
Learning on the Move: Integrating

Action and Perception for

Mobile Manipulation

Shagun Uppal

CMU-RI-TR-24-26

May 21

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Professor Deepak Pathak, chair
Professor Katerina Fragkiadaki

Ananye Agarwal

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.



Copyright © 2024 Shagun Uppal. All rights reserved.



To my parents, Sarita and Naresh Uppal.



iv



Abstract

While there has been remarkable progress recently in the fields of ma-
nipulation and locomotion, mobile manipulation remains a long-standing
challenge. Compared to locomotion or static manipulation, a mobile
system must make a diverse range of long-horizon tasks feasible in un-
structured and dynamic environments. While the applications are broad
and interesting, there are a plethora of challenges in developing these sys-
tems such as coordination between the base and arm, reliance on onboard
perception for perceiving and interacting with the environment, and most
importantly, simultaneously integrating all these parts together. Prior
works approach the problem using disentangled modular skills for mobility
and manipulation that are trivially tied together. This causes several
limitations such as compounding errors, delays in decision-making, and
no whole-body coordination. In this work, we present a reactive mobile
manipulation framework that uses an active visual system to consciously
perceive and react to its environment. Similar to how humans leverage
whole-body and hand-eye coordination, we develop a mobile manipulator
that exploits its ability to move and see, more specifically – to move in
order to see and to see in order to move. This allows it to not only move
around and interact with its environment but also, choose “when” to
perceive “what” using an active visual system. We observe that such
an agent learns to navigate around complex cluttered scenarios while
displaying agile whole-body coordination using only ego-vision without
needing to create environment maps.
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Chapter 1

Introduction

Consider the example shown in Figure 1.1. A person is trying to carry a coffee cup

through clutter. This not only requires navigational planning from start to goal but

planning of the whole body to avoid obstacles along the way. Furthermore, due to

ego-centric vision, the person needs to actively look around to gather the presence

of obstacles. This general form of mobile manipulation task necessitates a coupled

understanding of whole-body control with active perception. This capability is one of

the fundamental and frequently encountered tasks in embodied cognition.

The dominant paradigm to tackle this problem is through classical planning-

based control which requires apriori knowledge about the precise location of all

the obstacles along with a detailed map of the environment. In most real-world

scenarios, this assumption is impractical due to computational reasons, but more

importantly, because environments are dynamic and objects keep moving around in

general. Furthermore, relying on precise measurement of scenes for control does not

allow agents to reactively improvise to changes in their environment. Practically, even

when the complete environment map is known apriori, joint planning for a system

with high degrees of freedom, say a mobile base with an arm, is often intractable and

too expensive to be deployed in real-time.

Humans, on the other hand, do not rely on precise known estimates of object

locations and instead use ego-centric vision to navigate around obstacles in real time.

In an unfamiliar environment, where to look is informed by where they want to move

(called ‘active perception’), and how they move in return determines what they can

1



1. Introduction

Figure 1.1: Human and robot illustration of whole-body navigation through the clutter.

see immediately afterward. This integrated mobility and perception allows us to see,

adapt, and react to maneuver through unseen heavily cluttered environments [5].

This work presents SPIN, an end-to-end approach to S imultaneous Perception,

Interaction, and N avigation. We train a single model that not only outputs low-level

controls for the robot body and arm but also predicts where should the robot’s

ego-centric camera look at each time step while moving its whole body by avoiding

obstacles.

We train our approach via reinforcement learning (RL), and to get around the

computational bottleneck of rendering depth images, we use a teacher-student training

framework where robot behavior is first learned using RL with access to visible object

scandots and then distilled into a policy that operates from ego-depth using supervised

learning. We evaluate across 6 benchmarks in simulation ranging from easy, medium,

and hard difficulty, and two real-world environments with a similar level of clutter

as the hard environments in simulation and also add dynamic, adversarial obstacles.

We find that our method outperforms classical methods and baselines which do not

use active vision. We also observed emergent behaviors, including dynamic obstacle

avoidance which the robot did not see during training time.

Our approach presents a radical hypothesis that the traditionally non-reactive
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1. Introduction

planning approach to whole-body control can indeed be cast into a reactive model – i.e.

– single end-to-end policy trained by RL. Despite a big departure from optimal control

literature, this hypothesis is not as surprising since agile whole-body coordination

and fast obstacle avoidance in humans are developed into muscle memory over time.

Figure 1.2: Learning to SPIN: Our robot learns to S imultaneously Perceive, Interact,
and N avigate around cluttered unstructured environments in a whole-body fashion. The
robot has an actuated camera with a limited field of view that it must control to get
information about its environment. The motion and perception problem are tightly coupled
since what the robot knows about the environment influences how it can move and vice
versa. We show results in a large variety of scenarios both indoors and outdoors with
different obstacles like boxes and furniture. Our robot can pick up different objects like
cups, and utensils. Video demos at https://spin-robot.github.io

3
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Chapter 2

Related Work

2.1 Classical Approaches

The problem of navigating robots around obstacles has been studied for decades.

