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Abstract

Relative placement tasks are an important category of tasks in which one object needs to be placed
in a desired pose relative to another object. Previous work has shown success in learning relative
placement tasks from just a small number of demonstrations when using relational reasoning
networks with geometric inductive biases. However, such methods cannot flexibly represent mul-
timodal tasks, like a mug hanging on any of n racks. We propose a method that incorporates
additional properties that enable learning multimodal relative placement solutions, while retain-
ing the provably translation-invariant and relational properties of prior work. We show that our
method is able to learn precise relative placement tasks with only 10-20 multimodal demonstra-
tions with no human annotations across a diverse set of objects within a category.
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Chapter 1

Introduction

1.1 Overview

Many robotic manipulation tasks can be framed as relative placement tasks. For example, hanging
a mug on a mug rack requires placing the mug in a position relative to one of the pegs of the
rack. Even complex, long-horizon tasks such as organizing a cluttered table can be framed as a
series of relative placements: first, predict an SE(3) transformation that stacks one book on top of
another, then predict a transformation that puts the pencil in the pencil box, and then predict a
transformation that centers the keyboard in front of the monitor.

Previous work such as TAX-Pose [14] has shown that, for relative placement tasks, using net-
work architectures that explicitly reason about object relationships helps the network to generalize
significantly better across object poses and instances. However, this previous work outputs only
a single relative placement prediction for each observation. In multi-modal settings, this leads to
predictions which are the mean of valid placement modes, which may be incorrect. For example,
suppose that a set of demonstrations place a mug on any of n racks in the scene. The average of
these demonstrations will be a point in the middle of the racks, which is not a valid placement. In
contrast, many tasks are defined by a distribution of relationships: a robot may be tasked to grasp
anywhere along the rim of a bowl, place a fork on the left of any of the plates (e.g. when setting
the table), or grasp any one of a cabinet’s drawers.

To address these challenges, we present TAX-PoseD, a Distributional variant of TAX-Pose [14].
Our method predicts task-specific object relationships from just a few demonstrations and no hu-
man annotations, while robustly accounting for multimodal demonstration distributions.

1



1.2 Contributions of this thesis

In this thesis, we take steps towards understanding how to leverage geometric biases present in
relative placement tasks for task-specific relative pose prediction. We analyze four practical im-
plementations for distributional models and show how these design choices impact a neural net-
work’s prediction precision and also generalization across task variants.

Our core technical contributions include:

• A method for efficiently learning distributional relative placement tasks; our approach ex-
tends TAX-Pose [14] to handle multimodal, distributional demonstrations.

• A novel spatially-grounded architecture for a cVAE [21] that represents the latent variable
distribution as a categorical distribution over 3D points; this results in a grounded and in-
terpretable latent space that avoids the smoothing effect commonly found in cVAEs, leading
to significantly improved performance for multi-modal placement tasks.

We evaluate ourmethodon challengingmultimodal tasks and evaluate its generalization across
diverse objects within a category. We demonstrate that our method is both interpretable and
achieves strong performance on distributional relative placement tasks.

1.3 Related Publications

Most ideas described in this thesis have appeared in the following publication:

• J. Wang, O. Donca, and D. Held. Learning Distributional Demonstration Spaces for Task-
SpecificCross-Pose Estimation. International Conference onRobotics andAutomation (ICRA),
2024.
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Chapter 2

Background

2.1 Action Representations

Many action representations have been explored that enable robots to increase their learning ef-
ficiency when learning to solve manipulation tasks. For example, representations can be per-
point [4, 12, 27] or consist of keypoints [17]. Additionally, architectures that leverage local geom-
etry have been shown to provide useful priors for learning from point cloud data [10, 16, 24, 28].
Our proposed method combines the strengths of dense per-point representations and geometric
inductive biases while also reasoning over distributions for relative placement tasks.

2.2 Relative Placement Tasks

Many tasks can be defined as a sequence of relative placement tasks, such as hanging a mug on a
rack or putting a dish into a microwave. These tasks are “relative” placements because the desired
pose of the first object is not based on a fixed set of coordinates in the world frame but rather it is
defined relative to some other object in the scene. A number of papers have developed methods
designed for this class of tasks [14,18–20]. This thesis builds upon TAX-Pose [14], which achieves
strong performance on unimodal tasks such as hanging a single mug on a single rack; however, as
we show in this work, TAX-Pose performs poorly onmultimodal tasks such aswhen there aremul-
tiple mug racks available. Our method handles such symmetries by learning a distribution over
relative placements. Symmetries are also addressed by concurrent work [20], which uses diffu-
sion models. However, diffusion models are often slow during inference; in contrast, our method
can operate at high inference speeds because we require only a single forward pass through our
network.
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2.3 Multimodal Action Sets

