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Abstract

State estimation is a crucial component for the successful implementation
of robotic systems, relying on sensors such as cameras, LiDAR, and IMUs.
However, in real-world scenarios, the performance of these sensors is de-
graded by challenging environments, e.g. adverse weather conditions and
low-light scenarios. The emerging 4D imaging radar technology is capable
of providing robust perception in adverse conditions. Despite its potential,
challenges remain for indoor settings where noisy radar data does not
present clear geometric features. Moreover, disparities in radar data resolu-
tion and field of view (FOV) can lead to inaccurate measurements. While
prior research has explored radar-inertial odometry based on Doppler
velocity information, challenges remain for the estimation of 3D motion
because of the discrepancy in the FOV and resolution of the radar sensor.
In this thesis, we address Doppler velocity measurement uncertainties.
We present a method to optimize body frame velocity while managing
Doppler velocity uncertainty. Based on our observations, we propose a
dual imaging radar configuration to mitigate the challenge of discrepancy
in radar data. To attain high-precision 3D state estimation, we introduce
a strategy that seamlessly integrates radar data with a consumer-grade
IMU sensor using fixed-lag smoothing optimization. Finally, we evaluate
our approach using real-world 3D motion data and demonstrate down
stream tasks of localization and mapping.
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Chapter 1

Introduction

Figure 1.1: A demonstration of multi-radar inertial odometry (orange) walked through
different levels of an atrium compared to visual-inertial odometry (green). The colors
of the radar point cloud indicate Doppler velocity from high (red) to low (purple).

1.1 Robust State Estimation

State estimation serves as a fundamental component in the majority of robotics

applications. Commonly used sensors for state estimation include cameras, LiDAR,

and IMUs [42]. However, deploying robots can be challenging in adverse environments.

For instance, LiDAR sensors can experience substantial performance degradation

when exposed to adverse factors such as smoke and fog, as well as in environments

lacking distinct geometric features. Similarly, cameras encounter the same challenges

with additional difficulties in environments with low-light conditions or lacking distinct

visual features.
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1. Introduction

1.2 4D mmWave Imaging Radar

The emerging 4D mmWave imaging radar sensor [16] can provide robust perception

in demanding environments. The imaging radar sensor utilizes electromagnetic waves

with wavelengths at the millimeter level that can function in adverse environmental

conditions and do not rely on external lighting. Using frequency-modulated continuous

wave technology, the imaging radar can provide Doppler velocity measurements for

each detected 3D point. However, radar point clouds are known to be noisy and

sparse and can be severely discretized due to post-processing procedures, thereby

providing limited geometry information, especially in confined indoor environments.

Despite the challenges presented by the mmWave imaging radar, several recent

studies have found success using this technology for object detection [38, 39], naviga-

tion [14], and state estimation [8, 21, 24, 32]. Further applications are discussed in

the survey paper [36].

1.3 State Estimation using mmWave Radar

There are several challenges in developing a state estimation algorithm using mmWave

radar. Previous works demonstrated the capability of building trajectories based on

geometry information and scan-to-scan matching in automotive settings [3, 12, 22].

However, these methods are limited to planar localization and often exhibit degraded

performance in indoor environments where there are limited key point features and

clear geometry patterns in addition to the noise introduced by multi-path reflections

of the signals.

Another popular approach involves leveraging Doppler speed information to

optimize body frame velocity and then fusing it with an inertial measurement sensor

[7, 20, 32]. However, inaccuracies in body frame velocity and its associated uncertainty

can lead to trajectory drift along the elevation direction. This issue arises because

the antenna of imaging radar is designed to provide significantly lower data resolution

and FOV in the elevation dimension compared to the azimuth dimension [35].
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1. Introduction

1.4 Contribution

To achieve high-precision 3D motion state estimation using a Doppler velocity-based

radar-inertial odometry approach, we tackle the above-mentioned challenges. We

analyze radar measurement uncertainty and develop an algorithm for seamless radar-

IMU fusion. We showcase the effectiveness of this approach by using dual mmWave

cascade imaging radars coupled with a consumer-grade IMU sensor to obtain accurate

3D state estimates. Our contributions can be summarized as follows:

• Doppler and Velocity Uncertainty: We assess the uncertainty of radar

Doppler measurements and the resulting uncertainty on estimated linear body

frame velocity for fusion with IMU sensor data.

• Multi-Radar Inertial Odometry: We employ a fixed-lag smoother optimiza-

tion strategy capable of fusing IMU and multiple radar data to compensate

for measurement uncertainty from each other and ensure robustness to outlier

measurements.

• Evaluate with 3D Motion: We evaluate our method with hand-held collected

data while traversing through different levels of indoor buildings.

3



1. Introduction

Figure 1.2: Radar points mapping of an atrium.
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Chapter 2

Background

2.1 SLAM and Nonlinear Least Square

Simultaneous Localization and Mapping (SLAM) problems can be viewed as the

maximum a posteriori estimation of robot states X and sensor measurements Z.

Given the measurements, we would like to find the most likely states X̂.

X̂ = argmax
X

p(X|Z) (2.1)

Assume a prior distribution p(X) exists. We can write the posterior distribution

p(X|Z) using the Bayes rule.

X̂ = argmax
X

p(Z|X)p(X)

p(Z)
= argmax

X
p(Z|X)p(X) (2.2)

We can make the Markov assumption with conditional independence between the

associated variables. Assume that each probability distribution here is a Gaussian

distribution ϕi(Xi).

X̂ = argmax
X

∏
ϕi(Xi) = argmax

X

∏
exp

(
−1

2
||hi(Xi)− Zi||2Σi

)
(2.3)

5



2. Background

Where hi(Xi) is the measurement prediction function given the state. We can further

reduce this to a non-linear least-squares optimization problem.