Classical methods solve the motion and perception problem separately. First, these

methods build a map of the environment using the robot’s onboard sensors such

as cameras, proprioception, and Lidar or infrared [9, 20]. Kalman-filter-based [48]

techniques are often used to track positions, but they can’t represent multi-modal

ambiguities or recover after tracking failure [41]. Grid-based methods solve this but

suffer from high memory usage [7]. Modern SLAM approaches ORBSLAM3 [38],

OpenVSLAM [44] and RTAB [30] use variations of a method that relies on particle

filters [46] to hold a multi-modal belief of the robot’s location in the map [34, 45].

SLAM is especially challenging in dynamic environments due to the confounding

motion of other agents [17, 42, 51, 54]. Once a map is built, a path can be planned

over it. Exact paths can be computed using graph search algorithms [21], probabilistic

methods which are faster but yield approximately optimal solutions [31] or potential-

field based methods [26]. All of these assume perfect perception and re-planning is

usually expensive making them susceptible to noise and precluding reactive behavior.

5



2. Related Work

2.2 Learning-based navigation

In recent years, learning has been used to improve the classical navigation stack [47].

Modular approaches [10, 11, 19, 35] still leverage SLAM-based methods to build a

map but use learning or heuristic changes to get priors for the best possible route

to a goal. End-to-end approaches forgo maps entirely and train a policy to go from

images to robot commands to go to a goal location [12, 13, 50]. We also take the

end-to-end approach but unlike prior work where what the robot sees is fixed based

on its position, in our case, it must move its head and actively choose what it sees

making optimization more challenging.

2.3 Active Perception

An embodied agent that can move around, act as well as observe its environment

possesses abundant information to continuously generate new data for itself which

is missing while learning from passive data. A continually adapting agent acts on

its curiosity to move around and actively change its surroundings to identify its own

failure cases. To model this curiosity, several prior works such as [14, 15, 39] develop

active vision frameworks, where an agent is driven by inconsistencies in its own visual

estimation of its surroundings when perceived from novel viewpoints. In this work, we

couple active perception with learning low-level actions for embodied mobile agents

in order for them to reactively adapt, navigate, and interact with their environment.

2.4 Mobile Manipulation

While autonomous stationary manipulation has seen leaps in functional grasping

[3, 32], as well as in several obstructed settings [33], Mobile Manipulation learning still

poses several challenges. A mobile base and arm together can complete useful in-the-

wild manipulation but present a more challenging control problem. Imitation learning

techniques focus on collecting large datasets in a variety of settings with a dexterous

6-DOF arm and a wheeled mobile base using teleoperation [4, 6, 8, 16, 22, 52].

Because of the high dimensionality of mobile manipulation systems, there are also

6



2. Related Work

control methods that leverage synergies between both the base and the arm and plans

together. [18, 22, 23, 53].
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Chapter 3

Method

Our goal is for the mobile manipulator to navigate and manipulate objects while

avoiding obstacles in cluttered environments. In this work, we use the Stretch Hello

Robot [1] as shown in Figure 4.1 as our embodied mobile manipulation agent. It

shares anatomical similarities with a human, bringing with it many of the same

challenges. First, it has a limb in the form of an arm that can be raised and lowered,

so the robot must constantly move the arm to avoid any obstacles. Second, it has

an actuated camera with a very limited field of view (87◦ horizontal, 58◦ vertical),

so it needs to constantly look around to simultaneously plan ahead and look out for

unexpected obstacles. Imagine yourself walking through a cluttered cabinet, there

are too many obstacles around to keep track of, and you can’t see all of them at once,

so you must keep looking all around your body to plan a path through the clutter

but also make sure you don’t hit anything you missed along the way. Unlike regular

walking where our eyes mostly point straight ahead and the path is clear, here you

must actively choose what to perceive for simultaneously planning ahead and also

doing reactive fixes to your planned path. Since all the obstacles cannot be perceived

at a single glance, you must have spatial awareness and know where the obstacle you

saw some time ago is right now in relation to your body. Note that this entire process

is very different from the classical approach, where perception, planning, and obstacle

avoidance are separate processes executed separately and in sequence. Further, it is

assumed that the output of each is perfect, whereas this is rarely the case in practice

in our unstructured world.

9



3. Method

To deal with this challenging, entangled problem setup, we take a data-driven

approach. We train our robot to navigate inside procedurally generated clutter in

simulation using RL. The robot is only allowed to perceive the part of its environment

that is visible to the camera and learns to coordinate its arm, base, and camera

motion such that it can plan ahead and reactively adjust to obstacles.

In practice, since training with RL requires many samples and rendering depth is

inefficient (Section 5.4), we divide training into two phases. In the first phase, we learn

mobile manipulation behaviors via RL using scandots, which is a cheap-to-compute

variant of depth and in phase 2 we train a CNN for perception from depth images as

illustrated in Figure 3.1. An example illustration of scandots in the environment is

depicted in Figure 4.1.

