current control mode enables a
desired torque to be applied to the motors. Current-based
position control mode enables PID-based position control
but also caps the maximum current and torque. This
enables the hand to follow position commands but also
prevents large torques, which can be unsafe for the robot
and the environment around it.
Simulation We construct a detailed 3D assembly of the
hand as used in (Fig. 2.4) on Pybullet. This will enable
anyone to 3D print and design their own version of LEAP
Hand. In addition to hardware, we release an Isaac Gym
and Pybullet-based simulator for LEAP Hand. Its faithfulness to the real world is verified
by performing sim2real in Sec. 2.7.4. We release the sim2real platform to jumpstart lab
research with LEAP Hand.

2.7 LEAP Hand Applications

First, we compare all of the hands in a grasping test with various everyday objects. Next,
we compare the two most robust, human-like hands, the 4-finger LEAP Hand and the
Allegro Hand [5] against each other in a variety of machine learning tasks. Teleoperation
from human video demonstrates grasping capabilities and human-like form factor. Next,
leveraging internet video shows the capability of learning from humans. Finally, we show
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Object Grasp Type [153] LEAP LEAP-C Allegro D’Manus Inmoov

Power:
Mustard Med. Palm+Pad 20 20 13 8 Y
Toy Kick Ball Lrg. Palm+Pad 20 20 9 20 N
Golf Ball Small Pad 16 20 7 0 Y
Softball Large Pad 20 20 10 15 N
Drill Trigger Press 20 20 15 0 N
Pringle Can Power Palm 19 20 20 0 Y
Pan (from rim) Disk Grasp 20 20 20 14 N

Intermediate:

Chopsticks Tripod Grasp 16 13 0 0 N
Wood Cylinder Cigarette Grasp 4 5 0 0 N

Precision:

1” Cube 2 Finger Precision 20 20 20 0 N
M&M Tip Pinch Grasp Y Y Y N N
Wine Glass Flat Hand Cupping 20 20 4 0 N
Credit Card Lateral Pinch 20 20 8 0 N

Table 2.4: We test each robot hand on a variety of objects and grasps types and see how much
perturbation force they can resist (in newtons). The dexterous morphology of LEAP Hand as well
as its strong motors enables the cigarette and flat-hand cupping grasps.

LEAP Hand on in-hand manipulation via sim2real, which demonstrates that the simulation
and hardware are precise. In this task, LEAP Hand is able to rotate the cube faster and is
more robust to disturbances. Please see the supplemental and our website for videos of
these results.

2.7.1 Grasping Test using Teleoperation

We compare each of the hands and their ability to perform different types of grasp when
holding objects. To quickly experiment and find these poses, we use the Manus Meta VR
glove [17] to accurately teleoperate the first three hands (see appendix for details). Since
D’Manus is not anthropomorphic enough to teleoperate from human motion, we manually
control keyframes for it. We show various types of grasps that each hand can perform, and
the amount of perturbation force they can resist (up to 20N). Once the object is grasped
we push on it with the force gauge until it slips or the force gauge crosses 20N. Because
InMoov is too fragile to teleoperate and apply perturbation forces to, we only test if it can
grasp the object securely and report these results in the table.
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Table 2.4 shows LEAP Hand can grasp all objects and can perform both many power
and precision grasps. While LEAP Hand and LEAP-C Hand perform similarly, the latter has
weaker grasps because its MCP side motors cannot be used to adjust the grasp. Allegro’s
motors are significantly weaker which leads to objects like the golf ball or the soccer
ball to easily slip out. Additionally, because its kinematics lacks adduction/abduction in
an extended position, it cannot perform the tripod grasp for the chopsticks, the cigarette
grasp for the wooden cylinder, or the flat hand cupping grasp for the wine glass properly.
D’Manus can complete extremely strong power grasps on larger objects, but its lack of
opposability and inability to provide resistive force on all 4 sides of the objects hurts its
performance. Due to its large size, it fails to grasp smaller objects.

2.7.2 Teleoperation from Uncalibrated Human Video

Teleoperation enables control of high DOF robots in real-time via human feedback. This is
also a useful method for collection demonstrations. Because the Allegro Hand’s morphol-
ogy does not have a human-like MCP joint we must borrow the human-to-robot re-targeting

Success Rate Completion Time (in s)
# Teleoperated Task LEAP Hand Allegro LEAP Hand Allegro

1 Pickup Dice Toy 1.0 0.9 6.5 (1.7) 8.6 (2.65)
2 Pickup Dino Doll 1.0 0.9 6.0 (1.5) 8.2 (3.49)
3 Box Rotation 0.7 0.6 28.2 (15.7) 37.2 (12.6)
4 Scissor Pickup 0.6 0.7 32.4 (7.8) 28.6 (9.4)
5 Cup Stack 0.8 0.6 15.4 (7.0) 21.5 (7.6)
6 Two Cup Stacking 0.6 0.3 18.2 (9.2) 27.3 (11.0)
7 Pour Cubes in Plate 0.8 0.7 30.2 (15.2) 36.8 (17.7)
8 Cup Into Plate 0.8 0.8 6.2 (2.5) 10.6 (4.4)
9 Open Drawer 0.9 0.9 18.2 (11.2) 23.6 (12.3)
10 Open Drawer & Pick 0.7 0.6 37.2 (10.2) 33.7 (8.1)

Outperform rate 9/10 3/10 8/10 2/10

Table 2.5: Teleoperation—comparing LEAP Hand and Allegro. Success rate and average
completion time of a trained operator completing a variety of teleoperated tasks. LEAP Hand
outperforms or matches the Allegro performance on 9/10 tasks.
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Figure 2.8: Teleoperation and Behavior Cloning. Left: We perform dexterous teloperation using
Telekinesis [216] with a single view color camera. Right: We perform behavior cloning from internet
video and teeloperated demonstrations using Videodex [212].

method from Robotic Telekinesis [216] (Fig. 2.8 (left)), that manually defines key vec-
tors between palms and fingertips on both robot vri and human hand vhi . These vectors
define an energy function Eπ which minimizes the distance between human hand poses
(parameterized by the tuple (βh, θh)) and the robot hand poses q scaled by ci:

Eπ( (βh, θh), q ) =
10∑
i=1

||vhi − (ci · vri )||22 (2.1)

[216] trains an MLP HR(.) to implicitly minimize the energy function described in Equation
5.2.

Because LEAP Hand includes similar joints to a human, we can directly map joint
angles between the human and robot. In table 2.5, we observe that LEAP Hand performs
better than Allegro Hand on 9/10 of these teleoperated tasks. LEAP Hand is easier to control
due to its better morphology, accuracy, and responsiveness to hand input. As users in [216]
mention, it is difficult to teleoperate a robot hand with an energy function. Additionally,
the better opposability and strength of LEAP Hand allows the operator to reliably grasp
objects that are difficult to grasp on the Allegro Hand. While Allegro Hand needed to take
breaks to avoid overheating like in [110], LEAP Hand kept running without a degredation
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Pick Rotate Open Cover Uncover Place Push Overall
train test train test train test train test train test train test train test

Allegro Hand 0.81 0.75 0.89 0.69 0.90 0.80 0.78 0.67 1.00 0.90 0.90 0.70 1.00 1.00 6/14

LEAP Hand 0.92 0.84 0.89 0.72 0.94 0.76 0.80 0.75 0.96 0.90 0.94 0.75 1.00 1.00 12/14

Table 2.6: Learning from videos via VideoDex [212]. Hand policies are pretrained on internet
videos of humans and finetuned using minimal (≈ 100) teleoperated demos. On this practical use
case, LEAP Hand performs better on 12 of 14 {task}×{train, test} pairs.

of performance.

2.7.3 Behavior Cloning from Demonstrations

Behavior cloning enables agents to learn a policy for a particular task given demonstrations.
However, collecting demonstrations for behavior cloning is expensive. We utilize video
from Epic-Kitchens [78] as pre-training for our policy using VideoDex [212] along with
NDP [42], see Fig. 2.8 (right). We also only use demonstrations collected from prior work
[212] on Allegro Hand and map those to LEAP Hand. LEAP Hand still outperforms the
Allegro Hand in task performance as in Table 2.6. This is because of its consistency and
strength while completing these tasks.

2.7.4 Sim2Real In-Hand Manipulation

We perform in-hand rotation of a cube along an axis perpendicular to the palm. LEAP
Hand can return current joint position, velocity, and torque and can be controlled from both
torque or position commands. In this case, the robot infers the object pose through the
history of observed joint angles alone. This is a challenging task since it is contact-rich, and
the policy cannot directly observe the pose of the cube. The policy receives joint angles (16
values) from the motors and outputs the target joint angles (16) at 20 Hz which is passed as
position commands to the motors.

We choose a GRU [74] architecture for our policy. We first generate a cache of
stable grasps similar to [191]. The policy is then rewarded for turning the cube rrot =

clip(ωz,−0.25, 0.25), where ωz is the angular velocity along the vertical axis. We add
additional penalties for deviation from the stable grasp pose, mechanical work done, motor
torques, and object linear velocity. The scale for the rotation reward is 1.25. The scales for
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Figure 2.9: Sim2Real transfer. Left: Simulated LEAP Hand in Isaac Gym [162] completing an
in-Hand manipulation task. Right: LEAP Hand completing the same task in the real world. Please
see our website https://leaphand.com/ for our open source pipeline.

the penalties are -0.1, -1, -0.1, -0.3 respectively. We train PPO [204] with BPPT [232] in
IsaacGym [162].

In simulation, we compare the average angular velocity of a cube for different hands
and find that LEAP Hand leads to faster rotations (Tab. 2.7) than Allegro. This is because
the joint structure of LEAP Hand allows it to support the cube from the sides, whereas
since Allegro does not have adduction/abduction it must let go of the cube periodically in
order to re-orient it.

Hand Angular velocity (rad/s)

Allegro 0.0828
LEAP-C Hand 0.2205
LEAP Hand (ours) 0.2288

Table 2.7: Comparison of angular velocity for the blind in-hand rotation of a cube in simulation.
Since the Allegro Hand lacks abduction/adduction at its extended position, it has low angular
velocity. However, LEAP Hand and LEAP-C Hand have this ability and have better performance.

2.8 Conclusion and Future Work

We introduce LEAP Hand and its core design principles. Following these principles, we
demonstrate that LEAP Hand can perform exceedingly well compared to other hands on
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the market in strength, grasping, and durability. We show its usefulness in a variety of
real-world tasks, including teleoperation, behavior cloning, and sim2real. We open source
the URDF model, 3D CAD files, and a development platform with useful APIs. In future
work, we plan to develop and integrate LEAP Hand with low-cost touch sensors.

26



Chapter 3

DASH: Designing Anthropomorphic Soft
Hands through Interaction

3.1 Abstract

Modeling and simulating soft robot hands can aid in design iteration for complex and high
degree-of-freedom (DoF) morphologies. This can be further supplemented by iterating on
the design based on its performance in real world manipulation tasks. However, iterating
in the real world requires an approach that allows us to test new designs quickly at low
costs. In this paper, we leverage rapid prototyping of the hand using 3D-printing, and
utilize teleoperation to evaluate the hand in real world manipulation tasks. Using this
method, we design a 3D-printed 16-DoF dexterous anthropomorphic soft hand (DASH)
and iteratively improve its design over five iterations. Rapid prototyping techniques such
as 3D-printing allow us to directly evaluate the fabricated hand without modeling it in
simulation. We show that the design improves over five design iterations through evaluating
the hand’s performance in 30 real-world teleoperated manipulation tasks. Testing over 900
demonstrations shows that our final version of DASH can solve 19 of the 30 tasks compared
to Allegro, a popular rigid hand in the market, which can only solve 7 tasks. We open-
source our CAD models as well as the teleoperated dataset for further study. They are made
available on our website https://dash-through-interaction.github.io.
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Figure 3.1: Manipulation task performance over five iterations of DASH designed through
rapid prototyping and real-world evaluation on tasks alongside task performance of our
baseline hand Allegro.

3.2 Introduction

Rapid prototyping technologies have advanced significantly, making way for designers to
build new systems at a fast pace. These techniques, such as 3D-printing, allow for quick
turnaround between design iterations to test and evaluate systems quickly. This is especially
useful for systems with dynamics that are difficult to predict or model, such as soft robot
manipulators.

Iterating for dexterous soft hand designs is a laborious process. The complex design
space and the infinite degrees of freedom make it difficult to predict the effects of incre-
mental design changes. Unlike rigid robot hands, state-of-the-art soft body simulators are
not able to provide accurate, efficient, and robust evaluation of soft designs [69]. Hands
such as the BRL/Pisa/IIT SoftHand [87] or the RBO hand [190] have evolved over years
to incorporate more adaptive synergies and dexterity. To speed up development times and
reduce fabrication overhead many works have recently turned towards 3D-printing to either
directly print soft hands [47] or to quickly create complex molds [244]. While this has
significantly reduced the cycle time for fabrication, designing dexterous soft hands still
requires a lot of expertise, and trial and error due to the continuously deformable nature of
soft robots. The lack of appropriate simulators means the evaluation of soft hand designs
has to be done on the real prototype by using hand-crafted policies [29] or sequential
keyframed open-loop poses [47].

Our key insight is that we can evaluate these systems beyond hand-crafted policies or
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Figure 3.2: (a) Our soft robotic hand design process involving rapid prototyping and real-
world evaluation (b) CAD models and differences across DASH iterations V1 through V5,
as explained in Section 3.5.

sequential keyframed open-loop poses using recent advancements in teleoperation systems.
Improvements in hand tracking and pose estimation [200] have led to the development of
vision-based teleoperation approaches including using a single RGB camera for real-time
tracking of human hand poses [217]. Teleoperation offers valuable insights into system
performance and enables the identification of robust strategies in real-world scenarios.
Simulation often falls short in capturing system nuances, accurately modeling soft materials,
and adapting strategies. Therefore, tasks that succeed in simulation can still fail when
observed and evaluated through teleoperation, providing a clearer understanding of the
system’s capabilities and limitations.

In this paper, we 3D-print soft robotic hands to test iteratively using teleoperation on
a designated manipulation task set, modify the design, and repeat this process shown in
Figure 3.2(a). While manually testing and revising designs to improve systems is not a new
concept [244], recent technologies allow us to repeatedly iterate the entire framework of
designing, fabricating, and evaluating in a matter of days. This framework is versatile and
can be implemented at any stage of the design process. Its purpose is to bridge the gap
between the real world and simulation by adjusting for discrepancies or expediting fine-
tuning for real-world scenarios. We envision this framework as a valuable augmentation to
existing design frameworks, enhancing the overall design process for soft anthropomorphic
robotic hands.

Using our framework, we present a case study to design a 16-DoF tendon-driven 3D-
printed soft hand DASH, shown in Figure 3.1. This hand has a small form factor similar
in size to a human hand, 3D-printable parts that are easily replaceable, and a modular
customizable design that allows for easy iteration. Through teleoperation, we explore the
capabilities of the soft hand in order to inform our design iterations across five hands:
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DASH V1, V2, V3, V4, and V5. In order to evaluate the dexterity of the hand, we designed
a suite of 30 manipulation tasks with varying grasp types and objects that are inspired by
human hand capabilities, which allows us to test the capabilities of our robot hand. Our
hands show improvements across iterations, albeit not monotonically, and each iteration,
except V1, required less than 100 hours to design, fabricate, and test. DASH V1, V2,
V3, V4, and V5 succeed on 70%, 82%, 83%, 75%, and 87% of executions across all tasks,
respectively. We also outperform a commercial dexterous robotic hand, Allegro [138],
which has a success rate of 60% on the same 30 tasks.

The contributions of this paper are
• A detailed report of our process for designing soft hands that leverages rapid pro-

totyping techniques and uses a teleoperated real robot for evaluation, instead of
simulation.

• The design of a state-of-the-art dexterous anthropomorphic soft hand using our
framework, that outperforms a commercial robotic hand on real world manipulation
tasks.

• The release of open-source CAD models and data corresponding to 900 teleoperated
human demonstrations to democratize access to low-cost dexterous hands.

3.3 Related Work

Soft robotic hands such as RBO [190] utilize intrinsic compliance, rapid prototyping, and
actuated palms for a modular, highly compliant, high degree-of-freedom, and low cost
manipulator in order to perform a large variety of in-hand manipulation tasks and object
grasps. However, existing robotic hands are still far from achieving human-like dexterity
for manipulation [76]. It is necessary to continuously improve and refine the design of both
existing and new robotic hands in order to achieve greater dexterity and functionality for
performing more complex manipulation tasks.

Although there is currently no unified framework for designing iterations of soft an-
thropomorphic hands, design iteration methods for robotic systems have been explored.
Typically, Finite Element Method (FEM) is used to assess optimal geometries and mor-
phologies before fabricating the final design for real-world evaluation [91, 94]. For instance,
the SOFA soft robot simulator has been used to co-optimize control and design of soft
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hands [86]. However, these approaches are primarily limited to simulated environments and
do not address the sim-to-real gap or real-world design iteration. A related framework in
robotic fish design utilizes simulation-based FEM testing, real-world design iteration, and
proposes a modular design for easier iterations [244]. Nevertheless, optimizing soft robots
is challenging due to their complex geometries, impeding the development of efficient
optimization algorithms. Furthermore, the lack of efficient simulation tools that can rapidly
evaluate design candidates further compounds the challenge [69].

Learning control policies for dexterous manipulation is challenging due to the high
DoFs and complex interactions [36, 173]. In contrast, teleoperation offers a swift and
natural way to control robot hands, beyond pick-and-place scenarios. It has been used
for human demonstrations in imitation learning [40, 212]. Teleoperation is particularly
valuable during the design process of dexterous hands, enabling quick evaluation of nuanced
capabilities. Mapping human to robot hand morphology can be categorized as Joint-to-Joint,
Point-to-Point, or Pose-based [143]. For our soft hand, we adopt a similar joint-to-joint
mapping technique as Liarokapis et al. [147].

Our work extends the design and fabrication methodology presented by Bauer et al. [47],
consisting of simplifying the design complexity of soft hands by incorporating geometric
features such as bumps or creases to achieve ‘joint-like’ deformations. They perform
kinematic testing on designs before fabricating and evaluate a single design. Similar to
Bauer et al. [47], we utilize 3D printing, creases for ‘joint-like’ deformations, and tendon-
driven actuation to curl the soft fingers. In addition to these features, DASH’s design
incorporates three additional tendons in all fingers, enabling adduction, abduction, and
folding of the fingers towards the palm, thereby enhancing dexterity.

3.4 Experiment Setup

3.4.1 Robot Hand design

Finger Joints

All iterations of DASH consist of four fingers: the thumb, index, middle, and ring fingers
(see Figure 3.3(a)). In order to achieve modularity, each finger, including the thumb,
is designed identically. Each finger has three joints (from the base of the finger to the

31



3. DASH: Designing Anthropomorphic Soft Hands through Interaction

Figure 3.3: (a) Assembly of DASH-V3 (top to bottom) including fingers, palm, top plate,
motors, bottom plate, xArm6 mount. (b) Calibration procedure to map motor angles to
finger joint positions, where tendon 0 actuates MCP side-to-side, tendon 1 actuates MCP
forward folding motion, and tendon 2 curls the finger controlling both PIP and DIP joints.

fingertip): the metacarpophalangeal (MCP) joint, proximal interphalangeal (PIP) joint, and
the distal interphalangeal (DIP) joint. The joints for each finger are shown in Figure 3.3(b).

Tendons

Each finger is controlled by four tendons shown in Figure 3.3(b). Two tendons run along
the sides of the MCP joint, closest to the palm, for abduction and adduction, which allows
the fingers to move closer together and farther apart. These two tendons are controlled
by a single motor, so we refer to them as tendon 0. A single tendon, tendon 1, is used
to flex the finger forward at the MCP joint, orthogonally to the axis of motion of the
abduction-adduction tendons. The last tendon, tendon 2, runs through the entire length of
the finger to enable completely curling into itself.

3.4.2 Fabrication using 3D-printing

The hand assembly, shown in Figure 3.3(a), is the same for all hand iterations and consists of
4 soft fingers attached to the soft palm. The rigid components include a top plate below the
palm, 12 motors, a bottom plate which also houses the Dynamixel U2D2 motor controller,
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and a xArm6 mount.
The soft dexterous hand’s mounts, motor housing, and motor pulleys are all 3D-printed

from PLA (rigid material depicted in black in Figure 3.3(a)) while the soft hand was printed
with Ninjaflex Edge (83A shore hardness) [18] using an Ender 3 S1 Plus. For all the
robot experiments, the hand was mounted onto a xArm6 [28] robot arm. DASH costs
approximately $1500 to build with the majority of the cost consisting of 3D-printer ($500)
and the twelve motors ($1000) required. For comparison, the Allegro hand is also 16-DoF
and costs around $15000 [248].

3.4.3 Hand Evaluation using Teleoperation

Learning Kinematics

To approximate the kinematics of the finger joints without real-time feedback, we learn
a model from collecting offline paired motor and joint angle data from a single finger.
Through small increments of 3 degrees of actuation and joint angle tracking across 1000
finger configurations using AR tags and RGB cameras, we obtain a collection of tuples (joint
angles, motor angles) that are normalized to [0, 1] for independent kinematic calibration,
assuming fixed joint lengths and bending at the creases.