X̂ = argmin
X

∑
||hi(Xi)− Zi||2Σi

(2.4)

To solve this problem, we can linearize the measurement function by using first-order

Taylor expansion.

hi(Xi) = hi(X
0
i ) +Hi∆i (2.5)

Hi =
∂hi(Xi)

∂Xi

∣∣∣∣
X0

i

(2.6)

We are solving for state update vector ∆i at each iteration.

∆∗ = argmin
∆

∑
||A∆− b||2 (2.7)

Where residuals are whitened by the measurement covariance Σi

A = Σ
1/2
i Hi (2.8)

b = Σ
1/2
i (Zi − hi(X

0
i )) (2.9)

Then, the states are refined iteratively by applying the state update vector ∆i, that

is, the values are obtained by successive approximation until convergence.

Xt+1 = Xt +∆ (2.10)

A variety of algorithms are available to solve for the optimal X̂, including methods

such as steepest descent, Gauss-Newton, Levenberg-Marquardt, and Powell’s Dogleg

approach [6]. Kaess et al. introduced an advanced method, detailed in [18], using

incremental update techniques coupled with matrix solvers to efficiently solve the

system in real time.

6



2. Background

2.2 Robust Error Model

In real-world SLAM problems, there may be completely bogus sensor measurements.

By default, the optimization process will treat these outlier measurements as equally

important as other measurements. Therefore, the optimization process will attempt

to fit those outlier measurements, sacrificing the accuracy of the inlier measurements.

Mathematically, since all measurement residuals carry the same weight, a standard

nonlinear least-squares approach seeks to minimize the squared sum of all residuals.

Consequently, this can distort the estimated parameters.

A group of models created to address this issue by reducing the impact of outlier

residuals is called the robust error model, also known as the M-estimator in GTSAM

[5], or the robust loss function in Ceres-Solver [1]. These robust error models aim to

modify the magnitude of residuals using a function ρ. To replicate the squared cost

for minor residuals, certain design options include the following.

ρ(0) = 0 (2.11)

ρ′(0) = 1 (2.12)

ρ′(r) < 1 in the outlier region (2.13)

ρ′′(r) < 0 in the outlier region (2.14)

Some common robust error models can be found in Table 2.1 and Figure 2.1.

Huber Cauchy Tukey

ρ(r) =

{
r r ≤ 1

2
√
r − 1 r > 1

ρ(r) = log(1 + r) ρ(r) =

{
r r ≤ 1

2
√
r − 1 r > 1

Table 2.1: Common robust error models

The advanced technique Graduated Non-Convexity (GNC) [2] is designed for

outlier elimination through the utilization of a flexible model. GNC suggests softening

non-convexity in a truncated least-square problem by substituting the residual with

an alternative function regulated by a single parameter.

7
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10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

2
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(r)

quadratic
huber
cauchy
tukey

Figure 2.1: Robust error models

2.3 mmWave Imaging Radar

Millimeter wave radar, also known as mmWave radar, belongs to a unique category

of radar technology that uses short-wavelength electromagnetic waves. The mmWave

radar system emits electromagnetic waves that are reflected by objects in their field

of view. When detecting the reflected signal, a radar system can determine the

distance, speed, and direction of objects. Moreover, the mmWave radar system from

Texas Instruments incorporates a unique type of mmWave technology, known as

frequency-modulated continuous wave (FMCW). Unlike the conventional pulsed-radar

system, which transmits periodic pulses, the FMCW radar system sends out a signal

with frequency modulation in a continuous manner.

2.3.1 Radar Chirp Configuration

The frequency-modulated signal sent by the FMCW radar system is called a ”chirp”.

An illustration of a chirp can be found in Figure 2.2, where the frequency of the

sinusoidal wave increases linearly over time. The characteristics of a chirp signal can

be modified and impact the balance between the highest achievable value and the

precision of the measurements.

In a multi-input multi-output (MIMO) radar system, there are multiple transmit

8



2. Background

Figure 2.2: Illustration of a radar chirp.

(Tx) and receive (Rx) antennas. It is crucial to note that Rx antennas must be able

to distinguish signals associated with various Tx antennas. One possible technique to

achieve this is time division multiplexing (TDM). In each measurement frame, each

Tx sends their chirp signal in a loop and repeats until the frame time Tf is reached.

Note that the time to complete a loop is Tc as the Figure 2.3 shows.

In determining the range, our focus lies on the maximum range and the resolution

of the range. While the maximum range dmax is influenced by both the ADC sampling

rate Fs and the chirp slope S, the range resolution dres varies inversely with the chirp

bandwidth B.

dres =
C

2B
dmax =

FsC

2S
(2.15)

For measuring the velocity, we are concerned with the maximum velocity vmax and

the velocity resolution vres. Where vmax is inversely proportional to Tc, and vres is

inversely proportional to Tf .

vres =
λ

2Tf

vmax =
λ

4Tc

(2.16)

9



2. Background

Figure 2.3: A frame of transmits signals from a TDM-MIMO radar, where M is the
number of transmit antenna and N is a design choice.

Where C is the light speed and λ is the average wavelength. Finally, for measuring

the angle of arrival, increasing the angular resolution requires increasing the number

of Rx antennas. Details about the derivation of the above properties can be found in

TI’s documents[35]. The radar chirp configuration employed in this study is detailed

in Chapter 4.

Figure 2.4: A radar system with single Tx and Rx.

10



2. Background

2.3.2 Signal Processing

In this part, we will present some fundamental principles for processing radar signals

to obtain the desired measurements. As depicted in Figure 2.4, by considering a

scenario with a Tx antenna and an Rx antenna, the chirp signals produced by the

synthesizer will be directed to a mixer where they will be merged with the signals

received from the Rx, generating the IF signal. Here, the frequency and phase of the

IF signal are simply the difference between the transmitted and received signals, as

Figure 2.5 shows.