3.1 Phase 1 - Learning Simultaneous Perception,

Interaction and Navigation

In this stage, we use RL to learn to control all the joints of the robot to navigate

clutter and pick target objects. Since rendering depth images directly from the robot

camera is expensive, we must instead use an ersatz version that contains the same

information and is cheap to compute. We do so using scandots st which are the XYZ

coordinates of the bounding box of each obstacle. To specify which object to pick,

we give the initial location of the object (before it is touched by the robot) oi. In

lieu of the object image, we give the current location of the object ot. Here, scandots

st and object location ot are privileged information which must later be estimated

from depth images. Given this information, we train two separate LSTM policies

πnav and πpick. At test time, the nav policy is activated to reach a target location and

we switch to the pick one once the robot gets close to the object.

3.1.1 Pick Policy

This accesses proprioception xt consisting of robot joint angles and velocities qt, q̇t,

base linear and angular velocity vt, ωt. For perception, it gets the object’s initial and

10



3. Method

current location oi, ot and predicts robot and camera actions.

[arobot, acam] = πpick(xt, F (ot,xt),oi) (3.1)

where F is a masking function that masks object position ot if it is not in the field of

view of the camera. This is required since object position can only be estimated from

depth in phase 2 if it is visible.

3.1.2 Navigation Policy

Training this policy requires a complex joint visuomotor optimization since robot

motion is dependent on its knowledge of the environment which in turn depends on

how the robot moves. We present two approaches to tackle this problem.

Coupled Visuomotor Optimization (CVO) Here, we set up a partially observable

environment for the robot and let the RL algorithm do the joint optimization using

large-scale data. In particular, the policy gets proprioception xt and only visible

scandots s̃t = F (st,xt) as observation and has to predict both the camera and the

robot actions. Since the scandots are permutation invariant, we pass them through a

trainable point-net architecture P to obtain compressed latent zt = P (̃st) that we

pass to the policy

[arobot, acam] = πnav(xt, zt) (3.2)

This presents a tough optimization landscape because the observations at each step

are strongly dependent on acam. For instance, if the camera swivels around the

observations at the next timestep may look completely different. Indeed, we observe

that this requires billions of samples inside a GPU-accelerated simulator to optimize

which may not always be feasible in practice.

Decoupled Visuomotor Optimization (DVO) To ease the optimization process,

we learn the robot and camera actions separately. First, we learn how to move by

giving the robot access to all available scandots zt = P (st) in a local vicinity. Since

the robot sees everything, the camera motion is irrelevant and we just predict the

robot’s motion

arobot = π1a
nav(xt, zt,gt) (3.3)

11



3. Method

where gt is the goal with respect to the base. Using this policy as supervision, we

train another policy to predict both camera and robot motions with access to only

visible scandots ẑt = P (F (st,xt)). This policy is trained via RL to predict the robot

actions from phase 1 policy arobot. This optimization forces the student policy to

learn camera behaviors that capture information about the environment that are

needed to move in the optimal fashion. We initialize π1b
nav from the weights of π1a

nav

min
π1b
nav

∥ârobot − arobot∥

s.t. [ârobot, âcam] = π1b
nav(xt, ẑt,gt) (3.4)

This decoupled approach learns to move and see in separate phases which eases

the optimization burden. In principle, the coupled optimization is better since it is

possible that the 1a policy may learn to exploit privileged information in a way that

the 1b policy cannot estimate it for any set of camera movements. However, in our

setting, this did not turn out to be the case.

We train our agent using PPO [43] with backpropagation through time [49] in

procedurally generated environments in simulation.

Rewards: For the navigation task, we use distance to goal reward ∥gt∥ along with

a forward progress reward | (vt)g | where (vt)g is velocity along the direction of the

goal.

rnav = 0.1 · ∥gt∥+ 0.1 · | (vt)g | (3.5)

For the pick task, we provide an object reaching reward, i.e., the distance between

the gripper and the object. This is followed by a lift reward if a successful grasp is

detected (based on whether contact forces cross a threshold), similar to [33].

rpick = 0.5 · ∥ot − pt∥+ 0.5 · rlift (3.6)

where

rlift =
(
1− tanh

(
15 · [(ot)z]+

))
I

[∑
i

fi > 10

]
(3.7)

where [x]+ = max(x, 0) and I is the indicator function which forces the reward to be

active only when object contact forces fi exceed 10N.

12



3. Method

Training environments: We procedurally generate long corridors with obstacles

placed in between the robot and the goal. The initial joints and orientation of the

robot are randomized. Near the edges of the corridors, we place randomized obstacles

and walls to simulate distractors in the depth image. For the pick task, objects are

spawned on tables of varying dimensions. We used five different objects - a banana,

mug, can, foambrick, and a bottle. The episode is terminated if the robot reaches the

goal or hits an obstacle/table.

