
Learning on the Move: Integrating

Action and Perception for

Mobile Manipulation

Shagun Uppal

CMU-RI-TR-24-26

May 21

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Professor Deepak Pathak, chair
Professor Katerina Fragkiadaki

Ananye Agarwal

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2024 Shagun Uppal. All rights reserved.

To my parents, Sarita and Naresh Uppal.

iv

Abstract

While there has been remarkable progress recently in the fields of ma-
nipulation and locomotion, mobile manipulation remains a long-standing
challenge. Compared to locomotion or static manipulation, a mobile
system must make a diverse range of long-horizon tasks feasible in un-
structured and dynamic environments. While the applications are broad
and interesting, there are a plethora of challenges in developing these sys-
tems such as coordination between the base and arm, reliance on onboard
perception for perceiving and interacting with the environment, and most
importantly, simultaneously integrating all these parts together. Prior
works approach the problem using disentangled modular skills for mobility
and manipulation that are trivially tied together. This causes several
limitations such as compounding errors, delays in decision-making, and
no whole-body coordination. In this work, we present a reactive mobile
manipulation framework that uses an active visual system to consciously
perceive and react to its environment. Similar to how humans leverage
whole-body and hand-eye coordination, we develop a mobile manipulator
that exploits its ability to move and see, more specifically – to move in
order to see and to see in order to move. This allows it to not only move
around and interact with its environment but also, choose “when” to
perceive “what” using an active visual system. We observe that such
an agent learns to navigate around complex cluttered scenarios while
displaying agile whole-body coordination using only ego-vision without
needing to create environment maps.

v

vi

Acknowledgments

I consider myself extremely lucky to have had some of the most amazing
mentors, friends, and family throughout different stages of life, who shaped
me for the better with their constant support and guidance. With the
last two years at CMU coming to an end, I feel immense gratitude and
serendipity to have met with so many wonderful opportunities and some of
the brightest minds that have helped me exponentially grow my potential.

Firstly, I would like to extend my deepest and most heartfelt gratitude
to my advisor, Deepak Pathak for his unwavering support, wisdom, and
encouragement all throughout. His profound knowledge, exceptional
guidance, and attention to detail have helped me strive throughout my
Masters. His remarkable judgment of being highly ambitious and picking
the right problems to work on has forever altered my way of thinking
about research and life for the better. I am personally grateful for the most
abstract, ambitious, yet concise, practical, and super-long brainstorming
sessions with him at the very beginning of me joining the lab. They
comprise of some of my fondest memories which always left me with an
urge to keep learning more, thinking fundamentally and clearly in order
to bring ideas to realization.

I extend my sincere appreciation to Professor Katerina Fragkiadaki, for
being a part of my thesis committee and for her insightful feedback and
encouragement.

I am super thankful to Ananye Agarwal, for constantly being there to
help, guide, think, and even re-think ideas at any and every single point
throughout my thesis projects. I am especially thankful to him for showing
me some really cool ways for debugging my code. It was always super
fun to brainstorm ideas and discuss updates with him every now and
then. Not to forget, the deadline days working together are some of my
favorite memories despite the high pressure, because the end was always
pleasantly satisfying.

I am super grateful to all my lab members who made every single day,
especially late nights working in the lab so much fun and intriguing. I
learned a lot from each one of them and shared some of the most fun
memories as well as deep research discussions. I thank (in alphabetical
order) Aditya Kanan, Alexandre Kirchmeyer, Alexandre Li, Ananye

vii

Agarwal, Ellis Brown, Haoyu Xiong, Jayesh Singla, Jiahui Yang, Kenny
Shaw, Kevin Gmelin, Kexin Shi, Lili Chen, Mihir Prabhudesai, Murtaza
Dalal, Russell Mendonca, Shikhar Bahl, Shivam Duggal, Unnat Jain,
Xuxin Cheng, and Yulong Li. I am grateful for the opportunity to work
beside them all and grow in their presence.

I thank all my dear friends, Anish Madan, Bharath Raj, Dvij Kalaria,
Poorvi Hebbar, Pranay Gupta, Pushkal Katara, Sarthak Bhagat, Shreya
Sharma, and Sriram Narayanan for helping me grow personally as well
as professionally in multi-dimensional aspects. A special thanks to them
for relaxing coffee breaks and our newfound love for table tennis which
was a constant stress-burster and ended up being a post-dinner ritual
in Robolounge over the years. Special thanks to Shreya for infinite
discussions, from research to life, several failed attempts at being regular
to the gym, and our unique love for coffee boba. Few of the best memories
comprise of some super successful and some devastatingly futile attempts
at stargazing.

I am extremely grateful to Sarthak for always being there by my side,
encouraging me to be the best version of myself, while constantly pushing
the bar higher. Thank you for making tough days easier, easier days
happier, and the happier ones most memorable. It has been a real pleasure
to have grown with you alongside getting two degrees.

Last but not least, I would like to thank my parents who have given me
infinite support, strength, and encouragement to always follow my heart
and create my own path, even when they did not align with it completely.
I am and will be forever thankful for the education and opportunities you
provided me with, and for teaching me the power of knowledge. While
I can never pay back to you for your innumerable sacrifices since my
childhood, I hope that I am able to pay it forward. I would also like to
thank my brother Nimish for his unconditional support, allowing me to
spread my wings higher, without worrying about anything. I am forever
grateful for the impact you have had, in shaping me at each and every
stage of life both directly and indirectly, for instilling in me the magic of
curiosity, and for leaving me a little more brave every time to fight for
what I believed in, whenever needed. Finally, I would like to thank my
grandfather, Kuldeep Raj Arora for always inspiring me to reach for the
stars, while still keeping me grounded.

viii

Contents

1 Introduction 1

2 Related Work 5
2.1 Classical Approaches . 5
2.2 Learning-based navigation . 6
2.3 Active Perception . 6
2.4 Mobile Manipulation . 6

3 Method 9
3.1 Phase 1 - Learning Simultaneous Perception, Interaction and Navigation 10

3.1.1 Pick Policy . 10
3.1.2 Navigation Policy . 11

3.2 Phase 2 - From Scandots to Depth 13

4 Experimental Setup 17
4.1 Baselines . 17
4.2 Design Choices and Implementation Details 18

5 Results and Analysis 23
5.1 Emergent Behavior . 24
5.2 Real-world results . 25
5.3 Simulation results . 26
5.4 Directly training from depth images. 27
5.5 Analysing camera and base motion 28
5.6 Necessity for Active Vision and Whole-body coordination 28
5.7 Classical Navigation Baseline . 29

6 Discussion 33

Bibliography 35

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

ix

List of Figures

1.1 Human and robot illustration of whole-body navigation through the clutter. 2

1.2 Learning to SPIN:Our robot learns to S imultaneouslyPerceive, Interact,

and N avigate around cluttered unstructured environments in a whole-body

fashion. The robot has an actuated camera with a limited field of view that

it must control to get information about its environment. The motion and

perception problem are tightly coupled since what the robot knows about

the environment influences how it can move and vice versa. We show results

in a large variety of scenarios both indoors and outdoors with different

obstacles like boxes and furniture. Our robot can pick up different objects

like cups, and utensils. Video demos at https://spin-robot.github.io 3

3.1 SPIN: We learn a policy that uses ego-vision to simultaneously per-
ceive, interact, and navigate in cluttered environments. We propose
two methods: (1) Coupled Visuomotor Optimization (CVO)
learns robot and camera actions at the same time. We train an RL
policy to predict these. We only provide scandots if they are visible in
the agent’s field-of-view allowing the agent to learn to move its camera
and aggregate information about its environment. This is followed by
a phase-2 supervised training where this behavior is distilled into a
student network that operates with ego-centric depth images (2) De-
coupled Visuomotor Optimization (DVO) decouples the action
and perception learning into two parts: first the agent learns to navi-
gate across clutter assuming access to all obstacles. In phase 1b, the
robot learns to move its camera to estimate the relevant information.
This is followed by supervised learning same as above. 14

