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Abstract
Reconstructing 3D scenes and objects from images alone has been a long-

standing goal in computer vision. We have seen tremendous progress in recent
years, capable of producing near photorealistic renderings from any viewpoint.
However, existing approaches generally rely on a large number of input images
(typically 50-100) to compute camera poses and ensure view consistency. This
constraint limits the applicability of these methods, as taking 100 high-quality
images without motion blur can be burdensome for end users. To enable 3D recon-
structions in unconstrained scenes, this thesis proposes techniques for sparse-view
3D, automatically estimating camera poses and reconstructing 3D objects in the
wild from less than 10 images.

We start by exploring how implicit surfaces can be used to regularize 3D rep-
resentations learned from sparse views. We demonstrate that our representation,
which factors view-dependent specular effects from view-independent diffuse ap-
pearance, can robustly reconstruct 3D from as few as 4-8 images associated with
noisy camera poses. However, acquiring this camera pose initialization in the first
place is challenging. To address this, we propose an energy-based framework that
predicts the probability distribution over relative camera rotations. These distribu-
tions are then composed into coherent sets of camera rotations given sparse image
sets. We then show how leveraging a transformer-based architecture to scale our
energy-based representation can effectively make use of more images. We find that
additional image context allows our method to resolve ambiguities that arise from
just two images. While top-down energy-based pose estimation can effectively han-
dle pose ambiguity, it can be slow to sample poses and does not make use of level
features that may provide useful cues for correspondence matching and geometric
consistency. To address these issues, we propose to represent a camera as a bundle
of rays passing from the camera center to the center of each image patch in 3D. We
then train a diffusion-based denoising network to predict this representation. We
find that this generic camera representation significantly improves pose accuracy.
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diance Lo = T ⊙ Idiffuse + ksIspecularity (2.4). We also visualize the
radiance using the mean texture, which is used to help learn plau-
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two specularity parameters. The shininess α controls the mirror-
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2.5 Qualitative results on various household objects. We demonstrate
the versatility of our approach on an espresso machine, a bottle of
ketchup, a game controller, and a fire hydrant. Each instance has
7-10 input views. We find that a coarse, cuboid mesh is sufficient as
an initialization to learn detailed shape and texture. We initialize the
camera poses by hand, roughly binning in increments of 45 degrees
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formulation, following [93, 191]. Because we predict the origin at the
unique world coordinate closest to all optical axes, which is unam-
biguous (See Sec. 4.3.3 and Fig. 4.3), we can directly regress camera
translation from the learned features. On the right, we visualize the
recovered camera poses. . . . . . . . . . . . . . . . . . . . . . . . . . 46

6
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images, consider the task of estimating their 6D poses, i.e., the R
and T that transform points from the world frame to each camera’s
frame (Left). In typical SLAM setups, the world frame is centered
at the first camera, but this implies the target camera translation T2
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of the object, but when shown all three images together to predict
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mance across the 2 categories is averaged. We find that increasing
the number of rays significantly improves performance. However,
we found that increasing the number of rays beyond 16 × 16 was
computationally prohibitive. . . . . . . . . . . . . . . . . . . . . . . . 69
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Chapter 1

Introduction

The goal of estimating 3D from 2D images is one of the central challenges in com-
puter vision. Such technology has the power to reconstruct the world around us,
enable robots and autonomous agents to interact freely with the world, and democ-
ratize the creation of 3D assets for creative applications such as CGI for movies
or gaming. For decades, significant progress has been made in terms of better 3D
representations and camera pose estimation pipelines to facilitate these.

In recent years, NeRF [89] has been one of the most significant works in terms
of achieving a representation that generates near-photorealistic renderings from any
viewpoint. To do this, NeRF represents the scene volumetric using a neural net-
work that can be optimized using a differentiable raycasting operation. In some
ways, NeRF and numerous follow-up works have achieved one of the holy grails in
computer vision: a method that takes a set of captured images and outputs a neural
plenoptic function [3]. Given any 3D position and viewing direction in the scene,
we can now synthesize how the world would appear from that viewpoint. However,
these existing methods that achieve impressive novel-view synthesis capabilities have
a key limitation: they require an immense number of images, typically on the order
of 50-100. The requirement of so many images is necessary for two reasons. First,
existing camera pose estimation pipelines that rely on structure-from-motion re-
quire densely sampled views to predict the cameras that are used as input. Second,
densely sampled views are necessary to effectively constrain the volumetric field,
especially those conditioned on viewing directions.

The constraint of 50-100 images is prohibitive to developing general-purpose 3D
algorithms that can be easily deployed in unconstrained setups. Typically, a user
dedicated to taking pictures of a particularly interesting object may be willing to take
several images, perhaps even 10, but is unlikely to take a hundred. Or consider the
millions of listings posted on online marketplaces such as Craigslist or Amazon. Such
marketplaces can be thought of as a rich source of multi-view data [25], where sellers
typically take several images of an object they wish to sell (see Fig. 1.1). The scale
and diversity of such data dwarf any existing 3D or multiview dataset, and being

12



Figure 1.1: Marketplace Listings as a Scalable Source of Multi-view Data. Product
listings on online marketplaces are a diverse and readily available source of multi-
view data. Each listing is typically associated with several high-quality images of
an object to sell.

able to leverage such data would significantly improve the domain generalization
and diversity of representations that we can learn.

In this thesis, we take the first steps toward building a full pipeline capable
of converting sparsely sampled views of an object as input into a fully textured
3D representation along with the associated illumination conditions. We start by
proposing NeRS (Chapter 2), a surface-based representation that can be optimized
with as few as four images using an analysis-by-synthesis framework. In contrast to
existing volumetric approaches that model arbitrary geometry and view-dependent
appearance, we constrain the geometry to only points that lie on a surface and
constrain the view-dependent appearance using graphics-inspired rendering models.
Specifically, we represent geometry using a water-tight implicit mesh. We model the
illumination of the scene using a neural environment map and factor the diffuse color
(albedo) from the specular lighting. Our final system can reconstruct 3D objects
from as few as 4-8 images associated with noisy camera poses, and we demonstrate
the scalability of our approach on hundreds of listings from an online marketplace
and self-captures of everyday household objects.

NeRS assumes that each image is associated with noisy camera poses. While this
constraint is already less stringent than contemporary and even follow-up approaches
that require precisely aligned cameras, it is still challenging to recovery any camera
parameters from sparsely sampled views consistently (see Fig. 1.2). This task is
challenging because sparse views often have wide baselines, which make acquiring
correspondences difficult if not impossible. Existing structure-from-motion pipelines
for estimating camera poses rely on these correspondences to recover pose. Another
challenge is that the poses of sparsely sampled views of objects are often ambiguous,
particularly in the presence of object symmetry. A pose estimation method that
effectively handles sparse view must thus be able to handle uncertainty.

To address this, we propose RelPose (Chapter 3), an energy-based model that
predicts probability distributions over relative camera rotations. Specifically, we
train a network that takes in pairs of images and a query rotation matrix and out-
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Figure 1.2: Challenges for Sparse-view 3D Pose Estimation. Left: Sparsely sam-
pled views often exhibit wide baselines, and wide baselines lead to larger appearance
changes that make it difficult to find correspondences. Here, we show the correspon-
dences recovered by SuperGlue [125], a state-of-the-art correspondence matcher.
SuperGlue finds few inlier correspondences on the car because the front of the car
is only partially visible in the left image. In sparse-view settings, it is possible to be
looking at entirely opposing sides of an object, in which case correspondences are
impossible to find altogether. Right: Given only a few images of an object, the pose
may actually be ambiguous. This is especially the case for objects with symmetry.

puts a score that corresponds to how well the rotation matrix aligns with the ground
truth relative rotation. To recover poses for more than two images, we solve for the
set of rotations that would maximize the total pairwise sum of scores. In RelPose++
(Chapter 4), we extend our approach to handling multi-view context using a trans-
former and demonstrate that each additional image gives informative context that
improves performance and reduces ambiguity. We also extend our approach to pre-
dicting 6-D camera pose (rotations and translations) using a new coordinate system
that disentangles the ambiguity in rotation prediction from translation.

Finally, we reconsider what representation of camera should even be used for
prediction. Typically, a camera is parameterized by its intrinsics (K) and extrinsics
(R, t). This compact representation, predicted using a global feature encoder that
pools the spatial information present in any image, makes it challenging to reason
about low-level information (e.g. correspondences) that is known to be important
for pose estimation. Rather, in Cameras as Rays (Chapter 5), we revisit the classic
parameterization of cameras as a bundle of rays [46]. This representation is both
over-parameterized and generic, allowing a single representation to be used for any
camera model (e.g. pinhole, wide-angle, fish-eye, etc.). We find that the set-to-
set nature of transformers makes it easy to predict a ray for each patch in the
image. We then propose both regression- and diffusion-based methods for predicting
this distributed ray representation. We demonstrate that our method significantly
outperforms prior work and exhibits much better precision.
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Chapter 2

NeRS: Neural Reflectance Surfaces
for Sparse-view 3D Reconstruction
in the Wild

Recovered Shape
and Cameras

Input Images Novel Views
Output Texture Illumination

Diverse 3D Reconstructions

Initial Mesh

Figure 2.1: 3D view synthesis in the wild. From several multi-view internet images
of a truck and a coarse initial mesh (top left), we recover the camera poses, 3D
shape, texture, and illumination (top right). We demonstrate the scalability of our
approach on a wide variety of indoor and outdoor object categories (second row).

2.1 Introduction
Although we observe the surrounding world only via 2D percepts, it is undeniably
3D. The goal of recovering this underlying 3D from 2D observations has been a
longstanding one in the vision community, and any computational approach aimed
at this task must answer a central question about representation—how should we
model the geometry and appearance of the underlying 3D structure?
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An increasingly popular answer to this question is to leverage neural volumetric
representations of density and radiance fields [89]. This allows modeling struc-
tures from rigid objects to translucent fluids, while further enabling arbitrary view-
dependent lighting effects. However, it is precisely this unconstrained expressivity
that makes it less robust and unsuitable for modeling 3D objects from sparse views
in the wild. While these neural volumetric representations have been incredibly
successful, they require hundreds of images, typically with precise camera poses,
to model the full 3D structure and appearance of real-world objects. In contrast,
when applied to ‘in-the-wild’ settings, e.g. a sparse set of images with imprecise
camera estimates from off-the-shelf systems (see Fig. 2.1), they are unable to infer
a coherent 3D representation. We argue this is because these neural volumetric
representations, by allowing arbitrary densities and lighting, are too flexible.

Is there a robust alternative that captures real-world 3D structure? The vast ma-
jority of real-world objects and scenes comprise well-defined surfaces. This implies
that the geometry, rather than being an unconstrained volumetric function, can be
modeled as a 2D manifold embedded in Euclidean 3D space—and thus encoded via a
(neural) mapping from a 2D manifold to 3D. Indeed, such meshed surface manifolds
form the heart of virtually all rendering engines [38]. Moreover, instead of allowing
arbitrary view-dependent radiance, the appearance of such surfaces can be described
using (neural) bidirectional surface reflection functions (BRDFs), themselves devel-
oped by the computer graphics community over decades. We operationalize these
insights into Neural Reflectance Surfaces (NeRS), a surface-based neural represen-
tation for geometry and appearance.

NeRS represents shape using a neural displacement field over a canonical sphere,
thus constraining the geometry to be a watertight surface. This representation
crucially associates a surface normal to each point, which enables modeling view-
dependent lighting effects in a physically grounded manner. Unlike volumetric repre-
sentations which allow unconstrained radiance, NeRS factorizes surface appearance
using a combination of diffuse color (albedo) and specularity. It does so by learning
neural texture fields over the sphere to capture the albedo at each surface point,
while additionally inferring an environment map and surface material properties.
This combination of a surface constraint and a factored appearance allows NeRS
to learn efficiently and robustly from a sparse set of images in the wild while being
able to capture varying geometry and complex view-dependent appearance.

Using only a coarse category-level template and approximate camera poses,
NeRS can reconstruct instances from a diverse set of classes. Instead of evaluat-
ing in a synthetic setup, we introduce a dataset sourced from marketplace settings
where multiple images of a varied set of real-world objects under challenging il-
lumination are easily available. We show NeRS significantly outperforms neural
volumetric or classic mesh-based approaches in this challenging setup, and as il-
lustrated in Fig. 2.1, is able to accurately model the view-dependent appearance
via its disentangled representation. Finally, as cameras recovered in the wild are
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only approximate, we propose a new evaluation protocol for in-the-wild novel view
synthesis in which cameras can be refined during both training and evaluation. We
hope that our approach and results highlight the several advantages that neural
surface representations offer, and that our work serves as a stepping stone for future
investigations.

2.2 Related Work

Surface-based 3D Representations. As they enable efficient representation and ren-
dering, polygonal meshes are widely used in vision and graphics. In particular,
morphable models [10] allow parametrizing shapes as deformations of a canonical
template and can even be learned from category-level image collections [17, 62].
With the advances in differentiable rendering [63, 71, 115], these have also been
leveraged in learning-based frameworks for shape prediction [59, 43, 45] and view
synthesis [119]. Whereas these approaches use an explicit discrete mesh, some recent
methods have proposed using continuous neural surface parametrization like ours
to represent shape [47] and texture [156, 8].

However, all of these works leverage such surface representations for (coarse)
single-view 3D prediction given a category-level training dataset. In contrast, our
aim is to infer such a representation given multiple images of a single instance,
and without prior training. Closer to this goal of representing a single instance in
detail, contemporary approaches have shown the benefits of using videos [72, 182]
to recover detailed shapes, but our work tackles a more challenging setup where
correspondence/flow across images is not easily available. In addition, while these
prior approaches infer the surface texture, they do not enable the view-dependent
appearance effects that our representation can model.

Volumetric 3D and Radiance Fields. Volumetric representations for 3D serve as
a common, and arguably more flexible alternative to surface-based representations,
and have been very popular for classical multi-view reconstruction approaches [40].
These have since been incorporated in deep-learning frameworks for shape predic-
tion [42, 24] and differentiable rendering [180, 157]. Although these initial ap-
proaches used discrete volumetric grids, their continuous neural function analogs
have since been proposed to allow finer shape [88, 107] and texture modeling [101].

Whereas the above methods typically aimed for category-level shape representa-
tion, subsequent approaches have shown particularly impressive results when using
these representations to model a single instance from images [137, 151, 138] – which
is the goal of our work. More recently, by leveraging an implicit representation in the
form of a Neural Radiance Field, [89] showed the ability to model complex geome-
tries and illumination from images. There has since been a flurry of impressive work
to further push the boundaries of these representations and allow modeling deforma-
tion [114, 108], lighting variation [85], and similar to ours, leveraging insights from
surface rendering to model radiance [185, 11, 102, 141, 196, 166, 184]. However, un-
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like our approach which can efficiently learn from a sparse set of images with coarse
cameras, these approaches rely on a dense set of multi-view images with precise
camera localization to recover a coherent 3D structure of the scene. DietNeRF [55]
reduces the number of images but requires precise cameras and semantic supervision.
BARF [74] relaxes the constraint of precise cameras while foregoing view-dependent
appearance and requiring a dense set of images. Other approaches [9, 195] that
learn material properties from sparse views require specialized illumination rigs.