Actions that successfully complete a task may occupy multiple regions of an agent’s action space.
When learning from demonstrations, an architecture that does not model the multimodality of
the demonstration space may tend to output the average over correct actions, which leads to fail-
ures. Implicit representations have been explored for modeling the multimodality of a task [5].
Multi-modal action reasoning can be implemented as spatial action maps [26], GANs [15], parti-
cle filters [25], diffusion models [2, 20], and VAEs [1, 13]. We build upon the VAE literature and
apply it to modeling modes of the demonstration space for relative placement tasks.
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Chapter 3

Applying Variational Models to
Relative Placement

3.1 Introduction

We present TAX-PoseD, a method for relative placement tasks that accounts for multimodality
over task solutions by sampling from a learned latent distribution over modes in the solution set.
Using a Conditional Variational Autoencoder (cVAE) [21], our encoder maps a successful task
demonstration to a distribution from which we sample a latent z, and our decoder maps z to a
reconstruction of the same scene. During inference time, we sample a latent z fromaprior and then
decode it to a (hopefully) successful placement pose. However, we find that a traditional cVAE
architecture of using a latent z vector defined in an arbitrary vector space fails to learn meaningful
modes for this task, leading to poor performance. In contrast, we propose a spatially-grounded
latent space over points in the point cloud which leads to significantly improved performance.
Below, we describe our approach in more detail.

3.2 Problem Statement

We consider the task of relative placement, for which an object must be placed in some configu-
ration relative to another object. For example, for the mug hanging task, a mug must be placed in
some pose relative to a mug rack.

Following Pan et al [14], success for a relative placement task can be defined as follows: Let
T∗
A and T∗

B be a pair of SE(3) poses for objectsA and B, respectively (in some fixed world frame),
for which the task is considered successful. For example, T∗

A can be the pose for a mug, and T∗
B

can be the pose for a mug rack, for which the mug is on the mug rack. Given a pair of poses T∗
A

5



Figure 3.1: Our method’s learned prior pϕ(z | X) learns a distribution over modalities for the task,
for example placing a mug on the left rack or the right rack. During inference time, this allows the
model to predict a diverse set of ways to perform the task.

and T∗
B that complete the task, for relative placement tasks, the task is also considered successful

when any SE(3) transformation T is applied to both objectsA and B. In other words, for a relative
placement task, if the task is successful for poses T∗

A and T∗
B, then the task is also successful for

poses T · T∗
A and T · T∗

B. Following this reasoning, suppose that objects A and B are in poses TA

and TB, respectively, and suppose that T∗
A and T∗

B are defined as above. Then poses TA and TB

must satisfy the following Boolean function to be considered a successful relative placement:

RelPlace(TA,TB) = SUCCESS (3.1)
iff ∃T ∈ SE(3)
s.t. TA = T · T∗

A and TB = T · T∗
B.

In practice, we are usually not given the transforms TA and TB but rather we are given the point
clouds for these objects PA and PB. In order to solve a relative placement task, we need to estimate
an SE(3) transformationTAB := f(PA,PB) that transforms objectA in such amanner that satisfies
RelPlace (Eqn. 3.1). In other words, we need to find the transform TAB such that RelPlace(TAB ·
TA,TB) = SUCCESS. In TAX-Pose [14], this transformation TAB is referred to as the cross-pose
between objects A and B.

Often, there is a set of valid solutions that all solve the task, for example when a plate should
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be placed within any of the placemats on a table. Thus, we extend the definition of task success
given by Equation 3.1 to the distributional setting. For distributional relative placement tasks,
suppose that object B is in pose T∗

B. Then let {T∗
A,1, . . . ,T

∗
A,N} be a set ofN poses for objectA that

satisfy the relative placement task. Because this is a relative placement task, then the task is also
successful for poses T · T∗

A,i and T · T∗
B (for objects A and B respectively) for all i ∈ [1, N ] for any

SE(3) transformation T. Thus, suppose that objectsA and B are in poses TA and TB, respectively.
Then these posesmust satisfy the following Boolean function to be considered a successful relative
placement for a distributional relative placement task:

RelPlaceD(TA,TB) = SUCCESS (3.2)
iff ∃i ∈ [1, N ],∃T ∈ SE(3)
s.t. TA = T · T∗

A,i and TB = T · T∗
B.

In practice, we are not usually given a comprehensive set of poses {T∗
A,1, . . . ,T

∗
A,N} for object

A that solve a relative placement task relative to some pose T∗
B for object B. Instead, we are often

given a set of demonstration pairs (T∗
A,j ,T

∗
B,j) for j ∈ [1,M ] for a set of M demonstrations. From

these demonstration pairs, we aim to learn a generative function fD(PA,PB) such that sampling
from this function gives a solution to the distributional relative placement task, where PA and PB

are point clouds for objectsA and B respectively. In other words, sampling from fD(PA,PB) gives
an SE(3) transformation TAB such that RelPlaceD(TAB · TA,TB) = SUCCESS. We refer to any
such transformation TAB as a cross-pose, and the function fD(PA,PB) outputs a distribution over
cross-poses.