3.2 Visualizing the simulation benchmark: We illustrate one scenario
of the simulation benchmark here with many obstacles in a narrow
passage. The agent learns to develop whole-body coordination such
as the robot’s arm movement in the last two frames, to reactively
adapt and navigate through such cluttered scenes by actively moving
around the camera and aggregating information for efficient navigation
without collisions. 15

x

https://spin-robot.github.io

4.1 Visualizing Scandots: (Left) We compute visible scandots by pro-
jecting them to the camera frame and checking if they lie within the
image plane, and Anatomy of the Mobile Manipulator: (Right)
of the stretch RE1 robot that we use experiments with. It has two
DoFs in the base, one each for arm lift and extension, two for the
camera, three for the wrist, and one for the gripper. 18

4.2 Camera movement analysis in a trajectory. The agent faces the
camera downward when navigating through a tightly cluttered vicinity
as can be seen in the first, second, and fourth frames, whereas the
camera points more toward the front when there are no immediate
obstacles in the direction of movement, as illustrated in the third frame. 22

4.3 Essential Whole-Body Coordination under heavy obstruc-
tions. In the above cases where the obstacles are tightly packed, it is
not possible for the robot to navigate through them avoiding collisions
without lifting the arm to an appropriate height. 22

5.1 Types of emergent behavior exhibited by SPIN (a) dynamic obstacle
avoidance (b) whole-body movement (c) adaptive rerouting. 30

5.2 Success rate for scandots (blue) vs depth (red). The depth-based policy
attains close to 0 performance even after 400k env steps of training,
whereas the policy trained with scandots increasingly improves over
time. 31

5.3 Camera movement analysis in a trajectory. The agent faces the camera
downward when navigating through a tightly cluttered vicinity as can
be seen in the first, second, and fourth frame, whereas the camera
points more toward the front when there are no immediate obstacles
in the direction of movement, as illustrated in the third frame. 31

5.4 Scenarios where whole-body coordination is essential under heavy
obstructions. In the above cases where the obstacles are tightly packed,
it is not possible for the robot to navigate through them avoiding
collisions without lifting the arm to an appropriate height. 32

5.5 Visualizations of environment map built using 2D Lidar. The robot is
localized as per its initial position and orientation. 32

xi

List of Tables

4.1 We report the average success rate and average distance to goal for
10 episodes across 3 seeds each with a different maximum visibility
range for the agent at any time instant. As reported, with broader
visibility, the agent shows more frequent stalling leading to a higher
average distance to the goal. 19

4.2 We report the average success rate and average distance to goal for
10 episodes across 3 seeds each with a different maximum visibility
range for the agent at any time instant. As reported, with broader
visibility, the agent shows more frequent stalling leading to a higher
average distance to the goal. 20

5.1 We evaluate the success rate on 10 random environments with an
average of 3 fixed seeds across all difficulty scenarios based on obstacle
course. We report the success rate of each part of the task including
reaching (Reach), picking (Pick), and placing (Place) the target object
in the desired location. The place task requires the agent to bring back
the object across the obstacles near its start location. 24

5.2 We compare our method against a classical mapping and planning
baseline for navigation in cluttered scenes with both static as well
as dynamic obstacles. The classical performs reasonably in static
environments, it quickly breaks with dynamic obstacles like humans
walking around, whereas our method shows more robust reactivity to
such obstacles even without being trained with dynamic obstacles in
simulation. We report the success rate of our method compared with
the baseline. For the classical baseline, we teleoperate the robot for
2-3 min. 27

5.3 Success rate for 4 FixCam poses in easy (E), medium (M), hard (H)
environments. 28

xii

Chapter 1

Introduction

Consider the example shown in Figure 1.1. A person is trying to carry a coffee cup

through clutter. This not only requires navigational planning from start to goal but

planning of the whole body to avoid obstacles along the way. Furthermore, due to

ego-centric vision, the person needs to actively look around to gather the presence

of obstacles. This general form of mobile manipulation task necessitates a coupled

understanding of whole-body control with active perception. This capability is one of

the fundamental and frequently encountered tasks in embodied cognition.

The dominant paradigm to tackle this problem is through classical planning-

based control which requires apriori knowledge about the precise location of all

the obstacles along with a detailed map of the environment. In most real-world

scenarios, this assumption is impractical due to computational reasons, but more

importantly, because environments are dynamic and objects keep moving around in

general. Furthermore, relying on precise measurement of scenes for control does not

allow agents to reactively improvise to changes in their environment. Practically, even

when the complete environment map is known apriori, joint planning for a system

with high degrees of freedom, say a mobile base with an arm, is often intractable and

too expensive to be deployed in real-time.

Humans, on the other hand, do not rely on precise known estimates of object

locations and instead use ego-centric vision to navigate around obstacles in real time.

In an unfamiliar environment, where to look is informed by where they want to move

(called ‘active perception’), and how they move in return determines what they can

1

1. Introduction

Figure 1.1: Human and robot illustration of whole-body navigation through the clutter.

see immediately afterward. This integrated mobility and perception allows us to see,

adapt, and react to maneuver through unseen heavily cluttered environments [5].

This work presents SPIN, an end-to-end approach to S imultaneous Perception,

Interaction, and N avigation. We train a single model that not only outputs low-level

controls for the robot body and arm but also predicts where should the robot’s

ego-centric camera look at each time step while moving its whole body by avoiding

obstacles.

We train our approach via reinforcement learning (RL), and to get around the

computational bottleneck of rendering depth images, we use a teacher-student training

framework where robot behavior is first learned using RL with access to visible object

scandots and then distilled into a policy that operates from ego-depth using supervised

learning. We evaluate across 6 benchmarks in simulation ranging from easy, medium,

and hard difficulty, and two real-world environments with a similar level of clutter

as the hard environments in simulation and also add dynamic, adversarial obstacles.

We find that our method outperforms classical methods and baselines which do not

use active vision. We also observed emergent behaviors, including dynamic obstacle

avoidance which the robot did not see during training time.

Our approach presents a radical hypothesis that the traditionally non-reactive

2

1. Introduction

planning approach to whole-body control can indeed be cast into a reactive model – i.e.

– single end-to-end policy trained by RL. Despite a big departure from optimal control

literature, this hypothesis is not as surprising since agile whole-body coordination

and fast obstacle avoidance in humans are developed into muscle memory over time.

Figure 1.2: Learning to SPIN: Our robot learns to S imultaneously Perceive, Interact,
and N avigate around cluttered unstructured environments in a whole-body fashion. The
robot has an actuated camera with a limited field of view that it must control to get
information about its environment. The motion and perception problem are tightly coupled
since what the robot knows about the environment influences how it can move and vice
versa. We show results in a large variety of scenarios both indoors and outdoors with
different obstacles like boxes and furniture. Our robot can pick up different objects like
cups, and utensils. Video demos at https://spin-robot.github.io

3

https://spin-robot.github.io

1. Introduction

4

Chapter 2

Related Work

2.1 Classical Approaches

The problem of navigating robots around obstacles has been studied for decades.

Classical methods solve the motion and perception problem separately. First, these

methods build a map of the environment using the robot’s onboard sensors such

as cameras, proprioception, and Lidar or infrared [9, 20]. Kalman-filter-based [48]

techniques are often used to track positions, but they can’t represent multi-modal

ambiguities or recover after tracking failure [41]. Grid-based methods solve this but

suffer from high memory usage [7]. Modern SLAM approaches ORBSLAM3 [38],

OpenVSLAM [44] and RTAB [30] use variations of a method that relies on particle

filters [46] to hold a multi-modal belief of the robot’s location in the map [34, 45].