A linear model is learned using the collected data to map finger joint angles to motor
angle outputs. We refer to the motors controlling tendons 0, 1, and 2, as shown in Fig-
ure 3.3(b), as motors 0, 1, and 2, respectively. The equations for MCP, PIP, and DIP joint
angles are shown below. In equation 3.1, we learn the MCP joint angles θMCPside

, θMCPfwd

jointly since the amount of side-to-side angle at the MCP joint can restrict the forward
folding motion of the finger. In equation 3.2, the Motor 2 angle θmotor2 is an average
measure of the motor angle for the desired PIP and DIP joint angles θPIP, θDIP since the
same tendon controls both the PIP and DIP joints. The weights in equations 3.1 and 3.2
are found by fitting our data using linear functions. We collect training data for almost two
hours for each iteration of the hand to calibrate new models, using the weights shown in
Table 3.1.

[
θmotor0

θmotor1

]
=

[
w1 w3

w2 w4

]
·

[
θMCPside

θMCPfwd

]
+

[
b1

b2

]
(3.1)
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Hand Design v1 v2 v3 v4 v5

w1 −1.05 −0.43 −0.43 −0.59 −0.59
w2 0.01 0.2 0.2 −0.12 −0.19
w3 0.1 0.51 0.51 0.26 −0.32
w4 0.83 0.54 0.54 0.38 0.72
w5 0.67 0.6 0.6 0.62 0.63
w6 0.99 0.76 0.76 1.69 0.65
b1 0.47 0.38 0.38 0.45 0.58
b2 −0.07 0.01 0.01 0.44 −0.03
b3 0.03 −0.04 −0.04 −0.05 −0.09
b4 −0.01 −0.16 −0.16 −0.3 −0.07

Table 3.1: Calibration weights for all five iterations of DASH mapping from finger joint
angles to motor angles.

θmotor2 =
θPIPw5 + b3

2
+

θDIPw6 + b4
2

(3.2)

Teleoperation System

We use Manus Meta Quantum Metagloves [17] designed for VR tracking and Mocap Use,
as shown in Figure 3.4 (costs ∼ $8000). The Manus glove is worn on the operator’s hand
and tracks fingertip positions within a 0.1-degree accuracy using hall effect sensors. Each
finger returns 4 angles θMCPside

, θMCPfwd
, θPIP, θDIP in real time, which are mapped one-to-one

to the robot hand. Then, we convert to motor angles using our kinematics models.
To control the robot arm shown in Figure 3.4, we employ wearable SteamVR track-

ers [24], utilizing time-of-flight lasers emitted from SteamVR Lighthouses positioned
around and above the operator. One tracker is worn on the glove, while another is placed
around the waist. We align the waist tracker’s rotation with the robot’s base frame and adjust
the end-effector pose to match the orientation of the human wrist. Then, the human wrist
poses are scaled up to cover the robot’s larger workspace, making necessary adjustments to
ensure user comfort. Safety checks, including dynamic force feedback on the arm, prevent
accidental damage to the robot or its surrounding environment.
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Figure 3.4: Manus Meta Quantum Metagloves used for tracking the hand for teleoperating
the robot arm and DASH.

3.4.4 Manipulation Tasks

Each DASH iteration is tested on a suite of tasks, named DASH-30, listed in Table 3.2
which were inspired by the different types of grasps defined in Liu et al. [154] and tasks
from previous teleoperation works [107, 217]. These tasks are categorized by the type of
grasp or force necessary. Categories like Hold include a greater number of tasks aimed at
testing different grasping techniques and objects. On the other hand, skills like Lever or
Twist involve fewer tasks specifically designed to assess whether a particular hand design
can successfully perform these skills. Additionally, some tasks were hand-picked as tasks
where compliance of the hand may be advantageous.

The feedback from the manipulation task evaluation combines observations from the
following metrics: task success, performance across five repetitions of the same task, trends
in tasks the hand fails to complete, type of grasps possible or used, opposability of fingers,
and reachability of fingertips.
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Hold

1) Scissor, 2) Hammer, 3) Chopsticks (single), 4) Pen,
5) Wooden cylinder (using adduction/abduction),
6) Screwdriver, 7) Drill, 8) (Plastic) Egg*,
9) (Plastic) Chip*, 10) M&M*

Pick (and place)

11) Dry-Erase Board Eraser, 12) Tennis Ball,
13) Softball, 14) Cloth*, 15) Plush Broccoli,
16) Plush Dinosaur,17) Pringles Can, 18) Spam Box,
19) Mustard Bottle, 20) Wine Glass, 21) Bin picking

Lever

22) Cube flip, 23) Card pickup from deck

Twist

24) Dice rotation in-hand, 25) Grape off of stem*

Open

26) Plastic bag*, 27) Drawer

Put in/on

28) Cup Pouring (onto plate),
29) Cup Stacking & unstacking, 30) 1 inch Block stacking

Table 3.2: DASH-30: task set of 30 manipulation experiments. Tasks with the asterisk (*)
were hand-picked as tasks where compliance of the hand may be advantageous.

3.5 DASH Iterative Design Studies

3.5.1 Iteration V1

DASH-V1 performs best on pick and place tasks and tasks using adduction-abduction such
as the grape task, shown in Figure 3.5 due to the larger hand size and space between fingers
as illustrated in Figure 3.2(b).

Design & Fabrication

We start by designing the shape of the finger to enable curling fully into itself, incorporating
four total tendons per finger, and redesigning the MCP joint as a multi-axis flexure for
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Figure 3.5: Subset of tasks with different performance success across V1 to V5 on specific
tasks used to inform design iteration. The top row of inset images shows representative
tasks of successful tasks for each hand.

increased dexterity in our desired hand. We iterated on the finger design for approximately
four months and use this design for all four fingers in DASH-V1.

Designing V1 included considerations such as tendon anchors, 3D-printing settings,
and material stiffness. For example, printing the hand with more infill makes it stiffer but
requires more torque than our motors can supply for the joint’s full range of motion. To
better understand the stiffness of the fingers, we test the finger strength by curling the finger
completely and using a force gauge to pull on the finger until it uncurls (see Table 3.3 for
results). DASH-V1 hand design is shown on the left in Figure 3.2(b). We designed the full
hand assembly for V1 in 1 month.

Evaluation

We test DASH-V1 on the 30 manipulation tasks from Section 3.4.4, repeating each task
five times. Over 150 repetitions, DASH-V1 succeeded on all 5 repetitions for 10 of the 30
tasks, as shown in Figure 3.6. For V1, these tasks were Scissors, Hammer, Wooden cylinder,
Cloth, Plush Broccoli, Plush Dinosaur, Pringles can, Mustard bottle, Wine glass, and Cup
stacking. V1 struggled to grasp small objects such as the M&M, Pen, and Chip since the
fingers were not able to reach and properly oppose each other. For tasks involving precise
motions such as picking the Grape off a stem and opening the Plastic bag, V1 uses the
abduction-adduction capability. The abduction-adduction grip strength of V1 is high and
enables picking up objects such as the grape off the stem with ease, as shown in Figure 3.5
inset.

V1 succeeds on five out of five repetitions on 10 tasks but shows room for improvement.
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Grasps that require all four fingers such as picking up a tennis ball would be more successful
if the thumb could reach and oppose the rest of the fingers. The best opposability to the
thumb was to the ring finger, hence pinch (or precision) grasps were easiest to execute with
those two fingers. Improving the reachability and opposability of the fingertips requires
a smaller palm or longer fingers. We explore these design options in V2 in order to have
more overlap in the workspace of the fingers.

3.5.2 Iteration V2

DASH-V2 performance improves on pick and place and hold tasks requiring power grasps.
Furthermore, V2 excels at the levering task of cube flip on table, shown in Figure 3.5 inset,
due to higher finger strength and fingertip reachability from a smaller palm and longer
finger hand design shown in Table 3.3 and Figure 3.2(b).

Design & Fabrication

The second iteration of DASH consists of changes to the size of the hand and the MCP
joint of the finger. To allow for more reachability among the fingers as well as opposability,
the fingers were made longer and the palm was made smaller as shown in Figure 3.2(b).
For comparison, DASH-V2 is similar in size to the average male hand which is 88.9mm
wide and 193mm long (wrist to fingertip) [15] . Compared to DASH-V1, there is more
than a 25% reduction in area of the palm and the finger length increased by 11% in V2
which is shown in Figure 3.2(b).

The MCP joint was improved to achieve a larger range of motion. The underlying
structure of the MCP joint is a cylinder to act as a multi-axis flexure, thus we increase the
height of the cylinder to increase the joint angle range for the side-to-side and forward
motion of the fingers. The design changes also resulted in a higher maximum load of a
single finger as shown under finger strength in Table 3.3. Thus, V2 achieves increased range
of side-to-side and forward motion for the fingers by redesigning the MCP joint, and has
a larger overlap in the workspace of the fingers solving the reachability and opposability
issues in V1.

Designing, printing, and assembling V2 took 5, 83, and 6.5 hours, respectively. Printing
V2 required us to not only re-print the soft hand, but also the rigid motor housing as the
motor arrangement differs from V1. In total, making V2 from V1 took 94 hours.
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Evaluation

With larger range of motion at the MCP joint and better reachability, we expect V2 to
achieve better performance on tasks involving smaller objects like M&M, Pen, and Chip. As
shown in Figure 3.5, V2 did improve performance on Pen and Chip. M&M and Card pickup
were tasks that did not improve from V1. Both of these tasks require fine manipulation
which is still a limitation in V2. Instead, our main improvement from V1 to V2 is in
achieving better power grasps. Tripod grasps or using more than two fingers was necessary
to have stable grasps, especially for the holding tasks such as Hammer, Screwdriver, and
Chopstick. However, observations during teleoperation included difficulty using precision
grasps with two fingers.

V2 performs better than V1 in 14 tasks (refer to Figure 3.6), including tasks involving
Soft ball, Screw driver, Tennis ball, Dry-erase board eraser, and Spam box that all require
power grasps. As shown in Figure 3.5, the most significant improvements are seen for Pen,
Chip, Tennis ball and Cube Flip. The inset in Figure 3.5 shows V2 grasping Chip with the
ring finger and thumb finger, and V2 succeeding at all five repetitions of Cube Flip. These
improvements are possible with better reachability and opposability of the thumb with the
rest of the fingertips.

Having more space between the fingers made abduction-adduction tasks such as picking
Grape off of a stem and Wooden cylinder easier for V1 compared to V2, but V2 still
performs reasonably well. Out of the 150 repetitions, V2 is successful in 123 repetitions,
which is 18 more when compared to V1. Additionally, the number of tasks where all five
repetitions were successful increased from 10 tasks using V1 to 14 tasks using V2.

3.5.3 Iteration V3

DASH-V3 has the best thumb opposability and thinnest fingertip design out of all of our
hand iterations, yielding in the best score for Card Pickup as shown in Figure 3.5. Thinner
fingertips, however, led to weaker finger strength which decreased task success for tasks
such as Dry-erase Board Eraser and Grape off stem.
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Hand design v1 v2 v3 v4 v5

Palm size 94x102 84x84 84x84 84x84 84x84
Finger length 90 100 100 100 100
MCP diameter 6 6 6 10 8
MCP height 6 8 8 8 8
DIP crease width 10.3 10.3 8.9 10.3 13.0
Thumb angle 45◦ 45◦ 0◦ 22.5◦ 22.5◦

Fingertip edge 3.5 3.5 1.73 3.5 3.5
Fingertip thickness 13.21 13.22 7.98 11.22 8.75
Finger strength 37.8 47.6 34.5 51.8 27.4

Table 3.3: Hand design parameters where finger length refers to the distances in millimeters
from the top of the MCP joint to the fingertip and finger strength (N) is measured by pulling
on a fully curled finger with a digital force gauge.

Design & Fabrication

The changes from DASH-V2 to V3 involve changing the thumb placement and fingertip
shape. In order to make grasps with only two or three fingers more stable, the thumb has
to be directly opposable to the rest of the fingers, most importantly the index finger. In
V2, the thumb has a 45-degree angle to the palm which we change to be parallel to the
index finger in V3, as shown in the middle of Figure 3.2(b) and in Table 3.3. In addition to
the thumb placement, the fingertip shape was changed from a rounded surface to a thinner
wedge-like surface (see Figure 3.2). The rounded surface in V2 presented a point contact
when interacting with objects. In contrast, the wedge-like surface will have a larger contact
area and thinner fingertip (similar to fingernail) in order to get under objects to grasp. This
results in a thin fingertip edge, almost half the size of V1 and V2’s fingertip edge (see
Table 3.3). We also move the tendon routing farther away from the center axis of the MCP
joint so that we can exert more torque when folding the finger forward about the MCP joint.

Designing, printing, and assembling V3 took 4, 67.25, and 4.25 hours, respectively.
Similar to V2, we reprinted the motor housing again due to the new thumb placement. In
total, making V3 took almost 83.75 hours.
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Figure 3.6: Task performance over 5 repetitions of each task across V1, V2, V3, V4, V5,
and Allegro as baseline. The tasks are ordered difficult to easy from left to right, according
to task performance of Allegro.

Evaluation

As shown in Figure 3.6, DASH-V3 has more successful tasks than the previous hand
iterations and our baseline, completing 16 tasks successfully in all repetitions as opposed to
the 14 tasks V2 successfully executed. V3 succeeded on all repetitions of Wooden Cylinder,
Card Pickup, Cup Pouring, Drill, Plush Dinosaur, and Mustard Bottle, which are tasks V2
did not master. The task improvement was due to better thumb opposability compared
to V2. In total, V3 succeeded on 124 repetitions which is 1 more than the number of
repetitions V2 is successful at. With V3, we observe higher grasp stability during power
grasps and handling of delicate objects, during teleoperation. Additionally, we find that
the fingertip shape makes a large difference for specific tasks. We clearly see this effect
occurring in Cube flip and Card pickup (see inset images of V2 Cube Flip and V3 Card
Pickup in Figure 3.5). The flat fingertips of V3 are ideal for thin delicate card pickup but not
for the cube flip. Reorienting the cube in-hand in Cube flip is better suited to the rounded
fingertip on V2, keeping a stable point contact while the object rotates on the table.

41



3. DASH: Designing Anthropomorphic Soft Hands through Interaction

3.5.4 Iteration V4

DASH-V4 was optimized for strength as we found that lacking for tasks such as Cube
Flip for V3. This allowed for heavy objects like Soft Ball to have great success with V4 as
shown in Figure 3.5 but decreased finger folding motion resulted in decreased performance
for tasks such as Hammer, Screwdriver, and M&M.

Design & Fabrication

The fourth iteration of DASH was designed to optimize for strength. We focused on
redesigning the MCP joint to be thicker, providing increased stiffness for folding the fingers
into the palm. Achieving the right balance was challenging, as we aimed to maintain the
range of motion for MCP forward motion within the torque limits of our motors. While a
simple solution would be to use larger motors to increase force and stiffness at the MCP
joint, this would result in a larger and heavier hand.

Additionally, we made changes to the fingertips and thumb placement, creating a hybrid
design influenced by DASH-V2 and DASH-V3. Thicker fingertips proved useful for tasks
involving rotation, such as Cube flipping, while thinner fingertips were beneficial for pinch
grasps like Card pickup. The result was rounded edges with a flat surface in the center of the
fingertip, providing versatility for pinch to power grasps. Similarly, the thumb placement
was positioned between V2 at 45◦ and V3 at 0◦, settling at 22.5◦ relative to the palm. While
V2 excelled in power grasps and V3 in pinch grasps like Card pickup, we aimed for V4 to
perform equally well in both types of grasping.

Designing, printing, and assembling V4 took 8.5, 82, and 5 hours, respectively. Similar
to V3, we reprinted the motor housing to accommodate the new thumb placement.

Evaluation

DASH-V4 successfully completed all five repetitions of 17 tasks, surpassing the task
performance of V3. V4 maintained its performance in most of these tasks, with the
exception of Scissors, as shown in Figure 3.5. However, it outperformed V3 in tasks
involving the Dry-erase board eraser and performed better than any previous hand iteration
in the Soft ball task. This was attributed to the stronger MCP joint, which enhanced the
finger strength, as indicated in Table 3.3. Nevertheless, the limited range of motion in
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the MCP forward joint resulted in poor reachability, causing objects like Scissors to slip
between the fingertips.

Overall, the hybrid thumb position and fingertip shape, combining features from V2
and V3, proved advantageous in achieving a greater number of tasks. However, the next
iteration should address the loss of range of forward folding motion to improve reachability.
The limited reachability of V4 also led to zero successes out of five repetitions in four tasks,
including Hammer, Screwdriver, M&M, and Grape off stem. All of these limitations can be
attributed to the restricted range of motion in the MCP forward joint.

3.5.5 Iteration V5

DASH-V5 aimed to be a combination of all previous hand design features with respect to
joint and fingertip thicknesses. V5 generally outperformed all previous design iterations
and excelled at the Screwdriver task as shown in Figure 3.1.

Design & Fabrication

The fifth iteration of DASH features a stiffer MCP joint compared to V3, but it is more
compliant than the MCP joint of V4. By increasing the compliance at the MCP joint, we
were able to achieve a greater range of motion at the joint compared to V4, which had
limited folding capabilities. Furthermore, we made the fingertip thinner than that of V4,
and widened the DIP crease (as shown in Table 3.3), in order to improve the curling of the
finger. As a result, DASH-V5 exhibits the most extensive curling motion among all the
previous iterations.

Designing, printing, and assembling V5 took 2, 24, and 2.75 hours, respectively. Unlike
the previous versions, we kept the motor assembly unchanged and only replaced the fingers
of V4. Consequently, the total time required for iteration was the lowest for V5, totaling
28.75 hours.

Evaluation

Among all the design iterations of DASH, DASH-V5 performed the best. V5 succeeded
on five out of five repetitions on 19 tasks and achieved a completion rate of 131 out of 150
total task repetitions. In addition to the tasks that V4 succeeded on, V5 also completed
five out of five repetitions on the Hammer and Stacking cubes tasks. This improvement
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Figure 3.7: Task performance across V1, V2, V3, V4, V5, and Allegro as baseline on each
category of tasks from Table 3.2.

indicates that we have made incremental progress on the hand design. V5 had the most
curling range of motion than previous hands which made picking objects easier for the
teleoperating user due to stable grasps enveloping objects into the palm.

As shown in Figure 3.5, V5 showed improved task performance for Hammer, Screw-
driver, Chip, M&M, Grape off stem, and Plastic Bag. However, it performed worse for
the Chopsticks and Egg tasks. Although V5 has the lowest finger strength among all
DASH iterations due to thinner joints and thinner fingertips (as shown in Table 3.3), its
enhanced finger curling abilities even enabled a single finger to hold objects. However,
when completely curled, thin objects such as the chopsticks were prone to falling between
the thumb and fingers. This issue could be addressed by introducing longer fingers to allow
for more overlap between the fingertips. Overall, V5 outperformed all previous iterations
of DASH across all 30 tasks. However, it is worth noting that certain hands may specialize
in specific tasks. For instance, V5 excelled at picking up Screwdriver, while V3 was the
most suitable for Card pickup, as shown in Figure 3.5. One interesting result involved the
V5 screwdriver hold, which aligned perfectly in the groove on the tool handle.

3.6 Baseline Study: Allegro Dexterous Hand

Allegro [138] is an off-the-shelf gripper that we use as a baseline. Allegro is a dexterous
robotic hand that has four fingers with motors at the joints, rigid structure, and large rubber
spherical fingertips. We perform the same 30 manipulation tasks from DASH-30 (Table 3.2)
with Allegro to compare the performance against all iterations of DASH.

Allegro succeeded on all five repetitions on 7 out of 30 tasks. These tasks included
manipulating the Drill, Dry-Erase board eraser, Plush broccoli, Plush Dinosaur, Spam box,
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Wine glass, and Stacking cubes, as shown as the rightmost tasks in Figure 3.6. Allegro
performed best on pick and place tasks compared to other types of tasks as shown in
Figure 3.7. However, all iterations of DASH, except V1, were also successful at these
tasks.

The Allegro robotic hand and fingers had difficulty with tasks such as picking up
the Pen, Card, Plastic bag, Scissors, and Hammer which required precision.While both
DASH and Allegro hands lack sensing capabilities, this disproportionately affected Allegro
because lack of compliance made it easy to grasp too tightly or not enough, especially for
rigid objects. Similarly, the Cup pouring grasp was unstable due to the spherical fingertips
rotating the cup in-hand during the task. The side-to-side motion (or abduction-adduction)
of the fingers was limited, making Dice Rotation coarse and unpredictable. However,
Allegro had stable grasps for larger and softer objects such as the Drill, Softball, Plush
Dinosaur, Plush Broccoli, and Wine Glass (see rightmost tasks in Figure 3.6).

3.7 Discussion

Across the 30 tasks, we observe that V5 has the best performance solving 19 tasks suc-
cessfully completing all repetitions, while V4, V3, V2, V1, and Allegro solve 17, 16, 14,
10, and 7 tasks, respectively. In Figure 3.7, we see that all iterations of DASH outper-
form the Allegro baseline on most categories of tasks listed in Table 3.2 as well as steady
improvement in DASH iterations except for twisting and opening which are the most
difficult categories of tasks. The two twisting tasks were Dice Rotation and Grape which
both more successful with the larger palm and space between fingers for V1 compared to
other iterations. For opening tasks, V2 had more success on opening Plastic Bag due to
its rounder fingertips and higher finger strength. Through our suite of varied manipulation
tasks and human-in-the-loop design iteration, we validate our framework’s ability to use
real world evaluation to iteratively design soft robot hands through rapid prototyping and
teleoperation.