3.2 Phase 2 - From Scandots to Depth

Scandots [25, 29] are not directly observable in the real world and must instead be

estimated from the depth image [2]. We train a convolution network C to convert

rendered depth images dt to perception latents z̃t. This latent is passed to a student

policy π′ to predict the actions [ãrobot, ãcam]. This is supervised using L2 loss from

the phase 1 actions. The weights for π′ are initialized using π. We train this policy

using DAgger [40]. For the navigation policy, we optimize

min
Cnav,π′

nav

∥π′
nav(Cnav(dt),xt,gt)− πnav(zt,xt,gt)∥ (3.8)

Note that the teacher policy πnav can be trained using either the coupled or decoupled

approach. Similarly, for the pick policy, we estimate current object position ot from

depth

min
Cpick,π

′
pick

∥∥π′
pick(Cpick(dt),xt,oi)− πpick(zt,xt,ot,oi)

∥∥ (3.9)
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Figure 3.1: SPIN: We learn a policy that uses ego-vision to simultaneously perceive,
interact, and navigate in cluttered environments. We propose two methods: (1)
Coupled Visuomotor Optimization (CVO) learns robot and camera actions at
the same time. We train an RL policy to predict these. We only provide scandots
if they are visible in the agent’s field-of-view allowing the agent to learn to move
its camera and aggregate information about its environment. This is followed by a
phase-2 supervised training where this behavior is distilled into a student network that
operates with ego-centric depth images (2) Decoupled Visuomotor Optimization
(DVO) decouples the action and perception learning into two parts: first the agent
learns to navigate across clutter assuming access to all obstacles. In phase 1b, the
robot learns to move its camera to estimate the relevant information. This is followed
by supervised learning same as above.
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3. Method

Figure 3.2: Visualizing the simulation benchmark: We illustrate one scenario
of the simulation benchmark here with many obstacles in a narrow passage. The
agent learns to develop whole-body coordination such as the robot’s arm movement
in the last two frames, to reactively adapt and navigate through such cluttered
scenes by actively moving around the camera and aggregating information for efficient
navigation without collisions.

3
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Chapter 4

Experimental Setup

We use the Hello Robot Stretch [1] for all our experiments (Figure 4.1). The robot

has 10 actuated joints which include 2 degrees of freedom for the camera, 2 for

base rotation and translation, 2 for the arm, 1 for the gripper fingers, and 3 for

the dexterous wrist. An Intel D435i depth camera is mounted on the top of the

robot head which is actuated using two motors. The learned policy operates at 10Hz

and we do velocity control for the robot base and position control for all the other

joints. Velocity control for the robot base allows us to perform simultaneous robot

translation and rotation for more agile behavior. We train using IsaacGymEnvs [36]

using 8192 environments which takes 6 hours of training for phase 1 and 10 hours of

training time for phase 2 on a RTX 3090.

4.1 Baselines

We compare our proposed approach against the following baselines:

• FixCam: The camera joints are frozen and the camera is forced to look forward.

This baseline shows whether active vision is useful for the mobile manipulation

problem and a fixed viewpoint is not enough.

• Mapping: Instead of using a moving depth camera to get a series of frames this

baseline assumes exteroception is provided in the form of a map. We simulate

exteroceptive noise as in [2, 37].
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4. Experimental Setup

Base

Arm Lift

Arm Extend

Camera
pan, tilt

Wrist roll, 
pitch, yaw

Gripper

Visible scandots in 
camera’s field-of-view

Figure 4.1: Visualizing Scandots: (Left) We compute visible scandots by projecting
them to the camera frame and checking if they lie within the image plane, and
Anatomy of the Mobile Manipulator: (Right) of the stretch RE1 robot that
we use experiments with. It has two DoFs in the base, one each for arm lift and
extension, two for the camera, three for the wrist, and one for the gripper.

• Classical: This uses a classical stack to control the base motion. We first

teleoperate the robot for 3-5 minutes to construct a map using the onboard

2D RPLidar using gmapping. Next, move base is used to plan a path through

the environment. Finally, we move the robot to the start, use a Monte Carlo

method [27] to localize, and then execute the plan. Note that this baseline gets

an easier version of the problem since it assumes that the map is known in

advance and does not consider arm motion due to the 2D Lidar. This is used

to test whether reactive navigation is superior to planning.

• NoPointNet: Instead of passing object scandots through a permutation-

invariant PointNet architecture, we concatenate them and use an MLP to

estimate a latent.

4.2 Design Choices and Implementation Details

We make several design choices for the working of our framework. Firstly, the robot

is only allowed to have local visibility in order to develop highly reactive and instant
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4. Experimental Setup

behaviors. At any time instant t, the agent can perceive its environment within a

range of 2m in all 4 directions – front, back, left, and right based on the camera’s

viewing direction and its field of view. We also empirically observe that given a

larger viewing range, say > 5m which contains information of more than 4-5 nearest

obstacles to the agent makes it a sub-global path planning problem that becomes

harder to optimize, leading to degraded behavior and performance as reported in

Table 4.1.