SLAM is especially challenging in dynamic environments due to the confounding

motion of other agents [17, 42, 51, 54]. Once a map is built, a path can be planned

over it. Exact paths can be computed using graph search algorithms [21], probabilistic

methods which are faster but yield approximately optimal solutions [31] or potential-

field based methods [26]. All of these assume perfect perception and re-planning is

usually expensive making them susceptible to noise and precluding reactive behavior.

5

2. Related Work

2.2 Learning-based navigation

In recent years, learning has been used to improve the classical navigation stack [47].

Modular approaches [10, 11, 19, 35] still leverage SLAM-based methods to build a

map but use learning or heuristic changes to get priors for the best possible route

to a goal. End-to-end approaches forgo maps entirely and train a policy to go from

images to robot commands to go to a goal location [12, 13, 50]. We also take the

end-to-end approach but unlike prior work where what the robot sees is fixed based

on its position, in our case, it must move its head and actively choose what it sees

making optimization more challenging.

2.3 Active Perception

An embodied agent that can move around, act as well as observe its environment

possesses abundant information to continuously generate new data for itself which

is missing while learning from passive data. A continually adapting agent acts on

its curiosity to move around and actively change its surroundings to identify its own

failure cases. To model this curiosity, several prior works such as [14, 15, 39] develop

active vision frameworks, where an agent is driven by inconsistencies in its own visual

estimation of its surroundings when perceived from novel viewpoints. In this work, we

couple active perception with learning low-level actions for embodied mobile agents

in order for them to reactively adapt, navigate, and interact with their environment.

2.4 Mobile Manipulation

While autonomous stationary manipulation has seen leaps in functional grasping

[3, 32], as well as in several obstructed settings [33], Mobile Manipulation learning still

poses several challenges. A mobile base and arm together can complete useful in-the-

wild manipulation but present a more challenging control problem. Imitation learning

techniques focus on collecting large datasets in a variety of settings with a dexterous

6-DOF arm and a wheeled mobile base using teleoperation [4, 6, 8, 16, 22, 52].

Because of the high dimensionality of mobile manipulation systems, there are also

6

2. Related Work

control methods that leverage synergies between both the base and the arm and plans

together. [18, 22, 23, 53].

7

2. Related Work

8

Chapter 3

Method

Our goal is for the mobile manipulator to navigate and manipulate objects while

avoiding obstacles in cluttered environments. In this work, we use the Stretch Hello

Robot [1] as shown in Figure 4.1 as our embodied mobile manipulation agent. It

shares anatomical similarities with a human, bringing with it many of the same

challenges. First, it has a limb in the form of an arm that can be raised and lowered,

so the robot must constantly move the arm to avoid any obstacles. Second, it has

an actuated camera with a very limited field of view (87◦ horizontal, 58◦ vertical),

so it needs to constantly look around to simultaneously plan ahead and look out for

unexpected obstacles. Imagine yourself walking through a cluttered cabinet, there

are too many obstacles around to keep track of, and you can’t see all of them at once,

so you must keep looking all around your body to plan a path through the clutter

but also make sure you don’t hit anything you missed along the way. Unlike regular

walking where our eyes mostly point straight ahead and the path is clear, here you

must actively choose what to perceive for simultaneously planning ahead and also

doing reactive fixes to your planned path. Since all the obstacles cannot be perceived

at a single glance, you must have spatial awareness and know where the obstacle you

saw some time ago is right now in relation to your body. Note that this entire process

is very different from the classical approach, where perception, planning, and obstacle

avoidance are separate processes executed separately and in sequence. Further, it is

assumed that the output of each is perfect, whereas this is rarely the case in practice

in our unstructured world.

9

3. Method

To deal with this challenging, entangled problem setup, we take a data-driven

approach. We train our robot to navigate inside procedurally generated clutter in

simulation using RL. The robot is only allowed to perceive the part of its environment

that is visible to the camera and learns to coordinate its arm, base, and camera

motion such that it can plan ahead and reactively adjust to obstacles.

In practice, since training with RL requires many samples and rendering depth is

inefficient (Section 5.4), we divide training into two phases. In the first phase, we learn

mobile manipulation behaviors via RL using scandots, which is a cheap-to-compute

variant of depth and in phase 2 we train a CNN for perception from depth images as

illustrated in Figure 3.1. An example illustration of scandots in the environment is

depicted in Figure 4.1.

3.1 Phase 1 - Learning Simultaneous Perception,

Interaction and Navigation

In this stage, we use RL to learn to control all the joints of the robot to navigate

clutter and pick target objects. Since rendering depth images directly from the robot

camera is expensive, we must instead use an ersatz version that contains the same

information and is cheap to compute. We do so using scandots st which are the XYZ

coordinates of the bounding box of each obstacle. To specify which object to pick,

we give the initial location of the object (before it is touched by the robot) oi. In

lieu of the object image, we give the current location of the object ot. Here, scandots

st and object location ot are privileged information which must later be estimated

from depth images. Given this information, we train two separate LSTM policies

πnav and πpick. At test time, the nav policy is activated to reach a target location and

we switch to the pick one once the robot gets close to the object.

3.1.1 Pick Policy

This accesses proprioception xt consisting of robot joint angles and velocities qt, q̇t,

base linear and angular velocity vt, ωt. For perception, it gets the object’s initial and

10

3. Method

current location oi, ot and predicts robot and camera actions.

[arobot, acam] = πpick(xt, F (ot,xt),oi) (3.1)

where F is a masking function that masks object position ot if it is not in the field of

view of the camera. This is required since object position can only be estimated from

depth in phase 2 if it is visible.

3.1.2 Navigation Policy

Training this policy requires a complex joint visuomotor optimization since robot

motion is dependent on its knowledge of the environment which in turn depends on

how the robot moves. We present two approaches to tackle this problem.

Coupled Visuomotor Optimization (CVO) Here, we set up a partially observable

environment for the robot and let the RL algorithm do the joint optimization using

large-scale data. In particular, the policy gets proprioception xt and only visible

scandots s̃t = F (st,xt) as observation and has to predict both the camera and the

robot actions. Since the scandots are permutation invariant, we pass them through a

trainable point-net architecture P to obtain compressed latent zt = P (̃st) that we

pass to the policy

[arobot, acam] = πnav(xt, zt) (3.2)

This presents a tough optimization landscape because the observations at each step

are strongly dependent on acam. For instance, if the camera swivels around the

observations at the next timestep may look completely different. Indeed, we observe

that this requires billions of samples inside a GPU-accelerated simulator to optimize

which may not always be feasible in practice.

Decoupled Visuomotor Optimization (DVO) To ease the optimization process,

we learn the robot and camera actions separately. First, we learn how to move by

giving the robot access to all available scandots zt = P (st) in a local vicinity. Since

the robot sees everything, the camera motion is irrelevant and we just predict the

robot’s motion

arobot = π1a
nav(xt, zt,gt) (3.3)

11

3. Method

where gt is the goal with respect to the base. Using this policy as supervision, we

train another policy to predict both camera and robot motions with access to only

visible scandots ẑt = P (F (st,xt)). This policy is trained via RL to predict the robot

actions from phase 1 policy arobot. This optimization forces the student policy to

learn camera behaviors that capture information about the environment that are

needed to move in the optimal fashion. We initialize π1b
nav from the weights of π1a

nav

min
π1b
nav

∥ârobot − arobot∥

s.t. [ârobot, âcam] = π1b
nav(xt, ẑt,gt) (3.4)

This decoupled approach learns to move and see in separate phases which eases

the optimization burden. In principle, the coupled optimization is better since it is

possible that the 1a policy may learn to exploit privileged information in a way that

the 1b policy cannot estimate it for any set of camera movements. However, in our

setting, this did not turn out to be the case.

We train our agent using PPO [43] with backpropagation through time [49] in

procedurally generated environments in simulation.

