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ABSTRACT

Coral reefs are an important ecosystem to the local communi-
ties and indigenous wildlife that rely on them. However, reefs
have greatly degraded in recent decades with the remaining
at increasing risk of loss. Quantitatively mapping these reefs
would provide a resource for us to monitor changes and un-
derstand their health. We explore methods leveraging limited
spectral data and resources for efficient global scale model-
ing of coral reefs. We then evaluate performance on a Deep
Neural Network and our previously developed Deep Condi-
tional Dirichlet Model. Regions of high uncertainty based on
the model output prediction are used to determine informa-
tive in situ sampling. An ergodic planner is implemented to
generate a path through these regions to acquire samples that
best improve the coral map. The result is a resource efficient
learning based pipeline that augments existing spectral data
and maps coral reefs globally to improve our understanding
of their condition.

Index Terms— coral reef, unmixing, remote sensing,
limited data, ergodic planning

1. INTRODUCTION

Coral reefs play a vital role in supporting both local commu-
nities and indigenous wildlife [2, 3]. Reefs worldwide are
in critical and rapid decline, with 33-55% of reefs degrading
over recent decades and about 35% of the remaining reefs at
risk of loss over the next few decades [4, 5]. Despite these ris-
ing issues, only 0.1% of the world’s reefs have been studied
quantitatively [6].

To address this issue, we aim to create a valuable resource
for monitoring changes and assessing the health of coral reefs
by quantitatively mapping them. Data is often expensive to
process, so we explore how previously developed machine
learning methods can make efficient use of limited spectral
data and resources to model coral reefs on a global scale. In
order to improve upon model predictions, in situ, or on site,
expeditions can validate and verify the output.

We develop upon our prior work to demonstrate how
clustering-based approaches allow our applied classification
and unmixing models to perform comparably to prior results

even on limited and biased datasets [7, 8, 9]. After classi-
fication, we apply informative path planning to determine
efficient sampling locations for in situ expeditions to validate
and improve coral models. Thus, we present a process to clas-
sify and unmix spectral data to identify coral reefs (Figure
1).

2. APPROACH

Mapping of coral reefs has typically consisted of in situ mis-
sions. However, these are costly expenditures and are difficult
to reproduce over time. The introduction of remote sensing
for coral mapping made maps of greater scale and consistency
possible. We seek the ability to produce benthic classifica-
tions or bathymetric maps from remotely sensed spectral data.
This is significant because the benthic cover of reef ecosys-
tems has proven to be an effective metric for monitoring coral
reef health. By characterizing the spectral reflectance of reef
benthic communities using remote sensing, different benthic
components can be classified and mapped over large areas
[10, 11].

Our prior work focused on mapping the individual distri-
butions of the benthic cover classes of coral, algae, and sand.
We utilized labeled Portable Remote Imaging SpectroMeter
(PRISM) data of Heron Island, aligned the labels with input
high resolution Worldview-3 and low resolution Landsat-8
data, then trained Support Vector Machines (SVM), Deep
Neural Networks (DNN), and Deep Conditional Dirichlet
Models (DCDM) through supervised learning [12, 13, 9].
The DCDM has the same architecture as the DNN for classi-
fication while also incorporating a Dirichlet distribution based
loss function to support unmixing. In our current study, we
train the same input data on updated PRISM labels that ex-
hibit class imbalances and limited data representation (Figure
1b). We approach this problem by applying different cluster-
ing and balancing methods on the dataset, such as k-means++
clustering, to achieve fair representation for all classes [14].
The ability to train models on limited amounts of data and
successfully classify coral regions would reduce costs while
retaining global coverage and efficiency for mapping.

After the spectral data has been processed, we seek to im-
prove the classification and unmixing confidences. We choose



(a) Heron Island, small in upper left, and surrounding coral reef
[1].

(b) Labeled PRISM data, with Coral (Red), Algae (Green), and
Sand (Blue). These labels are biased and imbalanced, with
56.93% algae, 42.55% sand, and just 0.5296% coral.

(c) Variance (uncertainty) information prior derived from the
trained DCDM model outputs.

(d) Planner optimized trajectory (magenta) with sparse sam-
pling locations (orange) on DCDM information prior.

Fig. 1: Coral detection and sampling plan on Heron Island. Models are trained using spectral data of the scene alongside
labeled data. The variance in the model outputs is used as an information prior for the ergodic planner. The planner yields an
information maximizing trajectory for in situ expeditions to efficiently validate and refine the model.

to supplement the model predictions with in situ expeditions.
However, these expeditions are still costly expenditures. By
leveraging an approximate knowledge of the map from the
model outputs and quantifying the classification variance, we
can determine a more efficient trajectory for the in situ expe-
dition that makes the best use of provided resources.

