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Abstract
In recent years, researchers have extensively used non-verbal gestures, such as

head and arm movements, to express the robot’s intentions and capabilities to hu-
mans. Inspired by past research, we investigated how different explanation modal-
ities can aid human understanding and perception of how robots communicate fail-
ures and provide explanations during block pick-and-place tasks. Through an in-
person experiment, we studied four modes of explanations: Head, Head & Arm,
Head & Image Projection, and Head & Speech. They were used to explain four
types of failures: Out Of Reach, Object Size, Grasp Failure, and Perception Failure.
We found that speech explanations were preferred to non-verbal and visual cues in
terms of similarity to humans. Additionally, projection had a comparable effect in
explanation compared to other non-verbal modules. The findings also suggested that
in-person and online studies can produce consistent results.
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Chapter 1

Introduction

Humans usually provide cues for behaviors in daily life, especially following an unfavorable
action, such as failing to do a task. Thus, humans likely expect robots to explain their behaviors
in failure situations, verbally or non-verbally. Past work shows that the ability of robots to
explain themselves can have a positive effect on the robots’ perceived trustworthiness [15, 32]
and human-likeness [4].

In this work, we extended a prior study on robot explanation in a cup-handover task [23].
The study examined the handover failure conditions of a cup that was out of reach from the robot
arm. The robot explained each failure in handing the cup to participants by looking or shaking its
head at the cup and pointing to the cup with its arm. The study found that without head shakes,
both the Look and Look & Point conditions were neutral relative to expectedness for participants.
Moreover, they found that No Cue (do nothing) increased the level of unexpectedness, and adding
head shakes made the robot’s behavior more unexpected across all conditions. The study also
indicated that the robot should concisely explain its behavior in all circumstances, preferably
if the explanations are in situ, but only a small percentage of participants thought that humans
should explain failures in the same non-verbal way.

In our study, we considered Look as the primary head movement during the explanation. We
also had our robot explain its behavior in situ when failures happened. In addition, we introduced
two new components of explanation, namely Image Projection and Speech, inspired by later work
by the same team [7, 22], as other ways of explaining robot failure behaviors.

In our experiment, the robot performed a routine of picking up blocks on the table and placing
them onto a tray. We studied four modes of explanations: Head (only look at the object), Head
& Arm (look at the object and move the arm), Head & Projection (look at the object and project
an image on the workstation), and Head & Speech (look at the object and utter a statement).
The two newly added components of Projection and Speech have been proven to be effective in
communicating explanations of the robot failures in other contexts [7, 22]. These four conditions
were used to explain four types of failures: Out Of Reach (the object is too far away from the
robot), Object Size (the object is too large for the robot to grip), Grasp Failure (the robot cannot
securely grasp the object), and Perception Failure (the robot hallucinates an object). Our work
also served as a partial, in-person replication of the prior online study by including elements from
that work [23].

We designed a 26-item questionnaire, partly adapted from Han et al. [23], to measure some
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key aspects of human-robot interaction: Unexpectedness, Human-Robot Difference, Level of
Detail, Conciseness, Trust, Competence, and Need for Explanation in failure situations.

In summary, our contributions in this paper are:
1. An in-person, partial replication of a prior study on robot explanation, showing non-verbal

gestures have similar effects on human perception using a different robot, thus confirming
the consistency between online and in-person experiments and across robot platforms;

2. Findings showing that projected images for robot performance explanation perform simi-
larly to non-verbal gestures; and

3. Evidence for a prior conjecture about speech being preferred for explaining robot failure
and performance.
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Chapter 2

Related Work

2.1 Robot Failure and Explanation

2.1.1 Robot Failure
Robotic systems can experience multiple types of failures, either internally from the robot soft-
ware and hardware, or externally from users and surrounding environments. Honig et al. [25]
discussed a taxonomy of human-robot failures in domestic robots that are most frequently seen
by customers. Carlson et al. [8] classified in-depth physical failures in the end effector of the
robot. Thus, along with the Out Of Reach failure from [23], we studied three other types of fail-
ures that are common in a pick-and-place task, namely environment failure (e.g., Out Of Reach,
Object Size), control failure (e.g., Grasp Failure), and sensor failure (e.g., Perception Failure).