Figure 2.5: IF signal from a Tx antenna and an Rx antenna.

In a TDM-MIMO radar setup, there are several virtual antennas, each comprising

a pair of Rx signals received from one of the Tx antennas. The first step to process

data from the TDM-MIMO FMCW radar is to organize each digitized IF signal

processed from each virtual antenna into an ADC data cube where each dimension is

shown in Figure 2.6.

Figure 2.6: ADC data

11



2. Background

Figure 2.7: Signal processing pipeline to get point cloud from radar ADC data

With the ADC data from each frame. The first step is to apply the Fast Fourier

Transform (FFT) in the ADC sample dimension to transform the IF signal into

frequency domain, whose frequencies correspond to the distance of the detected

objects.

To distinguish objects that could be equidistant from the radar, the data cube

undergoes a secondary Doppler FFT along the chirp dimension on the sequence of

phasors corresponding to the range FFT. This step is used to identify objects with the

same distance, but with a different radial velocity from the sensor. The combination

of the above two steps is called 2D-FFT.

The following step involves selecting potential objects from the data cube through

the utilization of the constant false alarm rate (CFAR) algorithm. The last stage

involves determining the angle of arrival (AoA) of various objects. This process can

be achieved by implementing angle FFT across the virtual antenna dimension on the

phasors linked to the 2D-FFT. By employing antennas positioned horizontally and

vertically, it becomes possible to approximate the azimuth and elevation angles of

arrival. The physics behind these signal processing steps are discussed in [16].

The processing procedure outlined above involves estimating objects in polar

coordinates, which can then be converted into Cartesian space. The ultimate result

of each radar frame is a point cloud, where each point contains information about its

3D position, velocity, and signal-to-noise ratio of a possible object in the scene.

12



Chapter 3

Related Work

3.1 Radar-Inertial Odometry

Doppler velocity information from mmWave radar point clouds has been used to

estimate trajectory in previous research. Kramer et al. [20] proposed a sliding window

optimization approach with a robust loss kernel to fuse IMU and radar Doppler

velocity measurements. They demonstrate that the estimated body frame velocity is

close to a visual-inertial solution. Doer et al. [7] separately estimated the body frame

velocity from radar points using a RANSAC method to remove outlier measurements

introduced by noise. Then they proposed an EKF-based approach to fuse radar body

frame velocity with IMU and barometer measurements to estimate drone poses in

indoor environments. However, their results show difficulty in correctly estimating

height without the help of barometer data.

Zhuang et al. extended the previous EKF-based approach by integrating the

complete radar SLAM system, known as 4D iRIOM [43]. The authors proposed the

utilization of a Graduated Non-Convexity technique to eliminate outlier Doppler

velocity measurements and estimate velocity based on radar data. Additionally, they

introduced scan-to-map matching using radar points to enhance trajectory estimation

within the system. Loop closure was achieved by employing Scan Context [19] to

identify similar geometric patterns in the radar points map. The effectiveness of

their methods was demonstrated on a small ground robot operating in a planar

environment.

13



3. Related Work

Recent research by Michalczyk et al. [26, 27] proposed building 3D landmarks

from radar point clouds and fuse them with IMU using multi-state EKF. However,

this method required a controlled environment where persistent landmarks with high

radar cross sections are required.

A learning-based approach [24] by Lu et al. was proposed to fuse IMU and radar

measurements to estimate trajectory. The authors use convolutional neural networks

to build feature encoders for radar and recurrent neural networks to process IMU

and the fused feature embeddings. However, their method was compared in [32] and

was found to have difficulty generalizing to new environments.

3.2 Multi-Radar for State Estimation

To further improve state estimation using the mmWave radar sensor, adding multiple

radar sensors in an attempt to increase the FOV has appeared in some research. Doer

et al. based on their previous work EKF-RIO [7] proposed the x-RIO [8] using a triple

radar setting to increase the horizontal FOV of the robot. The setting enables them

to use the Manhattan World Assumption [4] on the radar point clouds to improve the

trajectory estimation. In [31] Ng et al. use a sliding window optimization approach to

fuse 4 radar measurements with an IMU to jointly estimate body frame velocity and

odometry in an autonomous car application. However, both of the above multi-radar

methods were applied only in the planar setting and did not address the elevation

drift problem caused by relatively lower resolution on the elevation dimension.

Park et al. [32] proposed a solution to improve 3D ego-motion estimation by adding

a second ground-facing radar that operates in synchronization with the primary radar.

They only extract 2D velocity on the high-resolution azimuth dimension from each

radar to fuse with the IMU. They proposed a radar velocity factor that fuses radar

velocity with the IMU gyroscope. The authors evaluated their method by traversing

different levels of a construction site to prove their performance with 3D motion. In

comparison to their method, we present a solution to fuse multiple radars and IMU

data without discarding high-frequency accelerometer measurements and without the

need to trigger the radars synchronously.

The publicly available dataset for radar state estimation Coloradar dataset [21]

provides a cascade imaging radar and a single-chip imaging radar both placed horizon-

14



3. Related Work

tally. The dataset was collected with mostly planar motion. Therefore, it’s necessary

to design our own radar sensors rig in order to collect 3D motion radar data for the

research of radar-inertial state estimation.

3.3 Improve on Radar Mapping

To improve radar map quality, researchers have experimented with learning-based

reconstruction methods supervised by other sources of accurate range information.

Xu et al. [41] developed a learning pipeline to train a 3D convolutional network using

radar intensity volume as input, reconstructing a depth image and a valid distance

classification image. This approach can produce LiDAR-like depth images and was

trained with a real-world LiDAR-radar pair dataset. Another study by Narashimha

et al. [29] employed a custom generative transformer architecture, UpPoinTr, which

upsamples, denoises, and fills incomplete radar maps to resemble LiDAR maps.