For this thesis, we also assume that the demonstrations are given by segmented point clouds,
in which we have a segmentation between the objects A and B in the demonstration.

3.3 Method

3.3.1 Relative Placement as a Variational Problem

Conditional Variational AutoEncoders (cVAEs) [21] are a variant of VAEs [9] that condition the
encoder and decoder on additional inputs to control the data generation process. Given an input
variable X and output variable Y , the tractable variational lower bound of a cVAE (the ELBO) is
written as the following [21]:

log pθ(Y | X) ≥ Eqψ(z|X,Y ) [log pθ(Y | X, z)] (3.3)
−KL (qψ(z | X,Y )∥pϕ(z | X))

with the prior pϕ(z | X) and an encoder qψ(z | X,Y ) for latent variable z. The ELBO (Eq. 3.3)
can be thought of as the sum of a reconstruction loss (first term) and a regularization loss (second
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Figure 3.2: Model overview. We train an encoder qψ(z | Y ) tomap fromdemonstration placements
Y into a spatially grounded latent variable z. Using a dense and SE(3)-invariant representation of
z, Fp, we condition the TAX-Pose decoder, pθ(Y | X, z), to predict the cross-pose T̂AB that recon-
structs Y from the SE(3) transformed action and anchor point clouds, XA and XB. Additionally,
we train a learned prior pϕ(z | X) to map from pointsX to points in the latent space, capturing the
different modes of the demonstrations. At inference time, we decode samples from this learned
prior to generate valid cross-poses for the objects in the observation X .

term). In the relative placement setting, Y is the point cloud of objects in a demonstration pose for
a relative placement task, andX is an observation of these objects in arbitrary poses. During train-
ing, we obtainX by transforming the demonstration objects Y with arbitrary transforms sampled
from SE(3). Our goal is to learn a decoder pθ(Y | X, z) that, conditioned on a latent z and the
observation X , predicts the object configuration in the demonstration Y .

Aswe note below, this straight-forward implementation of a cVAEdoes notworkwell for learn-
ing to imitate demonstrations of relative placement tasks. Below, we discuss the modifications we
make to the cVAE framework for our task. For example, rather than predicting a point cloud Y

directly, we instead predict a cross-pose TAB that can be applied to the objects in the observation
X to move them into the demonstration configuration. The robot can thenmove objectA by trans-
form TAB to move it into the goal pose. Further, our experiments show that a continuous latent
variable z is not appropriate for relative placement tasks that have discrete multimodalities, such
as placing a mug on one of k distinct racks. Thus, we instead use a discrete, spatially grounded
latent space, as described below.
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3.3.2 Learning a Spatially-Grounded Latent Space for Demonstrations

Encoder:

First, we learn an encoder qψ(z | X,Y ) that compresses demonstration point clouds Y into a latent
space z. Since we focus on relative placement tasks, the demonstration point cloud Y indicates an
arrangement of objects that achieve a successful relative placement, and the latent encoding z is a
compressed form of this demonstration.

As explained in Section 3.2, for relative placement tasks, an object A must be placed in some
configuration relative to another object B. The demonstration point clouds Y show examples of
successful relative placements of objectsA andB. During training, we obtain the inputX by trans-
forming the objects A and B in the demonstration point cloud Y with arbitrary transformations
sampled from SE(3). Thus, to encode the demonstration Y we do not need knowledge of X . We
can thereby simplify the encoder qψ(z | X,Y ) as just qψ(z | Y ) since z is conditionally indepen-
dent ofX given Y , as shown in Figure 3.2. More details about the encoder implementation can be
found in Appendix 5.1.

Decoder:

For the decoder pθ(Y | X, z), we must decode the latent z and the object point cloud X into the
demonstration point cloud Y . However, training a decoder to predict the demonstration point
cloud Y directly would require the decoder to output unnecessarily complex details about the
scene. Instead, we train the decoder to predict a transform TAB ∈ SE(3) that would move the
objects in X to their corresponding poses in the demonstration Y (referred to as a “cross-pose”,
see Section 3.2 for details). Further, this predicted cross-pose TAB is more useful than predicting
a point cloud Y since we can then command the robot to transform the objects inX by transform
TAB to achieve the task. Tomake thismore clear, wewillwrite the decoder belowas pθ(TAB | X, z),
to demonstrate that it outputs a distribution over transforms TAB. In practice, the decoder will
be implemented as a latent-conditioned version of TAX-Pose [14]; more details about the decoder
implementation can be found in Appendix 5.1.