Visibility Range Success Rate ↑ Distance to Goal (m) ↓
≤ 1m 0.96 0.28
≤ 2m 0.96 0.26
≤ 3m 0.93 0.63
≤ 5m 0.86 1.21

Table 4.1: We report the average success rate and average distance to goal for 10
episodes across 3 seeds each with a different maximum visibility range for the agent at
any time instant. As reported, with broader visibility, the agent shows more frequent
stalling leading to a higher average distance to the goal.

Secondly, contrary to standard teacher-student architectures which use privileged

system information for training the teacher, we restrict the privileged information to

only elements in the robot’s field-of-view that can be retrieved from the ego-view in the

same state. For this, we project the obstacle scandots onto the image plane and pass

only those scandots to the robot observation which lie in the camera’s field of view.

Note that, if this were not the case, the robot would not learn camera movement

in a relevant fashion and also become harder to distill into a depth-conditioned

student policy through only an ego-centric view. Similarly, for the 3-phase decoupled

visuomotor optimization, we induce information bottleneck with a low-dimensional

latent space of size 16 for the scandots latent while training the teacher policy, which

again helps it in attending to most relevant information at any time instant t in order

to make student policy distillation feasible.

Observation Space. The observation space for the robot comprises of joint posi-

tions (q), joint velocities (qvel), end-effector position peef , goal position (pgoal) and

depth latent (ẑ) containing visual information about the environment. Note that

during phase 1 training in simulation, scandots (z) are used as a proxy for faster depth
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4. Experimental Setup

rendering and later distilled into an egocentric depth-conditioned policy. During real-

world deployment, peef is obtained via forward kinematics and other proprioception

information is obtained directly from the robot.

Action Space. The action space of the robot consists of the velocity for base

rotation as well as translation and joint positions for all the other joints including arm,

camera as well as gripper actions. The gripper action is a continuously varying scalar

that can actuate the gripper to different extents, unlike a binary action indicating an

open or closed gripper.

Reward Scales. We use a distance and forward progress goal for reaching, a binary

reward for grasping, and a continuously shaped reward for lifting the object to a

certain height above the table. We also add a small penalty for the joint velocities

to the arm stretch and camera joints for a temporally smooth gait which permits

easier sim2real transfer as well as more appropriate behaviors leading to less jitter

and more consistent movements on the real hardware.

The reward scales used for goal reaching, grasping and lift rewards are reported in

Table 4.2. Detailed formulations of the reward functions are described in Section 3.1.

Reward Scale
Reach Reward 0.1
Grasp Reward 0.5
Lift Reward 0.8

Joint Velocity Penalty -0.03

Table 4.2: We report the average success rate and average distance to goal for 10
episodes across 3 seeds each with a different maximum visibility range for the agent at
any time instant. As reported, with broader visibility, the agent shows more frequent
stalling leading to a higher average distance to the goal.

Network Architecture and Training Details. The actor and critic for teacher

policy are LSTM with 256 hidden units, with input as proprioception, goal, and

scandots latent. The scandots are compressed using a pointnet architecture for

permutation invariance. The depth network for the student policy takes as input

a low-resolution depth image of size 58 × 87 and comprises of 3-layer convolution
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backbone followed by 3 fully-connected layers. We use Adam Optimizer with an

initial learning rate of 1e− 3, entropy coefficient of 5e− 4, and γ as 0.99.

Asynchronous DAgger Training. Since depth rendering on simulators is a

computational bottleneck, we implement an asynchronous version of the DAgger

algorithm which simultaneously collects data in a buffer and trains the student policy

with batches sampled from the collected data using 2 parallel processes. This provides

a 2.5× computational speedup over the non-parallelized version of the algorithm,

allowing faster convergence of the student network. We also find that freezing the

weights of the student actor pre-initialized from the teacher policy for the first 1000

iterations helps as warm-up steps to the depth convolution backbone for stable

training.

Post-processing for clean depth images. To mitigate the issues due to noisy

depth, we post-process the depth obtained from the Intel RealSense Camera using a

real-time fast hole-filling algorithm for depth images [28]. With the camera constantly

in motion, there are additional artifacts with depth images. For this, we additionally

use temporal filtering over the stream of depth images.

Object Detection for Pick Policy Once the robot reaches the goal, we randomly

select an object within its field of view in order to be grasped and fetched to a target

location. For getting the target object location, we run YOLO [24], a real-time object

detection model with an average inference speed of 20ms. We use the corresponding

depth image to deproject the pixel point into a 3D-coordinate which is passed as the

new goal position to the manipulation policy.

21



4. Experimental Setup

Figure 4.2: Camera movement analysis in a trajectory. The agent faces the
camera downward when navigating through a tightly cluttered vicinity as can be
seen in the first, second, and fourth frames, whereas the camera points more toward
the front when there are no immediate obstacles in the direction of movement, as
illustrated in the third frame.