Multi-view Datasets. Many datasets study the longstanding problem of multi-
view reconstruction and view synthesis. However, they are often captured in con-
trolled setups, small in scale, and not diverse enough to capture the span of real-
world objects. Middlebury [132] benchmarks multi-view reconstruction, containing
two objects with nearly Lambertian surfaces. DTU [1] contains eighty objects with
various materials but is still captured in a lab with controlled lighting. Freiburg
cars [131] captures 360 degree videos of fifty-two outdoor cars for multi-view re-
construction. ETH3D [130] and Tanks and Temples [68] contain both indoor and
outdoor scenes but are small in scale. Perhaps most relevant are large-scale datasets
of real-world objects such as Redwood [22] and Stanford Products [103], but the data
is dominated by single-views or small baseline videos. In contrast, our Multi-view
Marketplace Cars (MVMC) dataset contains thousands of multi-view captures of in-
the-wild objects under various illumination conditions, making it suitable for study-
ing and benchmarking algorithms for multi-view reconstruction, view synthesis, and
inverse rendering.

2.3 Method

Given a sparse set of input images of an object under natural lighting conditions, we
aim to model its shape and appearance. While recent neural volumetric approaches
share a similar goal, they require a dense set of views with precise camera informa-
tion. Instead, our approach relies only on approximate camera pose estimates and
a coarse category-level shape template. Our key insight is that instead of allowing
unconstrained densities popularly used for volumetric representations, we can en-
force a surface-based 3D representation. Importantly, this allows view-dependent
appearance variation by leveraging constrained reflection models that decompose
appearance into diffuse and specular components. In this section, we first introduce
our (neural) surface representation that captures the object’s shape and texture,
and then explain how illumination and specular effects can be modeled for render-
ing. Finally, we describe how our approach can learn using challenging in-the-wild
images.
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Figure 2.2: Neural Surface Representation. We propose an implicit, continuous
representation of shape and texture. We model shape as a deformation of a unit
sphere via a neural network fshape, and texture as a learned per-uv color value via a
neural network ftex. We can discretize fshape and ftex to produce the textured mesh
above.

2.3.1 Neural Surface Representation

We represent object shape via the deformation of a unit sphere. Previous works
[59, 45] have generally modeled such deformations explicitly: the unit sphere is dis-
cretized at some resolution as a 3D mesh with V vertices. Predicting the shape
deformation thus amounts to predicting vertex offsets δ ∈ RV×3. Such explicit dis-
crete representations have several drawbacks. First, they can be computationally
expensive for dense meshes with fine details. Second, they lack useful spatial induc-
tive biases as the vertex locations are predicted independently. Finally, the learned
deformation model is fixed to a specific level of discretization, making it non-trivial,
for instance, to allow for more resolution as needed in regions with richer detail.
These limitations also extend to texture parametrization commonly used for such
discrete mesh representations—using either per-vertex or per-face texture samples
[63], or fixed resolution texture map, limits the ability to capture finer details.

Inspired by [47, 156], we address these challenges by adopting a continuous
surface representation via a neural network. We illustrate this representation in
Fig. 2.2. For any point u on the surface of a unit sphere S2, we represent its 3D
deformation x ∈ R3 using the mapping fshape(u) = x where fshape is parameterized
as a multi-layer perceptron. This network, therefore, induces a deformation field
over the surface of the unit sphere, and this deformed surface serves as our shape
representation. We represent the surface texture in a similar manner–as a neural
vector field over the surface of the sphere: ftex(u) = t ∈ R3. This surface texture
can be interpreted as an implicit UV texture map.

2.3.2 Modeling Illumination and Specular Rendering

Surface Rendering. The surface geometry and texture are not sufficient to infer
the appearance of the object e.g. a uniformly red car may appear darker on one side,
and lighter on the other depending on the direction of incident light. In addition,
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depending on viewing direction and material properties, one may observe different
appearances for the same 3D point e.g. shiny highlights from certain viewpoints.
More formally, assuming that a surface does not emit light, the outgoing radiance
Lo in direction v from a surface point x can be described by the rendering equation
[57, 53]:

Lo(x, v) =
∫

Ω
fr(x, v, ω)Li(x, ω)(ω · n)dω (2.1)

where Ω is the unit hemisphere centered at surface normal n, and ω denotes the
negative direction of incoming light. fr(x, v, ω) is the bidirectional reflectance func-
tion (BRDF) which captures material properties (e.g. color and shininess) of surface
S at x, and Li(x, ω) is the radiance coming toward x from ω (Refer to Fig. 2.3).
Intuitively, this integral computes the total effect of the reflection of every possible
light ray ω hitting x bouncing in the direction v.

Camera

Surface

Figure 2.3: Notation and
convention for viewpoint
and illumination param-
eterization. The camera
at c is looking at point
x on the surface S. v
denotes the direction of
the camera w.r.t x, and
n is the normal of S at x.
Ω denotes the unit hemi-
sphere centered about n.
We compute the light ar-
riving in the direction of
every ω ∈ Ω, and r is the
reflection of w about n.

We thus need to infer the environment lighting and
surface material properties to allow realistic renderings.
However, learning arbitrary lighting Li or reflection mod-
els fr is infeasible given sparse views, and we need to fur-
ther constrain these to allow learning. Inspired by con-
current work [176] that demonstrated its efficacy when
rendering rotationally symmetric objects, we leverage
the Phong reflection model [111] with the lighting repre-
sented as a neural environment map.

Neural Environment Map. An environment map intu-
itively corresponds to the assumption that all the light
sources are infinitely far away. This allows a simplified
model of illumination, where the incoming radiance only
depends on the direction ω and is independent of the
position x i.e. Li(x, ω) ≡ Iω. We implement this as a
neural spherical environment map fenv which learns to
predict the incoming radiance for any query direction
Li(x, ω) ≡ Iω = fenv(ω). Note that there is a funda-
mental ambiguity between material properties and illu-
mination, e.g. a car that appears red could be a white
car under red illumination or a red car under white il-
lumination. To avoid this, we follow [176], and further
constrain the environment illumination to be grayscale, i.e. fenv(ω) ∈ R.

Appearance under Phong Reflection. Instead of allowing an arbitrary BRDF fr,
the Phong reflection model decomposes the outgoing radiance from point x in di-
rection v into the diffuse and specular components. The view-independent portion
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Figure 2.4: Components of learned illumination model. Given a query camera
viewpoint (illustrated via the reference image I), we recover the radiance output
Lo, computed using Phong shading [111]. Here, we show the full decomposition of
learned components. From the environment map fenv and normals n, we compute
diffuse (Idiffuse) and specular lighting (Ispecular). The texture and diffuse lighting
form the view-independent component (“View Indep.”) and the specular lighting
(weighted by the specular coefficient ks) forms the view-dependent component of
the radiance. Altogether, the output radiance Lo = T ⊙ Idiffuse + ksIspecularity (2.4).
We also visualize the radiance using the mean texture, which is used to help learn
plausible illumination. In the yellow box, we visualize the effects of the two specular-
ity parameters. The shininess α controls the mirror-ness/roughness of the surface.
The specular coefficient ks controls the intensity of the specular highlights.

of the illumination is modeled by the diffuse component:

Idiffuse(x) =
∑
ω∈Ω

(ω · n)Iω, (2.2)

while the view-dependent portion of the illumination is modeled by the specular
component:

Ispecular(x, v) =
∑
ω∈Ω

(rω,n · v)αIω, (2.3)

where rω,n = 2(ω · n)n − ω is the reflection of ω about the normal n. The shininess
coefficient α ∈ (0, ∞) is a property of the surface material and controls the “mirror-
ness” of the surface. If α is high, the specular highlight will only be visible if v aligns
closely with rω. Altogether, we compute the radiance of x in direction v as:

Lo(x, v) = T (x) · Idiffuse(x) + ks · Ispecular(x, v) (2.4)

where the specularity coefficient ks is another surface material property that controls
the intensity of the specular highlight. T (x) is the texture value at x computed by
ftex. For the sake of simplicity, α and ks are shared across the entire instance. See
Fig. 2.4 for a full decomposition of these components.
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Images Init. Shape Reconstructions from Novel ViewsPred. Shape

Figure 2.5: Qualitative results on various household objects. We demonstrate the
versatility of our approach on an espresso machine, a bottle of ketchup, a game
controller, and a fire hydrant. Each instance has 7-10 input views. We find that
a coarse, cuboid mesh is sufficient as an initialization to learn detailed shape and
texture. We initialize the camera poses by hand, roughly binning in increments of
45 degrees azimuth.

2.3.3 Learning NeRS in the Wild

Given a sparse set of images in the wild, our approach aims to infer a NeRS represen-
tation, which when rendered, matches the available input. Concretely, our method
takes as input N (typically 8) images of the same instance {Ii}Ni=1, noisy camera
rotations {Ri}Ni=1, and a category-specific mesh initialization M. Using these, we
aim to optimize full perspective cameras {Π}Ni=1 as well as the neural surface shape
fshape, surface texture ftext, and environment map fenv. In addition, we also recover
the material properties of the object, parametrized by a specularity coefficient ks
and shininess coefficient α.

Initialization. Note that both the camera poses and mesh initialization are only
required to be coarsely accurate. We use an off-the-shelf approach [179] to predict
camera rotations, and we find that a cuboid is sufficient as an initialization for several
instances (See Fig. 2.5). We use off-the-shelf approaches [123, 67] to compute masks
{Mi}Ni=1. We assume that all images were taken with the same camera intrinsics.
We initialize the shared global focal length f to correspond to a field of view of 60
degrees and set the principal point at the center of each image. We initialize the
camera pose with the noisy initial rotations Ri and a translation ti such that the
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object is fully in view. We pre-train fshape to output the template mesh M.
Rendering. To render an image, NeRS first discretizes the neural shape model

fshape(u) over spherical coordinates u to construct an explicit triangulated surface
mesh. This triangulated mesh and camera Πi are fed into PyTorch3D’s differentiable
renderer [115] to obtain per-pixel (continuous) spherical coordinates and associated
surface properties:

[UV, N, M̂i] = Rasterize(πi, fshape) (2.5)

where UV [p], N [p], and M̂ [p] are (spherical) uv-coordinates, normals, and binary
foreground-background labels corresponding to each image pixel p. Together with
the environment map fenv and specular material parameters (α, ks), these quantities
are sufficient to compute the outgoing radiance at each pixel p under camera view-
point Πi using equation 2.4. In particular, denoting by v(Π, p) the viewing direction
for pixel p under camera Π, and using u ≡ UV [p], n ≡ N [p] for notational brevity,
the intensity at pixel p can be computed as:

Î[p] = ftex(u) ·
( ∑
ω∈Ω

(ω · n) fenv(ω)
)

+ ks
( ∑
ω∈Ω

(rω,n · v(Π, p))a fenv(ω)
)

(2.6)

Image loss. We compute a perceptual loss [194] Lperceptual(Ii, Îi) that compares the
distance between the rendered and true image using off-the-shelf VGG deep features.
Note that being able to compute a perceptual loss is a significant benefit of surface-
based representations over volumetric approaches such as NeRF [89], which operate
on batches of rays rather than images, due to the computational cost of volumetric
rendering. Similar to [176], we find an additional rendering loss using the mean
texture (see Fig. 2.4 and Fig. 2.8 for examples) helps learn visually plausible lighting.

Mask Loss. To measure disagreement between the rendered and measured sil-
houettes, we compute a mask loss:

Lmask = 1
N

N∑
i=1

∥Mi − M̂i∥2
2, (2.7)

a distance transform loss:

Ldt = 1
N

N∑
i=1

Di ⊙ M̂i, (2.8)

and a 2D chamfer loss:

Lchamfer = 1
N

N∑
i=1

∑
p∈E(Mi)

min
p̂∈M̂i

∥p − p̂∥2
2. (2.9)

Di refers to the Euclidean distance transform of mask Mi, E(·) computes the 2D
pixel coordinates of the edge of a mask, and p̂ is every pixel coordinate in the
predicted silhouette.
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Regularization. Finally, to encourage smoother shape whenever possible, we
incorporate a mesh regularization loss Lregularize = Lnormals + Llaplacian consisting
of normals consistency and Laplacian smoothing losses [94, 30]. Note that such
geometry regularization is another benefit of surface representations over volumetric
ones. Altogether, we minimize:

L = λ1Lmask + λ2Ldt + λ3Lchamfer + λ4Lperceptual + λ5Lregularize (2.10)

w.r.t Πi =
[
Ri, ti, f

]
, α, ks, and the weights of fshape, ftext, and fenv map.

Optimization. We optimize (2.10) in a coarse-to-fine fashion, starting with a
few parameters and slowly increasing the number of free parameters. We initially
optimize (2.10), w.r.t only the camera parameters Πi. After convergence, we sequen-
tially optimize fshape, ftex, and fenv/α/ks. We find it helpful to sample a new set
of spherical coordinates u for each iteration when rasterizing. This helps propagate
gradients over a larger surface and prevent aliasing. With 4 Nvidia 1080TI GPUs,
training NeRS requires approximately 30 minutes.

2.4 Evaluation

In this section, we demonstrate the versatility of Neural Reflectance Surfaces to
recover meaningful shape, texture, and illumination from in-the-wild indoor and
outdoor images.

Multi-view Marketplace Dataset. To address the shortage of in-the-wild multi-
view datasets, we introduce a new dataset, Multi-view Marketplace Cars (MVMC),
collected from an online marketplace with thousands of car listings. Each user-
submitted listing contains seller images of the same car instance. In total, we curate
a subset of size 600 with at least 8 exterior views (averaging 10 exterior images
per listing) along with 20 instances for an evaluation set (averaging 9.1 images
per listing). We use [179] to compute rough camera poses. MVMC contains a
large variety of cars under various illumination conditions (e.g. indoors, overcast,
sunny, snowy, etc). The filtered dataset with anonymized personally identifiable
information (e.g. license plates and phone numbers), masks, initial camera poses,
and optimized NeRS cameras is available publicly.

Novel View Synthesis. Traditionally, novel view synthesis requires accurate tar-
get cameras to use as queries. Existing approaches use COLMAP [126] to recover
ground truth cameras, but this consistently fails on MVMC due to specularities
and limited views. On the other hand, we can use learning-based methods [179]
to recover camera poses for both training and test views. However, as these are
inherently approximate, this complicates training and evaluation. To account for
this, we explore two evaluation protocols. First, to mimic the traditional evaluation
setup, we obtain pseudo-ground truth cameras (with manual correction) and freeze
them during training and evaluation. While this evaluates the quality of the 3D
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Figure 2.6: Qualitative comparison with fixed cameras. We evaluate all baselines
on the task of novel view synthesis on Multi-view Marketplace Cars trained and
tested with fixed, pseudo-ground truth cameras. One image is held out during
training. Since we do not have ground truth cameras, we treat the optimized cameras
from optimizing over all images as the ground truth cameras. We train a modified
version (See Sec. 2.4) of NeRF [89] that is more competitive with sparse views
(NeRF∗). We also evaluate against a meta-learned initialization of NeRF with and
without finetuning until convergence [146], but found poor results perhaps due to
the domain shift from Shapenet cars. Finally, IDR [185] extracts a surface from an
SDF representation but struggles to produce a view-consistent output given limited
input views. We find that NeRS synthesizes novel views that are qualitatively closer
to the target. The red truck has 16 total views while the blue SUV has 8 total views.

reconstruction, it does not evaluate the method’s ability to jointly recover cameras.
As a more realistic setup for evaluating view synthesis in the wild, we evaluate
each method with approximate (off-the-shelf) cameras, while allowing them to be
optimized.

Novel View Synthesis with Fixed Cameras. In the absence of ground truth
cameras, we create pseudo-ground truth by manually correcting cameras recovered
by jointly optimizing over all images for each object instance. For each evaluation,
we treat one image-camera pair as the target and the remaining pairs for training.
We repeat this process for each image in the evaluation set (totaling 182). Unless
otherwise noted, qualitative results use approximate cameras and not the pseudo-
ground truth.