In practice, during inference, we will first sample a latent z from the prior pϕ(z | X). Condi-
tioned on this sampled z and the inputX , we will then use the decoder pθ(TAB | X, z) to output a
(deterministic) transform T̂AB. Wewill then command the robot to move objectA by the sampled
transform to achieve the relative placement task. Thus, combining the prior distribution with the
deterministic decoder together gives a distribution over transforms TAB.

9



Reconstruction loss:

As shown in Eqn. 3.3, the encoder and decoder are supervised using a reconstruction loss and a
regularization loss. In more detail, during training we first encode the demonstration point cloud
Y into a distribution over latent z using the encoder qψ(z | Y ). After sampling z from this distri-
bution, we decode the latent z and the input X using the decoder pθ(TAB | X, z) into a predicted
transform T̂AB. The reconstruction loss term Eqψ(z|X,Y ) [log pθ(TAB | X, z)] corresponds to the dif-
ference between the demonstration point cloud Y and the reconstructed scene after applying the
predicted transform TAB to the point cloud for object A.

In more detail, let XA and XB be the point clouds for object A and B respectively. Then let
us define the reconstructed point cloud Ŷ = (T̂AB · XA) ∪ XB as the result of applying the pre-
dicted transform T̂AB to point cloud XA and then concatenating point cloud XB. We will train
the encoder and decoder such that, if the encoder qψ(z | Y ) and the decoder pθ(TAB | X, z) were
lossless, then Ŷ would be identical to the original demonstration point cloud Y . The reconstruc-
tion loss computes the distance between the demonstration point cloud Y and the reconstructed
point cloud Ŷ , using similar losses as in TAXPose [14] (see Appendix 5.1 for details).

Latent space:

Asmentioned above, we encode the demonstration point cloud Y into a latent z using the encoder
qψ(z | Y ). However, we found it difficult to train such a model if we represent the latent z as
an arbitrary vector in Rd like in traditional VAEs (see ablations in subsection 3.5.1). We believe
that this is because of the “smoothing” effect of cVAEs; if there are two discrete mug racks, some
portion of the latent z space shouldmodel placing themugon rack 1, and someportion of the latent
z space should model placing the mug on rack 2. However, because the latent space is smooth,
there must be points that lie in the transition region between these spaces, and the model would
have difficulty mapping such points to a valid output. Further, if the next scene has 3 racks, then
the latent space must be divided further, creating training difficulties with consistently mapping
the latent space to the set of valid solutions.

We avoid these issues by training a spatially-grounded latent space. We represent the latent vari-
able z as a sample from a discreteN -dimensional distribution, whereN is the number of points in
the point cloudX ; in other words, the latent variable z is represented as a categorical distribution
over the points in the scene. Thus, the prior pϕ(z | X) as well as the encoder qψ(z | Y ) both rep-
resent multinomial distributions over all of the points in the point clouds X and Y respectively.
In practice, we actually represent the latent space by two separate categorical distributions, one
over the points in XA and another over the points in XB (and similarly for the points in Y ); we
thus sample a latent point pA among the points in object A and another latent point pB among
the points in object B, and we condition the decoder on both sampled latent points (see the next
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section for details).
The spatially-grounded latent distribution has a nice intuitive interpretation: the sampled la-

tent points z indicates which of the demonstration modes is selected. For example, for the task
of hanging a mug on one of N racks, the latent point in XB empirically tends to indicate which
of the racks will be used for hanging (see a visualization of this latent space in Figure 3.1. Thus,
this spatially grounded latent space is able to interpretably select a mode from the demonstration
distribution by conditioning on a learned distribution over points from XA and XB. Because this
distribution is discrete, we avoid the “smoothing” issue normally found with cVAEs mentioned
in the previous paragraph. In order to back-propagate through these discrete latent distributions,
we perform differentiable sampling with Gumbel Softmax [8].

Architecturally, we design the prior pϕ(z | X) as well as the encoder qψ(z | Y ) to predict a
value over each point in the point clouds X and Y respectively, as shown in Figure 3.2. We then
normalize these values to obtain a discrete probability distribution over the points in the point
clouds.

Latent conditioning:

Asmentionedpreviously, weuse amodifiedversion of TAX-Pose [14] for the decoder pθ(TAB | X, z).
However, wemust modify the TAX-Posemodel to condition on the latent points z = (pA, pB). One
option for doing so would be to represent z as the discrete value selected from theN -dimensional
multinomial distribution over points. However, the discrete value would correspond to the index
of the selected point, which has no particular meaning to the network, which uses a permutation-
invariant point cloud-based architecture [24].

Another option is to use the 3D location of the points (pA, pB) directly; however, we would
like the model to be translation-equivariant, so we would like to avoid explicitly inputting the
3D locations of the latent points. Another alternative is to concatenate to each input a binary
indicator of whether that point was selected as the latent value z. However, such a sparse input is
very difficult for the decoder to process.