From our case study in Section 3.5, we draw three crucial observations regarding our
proposed framework. Firstly, the direct feedback from the designer performing real world
manipulation tasks with DASH was crucial for us in informing the design changes required
to improve performance across iterations. In contrast, testing in simulation can result in
design changes that do not necessarily translate to performance improvement in the real
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world. Secondly, using teleoperation removed the necessity of designing different control
policies for 30 various tasks across six robot hand morphologies in our case study, and
allowed us to adjust grasps in real-time during task execution, which is often not feasible in
simulation or by using keyframed poses. Lastly, despite using real robot hands in the design
iteration process, our framework has a short iteration time, consisting mostly of printing
time (about 80% of total time), by leveraging 3D-printing and the use of teleoperation to
evaluate the design in the real world.

Our framework can extend to testing other soft robotic hands in the real world for
rapid design iteration. There are three stages of our framework, as shown in Figure 3.2(a),
including design, fabrication, and evaluation. Some best practices include incorporating
a modular design to facilitate easier iteration, adopting rapid prototyping methods for
seamless fabrication, and favoring incremental design changes to allow for targeted iteration
on specific design features. Our method of evaluating using teleoperation also allowed
for minimal changes in control when the hand design changed. Our framework can be
used to test easily prototyped hands, such as those by Bauer et al. [47] or RBO [190],
using the same setup used for DASH iteration, similar to our Manus [17] VR teleoperation
system. Additionally, DASH-30, our suite of 30 varied manipulation tasks can be used to
benchmark other dexterous hands in the community.

Observing that our robot hand has similar structure and size to human hands, we note a
crucial limitation of our framework, shown in Figure 3.2(a), for robot hand morphologies
that diverge from human hand morphology as teleoperation might not be feasible in such
cases. Additionally, calibration or mapping of the teleoperator’s hand to the robot hand can
have a significant impact on the robot hand’s performance in real-world manipulation tasks.
For example, an inaccurate mapping from the teleoperator’s hand to the robot hand can
incorrectly evaluate the robot hand to be incapable of some tasks. Another limitation for
this framework is that it can result in longer turnover times for designs that cannot be made
with rapid prototyping techniques such as 3D-printing. Lastly, monotonic improvement is
difficult to guarantee due to the manual design iteration process in our framework.

3.8 Conclusion and Future Work

This paper presents a design iteration process that can supplement existing design iteration
techniques by leveraging 3D-printing and teleoperation. We exhibit the potential of this
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framework through a case study of designing a 16-DoF 3D-printed dexterous anthropomor-
phic soft hand DASH. By 3D-printing the new design at each iteration, and evaluating it
on real-world manipulation tasks using teleoperation to inform future hand designs, we
consistently improve its performance over the baseline Allegro hand and across succes-
sive iterations of DASH. We open-sourced our DASH CAD models and teleoperated
demonstration data at https://dash-through-interaction.github.io.

Future directions include automatic design iteration by singling out features of the CAD
design and correlating them with capabilities of the hand. Further study would be required
to automate this process and use collected data to learn what properties of the hand should
be improved for better task performance. Currently, the process of design iteration in our
case study was manual in that we chose parameters to change based on task performance
and observations from real-world manipulation experiments.
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Part II

Learning Human-like Dexterity
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Chapter 4

Robotic Telekinesis: Learning a Robotic
Hand Imitator by Watching Humans on
YouTube

4.1 Abstract
We build a system that enables any human to control a robot hand and arm, simply by
demonstrating motions with their own hand. The robot observes the human operator via
a single RGB camera and imitates their actions in real-time. Human hands and robot
hands differ in shape, size, and joint structure, and performing this translation from a
single uncalibrated camera is a highly underconstrained problem. Moreover, the retargeted
trajectories must effectively execute tasks on a physical robot, which requires them to
be temporally smooth and free of self-collisions. Our key insight is that while paired
human-robot correspondence data is expensive to collect, the internet contains a massive
corpus of rich and diverse human hand videos. We leverage this data to train a system
that understands human hands and retargets a human video stream into a robot hand-arm
trajectory that is smooth, swift, safe, and semantically similar to the guiding demonstration.
We demonstrate that it enables previously untrained people to teleoperate a robot on various
dexterous manipulation tasks. Our low-cost, glove-free, marker-free remote teleoperation
system makes robot teaching more accessible and we hope that it can aid robots in learning
to act autonomously in the real world. Video demos can be found at: https://robotic-
telekinesis.github.io
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Figure 4.1: Our system leverages passive data from the internet to enable robotic real-time imitation
in-the-wild. This low-cost system does not require any special gloves, mocap markers or even
camera calibration and works from a single RGB camera.

4.2 Introduction

Mimicking human behavior with robots has been a central component of robotics research
for decades. This paradigm, known as teleoperation, has successfully been used to enable
robots to perform tasks that were unsafe or impossible for humans to perform, such as
handling nuclear materials [228] or deactivating explosives [85]. Teleoperation has also
been used to enable the robotic automation of tasks that are easy for humans to demonstrate
but difficult to program. In industrial robotics, for example, teleoperation can be used
to demonstrate a single trajectory (e.g. picking a box from a conveyor belt) that the
robot overfits to and repeats verbatim for months or years thereafter. Teleoperation can
alternatively be used as a means to collect a large dataset of demonstrations, which can then
be used to learn a policy that generalizes to new tasks in unseen environments [195, 196].

In this paper, we specifically study the problem of teleoperation for dexterous robotic
manipulation. While there are many promising current techniques (e.g. Kinesthetic Control
[52], Virtual Reality devices [19, 26], haptic gloves [1] and MoCap [245]), each of them

1Equal Contributions
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suffers from some shortcoming that has limited its applicability. These setups typically
involve expensive hardware and specialized engineering, expert operators, or an apparatus
that impedes the natural fluid motion of the demonstrator’s hand.

The challenge of overcoming these shortcomings grows exponentially with the complex-
ity of the robot to be controlled; multi-fingered hands are far more difficult to teleoperate
than two-finger grippers. Despite recent advancements, building an easy-to-use, perfor-
mant and low-cost teleoperation system for high-dimensional dexterous manipulation has
remained elusive. Handa et al. recently proposed DexPilot [108], a low-cost system for
vision-based teleoperation that is free of markers or hand-held devices. It lowers the cost
and usability barrier, but relies on a custom setup with multiple calibrated depth cameras,
and uses neural networks trained on images collected in this controlled environment, which
limits its use to a specific lab setting.

The objective of this paper is to enable teleoperation of a dexterous robotic hand, in
the wild. This means our system should be low-cost, work for any untrained operator,
in any environment, with only a single uncalibrated color camera. One should be able to
simply look into a monocular camera of their phone or tablet and control the robot without
relying on any bulky motion capture or multi-camera rigs for accurate 3D estimation. We
call our system Robotic Telekinesis, as it provides a human the ability to control a dexterous
robot from a distance without any physical interaction.

Unfortunately, building such a system poses a chicken-and-egg problem: to train a
teleoperation system that can work in the wild, we need a rich and diverse dataset of paired
human-robot pose correspondences, but to collect this kind of data, we need an in-the-wild
teleoperation system. However, while we lack paired human-robot data, there is no shortage
of rich human data, and our key insight is to leverage a massive unlabeled corpus of
internet human videos at training time. These videos capture many different people from
different viewpoints doing different tasks in several environments, ensuring generalization
by design.

We propose a method that conquers the human-to-robot problem using two subsystems.
The first subsystem uses powerful computer vision algorithms trained to estimate 3D human
poses from 2D images, and the second subsystem uses a novel motion-retargeting algorithm
to generate a physically plausible robot hand-arm action that is consistent with a given
human pose. During training, our method only uses passive data readily available online
and does not require any active fine-tuning on our robot in our lab setup.
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Figure 4.2: An operator completing a dice pickup task while watching the robot through a video
conference. Video demos are at https://robotic-telekinesis.github.io/.

Our system is low-cost, glove-free, and marker-free, and it requires only a single
uncalibrated color camera with which to view the operator. It allows any operator to
control a four-finger 16 Degree-of-Freedom (DoF) Allegro hand, mounted on a robotic arm,
simply by moving their own hand and arm, as illustrated in Figure 6.1. We demonstrate the
usability and versatility of our system on ten challenging dexterous manipulation tasks. We
further demonstrate the generality and robustness of our system by performing a systematic
study across ten previously untrained human operators.

4.3 Related Work

The first section reviews relevant research in 3D human pose estimation and the second
section discusses related work in kinematic motion retargeting, with a particular focus on
cross-embodiment retargeting and teleoperation.

Understanding Human Hands and Bodies Modeling human bodies and estimating
their poses are widely studied problems, with applications in graphics, virtual reality and
robotics. The recent research most relevant to our work can roughly be divided into four
sub-areas. (1) Hand and body modeling. MANO [199] is a low-dimensional parametric
model of a human hand, and SMPL [158] is an analogous model for the human body.
SMPL-X [182] is a single unified model of both the body and hands. (2) Monocular

human hand and body pose estimation. Recent works in human pose estimation typically
estimate 2D quantities like bounding boxes [207] or skeletons [62], or perform a full
3D reconstruction [95, 123, 230]. Rong et al. [200] propose a method for integrated
3D reconstruction of human hands and bodies. (3) Dataset curation: The advances in
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human pose estimation crucially rely on large datasets of human hand and body poses.
FreiHand [249], Human3.6M [118] and the CMU Mocap Database [9] are examples of
densely-annotated datasets in clean indoor settings. On the other end of the spectrum, the
100 Days of Hands [207] and Epic Kitchens [78] datasets are massive collections of raw
videos that span a rich and diverse set of hand poses and motions but don’t contain pose
annotations. (4) Understanding human hand function. Brahmbhatt et al. [55] use thermal
imaging to capture impact heatmaps that reveal patterns in the ways human hands interact
with everyday objects. Taheri et al. [223] study the problem of how human hands and
bodies behave while grasping and manipulating objects, and propose a method to generate
plausible human grasps for novel objects. Hasson et al. [111] and Cao et al. [63] propose
methods for joint hand and object reconstruction, and Hampali et al. [105] present a dataset
of hand-object interactions with 3D annotations. Liu et al. [152] builds a taxonomy of
human grasps to understand the cognitive patterns of human hand behavior [149].

Kinematic Retargeting and Visual Teleoperation Human pose estimation only solves
half of the visual teleoperation problem. Mapping human poses to robot poses is itself a
difficult challenge, because humans and robots have very different kinematic structures. Li
et al [144] train a deep network to map human hand depth images to joint angles in the
robotic Shadow Hand, and Antotsiou et al [37] combine inverse kinematics and Particle
Swarm Optimization to retarget human hand poses to a high-dimensional robot hand model.
Our system follows the method of DexPilot [108], which minimizes a cost function that
captures the functional similarity between a human and a robot hand.

The general problem of kinematically retargeting motion in one morphology into
another is also studied outside of robotic manipulation. Villegas et al. [229] propose a
cycle consistency objective to transform motion between animated humanoid characters
of different body shapes. Peng et al [184] use an approach based on keypoint matching
to learn robotic locomotion behaviors from demonstrations of walking dogs. Zakka et al.

[243] learn a visual reward function that allows reinforcement learning agents to learn from
demonstrators with different embodiments.

4.4 Robotic Telekinesis

Robotic Telekinesis is a system for real-time, remote visual teleoperation of a dexterous
robotic hand and arm. A human demonstrates tasks to the robot just by moving their hand,

53



4. Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans on
YouTube

Figure 4.3: A graphical description of our visual teleoperation pipeline. First, a color camera
captures an image of the operator. Top: to command the robot hand, a crop of the operator’s hand is
passed to a hand pose estimator, and the hand retargeting network maps the estimated human hand
pose to a robot hand pose. Bottom: to command the robot arm, a crop of the operator’s body is
passed to a body pose estimator and cross-body correspondences are used to determine the desired
pose of the robot’s end-effector from the estimated human body pose. Finally, commands are sent to
both the robot hand and arm.

and the robot mimics the actions instantaneously. Our system consists of an xArm6 robot
arm, a 16-DoF Allegro robot hand, and a single uncalibrated RGB camera capturing a
stream of images of the human operator. The operator must be in the field of view of the
camera and must be able to see the robot to guide it, either in real life or through a video
conference feed. Each image is retargeted into two commands which place the robot hand
and arm in poses that match the hand-arm poses of the human operator in real time. Figure
4.2 illustrates an operator solving a grasping task while monitoring the robot through a
video conference feed.

The problem of remote teleoperation from a single camera is severely under-constrained
for two reasons. One reason is that the input images are in 2D while the robot is controlled in
3D: mapping from 2D to 3D is an ill-defined problem. While this issue could be addressed
with a multi-camera setup, in this work our goal is to build a system usable with any one
uncalibrated camera, from a cell-phone camera to a cheap webcam. The use of a single
color-only camera leads to certain failure modes, typically related to inter-hand occlusions
and ambiguous depth perception, but these are issues we attempt to mitigate using our
neural network based retargeter.

The second reason is the ambiguity caused by the differences in morphology, shape and
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functionality, between human hands and robot hands. To address both of these problems,
we rely on deep neural networks to learn priors from passively-collected internet-scale
human datasets to enable powerful human pose estimation and human-to-robot transfer.

In the rest of this section, we describe our visual teleoperation pipeline. As shown in
Figure 5.1, we group the pipeline into two branches: one branch for hand retargeting and
the other one for arm retargeting.

4.4.1 Hand Teleoperation: Human Hand to Robot Hand Pose

The problem of retargeting 2D human images to robot hand control commands is broken
into two sub-problems. The first is to estimate the 3D pose of the human hand from a 2D
image, and the second is to map the extracted 3D human hand parameters to robot joint
control commands. We discuss each of these two sub-problems below.

2D Hand Image to 3D Human Hand Pose

The first step in hand retargeting is to detect the operator’s hand in a 2D image and infer
its 3D pose. To this end, we exploit recent advances in computer vision. We rely on large
paired 2D-3D datasets, and high-quality models that leverage this data to produce physically
plausible 3D human pose estimates from 2D images.

Our method first computes a “crop” around the operator’s hand, based on a bounding
box computed using an off-the-shelf detector derived from OpenPose [62]. The resulting
image crop goes to a pose estimator from FrankMocap [200] to obtain hand shape and pose
parameters of a 3D MANO model [199] of the operator’s right hand. See the “OpenPose”
and “FrankMocap” modules in the top row of Figure 5.1 for a graphical depiction of this
phase of the pipeline, and see the appendix for further implementation details.

We emphasize that our human hand pose estimation module works for any human

operator, with any camera in any environment, without any further fine-tuning. This strong
generalization is due to the diversity of millions of images on which the neural network and
pose estimators are trained.

3D Human Hand to Robot Hand Pose

Next, estimated 3D human hand poses are retargeted to the 16 Allegro hand joint angles
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Figure 4.4: Control Pipeline. Description of our control stack. Raw target poses are received from
the visual retargeting modules, then Inverse kinematics, low-pass filtering, sampling, and safety
clipping are performed. The smoothed commands are sent to the robot.

to place it in an analogous hand pose (see the third panel on the top branch of Figure 5.1).
This has three challenges:

• Underconstrained: The Allegro hand and the human hand have many DOF and very
different embodiments: they differ greatly in shape, size and joint structure.

• Generality: Our retargeter must work for any human operator trying to perform any

kind of task in any environment.

• Efficiency: We require a real-time solution (>15 Hz).

A natural way to address these three challenges would be to train a supervised learning
model on a diverse dataset of paired human-robot hand pose examples. However, collecting
this large scale dataset would be prohibitively expensive. Instead, we train a deep human-
to-robot hand retargeter network that uses human data alone.

Dataset of YouTube Videos of Human Interaction We leverage a massive internet-scale
dataset of human hand images and videos. We gather about 20 million images from the
Epic Kitchens [78] dataset, which captures ego-centric videos of humans performing daily
household tasks, and the 100 Days of Hands [207] dataset, which is a collection of YouTube
videos. We run the hand pose estimator from [200] (the same one we use at deployment
time in our pipeline) to estimate human hand poses for each image frame in these videos.
We augment this massive noisy dataset of estimated human hand poses with the small and
clean FreiHand dataset [249], which contains ground-truth human hand poses for a diverse
collection of realistic hand configurations.

A Lack of Paired Data Our dataset contains millions of human hand poses, but no
ground-truth target robot poses to regress onto. In most neural network regimes, at training

56



4. Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans on
YouTube

time, the network has access to paired examples (x ∈ X , y ∈ Y), where X is the source
domain, and Y is the target domain. In our case, the source domain X is the set of all
human hand poses and the target domain Y is the set of all robot hand poses, but we only

have training data from the source domain. Hence, we can not perform a direct regression.

Energy Function Formulation Instead, we formulate the retargeting problem using a
feasibility objective. We posit that the optimal corresponding robot hand pose is the one that
best mimics the functional intent of the human. In order for the robot hand to effectively
mimic human actions, the relative positions between the robot’s fingertips should match
those of the human’s. Following [108], we define a set of five hand keypoints (4 fingertips
(no pinky) and a palm), and ten keyvectors which connect all pairs of keypoints.

These keyvectors are used in an energy function that captures dissimilarity between a
human hand pose (parameterized by the MANO model parameters (βh, θh)) and an Allegro
hand pose (parameterized by the joint angles qa). First, for each i ∈ {1, . . . , 10}, the i-th
keyvector is computed on the human hand (call it vh

i ) and the Allegro hand (call it va
i ).

Then, each Allegro hand keyvector va
i is scaled by a constant ci. The i-th term in the energy

function is then the Euclidean difference between vh
i and ci · va

i :

E( (βh, θh), qa ) =
10∑
i=1

||vh
i − (ci · va

i )||22 (4.1)

where the scaling constants {ci} are hyperparameters. Critically, this energy function is a
fully differentiable function of the Allegro joint angles (because of the differentiability of
the forward kinematics operation), which allows us to train the hand retargeter network f

via gradient descent, using the energy function as a loss function.
This energy optimization formulation is different than the prototypical IK problem,

which solves for joint angles that achieve target fingertip poses relative to a fixed base.
Our end-effector constraints are all relative to each other, which makes it difficult to adopt
open-source IK solvers such as [64].

Retargeter Network Our hand retargeter network is a Multi-Layer Perceptron (MLP),
f(.), with two hidden layers. It takes as input a human hand pose (a vector x ∈ R55 that
denotes the MANO hand shape and pose parameters) and outputs a vector of Allegro joint
angles y ∈ R16. Since there is no paired labels available for human to robot hand, our
network is trained to minimize the energy function E(x, y) in Equation 5.2 that captures
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Figure 4.5: Human-to-robot Translations. The inputs and outputs of our hand retargeting network.
Each of the pairs depicts a human hand pose, and the retargeted Allegro hand pose.

the dissimilarity between the input 3D human hand pose x and the network’s predicted
robot hand pose y. Per convention, a high energy means the two poses are highly dissimilar.
Formally, the neural network optimizes the following objective:

argmin
f

Ex∈X

[
E(x, f(x))

]
, (4.2)

At inference time, we simply pass the estimated hand shape/pose vector to the network,
which directly outputs Allegro joint angles that we can command to the robot. A key benefit
of using a neural network is speed: the network’s forward pass takes about 3ms (333Hz) –
this is critical for smooth real-time teleoperation.

Collision Avoidance via Adversarial Training

Using a neural network to perform human-to-robot hand retargeting has another subtler
advantage over an online optimization approach: we can augment the energy function with
terms that are slow to compute. When training a neural network, we can run expensive
operations in order to compute the loss at each iteration. This allows us to use any energy
function, as long as it is differentiable. We simply absorb the computation cost during
training instead of incurring it at deployment time.

We exploit this idea to address the problem of self-collisions. Minimizing the keyvector-
similarity energy function described above can sometimes yield robot hand joint configura-
tions which orient the hand such that fingers collide with each other or with the palm. It
is difficult to add a term to the energy function that penalizes such configurations, since
“self-collision-ness” is not a differentiable function of the robot’s joint angles.

To address this, we first train a classifier that takes in an Allegro joint angle vector, and
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Figure 4.6: A trained self-collision classifier is used as an adversary that penalizes self-colliding
joint configurations. The blue arrows denote the forward pass, and the red arrows denote the flow of
gradients during the backward pass.

tries to classify whether or not the joint configuration yields a self-collision. This classifier
is an MLP, and we generate its training data programatically by repeatedly sampling a joint
angle vector within the legal joint limits, and querying a (non-differentiable) self-collision
checker to generate a ground-truth binary self-collision label.

Once our self-collision classifier is trained, we use it as a “discriminator” to train our
retargeter network. At every training iteration, we pass the retargeter’s predicted robot joint
angle vectors to the self-collision classifier. Intuitively, we want the predicted self-collision
score to be as low as possible, and therefore we use it as a term in the loss function for
the retargeter network. The gradient of the self-collision score from the collision network

is backpropagated through the self-collision classifier, and used to update the weights of

the retargeter network, as shown in Figure 4.6. This leads the retargeter network to avoid
outputting Allegro joint angle configurations that the self-collision classifier believes to be
illegal. Our retargeter network and self-collision classifier are akin to the generator and
discriminator respectively in a Generative Adversarial Network (GAN), though in our case,
we pretrain and freeze the self-collision classifier so we don’t suffer the instability of jointly
optimizing a discriminator and a generator, notorious in GAN training.

4.4.2 Arm Teleoperation: Human Body to Robot Arm Poses

A hand that can flex its fingers but does not have the mobility of an arm will not be able to
solve many useful tasks. The second branch of our retargeting pipeline therefore focuses
on computing the correct pose for the robot arm from images of the human operator.