Figure 4.3: Essential Whole-Body Coordination under heavy obstructions.
In the above cases where the obstacles are tightly packed, it is not possible for the
robot to navigate through them avoiding collisions without lifting the arm to an
appropriate height.
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Chapter 5

Results and Analysis

We evaluate our approach both in simulation as well as real-world. Since doing a lot

of in-the-wild real-world experiments is more time-consuming and cumbersome due

to various practical reasons, we thoroughly evaluate our approach on 6 simulation

benchmarks with multiple scenarios. We explain each of these benchmarks in detail

in Section 5.3.

While simulation benchmarks are useful for fair comparison with baselines as well

as reproducibility, real-world experimenting is essential for determining the efficacy

of our system in truly unstructured and dynamic environments. For this, we test our

system on various real-world environments as shown in Figure 1.2 and benchmark its

performance on 2 real-world setups as described in Section 5.2.

Through simulation experiments, we aim to answer the following questions: (1)

For a mobile agent, is active perception with an actuated camera really necessary, or

is a fixed viewpoint enough? (2) Can an active visual agent outperform a classical

agent that relies on pre-built maps? What are the limitations of the latter? (3)

What are some practical architectural design choices for optimizing mobility and

perception together? We empirically answer each of these questions in Section 5.3.

Our real-world experiments primarily focus on comparing the capabilities of our

reactive, learned system to a classical mapping and then planning approach. For our

method, we observe interesting scenarios demonstrating emergent behaviors during

real-world experiments detailed in Section 5.1 and 5.2.
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5. Results and Analysis

Reach Pick Place

Scenario 1 Scenario 2 Scenario 1 Scenario 2
Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

Success Rate:
FixCam 1.00 0.53 0.20 1.00 0.50 0.26 0.86 1.00 0.53 0.16 0.97 0.50 0.20
NoPointNet 1.00 0.87 0.57 1.00 0.77 0.63 0.93 1.00 0.83 0.57 1.00 0.77 0.60
Mapping 1.00 1.00 1.00 0.86 1.00 0.97 0.97 1.00 1.00 1.00 1.00 0.90 0.97

SPIN (DVO) 1.00 1.00 0.96 1.00 1.00 0.90 0.97 1.00 1.00 0.90 1.00 0.90 0.90
SPIN (CVO) 1.00 0.97 0.93 1.00 1.00 0.93 0.97 1.00 0.97 0.90 1.00 0.97 0.93

Average Episode Duration (s):
FixCam 6.86 23.48 38.94 6.54 27.24 42.36 11.00 7.25 17.06 41.07 8.02 20.24 45.98
NoPointNet 6.30 14.87 33.25 7.22 15.04 34.09 9.25 4.88 15.22 32.00 7.89 18.49 37.42
Mapping 6.20 14.02 26.24 6.55 12.28 28.05 4.98 6.77 9.85 22.29 4.86 12.62 26.12

SPIN (DVO) 5.92 16.25 28.44 7.32 17.12 32.04 9.24 7.22 18.45 34.24 9.40 15.98 41.24
SPIN (CVO) 6.24 14.00 23.57 6.55 15.81 29.31 5.74 6.51 13.39 27.25 8.03 12.79 31.25

Table 5.1: We evaluate the success rate on 10 random environments with an average
of 3 fixed seeds across all difficulty scenarios based on obstacle course. We report the
success rate of each part of the task including reaching (Reach), picking (Pick), and
placing (Place) the target object in the desired location. The place task requires the
agent to bring back the object across the obstacles near its start location.

5.1 Emergent Behavior

Large-scale simulation pre-training allows our robot to learn emergent behaviors to

avoid obstacles in cluttered scenarios, even in the presence of dynamic obstacles.

We see several such behaviors during real-world experimentation which were neither

planned nor specifically trained for in simulation but emerge as a result of a large

diversity of procedural environments seen during training. We illustrate three such

scenarios in Figure 5.1. As highlighted in several frames, Figure ?? depicts robustness

to adversarially placed dynamic obstacles that constantly block the path of the robot.

It needs to continuously perceive its environment in multiple directions and quickly

react to those changes. We observe that in cases when there is no feasible path for the

robot to navigate through, it also learns to stop and look around in order to replan its

path and avoid collisions. Similarly, in ?? we see that as soon as a floating obstacle

is suddenly placed in front of the robot, it shows spatial awareness and whole-body

coordination and lowers its arm in order to navigate through, instead of turning and

replanning the entire base movement which would take more time. In Figure ??,

we see an adaptive rerouting mechanism where the agent changed its straight line

motion as soon as a person kicks in a box in front of it. These behaviors emerge
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in real-time and show the ability of our system to continuously perceive, adapt and

react to changes in its environment which is very hard for a classical planner.

Qualitative results are available at https://spin-robot.github.io/. Along

with emergent behavior where the robot continuously avoids dynamic obstacles

without seeing them during training, we also observe generalization from heavily

cluttered indoor to dim-lit outdoor environments. The agent also demonstrates

reactive whole-body coordination where it moves its arm up or down to efficiently

navigate across floating obstacles instead of re-routing and re-planning base movement,

demonstrating 3D spatial awareness as shown in many video resu.