Instead, we create a dense and SE(3)-invariant representation of z, as follows: For each point
p ∈ XA, we compute a feature Fp := ∥p − pA∥2, and likewise for XB, which indicates the dis-
tance between each point p and the latent point pA or pB. This feature is both translationally- and
rotationally-invariant, in that if we translate or rotate the entire point cloud XA, then Fp will re-
main the same (see Appendix 5.5 for the proof). We concatenate Fp to the input of each point in
X in order to condition the decoder on the latent variable z. A visualization of Fp is depicted in
Figure 3.2.

The TAX-Pose [14] model that we use for the decoder achieves translation invariance bymean-
centering the points in XA and XB. However, for larger multi-object scenes such as those with
multiple racks explored in this work, mean-centering doesn’t lead to a consistent point cloud ob-

11



servation. To address this, for the decoder pθ(TAB | X, z), we center the points inXA (andXB re-
spectively) on the sampled points pA and pB. Empirically, we find that these architectural choices
lead to significantly improved performance for relational object placement tasks.

3.3.3 Generalizing to Arbitrary Configurations for Inference

During cVAE training, we also include a regularization lossKL (qψ(z | X,Y )∥pϕ(z | X)) as shown
in the second term of Equation 3.3. This regularization term allows us to sample from the prior
pϕ(z | X) at inference time and generate a latent z that is similar to the distribution of encoded
latent z values qψ(z | X,Y ). Normally, the prior distribution pϕ(z | X) is set to be a Normal
Gaussian distribution; in our case, the latent space z is discrete, so we could set the prior to a
uniform distribution.

However, a uniform prior would not meaningfully encode the modes of the demonstration
space. As shown in Figure 3.1, the prior pϕ(z | X) should map the input to a distribution that
encodes the modes of the demonstrations. For example, in a scene with multiple mug racks, the
distribution over z would encode the different options of selecting a mug rack. A uniform prior
z over all points in the scene would encourage an equal probability mass on points that are not
mug racks at all, and thus the latent z would not meaningfully encode the demonstration modes.
We observe that using a uniform prior leads to poor generalization in practice. Thus, we train the
encoder and decoder without an explicit regularization loss.

Instead, we train a learned prior pϕ(z | X) tomap from the observationX to points in the latent
space over z that encode the different modes of the demonstrations. We train the prior using only
the regularization loss from Equation 3.3:

L := KL (qψ(z | X,Y )∥pϕ(z | X)) (3.4)

We apply a stop gradient on this loss so that we do not back-propagate through the encoder qψ(z |
X,Y ), whichwe separately (and simultaneously) train using the reconstruction loss tomap from a
demonstration pose Y to a point in the latent space z to capture each demonstrationmode. Because
the learned prior pϕ(z | X) does not condition over the demonstration Y , it must marginalize over
all demonstrations in the dataset. Thus, for the example of hanging a mug with multiple racks,
the encoder qψ(z | X,Y )will map from a demonstration Y to a distribution over the points on the
rack that the mug is hung on in the demonstration Y , whereas the learned prior pϕ(z | X) will
map from the input X to a distribution over all of the mug racks as shown in Figure 3.1. Further
implementation details on the learned prior can be found in Appendix 5.1 on the website.

The inference procedure for our method can be found in Figure 3.2 (bottom). We first input
the observation X into a learned prior pϕ(z | X) which outputs a distribution over the latent
space z. We sample a z from this distribution, which we convert to a dense rotationally-invariant
feature Fp as described above. Finally, we input X and our representation of z into the modified
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Figure 3.3: Visualization of a successful relative placement for hanging a mug with an arbitrary
pose on one of many racks in a random 3 rack scene. The mug is initialized to an arbitrary pose in
the air and must be grasped first by the robot.

TAX-Pose [14] decoder pθ(TAB | X, z) to output the predicted cross-pose T̂AB. We then send this
predicted cross-pose to our robot system, which uses motion planning [22] to move the action
object A such that it is transformed by transformation T̂AB. If the learned prior and decoder are
trained well, then this should complete the relative placement task.

3.4 Experiments

We evaluate our method on the NDF [19] simulated mug placement tasks in addition to multi-
modal variants of the originalmug-hanging task. In all these tasks, the goal for the robot is tomove
an action object to a pose relative to the rest of the scene. The robot is given only 10 demonstrations,
fromwhichwe extract a point cloud recording of the final configuration from each demonstration.
The tasks are implemented in Pybullet [3], in which a simulated robot is placed on a table, sur-
rounded by four depth cameras. We increase the difficulty of the original mug-hanging NDF task
to require reasoning under multimodality: instead of one rack, the environment contains multiple
racks in various configurations.