At each timestep, we first compute a crop of the operator’s body using a bounding box
detector derived from OpenPose [62], then pass the crop to the body pose estimator from
FrankMocap [200]. We model the human body using the parametric SMPL-X model, and
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Figure 4.7: Ten different teleoperation tasks. Top row, left to right: Pickup Dice Toy, Pickup
Dinosaur Doll, Box Rotation, Scissor Pickup, Cup Stack. Bottom row, left to right: two cup stacking,
pouring cubes onto plate, cup into plate, open drawer and open drawer and pickup cup. Please see
videos at https://robotic-telekinesis.github.io/.

the body pose estimator predicts the 3D positions of the joints on the human kinematic
chain.

Because we aim to build a system that operates from a single “floating” color camera,
there are two main problems that arise. (1) Without a depth sensor or camera intrinsics,
we cannot accurately estimate how far from the camera the human’s hand is. (2) Without
camera-to-robot calibration, there is no known transformation between the camera, robot
and human. (With a calibrated depth camera, we would simply mount a camera with a
fixed known transformation relative to the robot’s base frame, localize the position and
orientation of the operator’s wrist in the 3D camera coordinate frame, and use the known
camera extrinsics to determine how the robot’s wrist should be positioned and oriented.)

Instead, we estimate the relative transformation between the human wrist and an anchor

point on the human’s body. We define the human’s torso as the origin, and manually choose
a suitable point to serve as the “robot’s torso”. We posit that the relative transformation
between the human’s right hand wrist and torso should be the same as the relative transfor-
mation between the robot’s wrist link and the robot’s torso. By traversing the kinematic
chain from the torso joint to the right hand wrist joint, we compute the relative position and
orientation between the human’s right hand wrist and torso (see Figure 5.1). The bottom
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Success (rate) Completion Time (sec)
Task Ours DexPilot-Mono∗ Ours DexPilot-Mono∗ Description

Pickup Dice Toy 0.9 0.7 8.6 (2.65) 13.5 (5.47) Pickup Plush dice from table.
Pickup Dinosaur Doll 0.9 0.6 8.2 (3.49) 11.00 (3.95) Pickup Plush dinosaur from table.
Box Rotation 0.6 0.3 37.2 (12.6) 16.33 (10.69) Rotate box 90 degrees onto the smaller side
Scissor Pickup 0.7 0.5 28.6 (9.4) 27.66 (11.09) Remove Scissors from the box using fingers
Cup Stack 0.6 0.7 21.5 (7.6) 22.85 (16.57) Smaller cup must be placed inside the large cup.
Two Cup Stacking 0.3 0.1 27.3 (11.0) 45.00 (0.0) Small cup placed into medium cup into large cup.
Pouring Cubes onto Plate 0.7 0.5 36.80 (17.7) 13.8 (4.02) Five cubes in a cup must be poured onto a plate.
Cup Into Plate 0.8 0.7 10.6 (4.4) 13.71 (5.44) Place cup on the plate.
Open Drawer 0.9 0.9 23.6 (12.3) 14.88 (4.40) Open clear drawer.
Open Drawer and Pickup Cup 0.6 0.7 33.7 (8.1) 28.14 (11.48) Open clear drawer and pickup cup inside.

Table 4.1: Success rate and completion time (mean and standard deviation) of a trained operator
completing a variety of tasks using two different methods. The DexPilot-Monocular∗ baseline
is nearly identical to our system, but uses online gradient descent for hand pose retargeting (inspired
by DexPilot [108]). Our system, which uses a neural network retargeter, outperforms the baseline in
7 out of 10 tasks.

row in Figure 5.1 depicts this pipeline visually. This simple correspondence trick works
surprisingly well in practice and provides a natural user experience for even a moving
operator.

To handle minor errors in human body pose estimation and ensure smooth motion, we
reject outliers, and apply a low-pass filter on the stream of estimated wrist poses. We then
use an IK solver [59] to compute arm joint angles that place the robot’s end-effector (i.e.
“wrist”) at the correct relative transformation relative to the ”robot torso” coordinate frame.
See the bottom row of figure 4.4 for a depiction of our control stack, and see the appendix
for further details about the arm retargeting modules.

4.5 Experimental Results

We evaluate the strengths and limitations of our system through experiments on a diverse
suite of dexterous manipulation tasks with an expert operator. We also demonstrate the
usability and robustness of the system through a smaller set of tasks on a group of ten
previously untrained operators. Videos can be found at https://robotic-telekinesis.github.io/.

Baseline Our hand retargeter neural network is compared to an online optimization

procedure that runs online gradient descent to minimize the energy function between
the human and robot hand. We call this baseline DexPilot-Monocular∗: the use of
online optimization for retargeting is modeled after DexPilot [108], but the overall system
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Figure 4.8: Ten novice operators were asked to complete tasks: (1) picking up a plush dice, (2)
opening a plastic drawer, and (3) placing a cup onto a plate. For each task, the mean and standard
deviation completion times were computed over seven trials.

(including the single-camera setup) is held constant between the baseline and our method.
At each timestep, given an estimated human hand pose x, a solver iteratively searches for
the robot pose y∗ that minimizes the energy (cost) function L with respect to x, i.e.

y∗ = argmin
y
L(x, y). (4.3)

The code for DexPilot’s [108] kinematic retargeting module is not available, so we imple-
ment their online optimization solver using the Jax GPU-accelerated auto-differentiation
engine [54].

We do not compare our system to the full DexPilot system. DexPilot is designed
for use in a specific multi-camera rig, but our system is designed to run anywhere. The
DexPilot-Monocular∗ baseline is meant to enable analysis of the tradeoffs between
online optimization and neural networks for kinematic retargeting, within a single-camera
setup. It uses the retargeting module from DexPilot [108], but is otherwise identical to our
system.

4.5.1 Success Rate: Trained Operator Study

A trained operator attempted a diverse set of tasks to test the capabilities of our system
and the DexPilot-Monocular∗ baseline. These tasks are shown in Figure 5.5. They
span a diverse spectrum of arm and hand motions and involved interacting with a variety
of different objects. Each of the ten tasks was run for ten trials with a timeout period of
one minute. This rigorously tested the system’s capabilities and limitations. These tasks
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Pipeline Stage Ours (Hz)

Open Pose Body (input from camera) 29
Open Pose Hand (input from camera) 29
Frank Mocap Body 16
Frank Mocap Hand 27
Body Pose Retargeter (output to robot) 16
Hand Retargeter (output to robot) 24

Table 4.2: Runtime of each stage of our pipeline. Our hand retargeter NN runs at 24 Hz (the online
gradient-descent baseline runs at 10Hz). Both systems use an AMD 3960x CPU and two 3080 Ti
GPU’s.

are described in Table 4.1. The operator achieved good success on all tasks – our system
outperformed the baseline on 7 out of 10 tasks, and performed similarly on the other 3
tasks. Grasping plush objects proved easy as these grasps do not require much precision,
but we observed that fine-grained grasps of smaller, more slippery objects like plastic
cups occasionally proved difficult. See videos of the trained operator completing these
tasks at: https://robotic-telekinesis.github.io/. During experiments, the expert found that
our system was easier to use and performed better than DexPilot-Monocular∗. The
online gradient descent solver in the baseline occasionally stayed stuck in local minima
because it would use the previous pose as a seed. This meant that the hand would often
output unnatural poses with the fingers digging into the palm, an issue that the authors
of DexPilot also noted. Our method, because it was trained on YouTube data, learned to
always output natural hand poses which was useful for operators to use. Since it is not
seeded, our method did not get stuck in minima. This data also masked the ambiguities
and errors from our single camera constrained setup. Our method also produced occasional
errors on uncommon hand poses unseen in the training set, but these one-off errors did not
propagate forward through time. Additionally, the baseline ran at a slower rate and felt
delayed to the operator’s movements as benchmarked in table 4.2. This was jarring and
hard to compensate for when trying to complete dexterous tasks. Our system maintained
fluidity and felt very responsive when opening and closing the hand.

4.5.2 Usability: Human-Subject Study

To test usability and generality, we conducted a human-subject study in which 10 previously
untrained operators each completed a set of 3 tasks, 7 times each. The first task was a plush
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dice pickup task (30 second timeout), the second was drawer opening (30 second timeout),
and last was to place a cup onto a plate (60 second timeout). The total time for one human
subject to learn about the system and complete all tasks took approximately 15 minutes.
Figure 4.8 reports the completion times of each operator on each of the three tasks.

Although the underlying technology is complex, the user interface was easy to under-
stand and use for all operators. Each operator differed in their style of motion, stances, and
appearances, but there were no noticeable discrepancies in the behavior of the system or
the distribution of results.

We found that subjects often struggled during the first few trials. However, all subjects
found it easy to adjust and learn how to use the system very quickly. Our system was often
complimented on its responsiveness and fluidity: subjects did not notice with any lag or
jitter in the robot’s imitation. Subjects enjoyed participating in the study, and some said
that teleoperation of the robot was similar to a video-game. Additionally, subjects noted
they felt safe and comfortable during teleoperation.

The largest frustrations with the system was in periodic errors in the retargeting of the
human fingers to the Allegro robot hand. Many subjects noted instances when they were
attempting complicated hand poses, but our system failed to accurately imitate them. In
particular, we noticed systematic errors of our system in handling the flexion of the thumb.
The shape and joint axes of the Allegro hand thumb are particularly different from that of
the human thumb, and we suspect that our energy function does not place enough weight on
accurate thumb retargeting. Some subjects observed that the system was worse at tracking
their hand when it was all the way open with their palm parallel to the camera, this is a
particular issue that we cannot get around with a single camera setup.

4.6 Analysis

4.6.1 Accuracy of retargeter network

We compare the accuracy of DexPilot-Monocular∗’s online optimization with our
neural network retargeter that relies on offline optimization during training. We gather a
test set of 500 sequences from the DexYCB video dataset [67], which contains videos with
annotated ground-truth human hand poses. For each video, at each timestep, the poses
are fed to both our neural network and DexPilot-Monocular∗ with a (generous) time
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Figure 4.9: The contribution of an adversarial self-collision loss. The red boxes highlight
instances where the vanilla retargeting network outputs Allegro hand poses that result in self-
collision. The green boxes depict the predictions of the network trained with self-collision loss.
These robot hand poses maintain functional similarity to the human’s hand pose, but avoid self-
collision.

budget of 40ms to solve. We emphasize that both retargeters optimize the same energy
function, but in different ways.

We do not, however, have access to “ground-truth” Allegro joint angles against which
to compare the output of the two retargeters. To circumvent this, we design a version of
DexPilot-Monocular∗ that is allowed an infinite time budget to run until convergence.
We call this the pseudo-ground-truth oracle, and our assumption is that its final output is as
close to optimal as possible.

We compare the root mean squared error (RMSE) between the oracle’s outputs and the
outputs of each of our two retargeters on the dataset. Our neural network retargeter outper-
forms DexPilot-Monocular∗ in matching the oracle. The neural network retargeter
achieves an RMSE of 0.17 radians (about 10 degrees) while DexPilot-Monocular∗

achieves an RMSE of 0.25 radians per joint (about 14 degrees).

4.6.2 Self-Collision Avoidance

We perform an ablation on the weight of the self-collision classifier (Section 4.4.1) in the
energy function, to see how it affects the behavior of the hand retargeter. We use a test
set of 3000 held-out hand poses from the FreiHand dataset [249] and consider 6 different
hand retargeter networks, trained with collision-loss weights of 0, 0.2, 0.4, 0.6, 0.8 and 1.
(A weight of 0.8, for example, means that the self-collision loss is weighed 0.8 as heavily
as the sum of all the other key-vector matching loss terms in the energy function.) Each
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Figure 4.10: As the weight of the adversarial self-collision loss is increased, the hand retargeter
network produces fewer self-colliding joint configurations (maroon), but incurs a higher energy with
less similar poses (blue). A higher energy means that the predicted robot hand pose is dissimilar to
the operator’s hand pose.

network makes predictions on the data and we compute (1) the fraction of resulting Allegro
joint angle vectors that result in self-collision, and (2) the average value of the key-vector
energy terms over the dataset.

We summarize the results in Figure 4.10. The plot shows there is a trade off between
minimizing self-collisions, and minimizing key-vector dissimilarity. As we increase the
weighting term of the self-collision avoidance loss term in the energy function, we produce
fewer offending joint configurations but minimization performance degrades for the other
terms in the energy function. We depict this trade off visually in Figure 4.9. It is difficult to
confidently assert that one is more valuable than the other, and in practice, we find that a
middle ground works very effectively for the user.

4.7 Conclusion

We present Robotic Telekinesis, a system for in-the-wild, real-time, remote visual teleopera-
tion of a dexterous robotic hand and arm, in which a human operator demonstrates tasks
to the robot just by moving their own hands. We leverage the latest advancements in 3D
human pose estimation and thousands of hours of raw day-to-day human footage on the
internet to train a system that can understand human motion, and retarget it to corresponding
robot actions. Our method requires only a single color camera, and can be used out-of-the
box by any operator on any task, without any actively collected robot training data. We
show that our system enables experts and novices alike to successfully perform a number
of different dexterous manipulation tasks. We hope that our system is used as a starting
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point for future research, rather than as an end product. We believe a powerful use of visual
teleoperation is to bootstrap autonomous robot learning, and by building an intuitive and
low-cost platform for humans to provide task demonstrations, we hope to contribute to the
democratization of robot learning.
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Chapter 5

VideoDex: Learning Dexterity from
Internet Videos

5.1 Abstract

To build general robotic agents that can operate in many environments, it is often imperative
for the robot to collect experience in the real world. However, this is often not feasible
due to safety, time, and hardware restrictions. We thus propose leveraging the next best
thing as real-world experience: internet videos of humans using their hands. Visual priors,
such as visual features, are often learned from videos, but we believe that more information
from videos can be utilized as a stronger prior. We build a learning algorithm, VideoDex,
that leverages visual, action, and physical priors from human video datasets to guide robot
behavior. These actions and physical priors in the neural network dictate the typical human
behavior for a particular robot task. We test our approach on a robot arm and dexterous
hand-based system and show strong results on various manipulation tasks, outperforming
various state-of-the-art methods. For videos and supplemental material visit our website at
https://video-dex.github.io

5.2 Introduction
The long-standing dream of many roboticists is to see robots autonomously perform diverse
tasks in diverse environments. To build a robot that can operate anywhere, many methods
rely on successful robotic interaction data to train on. However, deploying inexperienced,
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real-world robots to collect experience may require constant supervision which is infeasible.
This poses a chicken-and-egg problem for robot learning because to collect experience
safely, the robot already needs to be experienced. How do we get around this deadlock?

Fortunately, there is plenty of real-world human interaction videos on the internet. This
data can potentially help bootstrap robot learning by side-stepping the data collection-
training loop. This insight of leveraging human videos to aid robotics is not new and has
seen immense attention from the community at large [78, 101, 102]. However, most of
the prior work tends to use human data as a mechanism for pretraining just the visual
representation [176, 178, 186, 206, 234], much like how deep learning has been used
as a pretraining tool in related areas of computer vision [73, 113] and natural language
processing [57, 89]. Although pretraining visual representations can aid in efficiency,
we believe that a large part of the inefficiency stems from very large action spaces. For
continuous control, learning this is exponential in the number of actions and timesteps, and
even more difficult for high degree-of-freedom robots (shown in Figure 5.1). Dexterous
hands are one such class of high degree of freedom robots that have the possibility to
provide great contact for the grasping and manipulation of different objects. Their similarity
to human hands makes learning from human video advantageous.

In this work, we study how to go beyond using internet human videos merely as a source
of visual pretraining (i.e. visual priors), and leverage the information of how humans move
their limbs to guide train robots on how they should move (i.e. action priors). However,
guiding robot motions using human videos requires understanding the scene in 3D, figuring
out human intent, and transferring from human to robot embodiment. First, 3D human
estimation works decently well in general human videos which we can leverage to gather
3D understanding. Second, there have been large-scale datasets that break down the human
intent via crowdsourcing labels [78, 102]. Finally, to handle the embodiment transfer, we
use human hand to robot hand retargeting as an energy function to pretrain the robot action
policy. Our key insight is to combine these visual and action priors from human videos
with a prior on how robot should move in the world [43, 44] (i.e., physical prior, using a
second order dynamical system) to obtain dexterous robot policies that can act in the real
world. We call this approach, VideoDex. To enhance real-world performance, we mix the
experience obtained from massive internet data with a few in-domain demonstrations.

In summary, VideoDex is a robot learning algorithm that incorporates visual, action,
and physical priors into a single open-loop policy by learning from passive videos contained
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physical prior
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Figure 5.1: We re-target human videos as an action prior, use pretrainined embeddings as a visual
prior, and use Neural Dynamical Policies (NDPs) [43] as a physical prior to complete many different
tasks on a robotic hand.

in human activity datasets from the internet. VideoDex then only needs to adapt to real
world tasks using a few in-domain examples. We find that VideoDex outperforms many
state-of-the-art robot learning methods on seven different real-world manipulation tasks on
a high DOF multi-fingered robotic arm-hand system as well as on a 1-DOf gripper robotic
arm system.

5.3 Related Work
Learning for Dexterity Reinforcement learning (RL) with an engineered reward function
can show dexterous simulation results [121, 141] but requires lots of data, especially in high
DOF dexterous manipulation. This requires simulators [162, 226], which cannot model
physics properly, making real-world transfer difficult. Behavior cloning is an approach [53,
187] that can work safely. DIME [39] involves using nearest neighbor matching of image
representations with demonstrations to determine actions. Qin et al. [193] teleoperates and
learns policies in simulation, followed by Sim2Real transfer. DexMV[192] uses collected
human hand videos for robot hand imitation learning. DexVIP [164] learns hand-object
affordances and priors for RL initialization using curated video datasets.

Learning from Videos and Large-Scale Datasets There are many curated datasets
from internet human videos, for example, FreiHand [249] for hand poses, 100 Days of
Hands [207] for hand-object interactions, Something-Something [101] for semantically
similar interactions, Human3.6M [118] and the CMU Mocap Database [9] for Human
pose estimation. Epic Kitchens [78], ActivityNet datasets [92], or YouCook [81] are

70



5. VideoDex: Learning Dexterity from Internet Videos

Figure 5.2: The collection of train objects (left) and test objects (right) used for experimentation.

action-driven datasets we focus on for dexterous manipulation.

Learning Action from Videos Detecting humans, estimating poses of different body
parts, or understanding the dynamics and interactions related to human motion is a com-
monly studied problem. One can model human hands using the MANO [199] model and the
human body using SMPL, SMPL-X [158, 182] models. There are many efforts in human
pose estimation such as [123, 200, 230]. We focus on FrankMocap [200] for our project as
it is robust for online videos. Traditionally, teleoperation approaches have employed hand
markers with gloves for motion capture [106] or VR settings [136]. Without gloves, Li et.
al. [144] used depth images and a paired human-robot dataset for teleoperation, and Handa
et. al. [108] designed a system that mimics the functional intent of the human operator to
perform object manipulation tasks.

Robot Learning by Watching Humans Recent works have leveraged human datasets
to learn cost functions [45, 68, 208], learn action correspondences [202] both in a paired
[209] and unpaired manner [218]. This data can also be used to extract explicit actions by
leveraging structure in the collection (such as reacher-grabber tools [240]) or prediction of
future hand and object locations [139], as well as keypoint detectors [80]. This can also be
used to build representations for robot learning [178, 179]. R3M [178] trains on the Ego4D
[102] dataset using a temporal alignment loss between language labels and video frames.
We build on top of previous efforts in this area, where we combine visual representations
trained on human activity data, with action driven representations.
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5.4 Background

5.4.1 Neural Dynamic Policies
Neural Dynamic Policies (NDPs) [43, 44, 83], produce smooth and safe open-loop trajec-
tories. When using them as a network backbone, they can be rolled out to trajectories of
arbitrary lengths which enables the use of varying-length human videos. NDPs can be
described with the Dynamic Movement Primitive equation [117, 180, 189, 201]:

ÿ = α(β(g − y)− ẏ) + fw(x, g), (5.1)

where y is the coordinate frame of the robot, g is the desired goal in the given coordinate
frame, fw is a radial basis forcing function, x is a time variable, and α, β are global constants.
NDPs use the robot state, scene, and a NN to output the goal g and shape parameters w of
the forcing function fw.

5.4.2 Learning from Watching Humans
Recently, Sivakumar et al. [216] introduced Robotic Telekinesis, a pipeline that teleoperates
the Allegro Hand [5] using a single RGB camera. Leveraging work in monocular human
hand and body pose estimation [200], hand and body modeling [158, 182, 199], and human
internet data, Robotic Telekinesis real-time re-targets the human hand and body to the robot
hand and arm. Due to its efficiency and ease of use, we leverage Sivakumar et al. [216]’s
approach for demonstration collection.

We borrow the human hand to robot hand retargeting method from Robotic Telekine-
sis [216] that manually defines key vectors vhi and vri between palms and fingertips on
both the human and robot hand. They build an energy function Eπ which minimizes the
distance between human hand poses (β, θ) and robot hand poses q. ci is a scale parameter.
Therefore, the energy function is defined as:

Eπ( (βh, θh), q ) =
10∑
i=1

||vhi − (ci · vri )||22 (5.2)

Sivakumar et al. [216] train an MLP HR(.) to implicitly minimize this energy function in
5.2, conditioned on knowing human poses (β, θ). For more details, we refer the readers to
Sivakumar et al. [216].
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5.5 Learning Dexterity from Human Videos

We learn general-purpose manipulation by utilizing large-scale human hand action data as
prior robot experience. We leverage not only visual priors of the scene’s appearance but
also leverage important aspects of the human hand’s motion, intent, and interaction. To do
this, we re-target the human video data to trajectories from the robot’s embodiment and
point of view. By pretraining policies with these human hand trajectories, we learn action

priors on how the robot should behave. However, it’s notoriously difficult to leverage these
noisy human video detections. Therefore, we must also employ a policy with physical

priors to learn smooth and robust policies that do not overfit to noise. We explain insights
and our method used to leverage action priors in the sections below.