2.1.2 Robot Explanation
In the motivating prior work that was conducted online, Han et al. [23] studied robot explanation
during a cup handover task in which the cup was out of reach from the robot arm. As mentioned,
the robot explained its behavior through non-verbal cues, such as arm and head movements, to
express the robot’s difficulty in reaching the cup placed far away on the table, including Look
only, Look & Point, and No Cue, coupled with Headshake or No Headshake. They found that
removing headshakes decreased the level of unexpectedness to the explanation in both Look &
Point and Look only, and that the robot should always give cues to be perceived as less unex-
pected. Building on that idea, we eliminated the Headshake portion of the cue, so the only motion
for the robot head was to look.

Research on consistency between online and in-person studies has been sparse. Han et al. [23]
conducted their experiment online via Amazon’s Mechanical Turk. Thus, we conducted an in-
person experiment to confirm the consistency of our results with those of their online experiment.

In a later work, Han et al. [22] used verbal and projection indicators, coupled with head and
arm motion replay, to communicate past causal information related to tasks. Cao et al. [7] dis-
cussed a method of robot proficiency self-assessment, Assumption-Alignment Tracking (AAT),
that can make the robot aware of the environment, robot hardware, and assigned tasks. Thus,
failure modes can be monitored and assessed to evaluate the robot’s capability of performing a
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task. Likewise, Rosenthal et al. [39] studied the effectiveness of the verbal modality in parallel
with visual modality during robot operation. Kelly et al. [27] suggested that speech and non-
verbal gestures can be used to complement the meaning of each other, such that speech is used
to describe symbolic meanings while gestures are used for holistic information. Sebo et al. [42]
suggested using verbal apology to repair human’s trust in robot, which was previously broken,
in a human-robot competitive game setting. Moreover, verbal explanation has been proven to be
effective in failure situations [10, 28]. Thus, we chose to study both visual modalities (projection,
gestures) and verbal modalities (speech) in robot failure and explanation.

Image projection is versatile in communicating important information about the contexts of
the tasks and behaviors of robots. Previous work by Han et al. [22] demonstrated the effec-
tiveness of projection in revealing task-related information. Projections can indicate boundaries
around robots [50] (e.g., maximum robot reach), display information about the robot [51] (e.g.,
maximum gripper opening), mark locations [43] (e.g., a red X for a failure location), and com-
municate misperceptions [22] (e.g., hallucinated objects).

Head motion and eye gaze were shown to be important during interactions with robots [6,
18, 38, 45, 46]. Eye gaze can help humans understand robots during tasks. Moreover, facial
expressions have been widely used for effective communications in human-human and human-
robot collaborations. Having expressive features makes robots be perceived as more intelligent,
human-like and trustworthy [26], and even impacts failure situations [34].

Finally, verbal communications in failure situations can be categorized into several types:
Apology [10, 30], Explanation [10, 28], and Interjection (Expression of Concern) [44]. Such
types of communications can be effective in providing context of and conveying attitude towards
the failing behaviors, especially when paired with failure behaviors such as control failures,
sensor failures, and environmental / external failures [8, 23, 25].

2.2 Human Perceptions towards Robots
Human’s perceptions towards robots have been explored in previous human-robot interaction
works. Those perceptions include trust [5, 12, 14, 47, 54], competence [10, 40, 48], safety
[1, 2, 52], empathy and engagement [9, 13, 21].