We implement our method for each relative placement task with two sequential cross-pose
estimation steps: the cross-pose between the gripper and the action object (e.g. the mug) for
grasping, followed by the cross-pose between the object and the rest of the scene (e.g. the mug
racks) for placing. We usemotion planning tomove the gripper into the desired positions for both
parts of the task; after the gripper rigidly grasps the mug, the mug-on-rack cross-pose defines the
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desired target pose of the gripper. In all of our evaluations, the object (e.g. mug) is initialized to
an arbitrary initial pose in space. A placement is marked as a success when the object is placed
stably on one of the target placement locations.

3.5 Results

We present task success evaluations for a variety of tasks with object instances and configurations
that are unseen during training. We first evaluate our model on the “1 Rack” mug hanging task
from NDF [19], which requires no multimodality. In “1 Rack Place”, our model performs on par
with TAX-Pose [14] (Table 3.1) and outperforms other baselines in placement. Details of DON [6]
and NDF [19] can be found in prior work [19].

Next, we show how our formulation extends TAX-Pose [14] to multimodal mug-hanging tasks
of increasing difficulty in Table 3.1. We train and evaluate the TAX-Pose model and our method
on the “2 Racks” task, in which the task is to hang the mug on either of two racks that each have
an arbitrary pose on a tabletop. We see a large improvement over the original TAX-Pose method
in the 2-rack case in Table 3.1. We also test our model’s ability to generalize to more racks than the
number seen during training: despite only seeing two racks during training, our model is able to
retain strong performance for the “3 Racks” task. We observe that the TAX-Pose baseline tends to
incorrectly predict mug placements in between the racks. Visually, we see that the learned prior
pϕ(z | X) distribution will cover all of the racks available during inference, as shown in Figure 3.1.

(Generalization)
1 Rack Place 2 Racks Place 3 Racks Place

DON [6] 0.45 - -
NDF [19] 0.75 - -
TAX-Pose [14] 0.84 0.07 0.14
TAX-PoseD (Ours) 0.82 0.57 0.59

Table 3.1: Task success rates for the original NDF 1 rack mug hanging task and multimodal
variants. We evaluate on unseen mugs initialized to arbitrary configurations in space. 1 Rack:
Our model performs on par with TAX-Pose [14] in the unimodal placement task and outperforms
the other baselines. 2 Racks: We extend TAXPose to a multimodal task and train our model for
random 2-rack scenes. We evaluate on 50 random 2-rack configurations. 3 Racks (Generalization):
We further evaluate the 2 rack model to test generalization to more racks than seen at training
time. Three racks are placed in 50 random configurations. We report placement task success.
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Figure 3.4: Samples from our model trained on various multimodal mug-on-rack environments
cover a wide distribution of placements that correspond to task success. Top row- one sample,
denoted by orange. Bottom row- multiple samples denoted by orange, red, and green.

3.5.1 Ablations

In prior work, VAE variants often represent the latent z as a global vector [7] sampled from a Nor-
mal distribution. Our method, in contrast, represents z as a discrete distribution over points in
the point cloud, which we refer to below as “spatial z” in Table 3.2. We provide ablations to our
method for which we replace the encoder qψ(z | X,Y )with one that outputs a continuous z vector
like in prior work (“continuous z”). We condition the decoder with such a z by following the ar-
chitecture of the goal-conditioned TAX-Pose-GC [14]. We also provide ablations for regularizing
the encoder qψ(z | X,Y ) to a Normal or Uniform prior. In Table 3.2, we show that the contin-
uous z ablations fail to predict precise placements for both multimodal environments, and the
Uniform prior ablation for discrete spatial z struggles to generalize to the “3 Racks” environment.
In contrast, our method is able to account for this multimodality and generalization.
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round-mode=places,round-precision=3
2 Racks 3 Racks

Place ↑ ϵR ↓ ϵt ↓ Place ↑ ϵR ↓ ϵt ↓
TAX-Pose [14] 0.07 103 0.45 0.14 71.8 0.33
TAX-PoseD ablations:
- continuous z, Normal prior 0.33 70.2 0.28 0.18 66.2 0.31
- continuous z, learned prior 0.41 43.3 0.24 0.29 44.5 0.29
- spatial z, uniform prior 0.60 14.1 0.05 0.18 25.3 0.25
- Ours: spatial z, learned prior 0.57 13.2 0.05 0.59 16.0 0.06

Table 3.2: Ablations. We show ablations of our model for the multimodal 2-racks mug-hanging
task and also for generalization to the unseen 3-racks task. We report placement success, and also
rotation error (◦) and translation error (m) relative to the closest demonstration. Using a discrete
spatial z distribution over points in the point cloud performs better than using a continuous z
vector; using a learned prior performs better than using a non-learned prior (Normal or uniform),
especially for generalization to “3 Racks.”
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Chapter 4

Conclusions and Future Work

We presented TAX-PoseD, a data-drivenmodel for relative placement tasks that accounts for mul-
timodality in task specification by learning a latent distribution over points in the object point
clouds. We show that our method efficiently learns distributional relative placement tasks with
only 10 demonstrations. Ourmethod extends the VAE literature to practically implement an inter-
pretable, spatially-grounded latent space. We achieve high task success on the mug placing task
with a varying number of racks, which requires multimodal reasoning, with the use of SE(3)-
invariant modules for reasoning about multimodal relative placement.