Novel View Synthesis in the Wild. While the above evaluates the quality of
the 3D reconstructions, it is not representative of in-the-wild settings where the
initial cameras are unknown/approximate and should be optimized during training.
Because even the test camera is approximate, each method is similarly allowed to
refine the test camera to better match the test image while keeping the model fixed.
Intuitively, this measures the ability of a model to synthesize a target view under
some camera.

Baselines. We evaluate our approach against Neural Radiance Fields
(NeRF) [89], which learns a radiance field conditioned on viewpoint and position
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Input Images Target View NeRS (Ours)NeRF* MetaNeRF MetaNeRF-ft IDR
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Figure 2.7: Qualitative results for in-the-wild novel view synthesis. Since off-the-
shelf camera poses are only approximate for both training and test images, we
allow cameras to be optimized during both training and evaluation (See Tab. 2.2
and Sec. 2.4). We find that NeRS generalizes better than the baselines in this
unconstrained but more realistic setup.

Input Images Novel View 1 Novel View 2 Novel View 3
Illum. of Mean Tex.Output Illum. of Mean Tex.Output Illum. of Mean Tex.Output

Figure 2.8: Qualitative results on our in-the-wild Multi-view Marketplace Cars
dataset. Here we visualize the NeRS outputs as well as the illumination of the mean
texture on 3 of the listings from the MVMC dataset. We find that NeRS recovers
detailed textures and plausible illumination. Each instance has 8 input views.

and renders images using raymarching. We find that the vanilla NeRF struggles
in our in-the-wild low-data regime. As such, we make a number of changes to
make the NeRF baseline (denoted NeRF∗) as competitive as possible, including
a mask loss and a canonical volume. Please see the appendix for full details.
We also evaluate a simplified NeRF with a meta-learned initialization for cars
from multi-view images [146], denoted as MetaNeRF. MetaNeRF meta-learns an
initialization such that with just a few gradient steps, it can learn a NeRF model.
This allows the model to learn a data-driven prior over the shape of cars. Note
that MetaNeRF is trained on ShapeNet [19] and thus has seen more data than
the other test-time-optimization approaches. We find that the default number of
gradient steps was insufficient for MetaNeRF to converge on images from MVMC,
so we also evaluate MetaNeRF-ft, which is finetuned until convergence. Finally,
we evaluate IDR [185], which represents geometry by extracting a surface from
a signed distance field. IDR learns a neural renderer conditioned on the camera
direction, position, and normal of the surface.

Metrics. We evaluate all approaches using the traditional image similarity met-
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Method MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

NeRF∗ [89] 0.0393 16.0 0.698 0.287 231.7
MetaNeRF [146] 0.0755 11.4 0.345 0.666 394.5
MetaNeRF-ft [146] 0.0791 11.3 0.500 0.542 326.8
IDR [185] 0.0698 13.8 0.658 0.328 190.1
NeRS (Ours) 0.0254 16.5 0.720 0.172 60.9

Table 2.1: Quantitative evaluation of novel-view synthesis on MVMC using fixed
pseudo-ground truth cameras. To evaluate novel view synthesis in a manner con-
sistent with previous works that assume known cameras, we obtain pseudo-ground
truth cameras by manually correcting off-the-shelf recovered cameras. We evalu-
ate against a modified NeRF (NeRF∗), a meta-learned initialization to NeRF with
and without finetuning (MetaNeRF), and the volumetric surface-based IDR. NeRS
significantly outperforms the baselines on all metrics on the task of novel-view syn-
thesis with fixed cameras. See Fig. 2.6 for qualitative results.

Method MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

NeRF∗ [89] 0.0464 14.7 0.660 0.335 277.9
IDR [185] 0.0454 14.4 0.685 0.297 242.3
NeRS (Ours) 0.0338 15.4 0.675 0.221 92.5

Table 2.2: Quantitative evaluation of in-the-wild novel-view synthesis on MVMC.
Off-the-shelf cameras estimated for in-the-wild data are inherently erroneous. This
means that both training and test cameras are approximate, complicating training
and evaluation. To compensate for approximate test cameras, we allow methods to
refine the test camera given the test image with the model fixed. Intuitively this
measures the ability of a method to synthesize a test image under some camera.
We evaluate against NeRF and IDR, and find that NeRS outperforms the baselines
across all metrics. See Fig. 2.7 for qualitative results.

rics Mean-Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural
Similarity Index Measure (SSIM). We also compute the Learned Perceptual Image
Patch Similarity (LPIPS) [194] which correlates more strongly with human percep-
tual distance. Finally, we compute the Fréchet Inception Distance [51] between the
novel view renderings and original images as a measure of visual realism. In Tab. 2.1
and Tab. 2.2, we find that NeRS significantly outperforms the baselines in all met-
rics across both the fixed camera and in-the-wild novel-view synthesis evaluations.
See Fig. 2.6 and Fig. 2.7 for a visual comparison of the methods.

Qualitative Results. In Fig. 2.8, we show qualitative results on our Multi-view
Marketplace Cars dataset. Each car instance has between 8 and 16 views. We visu-
alize the outputs of our reconstruction from 3 novel views. We show the rendering
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for both the full radiance model and the mean texture. Both of these renderings are
used to compute the perceptual loss (See Sec. 2.3.2). We find that NeRS recovers
detailed texture information and plausible illumination parameters. To demonstrate
the scalability of our approach, we also evaluate various household objects in Fig. 2.5.
We find that a coarse, cuboid mesh is sufficient as an initialization to recover de-
tailed shape, texture, and lighting conditions. Please refer to the project webpage
for 360-degree visualizations.

2.5 Discussion
We present NeRS, an approach for learning neural surface models that capture ge-
ometry and surface reflectance. In contrast to volumetric neural rendering, NeRS
enforces watertight and closed manifolds. This allows NeRS to model surface-based
appearance effects, including view-dependant specularities and normal-dependant
diffuse appearance. We demonstrate that such regularized reconstructions allow for
learning from sparse in-the-wild multi-view data, enabling the reconstruction of ob-
jects with diverse material properties across a variety of indoor/outdoor illumination
conditions. Further, the recovery of accurate camera poses in the wild (where classic
structure-from-motion fails) remains unsolved and serves as a significant bottleneck
for all approaches, including ours. We tackle this problem by using realistic but ap-
proximate off-the-shelf camera poses and by introducing a new evaluation protocol
that accounts for this. We hope NeRS inspires future work that evaluates in the wild
and enables the construction of high-quality libraries of real-world geometry, mate-
rials, and environments through better neural approximations of shape, reflectance,
and illuminants.

Limitations. Though NeRS makes use of factorized models of illumination and
material reflectance, there exist some fundamental ambiguities that are difficult
from which to recover. For example, it is difficult to distinguish between an image
of a gray car under bright illumination and an image of a white car under dark
illumination. We visualize such limitations in the supplement. In addition, because
the neural shape representation of NeRS is diffeomorphic to a sphere, it cannot
model objects of non-genus-zero topologies.

28



Chapter 3

RelPose: Predicting Probabilistic
Relative Rotation for Single Objects
in the Wild

Image 1 Image 2 Distribution of Recover a Joint Configuration 
of Camera Orientation

Figure 3.1: Probabilistic Camera Rotation Estimation for Generic Objects. Left:
Given two images of the same object, we predict a conditional distribution of relative
camera viewpoint (rotation) that effectively handles symmetries and pose ambigui-
ties. Right: Given a set of images, our approach outputs a configuration of camera
rotations.

3.1 Introduction

Recovering 3D from 2D images of an object has been a central task in vision for
decades. Given multiple views, structure-from-motion (SfM) based methods can
infer a 3D representation of the underlying instance while also associating each
image with a camera viewpoint. However, these correspondence-driven methods
cannot robustly handle sparsely sampled images that minimally overlap and typi-
cally require many (>20) images for a 360-degree 3D inference. Unfortunately, this
requirement of densely sampled views can be prohibitive—online marketplaces often

29



have only a few images per instance, and a user casually reconstructing a novel ob-
ject would also find capturing such views tedious. Although the recently emerging
neural 3D reconstruction techniques also typically leverage similarly dense views,
some works have shown promise that a far smaller number of images can suffice
for high-quality 3D reconstruction. These successes have, however, still relied on
precisely [144, 201, 77, 188, 175, 18] or approximately [74, 116, 192, 44, 155] known
camera viewpoints for inference. To apply these methods at scale, we must therefore
answer a fundamental question—given sparsely sampled images of a generic object,
how can we obtain the associated camera viewpoints?

Existing methods do not provide a conclusive answer to this question. On the one
hand, bottom-up correspondence-based techniques are not robustly applicable for
sparse-view inference. On the other, recent neural multi-view methods can optimize
already known approximate camera poses but provide no mechanism to obtain these
to begin with. In this work, our goal is to fill this void and develop a method that,
given a small number of unposed images of a generic object, can associate them
with (approximate) camera viewpoints. Towards this goal, we focus on inferring
the camera rotation matrices corresponding to each input image and propose a top-
down approach to predict these. However, we note that the ‘absolute’ rotation is
not well-defined given an image of a generic object—it assumes a ‘canonical’ pose
which is not always known a-priori (e.g. what is an identity rotation for a pen? or
a plant?). In contrast, the relative rotation between two views is well-defined even
if a canonical pose for the instance is not. Thus, instead of adopting the common
paradigm of single-image based pose prediction, we learn to estimate the relative
pose given a pair of input images. We propose a system that leverages such pairwise
predictions to then infer a consistent set of global rotations given multiple images
of a generic object.

A key technical question that we consider is regarding the formulation of such
pairwise pose estimation. Given two informative views of a rotationally asymmetric
object, a regression-based approach may be able to accurately predict their rela-
tive transformation. The general case however, can be more challenging—given two
views of a cup but with the handle only visible in one, the relative pose is ambigu-
ous given just the two images. To allow capturing this uncertainty, we formulate
an energy-based relative pose prediction network that, given two images and a can-
didate relative rotation, outputs an energy corresponding to the (unnormalized)
log-probability of the hypothesis. This probabilistic estimation of relative pose not
only makes the learning more stable, but more importantly, provides a mechanism
to estimate a joint distribution over viewpoints given multiple images. We show that
optimizing rotations to improve this joint likelihood yields coherent poses given mul-
tiple images and leads to significant improvements over naive approaches that do
not consider the joint likelihoods.

We train our system using instances from over 40 commonplace object categories
and find that not only can it infer accurate (relative) poses for novel instances of
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Figure 3.2: Overview. From a set of images, we aim to recover corresponding
camera poses (rotations). To do this, we train a pairwise pose predictor that takes
in two images and a candidate relative rotation and predicts energy. By repeatedly
querying this network, we recover a probability distribution over conditional relative
rotations (see Sec. 3.3.1). We use these pairwise distributions to induce a joint
likelihood over the camera transformations across multiple images, and iteratively
improve an initial estimate by maximizing this likelihood (see Sec. 3.3.2).

these classes, it even generalizes to instances from unseen categories. Our approach
can thus be viewed as a stepping stone toward sparse-view 3D reconstruction of
generic objects; just as classical techniques provide precise camera poses that (neu-
ral) multi-view reconstruction methods can leverage, our work provides a similar,
albeit coarser, output that can be used to initialize inference in current (and future)
sparse-view reconstruction methods. While our system only outputs camera rota-
tions, we note that a reasonable corresponding translation can be easily initialized
assuming object-facing viewpoints, and we show that this suffices in practice for
bootstrapping sparse-view reconstruction.

3.2 Related Work

Structure-from-Motion (SfM). At a high level, structure-from-motion aims to re-
cover 3D geometry and camera parameters from image sets. This is done classically
by computing local image features [48, 79, 7, 152], finding matches across images [80],
and then estimating and verifying epipolar geometry using bundle adjustment [153].
Later works have scaled up the SfM pipeline using sequential algorithms, demon-
strating results on hundreds or even thousands of images [139, 39, 127, 126, 124].

The advent of deep learning has augmented various stages of the classical SfM
pipeline. Better feature descriptors [31, 134, 168, 186, 34, 109, 118] and improved
featured matching [125, 23, 76, 154, 35] have significantly outperformed their hand-
crafted counterparts. BA-Net [148] and DeepSFM [173] have even replaced the
bundle-adjustment process by optimizing over a cost volume. Most recently, Pixel-
Perfect SfM [75] uses a featuremetric error to post-process camera poses to achieve
sub-pixel accuracy.

While these methods can achieve excellent localization, all these approaches are

31



bottom-up: beginning with local features that are matched across images. However,
matching features requires sufficient overlap between images, which may not be
possible given wide baseline views. While our work also aims to localize camera
poses given image sets, our approach fundamentally differs because it is top-down
and does not rely on low-level correspondences.
Simultaneous Localization and Mapping (SLAM). Related is the task of Monocu-
lar SLAM, which aims to localize and map the surroundings from a video stream.
Indirect SLAM methods, similar to SfM, match local features across different im-
ages to localize the camera [122, 15, 92, 91]. Direct SLAM methods, on the other
hand, define a geometric objective function to directly optimize over a photometric
error [202, 129, 27, 36].

There have also been various attempts to introduce deep learning into SLAM
pipelines. As with SfM, learned feature descriptors and matching have helped im-
prove accuracy on SLAM subproblems and increased robustness. End-to-end deep
SLAM methods [197, 95, 169, 171] have improved the robustness of SLAM compared
to classical methods, but have generally not closed the gap on performance. One
notable exception is the recent DROID-SLAM [149], which combines the robustness
of learning-based SLAM with the accuracy of classical SLAM.

These approaches all assume sequential streams and generally rely on matching
or otherwise incorporating temporal locality between neighboring frames. We do
not make any assumptions about the order of the image inputs nor the amount of
overlap between nearby frames.
Single-view Pose Prediction. The task of predicting a (6-DoF) pose from a single
image has a long and storied history, the surface of which can barely be scratched in
this section. Unlike relative pose between multiple images, the (absolute) pose given
a single image is only well-defined if there exists a canonical coordinate system. Most
single-view pose prediction approaches therefore deal with a fixed set of categories,
each of which has a canonical coordinate system defined a priori [177, 150, 100, 20,
164, 54, 13, 140, 99, 93, 64, 66] or learned [143]. Other methods that are category-
agnostic take in a 3D mesh or point cloud as input, which provides a local coordinate
system [174, 179, 190, 104].

Perhaps most relevant to us are approaches that not only predict pose but also
model inherent uncertainty in the pose prediction [12, 65, 93, 105, 26, 145, 113, 41,
28, 29, 90, 84]. Like our approach, VpDR-Net [98] uses relative poses as supervi-
sion but still predicts absolute pose (with a unimodal Gaussian uncertainty model).
Implicit-PDF [93] is the most similar approach to ours and served as an inspiration.
Similar to our approach, Implicit-PDF uses a neural network to implicitly represent
probability using an energy-based formulation that elegantly handles symmetries
and multimodal distributions. Unlike our approach, Implicit-PDF (and all other
single-view pose prediction methods) predict absolute pose, which does not exist in
general for generic or novel categories. Instead, we model probability distributions
over relative pose given pairs of images.
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Figure 3.3: Predicted conditional distribution of image pairs from unseen categories.
Here, we visualize the predicted conditional distribution of image pairs. Inspired by
[93], we visualize the rotation distribution (Algorithm 1) by plotting yaw as latitude,
pitch as longitude, and roll as the color. The size of each circle is proportional to
the probability of that rotation. We omit rotations with negligible probability. The
center of the open circle represents the ground truth. We can see that network pre-
dicts 4 modes for the couch images, corresponding roughly to 90-degree increments,
with the greatest probability assigned to the correct 90-degree rotation. The relative
pose of the hot dog is unambiguous and thus only has one mode. While the relative
pose for the frisbee has close to no pitch or yaw, the roll remains ambiguous, hence
the variety in colors. See the supplement for a visualization of how to interpret the
relative rotations.