Drawing inspiration from Neural Radiance Fields [28], Huang et al. [15] devel-

oped a method to train a neural field for reflectance and transmittance using radar

range-Doppler images. Instead of rendering a ray, they render the reflectance and

transmittance values along a Doppler cone. This trained neural field can function as

a novel view synthesizer or be processed as 3D tomography.

However, these works rely on other sources of sensors to obtain accurate poses for

their systems or obtain accurate depth as labels for learning neural networks. Further

research should focus on improving mapping solely using radar sensors.
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Chapter 4

Sensor System Design

4.1 Sensor Rig

We designed our handheld sensor platform to collect time-synchronized radar, IMU,

and image data for evaluating multi-radar inertial state estimation. The platform

includes a Velodyne VLP-16 LiDAR, two PointGrey Cameras running at 20Hz, an

Epson G-364 IMU running at 200Hz, an ICM-20948 IMU running at 100Hz, and

two Texas Instrument Cascade Imaging Radars (MMWCAS-RF-EVM) running at

10Hz. The sensor platform layout is depicted in Fig. 1.2. Timing is synchronized

using an external Teensy MCU with pseudo GPS/PPS signals and trigger signals for

the cameras.

4.2 Dual Cascade Imaging Radar Dataset

The commercially available TI mmWave cascade imaging radar has a theoretical

azimuth/elevation angular resolution of 1.4◦/18◦ [35]. These resolutions represent the

minimum angle between two equally large targets at the same range that the radar

can distinguish and separate from each other. To compensate for this limitation,

we employ two radars placed horizontally and vertically in this research. Our radar

operates in Multi-Input Multi-Output (MIMO) mode. To avoid frequency conflicts, we

set the start frequency of the horizontal and vertical radars as 77GHz and 79GHz, with
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4. Sensor System Design

Figure 4.1: Sensor rig.

both radars having a chirp slope of 40MHz µs−1 and a bandwidth of approximately

1.5GHz. With these radar signal settings, we achieve a maximum range of 30m, a

Doppler velocity resolution of 0.055m s−1, and a maximum Doppler velocity range of

±1.76m s−1. We employed a Constant False Alarm Rate (CFAR) algorithm provided

by the TI mmWave studio to process the raw radar data into point clouds, including

signal-to-noise ratio and Doppler velocity information for each point.

Unlike previous work [32], where one radar was directed downward to the ground,

we designed both radars to face forward. This decision was made to accommodate

robots with limited space for installing downward-facing sensors. Additionally, our

state estimation results suggest potential future enhancements in imaging radar

designs to improve resolution in both azimuth and elevation dimensions so that a

single sensor would be sufficient.

We collected three sequences with mostly planar motion and three sequences

involving 3D motion across various levels within the building. The data collection

was conducted at a normal human walking pace and motion. The traverse length of

each trajectory is detailed in TABLE 6.1.
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Chapter 5

Radar-Inertial Odometry

5.1 Velocity Estimation using Radar Doppler

Velocity

One special property of the Imaging Radar is the Doppler velocity of the detected

points. The physical significance of the Doppler velocity is the projection of the

sensor’s linear velocity in the direction of the point, as the Figure 5.1 shows. Assuming

that most of the points in one frame are static objects, we can establish the relationship

between the Doppler velocity dn ∈ R1 of the point n, its 3D position rn ∈ R3, and

the sensor’s linear velocity vs
j ∈ R3 in frame j with the following equation:

−dn = (vs
j)

⊤ rn
||rn||

(5.1)

To obtain an accurate linear velocity of the sensor that aligns with the most measured

Doppler velocities, we can use a least-squares approach to solve for vs. The noise

of Doppler measurement can be modeled by a Gaussian distribution with variance

Σd ∈ R1. The optimized sensor velocity will be:

vs = argmin
vs

(∑
n

||(vs)⊤
rn

||rn||
+ dn||2Σd

)
(5.2)

19



5. Radar-Inertial Odometry

We can find the marginalized covariance Σvs ∈ R3×3 on variable vs by inverting the

information matrix in the system.

Σvs =
(
A⊤Σ−1

d A
)−1

(5.3)

Where A ∈ Rn×3 and each row of A is a unit vector directing to the radar point

rn/||rn||. Notice that due to the radar antenna design, the radar points distribution

is uneven in azimuth dimension and elevation dimension. As a result, the estimated

velocity uncertainty exhibits variations along the XYZ axes. Further details regarding

the evaluation of Doppler measurement uncertainty Σd and the estimated velocity

uncertainty will be discussed in 6.1.

In reality, radar data often includes noisy measurements and non-stationary

objects. To remove these outliers, previous works have explored the RANSAC

approach [8], non-linear optimization with Cauchy robust loss [20], and a Graduated

Non-Convexity (GNC) method [43]. While RANSAC is non-deterministic, GNC

requires extra iterations to adjust the kernel, and the Cauchy robust loss is sensitive

to the initial value setting. Considering computation efficiency and accuracy, we use

a Cauchy robust loss kernel to remove outliers and use the Levenberg–Marquardt

optimizer to solve the system. The initial value of the variable vs was set using

the preintegrated body frame velocity from IMU measurements and rotated to the

sensor’s coordinate. Please refer to the next section for IMU integration.

Finally, to fuse the sensor velocity from different radars with IMU, we treat the

IMU frame as the body frame. The linear velocity and the corresponding covariance

on the body frame are as follows:

vb = Rrv
s (5.4)

Σvb = RrΣvsR⊤
r (5.5)

Where Rr ∈ SO(3) is the rotation from the radar sensor coordinate to the IMU

coordinate.
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5. Radar-Inertial Odometry

Figure 5.1: An illustration of Doppler speed projection.