5.5.1 Visual Priors from Human Activity Data
Many previous works [176, 178, 234] have tackled visual priors and representations for
robot learning. These networks often encode some form of semantic visual priors into the
pretrained network from human video internet datasets. We use the encoder from Nair
et al. [178] as a useful visual initialization for our policy. Nair et al. [178] is trained on a
visual-language alignment as well as a temporal consistency loss. Our network takes human
video frames and processes them using the publicly released ResNet18 [112] encoder, Eϕ

from R3M [178]. The output of this network is our visual representation for learning.

5.5.2 Action Priors from Human Activity Data
While visual pretraining aids in semantic understanding, human data contains a lot more
information about how to interact with the world. VideoDex uses action information to
pretrain an action prior, a network initialization that encodes information about the typical
actions for a particular task.

However, training robot policies on human actions are difficult, as there is a large
embodiment gap between humans and robots as described in Handa et al. [108] and
Sivakumar et al. [216] Thus, we must re-target the motion of the human to the robot
embodiment to use it in training. This problem is solved using three main components.
First, we detect human hands in videos. Second, we project hand poses H to robot finger
joints Hr. Finally, we convert human wrist pose P to robot arm pose Pr. Hr and Pr define
the trajectory of the human in the robot’s frame, from which we can extract actions to
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Figure 5.3: To use internet videos as pseudo-robot experience, we re-target human hand detections
from the 3D MANO model [199] to 16 DoF robotic hand (LEAP) embodiment and we retarget the
wrist from the moving camera to the xArm6 [27] embodiment. Videos at https://video-dex.
github.io

pretrain our policy network with the action prior. See Figure 5.4 for a summary of the
stages.

Action and Hand Detections First, we must detect the right actions the human is com-
pleting. To expedite development, we use the action annotations from the EpicKitchens
dataset [78] but an action detection network such as [75] can be used. Now, we must detect
the hand. VideoDex first computes a crop c around the operator’s hand using OpenPose [62]
and the result is passed to FrankMocap [200] to obtain hand shape (β) and pose parameters
(θ) of the 3D MANO model [199]. These parameters are passed through a low pass filter
and subsequently used in re-targeting to the robot.

Re-targeting Wrist Pose In this section, we show how to compute the transformation
that describes the wrist pose in the robot frame denoted as MWrist

Robot . First, to calculate
MWrist

Ct
, where Ct is the camera frame at timestep t we leverage the Perspective-n-point

algorithm [96]. This takes 2D keypoint outputs (ui, vi) by the hand detection model and
3D keypoints from the hand model (xi, yi, zi) and computes MWrist

Ct
. To accurately obtain

camera intrinsics for PnP, COLMAP is used [203].
In human egocentric video datasets, the position of the camera is not fixed and we must

compensate for this movement. Specifically, we compute the transformation between the
camera pose in the first frame C1 and all other frames in the trajectory, Ct. We call this
transform MCt

C1
. To estimate this, we run monocular SLAM, specifically ORBSLAM3 [61].

Computing wrist poses in the first camera coordinate frame is important but this is still
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not in the robot frame because the robot is always upright. To be able to transform the
human trajectory in the robot’s frame, we must find the vector that is parallel to gravity in
the camera’s frame, αp. Thus recover object segmentations for surfaces that are parallel
to the floor such as tables, floors, counters, and similar synonyms using a state-of-the-art
object detector (Detic [246]). Then an estimated depth map from RGB frames only using
Adabins [49] is computed. This way, the method does not rely on the long-term contiguity
of a video like most SLAM approaches. We then use depth map portions that correspond
to the relevant objects and calculate a surface normal vector. We estimate αp using this
normal vector and the following equations:

pitch = tan−1(xAcc/
√

y2Acc + z2Acc) (5.3)

roll = tan−1(yAcc/
√

x2
Acc + z2Acc) (5.4)

Detailed ablations on the parameterization of the initial pitch of the predicted trajectory
( α) are provided in Section 6.6. In SLAM, we also remove the dependency on gyroscope
data by assuming that the scaling factor is 1.0. This is acceptable because the trajectory is
rescaled to the robot frame later. Therefore, this wrist re-targeting approach uses only 2D
images from human videos.

Since the robot has workspace limits, and we would also like to center the starting
pose of the robot, we heuristically compute TWorld

Robot which rescales and rotates the human
trajectory in the world frame τwrist

W into the robot trajectory τwrist
R . The final function to

obtain MWrist
Robot can be described as:

MWrist
Robot = TWorld

Robot ·M
C1
World ·M

Ct
C1
·Mwrist

Ct
(5.5)

Re-targeting Hand Pose Human hands are also in a different embodiment compared to
that of robot hands, like our 16 DOF LEAP Hand [210] . Similarly, to Sivakumar et al.
[216], we use H(.) to map hand poses to robot hand poses. Given human detected pose
xh, we obtain xr = H(xh) using a similar re-targeting network to Sivakumar et al. [216],
and get human hand trajectories: τ hand

R in the robot’s embodiment. We use τR to denote the
combined hand and wrist trajectories: τ hand

R , τwrist
R . See Figure 5.3 for a visualization.
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Algorithm 1 Procedure for Videodex

Require: Human videos V H
1:K (length T ), policy πθ, demonstrationsD1:N . Human detection fhuman

[200].
for k = 1...K do

for t = 1...T do
Pose parameters θt, βt = fhuman(It)
Get wrist pose wt from 5.3, 5.4 and 5.5,
Hand pose ht = H(θt, βt)

end for
Store all ht, wt into robot trajectory τkR
τ̂kR = πθ(I

k
1 , h

k
1, w

k
1)

Optimize Lθ = ||τkR − τ̂kR||1
end for
Store policy weights θh to initialize πθ
while not converged do

for n = 1...N do
τn, In1:T = Dn

τ̂n = πθ(I
n
1 , h

n
1 , w

n
1 )

Optimize Lθ = ||τn − τ̂n||1
end for

end while=0

5.5.3 Learning with Human Videos
We must design an open-loop policy π that learns first from the re-targeted human tra-
jectories (the action prior) and then from real robot trajectories collected in teleoperation.
Naively, training a neural network policy on τR will lead to overfitting to noisy hand
detections. To circumvent this, we first use visual priors from the visual ResNet-based
[112] encoder provided by Nair et al. [178], Eϕ. Then, we introduce a physical prior to the
network, the physically-inspired Neural Dynamic Policies [43, 44].

We construct π with the following setup. We first process the first scene image I with
the visual encoder Eϕ. Then the extracted features Eϕ(I) are used to condition an NDP for
the wrist and hand separately, fwrist and fhand. Concretely, each NDP operates by processing
the input features with a small MLP which outputs w, g which are the trajectory shape and
goal parameters. The forward integrator of the NDP outputs an open-loop trajectory for the
hand and the wrist, τ̂R. We use the following loss function:

L =
∑
k

LossL1(τR − [fhand(Eϕ(Ik)), fwrist(Eϕ(Ik))])
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Hand Detections

Camera  Trajectory

Robot Hand Pose

Robot Trajectory Learn Robot Policies 

Figure 5.4: To use human videos as an action prior for training policies, we re-target them to the
robot embodiment. The detected human fingers are converted to the robot fingers using a learned
energy function. The wrist is re-targeted using the detections and camera trajectory and transformed
to the robot arm.

Training Methodology: We use between 500-3000 video clips of humans completing
the same task category as the robot will from the Epic Kitchens dataset [78]. For example,
in pick, there are close to 3000 video clips of humans picking items. These are retargeted
to the robot domain and used to pretrain the network with the human action prior of the
pick task. Then, the final policy π is trained on a few teleoperated demonstrations of pick
on the real robot. The full training takes about 10 hours on a single 2080Ti GPU. More
training details can be found in the appendix and in Algorithm 1. Our network consists of
the R3M [178] initialized ResNet-18 [112]. We process these features with a 3-layer MLP
with a hidden layer size of 512, which are then processed by 2 NDP [43] networks.

Figure 5.5: Tasks used in experiments. From left to right: pick, rotate, open, cover, uncover, place
and push. See https://video-dex.github.io for videos of these tasks.
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5.6 Experimental Setup
We perform thorough real world experiments on manipulation tasks, specifically many tasks
that require dexterity. See our webpage for result videos. We aim to answer the following
questions. (1) Is VideoDex able to perform general purpose open-loop manipulation? (2)
How much does the action prior of VideoDex help? (3) How much does the physical prior
of the NDPs in VideoDex help? (4) What important design choices are there (visual priors,
physical priors, or training setup)?

Task Setup We pretrain action priors on retargeted Epic Kitchens data for seven robot
tasks. Then, we collect about 120-175 demonstrations for each of these tasks on our setup
to train the policy. In pick, the goal is to pickup an object. In rotate, the agent grasps
and rotates the object in place. In cover and uncover, the goal is to cover or uncover a
pan/plate with a soft cloth object. Push involves flicking/poking an object with the fingers.
In place, the robot has to pick up an object and place it into a plate, pan or pot. In open
we open three different drawers. Our testing procedure consists of unseen locations and
objects. Details on the tasks and objects are in the supplemental.

Figure 5.6: Networks initialized using action priors on
human data without further training are closer to ground
truth robot trajectories than networks only initialized using
visual priors.

While robot hands can provide
great dexterity, we also investigate
whether 2-finger grippers can bene-
fit from action priors. The internet
data is converted to where the closed
human hand is a closed 2-finger grip-
per, and the open human hand is an
open 2-finger gripper. We collect
separate demonstrations on the real-
robot using the 2-finger gripper from
xArm [27]. Separate action priors
are trained for the 16 DoF LEAP
Hand and the 2-finger gripper.
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Pick Rotate Open Cover Uncover Place Push
train test train test train test train test train test train test train test

BC-NDP [44] 0.64 0.38 0.94 0.56 0.90 0.60 0.78 0.58 0.88 0.82 0.70 0.35 1.00 0.71
BC-Open[83] 0.50 0.44 0.72 0.38 0.80 0.40 0.44 0.58 1.00 0.91 0.40 0.25 1.00 0.93
BC-RNN [83] 0.56 0.31 0.78 0.50 0.90 0.50 0.56 0.42 0.88 0.75 0.70 0.50 1.00 1.00

VideoDex 0.83 0.77 0.85 0.71 0.80 0.80 0.75 0.63 0.96 0.92 0.89 0.80 1.00 1.00

Table 5.1: We present the results of train objects and test objects for Videodex and baselines as
described above.

5.7 Results

First, we evaluate the need for ini-
tialization with the action priors obtained from the human internet videos. θh The baseline
without internet pre-training is called BC-NDP. It uses the same physical prior and visual
network initialization, without the initialization from θh. We also compare the effect of
the action prior on 2-finger gripper policies. Second, we compare against two standard
open-loop behavior cloning approaches introduced in recent benchmarks [83]. BC-open
uses a 2 layer MLP instead of the NDP network. BC-RNN, uses an RNN to pre-process
the visual features and then a two-stream, 2 layer MLP for wrist and hand trajectories. We
try an offline RL ablation CQL [135], where we use the demonstrations as a sparse reward.
We train a behavior cloning policy with the action prior from human videos without the
physical prior of the NDP. We call this VideoDex-BC-Open. We ablate the type of
visual representation and prior use by trying an initialization using the VGG16 network
[215] (VideoDex-VGG) and the MVP network [234] [114] (VideoDex-MVP) based
representation trained for robot learning. We ablate the need for a two stream policy, instead
training a single NDP for both hand and wrist. (VideoDex-Single) To see if VideoDex
works with fewer demonstrations (around 50 demonstrations, 5-7 per variant only), we train
a policy called VideoDex-Constrained.

We analyze the results of our experiments and the guiding questions discussed in
Section 5.6. We present the results of our findings as a 0-1 success rate in Table 6.2 and the
result of the ablations we ran on the place task in Table 6.3.

Effect of Action Priors We firstly compare VideoDex against methods that do not employ
an action prior trained on human data, as explained in Section 5.6. For almost all of the
tasks, VideoDex either outperforms baselines or has a similar performance, especially for
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held out objects/instances. We believe that one of the key aspects of VideoDex generalizing
to test objects is the action prior pretraining on human videos. This can be seen in Figure 5.6.
Without ever training on the robot demonstrations, the trajectories initialized using the
action prior pretrained network θh (left) are much closer to the ground truth trajectories
of a network that is initialized using only a visual prior such as the encoder from Nair
et al. [178] (right). From the results, we see that VideoDex-BC-Open with action priors
(Table 6.3) outperforms BC-Open. Having a physical prior added (BC-NDP) tends to help,
but it is not the case for every task. We suspect that some tasks require smoother behavior
than others. Additionally, in Table 6.3 our offline RL baseline, CQL [135] does not perform
as well as the rest of the approaches, even under-performing the Behavior Cloning setup.
Qualitatively, we see a much less smooth and less safe execution with this method, thus we
only perform it on one task (place). Note that we use the same visual prior for this as well.

Place Open Pick

1-DOF BC-Open[83] 0.62 0.69 0.71

1-DOF VideoDex 0.69 0.82 0.77

Table 5.2: We compare how the 1-DOF
xArm gripper performs using Videodex. [27]
Separate demonstrations were collected us-
ing this gripper.

Hand vs 2-Finger Gripper We compare
whether the action priors from VideoDex also
help in the more general 1-DOF gripper setting.
In Table 5.2, we find that in the 1-DOF setting,
VideoDex still improves performance on these
tasks. This is because the priors from human in-
ternet videos still encode typical wrist trajectory
behaviors as well as when the gripper should

close for each task.

Place Cover Uncover

VideoDex-Fixed 0.55 0.50 0.77
VideoDex-Random 0.45 0.63 0.85
VideoDex-IMU 0.70 0.67 0.90

VideoDex 0.80 0.63 0.92

Table 5.3: Ablations that compare the dif-
ferent ways of calculating the initial pitch of
the camera with respect to gravity, on test
objects. This enables us to transform human
trajectories to be upright like the robot is.

Initial Pose Computation Comparison We
compare three different ways to estimate αp or
MC1

World, the vector that points parallel to grav-
ity. These methods contrast with VideoDex
which uses the surface normal of objects that
are typically parallel with the floor to calculate
the direction of gravity. VideoDex-Fixed,
assumes that αp is [0,0]. This is reasonable
as we are not relying on robots to exactly
mimic the human but get a general action prior.

VideoDex-Random, randomizesαp in the range of 15-45 degrees, which is the typical
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egocentric camera angle. VideoDex-IMU uses the internal image stabilization sensor
data to estimate the upright vector. None of these approaches use gyroscope data in
SLAM, as we assume that the scaling factor is 1.0. In Table 5.3, we present the results
of these experiments. The performance degrades when randomizing or setting MC1

World

to a fixed value, in all three of the tasks, but it is still comparable to or better than our
baselines that do not use any human action data. A possible explanation for the fact that
VideoDex-Surface performed better than our VideoDex-IMU is that the sensor data
may be noisy and estimating surface normals from visual features is more robust.

Train Test

Baselines:

BC-NDP [44] 0.70 0.35
BC-Open [83] 0.40 0.25
BC-RNN [83] 0.70 0.50
CQL [135] 0.40 0.20

No Physical Prior:

VideoDex-BC-Open 0.50 0.50
VideoDex-Single 0.50 0.30

Visual Prior Ablation:

VideoDex-VGG 0.20 0.20
VideoDex-MVP 0.40 0.20

Constrained Data:

VideoDex-Const-5 0.80 0.60
VideoDex-Const-10 0.50 0.30

VideoDex (ours) 0.90 0.70

Table 5.4: We present the results of
the ablations discussed in Section 5.6.
These are all performed on the place
task.

Effect of Physical Priors and Architectural
Choices We compare different types of physical
priors in Table 6.2 and in Table 6.3. In general
(BC-NDP) tends to outperform baselines without
a physical prior, except for BC-RNN in a couple
of tasks. BC-RNN performs less aggressive behav-
ior, which allowed it to efficiently grasp more ob-
jects. In Table 6.3 it’s shown that an important
physical prior is to treat the wrist and the hand in
a more disentangled manner, as the performance
for VideoDex-Single tends to drop compared
to BC-NDP and VideoDex-BC-Open (Behavior
Cloning with our action prior pretraining). The two
stream architecture aids in learning, as it allows the
policy to disentangle the actions of the wrist and the
hand. This is important as the same grasp might
be used for picking objects in many different loca-
tions, and similarly, it is possible to localize many
objects and perform completely different types of
interactions.

Generalization with Less Data We limit VideoDex to a maximum of 5 and 10 tele-
operated demonstrations per variant (we have 12-15 variants in our setup). As shown in
Table 6.2, even with 5 instances per variant, we still see a 30% success rate for unseen
objects. Empirically, the policies generally go to the right area but are not able to grasp

81



5. VideoDex: Learning Dexterity from Internet Videos

objects properly. With less robot experience, VideoDex outperforms which demonstrates
that action priors also boosts sample efficiency.

Effect of Visual Priors We compared using our approach with MVP (VideoDex-MVP)
[234] and VGG (VideoDex-VGG) [215] and their performance was below VideoDex
using Nair et al. [178]. This is likely because both encoders are much larger than the
ResNet18 [112] we use and require a lot more training time than feasible on human videos.
However, VideoDex-MVP still performs better than VideoDex-VGG, which indicates
that using a visual prior trained on human data does in fact help, as Xiao et al. [234] trained
the representation in self-supervised fashion on videos and use the embeddings to perform
robotics tasks in simulation. We see in Table 6.2, that while visual priors are important,
action priors are more impactful.

Choice of Robotic Hand In our experiments, we also tried using the Allegro Hand [5].
We found that the Allegro had higher inaccuracy in control and more hardware failures
as compared to LEAP Hand. LEAP Hand outperformed the Allegro Hand 7 − 12% on
average in all experiments, thus we use it for our setup [210] .

5.8 Discussion and Limitations
Although we see strong results on the held-out objects, VideoDex has several limitations
and scope for future work. First, we focus on curated human video datasets, such as
EpicKitchens [78], but only use these as a convenience to expedite our process. It is
possible to filter internet videos of humans according to tasks using action detectors and
then process them with VideoDex. We also use camera data in VideoDex but show that
with a heuristic driven approach it is possible to obtain similar or better results. Second,
we rely on off-the-shelf human hand detection modules that very often have erroneous 6D
pose detections, especially when the hand is interacting with objects. Third, the action
priors rely on the arm trajectory as well as the hand trajectory retargeting which must be
recomputed for each different set of robot parameters and embodiment. Finally, our method
of behavior cloning in the real world is currently open-loop, so it cannot react to changes in
the environment. This is because closed-loop behavior cloning is difficult to keep safe in
the real world. Similarly, when running closed-loop RL it is difficult to guarantee the safety
of the system. We leave this to future work, to train policies that can react to real world
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changes.

83



Chapter 6

DEFT: Dexterous Fine-Tuning for
Real-World Hand Policies

Figure 6.1: We present DEFT, a novel approach that can learn complex, dexterous tasks in the
real world in an efficient manner. DEFT manipulates tools and soft objects without any robot
demonstrations.

6.1 Abstract

Dexterity is often seen as a cornerstone of complex manipulation. Humans are able to
perform a host of skills with their hands, from making food to operating tools. In this paper,
we investigate these challenges, especially in the case of soft, deformable objects as well as
complex, relatively long-horizon tasks. However, learning such behaviors from scratch can
be data inefficient. To circumvent this, we propose a novel approach, DEFT (DExterous
Fine-Tuning for Hand Policies), that leverages human-driven priors, which are executed
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directly in the real world. In order to improve upon these priors, DEFT involves an efficient
online optimization procedure. With the integration of human-based learning and online
fine-tuning, coupled with a soft robotic hand, DEFT demonstrates success across various
tasks, establishing a robust, data-efficient pathway toward general dexterous manipula-
tion. Please see our website at https://dexterous-finetuning.github.io
for video results.

6.2 Introduction

The longstanding goal of robot learning is to build robust agents that can perform long-
horizon tasks autonomously. This could for example mean a self-improving robot that can
build furniture or an agent that can cook for us. A key aspect of most tasks that humans
would like to perform is that they require complex motions that are often only achievable by
hands, such as hammering a nail or using a screwdriver. Therefore, we investigate dexterous
manipulation and its challenges in the real world.

A key challenge in deploying policies in the real world, especially with robotic hands,
is that there exist many failure modes. Controlling a dexterous hand is much harder than
end-effectors due to larger action spaces and complex dynamics. To address this, one option
is to improve directly in the real world via practice. Traditionally, reinforcement learning
(RL) and imitation learning (IL) techniques have been used to deploy hands-on tasks such
as in-hand rotation or grasping. This is the case as setups are often built so that it is either
easy to simulate in the real world or robust to practice. However, the real world contains
tasks that one cannot simulate (such as manipulation of soft objects like food) or difficult
settings in which the robot cannot practice (sparse long-horizon tasks like assembly). How
can we build an approach that can scale to such tasks?