Learning-based Relative Pose Prediction. When considering generic scenes, prior
works have investigated the task of relative pose prediction given two images. How-
ever, these supervised [159] or self-supervised [198, 187, 83, 163, 70] methods typi-
cally consider the prediction of motion between consecutive frames and are not easily
adapted to wide-baseline prediction. While some approaches have investigated wide
baseline prediction [87, 6, 120], regression-based inference can not effectively cap-
ture uncertainty, unlike our energy-based model. Perhaps most similar to ours is
DirectionNet [21] which also predicts a camera distribution for wide baseline views.
While DirectionNet only uses the expected value of the distribution and thus ignores
symmetry, we take advantage of multimodal distributions to improve our joint pose
estimation.

3.3 Method
Given a set of N images {I1, . . . IN} depicting a generic object in the wild, we aim
to recover a set of N rotation matrices {R1, . . . , RN} such that rotation matrix
Ri corresponds to the viewpoint of the camera used to take image i. Note that
while we do not model translation, it can be easily initialized using object-facing
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viewpoints for 3D object reconstruction [74, 192] or a pose graph for SLAM [16].
We are primarily interested in settings with only sparse views and wide baselines.
While bottom-up correspondence-based techniques can reliably recover camera pose
given dense views, they do not adapt well to sparse views with minimal overlap. We
instead propose a prediction-based top-down approach that can learn and exploit
the global structure directly.

The basic building block of our prediction system (visualized in figure 3.3) is a
pairwise pose predictor that infers relative camera orientations given pairs of images.
However, symmetries in objects and possibly uninformative viewpoints make this
an inherently uncertain prediction task. To allow capturing this uncertainty, we
propose an energy-based approach that models the multi-modal distribution over
relative poses given two images.

Given the predicted distributions over pairwise relative rotations, we show that
these can be leveraged to induce a joint distribution over the rotations. Starting
with a greedy initialization, we present a coordinate-ascent approach that jointly
reasons over and improves the set of inferred rotations. We describe our approach
for modeling probability distributions over relative poses between two images in
Sec. 3.3.1, and build on this in Sec. 3.3.2 to recover a joint set of poses across
multiple images. Finally, we discuss implementation details in Sec. 3.3.3.

3.3.1 Estimating Pair-wise Relative Rotations

procedure PairwiseDistribution(I1, I2)
queries ←SampleRotationsUnif(50000)
energies ← f(I1, I2, queries)
probs ← SoftMax(energies)
return queries, probs

end procedure

Algorithm 1: Pseudo-code for recovering
a pairwise distribution. We describe how
to recover the distribution of the relative
pose given images.

Given a pair of images depicting an arbi-
trary object, we aim to predict a distri-
bution over the relative rotation corre-
sponding to the camera transformation
between the two views. As there may be
ambiguities when inferring the relative
pose given two images, we introduce a
formulation that can model uncertainty.
Energy-based Formulation. We wish to
model the conditional distribution over
a relative rotation matrix R given input images I1 and I2: P (R | I1, I2). Inspired
by recent work on implicitly representing the distribution over rotations using a
neural network [93], we propose using an energy-based relative pose estimator. More
specifically, we train a network f(R, I1, I2) that learns to predict the energy, or the
unnormalized joint log-probability, P (R, I1, I2) = α exp f(R, I1, I2) where α is the
constant of integration. From the product rule, we can recover the conditional
probability as a function of f :

P (R | I1, I2) = P (R, I1, I2)
P (I1, I2) ≈ α exp f(R, I1, I2)∑

R′ α exp f(R′, I1, I2) = exp f(R, I1, I2)∑
R′ exp f(R′, I1, I2)

(3.1)
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We marginalize over rotations to avoid having to compute α (see Algorithm 1), but
note that the number of sampled rotations should be large for the approximation
to be accurate. It is therefore important to use a lightweight network f since it is
queried once per sampled rotation in the denominator.
Training. We train our network by maximizing the log-likelihood of the conditional
distribution, or equivalently minimizing the negative log-likelihood:

L = − log P (R⊤
1 R2 | I1, I2) (3.2)

where R1 and R2 are the ground truth poses of I1 and I2 respectively. Note that
while the ‘absolute’ poses (R1, R2) are in an arbitrary coordinate system (depending
on e.g. SLAM system outputs), the relative pose R⊤

1 R2 between two views is agnostic
to this incidental canonical frame. Following eq. (3.1), we sample multiple candidate
rotation matrices to compute the conditional probability.
Inference. Recovering the optimal transformation from the pose of I1 to I2 amounts
to optimizing f over the space of rotations:

R∗ = arg max
R∈SO(3)

P (R | I1, I2) = arg max
R∈SO(3)

f(R, I1, I2) (3.3)

In practice, the loss landscape of f is often un-smooth, so we find that sampling and
scoring rotations based on f to be more effective than gradient ascent.

We can also compute the conditional distribution of the relative rotation from
I1 to I2 by sampling rotations over SO(3). The probability associated with each
rotation can be computed using a softmax function, as described Algorithm 1 and
derived in eq. (3.1). Inspired by [93], we can visualize the distribution of rotations
by projecting the rotation matrices on a 2-sphere using pitch and yaw and coloring
the rotation based on the roll. See Fig. 3.3 and the supplement for sample results.

3.3.2 Recovering Joint Poses

In the previous section, we describe an energy-based relative pose predictor condi-
tioned on pairs of images. Using this network, we recover a coherent set of rotations
when given a set of images.
Greedy Initialization. Given predictions for relative rotations between every pair
of images, we aim to associate each image with an absolute rotation. However, as
the relative poses are invariant up to a global rotation, we can treat the pose of the
first image as the identity matrix: R1 = I. We note that the rotations for the other
images can be uniquely induced given any N − 1 relative rotations that span a tree.
Sequential Chain. Perhaps the simplest way to construct such a tree is to treat
the images as part of an ordered sequence. Given R1 = I, all subsequent poses
can be computed by using the best scoring relative pose from the previous image:
Ri = Ri−1R∗

(i−1)�i, denoting Ri�j as the relative rotation matrix R⊤
i Rj . However,
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procedure CoordAsc(Images {Ii}N )
{Ri}N ← InitializeRotations({Ii}N )
for t ∈ 1, . . . , Num Iterations do

k ← RandomInteger(N)
▷ R′

k (Q×3×3): Q replacements for Rk

R′
k ←SampleRotationsUnif(Q=250000)

energies ← Zeros(Q)
for i ∈ 1, . . . , N and i ̸= k do

R← Repeat(Ri, Q) ▷ 3×3→Q×3×3
energies ← energies + f(Ii, Ik, R⊤R′

k)
energies ← energies + f(Ik, Ii, R′⊤

k R)
end for
Rk ← R′

k[ArgMax(energies)]
end for

end procedure

Algorithm 2: Pseudo-code for joint inference using relative pose predictor. We
describe how to recover the joint poses given n images via coordinate ascent.

this assumes that the images are captured sequentially (e.g. in a video) and may
not be applicable for settings such as online marketplaces.
Maximum Spanning Tree. We improve over the naive linear chain by recognizing
that some pairs of images may produce more confident predictions. Given N images,
we construct a directed graph with N · (N − 1) edges, where the weight of edge
(i, j) = P (R∗

i�j |Ii, Ij). We then construct a Maximum Spanning Tree (MST) that
covers all images with the most confident set of relative rotations.
Reasoning over all images jointly. Both of the previous methods, which select a
subset of edges, do not perform any joint reasoning and discard all but the highest
scoring mode for each pair of images. Instead, we can take advantage of our energy-
based formulation to enforce global consistency.

Given our pairwise conditional probabilities, we can define a joint distribution
over the set of rotations:

P
(
{Ri}Ni=1 | {Ii}Ni=1

)
= α exp

( ∑
(i,j)∈P

f(Ri→j | Ii, Ij)
)

(3.4)

where P = {(i, j) | (i, j) ∈ [N ] × [N ], i ̸= j} is the N(N − 1) set of pairwise
permutations and α is the normalizing constant. Intuitively, this corresponds to the
distribution modeled by a factor graph with a potential function corresponding to
each pairwise edge.

We then aim to find the most likely set of rotations {R1, . . . , RN} under this con-
ditional joint distribution (assuming R1 = I). While it is not feasible to analytically
obtain the global maxima, we adopt an optimization-based approach and iteratively
improve the current estimate. More specifically, we initialize the set of poses with
the greedy MST solution, and at each iteration, we randomly select a rotation Rk

to update. Assuming fixed values for {Ri}i ̸=k, we then search for the rotation Rk
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Figure 3.4: Recovering Joint Poses with Coordinate Ascent. Given a set of images
{I1, . . . , IN}, we initialize a set of corresponding poses {R1, . . . , RN}. During each
iteration of coordinate ascent, we: 1) randomly select one pose Rk to update (the red
camera in this case); 2) sample a large number (250k) of candidate poses; 3) score
each pose according to the joint distribution conditioned on the other poses and
images eq. (3.5); and 4) update with the highest scoring pose. See Sec. 3.3.2 for
more detail.

under the conditional distribution that maximizes the overall likelihood. We show in
supplementary that this in fact corresponds to computing the most likely hypothesis
under the distribution P (R′

k | {Ri}i ̸=k, {Ii}i):

log P (R′
k | {Ri}i ̸=k, {Ii}i) =

∑
i ̸=k

(f(Ri→k′ , Ii, Ik) + f(Rk′→i, Ik, Ii)) + C (3.5)

Analogous to our approach for finding the optimal solution for a single relative ro-
tation, we sample multiple hypotheses for the rotation Rk, and select the hypothesis
that maximizes eq. (3.5). We find that this search-based block coordinate ascent
helps us consistently improve over the initial solution while avoiding the local op-
tima that continuous optimization is susceptible to. We provide pseudo-code in
Algorithm 2 and visualize one iteration of coordinate ascent in Fig. 3.4.

3.3.3 Implementation Details

Network Architecture. We use a ResNet-50 [50] with anti-aliasing [193] to extract
image features. We use a lightweight 3-layer MLP that takes in a concatenation of
2 sets of image features and a rotation matrix to predict energy. We use positional
encoding [89, 147] directly on flattened 3 × 3 rotation matrix, similar to [93]. See
the supplement for architecture diagrams.
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Number of Rotation Samples. We use the equivolumetric sampling in [93] to com-
pute query rotations (37k total rotations) during training. For each iteration of
coordinate ascent, we randomly sample 250k rotation matrices. For visualizing dis-
tributions, we randomly sample 50k rotations.
Runtime. We train the pairwise estimator with a batch size of 64 images for approx-
imately 2 days on 4 NVIDIA 2080TI GPUs. Inference for 20 images takes around
1-2 seconds to construct an MST and around 2 minutes for 200 iterations of coor-
dinate ascent on a single 2080TI. Note that the runtime of the coordinate ascent
scales linearly with the number of images.

3.4 Evaluation

3.4.1 Experimental Setup

Dataset. We train and test on the Common Objects in 3D dataset (CO3D) [117],
a large-scale dataset consisting of turntable-style videos of 51 common object cat-
egories. We train on the subset of the dataset that has camera poses, which were
acquired by running COLMAP [126] over all frames of the video.

To train our network, we sample random frames and their associated camera
poses from each video sequence. We train on 12,299 video sequences (from the
train-known split) from 41 categories, holding out 10 categories to test generaliza-
tion. We evaluate 1,711 video sequences (from the test-known split) over all 41
trained categories (seen) as well as the 10 held-out categories (unseen). The 10 held
out categories are: ball, book, couch, frisbee, hotdog, kite, remote, sandwich,
skateboard, and suitcase. We selected these categories randomly after excluding
some of the categories with the most training images.
Task and Metrics. We consider the task of sparse-view camera pose estimation with
N = 3, 5, 10, and 20 images, subsampled from a video sequence. This is highly
challenging, especially when N ≤ 10, because the ground truth camera poses have
wide baselines.

We consider two possible ways to select N frames from a video sequence. First,
we can randomly sample a set of N indices per video sequence (Random). Alter-
natively, we can use N uniformly-spaced frame indices (Uniform). We note that
because CO3D video sequences are commonly taken in a turntable fashion, the
uniformly spaced sampling strategy may be more representative of real-world dis-
tributions of sparse view image sets. We report metrics on both task setups.

Because the global transformation of the camera poses is ambiguous, we evaluate
each pair of relative rotations. For each of the N(N − 1) pairs, we compare the
angular difference between the relative predicted rotation and the relative ground
truth rotation using Rodrigues’ formula [121]. We report the proportion of relative
rotations that are within 15 and 30 degrees of the ground truth. We note that
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Figure 3.5: Qualitative Comparison of Recovered Camera Poses with Baselines.
We visualize the camera poses (rotations) predicted by DROID-SLAM, COLMAP
with SuperPoint/SuperGlue, and our method given sparse image frames. The black
cameras correspond to the ground truth. We only visualize the rotations predicted
by each method and set the translation such that the object center is a fixed dis-
tance away along the camera axis. As the poses are agnostic to a global rotation,
we align the predicted cameras across all methods to the ground truth coordinate
system by setting the recovered camera pose for the first image to the correspond-
ing ground truth (visualized in green). Odd rows correspond to randomly sampled
image frames, while even rows correspond to uniformly-spaced image frames.
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Figure 3.6: Mean Accuracy on Seen Categories. We evaluate our approach against
competitive SLAM (DROID-SLAM) and SfM (COLMAP with SuperPoint + Su-
perGlue) baselines in sparse-view settings. We also train a direct relative rotation
predictor (Pose Regression) that is not probabilistic and uses the MST generated
by our method to recover joint pose. We consider both random sampling and uni-
formly spacing frames from a video sequence. We report the proportion of pairwise
relative poses that are within 15 and 30 degrees of the ground truth, averaged over
all seen categories. We find that our approach shines with fewer views because it
does not rely on correspondences and thus can handle wide baseline views. The
correspondence-based approaches need about 20 images to begin to work.

rotation errors within this range are relatively easy to handle by downstream 3D
reconstruction tasks (See figure 3.10 for an example).
Baselines. We compare against DROID-SLAM [149], a current state-of-the-art
SLAM approach that incorporates learning in an optimization framework. Note
that DROID-SLAM requires trajectories and camera intrinsics. Thus, we provide
the DROID-SLAM baseline with sorted frame indices and intrinsics, but do not
provide these to any other method.