Rewards: For the navigation task, we use distance to goal reward ∥gt∥ along with

a forward progress reward | (vt)g | where (vt)g is velocity along the direction of the

goal.

rnav = 0.1 · ∥gt∥+ 0.1 · | (vt)g | (3.5)

For the pick task, we provide an object reaching reward, i.e., the distance between

the gripper and the object. This is followed by a lift reward if a successful grasp is

detected (based on whether contact forces cross a threshold), similar to [33].

rpick = 0.5 · ∥ot − pt∥+ 0.5 · rlift (3.6)

where

rlift =
(
1− tanh

(
15 · [(ot)z]+

))
I

[∑
i

fi > 10

]
(3.7)

where [x]+ = max(x, 0) and I is the indicator function which forces the reward to be

active only when object contact forces fi exceed 10N.

12

3. Method

Training environments: We procedurally generate long corridors with obstacles

placed in between the robot and the goal. The initial joints and orientation of the

robot are randomized. Near the edges of the corridors, we place randomized obstacles

and walls to simulate distractors in the depth image. For the pick task, objects are

spawned on tables of varying dimensions. We used five different objects - a banana,

mug, can, foambrick, and a bottle. The episode is terminated if the robot reaches the

goal or hits an obstacle/table.

3.2 Phase 2 - From Scandots to Depth

Scandots [25, 29] are not directly observable in the real world and must instead be

estimated from the depth image [2]. We train a convolution network C to convert

rendered depth images dt to perception latents z̃t. This latent is passed to a student

policy π′ to predict the actions [ãrobot, ãcam]. This is supervised using L2 loss from

the phase 1 actions. The weights for π′ are initialized using π. We train this policy

using DAgger [40]. For the navigation policy, we optimize

min
Cnav,π′

nav

∥π′
nav(Cnav(dt),xt,gt)− πnav(zt,xt,gt)∥ (3.8)

Note that the teacher policy πnav can be trained using either the coupled or decoupled

approach. Similarly, for the pick policy, we estimate current object position ot from

depth

min
Cpick,π

′
pick

∥∥π′
pick(Cpick(dt),xt,oi)− πpick(zt,xt,ot,oi)

∥∥ (3.9)

13

3. Method

Privileged
Scandots

Phase 1: Learning to see and move

Proprioception

Visible
Scandots zt

LSTM

acamera

arobot

Phase 2: Supervised Learning

CNN

ẑt

LSTM

ârobot

âcamera

π

Pre-initialized weights

L2 Regression

Proprioception

Depth imagePointnet

Coupled visuomotor optimization (CVO)

π

Decoupled visuomotor optimization (DVO)

Phase 1a: Learning to move

Proprioception

zt

LSTM

Phase 1b: Learning to see

Proprioception

Visible
Scandots źt

Phase 2: Supervised Learning (same as above)

LSTM

árobot

ácameraπcamera

LSTM

πrobot

arobot

Pointnet Pointnet

πrobot

Pre-initialized weights

Figure 3.1: SPIN: We learn a policy that uses ego-vision to simultaneously perceive,
interact, and navigate in cluttered environments. We propose two methods: (1)
Coupled Visuomotor Optimization (CVO) learns robot and camera actions at
the same time. We train an RL policy to predict these. We only provide scandots
if they are visible in the agent’s field-of-view allowing the agent to learn to move
its camera and aggregate information about its environment. This is followed by a
phase-2 supervised training where this behavior is distilled into a student network that
operates with ego-centric depth images (2) Decoupled Visuomotor Optimization
(DVO) decouples the action and perception learning into two parts: first the agent
learns to navigate across clutter assuming access to all obstacles. In phase 1b, the
robot learns to move its camera to estimate the relevant information. This is followed
by supervised learning same as above.

14

3. Method

Figure 3.2: Visualizing the simulation benchmark: We illustrate one scenario
of the simulation benchmark here with many obstacles in a narrow passage. The
agent learns to develop whole-body coordination such as the robot’s arm movement
in the last two frames, to reactively adapt and navigate through such cluttered
scenes by actively moving around the camera and aggregating information for efficient
navigation without collisions.

3

15

3. Method

16

Chapter 4

Experimental Setup

We use the Hello Robot Stretch [1] for all our experiments (Figure 4.1). The robot

has 10 actuated joints which include 2 degrees of freedom for the camera, 2 for

base rotation and translation, 2 for the arm, 1 for the gripper fingers, and 3 for

the dexterous wrist. An Intel D435i depth camera is mounted on the top of the

robot head which is actuated using two motors. The learned policy operates at 10Hz

and we do velocity control for the robot base and position control for all the other

joints. Velocity control for the robot base allows us to perform simultaneous robot

translation and rotation for more agile behavior. We train using IsaacGymEnvs [36]

using 8192 environments which takes 6 hours of training for phase 1 and 10 hours of

training time for phase 2 on a RTX 3090.

4.1 Baselines

We compare our proposed approach against the following baselines:

• FixCam: The camera joints are frozen and the camera is forced to look forward.

This baseline shows whether active vision is useful for the mobile manipulation

problem and a fixed viewpoint is not enough.

• Mapping: Instead of using a moving depth camera to get a series of frames this

baseline assumes exteroception is provided in the form of a map. We simulate

exteroceptive noise as in [2, 37].

17

4. Experimental Setup

Base

Arm Lift

Arm Extend

Camera
pan, tilt

Wrist roll,
pitch, yaw

Gripper

Visible scandots in
camera’s field-of-view

Figure 4.1: Visualizing Scandots: (Left) We compute visible scandots by projecting
them to the camera frame and checking if they lie within the image plane, and
Anatomy of the Mobile Manipulator: (Right) of the stretch RE1 robot that
we use experiments with. It has two DoFs in the base, one each for arm lift and
extension, two for the camera, three for the wrist, and one for the gripper.

• Classical: This uses a classical stack to control the base motion. We first

teleoperate the robot for 3-5 minutes to construct a map using the onboard

2D RPLidar using gmapping. Next, move base is used to plan a path through

the environment. Finally, we move the robot to the start, use a Monte Carlo

method [27] to localize, and then execute the plan. Note that this baseline gets

an easier version of the problem since it assumes that the map is known in

advance and does not consider arm motion due to the 2D Lidar. This is used

to test whether reactive navigation is superior to planning.

• NoPointNet: Instead of passing object scandots through a permutation-

invariant PointNet architecture, we concatenate them and use an MLP to

estimate a latent.

4.2 Design Choices and Implementation Details

We make several design choices for the working of our framework. Firstly, the robot

is only allowed to have local visibility in order to develop highly reactive and instant

18

4. Experimental Setup

behaviors. At any time instant t, the agent can perceive its environment within a

range of 2m in all 4 directions – front, back, left, and right based on the camera’s

viewing direction and its field of view. We also empirically observe that given a

larger viewing range, say > 5m which contains information of more than 4-5 nearest

obstacles to the agent makes it a sub-global path planning problem that becomes

harder to optimize, leading to degraded behavior and performance as reported in

Table 4.1.

Visibility Range Success Rate ↑ Distance to Goal (m) ↓
≤ 1m 0.96 0.28
≤ 2m 0.96 0.26
≤ 3m 0.93 0.63
≤ 5m 0.86 1.21

Table 4.1: We report the average success rate and average distance to goal for 10
episodes across 3 seeds each with a different maximum visibility range for the agent at
any time instant. As reported, with broader visibility, the agent shows more frequent
stalling leading to a higher average distance to the goal.

Secondly, contrary to standard teacher-student architectures which use privileged

system information for training the teacher, we restrict the privileged information to

only elements in the robot’s field-of-view that can be retrieved from the ego-view in the

same state. For this, we project the obstacle scandots onto the image plane and pass

only those scandots to the robot observation which lie in the camera’s field of view.