5.2 Real-world results

We test on two real-world scenes - an academic lab and an open study area with

couches and a kitchenette next to it with both static as well as dynamic obstacles.

Both these environments have unstructured clutter and humans as dynamic obstacles

that makes it challenging for the agent to navigate through these spaces. For each

environment, we have 4 static obstacles and at most 1 dynamic obstacle thrown

adversarially. We compare against a classical baseline that uses an A1 RPLidar with

gmapping and move base for planning. We first teleoperate with the robot for 3-5min

to create a map. Note that this provides the added advantage that this baseline

knows the entire map in advance. Since the Lidar cannot see objects above the plane

we only test on ground obstacles and ignore floating ones that require whole-body

coordination. We run the planner to only plan the base motion. In Tab. 5.2 we

compare the success rate and average number of collisions. An episode succeeds when

the robot reaches within 15cm of the specified goal position. Overall, our method is

able to succeed 20-40% more than the classical baseline. This is because the classical

method suffers from noise is not able to recover from a noisy map, and gets stuck,

whereas the learned policy learns to look at the obstacles again and again to improve

its uncertainty estimates and constantly updates its knowledge of where obstacles

are. This ability is even more apparent in the dynamic scenario (Table 5.2) where

the classical has a near zero success rate while our method is able to succeed. It

has the emergent ability to avoid a new obstacle in space, whereas the classical

baseline relies on the pre-built map and fails entirely. Note that, we do not train

25

https://spin-robot.github.io/
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our policy with dynamic obstacles in simulations, but this behavior comes out as a

by-product of lots of diverse experience in simulation. We design the observation

space such that everything is relative to the robot. This allows the agent to perceive

the environment as moving within its local reference frame, allowing generalization

to dynamic obstacles.

5.3 Simulation results

The simulation benchmarks have 6 scenes, 2 of each easy, medium, and hard envi-

ronments. Easy environments have 0-1 obstacles within a 5m goal range. Medium

environments have 2-3 obstacles within 5m and the hard ones have heavily cluttered

scenes with 5 obstacles within 5m. In each of these cases, one scene (Scenario 1)

comprises a tight 1m wide long corridor which bounds the agent to not take shortcuts

and reach the goal only by navigating through obstacles. The second (Scenario 2) is

an L-shaped corridor with a goal at the end. The evaluation metrics are reported

as an average of 10 episodes with random agent and obstacle initialization across 3

seeds.

We compare against various baselines to study the impact of our design decisions

in Tab. 5.1. For each scenario, we report the success rate and average episode

length across 10 rollouts. Our method achieves ≈ 33% higher success rate than

the NoPointNet baseline since permutation invariant scandots latent makes the

optimization problem easier and also generalizes better at test time. Ours achieves ≈
68% higher success rate than the FixCam baseline with the camera pointing straight

ahead. This is because in some cases the robot encounters obstacles in its peripheral

vision and our policy can change the camera angle to avoid them. Active vision is

necessary for the robot to move effectively through a cluttered environment. Our

method is significantly better than the Mapping baseline because the systematic

noise in the object locations makes it hard for the robot to avoid them, especially in

cluttered environments, whereas our method can continuously estimate the position

of obstacles while it is moving and adapt the motion online. Finally, we compare

between the decoupled (DVO) and coupled (CVO) variants of our method and find

that they achieve similar performance. We hypothesize that the partial observability

and joint optimization for camera and robot actions in CVO training allows the
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Static Obstacles Dynamic Obstacles

Scenario 1

Ours Classical Ours Classical
Average Success 0.8 0.6 0.6 0.0
Average # Collisions 1.0 0.4 1.6 1.2

Scenario 2

Ours Classical Ours Classical
Average Success 0.8 0.4 0.6 0.2
Average # Collisions 0.8 0.6 1.6 1.0

Table 5.2: We compare our method against a classical mapping and planning baseline
for navigation in cluttered scenes with both static as well as dynamic obstacles.
The classical performs reasonably in static environments, it quickly breaks with
dynamic obstacles like humans walking around, whereas our method shows more
robust reactivity to such obstacles even without being trained with dynamic obstacles
in simulation. We report the success rate of our method compared with the baseline.
For the classical baseline, we teleoperate the robot for 2-3 min.

agent to quickly discover optimal shortcuts that are otherwise harder to distill from a

privileged teacher policy.

5.4 Directly training from depth images.

We compare training from depth (red) and our 2-phase method with scandots (blue)

in a medium-difficulty environment as illustrated in Figure 5.2. Depth policy has

< 1% success after 22h training, whereas total (phase1 + 2 ) wall-clock time for SPIN

is 16h (6+10). The simulator gives ≈ 50k fps for scandots (8192 envs) and ≈ 820

fps for depth (256 environments – maximum parallel environments that can fit on

a single GPU), causing 61× slow-down bottleneck. This shows the necessity and

efficiency of our proposed 2-phased coupled visuomotor optimization approach using

scandots over naively training an RL policy from depth observations.
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Scenario 1 Scenario 2
E M H E M H

I 0.93 0.40 0.20 0.97 0.40 0.20
II 0.70 0.30 0.10 0.67 0.47 0.10
III 0.86 0.33 0.10 0.77 0.30 0.10
IV 1.00 0.53 0.20 1.00 0.50 0.26

Table 5.3: Success rate for 4 FixCam poses in easy (E), medium (M), hard (H)
environments.