We also compare with a state-of-the-art structure-from-motion pipeline that
uses COLMAP [126] with SuperPoint feature extraction [31] and SuperGlue match-
ing [125]. We used the implementation provided by [124]. For instances for which
COLMAP does not converge or is unable to localize some cameras, we treat the
missing poses as identity rotation for evaluation. We note that DROID-SLAM also
outputs approximate identity rotations when the optimization fails.
Ablations. In the spirit of learning-based solutions that directly regress pose, we
train a network that predicts relative rotation directly given two images. Similar
to our energy-based predictor, we pass the concatenated image features from a
ResNet-50 into an MLP. We double the number of layers from 3 to 6 and add a skip
connection to give this network increased capacity. Rotations are predicted using
the 6D rotation representation [200]. See the supplement for additional architecture
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Figure 3.7: Accuracy on Subset of Seen Categories. Here we compare all approaches
on a representative subset of seen categories. We find that direct regression of rela-
tive poses (purple) struggles more on categories with symmetry (Car, Hydrant) than
categories without symmetry (Chair, Plant), suggesting that multimodal prediction
is important for resolving ambiguity.
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Figure 3.8: Mean Accuracy on Unseen
Categories. We evaluate our approach
on held-out categories from CO3D.
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Figure 3.9: Novel View Registration.
Here, we evaluate the task of register-
ing a new view given previously aligned
cameras. We find that adding more
views improves performance, suggesting
that additional views reduce ambiguity.

details. The relative pose regressor cannot directly predict poses for more than
two images. To recover sets of poses from sets of images, we use the MST graph
recovered by our method to link the pairs of relative rotations (we find that this
performs better than linking the relative rotations sequentially).

To demonstrate the benefits of joint reasoning, we additionally report the per-
formance of our method using the greedy Maximum Spanning Tree (MST) solution.
The performance of the sequential solution is in the supplement.
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3.4.2 Quantitative Evaluation

We evaluate all approaches on sparse-view camera pose estimation by averaging
over all seen categories in figure 3.6. We find that our approach outperforms all
baselines for N ≤ 10 images. Correspondence-based approaches (DROID-SLAM
and COLMAP) do not work until roughly 20 images, at which point image frames
have a sufficient overlap for local correspondences. However, real-world multi-view
data (e.g. marketplace images) typically have much fewer images. We find that
coordinate ascent helps our approach scale with more image frames whereas the
greedy maximum spanning tree accumulates errors with more frames.

Directly predicting relative poses does not perform well, possibly because pose
regression cannot model multiple modes, which is important for symmetrical ob-
jects. We visualize the performance for four categories in figure 3.7. We find that
the performance gap between our approach and direct regression is larger for ob-
jects with some symmetry (car, hydrant) than for objects without symmetry (chair,
plant). Moreover, unlike our energy-based approach that models a joint distribution,
a regression-based method does not allow similar joint reasoning.

We also test the generalization of our approach for unseen categories in figure 3.8.
We still find that our method significantly outperforms all other approaches from
sparse views (N ≤ 10) even for never-before-seen object categories, indicating its
ability to handle generic objects beyond training. The per-category evaluation for
both seen and unseen categories are in the supplement.
Novel View Registration. In our standard SfM-inspired task setup, we aim to recover
N camera poses given N images. Intuitively, adding images reduces ambiguity, but
recovering additional cameras is also more challenging. To disambiguate between the
two, we evaluate the task of registering new views given previously aligned images
in figure 3.9. Given N + 1 images, of which N have aligned cameras, we use our
energy-based regressor to recover the remaining camera (equivalent to one iteration
of coordinate ascent). We find that adding images improves accuracy, suggesting
that additional views can reduce ambiguity.

3.4.3 Qualitative Results

We show qualitative results on the outputs of our pairwise predictor in figure 3.3.
The visualized distributions suggest that our model is learning useful information
about symmetry and can model multiple modes even for unseen categories.

We visualize predicted camera poses for DROID-SLAM, COLMAP, and our
method with coordinate ascent in figure 3.5. Unable to bridge the domain gap
from narrow baseline video frames, DROID-SLAM often gets stuck in the trajec-
tory. Although COLMAP sometimes fails to converge, it performs well for N=20.
Our approach consistently outputs plausible interpretations but is unable to achieve
precise localization. See supplementary for visualizations on randomly selected se-
quences and more category-specific discussion.
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3D Reconstruction
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RelPose Initialization

Optimized NeRS Cameras

Figure 3.10: Initializing 3D NeRS Reconstruction using Predicted Cameras.
NeRS [192] is a representative 3D reconstruction approach that takes noisy cam-
eras as initialization and jointly optimizes object shape, appearance, and camera
poses. We run our method with coordinate ascent on 7 input images of a fire hy-
drant and 4 input images of a motorbike to obtain the camera initialization (green),
which we provide to NeRS. NeRS then finetunes the cameras (orange) and outputs
a 3D reconstruction.

We also validate that our camera pose estimations can be used for downstream
3D reconstruction. We use our camera poses to initialize NeRS [192], a representa-
tive sparse-view surface-based approach that requires a (noisy) camera initialization.
Using our cameras, we successfully reconstruct a 3D model of a fire hydrant from 7
images and a motorbike from 4 images in figure 3.10.

3.5 Discussion
We presented a prediction-based approach for estimating camera rotations given
(a sparse set of) images of a generic object. Our energy-based formulation allows
capturing the underlying uncertainty in relative poses, while also enabling joint rea-
soning over multiple images. We believe our system’s robustness under sparse views
can allow it to serve as a stepping stone for initializing (neural) reconstruction meth-
ods in the wild, but also note that there are several open challenges. First, our work
reasoned about the joint distribution using only pairwise potentials, and developing
efficient higher-order energy models may further improve performance. Moreover,
while we outperform existing techniques given sparse views, the correspondence-
driven methods are more accurate given a large number of views, and we hope
future efforts can unify the two approaches. Finally, our approach may not be di-
rectly applicable to reasoning about camera transformations for arbitrary scenes as
modeling camera translation would be more important compared to object-centric
images.
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Chapter 4

RelPose++: Recovering 6D Poses
from Sparse-view Observations
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Figure 4.1: Estimating 6D Camera Poses from Sparse Views. We propose a frame-
work RelPose++ that, given a sparse set of input images, can infer the corresponding
6D camera rotations and translations (top: the cameras are colored from red to ma-
genta based on the image index). RelPose++ estimates a probability distribution
over the relative rotations of the cameras corresponding to any 2 images, but can
do so while incorporating multi-view cues. We find that the distribution improves
given additional images as context (bottom).

4.1 Introduction
In Chapter 3, we saw that RelPose predicts distributions over pairwise relative
rotations to then optimize multi-view consistent rotation hypotheses. While this
optimization helps enforce multi-view consistency, RelPose’s predicted distributions

44



only consider pairs of images, which can be limiting. As an illustration, if we consider
the first two images of the bottle shown in the bottom-left of Fig. 4.1, we cannot
narrow down the Y-axis rotation between the two (as the second label may be on
the side or the back). However, if we consider the additional third image, we can
immediately understand that the rotation between the first two should be nearly
180 degrees!

We build on this insight in our proposed framework RelPose++ and develop a
method for jointly reasoning over multiple images for predicting pairwise relative
distributions. Specifically, we incorporate a transformer-based module that leverages
context across all input images to update the image-specific features subsequently
used for relative rotation inference. RelPose++ also goes beyond predicting only
rotations and additionally infers the camera translation to yield 6D camera poses. A
key hurdle is that the world coordinate frame used to define camera extrinsics can be
arbitrary, and naive solutions to resolve this ambiguity (e.g. instantiating the first
camera as the world origin) end up entangling predictions of camera translations
with predictions of (relative) camera rotations. Instead, for roughly center-facing
images, we define a world coordinate frame centered at the intersection of cameras’
optical axes. We show that this helps decouple the tasks of rotation and translation
prediction, and leads to clear empirical gains.

RelPose++ is trained on 41 categories from the CO3D dataset [117] and is able
to recover 6D camera poses for objects from just a few images. We evaluate on
seen categories, unseen categories, and even novel datasets (in a zero-shot fashion),
improving rotation prediction by 10% over prior art. We also evaluate the full 6D
camera poses by measuring the accuracy of the predicted camera centers (while
accounting for the similarity transform ambiguity), and demonstrate the benefits
of our proposed coordinate system. We also formulate a metric that decouples the
accuracy of predicted camera translations and predicted rotations, which may be
generally useful for future benchmarking. Finally, we show that the 6D poses from
RelPose++ can be directly useful for downstream sparse-view 3D reconstruction
methods.

4.2 Related Work
Pose Estimation Using Feature Correspondences. The classic SfM and SLAM
pipelines for pose estimation from sets of images or video streams involve com-
puting matches [80] between discriminative hand-crafted local features [7, 79].
These matches are used to estimate relative camera poses [78, 97], verified via
RANSAC [37], and optimized via bundle adjustment [153]. Subsequent research
has explored improving each of these components. Learned feature estimation [31]
and feature matching [125, 23, 76] have improved robustness. This paradigm has
been scaled by efficient parallelization [127, 126] and can even run in real-time for
visual odometry [91, 92, 15]. While we consider a similar task of estimating camera
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Figure 4.2: Overview of RelPose++. We present RelPose++, a method for sparse-
view camera pose estimation. RelPose++ starts by extracting global image features
using a ResNet 50. We positionally encode [162] the image index and concatenate
bounding box parameters as input to a Transformer. After processing all image
features jointly, we separately estimate rotations and translations. To handle am-
biguities in pose, we model the distribution of rotations using an energy-based for-
mulation, following [93, 191]. Because we predict the origin at the unique world
coordinate closest to all optical axes, which is unambiguous (See Sec. 4.3.3 and
Fig. 4.3), we can directly regress camera translation from the learned features. On
the right, we visualize the recovered camera poses.

poses given images, our approach differs fundamentally because we do not rely
on bottom-up correspondences as they cannot be reliably computed given sparse
views.
Single-view 3D Pose Estimation. In the extreme case of a single image, geometric
cues are insufficient for reasoning about pose, so single-view 3D pose estimation
approaches rely on learned data-driven priors. A significant challenge that arises in
single-view 3D is that absolute pose must be defined with respect to a coordinate sys-
tem. The typical solution is to assume a fixed set of categories (e.g. humans [86, 58]
or ShapeNet objects [19]) with pre-defined canonical coordinate systems. Related to
our approach are methods that specifically handle object symmetries, which can be
done by predicting multiple hypotheses [84], parameters for the antipodal Bingham
distribution [105, 41], or energy [93] (similar to us). These methods predict absolute
pose which is not well-defined without a canonical pose.

Because absolute poses only make sense in the context of a canonical pose, some
single-view pose estimation papers have explored learning the canonical pose of
objects automatically [98, 178, 143]. Other approaches bypass this issue by predict-
ing poses conditioned on an input mesh [179, 104, 190, 5] or point-cloud [174]. In
contrast, we resolve this issue by predicting relative poses from pairs of images.
Learned Multi-view Pose Estimation. Given more images, it is still possible to
learn a data-driven prior rather than rely on geometric consistency cues alone.
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For instance, poses can directly be predicted using an RNN [169, 149], a trans-
former [96], or auto-regressively [183] for SLAM and object tracking applications.
However, such approaches assume temporal locality not present in sparse-view im-
ages. Other approaches have incorporated category-specific priors, particularly for
human pose [60, 69, 160, 82]. In contrast, our work focuses on learning category-
agnostic priors that generalize beyond object categories seen at training.

Most related to our approach are methods that focus on sparse-view images.
Such setups are more challenging since viewpoints have limited overlap. In the
case of using just 2 images for wide-baseline pose estimation, direct regression ap-
proaches [87, 120] typically do not model uncertainty or require distributions to be
Gaussian [21]. [14] learns a 4D correlation volume from which distributions over
relative rotations can be computed for pairs of patches. Most similar to our work
is the energy-based RelPose [191], which estimates distributions over relative rota-
tions which can be composed together given more than 2 images. We build off of
this energy-based framework and demonstrate significantly improved performance
by incorporating multiview context. Additionally, RelPose only predicts rotations
whereas we estimate 6D pose.

To estimate poses from sparse views, FORGE [56] and SparsePose [135] both
directly regress 6D poses. SparsePose also learns a bundle-adjustment procedure to
refine predictions iteratively, but this refinement is complementary to our approach
as it can improve any initial estimates. Similarly, the concurrent PoseDiffusion [165]
models a probabilistic bundle adjustment procedure via a diffusion model in contrast
to the energy-based model in our work.

4.3 Method

Given a set of N (roughly center-facing) input images {I1, ..., IN} of a generic
object, we wish to recover consistent 6-DoF camera poses for each image i.e.
{(R1, t1), ..., (RN , tN )}, where Ri and ti correspond to the rotation and translation
for the ith camera viewpoint.

To estimate the camera rotations, we adopt the framework proposed by Rel-
Pose [191], where a consistent set of rotations can be obtained given pairwise rela-
tive rotation distributions (Sec. 4.3.1). However, unlike RelPose which predicts these
distributions using only two images, we incorporate a transformer-based module to
allow the pairwise predicted distributions to capture multi-view cues (Sec. 4.3.2).
We then extend this multi-view reasoning module also to infer the translations asso-
ciated with the cameras, while defining a world-coordinate system that helps reduce
prediction ambiguity (Sec. 4.3.3).
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4.3.1 Global Rotations from Pairwise Distributions

We build on RelPose [191] for inferring consistent global rotations given a set of
input images and briefly summarize the key components here. As absolute camera
rotation prediction is ill-posed given the world-coordinate frame ambiguity, Rel-
Pose infers pairwise relative rotations and then obtains a consistent set of global
rotations. Using an energy-based model, it first approximates the (un-normalized)
log-likelihood of the pairwise relative rotations given image features fi and fj with
an MLP gθ(fi, fj , Ri→j) which we treat as a negative energy or score.

Given the inferred distributions over pairwise relative rotations, RelPose casts
the problem of finding global rotations as that of a mode-seeking optimization.
Specifically, using a greedy initialization followed by block coordinate ascent, it
recovers a set of global rotations that maximize the sum of relative rotation scores:

{R1, . . . , RN} = arg max
{Ri}N

i=1

∑
i,j

gθ(fi, fj , R⊤
i Rj) (4.1)

In RelPose, the image features are extracted using a per-frame ResNet-50 [50] en-
coder: fi = εϕ(Ii).