We first quantify areas of high uncertainty, or variance, in
the model predictions. The weighted sum of these variances
per class constitutes our information prior. This determines
regions with the highest potential information gain from the
predictions (Figure 1c). We then apply an ergodic planner
which takes its information prior from the model to optimize
the information gain to expedition resource and cost trade off
[15, 16].

The uncertainty based information prior defines the like-
lihood of generating informative measurements at any point
within the map. Within ergodic search, the planner minimizes
the difference between the Fourier spectral decomposition of
this expected information distribution and the agent’s, or the
planned trajectory’s, time-averaged statistics in order to opti-
mize its trajectory. In other words, the objective of the planner
is to reduce the uncertainty in the agent’s map by optimizing

the dynamic behavior of the agent [15]. The resultant trajec-
tory spends time in regions proportional to the expected in-
formation gain, which makes more efficient use of resources
than an uninformed trajectory such as a random walk or grid-
based coverage [16].

In turn, in situ measurements can be taken at optimized lo-
cations to verify and update regions where the model is most
uncertain, thus increasing the efficiency of the expedition. In
addition to the agent dynamics, a sampling variable is in-
corporated into the optimization problem to determine where
sensing measurements should be taken along the trajectory.
An L1 metric is used to regularize the sampling variable in or-
der to promote sparsity during optimization [17] (Figure 1d).

The evaluation of the process is quantified by three pri-
mary metrics. Accuracy helps us understand how well the
models are at determining the hard classifications of the
dataset. The Kullback-Leibler Divergence (KLD) and the
Mean Absolute Error (MAE) serve as an evaluation of how
well the model is able to match the ground truth composi-
tions, specifically how well the model is able to unmix the
dataset.



Data Model Accuracy KLD MAE
Landsat SVM 72.68% — —
Landsat DNN 72.07% 0.0393 0.1867
Landsat DCDM 72.22% 0.0419 0.1878

WorldView SVM 69.79% — —
WorldView DNN 70.38% 0.0487 0.2054
WorldView DCDM 69.91% 0.0512 0.2056

(a) Model Performance on All Classes

Data Model Accuracy KLD MAE
Landsat SVM 0% — —
Landsat DNN 25.60% 0.0937 0.3078
Landsat DCDM 22.34% 0.1015 0.3163

WorldView SVM 0% — —
WorldView DNN 6.170% 0.1127 0.3535
WorldView DCDM 22.14% 0.1025 0.3215

(b) Model Performance on Coral Class

Table 1: DNN and DCDM performance on data clustered through k-means++ clustering. Performance is given on classifying
all classes in the benthic cover as well as on just the coral class as the primary class of interest.

3. MACHINE LEARNING RESULTS

Despite the limited and biased dataset with minimal coral rep-
resentation, we found that the SVM as a standard machine
learning approach does give good accuracy overall however,
this is due to the SVM classifying all pixels as algae or sand
without any coral classifications. The high abundance of the
former two classes in the dataset even after clustering allows
the SVM to attain a high accuracy with 0% coral classifica-
tions, as seen in Table 1a and Table 1b.

Between a DNN model and DCDM trained on the same
dataset, the performance across all metrics appear to be
roughly similar with regards to all of the classes (Table 1a).
The DNN and DCDM accuracies are quantitatively similar,
though in all other metrics the DCDM appears to perform
slightly worse in comparison to the DNN model. Landsat
achieves an accuracy of approximately 72.15% while World-
View performs slightly worse with an accuracy of about
70.15%. These results all seem to contradict the improvement
in performance with high spatial-resolution WorldView data
alongside the unmixing capabilities of the DCDM observed
in our previous research [9]. However, this is considering
evaluation on all of the classes together, where both algae and
sand dominate the test set.

Differences in performance can be observed with the
DNN versus DCDM and Landsat versus WorldView when
examining only the coral test set (Table 1b). The DNN has an
average accuracy of 15.89% while the DCDM has an average
accuracy of 22.24%, thus the DCDM offers more consistent
performance in classifying and unmixing coral. The Land-
sat models still tend to outperform the WorldView models.
However, between the DDN and DCDM, WorldView shows
increased accuracy by almost 3 times while also decreasing its
KLD and MAE which is indicative of successful unmixing.
Though the evaluation on all of the classes together do not
appear to meet our expectations, there is supportive evidence
for improved performance as a result of the higher spatial-
resolution data and the DCDM together. This is demonstrated
by the successful isolation and improvement of classifications
on the rare coral class.

While distinctions are observed between models and
datasets, performance across the board is quantitatively quite
close. More data is needed to establish statistical significance
for these conclusions, however notably we have verified that
comparable results to previous contributions, with accuracies
of around 70-75%, are observed despite dataset limitations.
Additionally, though this accuracy may appear low, this is
expected due to the difficulty of unmixing spectral data com-
pared to simple classification tasks.