5.5 Analysing camera and base motion

Fixed Camera Baseline We run FixCam baseline with 4 camera poses (Figure

??) – I: Front, II: Down, III: Down and slightly front, IV: Front and slightly down

on easy (E), medium (M), hard (H) environments. I, IV with max FOV have much

lower success than SPIN, implying active vision is required in clutter. Pose (IV

depicts the FixCam baseline referred to in the paper.

Camera Movement and Camera Observations: We show camera trajectory in

Figure 5.3. When navigating through the clutter (frames 1, 2, 4), it tilts downward

to maximize FOV near the base, but with no nearby obstacle (frame 3), it faces front.

Detailed movement of the camera can be seen in the video demos on the website

along with paired RGBD images for rollouts. RGB frames are only for analysis, the

policy only observes depth images.

5.6 Necessity for Active Vision and Whole-body

coordination

Active Vision: In principle, a multi-camera system should be equivalently adequate,

however, most views will contain insignificant information and require large models

to process. With limited onboard compute on most robots and the requirement for

real-time reactivity (< 0.1s), it becomes infeasible to deploy them with larger vision

backbones.
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Whole-body coordination (WBC): Under heavy obstructions, the robot cannot

move without collision if the base & arms control are decoupled. Figure 5.4 shows

such a scenario where a fixed arm and gripper close to the base would fail without

WBC, which also allows it to use the extra degree of freedom to find shorter and

more efficient paths.

5.7 Classical Navigation Baseline

As discussed in Section 4, we compare our method with a classical map-based baseline

which uses the 2D RPLidar to build an environment map and then creates a plan

using the Monte Carlo method. We observe that for > 90% of the cases, the robot is

able to build a map and find a feasible path, however, it is not able to execute the

planned path for > 85% cases. This issue arises due to noisy control or unexpected

wheel motion due to terrain differences. Our method is able to overcome such failures

due to constant feedback and reactive improvisation through proprioception as well

as depth, which allows it to deal with uncertainties without requiring a pre-built

environment map. Moreover, due to localization inaccuracies, the baseline method is

often unable to reach the intended goal if not initialized in the same orientation as

was used before building the map. Contrary to that, we heavily randomize all degrees

of freedom as well as the robot orientation at the beginning of every rollout during

test time. Moreover, since the robot has a 2D Lidar installed on it, we do not test it

in environments with floating obstacles which would require 3D understanding and

whole-body coordination to navigate through clutter. We show some visualizations

of the map built and plans created by the robot in Figure 5.5.

29



5. Results and Analysis

(a) While our simulation lacks dynamic obstacles, the robot can still evade them
because the policy continuously adjusts its plan.

(b) If there is an overhanging obstacle, the robot lowers its arm to avoid it instead of
turning around, thereby displaying agile whole-body coordination.

(c) The robot adapts its plan on-the-fly to obstacles by turning around once the
camera sees it.

Figure 5.1: Types of emergent behavior exhibited by SPIN (a) dynamic obstacle
avoidance (b) whole-body movement (c) adaptive rerouting.
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Figure 5.2: Success rate for scandots (blue) vs depth (red). The depth-based policy
attains close to 0 performance even after 400k env steps of training, whereas the
policy trained with scandots increasingly improves over time.

Figure 5.3: Camera movement analysis in a trajectory. The agent faces the camera
downward when navigating through a tightly cluttered vicinity as can be seen in the
first, second, and fourth frame, whereas the camera points more toward the front
when there are no immediate obstacles in the direction of movement, as illustrated in
the third frame.
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Figure 5.4: Scenarios where whole-body coordination is essential under heavy obstruc-
tions. In the above cases where the obstacles are tightly packed, it is not possible for
the robot to navigate through them avoiding collisions without lifting the arm to an
appropriate height.

Figure 5.5: Visualizations of environment map built using 2D Lidar. The robot is
localized as per its initial position and orientation.
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Chapter 6

Discussion

We present SPIN, an approach to train embodied mobile robots that can simulta-

neously perceive, interact, and navigate cluttered environments using a data-driven

approach. We show that our RL-based reactive approach is effective for active whole-

body control-perception problem, traditionally addressed via non-reactive planning

methods. With recent interest in humanoid and other mobile robots with actuated

cameras, on neck for instance, SPIN is a cost-effective agile whole-body control

solution with limited sensing and compute.

Although our robot can perceive geometry and avoid obstacles using depth, it

still operates on stereo-matched depth instead of raw RGB. This leads to scenarios

where it can bump into glass obstacles or shiny surfaces. In the future, we would like

to use RGB for perception.
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