5.2 Preintegrated IMU Factor

As introduced in [9], we can efficiently fuse the IMU sensor with other low frame

rate measurements using preintegration on manifold to avoid the relinearization

procedure when the keyframe linearization point changes. With sensor measured

linear acceleration ãk and angular velocity ω̃k between keyframe i and the next

keyframe j, the preintegrated measurement of relative position ∆p̃ij, orientation

∆R̃ij, and velocity ∆ṽij are:

∆R̃ij =

j−1∏
k=i

Exp((ω̃k − bg
i )∆t) (5.6)

∆ṽij =

j−1∑
k=i

∆R̃ik(ãk − ba
i )∆t (5.7)

∆p̃ij =

j−1∑
k=i

(
∆ṽik∆t+

1

2
R̃ik(ãk − ba

i )∆t2
)

(5.8)

Where ba
i and bg

i are the slow varying linear acceleration bias and angular velocity

bias. The measurement constraint of the IMU between 2 keyframes has the residual
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in the following form:

r∆Rij
= Log(∆R̃ij)R

⊤
i Rj (5.9)

r∆vij
= R⊤

i (vj − (vi + g∆tij))−∆ṽij (5.10)

r∆pij
= R⊤

i

(
pj −

(
pi + v∆tij +

1

2
g∆t2ij

))
−∆p̃ij (5.11)

r∆ba
ij
= ba

j − ba
i (5.12)

r∆bg
ij
= bg

j − bg
i (5.13)

The combined preintegrated IMU residual is written as:

r∆Iij =
[
r∆Rij

, r∆vij
, r∆pij

, r∆ba
ij
, r∆bg

ij

]
∈ R15 (5.14)

With covariance Σ∆Iij ∈ R15×15 which takes into account the noise in the estimated

bias used for integration, it also preserves the correlation between the bias uncertainty

and the preintegrated measurements’ uncertainty. Part of the covariance matrix

related to the IMU bias variables is used to describe slow-varying bias evolution, the

magnitude of which is proportional to the preintegration time ∆tij. More details

about IMU preintegration on manifold can be found in [9].

5.3 Body Frame Velocity Factor

Upon receiving any body frame velocity vb
j estimated from the radar. We build a

keyframe out of the preintegrated IMU measurements. This body frame velocity

constraint will be added between the integrated global velocity variable vj and the

rotation part of the pose variable Rj ∈ SO(3). By the definition of body frame

velocity, the residual of this factor at frame j is:

rVb
j
= R⊤

j vj − vb
j (5.15)

Occasionally, inaccurate estimates of the body frame velocity lead to outlier

residuals. To counteract this issue, we incorporate a Huber loss kernel on this body

frame velocity residual when solving the system.
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To linearize the system, the Jacobian matrix with respect to rotation JR and

global velocity Jv are:

JR = [R⊤v]× (5.16)

Jv = R⊤ (5.17)

Where [R⊤v]× is a skew symmetric matrix

[RTv]× = [q]× =

 0 −qz qy

qz 0 −qx

−qy qx 0

 (5.18)

5.4 IMU Static Initialization

Since our preintegrated IMU factor is only constrained by the integrated velocity

without a direct constraint within or among poses, an incorrect initial bias and

rotation can easily cause the system to fail at the beginning. As IMU biases are

modeled as slow-varying variables, it requires more steps to converge to the correct

scale. Therefore, we have adapted and deployed a static initialization strategy only

using IMU from the visual-inertial state estimation system [10].

The initialization process involves two consecutive sliding windows collecting

IMU measurements. The second window, which includes the latest acceleration

measurements, is used to detect any sensor movement by measuring the acceleration

variance. Once motion is detected, we average the acceleration measurements in

the first window to determine the gravity vector and its orthonormal basis using

the Gram-Schmidt process. The initial rotation is determined by taking the inverse

of the SO(3) rotation formed by the orthonormal basis. The initial accelerometer

bias is calculated by rotating the gravity constant using the initial rotation and then

subtracting it from the measured gravity vector. The initial gyroscope bias is simply

the mean of the angular velocities in the first measurement window. We have found

this initialization procedure to be particularly crucial for uncalibrated IMUs with

larger biases.
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5.5 Factor Graph Formulation

As IMU and radar measurements are inherently asynchronously triggered in time, IMU

measurements were interpolated to be temporally aligned with radar measurements.

This procedure guarantees that IMU measurements will always be available to

construct a preintegrated IMU factor, even when two radar measurements are close

and no IMU measurement exists in between.

Given all the estimated measurements and their covariance. The full system

optimizes states in a sliding window S and minimizes their Mahalanobis distance:

X ∗
S = argmin

XS

[ ∑
i,j∈S

(
||r∆Iij ||2Σ∆Iij

+ ||rVb
j
||2Σ

vb

)]
(5.19)

Where body frame velocity covariance Σvb was used for proper fusion with

preintegrated IMU factor.

An illustration of the system as a factor graph is shown in Fig. 5.2. The afore-

mentioned system was constructed using the GTSAM library [5]. The optimization

problem is solved by a fixed-lag smoother with iSAM2 [18]. We set a 5-second

optimization window where variables passed the window will be marginalized as prior

factors.
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Figure 5.2: An illustration of our multi-radar inertial state estimation system in the
form of a factor graph. The body frame velocity factor can be built with either our
horizontal or vertical imaging radar.
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Chapter 6

Experiments

6.1 Doppler and Velocity Uncertainty Evaluation

To properly fuse all radar measurements with IMU measurements, we need to under-

stand the noise levels of both sensors. The IMU measurement uncertainty can be

found in manufacturers’ manuals or determined by analyzing hours of static IMU data

[40]. However, current research and the radar sensor manufacturer do not provide

Doppler velocity measurement uncertainty, and the Doppler velocity resolution does

not accurately represent it.