2.2.1 Trust
Trust in robots and autonomous systems has been extensively studied to promote healthy human-
robot interaction. Anjomshoae et al. [5] claimed that trust (along with transparency) is the most
prominent drive in explanations, and that trust can increase the users’ confidence in the systems
by understanding how the systems work. When robots explain their actions, humans can correct
their mental models and calibrate their level of trust in the systems [12]. Moreover, Yang et
al. [54] indicated that trust can be measured through a series of interactions with automation
systems. Tolmeijer et al. [47] suggested that offering explanations in failure situations can help
mitigate failure and repair trust. Desai et al. [14] stated that trust can change in real time, and
that early decreases in robot reliability reduced real-time trust from people compared to later
decreases.
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Moreover, trust is influenced not only by actions of the robots, but also by their appearances.
Li et al. [31] suggested that the more human-like the robot, the more likeable it is perceived
by humans, leading to a higher level of perceived trust in the robot. According to Phillips et
al. [36], humans can categorize and predict a robot’s human-likeness based on its appearance, on
a scale of 0 (Not human-like at all) to 100 (Just like a human). The Fetch robot we used in this
study [53] has a score of 9.08, which can be considered as not human-like. Thus, we anticipated
that the perceived trust in the robot will be low due to its non-humanoid appearance. However,
research shown that trust can increase with more interactions with robots [54], and that humans
can adjust their perceived trust in robots when the robots explain their behaviors [12]. Thus, if
a non-humanoid robot (i.e., the Fetch robot) can formally explain its failures, the perceived trust
in the robot might be recovered throughout the entire experiment.

2.2.2 Competence
Humans usually take fellow humans’ competence for granted during interaction, whether such
interaction is verbal or non-verbal [48]. Scheunemann et al. [40] found that humans prefer to
physically interact with social robots that are perceived as warm and competent. Choi et al. [10]
measured competence in robots with Likert items based on capability, intelligence, and skillful-
ness, but did not find significant difference in perceived competence in the case of robots explain-
ing their failures. They also claimed that providing an explanation can increase the perceived
warmth from humanoid robots, but not for non-humanoids. In our experiment, we explored the
effect of a non-humanoid robot’s movements as explanations in robot failure situations, along
with the perceived warmth and competence of participants.

2.2.3 Safety and Security
Safety and security are key requirements in designing human-robot interaction [1, 52]. Akalin et
al. [1] defined safety as related to perception of possible physical harm. In a later work, Akalin et
al. [2] investigated Feeling of Security (humans feeling safe around the robot) and Co-Experience
(robot being a good teammate) factors, in which they found that there was a strong correlation
between trust and perceived safety. Thus, safety and trust can be studied hand-in-hand with each
other.

2.2.4 Empathy and Engagement
Empathy and engagement with robots during human-robot interaction settings were extensively
studied in past research. Celiktutan et al. [9] conducted a study involving two participants and
a small humanoid robot to investigate the relationship between robot personality and human en-
gagement. They found correlations between humans’ personality traits and robot partners’ level
of extroversion through empathy-related survey questions during interaction. Hall et al. [21]
showed that humans’ engagement with robots depends on the robots’ gestures, especially nod-
ding. In addition, de Kervenoael et al. [13] found that robots’ perceived empathy and engagement
with humans correlated with humans’ intentions to interact with robots in hospitality service set-
tings.
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2.3 Robot Facial Expression
Facial expressions have been widely used for effective communications, not only between hu-
mans but also in human and robot collaboration. Humans are exceptionally good in recognizing
and understanding facial expressions, and humans can recognize facial expressions of robots im-
mediately, especially humanoid robots with explicit faces [17]. Thus, a robot’s facial expressions
can aid people in understanding and engaging with it. Moreover, Morales et al. [34] indicated
that expressive robot facial features have impacts on humans’ perceived intelligence, friendliness
and human-likeness towards robots, further indicating the importance of testing and designing
robots for human-robot interaction. Reyes et al. [38] designed a minimalist robotic face to un-
derstand the effect of robot’s facial expressions on human’s emotional feedback, in which they
found that negative expressions such as angry was best recognized in robotic faces by humans
in collaborative tasks. Ge et al. [18] developed an expressive social robot that can express emo-
tions such as happy, anger, and sadness, and those emotions can be expressed through only a few
modalities such as eye lids, lips, eyes, and eyebrows to test its ability to imitate human’s facial
expressions. Furthermore, robots having eyebrows are perceived by humans as more mature,
intelligent, human-like, and trustworthy, as opposed to not having a mouth [26].