4.3.2 Multi-view Cues for Pairwise Distributions

Following RelPose, we similarly model the distribution of pairwise relative rotations
using an energy-based model (eq. (4.1)). However, instead of only relying on the
images Ii and Ij to obtain the corresponding features fi and fj , we propose a
transformer-based module that allows for these features to depend on other images
in the multi-view set.
Multi-view Conditioned Image Features. As illustrated in Fig. 4.2, we first use a
ResNet [50] to extract per-image features. We also add an ID-specific encoding to
the ResNet features and concatenate an embedding of the bounding box used to
obtain the input crop from the larger image (as it may be informative about the
scene scale when inferring translation). Unlike RelPose which then directly feeds
these image-specific features as input to the energy prediction module, we use a
transformer (similar to other recent sparse-view works [165, 96, 135]) to update
these features in the context of the other images. We denote this combination of
the feature extractor and transformer as a scene encoder Eϕ, which given N input
images {In} outputs multi-view conditioned features {fn} corresponding to each
image:

fi = E iϕ(I1, . . . IN ), ∀i ∈ {1 . . . N} (4.2)

Learning Objective. Given a dataset with posed multi-view images of diverse ob-
jects, we jointly train the scene encoder Eϕ and the pairwise energy-based model
gθ by simply minimizing the negative log-likelihood (NLL) of the true (relative)
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Figure 4.3: Coordinate Systems for Estimating Camera Translation. Given two im-
ages, consider the task of estimating their 6D poses, i.e., the R and T that transform
points from the world frame to each camera’s frame (Left). In typical SLAM setups,
the world frame is centered at the first camera, but this implies the target camera
translation T2 depends on the target rotation R2 (Middle). For symmetric objects
where R2 may be ambiguous, this may lead to unstable predictions for translation.
Instead, for roughly center-facing cameras, a better solution is to set the world ori-
gin at the unique point closest to the optical axes of all cameras (Right). This helps
decouple the task of predicting camera translations from rotations.

rotations [191, 93]. In particular, we randomly sample N ∈ [2, 8] images for a train-
ing object, and minimize the NLL of the true relative rotations Rgt

i→j under our
predicted distribution:

Lrot =
∑
i,j

− log
exp gθ(fi, fj , Rgt

i→j)∑
R′ exp gθ(fi, fj , R′) (4.3)

4.3.3 Predicting Camera Translations

Using the multi-view aware image features fi, we can directly predict the per-image
camera translation ti = hψ(fi). However, a central hurdle to learning such prediction
is the inherent ambiguity in the world coordinate system. Specifically, the ‘ground-
truth’ cameras obtained from SfM are meaningful only up to an arbitrary similarity
transform [49]), and training our network to predict these can lead to incoherent
training targets across each sequence. We therefore first need to define a consistent
coordinate frame across training instances, so that the networks can learn to make
meaningful predictions.
Geometric Interpretation of Camera Translation. Recall that the camera extrinsics
(Ri, ti) define a transformation of a point xw in world frame to camera frame xci =
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Figure 4.4: Resolving Pose Ambiguity with More Images. The relative rotation
between only two views may be ambiguous for highly symmetric objects such as
cups, frisbees, and apples. Often, seeing a third view will provide enough additional
context to the scene to determine the correct relative rotation. When images are
shown to the model in three separate pairs, as denoted by P (Ri→j |Ii, Ij), the output
probability distribution may have more than one mode due to the symmetry of the
object, but when shown all three images together to predict P (Ri→j |I1, I2, I3), the
model has a significantly more confident prediction. Following [191], we visualize
distributions over relative rotations by projecting the rotation matrix such that the
x-axis represents the yaw, the y-axis represents the pitch, and the color represents
the roll. The size of each circle corresponds to probability, and rotations with
negligible probability are filtered. The ground truth rotation is denoted by the
unfilled circle.

Rixw + ti. The translation ti is therefore the location of the world origin in each
camera’s coordinate frame (and not the location of the camera in the world frame!).
We can also see that an arbitrary rotation of the world coordinate system (x̄w =
∆R xw), does not affect the per-camera translations and that only the location of
the chosen world origin (and the scaling) are relevant factors. To define a consistent
coordinate frame for predicting rotations, we must therefore decide where to place
the world origin and how to choose an appropriate scale.

Look-at Centered Coordinate System. One convenient choice, often also adopted
by SfM/SLAM approaches [126, 27], is to define the world coordinate system as
centered on the first camera (denoted as ‘First Camera Frame’). Unfortunately,
the per-camera translations in this coordinate frame entangle the relative rotations
between cameras (as ti is the location of the first camera in the ith camera’s frame).
As illustrated in Fig. 4.3, ambiguity in estimating this relative transformation for
(e.g., symmetric) objects can lead to uncertainty in the translation prediction.

Instead, we argue that for roughly center-facing captures, one should define the
unique point closest to the optical axes of the input cameras as the world origin.
Intuitively, this is akin to setting the ‘object center’ as the world origin, and the
translation then simply corresponds to the inference of where the object is in the
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camera frame (and this remains invariant even if one is unsure of camera rotation as
illustrated in Fig. 4.3). However, instead of relying on a semantically defined ‘object
center’ which may be ambiguous given partial observations, the closest approach
point across optical axes is a well-defined geometric proxy. Finally, to resolve scale
ambiguity, we assume that the first camera is a unit distance away from this point.
Putting it Together. In addition to the energy-based predictor (Eq. 4.1), we also
train a translation prediction module that infers the per-camera ti = hψ(f1, fi) ∈ R3

given the multi-view features. Because we normalize the scene such that ∥t1∥ = 1,
we provide hψ with the first image feature f1. To define the target translations
for training, we use the ground-truth cameras (SfM) {(Ri, ti)} to first identify the
point c closest to all the optical axes. We can then transform the world coordinate
to be centered at c, thus obtaining the target translations as t̄i = s(ti− Ric), where
the scale s ensures a unit norm for t̄1. For this training, we simply use an L1 loss
between the target and predicted translations:

Ltrans = ∥hψ(fi, f1) − t̄i∥1 (4.4)

Together with the optimized global rotations, these predicted translations yield 6-
DoF cameras given a sparse set of input images at inference.

4.4 Evaluation

4.4.1 Experimental Setup
Dataset. We train and test our models on the CO3D [117] (v2) dataset, which con-
sists of turntable-style video sequences across 51 object categories. Each video se-
quence is associated with ground truth camera poses acquired using COLMAP [126].
Following [191], we train on 41 object categories and hold out the same 10 object
categories to evaluate generalization. After filtering for the camera pose score, we
train on a total of 22,375 sequences with 2,212,952 images.
Task and Metrics. We randomly sample 2 ≤ N ≤ 8 center-cropped images {In}
from each test sequence. Given these as input, each approach then infers a set of
global 6-DoF camera poses {Ri, ti} corresponding to each input image. To evaluate
these predictions, we report accuracy under various complementary metrics, all of
which are invariant under global similarity transforms for the prediction/ground-
truth cameras. To reduce variance in metrics, we re-sample the N images from each
test sequence 5 times and compute the mean.
Rotation Accuracy. We evaluate relative rotation error between every pair of pre-
dicted and ground truth rotations. Following [191, 135], we report the proportion
of pose errors less than 15 degrees.
Camera Center Accuracy. Following standard benchmarks in SLAM [142] that
evaluated recovered poses using camera localization error, we measure the accuracy
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# of Images 2 3 4 5 6 7 8
Se

en
C

at
e.

COLMAP (SP+SG) [124] 30.7 28.4 26.5 26.8 27.0 28.1 30.6
RelPose [191] 56.0 56.5 57.0 57.2 57.2 57.3 57.2
PoseDiffusion [165] 75.2 76.6 77.0 77.3 77.7 78.2 78.5

Pose Regression 49.1 50.7 53.0 54.6 55.7 56.1 56.5
Ours (N=2) 81.8 82.3 82.7 83.2 83.3 83.5 83.6
Ours (Full) 81.8 82.8 84.1 84.7 84.9 85.3 85.5

U
ns

ee
n

C
at

e. COLMAP (SP+SG) [124] 34.5 31.8 31.0 31.7 32.7 35.0 38.5
RelPose [191] 48.6 47.5 48.1 48.3 48.4 48.4 48.3
PoseDiffusion [165] 60.0 64.8 64.6 65.8 65.7 66.6 67.8

Pose Regression 42.7 43.8 46.3 47.7 48.4 48.9 48.9
Ours (N=2) 69.8 69.6 70.1 69.8 70.4 70.5 71.2
Ours (Full) 69.8 71.1 71.9 72.8 73.8 74.4 74.9

Table 4.1: Joint Rotation Accuracy @ 15◦. We measure the relative angular error
between pairs of relative predicted and ground truth rotations . We report the
proportion of angular errors within 15 degrees and report accuracies for varying
thresholds in the supplement. With more images, our method surpasses the ablation
that only looks at 2 images (N=2), showing the benefit of context.

# of Images 2 3 4 5 6 7 8

Se
en

C
at

e. COLMAP (SP+SG) [124] 100 35.8 26.1 21.6 18.9 18.3 19.2
PoseDiffusion [165] 100 86.6 80.5 77.2 75.9 74.4 73.7

Pose Reg. (First Fr.) 100 87.6 81.2 77.6 75.8 74.5 73.6
Pose Reg. (Our Fr.) 100 90.3 84.6 81.5 80.0 78.5 77.7
Ours 100 92.3 89.1 87.5 86.3 85.9 85.5

U
ns

ee
n

C
at

e. COLMAP (SP+SG) [124] 100 37.9 29.3 24.7 23.1 23.5 25.3
PoseDiffusion [165] 100 78.0 65.8 61.3 57.0 54.4 55.1

Pose Reg. (First Fr.) 100 78.8 71.4 66.3 63.6 61.8 60.4
Pose Reg. (Our Fr.) 100 82.8 74.0 70.0 67.8 65.8 65.3
Ours 100 82.5 75.6 71.9 69.9 68.5 67.5

Table 4.2: Camera Center Accuracy @ 0.2. We report the proportion of camera
centers that are within 20% of the scene scale to the ground truth camera centers.
We align the predicted and ground truth camera centers using an optimal 7-DoF
similarity transform (hence all methods are at 100% for N=2 and performance
appears to drop with more images as there are more constraints).
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Images Pose Diffusion RelPose++RelPoseCOLMAP

Did Not Converge

Did Not Converge

Figure 4.5: Qualitative Results of Recovered Camera Trajectories. We compare our
approach with COLMAP, RelPose, and PoseDiffusion. Since RelPose does not pre-
dict translations, we set the translations to be unit distance from the scene center.
We visualize predicted camera trajectories in color and the ground truth in black,
aligned using a Procrustes optimal alignment on the camera centers. We find that
COLMAP is accurate but brittle, converging only occasionally when the object has
highly discriminative features and sufficient overlap between images. RelPose, while
mostly accurate, usually makes 1-2 mistakes per sequence which causes misalign-
ment. PoseDiffusion is generally accurate but struggles sometimes with symmetry.
We find that our method consistently outperforms the baselines.

of the predicted camera centers. However, as the predicted centers ci = −Riti
may be in a different coordinate system from the SfM camera centers cgti , we first
compute the optimal similarity transform to align the predicted centers with the
ground-truth [158]. Following [135], we then report the proportion of predicted
camera centers within 20% of the scale of the scene in Tab. 4.2, where the scale is
defined as the distance from the centroid of the ground truth camera centers to the
furthest camera center.
Baselines. We compare our approach with state-of-the-art correspondence-based
and learning-based methods:
COLMAP (SP+SG) [127, 126]. This represents a state-of-the-art SFM pipeline
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Figure 4.6: Recovered Camera Poses from In-the-Wild Images. We find that Rel-
Pose++ generalizes well to images outside of the distribution of CO3D object cat-
egories. Here, we demonstrate that RelPose++ can recover accurate camera poses
even for self-captures of Gandalf the Grey, a Rubrik snake, an espresso machine,
and Grogu. RelPose++ can capture challenging rotations and translations, includ-
ing top-down poses, varying distances from the camera, and in-plane rotations (see
Gandalf).

Images RelPose RelPose++ (Ours) Images RelPose RelPose++ (Ours)

Initial RelPose Cameras
Initial RelPose++ Cameras

Optimized NeRS Cameras

Images RelPose RelPose++ (Ours)

Initial RelPose Cameras Initial RelPose++ Cameras
Optimized NeRS Cameras

Figure 4.7: Sparse-view 3D Reconstruction using NeRS. We find that the camera
poses estimated by our method are sufficient as initialization for 3D reconstruction.
We compare our recovered cameras (green) with RelPose cameras (red) as initial-
ization to NeRS. NeRS jointly optimizes these cameras and shape. We visualize the
cameras at the end of the NeRS optimization in purple. We find that our cameras
enable higher-fidelity 3D reconstruction.

(COLMAP) that uses SuperPoint features [31] with SuperGlue matching [125]. We
use the implementation provided by HLOC [124].
RelPose [191]. We evaluate RelPose, which also uses a pairwise energy-based scoring
network. As this only predicts rotations, we exclude it from translation evaluation.
PoseDiffusion [165]. PoseDiffusion is a concurrent work that combines diffusion
with geometric constraints (from correspondences) to infer sparse-view poses prob-
abilistically. All evaluations are with the geometry-guided sampling.
Variants. We also report comparisons to variants of our approach to highlight
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Cam. Cen. Transl.

# of Images 3 5 8 3 5 8

Se
en Ours 92.3 87.5 85.5 90.5 87.8 86.2

Constant 91.3 84.7 81.1 69.0 60.8 56.5

U
ns

. Ours 82.5 71.9 67.5 79.7 74.9 73.6
Constant 81.4 69.5 63.8 60.3 52.2 48.2

Table 4.3: Analyzing Translation Prediction. We quantify the improvements of
our predicted translations over a naive baseline that predicts center-facing cameras
located at a unit distance from the origin. Because the camera center entangles
the rotation and translation prediction, we compute an additional translation ac-
curacy that reports the fraction of translations within 0.1 of the scene scale of the
ground truth translation after applying a scaling and world origin alignment (see
supplement).

Rotation Cam. Cen.

# of Images 3 5 8 3 5 8

MediaPipe [81] 52.3 52.8 52.7 74.5 59.1 49.9
PoseDiffusion [165] 69.2 68.0 70.0 87.2 73.8 67.2

Ours 75.8 76.6 77.0 91.6 83.9 77.6

Table 4.4: Evaluating Zero-shot Generalization on Objectron on Rotation (@ 15◦)
and Camera Center (@ 0.2) Accuracy. We evaluate our approach, trained on CO3D,
on Objectron without any fine-tuning.

the benefits of the energy-based prediction, multi-view reasoning, and proposed
translation coordinate frame.
Pose Regression. This corresponds to a regression approach that uses our ResNet
and Transformer architecture to directly predict the global rotations (assuming the
first camera has identity rotation) and translations. This rotation prediction is
analogous to the initial regressor in SparsePose [135] (unfortunately, due to licensing
issues, we were unable to obtain code/models for direct comparison). We consider
variants that regress translations using the first camera frame and our look-at-
centered coordinate frame.
Ours (N=2). This represents a variant that only has access to 2 images at a time
when inferring pairwise rotation distributions. While similar to RelPose, it helps
disambiguate the benefits of our transformer-based architecture.
First-frame Centered Regression. Instead of using the Look-at centered world frame,
this variant defines camera translations using the first camera as world origin (while
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using the same scaling as the Look-at centered system).

4.4.2 Quantitative Results
Accuracy of Recovered 6D Poses. We evaluate rotation accuracy in Tab. 4.1. We
find that our approach significantly outperforms COLMAP and RelPose. While
COLMAP performs well at fine error thresholds (see the supplement), it frequently
does not converge in sparse-view settings because wide baselines do not provide
enough overlap to compute useful correspondences. We find that the Pose Regres-
sion baseline performs poorly, suggesting that modeling uncertainty is important
for sparse-view settings. The jump in performance from RelPose to our N = 2
variant suggests that the increased capacity of our transformer architecture is im-
portant. Finally, we find that our model starts out at a similar performance to the
N = 2 model but quickly outperforms it for larger N , suggesting that the image
context is important. Our method also consistently achieves better localization than
PoseDiffusion.

We evaluate the camera center accuracy in Tab. 4.2 and also report AUC metrics
in the supplement. COLMAP performs poorly since it often fails to converge. We
find that the First Camera Frame Regression has the worst generalization to unseen
object categories (see Tab. 4.3). This makes sense because the predicted translation
must also account for any errors in the predicted rotation, which likely occur in a
different distribution than seen for training categories.
Analyzing Translation Predictions. While the focus of our work is on roughly center-
facing images of objects as these captures most closely resemble a typical object
scanning pipeline, we do find that CO3D deviates significantly from perfectly circu-
lar trajectories. We quantify this using an additional baseline that uses our rotation
predictions but always predicts a constant [0, 0, 1] translation (which would be opti-
mal for center-facing cameras on a sphere). In addition to camera center evaluation
which conflates the predicted rotation and translation, we propose a translation
evaluation that computes the proportion of predicted translations that are within
10% of the ground truth translation. Similar to the camera center evaluation, we
apply an optimal similarity transform that accounts for the scene scaling and world
origin placement (see supplement for more details). We find that our method signif-
icantly outperforms the constant translation baseline using both the camera center
and translation metrics in Tab. 4.3 (reducing translation error from 51.8% to 26.4%).
Evaluating Generalization. We evaluate zero-shot generalization on Objectron [4] in
Tab. 4.4, and find that our approach outperforms PoseDiffusion [165]. We also report
the accuracy of relative poses recovered from a per-frame 6D pose estimation method
MediaPipe [81]. Note that both our model and PoseDiffusion are trained only on
CO3D with no finetuning while MediaPipe is trained per category on Objectron.
Following PoseDiffusion, we also evaluate generalization via zero-shot transfer to
RealEstate10K [199] and outperform their method, but this scene-level front-facing
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dataset is not an ideal testbed for testing generalization from 360-degree object-
centric data as even a naive baseline (fixed identity rotation) performs well (see
supplement).