To assess radar Doppler velocity errors, we utilize body-frame velocity data ob-

tained from visual-inertial odometry pseudo ground truth. By projecting this velocity

onto the direction of all radar points during a two-minute sequence (NSH atrium),

we can analyze the Doppler velocity error distribution, as depicted in Fig. 6.1. The

smaller peak in this bimodal distribution is the result of Doppler velocity values

exceeding sensor limits. After excluding such outliers, we approximate the noise as a

Gaussian distribution with variance Σd ≈ (0.124 m/s)2. It’s important to note that

this uncertainty may vary with different radar signal settings, depending on factors

such as Doppler velocity resolution and elevation/azimuth angle resolution.

We use this Doppler velocity noise model to compute the marginalized covariance

on the optimized sensor frame velocity, and then the corresponding uncertainty on

body frame velocity follows equations (5.3) and (5.5). Fig. 6.2 displays the standard

deviation of the body frame linear velocity estimated from two different radars in
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Figure 6.1: The probability density of the Doppler velocity error distribution is
calculated by comparing the velocities of 1,092,224 radar points with the VIO body-
frame velocity projected in their respective directions.

a two-minute sequence. For each radar, the axis with high uncertainty aligns with

the elevation direction. This emphasizes the importance of using multiple radars

to compensate for inaccurate measurements from each other and to fuse them with

the correct covariance scale. We also noticed that uncertainty increases when there

are fewer radar measurements, such as at the sequence’s start and end when sensor

motion is nearly stationary, and around the 70-second mark when the radar faces an

open area for a short period.
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Figure 6.2: Standard deviation on XYZ axes of the estimated body frame velocity
from two radars.
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6.2 Quantitative Evaluation

Given that our evaluation environment is indoors and includes long corridors, LiDAR

point cloud registration becomes challenging in environments with such geometric

features. Therefore we evaluate our method using pseudo ground truth generated

by the stereo visual-inertial odometry system OpenVINS [10], with two PointGrey

cameras and the Epson IMU. Our radar-inertial system is running with ICM-20948

IMU. The final trajectory was assessed using the EVO library [11], without the use

of any alignment algorithms. The results for absolute and relative pose errors are

presented in TABLE 6.1. From the results, it’s apparent that using both radars leads

to a slight decrease in rotation performance. However, we are able to significantly

improve translational drift compared to using a single radar setting.

We had considered comparing our method with, to the best of our knowledge,

the only open-sourced EKF-based radar-inertial odometry algorithm, X-RIO [8].

However, their algorithm was primarily designed for single-chip mmWave radar and

requires handcrafted radar velocity uncertainty, such as adjustments for offset and

maximum limit of the radar velocity covariance, defining the threshold for rejecting

radar velocity updates. We chose not to include this comparison in our evaluation, as

we were unable to generate meaningful results.
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Table 6.1: RMSE of APE and RPE in 6 different sequences

APE RPE

sequence & info method trans rot trans rot

2D dual 1.48 2.73 0.08 0.66
FRC 1st horizontal 3.46 2.33 0.15 0.58
113 m vertical 2.16 2.95 0.21 0.72

2D dual 1.31 3.76 0.09 0.65
FRC 2nd horizontal 2.88 3.40 0.12 0.69
158 m vertical 2.92 5.16 0.13 0.63

2D dual 1.29 2.27 0.08 0.75
NSH 4th horizontal 4.07 1.52 0.12 0.66
167 m vertical 1.77 2.74 0.12 0.68

3D dual 1.09 4.92 0.10 0.89
NSH atrium horizontal 7.22 2.33 0.18 0.88

139 m vertical 1.93 5.38 0.22 0.78

3D dual 1.16 8.13 0.11 0.63
GHC stair horizontal 6.25 5.02 0.14 0.57
146 m vertical 1.58 7.50 0.16 0.71

3D dual 1.36 7.23 0.06 0.53
GHC ramp horizontal 4.09 6.43 0.09 0.60

219 m vertical 1.78 7.30 0.08 0.53

The units for APE: translation / rotation are meter and degree.
The units for RPE: translation / rotation are percentage and degree per meter.
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6.3 Qualitative Evaluation

Fig. 6.5 displays the estimated trajectory of our method compared to visual-inertial

odometry. From the top view, it’s clear that using only vertical radar results in

increased translational drift compared to other settings, mainly due to its limited

capacity to estimate lateral velocity. On the other hand, employing only a horizontal

radar yields excellent performance in the XY plane but leads to substantial drift

along the z-axis due to its reduced capacity to estimate vertical velocity effectively.

Given that human walking motion involves minimal lateral movement, the intro-

duction of more vertical motion when traversing different levels of a building can

result in significant drift when exclusively using horizontally placed radar sensors.

This highlights the importance of considering motion primitives when deciding where

to install radars for Doppler velocity-based radar-inertial odometry.

The attached video shows mapping results using estimated poses and radar points

that have Doppler velocity projection error under the threshold. In the video, the

geometry of the environment emerges even with noisy radar point clouds.

(a) FRC 1st (b) FRC 2nd

Figure 6.3: Comparing the trajectories of visual-inertial odometry to radar-inertial
odometry using dual radars.
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(a) NSH 4th (b) NSH atrium

(c) GHC stair (d) GHC ramp

Figure 6.4: Comparing the trajectories of visual-inertial odometry to radar-inertial
odometry using dual radars.
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Figure 6.5: Comparing the trajectories of visual-inertial odometry to radar-inertial
odometry using either single horizontal/vertical radar or dual radars. Each column
represents our 3D motion sequences, with the top row displaying the top-down view
and the bottom row presenting the side view.
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Chapter 7

Downstream Tasks

In this part, we showcase the effectiveness of our radar-inertial localization system be-

yond just assessing the trajectory. Additional downstream tasks encompass mapping,

relocalization, and integrating sensor data from visual-inertial odometry to enhance

the overall performance of localization and mapping using mmWave Imaging Radar.