Human communications usually consist of a combination of facial expressions and speech
as channels for information exchange [37]. However for human-robot interaction, previous re-
search endeavors have only focused on independent modules modes of explanations: Non-verbal
gestures with arm and head [23], speech as verbal cues [22, 28]. In particular, there has been
limited research in using facial expressions as a mode of explanation in failure situations, as well
as using paired facial expressions on robots and verbal explanations in failure situations. Thus,
the pairing of facial expressions and verbal / nonverbal behaviors can be used to explain robot
failures, and can be used to recover trust through interactions [12, 54].
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Chapter 3

Method

Inspired by the prior work of Han et al. [23], we designed an in-person experiment to collect
more reliable responses on human perception of robot failure and explanation.

3.1 Robot Description

While prior work [23] used a Baxter robot [16] for the cup handover task, our study of a pick-and-
place task used a Fetch robot [53], which is a mobile manipulator with a 7-DOF arm and a head
with built-in cameras. Fetch’s arm has the maximum reach of 940.5 mm, which is enough for
the pick-and-place task. Furthermore, the smaller frame of a Fetch robot compared to a Baxter
robot makes it less imposing. While Fetch has a movable head with “eyes” (cameras), it has no
explicit face, which imposes a hardware limitation for eye gaze and facial expressions. Robot
Operating Systems (ROS) in Ubuntu 18.04 was used to control the robot.

3.2 Experiment Setup

The arrangement of the table for the pick-and-place task is shown in Figure 3.1. On the table,
there were seven blocks of different sizes, shapes, and colors scattered on the table. The robot was
assigned a pick-and-place task, in which it had to locate all the blocks on the table, pick them up
using its arm, and place them into the tray on the table. Among those blocks, some were designed
to be picked up by the robot gripper, while others were there as decoys so that participants could
not predict the next block or failure type. For the Head & Projection explanation condition,
a ceiling-mounted external projector was used to project images onto the table. Although the
duration of projection stayed the same, the content of the images was tailored for each failure
type. Participants were only informed about the existence of the projection module, without
knowing what the projections looked like.
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Figure 3.1: Locations of the successful blocks (blue) and the four failures (labeled). The arm
position and projected white area with red arc were used for Head & Projection during a Reach
failure.
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3.3 Failure and Explanation

Prior work by Han et al. [23] emphasized the need for robots to explain their reaching failures
using two main modalities, namely Head (Look or Shake) and Arm (Point). Building upon that,
our work also used Fetch’s head and arm for explanation. Furthermore, inspired by [7, 22], we
incorporated Projection and Speech as two new components in the explanation conditions, and
added three new failure types: Size, Grasp, and Perception.

3.3.1 Failure Types

Reach: The block was too far away from the robot arm to reach, even when the arm was
fully extended. This was the same type of failure described in [23].

Size: The width of the block was larger than the maximum gripper opening, thus it could not
pick up the block.

Grasp: The block was within the reach of the robot arm and was of suitable size for the
gripper to grasp. However, the robot miscalculated the inverse kinematics of the arm, leading to
an unstable grip. That resulted in the block slipping off the gripper after the gripper closed.

Perception: The block could not be found in the region where the head was pointing, but the
robot still hallucinated a block in that area. Thus, the robot arm tried to grasp the hallucinated
block, but no block was picked up.

3.3.2 Explanation Conditions

Head: We removed the head shakes from [23]. Instead, the robot only pointed its head at the
location of the block.

Head & Arm: The robot pointed its head at the location of the block and moved its arm to
form a gesture. In the case of a Reach failure, we mimicked the movements of the Baxter robot
in [23] towards the block. In other failures, the robot attempted to grasp the block an additional
time.