We would like to point to future directions of this work. Future work may tackle more diverse
scenes and wider distributions of demonstrations. For example, more placement strategies can be
demonstrated for the same objects. Also, there can bework in relaxing the requirement to segment
the manipulated object from the scene, or even modeling relationships between multiple objects
instead of a pair. We also hope to explore a variety of data augmentation techniques corresponding
to the distribution of points in the point cloud. In the future, this formulation can also be extended
to handle deformable objects.
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Chapter 5

Appendix

5.1 Training Details

5.1.1 Loss functions

We train the encoder and decoderwith a reconstruction loss; the decoder outputs a transformation
T̂AB which we apply to the action object point cloud XA to obtain a predicted point cloud Ŷ ;
we then compare this predicted point cloud to the demonstration ground-truth point cloud Y

to obtain the loss. We train these networks with similar losses as were used in TAX-Pose [14]
losses, i.e. a weighted sum of a Point Displacement Loss (weight=1), a Direct Correspondence
Loss (weight=0.1), and a Correspondence Consistency Loss (weight=1).

We also train the learned prior, pϕ(z | X), to match the distribution predicted by the encoder,
qψ(z | X,Y ). In practice, while this can be implemented as the KL loss between the encoders’
outputs pϕ(z | X) and qψ(z | X,Y ), empirically we find using the Jenson-Shannon Divergence
(JSD) [11] to improve the learned prior performance. For our spatially grounded latent space
defined as a categorical distribution over the points in the scene, the JSD is defined as:

JSD(qψ, pϕ) =
1

2
KL

(
qψ∥

qψ + pϕ
2

)
(5.1)

+
1

2
KL

(
pϕ∥

qψ + pϕ
2

)
Because our network outputs separate distributions over the action object points XA and the an-
chor object points XB, we take the sum of the JSD over the action object distribution and the JSD
over the anchor objectdistribution. We use a learning rate of α =1e-4 and gradient clipping of
1e-3 for all models.
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5.1.2 Network Architecture for Encoder

The encoder qψ(z | Y ) is implemented as a single-scale PointNet++ [16] directly encoding the
points of the action and anchor objects in Y into per-point features, which are then normalized
into probability distributions with a softmax. In more detail: we separately normalize the action
and anchor object points to create two distributions: qψ(zA | Y ) and qψ(zB | Y ), from which
we sample the spatially-grounded latent points pA and pB. We use a single-scale PointNet++ for
encoding demonstrationswith qψ(z | Y ) to capture the local relationship between the action object
and the single demonstration mode in the anchor object of Y .

5.1.3 Network Architecture for Learned Prior

The learned prior pϕ(z | X) is implemented as two DGCNN [24] networks that each separately
encode the action and anchor point clouds, followed by a Transformer [23] that performs a cross-
object comparison across the action and anchor objects. The output of the transformer are per-
point features, which are then each passed through a point-wise MLP and normalized into prob-
ability distributions (separately for the action and anchor points) with a softmax.

5.1.4 Network Architecture for Decoder

As previously described, we use a modified version of TAX-Pose as the decoder pθ(TAB | X, z).
We modify TAXPose to condition on the latent z as described in Sec.??. Another minor modifica-
tion thatwemake is as follows: within TAX-Pose’s cross-correspondence estimator, two point-wise
MLPs are used tomap cross-object point embeddings into correspondence residuals and per-point
weights. Empirically, we find that using a single point-wise MLP to jointly predict the correspon-
dence residuals and per-point weights improves the performance of our method.

5.1.5 Dataset generation

To generalize to multiple racks in our mug-hanging experiments, we create a training set with
multi-rack demonstrations. To do so, we modify the environment used for 1-rack mug hanging
to generate multi-rack demonstrations. We create a distractor rack by copying the points from the
rack in the 1-rack demonstration with a random SE(3) transformation applied; we then concate-
nate this distractor rack to the scene point cloud. We ensure that the scene is physically-plausible
by performing axis-aligned rectangular prism collision checking between the original demonstra-
tion and the distractor rack. When training the encoder qψ(z | Y ), we do not apply any transfor-
mations to the points in the demonstration point cloud Y . However, when we train the learned
prior pϕ(z | X), we rotate both the original rack and the distractor rack to enable the learned prior
to be robust to new rack poses that might be encountered at test-time.
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To generate an arbitrary initial configurationX from a demonstration Y , we uniformly sample
two random SE(3) transformations and apply them to the points corresponding to objects A and
B, respectively, to produce a point cloud for each object in an arbitrary pose: XA and XB. These
two point clouds together form the point cloudX = XA∪XB. We found it helpful to center theXA

and XB input to the decoder by the sampled point from the latent distribution pA ∼ p(zA | XA)

and pB ∼ p(zB | XB), respectively. The inputs to the encoders qψ(z | X,Y ) and p(z | Y ) are mean
centered.