Note that, if this were not the case, the robot would not learn camera movement

in a relevant fashion and also become harder to distill into a depth-conditioned

student policy through only an ego-centric view. Similarly, for the 3-phase decoupled

visuomotor optimization, we induce information bottleneck with a low-dimensional

latent space of size 16 for the scandots latent while training the teacher policy, which

again helps it in attending to most relevant information at any time instant t in order

to make student policy distillation feasible.

Observation Space. The observation space for the robot comprises of joint posi-

tions (q), joint velocities (qvel), end-effector position peef , goal position (pgoal) and

depth latent (ẑ) containing visual information about the environment. Note that

during phase 1 training in simulation, scandots (z) are used as a proxy for faster depth

19

4. Experimental Setup

rendering and later distilled into an egocentric depth-conditioned policy. During real-

world deployment, peef is obtained via forward kinematics and other proprioception

information is obtained directly from the robot.

Action Space. The action space of the robot consists of the velocity for base

rotation as well as translation and joint positions for all the other joints including arm,

camera as well as gripper actions. The gripper action is a continuously varying scalar

that can actuate the gripper to different extents, unlike a binary action indicating an

open or closed gripper.

Reward Scales. We use a distance and forward progress goal for reaching, a binary

reward for grasping, and a continuously shaped reward for lifting the object to a

certain height above the table. We also add a small penalty for the joint velocities

to the arm stretch and camera joints for a temporally smooth gait which permits

easier sim2real transfer as well as more appropriate behaviors leading to less jitter

and more consistent movements on the real hardware.

The reward scales used for goal reaching, grasping and lift rewards are reported in

Table 4.2. Detailed formulations of the reward functions are described in Section 3.1.

Reward Scale
Reach Reward 0.1
Grasp Reward 0.5
Lift Reward 0.8

Joint Velocity Penalty -0.03

Table 4.2: We report the average success rate and average distance to goal for 10
episodes across 3 seeds each with a different maximum visibility range for the agent at
any time instant. As reported, with broader visibility, the agent shows more frequent
stalling leading to a higher average distance to the goal.

Network Architecture and Training Details. The actor and critic for teacher

policy are LSTM with 256 hidden units, with input as proprioception, goal, and

scandots latent. The scandots are compressed using a pointnet architecture for

permutation invariance. The depth network for the student policy takes as input

a low-resolution depth image of size 58 × 87 and comprises of 3-layer convolution

20

4. Experimental Setup

backbone followed by 3 fully-connected layers. We use Adam Optimizer with an

initial learning rate of 1e− 3, entropy coefficient of 5e− 4, and γ as 0.99.

Asynchronous DAgger Training. Since depth rendering on simulators is a

computational bottleneck, we implement an asynchronous version of the DAgger

algorithm which simultaneously collects data in a buffer and trains the student policy

with batches sampled from the collected data using 2 parallel processes. This provides

a 2.5× computational speedup over the non-parallelized version of the algorithm,

allowing faster convergence of the student network. We also find that freezing the

weights of the student actor pre-initialized from the teacher policy for the first 1000

iterations helps as warm-up steps to the depth convolution backbone for stable

training.

Post-processing for clean depth images. To mitigate the issues due to noisy

depth, we post-process the depth obtained from the Intel RealSense Camera using a

real-time fast hole-filling algorithm for depth images [28]. With the camera constantly

in motion, there are additional artifacts with depth images. For this, we additionally

use temporal filtering over the stream of depth images.

Object Detection for Pick Policy Once the robot reaches the goal, we randomly

select an object within its field of view in order to be grasped and fetched to a target

location. For getting the target object location, we run YOLO [24], a real-time object

detection model with an average inference speed of 20ms. We use the corresponding

depth image to deproject the pixel point into a 3D-coordinate which is passed as the

new goal position to the manipulation policy.

21

4. Experimental Setup

Figure 4.2: Camera movement analysis in a trajectory. The agent faces the
camera downward when navigating through a tightly cluttered vicinity as can be
seen in the first, second, and fourth frames, whereas the camera points more toward
the front when there are no immediate obstacles in the direction of movement, as
illustrated in the third frame.

Figure 4.3: Essential Whole-Body Coordination under heavy obstructions.
In the above cases where the obstacles are tightly packed, it is not possible for the
robot to navigate through them avoiding collisions without lifting the arm to an
appropriate height.

22

Chapter 5

Results and Analysis

We evaluate our approach both in simulation as well as real-world. Since doing a lot

of in-the-wild real-world experiments is more time-consuming and cumbersome due

to various practical reasons, we thoroughly evaluate our approach on 6 simulation

benchmarks with multiple scenarios. We explain each of these benchmarks in detail

in Section 5.3.

While simulation benchmarks are useful for fair comparison with baselines as well

as reproducibility, real-world experimenting is essential for determining the efficacy

of our system in truly unstructured and dynamic environments. For this, we test our

system on various real-world environments as shown in Figure 1.2 and benchmark its

performance on 2 real-world setups as described in Section 5.2.

Through simulation experiments, we aim to answer the following questions: (1)

For a mobile agent, is active perception with an actuated camera really necessary, or

is a fixed viewpoint enough? (2) Can an active visual agent outperform a classical

agent that relies on pre-built maps? What are the limitations of the latter? (3)

What are some practical architectural design choices for optimizing mobility and

perception together? We empirically answer each of these questions in Section 5.3.

Our real-world experiments primarily focus on comparing the capabilities of our

reactive, learned system to a classical mapping and then planning approach. For our

method, we observe interesting scenarios demonstrating emergent behaviors during

real-world experiments detailed in Section 5.1 and 5.2.

23

5. Results and Analysis

Reach Pick Place

Scenario 1 Scenario 2 Scenario 1 Scenario 2
Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

Success Rate:
FixCam 1.00 0.53 0.20 1.00 0.50 0.26 0.86 1.00 0.53 0.16 0.97 0.50 0.20
NoPointNet 1.00 0.87 0.57 1.00 0.77 0.63 0.93 1.00 0.83 0.57 1.00 0.77 0.60
Mapping 1.00 1.00 1.00 0.86 1.00 0.97 0.97 1.00 1.00 1.00 1.00 0.90 0.97

SPIN (DVO) 1.00 1.00 0.96 1.00 1.00 0.90 0.97 1.00 1.00 0.90 1.00 0.90 0.90
SPIN (CVO) 1.00 0.97 0.93 1.00 1.00 0.93 0.97 1.00 0.97 0.90 1.00 0.97 0.93

Average Episode Duration (s):
FixCam 6.86 23.48 38.94 6.54 27.24 42.36 11.00 7.25 17.06 41.07 8.02 20.24 45.98
NoPointNet 6.30 14.87 33.25 7.22 15.04 34.09 9.25 4.88 15.22 32.00 7.89 18.49 37.42
Mapping 6.20 14.02 26.24 6.55 12.28 28.05 4.98 6.77 9.85 22.29 4.86 12.62 26.12

SPIN (DVO) 5.92 16.25 28.44 7.32 17.12 32.04 9.24 7.22 18.45 34.24 9.40 15.98 41.24
SPIN (CVO) 6.24 14.00 23.57 6.55 15.81 29.31 5.74 6.51 13.39 27.25 8.03 12.79 31.25

Table 5.1: We evaluate the success rate on 10 random environments with an average
of 3 fixed seeds across all difficulty scenarios based on obstacle course. We report the
success rate of each part of the task including reaching (Reach), picking (Pick), and
placing (Place) the target object in the desired location. The place task requires the
agent to bring back the object across the obstacles near its start location.

5.1 Emergent Behavior

Large-scale simulation pre-training allows our robot to learn emergent behaviors to

avoid obstacles in cluttered scenarios, even in the presence of dynamic obstacles.

We see several such behaviors during real-world experimentation which were neither

planned nor specifically trained for in simulation but emerge as a result of a large

diversity of procedural environments seen during training. We illustrate three such

scenarios in Figure 5.1. As highlighted in several frames, Figure ?? depicts robustness

to adversarially placed dynamic obstacles that constantly block the path of the robot.