Head & Projection: The robot pointed its head at the location of the block and projected
an image onto the table which contained a visual explanation for the robot’s failure. The Reach
failure displayed a red arc denoting the maximum reach of the robot arm (e.g., Figure 3.1). The
Size failure displayed two red lines across the block showing the maximum gripper opening. The
Grasp failure displayed a large red X on top of the block. The Perception failure displayed a red
square where the block was hallucinated.

Head & Speech: The robot pointed its head at the location of the block and uttered a state-
ment explaining its failure using a speaker. For the Reach failure, the statement was “My arm
cannot reach the block, so I will not be able to pick the block.” For the Size failure, the statement
was “The block is too large, so I will not be able to pick the block.” For the Grasp failure, the
statement was “I was unable to grasp the block, so I will not be able to pick the block.” For the
Perception failure, the statement was “My camera is not working, so I will not be able to pick
the block.”
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3.4 Measures

We prepared a post-trial survey based on questions used in [23] to measure participants’ per-
ceptions of robot failure and explanation, as shown in Table 3.1. With the aim of recreating the
results from their work and extending our work with new explanation components (Projection
and Speech), we merged questions from the prior study with new questions to measure the unex-
pectedness of the robot’s behavior (Unexpectedness), the difference between the ways humans
and robots explain themselves (Human-Robot Difference), the level of explanation detail (Level
of Detail), and the how concise the explanation should be (Conciseness). To keep the survey
questions internally consistent with each other, we asked questions that were very similar or
contradictory to each other and used in most questions the 7-point Likert-type scale [41]. Each
Likert-type item was coded as -3 (Strongly Disagree), -2 (Disagree), -1 (Moderately Disagree),
0 (Neutral), 1 (Moderately Agree), 2 (Agree), and 3 (Strongly Agree). Among the questions, 6
of them were adapted from [23]: questions 1-3 and 6-8.

Unexpectedness (Cronbach’s α = 0.80)
1. I found the robot’s behavior confusing.∗

2. The robot’s behavior matched what I expected. (Reversed)∗

3. The robot’s behavior surprised me.∗

4. The robot’s movements were natural. (Reversed)
5. The robot’s movements were predictable. (Reversed)
Human-Robot Difference
6. If a person did what the robot did, they should both
explain the same behavior in the same way.∗

Level of Detail
7. The robot should give a very detailed explanation.∗

Conciseness
8. The robot should concisely explain its behavior.∗

Table 3.1: Post-Trial Questions. ∗ indicates questions adapted from [23].

In addition to the questions in Table 3.1, we designed a post-study questionnaire (Table 3.2)
to gather information about the participants’ overall experience and perceptions of the robot.
Along with trust, we wanted to measure participants’ perceived robot competence and need for
explanation when the robot explained its failures. In the line of questioning, we investigated hu-
man preference for how and when the robot should explain its behavior and whether robots need
to provide explanations in failure situations. We also wanted to explore participants’ assessments
of the robot’s movements and impressions of interacting with the robot. Finally, we wanted to
record participants’ overall perceptions about the study and the robot. We divided the questions
into the subcategories of Trust, Competence, Need for Explanation and Overall Perception. All
questions were Likert-type items except for questions 20, 21, and 22, which were multiple-choice
questions with specific options, and question 27, which was open-ended.
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Trust
9. I am comfortable engaging with a robot that uses movement
to signal difficulty.
10. The robot’s movements make me more engaged with it.
11. The robot’s movements affect how much I trust it.
12. I feel empathy for the robot when it fails.
13. The robot is likable.
14. I felt warmth interacting with the robot.
15. The robot can be a good teammate.
16. I felt safe around the robot.
Competence
17. The robot’s movements were clear and lifelike.
18. The robot’s movements help me understand what it can do.
19. The robot is competent.
Need for Explanation
20. I wanted the robot to explain its behavior.∗

21. Do you think it is important for the robot to get your
attention before starting to explain its behavior?∗

22. How should the robot get your attention before starting
to explain its behavior?∗

23. When would be the best time for the robot to explain its
behavior?∗

24. A robot signaling failure through its movements is
important.
25. I want robots to announce failure out loud.
26. I prefer non-verbal actions from robots when they fail.
Overall Perception
27. Do you have any other comments about the robot’s
behavior, its explanations, the robot itself, or the experiment?∗∗

Table 3.2: Post-Study Questionnaire. The ∗ indicates questions adapted from Han et al. [23].
The ∗∗ indicates open-ended question.