4. PATH PLANNING RESULTS

After spectral processing, we apply the ergodic planner to de-
termine efficient sampling locations for in situ expeditions
(Figure 1d). We evaluate the model performance pre plan-
ning as well as the updated model performance post plan-
ning. The pre-planning model is the average model predic-
tions from spectral processing. The post-planning model is
calculated by using the ground truth labels and the informa-
tion maps from the ergodic planner to update the pre-planning
model. The greater the information gained during planning,
the closer the post-planning model matches the ground truth
labels.

We observed a general increase in performance across all
metrics when using information priors based on the model
predictions compared to random priors to simulate updates
on the model output. This was particularly improved on clas-
sifying coral as the primary class of interest. This suggests
that ergodic based in situ expeditions would definitely im-
prove benthic cover mapping compared to random traversal.
When evaluating the ergodic planner, we considered the per-
formance of the models pre and post planning on all classes
as well as on just the coral class (Table 2).

We found that the DNN outperformed the DCDM on
accuracy before and after the simulated update, though the
DCDM was able to achieve lower, and thus better, KLD and
MAE scores after being updated (Table 2a). This indicates
the results more closely match the distribution of ground
truth benthic class mixtures, which suggests that the DCDM
is able to more intelligently sample locations that improve



Model Metric Pre-Planning Post-Planning
DNN Accuracy 70.36% 92.97%

DCDM Accuracy 69.59% 92.62%
DNN KLD 0.1331 0.0399

DCDM KLD 0.1337 0.0385
DNN MAE 0.4556 0.1847

DCDM MAE 0.4557 0.1790

(a) Model Performance on All Classes

Model Metric Pre-Planning Post-Planning
DNN Accuracy 71.49% 90.50%

DCDM Accuracy 71.70% 93.03%
DNN KLD 0.1397 0.0180

DCDM KLD 0.1380 0.0144
DNN MAE 0.4840 0.0984

DCDM MAE 0.4793 0.0876

(b) Model Performance on Coral Class

Table 2: Pre-planning and post-planning model performance for the DNN and the DCDM. The pre-planning model is the
average model predictions from spectral processing. The post-planning model is the updated model using information from the
ergodic planner. Performance is given on classifying all classes in the benthic cover as well as on just the coral class as the
primary class of interest.

its performance than the DNN. When evaluating the limited
represented coral class in Table 2b, the DCDM outperforms
the DNN across all metrics before and after the update. These
further support the ability of the DCDM to sample locations
that best improve its performance compared to the DNN
(Table 2).

Part of the improvement of the DCDM over the DNN can
be observed from the initial information prior of the two mod-
els. By having regions of high information close together, op-
timized trajectories spend more time gathering information as
opposed to traversing to new high information regions. The
DCDM prior had focused high information regions compared
to the DNN prior which were more spread out. This con-
tributes to the greater increase in performance of the DCDM
as well.

Additionally, we observed the impact of varying the
weights of each class variance when calculating the weighted
sum information prior for the planner. Let [ωC , ωA, ωS ] be the
weights for the coral, algae, and sand variances respectively.
We found that increasing the weight towards a class can im-
prove the prediction of that class after sampling. For example,
having coral biased weights of [ωC , ωA, ωS ] = [0.6, 0.2, 0.2]
when constructing the information prior yielded higher accu-
racy in coral performance post planning compared to equal
weights of [ωC , ωA, ωS ] = [0.33, 0.33, 0.33].

Having regions of high information sparsely distributed
across the map, even if the prior is fully biased towards a sin-
gle class, can cause the resulting trajectory to prioritize explo-
ration. We observed this behavior with purely coral weights
of [ωC , ωA, ωS ] = [1, 0, 0]. The coral variance was highest
around the perimeter of the reef region in Figure 1c. As a
result, the resulting ergodic trajectory then optimized a path
across the map that improved performance across all classes
as opposed to the expected individual class performance.

Overall, the general increase in performance post plan-
ning suggests that in situ expeditions following ergodic trajec-
tories can definitely improve benthic cover mapping with effi-
cient sampling. The DCDM especially benefited from the er-

godic planning, generally achieving better performance than
the DNN model across all metrics after the update. We also
found that biasing weights when constructing the informa-
tion prior can yield improved individual class performance
as long as the regions of high information in the prior are not
too spread out.

5. CONCLUSION

We have incorporated limited data and post-planning pro-
cesses to build upon our previously established machine
learning method of efficient global scale benthic cover in-
terpretation [9]. This was accomplished by first further ex-
ploring how clustering can be used to approach limited and
imbalanced data. We then evaluated how our model out-
puts can be used to determine efficient trajectories for in situ
expeditions and showed that ergodic planning of sampling
locations improves the predictions. Thus, we have expanded
upon our prior approach by completing an efficient pipeline
for coral reef classification with spectral unmixing and effi-
cient sampling.
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