It needs to continuously perceive its environment in multiple directions and quickly

react to those changes. We observe that in cases when there is no feasible path for the

robot to navigate through, it also learns to stop and look around in order to replan its

path and avoid collisions. Similarly, in ?? we see that as soon as a floating obstacle

is suddenly placed in front of the robot, it shows spatial awareness and whole-body

coordination and lowers its arm in order to navigate through, instead of turning and

replanning the entire base movement which would take more time. In Figure ??,

we see an adaptive rerouting mechanism where the agent changed its straight line

motion as soon as a person kicks in a box in front of it. These behaviors emerge

24

5. Results and Analysis

in real-time and show the ability of our system to continuously perceive, adapt and

react to changes in its environment which is very hard for a classical planner.

Qualitative results are available at https://spin-robot.github.io/. Along

with emergent behavior where the robot continuously avoids dynamic obstacles

without seeing them during training, we also observe generalization from heavily

cluttered indoor to dim-lit outdoor environments. The agent also demonstrates

reactive whole-body coordination where it moves its arm up or down to efficiently

navigate across floating obstacles instead of re-routing and re-planning base movement,

demonstrating 3D spatial awareness as shown in many video resu.

5.2 Real-world results

We test on two real-world scenes - an academic lab and an open study area with

couches and a kitchenette next to it with both static as well as dynamic obstacles.

Both these environments have unstructured clutter and humans as dynamic obstacles

that makes it challenging for the agent to navigate through these spaces. For each

environment, we have 4 static obstacles and at most 1 dynamic obstacle thrown

adversarially. We compare against a classical baseline that uses an A1 RPLidar with

gmapping and move base for planning. We first teleoperate with the robot for 3-5min

to create a map. Note that this provides the added advantage that this baseline

knows the entire map in advance. Since the Lidar cannot see objects above the plane

we only test on ground obstacles and ignore floating ones that require whole-body

coordination. We run the planner to only plan the base motion. In Tab. 5.2 we

compare the success rate and average number of collisions. An episode succeeds when

the robot reaches within 15cm of the specified goal position. Overall, our method is

able to succeed 20-40% more than the classical baseline. This is because the classical

method suffers from noise is not able to recover from a noisy map, and gets stuck,

whereas the learned policy learns to look at the obstacles again and again to improve

its uncertainty estimates and constantly updates its knowledge of where obstacles

are. This ability is even more apparent in the dynamic scenario (Table 5.2) where

the classical has a near zero success rate while our method is able to succeed. It

has the emergent ability to avoid a new obstacle in space, whereas the classical

baseline relies on the pre-built map and fails entirely. Note that, we do not train

25

https://spin-robot.github.io/

5. Results and Analysis

our policy with dynamic obstacles in simulations, but this behavior comes out as a

by-product of lots of diverse experience in simulation. We design the observation

space such that everything is relative to the robot. This allows the agent to perceive

the environment as moving within its local reference frame, allowing generalization

to dynamic obstacles.

5.3 Simulation results

The simulation benchmarks have 6 scenes, 2 of each easy, medium, and hard envi-

ronments. Easy environments have 0-1 obstacles within a 5m goal range. Medium

environments have 2-3 obstacles within 5m and the hard ones have heavily cluttered

scenes with 5 obstacles within 5m. In each of these cases, one scene (Scenario 1)

comprises a tight 1m wide long corridor which bounds the agent to not take shortcuts

and reach the goal only by navigating through obstacles. The second (Scenario 2) is

an L-shaped corridor with a goal at the end. The evaluation metrics are reported

as an average of 10 episodes with random agent and obstacle initialization across 3

seeds.

We compare against various baselines to study the impact of our design decisions

in Tab. 5.1. For each scenario, we report the success rate and average episode

length across 10 rollouts. Our method achieves ≈ 33% higher success rate than

the NoPointNet baseline since permutation invariant scandots latent makes the

optimization problem easier and also generalizes better at test time. Ours achieves ≈
68% higher success rate than the FixCam baseline with the camera pointing straight

ahead. This is because in some cases the robot encounters obstacles in its peripheral

vision and our policy can change the camera angle to avoid them. Active vision is

necessary for the robot to move effectively through a cluttered environment. Our

method is significantly better than the Mapping baseline because the systematic

noise in the object locations makes it hard for the robot to avoid them, especially in

cluttered environments, whereas our method can continuously estimate the position

of obstacles while it is moving and adapt the motion online. Finally, we compare

between the decoupled (DVO) and coupled (CVO) variants of our method and find

that they achieve similar performance. We hypothesize that the partial observability

and joint optimization for camera and robot actions in CVO training allows the

26

5. Results and Analysis

Static Obstacles Dynamic Obstacles

Scenario 1

Ours Classical Ours Classical
Average Success 0.8 0.6 0.6 0.0
Average # Collisions 1.0 0.4 1.6 1.2

Scenario 2

Ours Classical Ours Classical
Average Success 0.8 0.4 0.6 0.2
Average # Collisions 0.8 0.6 1.6 1.0

Table 5.2: We compare our method against a classical mapping and planning baseline
for navigation in cluttered scenes with both static as well as dynamic obstacles.
The classical performs reasonably in static environments, it quickly breaks with
dynamic obstacles like humans walking around, whereas our method shows more
robust reactivity to such obstacles even without being trained with dynamic obstacles
in simulation. We report the success rate of our method compared with the baseline.
For the classical baseline, we teleoperate the robot for 2-3 min.

agent to quickly discover optimal shortcuts that are otherwise harder to distill from a

privileged teacher policy.

5.4 Directly training from depth images.

We compare training from depth (red) and our 2-phase method with scandots (blue)

in a medium-difficulty environment as illustrated in Figure 5.2. Depth policy has

< 1% success after 22h training, whereas total (phase1 + 2) wall-clock time for SPIN

is 16h (6+10). The simulator gives ≈ 50k fps for scandots (8192 envs) and ≈ 820

fps for depth (256 environments – maximum parallel environments that can fit on

a single GPU), causing 61× slow-down bottleneck. This shows the necessity and

efficiency of our proposed 2-phased coupled visuomotor optimization approach using

scandots over naively training an RL policy from depth observations.

27

5. Results and Analysis

Scenario 1 Scenario 2
E M H E M H

I 0.93 0.40 0.20 0.97 0.40 0.20
II 0.70 0.30 0.10 0.67 0.47 0.10
III 0.86 0.33 0.10 0.77 0.30 0.10
IV 1.00 0.53 0.20 1.00 0.50 0.26

Table 5.3: Success rate for 4 FixCam poses in easy (E), medium (M), hard (H)
environments.

5.5 Analysing camera and base motion

Fixed Camera Baseline We run FixCam baseline with 4 camera poses (Figure

??) – I: Front, II: Down, III: Down and slightly front, IV: Front and slightly down

on easy (E), medium (M), hard (H) environments. I, IV with max FOV have much

lower success than SPIN, implying active vision is required in clutter. Pose (IV

depicts the FixCam baseline referred to in the paper.

Camera Movement and Camera Observations: We show camera trajectory in

Figure 5.3. When navigating through the clutter (frames 1, 2, 4), it tilts downward

to maximize FOV near the base, but with no nearby obstacle (frame 3), it faces front.

Detailed movement of the camera can be seen in the video demos on the website

along with paired RGBD images for rollouts. RGB frames are only for analysis, the

policy only observes depth images.

5.6 Necessity for Active Vision and Whole-body

coordination

Active Vision: In principle, a multi-camera system should be equivalently adequate,

however, most views will contain insignificant information and require large models

to process. With limited onboard compute on most robots and the requirement for

real-time reactivity (< 0.1s), it becomes infeasible to deploy them with larger vision

backbones.