4.4.3 Qualitative Results
Visualization for Co3D Predictions. We compared recovered camera poses from
sparse-view images using our method with COLMAP (with SuperPoint/SuperGlue)
and RelPose in Fig. 4.5. We find that our method is able to recover more accurate
cameras than RelPose consistently. While COLMAP recovers highly accurate tra-
jectories when it succeeds, it usually fails to converge for sparse images.

We also visualize the effect of increasing image context on pairwise rotation
distributions in Fig. 4.4. Given just two images, the relative pose is often ambiguous,
but we find that this ambiguity can be resolved by conditioning on more images using
our transformer.
In-the-wild Generalization and 3D Reconstruction. We demonstrate the generaliza-
tion of RelPose++ on in-the-wild captures in Fig. 4.6. These recovered cameras are
sufficient to enable 3D reconstruction using NeRS [192], a representative sparse-view
reconstruction method (Fig. 4.7).

4.5 Discussion
We presented RelPose++, a system for inferring a consistent set of 6D poses (rota-
tions and translations) given a sparse set of input views. While it can robustly infer
camera poses, these are not as precise as ones obtained from classical methods, and
can be improved further via refinement [135, 74]. Secondly, while the energy-based
models can efficiently capture uncertainty, they are inefficient to sample from and
are limited to pairwise distributions, and it may be possible to instead leverage dif-
fusion models to overcome these limitations. Lastly, while we demonstrated that our
estimated poses can enable downstream 3D reconstruction, it would be beneficial to
develop unified approaches that jointly tackle the tasks of reconstruction and pose
inference.
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Chapter 5

Cameras as Rays: Pose Estimation
via Ray Diffusion

Ray Diffusion Timesteps Recovered 
Cameras

Images

couch 215_22688_47261 tensor([ 18, 171, 107, 98, 178, 183, 5, 146]) 
teddybear

sandwich 198_21285_41285 tensor([ 20, 40, 80, 90, 100, 120, 125])

Figure 5.1: Recovering Sparse-view Camera Parameters by Denoising Rays. Top:
Given sparsely sampled images, our approach learns to denoise camera rays (repre-
sented using Plücker coordinates). We then recover camera intrinsics and extrinsics
from the positions of the rays. Bottom: We demonstrate the generalization of our
approach for both seen (teddybear) and unseen object categories (couch, sandwich).

5.1 Introduction

Recent learning-based approaches have examined the task of predicting cameras
given a sparse set of input images, and investigated regression [56, 135], energy-
based modeling [191, 73] and denoising diffusion [165] for inference. However, while
exploring a plethora of learning techniques, these methods have largely side-stepped
a crucial question: what representation of camera poses should learning-based meth-
ods predict?
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At first, there may seem to be an obvious answer. After all, every student of
projective geometry is taught that (extrinsic) camera matrices are parameterized
with a single rotation and a translation. Indeed, all of the above-mentioned meth-
ods adapt this representation (albeit with varying rotation parametrizations e.g.
matrices, quaternions, or angles) for predicting camera poses. However, we argue
that such a parsimonious global pose representation maybe suboptimal for neural
learning, which often benefits from over-parameterized distributed representations.
From a geometric perspective, classical bottom-up methods benefit from low-level
correspondence across pixels/patches, while learning-based methods that predict
global camera representations may not easily benefit from such (implicit or explicit)
associations.

In this work, we propose an alternate camera parametrization that recasts the
task of pose inference as that of patch-wise ray prediction (Fig. 5.1). Instead of
predicting a global rotation and global translation for each input image, our model
predicts a separate ray passing through each patch in each input image. We show
that this representation is naturally suited for transformer-based set-to-set inference
models that process sets of features extracted from image patches. To recover the
camera extrinsics (R, t) and intrinsics (K) corresponding to a classical perspective
camera, we optimize a least-square objective given the predicted ray bundle. It is
worth noting that the predicted ray bundle itself can be seen as an encoding of a
generic camera as introduced in [46], which can capture non-perspective cameras
such as catadioptric imagers or orthographic cameras whose rays may not even
intersect at a center of projection.

We first illustrate the effectiveness of our distributed ray representation by train-
ing a patch-based transformer with a standard regression loss. We show that this
already surpasses the performance of state-of-the-art pose prediction methods that
tend to be much more compute-heavy [73, 135, 165]. However, there are natural am-
biguities in the predicted rays due to symmetries and partial observations [191, 165].
We extend our regression-based method to a denoising diffusion-based probabilistic
model and find that this further improves the performance and can recover distinct
distribution modes. We demonstrate our approach on the CO3D dataset [117] where
we systematically study performance across seen categories as well as generalization
to unseen ones. Moreover, we also show that our approach can generalize even
to unseen datasets and present qualitative results on in-the-wild self-captures. In
summary, our contributions are as follows:

• We recast the task of pose prediction as that of inferring per-patch ray equa-
tions as an alternative to the predominant approach of inferring global camera
parametrizations.

• We present a simple regression-based approach for inferring this representation
given sparsely sampled views and show even this simple approach surpasses
the state-of-the-art.
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• We extend this approach to capture the distribution over cameras by learning a
denoising diffusion model over our ray-based camera parametrization, leading
to further performance gains.

5.2 Related Work

5.2.1 Structure-from-Motion and SLAM

Both Structure-from-motion and SLAM aim to recover camera poses and scene ge-
ometry from a large set of unordered or ordered images. Classic SfM [139] and
indirect SLAM [91, 92, 15] methods generally rely on finding correspondences [80]
between feature points [7, 79] in overlapping images, which are then efficiently op-
timized [126, 127] into coherent poses using Bundle Adjustment [153]. Subsequent
work has improved the quality of features [31], correspondences [133, 181, 125], and
the bundle adjustment process itself [148, 75]. On the contrary, rather than minimize
geometric reconstruction errors, direct SLAM methods [27, 129] optimize photomet-
ric errors. While the methods described in this section can achieve (sub)pixel-perfect
accuracy, their reliance on dense images is unsuitable for sparse-view pose estima-
tion.

5.2.2 Pose Estimation from Sparsely Sampled Views

Estimating poses from sparsely sampled images (also called sparse-view or wide-
baseline pose estimation in prior work) is challenging as methods cannot rely on
sufficient (or even any) overlap between nearby images to rely on correspondences.
The most extreme case of estimating sparse-view poses is recovering the relative
pose given 2 images. Recent works have explored how to effectively regress relative
poses [6, 120, 14] from wide-baseline views. Other works have explored probabilistic
approaches to model uncertainty when predicting relative pose [191, 21].

Most related to our approach are methods that can predict poses given multiple
images. RelPose [191] and RelPose++ [73] use energy-based models to compose
relative rotations into sets of camera poses. SparsePose [135] learns to iteratively
refine sparse camera poses given an initial estimate, while FORGE [56] exploits syn-
thetic data to learn camera poses. The most comparable to us is PoseDiffusion [165],
which also uses a diffusion model to denoise camera poses. However, PoseDiffusion
denoises the camera parameters directly, whereas we denoise camera rays which we
demonstrate to be more precise. Concurrently to our work, PF-LRM [167] and
DUSt3R [170] predict sparse poses by predicting pixel-aligned pointclouds (as op-
posed to rays in our work) and using PnP to recover cameras.
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Figure 5.2: Converting Between Camera and Ray Representations. We represent
cameras as a collection of 6-D Plücker rays consisting of directions and moments. We
convert the traditional representation of cameras to the ray bundle representation
by unprojecting rays from the camera center to pixel coordinates. We convert rays
back to the traditional camera representation by solving least-squares optimizations
for the camera center, intrinsics matrix, and rotation matrix. See Sec. 5.3.1 for more
details.

5.2.3 Ray-based Camera Parameterizations

Prior work in calibrating generic camera representations has used ray-based repre-
sentations of cameras, mainly for fish-eyed lenses for which the pinhole model is not
a good approximation [61]. [46, 33] consider the most general camera model, where
each pixel projection is modeled by its ray. Even with better algorithms [128], the
large number of parameters in these camera models makes calibration difficult. Al-
though these works also make use of ray-based camera representations, their focus is
on calibration (intrinsics) and require known calibration patterns. Neural Ray Sur-
faces [161] considers learning the poses of generic cameras but does so from video
rather than sparse views.

Parameterizing viewpoints using camera rays is also commonly used in the novel
view synthesis community. Rather than render a full image at once, the pixel-wise
appearance is conditioned per ray [89, 136, 172] given known cameras. In contrast,
we aim to recover the camera itself.

5.3 Method

Our aim is to recover cameras from a sparse set of images {I1, . . . , IN}. Rather
than predict global camera parametrizations directly as done in previous work, we
propose a ray-based representation that can be seamlessly converted to and from
the classic representation (Sec. 5.3.1). We then describe a regression-based archi-
tecture to predict ray-based cameras in Sec. 5.3.2. We build on this architecture to
introduce a probabilistic framework that estimates the rays using diffusion to handle
uncertainties and symmetries that arise from sparsely sampled views in Sec. 5.3.3.
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5.3.1 Representing Cameras with Rays

Distributed Ray Representation. Typically, a camera is parameterized by its ex-
trinsics (rotation R ∈ SO(3), translation t ∈ R3) and intrinsics matrix K ∈ R3×3.
Although this parameterization compactly relates the relationship of world coordi-
nates to pixel coordinates using camera projection (u = K[R | T ]x), we hypothesize
that it may be difficult for a neural network to directly regress this low-dimensional
representation. Instead, inspired by generalized camera models [46, 128] used for
calibration, we propose to over-parameterize a camera as a collection of rays:

R = {r1, . . . , rm}, (5.1)

where each ray ri ∈ R6 is associated with a known pixel coordinate ui. We param-
eterize each ray r traveling in direction d ∈ R3 through any point p ∈ R3 using
Plücker corodinates [112]:

r = ⟨d,m⟩ ∈ R6, (5.2)

where m = p × d ∈ R3 is the moment vector, and importantly, is agnostic to the
specific point on the ray used to compute it. When d is of unit length, the norm of
the moment m represents the distance from the ray to the origin.
Converting from Camera to Ray Bundle. Given a known camera and a set of 2D
pixel coordinates {ui}m, the directions d can be computed by unprojecting rays
from the pixel coordinates, and the moments m can be computed by treating the
camera center as the point p since all rays intersect at the camera center:

d = R⊤K−1u, m = (−R⊤t) × d. (5.3)

In practice, we select the points {ui}m by uniformly sampling points on a grid across
the image or image crop, as shown in Fig. 5.2. This allows us to associate each patch
in the image with a ray passing through the center of the patch, which we will use
later to design a patch- and ray-conditioned architecture.
Converting from Ray Bundle to Camera. Given a collection of rays R = {ri}m
associated with 2D pixels {ui}m, we show that one can recover the camera extrinsics
and intrinsics. We start by solving for the camera center c by finding the 3D world
coordinate closest to the intersection of all rays in R:

c = arg min
p∈R3

∑
⟨d,m⟩∈R

∥p × d − m∥2. (5.4)

To solve for the rotation R (and intrinsics K) for each camera, we can solve for
the optimal homography matrix P that transforms per-pixel ray directions from the
predicted ones to those of an ‘identity’ camera (K = I and R = I):

P = arg min
∥H∥=1

m∑
i=1

∥Hdi × ui∥ . (5.5)
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Figure 5.3: Denoising Ray Diffuser Network. Given a noisy ray corresponding
to an image patch, our denoising ray diffusion model predicts the denoised ray.
We concatenate spatial image features [106] with noisy rays, represented with 6-
dimensional Plücker coordinates [112] that are visualized as 3-channel direction maps
and 3-channel moment maps. We use a transformer to jointly process all image
patches and associated noisy rays to predict the original denoised rays.

The matrix P can be computed via DLT [2] and can allow recovering R using RQ-
decomposition as K is an upper-triangular matrix and R is orthonormal. Once
the camera rotation R and camera center c are recovered, the translation t can be
computed as t = −Rc.

5.3.2 Pose Estimation via Ray Regression

We now describe an approach for predicting the ray representation outlined
in Sec. 5.3.1 for camera pose estimation given N images {I1, . . . , IN}. Given
ground truth camera parameters, we can compute the ground truth ray bundles
{R1, . . . , RN}. As shown in Fig. 5.2, we compute the rays over a uniform p × p grid
over the image such that each ray bundle consists of m = p2 rays (eq. (5.1)).

To ensure a correspondence between rays and image patches, we use a spatial
image feature extractor and treat each patch feature as a token:

ffeat(I) = f ∈ Rp×p×d. (5.6)

To make use of the crop parameters, we also concatenate the pixel coordinate u (in
normalized device coordinates with respect to the uncropped image) to each spatial
feature. We use a transformer-based architecture ([32, 110]) that jointly processes
each of the p2 tokens from N images, and predicts the ray corresponding to each
patch:

{R̂}Ni=1 = fRegress

({
fi,ui

}N ·p2

i=1

)
. (5.7)

We train the network by computing a reconstruction loss on the predicted camera
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Figure 5.4: Visualizing the Denoising Process Using Our Ray Diffuser. Given the
2 images of the suitcase (Bottom Right), we visualize the denoising process start-
ing from randomly initialized camera rays. We visualize the noisy rays using the
Plücker representation (ray directions and moments) in the bottom row and their
corresponding 3D positions in the top row. In the rightmost column, we recover the
predicted cameras (green) and compare them to the ground truth cameras (black).

rays:

Lrecon =
N∑
i=1

∥∥∥R̂i − Ri

∥∥∥2

2
. (5.8)

5.3.3 Pose Estimation via Denoising Ray Diffusion

While the patchwise regression-based architecture described in Sec. 5.3.2 can effec-
tively predict our distributed ray-based parametrization, the task of predicting poses
(in the form of rays) may still be ambiguous given sparse views. To handle inherent
uncertainty in the predictions (due to symmetries and partial observations), we ex-
tend the previously described regression approach to instead learn a diffusion-based
probabilistic model over our distributed ray representation.