7.1 Mapping

To build a clear radar point cloud map, we transform the radar point clouds in each

frame into the global frame according to their estimated poses. For each frame of

radar points, we remove the noisy points whose Doppler velocity residual is greater

than one standard deviation.

To build a geometry-consistent map, we took inspiration from the LiDAR-Inertial

odometry system [34] by building scan-to-map constraints. However, because of the

sparsity in radar point cloud, we need to accumulate multiple frames as a sub-key

frame for enforcing scan-to-map constraint in our fixed-lag smoother optimization

frame work. For each sub-key frame, the accumulated frames will be transformed

to the last frame position and voxel-down sampled before being stored in a KD-

Tree. Whenever we build a sub-key frame, we will search the KD-Tree for sub-key

frames within 6 meters to build a local map. With this local map, we can find

the transformation between our sub-key frame and the local map using a general

ICP algorithm. We build this transformation as a prior factor for the pose variable
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Xn to constraint the pose on the global map as shown in Figure 7.1. Considering

computation efficiency and our traveling speed, we set the number of frames to

accumulate to 40.

Figure 7.1: Factor Graph of Radar-Inertial odometry with scan-to-map constraint.

With this map constraint, we were able to build a more consistent radar point

map, as Figure 7.2 shows. Even with the sparse and noisy radar point cloud, certain

geometries such as column structures and an open staircase emerge. In addition, we

can build 3D and 2D occupancy maps with the processed radar point cloud using

OctoMap [13] as Figure 7.3 shows.

Figure 7.2: Radar point 3D map of an atrium with open staircase.
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7.2 Relocalization

Figure 7.3: A 2D occupancy map of a indoor office corridor built by radar. Using
particle filter to relocate robot on the map with radar range measurement (yellow
points). The red dots are states (particles).

With the occupancy map built from our radar-inertial pipeline, we can localize

our robot using a particle filter when revisiting the same area. For a standard particle

filtering approach, we need a motion model to update the particles and a sensor

model to measure the likelihood of particles. For the motion model, we used our

radar-inertial odometry results to update the states of the particles. To accurately

determine the weight distribution of the particles on a 2D occupancy map, we need to

project the 3D radar points onto a 2D plane. Additionally, to overcome the sparsity

of the radar points, we accumulate the past five consecutive frames of 3D radar points

and transform them to the current position before converting them to a 2D laser

scan.

However, due to the symmetry of the environment, the sparsity of our radar range

measurement, and a lack of details in our radar map, it is difficult to locate the
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robot without any hint of the initial location. In this demonstration, we assume the

initial location is given. As Figure 7.4 shows, localization on the 2D occupancy radar

map was successful. Even when encountering a symmetric area on the map, our

radar-inertial motion model and radar range measurement were able to recover the

location on the map.

(a) Robot at Initialization (b) Encountering Symmetry

Figure 7.4: Localizing our radar sensor rig in a predefined 2D occupancy radar map.

7.3 Radar-Visual-Inertial Odometry

Visual-Inertial Odometry (VIO) is a staple in modern SLAM systems. This type of

odometry is used in conjunction with a factor graph, utilizing fixed-lag smoothing

to provide a well-constrained and temporally consistent pose estimate for the robot

of interest. However, the VIO system still suffers from performance degradation

in low-light situations. To combat this challenge, we demonstrate the use of radar

modality to offer more robust state estimates in degraded environments.

7.3.1 Stereo Visual Measurements

For estimating visual landmarks, we use the onboard calibrated and stereo rectified

cameras to perform feature extraction and tracking. We follow the front-end pipeline

from OpenVINS [10]. Corner features from both cameras will be tracked over time

using an optical flow approach. With visual features identified and tracked, we can

build a stereo factor between the landmark variable and the corresponding pose
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variable to minimize repojection error. The k-th landmark location in the left and

right camera frame can be represented as follows:

LL
k =

[
lkx, l

k
y , l

k
z

]T
LR

k =
[
lkx − b, lky , l

k
z

]T ∈ R3 (7.1)

When formulating the camera matrix P that projects the landmark position in

3D to the image, we have:

Pworld = KR
[
I −C

]
Pcamera = K

[
I 0

]
(7.2)

Since the landmarks are defined to exist in the camera frame, we can transform

the landmark from world frame to camera frame.

Then we project the landmark in camera frame to both images:uL

v

1

 =

fx 0 cx

0 fy cy

0 0 1


l

k
x

lky

lkz


uR

v

1

 =

fx 0 cx

0 fy cy

0 0 1


l

k
x − b

lky

lkz

 (7.3)

From the preceding two equations, we can derive the landmark given stereo feature

measurement:

lkx =
lkz
fx

(uL − cx), lky =
lkz
fy
(v − cy), lkz =

bfx
uL − uR

(7.4)

Here, the left landmarks LL
k are estimated as a variable in our system. Then the

stereo reprojection error is defined as:

rLik
=


u

′
L − uL

u
′
R − uR

v
′ − v

 (7.5)

where (u
′
L, u

′
R, v

′
) are the reprojection measurements given estimated landmark and

pose, and (uL, uR, v) is the landmark measured in pixel space. More details on

Jacobian and uncertainty modeling for nonlinear optimization and fixed-lag smoothing

can be found in [5].
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Figure 7.5: Radar-Visual-Inertial Odometry system as a Factor Graph.