There are several issues with current approaches for practice and improvement in the
real world. Robot hardware often breaks, especially with the amount of contact to learn
dexterous tasks like operating tools. We thus investigate using a soft anthropomorphic

hand [166], which can easily run in the real world without failures or breaking. This soft
anthropomorphic hand is well-suited to our approach as it is flexible and can gently handle
object interactions. The hand does not get damaged by the environment and is robust to

∗Equal contribution, order decided by coin flip.
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continuous data collection. Due to its human-like proportions and morphology, retargeting
human hand grasps to robot hand grasps is made simpler.

Unfortunately, this hand is difficult to simulate due to its softness. Directly learning
from scratch is also difficult as we would like to build generalizable policies, and not
practice for every new setting. To achieve efficient real-world learning, we must learn
a prior for reasonable behavior to explore using useful actions. Due to recent advances
in computer vision, we propose leveraging human data to learn priors for dexterous
tasks, and improving on such priors in the real world. We aim to use the vast corpus of
internet data to define this prior. What is the best way to combine human priors with
online practice, especially for hand-based tasks? When manipulating an object, the first
thing one thinks about is where on the object to make contact, and how to make this
contact. Then, we think about how to move our hands after the contact. In fact, this type
of prior has been studied in computer vision and robotics literature as visual affordances

[46, 97, 100, 155, 157, 174, 207, 231]. Our approach, DEFT, builds grasp affordances that
predict the contact point, hand pose at contact, and post contact trajectory. To improve
upon these, we introduce a sampling-based approach similar to the Cross-Entropy Method
(CEM) to fine-tune the grasp parameters in the real world for a variety of tasks. By learning
a residual policy [84, 119], CEM enables iterative real-world improvement in less than an
hour.

In summary, our approach (DEFT) executes real-world learning on a soft robot hand
with only a few trials in the real world. To facilitate this efficiently, we train priors on
human motion from internet videos. We introduce 9 challenging tasks (as seen in Figure
6.1) that are difficult even for trained operators to perform. While our method begins to
show good success on these tasks with real-world fine-tuning, more investigation is required
to complete these tasks more effectively.

6.3 Related Work

Real-world robot learning Real-world manipulation tasks can involve a blend of classi-
cal and learning-based methods. Classical approaches like control methods or path planning
often use hand-crafted features or objectives and can often lack flexibility in unstructured
settings [124, 133, 172]. On the other hand, data-driven approaches such as deep rein-
forcement learning (RL) can facilitate complex behaviors in various settings, but these
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Figure 6.2: Left: DEFT consists of two phases: an affordance model that predicts grasp parameters
followed by online fine-tuning with CEM. Right: Our affordance prediction setup predicts grasp
location and pose.

methods frequently rely on lots of data, privileged reward information and struggle with
sample efficiency [132, 150, 181, 185, 188]. Efforts have been made to scale end-to-end
RL [33, 104, 121, 122, 142, 176] to the real world, but their approaches are not yet efficient
enough for more complex tasks and action spaces and are reduced to mostly simple tasks
even after a lot of real-world learning. Many approaches try to improve this efficiency such
as by using different action spaces [168], goal relabeling [35], trajectory guidance [140],
visual imagined goals [176], or curiosity-driven exploration [169]. Our work focuses on
learning a prior from human videos in order to learn efficiently in the real world.

Learning from Human Motion The field of computer vision has seen much recent
success in human and object interaction with deep neural networks. The human hand
is often parametrized with MANO, a 45-dimensional vector [199] of axes aligned with
the wrist and a 10-dimensional shape vector. MANOtorch from [236] aligns it with the
anatomical joints. Many recent works detect MANO in monocular video [123, 200, 230].
Some also detect objects as well as the hand together [207, 237]. We use FrankMocap to
detect the hand for this work. There are many recent datasets including the CMU Mocap
Database [9] and Human3.6M [118] for human pose estimation, 100 Days of Hands [207]
for hand-object interactions, FreiHand [249] for hand poses, Something-Something [101]
for semantic interactions. ActivityNet datasets [92], or YouCook [81] are action-driven
datasets that focus on dexterous manipulation. We use these three datasets: [102] is a large-
scale dataset with human-object interactions, [156] for curated human-object interactions,
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and [78] which has many household kitchen tasks. In addition to learning exact human
motion, many others focus on learning priors from human motion. [161, 177] learn general
priors using contrastive learning on human datasets.

Learning for Dexterous Manipulation With recent data-driven machine learning meth-
ods, roboticists are now beginning to learn dexterous policies from human data as well.
Using the motion of a human can be directly used to control robots [107, 217, 225]. Moving
further, human motion in internet datasets can be retargeted and used directly to pre-train
robotic policies [165, 211]. Additionally, using human motion as a prior for RL can help
with learning skills that are human-like [163, 183, 196]. Without using human data as
priors, object reorientation using RL has been recently successful in a variety of settings
[36, 72]. Similar to work in robot dogs which do not have an easy human analog to learn
from, these methods rely on significant training data from simulation with zero-shot transfer
[32, 167].

Soft Object Manipulation Manipulating soft and delicate objects in a robot’s environ-
ment has been a long-standing problem. Using the torque output on motors, either by
measuring current or through torque sensors, is useful feedback to find out how much force
a robot is applying [41, 238]. Coupled with dynamics controllers, these robots can learn
not to apply too much torque to the environment around them [126, 151, 159]. A variety of
touch sensors [50, 213, 221, 242] have also been developed to feel the environment around
it and can be used as control feedback. Our work does not rely on touch sensors. Instead,
we practice in the real world to learn stable and precise grasps.

6.4 Fine-Tuning Affordance for Dexterity

The goal of DEFT is to learn useful, dexterous manipulation in the real world that can
generalize to many objects and scenarios. DEFT learns in the real world and fine-tunes
robot hand-to-object interaction in the real world using only a few samples. However,
without any priors on useful behavior, the robot will explore inefficiently. Especially with a
high-dimensional robotic hand, we need a strong prior to effectively explore the real world.
We thus train an affordance model on human videos that leverages human behavior to learn
reasonable behaviors the robot should perform.
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Figure 6.3: We produce three priors from human videos: the contact location (top row) and grasp
pose (middle row) from the affordance prior; the post-grasp trajectory (bottom row) from a human
demonstration of the task.

6.4.1 Learning grasping affordances

To learn from dexterous interaction in a sample efficient way, we use human hand motion
as a prior for robot hand motion. We aim to answer the following: (1) What useful,
actionable information can we extract from the human videos? (2) How can human motion
be translated to the robot embodiment to guide the robot? In internet videos, humans
frequently interact with a wide variety of objects. This data is especially useful in learning
object affordances. Furthermore, one of the major obstacles in manipulating objects with
few samples is accurately grasping the object. A model that can perform a strong grasp must
learn where and how to grasp. Additionally, the task objective is important in determining
object affordances–humans often grasp objects in different ways depending on their goal.
Therefore, we extract three items from human videos: the grasp location, human grasp
pose, and task.

Given a video clip V = {v1, v2, . . . , vT}, the first frame vt where the hand touches
the object is found using an off-the-shelf hand-object detection model [207]. Similar
to previous approaches [46, 100, 155, 174], a set of contact points are extracted to fit a
Gaussian Mixture Model (GMM) with centers µ = {µ1, µ2, . . . , µk}. Detic [247] is used
to obtain a cropped image v′1 containing just the object in the initial frame v1 to condition
the model. We use Frankmocap [200] to extract the hand grasp pose P in the contact frame
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vt as MANO parameters. We also obtain the wrist orientation θwrist in the camera frame.
This guides our prior to output wrist rotations and hand joint angles that produce a stable
grasp. Finally, we acquire a text description T describing the action occurring in V .

We extract affordances from three large-scale, egocentric datasets: Ego4D [102] for
its large scale and the variety of different scenarios depicted, HOI4D [157] for high-
quality human-object interactions, and EPIC Kitchens [78] for its focus on kitchen tasks
similar to our robot’s. We learn a task-conditioned affordance model f that produces
(µ̂, θ̂wrist, P̂ ) = f(v′1, T ). We predict µ̂ in similar fashion to [46]. First, we use a pre-trained
visual model [178] to encode v′1 into a latent vector zv. Then we pass zv through a set of
deconvolutional layers to get a heatmap and use a spatial softmax to estimate µ̂.

Parameter Dimensions Description

µ 3 XYZ grasp location in workspace
θwrist 3 Wrist grasp rotation (euler angles)
P 16 Finger joint angles in soft hand

Table 6.1: Parameters that are fine-tuned in the real world. The
affordance model predicts a 45-dimensional hand joint pose for
P , which is retargeted to a 16-dimensional soft hand pose.

To determine θ̂wrist and P̂ ,
we use zv and an embedding
of the text description zT =

g(T ), where g is the CLIP
text encoder [194]. Because
transformers have seen suc-
cess in encoding various mul-
tiple modes of input, we use
a transformer encoder T to
predict θ̂wrist, P̂ = T (zv, zT ).
Overall, we train our model to optimize

L = λµ||µ− µ̂||2 + λθ||θwrist − θ̂wrist||2 + λP ||P − P̂ ||2 (6.1)

At test time, we generate a crop of the object using Segment-Anything [131] and give
our model a task description. The model generates contact points on the object, and we take
the average as our contact point. Using a depth camera, we can determine the 3D contact
point to navigate to. While the model outputs MANO parameters [199] that are designed to
describe human hand joints, we retarget these values to produce similar grasping poses on
our robot hand in a similar manner to previous approaches [109, 217]. For more details, we
refer readers to the appendix.

In addition to these grasp priors, we need a task-specific post-contact trajectory to
successfully execute a task. Because it is challenging to learn complex and high-frequency
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Figure 6.4: Left: Workspace Setup. We place an Intel RealSense camera above the robot to
maintain an egocentric viewpoint, consistent with the affordance model’s training data. Right:
Thirteen objects used in our experiments.

action information from purely offline videos, we collect one demo of the human doing the
robot task (Figure 6.3) separate from the affordance model f . We extract the task-specific
wrist trajectory after the grasp using [200]. We compute the change in wrist pose between
adjacent timesteps for the first 40 timesteps. When deployed for fine-tuning, we execute
these displacements for the post-grasp trajectory. Once we have this prior, how can the
robot improve upon it?

6.4.2 Fine-tuning via Interaction
The affordance prior allows the robot to narrow down its learning behavior to a small

subset of all possible behaviors. However, these affordances are not perfect and the
robot will oftentimes still not complete the task. This is partially due to morphology
differences between the human and robot hands, inaccurate detections of the human hands,
or differences in the task setup. To improve upon the prior, we practice learning a residual
policy for the grasp parameters in Table 6.1.

Residual policies have been used previously to efficiently explore in the real world
[45, 119]. They use the prior as a starting point and explore nearby. Let the grasp location,
wrist rotation, grasp pose, and trajectory from our affordance prior be ξ. During training
we sample noise ϵ ∼ D where D is initialized to N (0, σ2) (for a small σ). We rollout a
trajectory parameterized by ξ + ϵ. We collect Ri, the reward for each ξi = f(vi) + ϵi where
vi is the image. First, we execute an initial number of M warmup episodes with actions
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Algorithm 2 Fine-Tuning Procedure for DEFT
Require: Task-conditioned affordance model f , task description T , post-grasp trajectory τ , param-

eter distribution D, residual cVAE policy π. E number of elites, M number of warm-up episodes,
N total iterations.
D ← N (0, σ2)
for k = 1 . . . N do

Ik,0 ← initial image
ξk ← f(Ik,0, T )
Sample ϵk ∼ D
Execute grasp from ξk + ϵk, then trajectory τ
Collect reward Rk; reset environment
if k > M then

Order traj indices i1, i2, . . . , ik based on rewards
Ω← {ϵi1 , ϵi2 , . . . , ϵiE}
Fit D to distribution of residuals in Ω

end if
end for
Fit π(.) as a VAE to Ω
=0

sampled from D, recording a reward Ri based on how well the trajectory completes the
task. For each episode afterward, we rank the prior episodes based on the reward Ri and
extract the sampled noise from the episodes with the highest reward (the ‘elites’ Ω). We
fit D to the elite episodes to improve the sampled noise. Then we sample actions from D,
execute the episode, and record the reward. By repeating this process we can gradually
narrow the distribution around the desired values. In practice, we use M = 10 warmup
episodes and a total of N = 30 episodes total for each task. This procedure is shown in
Algorithm 2. See Table C.1 for more information.

At test time, we could take the mean values of the top N trajectories for the rollout policy.
However, this does not account for the appearance of different objects, previously unseen
object configurations, or other properties in the environment. To generalize to different
initializations, we train a VAE [130, 197, 198, 219] to output residuals δj conditioned on
an encoding of the initial image ϕ(Ij,0) and affordance model outputs ξj from the top ten
trajectories. We train an encoder q(z|δj, cj) where cj = (ϕ(Ij,0), ξj), as well as a decoder
p(δj|z, cj) that learns to reconstruct residuals δj . At test time, our residual policy π(I0, ξ)

samples the latent z ∼ N (0, I) and predicts δ̂ = p(z, (I0, ξ)). Then we rollout the trajectory
determined by the parameters ξ + δ̂. Because the VAE is conditioned on the initial image,

92



6. DEFT: Dexterous Fine-Tuning for Real-World Hand Policies

Figure 6.5: Qualitative results showing the finetuning procedure for DEFT. The model learns to
hold the spatula and flip the bagel after 30 CEM iterations.

we generalize to different locations and configurations of the object.

6.5 Experiment Setup
We perform a variety of experiments to answer the following: 1) How well can DEFT
learn and improve in the real world? 2) How good is our affordance model? 3) How
can the experience collected by DEFT be distilled into a policy? 4) How can DEFT
be used for complex, soft object manipulation? Please see our website at http://
dexterous-finetuning.github.io for videos.

Task Setup We introduce 9 tabletop tasks, Pick Cup, Pour Cup, Open Drawer, Pick

Spoon, Scoop Grape, Stir Spoon, Pick Grape, Flip Bagel, Squeeze Lemon. Robotic hands
are especially well-suited for these tasks because most of them require holding curved
objects or manipulating objects with tools to succeed. For all tasks, we randomize the
position of the object on the table, as well as use train and test objects with different shapes
and appearances to test for generalization. To achieve real-world learning with the soft
robot hand, we pretrain an internet affordance model as a prior for robot behavior. As
explained in Section 6.4, we train one language-conditioned model on all data. At test time,
we use this as initialization for our real-world fine-tuning. The fine-tuning is done purely in
the real world. An operator runs 10 warmup episodes of CEM, followed by 20 episodes
that continually update the noise distribution, improving the policy. After this stage, we
train a residual VAE policy that trains on the top ten CEM episodes to predict the noise
given the image and affordance outputs. We evaluate how effectively the VAE predicts the
residuals on each of the tasks by averaging over 10 trials. Because it takes less than an
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Method Pick cup Pour cup Open drawer Pick spoon Scoop Grape Stir Spoon
train test train test train test train test train test train test

Real-World Only 0.0 0.1 0.2 0.1 0.1 0.0 0.7 0.3 0.0 0.0 0.3 0.0
Affordance Model Only 0.1 0.4 0.5 0.5 0.0 0.3

DEFT 0.8 0.8 0.8 0.9 0.5 0.4 0.8 0.6 0.7 0.3 0.8 0.5

Table 6.2: We present the results of our method as well as compare them to other baselines:
Real-world learning without internet priors used as guidance and the affordance model outputs
without real-world learning.We evaluate the success of the methods on the tasks over 10 trials.

hour to fine-tune for one task, we are able to thoroughly evaluate our method on 9 tasks,
involving over 100 hours of real-world data collection.

Hardware Setup We use a 6-DOF UFactory xArm6 robot arm for all our experiments.
We attach it to a 16-DOF Soft Hand using a custom, 3D-printed base. We use a single,
egocentric RGBD camera to capture the 3D location of the object in the camera frame. We
calibrate the camera so that the predictions of the affordance model can be converted to
and executed in the robot frame. The flexibility of the robot hand also makes it robust to
collisions with objects or unexpected contact with the environment. For the arm, we ensure
that it stays above the tabletop. The job will be terminated if the arm’s dynamics controller
senses that the arm collided aggressively with the environment.

6.6 Results
Effect of affordance model We investigate the role of the affordance model and real-
world fine-tuning (Table 6.2 and Figure 6.6). In the real-world only model, we provide
a few heuristics in place of the affordance prior. We detect the object in the scene using
a popular object detection model [131] and let the contact location prior be the center of
the bounding box. We randomly sample the rotation angle and use a half-closed hand as
the grasp pose prior. With these manually provided priors, the robot has difficulty finding
stable grasps. The main challenge was finding the correct rotation angle for the hand. Hand
rotation is very important for many tool manipulation tasks because it requires not only
picking the tool but also grasping in a stable manner.

Zero-shot model execution We explore the zero-shot performance of our prior. Without
applying any online fine-tuning to our affordance model, we rollout the trajectory parameter-
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Figure 6.6: Improvement results for 6 tasks: pick cup, pour, open drawer, pick spoon, scoop, and
stir. We see a steady improvement in our method as more CEM episodes are collected.

ized by the prior. While our model is decent on simpler tasks, the model struggles on tasks
like stir and scoop that require strong power grasps (shown in Table 6.2). In these tasks, the
spoon collides with other objects, so fine-tuning the prior to hold the back of the spoon is
important in maintaining a reliable grip throughout the post-grasp motion. Because DEFT
incorporates real-world experience with the prior, it is able to sample contact locations and
grasp rotations that can better execute the task.

Human and automated rewards We ablate the reward function used to evaluate episodes.
Our method queries the operator during the task reset process to assign a continuous score
from 0 to 1 for the grasp. Because the reset process requires a human-in-the-loop regardless,
this adds little marginal cost for the operator. But what if we would like these rewards to be
calculated autonomously? We use the final image collected in the single post-grasp human
demonstration from Section 6.4 as the goal image. We define the reward to be the negative
embedding distance between the final image of the episode and the goal image with either
an R3M [178] or a ResNet [112] encoder. The model learned from ranking trajectories with
R3M reward is competitive with DEFT in all but one task, indicating that using a visual
reward model can provide reasonable results compared to human rewards.
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Method Pour Cup Open Drawer Pick Spoon
train test train test train test

Reward Function:
R3M Reward 0.0 0.0 0.4 0.5 0.5 0.4
Resnet18 Imagenet Reward 0.1 0.2 0.3 0.1 0.4 0.2

Policy Ablation:
DEFT w/ MLP 0.0 0.0 0.5 0.0 0.6 0.5
DEFT w/ Transformer 0.4 0.5 0.6 0.1 0.4 0.5
DEFT w/ Direct Parameter est. 0.1 0.1 0.1 0.0 0.3 0.0

DEFT 0.8 0.9 0.5 0.4 0.8 0.6

Table 6.3: Ablations for (1) reward function type, (2) model architecture, and (3) parameter
estimation.

Model Architecture We investigate different models and training architectures for the
policy trained on the rollouts (Table 6.3). When we replace the conditional VAE with
an MLP that predicts residuals, the model has difficulty learning the grasp rotation to
effectively pour a cup. We find that the MLP cannot learn the multi-modality of the
successful data properly. Our transformer ablation is an offline method similar to [70]
where in addition to the image and affordance model outputs, we condition on the reward
outputs and train a transformer to predict the residual. At test time the maximum reward
is queried and the output is used in the rollout. While this method performs well, we
hypothesize that the transformer needs more data to match DEFT. Finally, we train a VAE
to directly estimate ξ instead of the residual. This does not effectively distill the information
from the affordance prior without the training time allotted. As a result, it often makes
predictions that are far from the correct grasp pose.
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Figure 6.7: We evaluate DEFT on three difficult manipulation tasks.

Performance on com-
plex tasks and soft ob-
ject manipulation We
investigate the perfor-
mance of DEFT on more
challenging tasks. Tasks
involving soft objects
cannot be simulated accurately, while our method is able to perform reasonably on food
manipulation tasks as shown in Figure 6.7.

Of the three tasks, our method has the most difficulty with the Pick Grape task. Because
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grapes are small, the fingers must curl fully to maintain a stable grasp. A limitation of our
hand is that the range of its joints does not allow it to close the grasp fully and as a result, it
has difficulty in consistently picking small objects. This also makes it challenging to hold
heavy objects like the spatula in Flip Bagel, but with practice DEFT learns to maintain a
stable grasp of the spatula. For Squeeze Lemon, DEFT develops a grasp that allows it to
apply sufficient pressure above the juicer. Specifically, our method takes advantage of the
additional fingers available for support in hands.

6.7 Discussion and Limitations
In this paper, we investigate how to learn dexterous manipulation in complex setups. DEFT
aims to learn directly in the real world. In order to accelerate real-world fine-tuning, we
build an affordance prior learned from human videos. We are able to efficiently practice and
improve in the real world via our online fine-tuning approach with a soft anthropomorphic
hand, performing a variety of tasks (involving both rigid and soft objects). While our
method shows some success on these tasks, there are some limitations to DEFT that hinder
its efficacy. Although we are able to learn policies for the high-dimensional robot hand,
the grasps learned are not very multi-modal and do not capture all of the different grasps
humans are able to perform. This is mainly due to noisy hand detections in affordance
pretraining. As detection models improve, we hope to be able to learn a more diverse set of
hand grasps. Second, during finetuning, resets require human input and intervention. This
limits the real-world learning we can do, as the human has to be constantly in the loop to
reset the objects. Lastly, the hand’s fingers cannot curl fully. This physical limitation makes
it difficult to hold thin objects tightly. Future iterations of the soft hand can be designed to
grip such objects strongly.
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Chapter 7

Conclusions

In this thesis, we investigated anthropomorphic robot hands. First we created open-source
robot hands that are significantly stronger, more dexterous, cheaper and easier to use than
the conventional counterparts.