28

5. Results and Analysis

Whole-body coordination (WBC): Under heavy obstructions, the robot cannot

move without collision if the base & arms control are decoupled. Figure 5.4 shows

such a scenario where a fixed arm and gripper close to the base would fail without

WBC, which also allows it to use the extra degree of freedom to find shorter and

more efficient paths.

5.7 Classical Navigation Baseline

As discussed in Section 4, we compare our method with a classical map-based baseline

which uses the 2D RPLidar to build an environment map and then creates a plan

using the Monte Carlo method. We observe that for > 90% of the cases, the robot is

able to build a map and find a feasible path, however, it is not able to execute the

planned path for > 85% cases. This issue arises due to noisy control or unexpected

wheel motion due to terrain differences. Our method is able to overcome such failures

due to constant feedback and reactive improvisation through proprioception as well

as depth, which allows it to deal with uncertainties without requiring a pre-built

environment map. Moreover, due to localization inaccuracies, the baseline method is

often unable to reach the intended goal if not initialized in the same orientation as

was used before building the map. Contrary to that, we heavily randomize all degrees

of freedom as well as the robot orientation at the beginning of every rollout during

test time. Moreover, since the robot has a 2D Lidar installed on it, we do not test it

in environments with floating obstacles which would require 3D understanding and

whole-body coordination to navigate through clutter. We show some visualizations

of the map built and plans created by the robot in Figure 5.5.

29

5. Results and Analysis

(a) While our simulation lacks dynamic obstacles, the robot can still evade them
because the policy continuously adjusts its plan.

(b) If there is an overhanging obstacle, the robot lowers its arm to avoid it instead of
turning around, thereby displaying agile whole-body coordination.

(c) The robot adapts its plan on-the-fly to obstacles by turning around once the
camera sees it.

Figure 5.1: Types of emergent behavior exhibited by SPIN (a) dynamic obstacle
avoidance (b) whole-body movement (c) adaptive rerouting.

30

5. Results and Analysis

Figure 5.2: Success rate for scandots (blue) vs depth (red). The depth-based policy
attains close to 0 performance even after 400k env steps of training, whereas the
policy trained with scandots increasingly improves over time.

Figure 5.3: Camera movement analysis in a trajectory. The agent faces the camera
downward when navigating through a tightly cluttered vicinity as can be seen in the
first, second, and fourth frame, whereas the camera points more toward the front
when there are no immediate obstacles in the direction of movement, as illustrated in
the third frame.

31

5. Results and Analysis

Figure 5.4: Scenarios where whole-body coordination is essential under heavy obstruc-
tions. In the above cases where the obstacles are tightly packed, it is not possible for
the robot to navigate through them avoiding collisions without lifting the arm to an
appropriate height.

Figure 5.5: Visualizations of environment map built using 2D Lidar. The robot is
localized as per its initial position and orientation.

32

Chapter 6

Discussion

We present SPIN, an approach to train embodied mobile robots that can simulta-

neously perceive, interact, and navigate cluttered environments using a data-driven

approach. We show that our RL-based reactive approach is effective for active whole-

body control-perception problem, traditionally addressed via non-reactive planning

methods. With recent interest in humanoid and other mobile robots with actuated

cameras, on neck for instance, SPIN is a cost-effective agile whole-body control

solution with limited sensing and compute.

Although our robot can perceive geometry and avoid obstacles using depth, it

still operates on stereo-matched depth instead of raw RGB. This leads to scenarios

where it can bump into glass obstacles or shiny surfaces. In the future, we would like

to use RGB for perception.

33

6. Discussion

34

Bibliography

[1] Stretch by hello robot. https://hello-robot.com/. 3, 4

[2] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged
locomotion in challenging terrains using egocentric vision. In Conference on
Robot Learning, pages 403–415. PMLR, 2023. 3.2, 4.1

[3] Ananye Agarwal, Shagun Uppal, Kenneth Shaw, and Deepak Pathak. Dexterous
functional grasping, 2023. 2.4

[4] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, et al. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691, 2022. 2.4

[5] Sarthak Bhagat and P.B. Sujit. Uav target tracking in urban environments using
deep reinforcement learning. In 2020 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 694–701, 2020. doi: 10.1109/ICUAS48674.2020.
9213856. 1

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph
Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog,
Jasmine Hsu, et al. Rt-1: Robotics transformer for real-world control at scale.
arXiv preprint arXiv:2212.06817, 2022. 2.4

[7] Wolfram Burgard, Dieter Fox, Daniel Hennig, and Timo Schmidt. Estimating
the absolute position of a mobile robot using position probability grids. In
Proceedings of the national conference on artificial intelligence, pages 896–901,
1996. 2.1

[8] Ben Burgess-Limerick, Chris Lehnert Jurgen Leitner, and Peter Corke. En-
abling failure recovery for on-the-move mobile manipulation. arXiv preprint
arXiv:2305.08351, 2023. 2.4

[9] Anthony R Cassandra, Leslie Pack Kaelbling, and James A Kurien. Acting
under uncertainty: Discrete bayesian models for mobile-robot navigation. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems. IROS’96, volume 2, pages 963–972. IEEE, 1996. 2.1

35

https://hello-robot.com/

Bibliography

[10] Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram Yenamandra, Dhruv
Shah, So Yeon Min, Kavit Shah, Chris Paxton, Saurabh Gupta, Dhruv Batra,
et al. Goat: Go to any thing. arXiv preprint arXiv:2311.06430, 2023. 2.2

[11] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and
Ruslan Salakhutdinov. Learning to explore using active neural slam. arXiv
preprint arXiv:2004.05155, 2020. 2.2

[12] Prithvijit Chattopadhyay, Judy Hoffman, Roozbeh Mottaghi, and Aniruddha
Kembhavi. Robustnav: Towards benchmarking robustness in embodied naviga-
tion. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 15691–15700, 2021. 2.2

[13] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies
for navigation. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=SyMWn05F7. 2.2

[14] Toon Van de Maele, Tim Verbelen, Ozan Çatal, Cedric De Boom, and B. Dhoedt.
Active vision for robot manipulators using the free energy principle. Frontiers in
Neurorobotics, 15, 2021. URL https://api.semanticscholar.org/CorpusID:

232116552. 2.3

[15] Yilun Du, Chuang Gan, and Phillip Isola. Curious representation learning for
embodied intelligence. 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 10388–10397, 2021. URL https://api.semanticscholar.

org/CorpusID:233481519. 2.3

[16] Yuqing Du, Daniel Ho, Alex Alemi, Eric Jang, and Mohi Khansari. Bayesian
imitation learning for end-to-end mobile manipulation. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 5531–5546. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/v162/du22b.html. 2.4

[17] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov localization for
mobile robots in dynamic environments. Journal of artificial intelligence research,
11:391–427, 1999. 2.1

[18] Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-body control: learning
a unified policy for manipulation and locomotion. In Conference on Robot
Learning, pages 138–149. PMLR, 2023. 2.4

[19] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra
Malik. Cognitive mapping and planning for visual navigation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2616–2625,
2017. 2.2

[20] J-S Gutmann, Wolfram Burgard, Dieter Fox, and Kurt Konolige. An experi-

36

https://openreview.net/forum?id=SyMWn05F7
https://api.semanticscholar.org/CorpusID:232116552
https://api.semanticscholar.org/CorpusID:232116552
https://api.semanticscholar.org/CorpusID:233481519
https://api.semanticscholar.org/CorpusID:233481519
https://proceedings.mlr.press/v162/du22b.html

Bibliography

mental comparison of localization methods. In Proceedings. 1998 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Innovations in The-
ory, Practice and Applications (Cat. No. 98CH36190), volume 2, pages 736–743.
IEEE, 1998. 2.1