Denoising diffusion models [52] approximate a data likelihood function by in-
verting a noising process that adds time-dependent Gaussian noise to the original
sample x0:

xt =
√

ᾱtx0 +
√

1 − ᾱtϵ, (5.9)

where ϵ ∼ N (0, I) and αt is a hyper-parameter schedule of noise weights such that
xT can be approximated as a standard Gaussian distribution. To learn the reverse
process, one can train a denoising network fθ to predict the denoised sample x0
conditioned on xt:

L(θ) = Et,x0,ϵ ∥x0 − fθ (xt, t)∥2 . (5.10)

We instantiate this denoising diffusion framework to model the distributions over
patchwise rays conditioned on the input images. We do this by simply modifying
our ray regression network from Sec. 5.3.2 to be additionally conditioned on noisy
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Figure 5.5: Qualitative Comparison Between Predicted Camera Poses. We com-
pare the results of our regression and diffusion approaches with PoseDiffusion and
RelPose++. Ground truth (black) camera trajectories are aligned to the predicted
(colored) camera trajectories by performing Procrustes optimal alignment on the
camera centers. The top two examples are from seen categories, and the bottom
two are from held out categories.

rays (concatenated with patchwise features and pixel coordinates) and a positionally
encoded [162] time embedding t:

{R̂}Ni=1 = fDiffuse

({
(fi,ui, ri,t)

}N ·p2

i=1 , t

)
, (5.11)

where the noisy rays ri,t can be computed as:

ri,t =
√

ᾱtri +
√

1 − ᾱtϵ. (5.12)

Conveniently, our time-conditioned ray denoiser can be trained with the same L2
loss function (eq. (5.8)) as our ray regressor. We visualize the states of the denoised
rays during backward diffusion in Fig. 5.4.

5.3.4 Implementation Details

Following [73], we place the world origin at the point closest to the optical axes of the
training cameras, which represents a useful inductive bias for center-facing camera
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Figure 5.6: Generalization to In-the-wild Self-captures. We test the generalization
of our ray diffusion model on a variety of self-captured data on objects that are not
in CO3D.

setups. To handle coordinate system ambiguity, we rotate the world coordinates
such that the first camera always has identity rotation and re-scale the scene such
that the first camera translation has unit norm. Following prior work [191], we take
square image crops tightly around the object bounding box and adjust the uniform
grid of pixel coordinates associated with the rays accordingly.

We use a pre-trained, frozen DINOv2 (S/14) [106] as our image feature extractor.
We use a DiT [110] with 16 transformer blocks as the architecture for both fRegress
(with t always set to 100) and fDiffusion. We train our diffusion model with T=100
timesteps. When training our denoiser, we add noise to the direction and moment
representation of rays. The ray regression and ray diffusion models take about 2
and 4 days respectively to train on 8 A6000 GPUs.

To predict cameras with our ray denoiser, we use DDPM [52] inference with
slight modifications. Empirically, we found that removing the stochastic noise in
DDPM inference and stopping the backward diffusion process early (and using the
predicted x0 as the estimate) produced better performance. We hypothesize that
this is because while the earlier diffusion steps help select among distinct plausible
modes, the later steps yield samples around these—and this may be detrimental to
accuracy metrics that prefer distribution modes.

5.4 Evaluation

5.4.1 Experimental Setup

Dataset. Our method is trained and evaluated using CO3Dv2 [117]. This dataset
contains turntable videos spanning 51 categories of household objects. Each frame is
labeled with poses determined by COLMAP [127, 126]. Following [191], we train on
41 categories and hold out the remaining 10 categories for evaluating generalization.
Baselines. We evaluate our method against a handful of learning-based and
correspondence-based pose estimation works.
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# of Images 2 3 4 5 6 7 8
Se

en
C

at
eg

or
ie

s
COLMAP (SP+SG) [124] 30.7 28.4 26.5 26.8 27.0 28.1 30.6
RelPose [191] 56.0 56.5 57.0 57.2 57.2 57.3 57.2
PoseDiffusion w/o GGS [165] 74.5 75.4 75.6 75.7 76.0 76.3 76.5
PoseDiffusion [165] 75.7 76.4 76.8 77.4 78.0 78.7 78.8
RelPose++ [73] 81.8 82.8 84.1 84.7 84.9 85.3 85.5
R+T Regression [73] 49.1 50.7 53.0 54.6 55.7 56.1 56.5
Ray Regression (Ours) [189] 88.8 88.7 88.7 89.0 89.4 89.3 89.2
Ray Diffusion (Ours) [189] 91.8 92.4 92.6 92.9 93.1 93.3 93.3

U
ns

ee
n

C
at

eg
or

ie
s COLMAP (SP+SG) [124] 34.5 31.8 31.0 31.7 32.7 35.0 38.5

RelPose [191] 48.6 47.5 48.1 48.3 48.4 48.4 48.3
PoseDiffusion w/o GGS [165] 62.1 62.4 63.0 63.5 64.2 64.2 64.4
PoseDiffusion [165] 63.2 64.2 64.2 65.7 66.2 67.0 67.7
RelPose++ [73] 69.8 71.1 71.9 72.8 73.8 74.4 74.9
R+T Regression [73] 42.7 43.8 46.3 47.7 48.4 48.9 48.9
Ray Regression (Ours) [189] 79.0 79.6 80.6 81.4 81.3 81.9 81.9
Ray Diffusion (Ours) [189] 83.5 85.6 86.3 86.9 87.2 87.5 88.1

Table 5.1: Camera Rotation Accuracy on CO3D (@ 15◦). Here we report the
proportion of relative camera rotations that are within 15 degrees of the ground
truth.

COLMAP [127, 126]. COLMAP is a standard dense correspondence-based SfM
pipeline. We use an implementation [124] which uses SuperPoint features [31] and
SuperGlue matching [125].

RelPose [191]. RelPose predicts relative rotations between pairs of cameras
and defines evaluation procedures to optimize over a learned scoring function and
determine joint rotations.

RelPose++ [73]. RelPose++ builds upon the pairwise scoring network of Rel-
Pose to incorporate multi-view reasoning via a transformer and also allows predicting
camera translations.

R+T Regression [73]. To test the importance of modeling uncertainty, [73] trains
a baseline that directly regresses poses. We report the numbers from [73].

PoseDiffusion [165]. PoseDiffusion reformulates the pose estimation task as
directly diffusing camera extrinsics and focal length. Additionally, they introduce a
geometry-guided sampling error to enforce epipolar constraints on predicted poses.
We evaluate PoseDiffusion with and without the geometry-guided sampling.

5.4.2 Metrics

We evaluate sparse image sets of 2 to 8 images for each test sequence in CO3D. For
an N image evaluation, we randomly sample N images and compute the accuracy of
the predicted poses. We average these accuracies over 5 samples for each sequence
to reduce stochasticity.
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# of Images 2 3 4 5 6 7 8
Se

en
C

at
eg

or
ie

s COLMAP (SP+SG) [124] 100 34.5 23.8 18.9 15.6 14.5 15.0
PoseDiffusion w/o GGS [165] 100 76.5 66.9 62.4 59.4 58.0 56.5
PoseDiffusion [165] 100 77.5 69.7 65.9 63.7 62.8 61.9
RelPose++ [73] 100 85.0 78.0 74.2 71.9 70.3 68.8
R+T Regression [73] 100 58.3 41.6 35.9 32.7 31.0 30.0
Ray Regression (Ours) [189] 100 91.7 85.7 82.1 79.8 77.9 76.2
Ray Diffusion (Ours) [189] 100 94.2 90.5 87.8 86.2 85.0 84.1

U
ns

ee
n

C
at

eg
s. COLMAP (SP+SG) [124] 100 36.0 25.5 20.0 17.9 17.6 19.1

PoseDiffusion w/o GGS[165] 100 62.5 48.8 41.9 39.0 36.5 34.8
PoseDiffusion [165] 100 63.6 50.5 45.7 43.0 41.2 39.9
RelPose++ [73] 100 70.6 58.8 53.4 50.4 47.8 46.6
R+T Regression [73] 100 48.9 32.6 25.9 23.7 22.4 21.3
Ray Regression (Ours) [189] 100 83.7 75.6 70.8 67.4 65.3 63.9
Ray Diffusion (Ours) [189] 100 87.7 81.1 77.0 74.1 72.4 71.4

Table 5.2: Camera Center Accuracy on CO3D (@ 0.1). Here we report the propor-
tion of camera centers that are within 0.1 of the scene scale. We apply an optimal
similarity transform (s, R, t) to align predicted camera centers to ground truth
camera centers (hence the alignment is perfect at N = 2 but worsens with more
images).

Rotation Accuracy. We first compute the relative rotations between each pair of
cameras for both predicted and ground truth poses. Then we determine the error
between the ground truth and predicted pairwise relative rotations and report the
proportion of these errors within 15 degrees.

Camera Center Accuracy. We align the ground truth and predicted poses in
CO3D using the optimal similarity transform (s, R, t). We compare our prediction
to the scene scale (the distance from the scene centroid to the farthest camera,
following [135]). We report the proportion of aligned camera centers within 10
percent of the scene scale to the ground truth.

5.4.3 Evaluation

We report the camera rotation accuracy in Tab. 5.1 and camera center accuracy
in Tab. 5.2 evaluated on CO3D. We find that COLMAP struggles in wide-baseline
settings due to insufficient image overlap to find correspondences. We find that
both the regression and diffusion versions of our method safely outperform all exist-
ing approaches, suggesting that our ray-based representation can effectively recover
precise camera poses in this setup. In particular, our ray regression method signif-
icantly outperforms the baseline that regresses extrinsics R and T directly (R+T
Regression). Similarly, our ray diffusion model demonstrates a large improvement
over R+T Diffusion (PoseDiffusion without GGS) [165], while also outperforming
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Images Regression Diffusion (100 Samples)

Figure 5.7: Modeling Uncertainty Via Sampling Modes. Sparse-view camera poses
are sometimes inherently ambiguous due to symmetry. The capacity to model such
uncertainty in probabilistic models such as our Ray Diffusion model is a significant
advantage over regression-based models that must commit to a single mode. We
thus investigate taking multiple samples from our diffusion model. We visualize the
predicted cameras (colored) of both our regression- and diffusion-based approaches
compared to the ground truth (black). While the regression model predicts the
green camera incorrectly, we can recover better modes by sampling our diffusion
model multiple times.

# of Rays Rot@15 CC@0.01
2 × 2 52.5 72.5
4 × 4 70.3 82.6
8 × 8 76.1 84.8

16 × 16 84.0 89.8

Table 5.3: Ray Resolution Ablation. We evaluate various numbers of patches/rays
by training a category-specific model for 2 different training categories (hydrant,
wineglass) with N = 3 images. Performance across the 2 categories is averaged. We
find that increasing the number of rays significantly improves performance. However,
we found that increasing the number of rays beyond 16 × 16 was computationally
prohibitive.

their full method (PoseDiffusion) which includes geometry-guided sampling.
We show qualitative results comparing both our Ray Regression and Diffusion

methods with PoseDiffusion and RelPose++ in Fig. 5.5. We find that our ray-
based representation consistently achieves finer localization. Additionally, ray dif-
fusion achieves slightly better performance than ray regression. More importantly,
it also allows recovering multiple plausible modes under uncertainty, as highlighted
in Fig. 5.7.
Ablating Ray Resolution. We conduct an ablation study to evaluate how the number
of camera rays affects performance in Tab. 5.3. We find that increasing the number
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of camera rays significantly improves performance. Note that we kept the parameter
count of the transformer constant, but more tokens incur a greater computational
cost. All other experiments are conducted with 16 × 16 rays.
Demonstration on Self-captures. Finally, to demonstrate that our approach gener-
alizes beyond the distribution of sequences from CO3D, we show qualitative results
using Ray Diffusion on a variety of in-the-wild self-captures in Fig. 5.6.

5.5 Discussion
In this work, we explored representing camera poses using a distributed ray rep-
resentation, and proposed a deterministic regression and a probabilistic diffusion
approach for predicting these rays. While we examined this representation in the
context of sparse views, it can be explored for single-view or dense multi-view se-
tups. In addition, while our representation allows implicitly leveraging associations
between patches, we do not enforce any geometric consistency (as done in classical
pose estimation pipelines). It would be interesting to explore joint inference of our
distributed ray representation and geometry in future work.

70



Chapter 6

Conclusions

In this thesis, we developed a pipeline for estimating camera poses of object-centric
views and then recovering the textured surfaces of the object along with its illu-
mination conditions. While we have made significant progress toward this task, a
number of open challenges and future directions remain.

First, the camera pose and geometry estimation were largely done independently.
In classical 3D optimization algorithms such as Bundle Adjustment [153], the joint
optimization of camera poses and geometry is mutually beneficial. Subsequent work
in learning-based 3D should also take advantage of the synergy of reprojecting ge-
ometry for improving camera pose. This idea is already starting to be explored
in works such as [165] which incorporates 2D correspondences into the backward
diffusion process. There are also recent works [170, 167] that perform that camera
pose estimation by first predicting the geometry.

Second, in this thesis, we primarily considered object-centric setups. While
capturing 3D objects is of utmost importance for reconstruction and scanning, we
ultimately want a general purpose 3D pipeline that works in any setup: scene-
centric, outdoors, etc.. Significant effort should be dedicated toward improving the
generalization to these more diverse setups. DUSt3R [170] has already taken the
first step toward training on a multitude of diverse datasets to improve this domain
generalization.

Finally, ray-based representations of cameras can be extended widely to take
advantage of images from a wide range of intrinsics and camera models. All images
have some distortion, and being able to make use of these images directly without
undistorting them would allow current methods to take greater advantage of the
image pixels already present.

71



Bibliography

[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and An-
ders Bjorholm Dahl. Large-Scale Data for Multiple-View Stereopsis. ICCV, 2016.
18

[2] Yousset I Abdel-Aziz, Hauck Michael Karara, and Michael Hauck. Direct Lin-
ear Transformation from Comparator Coordinates into Object Space Coordinates
in Close-Range Photogrammetry. Photogrammetric Engineering & Remote Sensing,
81(2):103–107, 2015. 63

[3] Edward H Adelson, James R Bergen, et al. The Plenoptic Function and the Elements
of Early Vision, volume 2. MIT Press, 1991. 12

[4] Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jianing Wei, and Matthias
Grundmann. Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild
with Pose Annotations. In CVPR, 2021. 56

[5] Wang Angtian, Adam Kortylewski, and Alan Yuille. NeMo: Neural Mesh Models of
Contrastive Features for Robust 3D Pose Estimation. In ICLR, 2021. 46

[6] Vassileios Balntas, Shuda Li, and Victor Prisacariu. RelocNet: Continuous Metric
Learning Relocalisation using Neural Nets. In ECCV, 2018. 33, 60

[7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust Fea-
tures. In ECCV, 2006. 31, 45, 60

[8] Anand Bhattad, Aysegul Dundar, Guilin Liu, Andrew Tao, and Bryan Catanzaro.
View Generalization for Single Image Textured 3D Models. In CVPR, 2021. 17

[9] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, David Kriegman, and Ravi Ramamoorthi.
Deep 3D Capture: Geometry and Reflectance from Sparse Multi-view Images. In
CVPR, 2020. 18

[10] Volker Blanz and Thomas Vetter. A Morphable Model for the Synthesis of 3D Faces.
In SIGGRAPH, 1999. 17

[11] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hen-
drik P.A. Lensch. NeRD: Neural Reflectance Decomposition from Image Collections.
In ICCV, 2021. 17

[12] Eric Brachmann, Frank Michel, Alexander Krull, Michael Ying Yang, Stefan
Gumhold, et al. Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from
a Single RGB Image. In CVPR, 2016. 32

72



[13] Yannick Bukschat and Marcus Vetter. EfficientPose: An Efficient, Accurate and
Scalable End-to-end 6D Multi Object Pose Estimation Approach. arXiv:2011.04307,
2020. 32

[14] Ruojin Cai, Bharath Hariharan, Noah Snavely, and Hadar Averbuch-Elor. Extreme
Rotation Estimation using Dense Correlation Volumes. In CVPR, 2021. 47, 60

[15] Carlos Campos, Richard Elvira, Juan J. Gómez, José M. M. Montiel, and Juan D.
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