Second, we tried to emulate the human brain. We used human video from the web to
teach robots from a huge amount of data. Robots learned how to retarget human video into
the robot embodiment. We taught them how to behave autonomously. Finally, we taught
them how to fine-tune their policies with real-world exploration.

While this is titled as a conclusion, it is more of a checkpoint. In the future, I will be
continuing my PhD on dexterous manipulation with Prof. Deepak Pathak and targeting a
few key ideas.

First, how do we built in more dexterity into our robot hands? How can we take
inspiration from our human hands to build robot hands that are more capable? A key part
of this will be to take more inspiration from anatomy. While many robot hands only focus
on MCP joints on the fingers, how can the MCP joints also effect the palm? This should
allow robot hands to better stabilize and grasp around objects. Also, another key aspect of
anatomy will be the bones and stiffness of the fingers. How can we design new mechanical
joints that emulate the human anatomy and enable better dexterity?

Second, how do we use touch? While there has been much work in touch they are
often limited to 2-Finger grippers. Our understanding is that touch could be useful with
dexterous robot hands to fine-tune behavior. How can we feel the softness of objects to
better manipulate them? How can we use chopsticks or tools? Both building touch sensors
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and integrating them with tighter control will be key to doing this.
Finally, I would like to enable more useful, dexterous behavior using big data. How

can we create dexterous policies using the simulated data generation and transfer them to
real-world robot hands? How can we continue to push for better teleoperation systems to
collect more useful data?
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Appendix A

Experimental Details for Robotic
Telekinesis

A.1 Hand/Body Bounding Box Detection

The first step in our retargeting pipeline is to detect two bounding boxes in an image of
the human operator; one for the body and one for the right hand. These bounding boxes
needn’t be perfectly tight bounding boxes; it’s more important that they contain the entire
body/hand without truncations. We use an implementation of OpenPose [62] from the
authors of FrankMocap [200]. First, a 2D body skeleton detector is run over the entire
image, and outputs the predicted pixel locations for each of the 18 keypoints on the skeleton.
The tight bounding rectangle around the points is then computed, and a fixed padding is
applied on all sides to allow a margin of error.

The right hand bounding box is heuristically extracted based on the 2D body skeleton
estimate. The bounding box is centered at the pixel corresponding to the right hand wrist,
and the side length of the bounding box is conservatively chosen to ensure that the bounding
box contains the entire hand. For an image of size 480x640, we use a side length of 150
pixels.
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A. Experimental Details for Robotic Telekinesis

A.2 Hand Pose Estimation

The next step is to estimate the pose of the operator’s right hand from a crop of the
hand. The crop of the right hand is computed as described in the previous section, and
is resized to a shape of 224x224. The crop is passed to a Convolutional Neural Network
(CNN), which outputs a low-dimensional representation of the hand configuration. We
use an implementation of the hand pose estimation network from [200]. This network
uses a ResNet50 trunk [112], followed by a Multi-Layer Perceptron (MLP) regression
head, which outputs three relevant parameters of the SMPL-X model [182]. (1) βh ∈ R10

describes the shape of the hand (the dimensions of each finger and the palm), (2) θh ∈ R45

describes the pose of the hand (how the fingers are arranged) and (3) ϕh ∈ R3 describes the
global orientation of the hand (how the hand’s root coordinate frame is rotated in the image
coordinate frame). The SMPL-X model maps the shape and pose parameters (βh and θh)
into a full 3D mesh of the hand, and the global orientation parameter ϕh transforms the
coordinate frame of the mesh so the axes align with the axes of the image coordinate frame.

A.3 Human-to-Robot Hand Retargeting

Here, we describe two implementations of the human-to-robot hand retargeting module,
one which uses online optimization (via inference-time gradient descent), and one which
uses offline optimization (via a neural network). Both implementations take a human hand
pose as input, and outputs joint angles for each of the 16 Allegro hand joints. The human
hand pose is parameterized by the tuple (βh, θh) as described in the previous section. The
global orientation ϕh is not used in hand retargeting, because the Allegro hand has no
wrist or palm joints, and therefore, matching the global orientation of the human hand is
accomplished by the robot arm and not the robot hand. We use qa to denote the vector of
the 16 Allegro hand joint angles.

A.3.1 Human-to-Robot Hand Energy Function.

Both implementations of the hand retargeting module minimize the same energy function, so
we describe this first. Inspired by [108], the energy function aims to capture the functional
similarity between a human hand pose and a robot hand pose. Five keypoints are defined on
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A. Experimental Details for Robotic Telekinesis

each hand: the index fingertip, the middle fingertip, the ring fingertip, the thumb fingertip,
and the palm center. Each of these keypoints is associated with a coordinate frame, and the
keypoint is the origin of the coordinate frame. Enumerating all pairs of keypoints yields ten
keyvectors. Four of them are finger-to-palm keyvectors (index-to-palm, middle-to-palm,
ring-to-palm and thumb-to-palm), three are inter-finger keyvectors (index-to-middle, index-
to-ring and middle-to-ring), and three are finger-to-thumb keyvectors (index-to-thumb,
middle-to-thumb and ring-to-thumb). Notably, each keyvector has one endpoint designated
as the origin, and the other as the destination. The keyvectors are expressed in the coordinate
basis of the origin keypoint’s coordinate frame. We refer the reader to Figure 8 of [108],
which elegantly depicts the keypoint coordinate frames and the keyvectors on both the
human and Allegro hand.

The energy function between a human hand pose (parameterized by the tuple (βh, θh))
and an Allegro hand pose (parameterized by the joint angles qa) is computed as follows.
First, for each i ∈ {1, . . . , 10}, the i-th keyvector is computed on the human hand (call it
vh
i ) and the Allegro hand (call it va

i ). Then, each Allegro hand keyvector va
i is scaled by a

constant ci. The i-th term in the energy function is the Euclidean difference between vh
i

and va
i :

E( (βh, θh), qa ) =
10∑
i=1

||vh
i − (ci · va

i )||22 (A.1)

These scaling constants {ci} are hyperparameters that require some tuning. If the goal is to
produce aesthetically appealing retargeted Allegro hand poses on generic hand gestures,
one should set each ci to around 0.625, in order to account for the ratio in sizes between the
average human hand and the Allegro hand. If the goal is to maximize functional similarity,
in theory, one should set each ci to 1, to encourage perfect matching of each keyvector.
In practice, we find that setting the constants ci to a value smaller than 1 is optimal for
dexterous manipulation teleoperation. This is because in order to stably grasp an object,
the fingers Allegro hand must exert forces pushing into the object. This is achieved by
commanding the Allegro finger joints to positions that penetrate the object. These joint
angles are never actually reached because the fingers end up colliding with the object, which
is precisely the goal. For our experiments, we use a scaling constant of 0.8 for each of the
finger-to-thumb and finger-to-finger keyvectors, and a scaling constant of 0.5 for each of
the finger-to-palm keyvectors. This means that in order to ensure a stable grasp, operators
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must squeeze their fingers closer together than they normally would when grasping, but
through our human subject study, we find that novice operators quickly realize this and
naturally adjust.

A.3.2 Computing the keyvectors on the human hand.

Having described what the keyvectors are and how they are used to define the energy
function, we now describe how to compute the keyvectors on the human hand, given the
SMPL-X model parameters (βh, θh). The first step is to use the SMPL-X model to generate
a full posed 3D mesh of the human hand. Given βh and θh (and a template hand mesh),
the SMPL-X model generates a 3D mesh that correctly captures the shape and pose of the
human hand. The next step is to transform these vertices into a canonical coordinate frame,
centered at the palm center, with the positive x axis pointing out of the hand, the positive y

axis pointing toward the thumb, and the positive z axis pointing toward the middle fingertip.
This is done by applying a hand-coded transformation between the SMPL-X coordinate
frame and the canonical coordinate frame. The next step is to compute the transformation
between each of the keypoint coordinate frames and the canonical coordinate frame. This
is done using the Kabsch-Umeyama Algorithm [227] for estimating the transformation
that best aligns corresponding pairs of points. Concretely, for each keypoint, we manually
determine four vertices on the template hand mesh: (1) the keypoint itself, (2) a vertex
located along 0.05m along the positive x axis from the keypoint, (3) a vertex located 0.05m
along the positive y axis from the keypoint, and (4) a vertex located 0.05m along the
positive z axis from the keypoint. This is pre-computed once, up front. At runtime, for
a given posed human hand mesh, we gather the 3D coordinates for each of these three
points in the canonical coordinate frame. We define a corresponding set of four points:
{[0, 0, 0], [0.05, 0, 0], [0, 0.5, 0], [0, 0, 0.5]}, which denote the coordinates of these points
in the coordinate frame of the keypoint. Given these four correspondences, the Kabsch-
Umeyama computes the transformation between the keypoint coordinate frame and the
canonical coordinate frame that best aligns these corresponding point pairs.

A.3.3 Computing the keyvectors on the Allegro hand.

Here, we describe how to compute the keyvectors on the Allegro hand, given a vector
of Allegro hand joint angles. The key idea here is to exploit forward kinematics. The
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URDF of the Allegro hand defines the kinematic skeleton of the Allegro hand. The
forward kinematics map takes as input a joint angle vector and outputs the transformation
between each link’s coordinate frame and the root coordinate frame. Each of our keypoints
conveniently corresponds to a particular link on the Allegro hand, so the keypoint coordinate
frames can simply be read off from the forward kinematics result.

A.3.4 The energy function is differentiable.

One critical point to note is that the forward kinematics map is a fully differentiable function
of the Allegro hand joint angles. This is because forward kinematics is essentially a chain of
sines, cosines and matrix multiplications. This is important because it means that the energy
function is a fully differentiable function of the Allegro joint angles (by the Chain Rule).
This is important because it allows us to compute the gradient of the energy function with
respect to the Allegro joint angles, and use gradient descent to find the Allegro joint angles
that minimize the energy, with respect to a given human hand pose. We now describe two
ways to exploit this differentiability: via online gradient descent and via offline gradient
descent.

A.3.5 Retargeting via Online Gradient Descent.

We implement the online optimization retargeter by using Stochastic Gradient Descent
(SGD) to minimize the energy function. At each iteration, we seed the Allegro joint angles
to an initial value. At the first iteration, that initial value is the all-zero vector (which
corresponds to an open palm with outstretched fingers). At all subsequent iterations, the
seed vector is the result from the previous iteration. We then run a fixed number of SGD
steps with a learning rate of 0.05. The number of gradient steps is a hyperparameter, and
presents a tradeoff between accuracy and speed. Running more steps results in better
convergence, but takes more time. We find 100 steps to be a good point on this spectrum.

A.3.6 Retargeting via Neural Networks.

We implement the offline optimization retargeter with a neural network that takes as input a
human hand pose parameterization concat(βh, θh) ∈ R55 and outputs a vector of Allegro
joint angles qa ∈ R16. We use a Multi Layer Perceptron (MLP) with three hidden layers of

104



A. Experimental Details for Robotic Telekinesis

sizes 256, 256, 128, and intermediate tanh activations. We apply a tanh to the final output to
squeeze the values from [−∞,∞]16 to [−1, 1]16, and then scale the squeezed values to the
appropriate values within each of the joint’s ranges. (For example, joint 1 on the Allegro
hand has a range of [−0.196, 1.61] (in radians). If the raw output of the network for this
joint were 1.23, the tanh operation would squeeze it to 0.84 and the rescale operation would
rescale it to 1.47 radians, which is 0.84 of the way between −0.196 and 1.61.)

We train this network using a mixture of human hand poses from the Freihand Dataset
[249] and “in-the-wild” human hand poses from the 100 Days of Hands dataset [207]. The
Freihand dataset contains ground-truth SMPL-X shape and pose parameters for over 30,000
hand configurations, which we use as inputs to the network. The 100 Days of Hands dataset
is simply a list of links to YouTube videos that depict humans using their hands for everyday
tasks. In total, these span hundreds of millions of frames. We generate human hand poses
by running our Hand Pose Estimation module (built on the CNN from [200]). Our final
dataset consists of 30,000 samples from the FreiHand dataset and 30,000 randomly chosen
samples from the 100 Days of Hands dataset.

A.4 Body Pose Estimation

The body pose estimation pipeline consists of two steps. The first is to estimate a rough
body pose from a crop of the operator’s body. The second is to refine the right-hand portion
of the rough pose estimate by fusing in the more accurate hand pose estimate from the
Hand Pose Estimation module.

A.4.1 Rough Body Pose Estimation via a CNN

This step takes as input a crop of the operator’s body, resized to a shape of 224 x 224.
The crop is passed to a CNN, which outputs a low-dimensional representation of the
body configuration. We use an implementation of the body pose estimation network from
[200]. This network uses a ResNet50 trunk [112], followed by a Multi-Layer Perceptron
(MLP) regression head, which outputs three relevant parameters of the SMPL-X model. (1)
βb ∈ R10 describes the body shape (the dimensions of the various body parts), (2) θb ∈ R45

describes the pose of the body (how the limbs are arranged) and (3) ϕb ∈ R3 describes
the global orientation of the body (how the body’s root coordinate frame is rotated in the
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image coordinate frame). The pose parameter θb is of shape (24, 3, 3), and each of these 24
matrices denotes the 3 x 3 rotation matrix of a particular joint in the human body skeleton.
The SMPL-X model maps the shape and pose parameters (βb and θb) into a full 3D mesh of
the body, and the global orientation parameter ϕb transforms the coordinate frame of the
mesh so the axes align with the axes of the image coordinate frame.

A.4.2 Body-Pose Refinement via Hand Pose Integration.

The body pose estimate obtained via the CNN can fail to capture the finer details of the hand
pose, and crucially, can produce incorrect estimates for the rotation of the right-hand wrist
relative to its parent in the human body kinematic chain. The Hand Pose Estimation module,
however, operates on a zoomed-in crop of the operator’s hand, and often produces much
better estimates of the hand’s global orientation. To exploit this fact, we use the “Copy-
and-Paste” Body-Hand Integration module from [200], which refines the local orientation
of the wrist based on ϕh, the global orientation of the hand estimated by the Hand Pose
Estimation module.

A.5 Human-to-Robot Body Retargeting

We now describe how to map from a body pose estimate (βb, θb) to a target pose for the
xArm6’s end-effector link, relative to its base link. The first step is to define two pairs of
corresponding coordinate frames between the human and robot “bodies”. The first pair
is between the human torso and the robot “torso”. We define the robot torso to be 25cm
above the robot base frame. Both torso frames are oriented such that the positive x axis
points out of the front of the torso, the positive y axis points towards the left side of the
body, and the positive z axis points upwards toward the head. The second pair of coordinate
frames is between the human’s right hand wrist and the robot’s wrist (i.e. end-effector). The
wrist coordinate frames are centered at the wrist center, with the positive x axis oriented
parallel to the vector originating at the palm center and pointing out of the front of the palm,
the positive y axis pointing toward the thumb, and the positive z axis pointing toward the
middle fingertip.

The problem of determining the relative transformation between the robot’s end-effector
and its base coordinate frame reduces to the problem of determining the relative transfor-
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mation between the end-effector and the torso (because the torso coordinate frame is fixed
relative to the robot’s base frame). And this problem reduces to determining the relative
transformation between the human’s right hand wrist coordinate frame and the human’s
torso coordinate frame. In order to do this, we start at the torso joint, and traverse the
human body kinematic chain (defined by the SMPL-X model) from the torso to the wrist,
chaining rotations along the path.

A.6 xArm6 Inverse Kinematics Controller

The human-to-robot body retargeter module outputs target poses for the xArm6’s end-
effector, relative to it’s base coordinate frame. The final step is to build a model that uses
this target pose to send a steady and smooth stream of joint angle commands to the xArm6’s
default controller. In practice, we found that this module is crucial for performance and
must be carefully implemented with attention to details; if the robot arm does not move
smoothly, dexterous manipulation tasks become impossible.

The first step is to handle outliers caused by erroneous body pose estimates. This is
done by computing the difference between the arm’s current end-effector pose and the
end-effector pose output by the retargeting module. If the difference is greater than a
threshold, it is clipped. The next step is to combine the (possibly clipped) end-effector pose
target with a running Exponentially Moving Average (EMA) of end-effector poses. This
helps ensure smooth motion in the presence of noise in the pose estimation and retargeting
modules. The following update rule is used to update running average PEMA to incorporate
the new target pose Pnew:

PEMA = α · Pnew + (1− α) · PEMA (A.2)

We find α = 0.25 to work well. We note that a lower value of α can introduce lag, but we
find that because our system runs at such a high frequency, this is not an issue in practice.

The next step is to compute the difference between the robot’s current end-effector
pose, and the (newly updated) pose target, and to apply linear interpolation to divide
that difference into equally spaced waypoints. Each waypoint end-effector pose is then
passed to a Selectively Damped Least Squares (SDLS) Inverse Kinematics (IK) solver [59],
implemented in PyBullet [77], which returns a vector of joint angles for the six joints in the
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xArm6. These joint angle commands are sent to the xArm6 servo controller.

A.7 Software Architecture

We now describe how we put together all of the aforementioned modules into a single
system that efficiently retargets human motion to robot trajectories. We found it natural
to design our system as a dataflow graph, with computation being done at the nodes, and
inputs/outputs travelling along the edges. We first summarize the computation nodes we
use, and then discuss how we optimized runtime performance by using parallel computation
within a publisher-subscriber architecture.

A.7.1 The nodes in the dataflow graph.

Each node corresponds roughly to one of the modules described in previous sections:
• CameraNode: captures RGB images of the operator at 30Hz.

• HandBoundingBoxDetectorNode: receives an operator image, and computes a
bounding box of the right hand.

• BodyBoundingBoxDetectorNode: receives an operator image, and computes a
bounding box of the body.

• HandPoseEstimationNode: receives a crop of the operator’s right hand, and esti-
mates the SMPL-X model parameters (βh, θh, ϕh) that parameterize the hand’s shape,
pose and global orientation.

• BodyPoseEstimationNode: receives a crop of the operator’s body, and estimates the
SMPL-X model parameters (βb, θb, ϕb) that parameterize the body’s shape, pose and
global orientation.

• BodyHandIntegrationNode: receives a hand pose estimate (βh, θh, ϕh) and a body
pose estimate (βb, θb, ϕb), and computes a refined body pose estimate by using the
Copy-and-Paste integration method from [200].

• HandRetargetNode: receives a hand pose estimate (βh, θh, ϕh), and computes the
Allegro joint angles qa that maximizes similarity with the operator’s hand.

• BodyRetargetNode: receives a (refined) body pose estimate (βb, θb, ϕb), computes
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the relative transformation between the right hand wrist and the torso, and converts
this to a target pose of the xArm6’s end-effector link, relative to its base link.

• AllegroHandControllerNode: receives a target Allegro hand joint angle vector from
the HandRetargetNode, interpolates the difference between robot’s current joint
angle values and the target into small fixed-size intervals, and sends a stream of
interpolated joint angle commands to the robot’s controller at a fixed frequency.

• xArm6ControllerNode: receives a target end-effector pose from the BodyRetar-
getNode, and commands a smoothly interpolated stream of xArm6 joint angle
configurations to the robot’s controller at a fixed frequency.

A.7.2 Optimizing performance via parallel computation.

It is crucial that our system run as fast as possible, in order to ensure smooth robot motion
and to avoid lagging behind the operator. Therefore, a key design decision was to opt
for a parallel computation paradigm. The first implementation of our system sequentially
chained together the various modules, and achieved a runtime of approximately 3Hz.
In this squential implementation, the retargeting time was the sum of the time taken by
each module. Our optimized implementation instead used the ROS publisher-subscriber
architecture, with each node running on a separate process. Nodes pass inputs and outputs
to each other via inter-process messages. With this approach, the retargeting time was
determined only by the slowest node, and this achieved a runtime of approximately 25Hz,
which greatly improves usability.

A.8 Hardware Architecture

Our setup consists of a Ufactory xArm6 robot arm mounted to a Vention table, with a Wonik
Robotics Allegro Hand mounted as the end-effector. The Allegro Hand was upgraded with
four 3D printed fingertips that are skinnier than the default tips. 3M TB641 grip tape is
applied to the inner parts of the hand and around the fingertip which allows the Allegro
Hand to better grip objects, as 3D printed components and the built in metal/plastic parts are
slippery. One Intel Realsense D415 camera tracks the operator; we use only the RGB stream.
In our experiments, the operator is standing near the robot, but this is not a requirement. The
operator only needs to be able to see the robot, in order for them to adjust their movements
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to effectively complete tasks. In the future, we hope to enable this via internet webcams
which would allow the operator to be located anywhere in the world. Running the system
is a desktop system with an AMD Ryzen 3960x CPU, 128GB of RAM and two NVIDIA
GeForce RTX 3080TI GPU’s.