[21] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968. 2.1

[22] Jesse Haviland, Niko Sünderhauf, and Peter Corke. A holistic approach to
reactive mobile manipulation. IEEE Robotics and Automation Letters, 7(2):
3122–3129, 2022. 2.4

[23] Jiaheng Hu, Peter Stone, and Roberto Mart́ın-Mart́ın. Causal policy gradient for
whole-body mobile manipulation. arXiv preprint arXiv:2305.04866, 2023. 2.4

[24] Glenn Jocher. YOLOv5 by Ultralytics, May 2020. URL https://github.com/

ultralytics/yolov5. 4.2

[25] Dvij Kalaria, Shreya Sharma, Sarthak Bhagat, Haoru Xue, and John M. Dolan.
Wroom: An autonomous driving approach for off-road navigation. 2024. URL
https://api.semanticscholar.org/CorpusID:269149459. 3.2

[26] Oussama Khatib. The potential field approach and operational space formulation
in robot control. In Adaptive and Learning Systems: Theory and Applications,
pages 367–377. Springer, 1986. 2.1

[27] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3,
pages 2149–2154 vol.3, 2004. doi: 10.1109/IROS.2004.1389727. 4.1

[28] Jason Ku, Ali Harakeh, and Steven L Waslander. In defense of classical image
processing: Fast depth completion on the cpu. In 2018 15th Conference on
Computer and Robot Vision (CRV), pages 16–22. IEEE, 2018. 4.2

[29] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid
motor adaptation for legged robots. 2021. 3.2

[30] Mathieu Labbé and François Michaud. Rtab-map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale and long-term
online operation. Journal of field robotics, 36(2):416–446, 2019. 2.1

[31] Steven M LaValle, James J Kuffner, BR Donald, et al. Rapidly-exploring random
trees: Progress and prospects. Algorithmic and computational robotics: new
directions, 5:293–308, 2001. 2.1

[32] Samuel Li, Sarthak Bhagat, Joseph Campbell, Yaqi Xie, Woojun Kim, Katia P.
Sycara, and Simon Stepputtis. Shapegrasp: Zero-shot task-oriented grasping

37

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://api.semanticscholar.org/CorpusID:269149459

Bibliography

with large language models through geometric decomposition. 2024. 2.4

[33] I-Chun Arthur Liu, Shagun Uppal, Gaurav S. Sukhatme, Joseph J. Lim, Peter
Englert, and Youngwoon Lee. Distilling motion planner augmented policies into
visual control policies for robot manipulation. In Conference on Robot Learning,
2021. 2.4, 3.1.2

[34] Jun S Liu and Rong Chen. Sequential monte carlo methods for dynamic systems.
Journal of the American statistical association, 93(443):1032–1044, 1998. 2.1

[35] Haokuan Luo, Albert Yue, Zhang-Wei Hong, and Pulkit Agrawal. Stubborn: A
strong baseline for indoor object navigation. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3287–3293. IEEE,
2022. 2.2

[36] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier
Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur
Handa, and Gavriel State. Isaac gym: High performance gpu-based physics
simulation for robot learning, 2021. 4

[37] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun,
and Marco Hutter. Learning robust perceptive locomotion for quadrupedal robots
in the wild. Science Robotics, 7(62):eabk2822, 2022. 4.1

[38] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a
versatile and accurate monocular slam system. IEEE transactions on robotics,
31(5):1147–1163, 2015. 2.1

[39] Deepak Pathak, Yide Shentu, Dian Chen, Pulkit Agrawal, Trevor Darrell, Sergey
Levine, and Jitendra Malik. Learning instance segmentation by interaction. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 2123–21233, 2018. URL https://api.semanticscholar.org/

CorpusID:49349927. 2.3

[40] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635. JMLR Workshop and Conference Proceedings, 2011. 3.2

[41] Stergios I Roumeliotis and George A Bekey. Bayesian estimation and kalman
filtering: A unified framework for mobile robot localization. In Proceedings
2000 ICRA. Millennium conference. IEEE international conference on robotics
and automation. Symposia proceedings (Cat. No. 00CH37065), volume 3, pages
2985–2992. IEEE, 2000. 2.1

[42] Muhamad Risqi U Saputra, Andrew Markham, and Niki Trigoni. Visual slam
and structure from motion in dynamic environments: A survey. ACM Computing
Surveys (CSUR), 51(2):1–36, 2018. 2.1

38

https://api.semanticscholar.org/CorpusID:49349927
https://api.semanticscholar.org/CorpusID:49349927

Bibliography

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
3.1.2

[44] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. Openvslam: A versatile
visual slam framework. In Proceedings of the 27th ACM International Conference
on Multimedia, pages 2292–2295, 2019. 2.1

[45] Sebastian Thrun. Particle filters in robotics. In UAI, volume 2, pages 511–518.
Citeseer, 2002. 2.1

[46] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust
monte carlo localization for mobile robots. Artificial Intelligence, 128(1):99–
141, 2001. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(01)
00069-8. URL https://www.sciencedirect.com/science/article/pii/

S0004370201000698. 2.1

[47] Shagun Uppal, Sarthak Bhagat, Devamanyu Hazarika, Navonil Majumder, Sou-
janya Poria, Roger Zimmermann, and Amir Zadeh. Multimodal research in
vision and language: A review of current and emerging trends. Information
Fusion, 77:149–171, 2022. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.
2021.07.009. URL https://www.sciencedirect.com/science/article/pii/

S1566253521001512. 2.2

[48] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995. 2.1

[49] Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990. 3.1.2

[50] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh,
Manolis Savva, and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames. arXiv preprint arXiv:1911.00357, 2019. 2.2

[51] Denis F Wolf and Gaurav S Sukhatme. Mobile robot simultaneous localization
and mapping in dynamic environments. Autonomous Robots, 19:53–65, 2005. 2.1

[52] Josiah Wong, Albert Tung, Andrey Kurenkov, Ajay Mandlekar, Li Fei-Fei, Silvio
Savarese, and Roberto Mart́ın-Mart́ın. Error-aware imitation learning from
teleoperation data for mobile manipulation. In Conference on Robot Learning,
pages 1367–1378. PMLR, 2022. 2.4

[53] Naoki Yokoyama, Alexander William Clegg, Eric Undersander, Sehoon Ha,
Dhruv Batra, and Akshara Rai. Adaptive skill coordination for robotic mobile
manipulation. arXiv preprint arXiv:2304.00410, 2023. 2.4

[54] Chao Yu, Zuxin Liu, Xin-Jun Liu, Fugui Xie, Yi Yang, Qi Wei, and Qiao
Fei. Ds-slam: A semantic visual slam towards dynamic environments. In 2018
IEEE/RSJ international conference on intelligent robots and systems (IROS),

39

https://www.sciencedirect.com/science/article/pii/S0004370201000698
https://www.sciencedirect.com/science/article/pii/S0004370201000698
https://www.sciencedirect.com/science/article/pii/S1566253521001512
https://www.sciencedirect.com/science/article/pii/S1566253521001512

Bibliography

pages 1168–1174. IEEE, 2018. 2.1

40

	1 Introduction
	2 Related Work
	2.1 Classical Approaches
	2.2 Learning-based navigation
	2.3 Active Perception
	2.4 Mobile Manipulation

	3 Method
	3.1 Phase 1 - Learning Simultaneous Perception, Interaction and Navigation
	3.1.1 Pick Policy
	3.1.2 Navigation Policy

	3.2 Phase 2 - From Scandots to Depth

	4 Experimental Setup
	4.1 Baselines
	4.2 Design Choices and Implementation Details

	5 Results and Analysis
	5.1 Emergent Behavior
	5.2 Real-world results
	5.3 Simulation results
	5.4 Directly training from depth images.
	5.5 Analysing camera and base motion
	5.6 Necessity for Active Vision and Whole-body coordination
	5.7 Classical Navigation Baseline

	6 Discussion
	Bibliography