5.1.6 Synthetic occlusions

We apply planar and ball synthetic occlusions to the action object as data augmentations simu-
lating partially-occluded scenes. Specifically, the planar synthetic occlusion chooses a random 3D
plane to be between a point in the point cloud and the point cloud center, then removes all points
on one side of the plane. Also, the ball synthetic occlusion chooses a random point in the point
cloud then removes all points within a certain radius of that chosen point. These occlusions can
roughly simulate occlusions from a limited number of camera perspectives and various object in-
teractions. In addition, when downsampling the demonstration point cloud, we apply a random
downsampling 50% of the time and apply furthest point downsampling 50% of the time to capture
more randomness in the distribution of points.

5.1.7 Motion Planning

The model’s cross-pose predictions guide an OMPL motion planner for the robot to produce the
executed trajectory, which takes into account obstacles and joint limits.

5.2 Task Details

Details about the different environments that we use for evaluation can be found in Table 5.3.
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Environment Description

Mug-on-Rack (1 rack) /
1 Rack

Original NDF task of hanging a mug on a mug rack. The rack is
at a fixed location on the table and there are a variety of unseen
mugs at test time.

2 Racks The twomug racks are randomly rotatedwith respect to the z axis
and randomly translated across the table surface. We evaluate on
a fixed test set of 50 rack configurations.

3 Racks The three mug racks are randomly rotated with respect tot he z
axis and randomly translated across the table surface. We evalu-
ate on a fixed test set of 50 rack configurations.

5.3 Additional experiments

Here, we show additional experiments, applying our method on a variety of other tasks.

Environment Description

Mug Grasping A two-fingered gripper is to be positioned to a pre-grasp pose
on the rim of a variety of mugs. After the pose is predicted, the
gripper closes to grasp the mug.

Bowl Grasping Similarly to Mug Grasping, the goal is to predict the pre-grasp
pose on the rim of a bowl. This task has inherent rotational sym-
metry.

Bottle Grasping Similarly to Mug Grasping, the goal is to predict the pre-grasp
pose on the neck of the bottle. This task also has inherent rota-
tional symmetry.

Book-on-Bookshelf A rectangular book is to be placed on a partially-filled bookshelf,
which has multiple gaps between already placed books.

Multi-Peg Rack A rack has multiple randomly generated pegs, and the robot may
hang the mug on any one of the pegs.

Multi-Peg Multi-Racks Multi-Peg Rack is extended to the multi-rack setting, and the
robot may hang the mug on any one of the pegs, on any one of
the racks.
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Figure 5.1: We show that TAX-PoseD learns to cover a wide variety of ways to complete a task.
Blue- an anchor object depicting the scene. Red, Green, and Orange- manipulated objects at vari-
ous poses sampled from TAX-PoseD.
5.4 Interpretability of the the learned latent distribution

Our method learns disentangled representations of the distributional demonstration spaces for a
task. When we view encoder qψ(z | X,Y ) for one mode of demonstration, we empirically observe
that its representation is spatially distinct from the representation for another mode of demonstra-
tion (Figure 5.2). In addition, the encoder pϕ(z | X) that maps across all modes of demonstrations
in qψ(z | X,Y ) interpretably represents task symmetries across distinct racks in the mug hanging
task (Figure 3.1).

Figure 5.2: Our method learns disentangled representations for relative placement tasks. Empiri-
cally, the latent distribution assigns high probability to the rack upon which the mug is hanged in
the demonstration.
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Figure 5.3: We showvisualizations of the learned latent space across theMulti-PegRack,Multi-Peg
Multi-Rack, and Bowl Grasping tasks. Empirically, the high probability points tend to correspond
spatially to placements of the manipulation object.

5.5 Proof for rotational invariance for the featurization

Here, we prove that our latent conditioning described in ?? is SE(3)-invariant.
Let there be an arbitrary transformation T ∈ SE(3) that rigidly transforms an object in an

arbitrary poseX to the same object in a demonstration pose Y . Transformation T can be rewritten
as a rotation R and translation component t.

X := TY

Let px be a point in point cloudX where the feature is being computed, and let zx be the point
sampled from the latent distribution. Define py and zy similarly for point cloud Y . Then, our
method’s featurization is invariant to SE(3) transformations with respect to the demonstration Y :

F := ||px − zx||2 = ||T−1py − T−1zy||2

= ||RT (py − t− zy + t)||2

= ||py − zy||2 (5.2)

Note that without the L2 norm, the featurization would not be rotationally-invariant.
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