A.9 Human Subject Study Details

The 10 subjects that participated in the study were volunteer colleagues from the author’s
lab. A few were familiar with this project, but they were not intimately familiar with the
details. Critically, they had never used the system before. The human subjects were assured
that the data collected was anonymous, the robot never interacted with them in any way,
and if they ever felt uncomfortable with the task for any reason they could terminate the
experiment early. The act of collecting the data would fall under a Benign Behavioral
Intervention: verbal, written responses, (including data entry or audiovisual recording) from
adult subjects who prospectively agrees and the following is met: Recorded information
cannot readily identify the subject (directly or indirectly/linked). This therefore gives an
exemption for IRB approval. Example of this category are solving puzzles under various
noise conditions, playing an economic game, being exposed to stimuli such as color, light
or sound (at safe levels), performing cognitive tasks.

One author was the conductor of the study. The conductor briefed each subject on how
to operate the system. The subjects were asked to stand and stay in frame of the camera
during the duration of the experiments. They were asked to not move around too quickly as
that would trigger safety limits of the control system, but this was never an issue. No other
significant instructions were given. The conductor of the study also kept an emergency stop
switch next to them for the safety of the robot system, but it was never used.

For the first few trials, many subjects were confused by the system but quickly adapted
to it. The conductor instructed them to continually adapt to the system and try to complete
the tasks without giving them additional information. The conductor took down notes on
the compliments and complaints of the system while the system was being used.

The conductor only verbally told each subject the goal of the task but did not explain
the best way to complete them. The tasks were very simple and intuitive so the subjects
were not confused by them. For each task, a failure was recorded when either the time
expired, the task became impossible to complete from the object state on the table, or the
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subject asked for a reset. Between each trial within each task, the subjects were asked
to move the robot arm up away from the table to allow the conductor to reset the object.
Between each task, the Telekinesis system was paused and subjects were allowed to rest
their arm for a few minutes. The dice pickup task and drawer task was 30 seconds each for
7 trials. The last cup in plate task was 60 seconds long for each of the 7 trials. The total
time to complete all three tasks was about 15 minutes.
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Experimental Details for VideoDex

B.1 Videos

Task videos, performance videos, data collection and example of internet videos can be
found at: https://video-dex.github.io

B.2 Additional Ablations

Comparing Effects of Actions, Visual and Physical Priors: Firstly, we ran an ablation
where we pertained a policy on human videos performing the place task and finetune it
on the uncover task (using robot data). Similarly, we pretrained a policy on Uncover and
finetuned on place. The results are in the below table under VideoDex-Transfer.
We see that for both tasks the performance degrades slightly, especially in the place
task. We also train by adding noise to the demonstration trajectories, by adding two
different levels of Gaussian noise with standard deviation being 0.01 and 0.05, shown as
VideoDex-Noise-0.01 and VideoDex-Noise-0.05. We find that adding more
noise definitely hurts the performance of the method. We also train ResNet18 [112] features
initialized from ImageNet [88] training instead of the R3M [178] features, and the results
in VideoDex-ImageNet. We can see that performance drops off, which indicates that
the visual priors are important. Note that all of the reported numbers are on test objects.
We present the results in Table B.1.
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Method/Task Place Uncover

VideoDex-Noise-0.01 0.55 0.87
VideoDex-Noise-0.05 0.50 0.60
VideoDex-ImageNet 0.40 0.62
VideoDex-Transfer 0.60 0.87

VideoDex-Original 0.70 0.90

Table B.1: Ablations that compare effects of different action, visual and physical priors, as well as
seeing how pretraining on different data transfers to other tasks.

B.3 Retargeting Details

We first retarget human videos from Epic-Kitchens [78]. Specifically, we use the new data
(refresher) from their GoPro Hero 7 Black. We retarget video clips of humans completing
tasks that are similar to the robot task. These clips are on average 5-10 seconds each,
depending on the task.

Wrist in Camera frame The goal of Perspective-n-Point is to estimate the pose of the
calibrated camera given a set of N 3D points in the world and their corresponding 2D point
projections in the image. First the camera must be calibrated. To do this, we use COLMAP
[203] on a set of videos. It tracks keypoints through frames and estimates the calibration
from the internet videos. We find these camera intrinsics for the GoPro:2304.002572862 0 960

0 2304.002572862 540

0 0 1


Using this calibration, we can now complete the Perspective-n-Point process. We
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Transforms Description Method

MWrist
Ct

Wrist in each Camera FrankMocap + PnP

MCt

C1
Track Moving Camera IMU/ORBSLAM

MC1

World Make Camera parallel to Ground IMU/Stabilization Sensor

TWorld
Robot Rescale and Reorient for Robot Heuristic

MWrist
Robot TWorld

Robot ·M
C1
World ·M

Ct
C1
·Mwrist

Ct

Table B.2: Transformations required to calculate wrist in robot frame from passive videos
to use in learning. M denotes a transformation matrix, where T is a general transformation

.

We use the OpenCV3 solvePnPRANSAC to complete this calculation. This implementation
ensures that the process is resilient to erroneous detections.

Camera in First Camera frame In the SLAM section, the goal is to track the camera
through the video. This is required to compensate for the movement of the camera. We use
this on a selection of videos where we found the camera to move significantly.

We start the SLAM process two seconds before the action clip begins. We mark the
start of the action’s frame as the first frame, run it through SLAM and then recover the
trajectory of the camera through the entire clip. Specifically we recover the transformation:
MCt

C1

The process of monocular SLAM is only valid up to a scale factor. Although Epic
Kitchens has noisy accelerometer and gyro information from the camera’s sensors, we do
not use this data to disambiguate this scale factor throughout the duration of the video clip.

ORBSLAM3 [61] only evaluates real-time video going forward through time and does
not recalculate prior poses from future information. While this seems imperfect for this
purpose, we find that the results are satisfactory for our purpose. In our setup, we are
using these retargeted videos as a prior for learning. These retargeted trajectories are not
used directly on the robot so they do not need complete accuracy. The more important
characteristic is speed. COLMAP [203] can take hours to process larger video clips, but
ORBSLAM3 [61] can complete this process faster than real time. This enables us to use
many videos as an action prior for the robot behavior.
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Camera Parallel to Ground Now that we have the trajectory in the C1 frame after SLAM
and PnP, we still are missing some key transformations to get into the robot frame. First,
the C1 is not always upright compared to gravity, but the robot always is. If we have a
vector normal to the ground either from the synthesized pseudo-depth map from the original
Videodex method or privledged information from an accelerometer (accelerometer is not
used in the original Videodex method) we can use:

pitch = tan−1(xAcc/
√

y2Acc + z2Acc) (B.1)

roll = tan−1(yAcc/
√

x2
Acc + z2Acc) (B.2)

theta = tan−1(
√

x2
Acc + y2Acc/zAcc) (B.3)

The pitch and roll would be used to make the trajectory upright. The yaw is not
something that is calculable this way because this rotation is around the z axis, or the
direction of gravity so it isn’t detected by an accelerometer. The theta represents how far
the accelerometer z axis is off from upright but is not useful to reorient the frame.

Accelerometer Robot Reorientation There’s book-keeping transformations that must be
included to rotate everything into the same frame conventions. Accelerometers, like the
one in the GoPro have their frame where Z is up, y is into the screen from the lens, and
x is to the left if you’re looking at the screen. The camera frame has the x-axis pointing
to the right from the screen point of view, the y-axis facing down, and the z-axis facing
out of the lens. The robot frame has its x-axis facing out towards the table, the y-axis
faces to the left from the robot point of view, and the z-axis points up. This then leads to
the following results. The camera in world frame in roll, pitch, yaw using fixed axis is:
[pitch, 0,−roll]. The world frame to robot frame rotation in roll, pitch, yaw using fixed
axis is [−3.14/2, 0,−3.14/2] This is used to rotate the trajectories to the robot frame and
is the rotation component of TWorld

Robot .

Rescaling for Robot We must fit the trajectories from the human videos into the robot
frame. The robot frame has significant workspace limits that the human does not have.
Even if the human arm is smaller than the robot’s, the human can walk around whereas the
robot arm cannot move from the middle of the table. We therefore center the trajectory and
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ensure it fits in the robot frame. This is the scaling portion of TWorld
Robot .

We rescale each dimension of the arm trajectory as:

MWristN
World = MWristN

World −(max(MWrist1..N
World )+min(MWrist1..N

World ))/2+robotWorkspaceCenter

We would like to generate more similar trajectories to use in possible data augmentation.
The naive method is to add gaussian noise to the trajectory. While this can be valid, it
adds noise to an already noisy system. Instead we leverage the coordinate frames to create
more accurate trajectories. We randomize the workspace scaling that is used by 10 percent.
Additionally, we create a rotation MWorld

World that rotates the initial world frame by up to 10
degrees in each fixed axis in roll pitch yaw convention. This perturbs the direction that the
robot moves in its frame.

While this augmentation can be helpful with lower amounts of internet data, in our
results it was not used as it led to similar results to not using data augmentation.

We interpolate the length of the trajectories using RBF basis functions. All trajectories
from the internet data are rescaled to 200 datapoints. This uniformity enables efficient
batch training and was used for all of the results.

Hand Re-targeting We use a similar approach to retargerting as Sivakumar et al. [216]
and Handa et al. [109]. Specifically, we use the the detected human hand poses using
MANO Romero et al. [199] (and FrankMocap Rong et al. [200]) to match 3D keypoints
between human hands and the allegro hand. Given human hand parameters (β, θ), the goal
is to minimize the difference between human and robot keypoints: Human vhi and robot
vri . The robot keypoints are a function of robot joint pose: q. This is done by the implicit
energy function (ci are scale hyperparameters):

Eπ( (βh, θh), q ) =
∑
i

||vhi − (ci · vri )||22 (B.4)

This is inefficient to compute in real time, thus similarly to Sivakumar et al. [216], we
distill this into a single neural network

fhand((βh, θh)) = q̂
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Figure B.1: Task Images. A more detailed look at the tasks completed by VideoDex: push, pick,
rotate, open, cover, uncover and place. and our website at https://videodex.github.io
for further details.

Pick Rotate Open Cover Uncover Place Push
train test train test train test train test train test train test train test

BC-NDP [44] 0.64 ± 0.11 0.38 ± 0.13 0.94 ± 0.06 0.56 ± 0.13 0.90 ± 0.10 0.60 ± 0.16 0.78 ± 0.15 0.58 ± 0.15 0.88 ± 0.13 0.82 ± 0.12 0.70 ± 0.15 0.35 ± 0.11 1.00 ± 0.00 0.71 ± 0.13
BC-Open[83] 0.50 ± 0.12 0.44 ± 0.13 0.72 ± 0.11 0.38 ± 0.13 0.80 ± 0.13 0.40 ± 0.16 0.44 ± 0.18 0.58 ± 0.15 1.00 ± 0.00 0.91 ± 0.09 0.40 ± 0.16 0.25 ± 0.10 1.00 ± 0.00 0.93 ± 0.07
BC-RNN [83] 0.56 ± 0.12 0.31 ± 0.12 0.78 ± 0.10 0.50 ± 0.13 0.90 ± 0.10 0.50 ± 0.17 0.56 ± 0.18 0.42 ± 0.15 0.88 ± 0.13 0.75 ± 0.13 0.70 ± 0.15 0.50 ± 0.11 1.00 ± 0.00 1.00 ± 0.00

VideoDex 0.81 ± 0.09 0.75 ± 0.11 0.89 ± 0.08 0.69 ± 0.12 0.90 ± 0.10 0.80 ± 0.13 0.78 ± 0.15 0.67 ± 0.14 1.00 ± 0.00 0.90 ± 0.10 0.90 ± 0.10 0.70 ± 0.11 1.00 ± 0.00 1.00 ± 0.00

Table B.3: We present the variance of train objects and test objects for Videodex and baselines
described above. See the main paper for the mean results.

This network learns to minimize the energy function Eπ described above and is trained
by observing internet videos. The hand retargeting setup can be seen in Figures 3 and 4 of
the main paper.

Task

The tasks that were completed are Pick, Rotate, Open, Cover, Uncover, Place, Push. In
pick, the task is to pickup objects off the table, or a plate/pan. Rotate involves turning an
object in place. Open involves opening a drawer. Cover and uncover involve putting on or
removing some form of cloth (dish, rubber, paper or plastic) on or from a plate. For place,
the robot has to pickup an object and drop it in a plate or pot/pan. For push, the robot has to
poke the object with its fingers. These tasks can be seen in Figure B.1. We used videos
from Epic Kitchens [78] that were as close as possible to these tasks, and doing similar
types of actions. More details can be found in Table B.4.

B.4 Learning Pipeline Details

Learning Setup For our approach, we use the ResNet18 from R3M [178] weights as the
visual backbone. This produces an intermediate feature vector of size 512. This is processed
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Parameter Value

Learning Rate 1× 10−3

Batch Size 32
Training Demonstrations Per Task 120-175
Human Videos Per Task 350 (Cover/Unicver, Rotate, Push) - 2500 (Open, Pick, Place)
Trajectory Length Human Videos 200 (rescaled)
NDP [43] Basis Functions N 300
NDP [43] Global Parameter α 15

Table B.4: Parameter List

with a 2 layer MLP with a hidden dimension of 512. The visual features are concatenated
with the starting hand and wrist pose. We employ two such MLPs, one for the hand and
wrist trajectories. These are then processed with an NDP [43]. The NDP processes the
input with a single hidden layer to project it into the desired size (parameters W and g).
For more information we point the readers to Bahl et al. [43]. We use the implementation
from Dasari et al. [83]. We use standard data augmentations from Pytorch. Specifically,
we use RandomResizeCrop from a scale of 0.8 to 1.0. We use RandomGrayscale with a
probability of 0.05 We use ColorJitter with a brightness of 0.4, contrast of 0.3, saturation
of 0.3 and hue of 0.3. Finally, we normalize the RGB values around the typical mean and
standard deviation for color images: µ = (0.485, 0.456, 0.406) σ = (0.229, 0.224, 0.225).
For different baselines, we used the same backbone (R3M [178]) as our method. We use
the same architecture style as well, with the visual features being processed by both a wrist
and hand stream. Finally, all network sizes are the same or very similar. We describe our
hyperparameters in Table B.4.

B.5 Experimental Setup

We collect data using a dexterous hand robotic teloperation setup [109, 216]. A trained
operator stands in front of the camera within view of the robot and operates the system in
real-time to collect demonstrations with a trained, uniform style. Another manager stands
by. The goal of this manager is to place items on the table for manipulation, randomize
locations and types of objects, to start and stop demonstrations for the operator and manage
the robot system. We collect about 120-175 demonstrations per task. See table B.2 for
details.
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Task Robot Demos Objects

Pick 125 8

Rotate 140 8

Open 120 4

Cover 124 12

Uncover 145 12

Place 175 10

Push 136 14

Table B.5: Left: Number of trajectories we used for each task. Robot data is collected
locally using teleportation. Most of these trajectories are 5-15 seconds in length and capture
the motion trajectory of the task and visual data. Right: The number of different objects we
used for each task’s data collection. In our testing, we show generalization outside of this
set of objects.

B.6 Hardware Details

Our hardware setup consists of an LEAP 16 DOF Hand and an XArm 6 manipulator (from
Ufactory). The hand is mounted on the wrist of the XArm. To collect data we use a similar
teleoperation system as provided by Sivakumar et al. [216] and Handa et al. [109]. We use
Intel Realsense D415 cameras to collect human teleoperation and robot videos. We use
four NVIDIA RTX 2080TI’s for training the policy and running the teleoperated system.
We experiment with the Allegro Hand and use it to collect some teleoperated demonstration
data, but we find it to be very unreliable and break many times. The motors also quickly
overheat and are weak in practice. Therefore, to alleviate these issues we use the LEAP
Hand for collecting the final results.

External Codebases

We use the following different external codebases for our pipeline:

• Human body and hand detection: FrankMocap [200], https://github.com/
facebookresearch/frankmocap

• NDP and Behavior Cloning [83] code from https://github.com/AGI-Labs/
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robot_baselines

• Code for R3M [178] https://github.com/facebookresearch/r3m

• CQL baseline from Takuma Seno [224] (https://github.com/takuseno/
d3rlpy)

• COLMAP from Schönberger et al. [203] (https://github.com/colmap/
colmap)

• ORBSLAM3 from Campos et al. [61] (https://github.com/UZ-SLAMLab/
ORB_SLAM3)

• GoPro Metadata Extractor from (https://github.com/JuanIrache/gpmf-extract)

• Rigid Transform class from (https://github.com/BerkeleyAutomation/
autolab_core/blob/master/autolab_core/rigid_transformations.

py)

• PnP from (https://opencv.org/)
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Appendix C

Experimental Details for DEFT

C.1 Video Demo

We provide video demos of our system at https://dexterous-finetuning.github.
io.

C.2 DASH: Dexterous Anthropomorphic Soft Hand

Recently introduced, DASH (Dexterous Anthropomorphic Soft Hand) [166] is a four-
fingered anthropomorphic soft robotic hand well-suited for machine learning research use.
Its human-like size and form factor allow us to retarget human hand grasps to robot hand
grasps easily as well as perform human-like grasps. Each finger is actuated by 3 motors
connected to string-like tendons, which deform the joints closest to the fingertip (DIP joint),
the middle joint (PIP joint), and the joint at the base of the finger (MCP joint). There is
one motor for the finger to move side-to-side at the MCP joint, one for the finger to move
forward at the MCP joint, and one for PIP and DIP joints. The PIP and DIP joints are
coupled to one motor and move dependently. While the motors do not know the end-effector
positions of the fingers, we learn a mapping function from pairs of motor angles and visually
observed open-loop finger joint angles. These models are used to command the finger joint
positions learned from human grasps.
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C.3 MANO Retargeting

For MANO parameters, the axis of each of the joints is rotation aligned with the wrist
joint and translated across the hand. However, our robot hand operates on forward and
side-to-side joint angles. To translate the MANO parameters to the robot fingers we
extract the anatomical consistent axes of MANO using MANOTorch. Once these axes are
extracted, each axis rotation represents twisting (not possible for human hands), bending,
and spreading. We then match these axes to the robot hand. The spreading of the human
hand’s fingers (side-to-side motion at the MCP joint) maps to the side-to-side motion at
the robot hand’s base joint. The forward folding at the base of the human hand (forward
motion at the MCP joint) maps to the forward motion at the base of the robot hand’s finger.
Finally, the bending of the other two finger joints on the human hand, PIP and DIP, map
to the robot hand’s PIP and DIP joints. While the thumb does not have anatomically the
same structure, we map the axes in the same way. Other approaches rely on creating an
energy function to map the human hand to the robot hand. However, because the soft hand
is similar in anatomy and size to a human hand, it does not require energy functions for
accurate retargeting.

C.4 Affordance Model Training

We use data from Ego4D [102], EpicKitchens-100 [78], and HOI4D [157]. After filtering
for clips of sufficient length, clips that involve grasping objects with the right hand, and
clips that have language annotations, we used 64666 clips from Ego4D, 9144 clips from
EpicKitchens, and 2707 clips from HOI4D. In total, we use a dataset of 76517 samples for
training our model.

For our contact location model, we use the visual encoder from [178] to encode the
image as a 512-dimensional vector. We use the spatial features of the encoder to upsample
the latent before applying a spatial softmax to return the contact heatmap. This consists of
three deconvolutional layers with 512, 256, and 64 channels in that order.

To predict wrist rotation and grasp pose, we use the language encoder from [194] to
compress the language instruction to a 512-dimensional vector. We concatenate the visual
and language latents and pass them through a transformer with eight heads and six self-
attention layers. We pass the result of the transformer through an MLP with hidden size 576,
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and predict a vector of size 48: the first 3 dimensions are the axis-angle rotations; the last
45 dimensions are the joint angles of the hand. These correspond to the parameters output
by Frankmocap [200], which we used to get ground truth hand pose in all the datasets. The
images used from the training datasets as well as the ground truth labels are released here.

We jointly optimize the L2 loss of the contact location µ, the wrist rotation θwrist and
grasp pose P . The weights we used for the losses are λµ = 1.0, λθ = 0.1, λP = 0.1. We
train for 70 epochs with an initial learning rate of 0.0002, and a batch size of 224. We
used the Adam optimizer [129] with cosine learning rate scheduler. We trained on a single
NVIDIA RTX A6000 with 48GB RAM.

C.5 Fine-Tuning Parameters

Below are the values of the parameters used for the CEM phase of VideoDex.

Parameter Value Description

E 10 Number of elites for CEM
M 10 Number of warm-up episodes
N 30 Total number of CEM episodes
σµ 0.02 Initial contact location Standard Deviation (meters)
σθwrist 0.2 Initial wrist rotation Standard Deviation (euler angle radians)
σP 0.05 Initial soft hand joints Standard Deviation

Table C.1: Values for fixed parameters in fine-tuning Algorithm 2.

C.6 Success Criteria for Tasks

We define the criteria for success in each of our 9 tasks as follows:

• Pick Cup: Cup must leave table surface and stay grasped throughout trial.

• Pour Cup: Cup must be grasped throughout trial and also rotate so that the top of the
cup is at a lower height than the base.

• Open Drawer: Drawer is initially slightly open so that it can be grasped. By the end
of the episodes, the drawer should be at least 1 centimeter more open than it was at
the beginning.

• Pick Spoon: The spoon must not be in contact with the table at the end of the trial.
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• Stir Spoon: The spoon base must rotate around the jar/pot at least 180 degrees while
grasped.

• Scoop Grape: The spoon must hold a grape at the end of the trial while being held by
the soft hand.

• Pick Grape: All grapes must be held by the hand above the table surface. In particular,
if any single grape falls due to a weak stem, this is considered a failure.

• Flip Bagel: The side of the bagel that is facing up at the end of the trial should be
opposite the side facing up at the beginning.

• Squeeze Lemon: The lemon should be grasped securely on top of the juicer.
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