7.3.2 Graph Optimization

As all the sensor measurements are inherently not synchronized in time. We interpolate

the IMU measurements whenever visual or radar measurements are received to build

a keyframe. And we make sure that visual features are always connected to at least

two keyframes to better constrain the landmarks and pose variables. A visualization

of our state optimization system in a factor graph is shown in Fig. 7.5

Given all the estimated measurements and their uncertainties, the complete system

optimizes states and landmarks to minimize their Mahalanobis distance:

X ∗,L∗ = argmin
X ,L

[∑
i,j

(
||r∆Iij ||2Σ∆Iij

+
∑
k

||rLik
||2ΣLik

+ ||rVb
j
||2Σ

vb

)]
(7.6)

The optimization problem is solved incrementally using iSAM2 [18] to maintain

efficiency.
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7.3.3 Experiment

To demonstrate the capability of our radar-visual-inertial state estimation system,

we ran our system under various lighting conditions, including normal, low, and

no lighting conditions. To compare the performance with the visual-inertial-only

system [10], we used the odometry from the LiDAR-inertial system [34] as the ground

truth. We conducted this experiment in an auditorium classroom, where we took the

sensor rig and walked around the room. For each test, we had normal lighting for

the first quarter of the trajectory. Then, we switched to low lighting and no lighting

conditions accordingly.

In this experiment, our radar-visual-inertial system showed similar performance

compared to a state-of-the-art visual-inertial system under normal lighting conditions.

When the lighting conditions degraded, the failure in visual feature detection and

tracking severely affected the estimation of visual landmarks. While our system is

supported by the radar velocity constraint, which is not affected by lighting conditions.

Nevertheless, a slight performance degradation also occurred for our radar-visual-

inertial system when the lighting conditions changed, introducing some bogus visual

landmark measurements.

Table 7.1: Absolute and relative translation error in variate lighting condition.

APE RPE

OpenVINS RVIO OpenVINS RVIO

No Light 1.408 0.376 0.163 0.078
Low Light 0.859 0.489 0.114 0.068

Normal Light 0.358 0.324 0.083 0.062
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(a) Normal Light (b) Low Light

(c) No Light

Figure 7.6: Trajectories in variate lighting conditions
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

This thesis presents a system using dual mmWave cascaded imaging radars fused

with an IMU sensor capable of achieving high-precision 3D motion state estimation.

We provide insights into the limitations of radar measurements, emphasizing the

resulting estimated uncertainty and the imperative need to compensate for inaccuracies

through the use of multiple radars. We present our radar configurations and fixed-lag

optimization solutions, which effectively integrate the radar and IMU measurements.

Our method is demonstrated using a real-world 3D motion dataset and downstream

tasks including mapping, relocalization, and fusion with visual features.

8.2 Future Work

8.2.1 Radar Noise Prediction

There are several components required to make our radar SLAM system function

effectively. For our radar velocity estimation process, robust kernel methods or

RANSAC for outlier rejection can effectively filter out radar noise in most cases.

However, setting heuristic parameters is necessary to achieve ideal performance. An

alternative approach is to train a neural network capable of predicting the variance

of radar Doppler velocity.
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Figure 8.1: Predicting radar noise for body frame velocity optimization. The self-
attention-based neural network takes each radar point as a token. Each radar point
contained information on 3D position, Doppler velocity, and signal-to-noise ratio.

To predict the variance of Doppler velocity per radar point, which is essential

for weighting and whitening the system for body frame velocity optimization, we

have devised a pipeline using self-supervised learning with ground truth body frame

velocity. Given an arbitrary number of radar points in one frame, we can employ

a self-attention-based neural network to output the weighting of each point. With

the predicted weightings, we can simply re-weight the Doppler velocity residuals and

utilize the least squares approach to optimize a body frame velocity. This process is

fully differentiable, enabling the use of a body frame velocity generated from SLAM

pipelines using other sensors as pseudo-ground truth to supervise the training. The

complete pipeline is illustrated in Figure 8.1.

However, this method can only estimate the relative uncertainty between radar

points in the same frame. We were not able to recover the true variance of Doppler

velocity measurements or the relative covariance of optimized body frame velocity

with what the IMU sensor measured. To incorporate this noise prediction method for

our state estimation pipeline, we need a solution to jointly learn the IMU measurement

covariance.
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8.2.2 Implicit Surface Reconstruction using Imaging Radar

(a) Radar points colored with SNR. (b) Reconstructed mesh.

Figure 8.2: Radar maps of a metal statue.

3D surface dense reconstruction aims to build a detailed surface of the scene

structures by reasoning and merging sensor information from multiple viewpoints.

This structural information will be very useful for many downstream tasks, including

robot navigation and augmented and virtual reality applications. So far, many

sensor modalities have been discussed to achieve this task, including LiDAR [17, 25],

camera [23, 30, 37], and recently imaging sonar [33]. In future work, we would like to

explore the possibility of using mmWave Imaging Radar to achieve 3D surface dense

reconstruction through multi-view volume rendering techniques.

The primary challenge in employing volume rendering lies in developing an

accurate mathematical model to translate surface geometry into mmWave Radar

signal intensity. This task is notably more intricate than the well-understood and

straightforward processes of LiDAR and camera light ray rendering. The complexity

of mmWave Radar signal rendering arises from factors such as signal destructive and

constructive interference, as well as the behavior of radar signals through multiple

surfaces and materials.

An alternative method is to directly learn a neural signed distance function to
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generate the radar point map. However, due to the level of noise in the radar points,

optimizing the zero-level set of this neural signed distance function is very difficult.

Figure 8.2 shows a reconstructed mesh generated from a trained neural SDF using the

radar point map. In future work, our aim is to develop a solution for dense surface

reconstruction using imaging radar information.
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