3.5 User Study Design

We ran each participant across all four modes of explanations. To address practice and other
ordering effects, the types of failures and modes of explanations were each ordered using two
different four-way Latin Squares [19]. This yielded 16 unique combinations of failure types and
explanation conditions and counterbalanced both factors. Due to having four types of failures
and four modes of explanations, our data includes 6 iterations over the 4-way pattern, totaling 24
participants.
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3.5.1 Participants

In keeping with best practices, we sought gender balance within the 24 participants. Partic-
ipants included 12 women and 12 men with the mean age to be 34.5. Among the participants,
11 of them were in the range of 18 to 25 years old (46%), 6 of them were in the range of 25
to 35 years old (25%), 2 of them were in the range of 35 to 45 years old (8%), and 5 of them
were above 45 years old (21%). Participants’ experience with robots ranged from no exposure
to years of experience (building robots at school, having vacuum robots, taking robotics courses,
participating in robotics studies, etc.).

3.5.2 Study Procedure

The participants were first introduced to the study by a researcher and then asked to sign a
consent form, which contained a brief of the study procedure and purpose, risks engaging in the
study, and compensation for the study. Before the experiment began, participants provided their
demographic information, along with some information about their experience with robots. All
questions were conducted using the Qualtrics website on a computer at the study location.

Each participant was given four trials to experience four combinations of robot failures and
explanations. Each trial had four consecutive parts: Success, Failure, Explanation, and Survey.
During the pick-and-place task, participants stood in front of the robot on the other side of the
table.

Success: The trial started with the robot in its initial state: its arm was tucked into its torso
and its head was held straight. The robot then began scanning the table to search for blocks to
pick up. Upon finding two good candidates that were close to the robot (two small blue blocks
on the table as seen in Figure 3.1), the robot successfully picked up these two blocks and placed
them into the tray. These two manipulations were designed to be successful, indicating that the
robot was doing its job properly and mitigating bias. Then, the robot moved on to the Failure
part of the trial.

Failure: The robot began the Failure part of the trial by looking at one of the blocks or
areas on the table (pertaining to one of the types of failures). After choosing its target, the robot
attempted to grasp it by approaching the block area and closing its gripper once. When the
gripper was not able to grasp the block, the Failure phase finished and the robot continued to the
Explanation phase.

Explanation: Realizing that it could not pick up something, the robot executed one of the
explanation conditions. The robot provided an explanation in situ when the failure happened.
Then, the robot returned to its initial state.

Post-Trial Questions: Next, participants were asked to respond to our post-trial survey on
Qualtrics about their observations in the trial. After their responses were recorded, the Survey
phase of the trial concluded, marking the end of one trial. Participants returned to the table for
the next trial.

After participants finished their four trials, they were asked to respond to a post-study ques-
tionnaire about their overall experience participating in the study as well as their general per-
ception of the robot. The entire study took 45 minutes for each participant, and received $10
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compensation for their time. This research was approved by Carnegie Mellon University’s Insti-
tutional Review Board.
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Chapter 4

Results

We analyzed Unexpectedness, Human-Robot Difference, Level of Detail, and Conciseness using
two-way ANOVAs. For Trust, Competence, Need for Explanation and Overall Perception, we
analyzed each question in each item individually.

4.1 Unexpectedness

The Unexpectedness item measures the level of unpredictability of the robot’s behavior. The
item has questions about whether the robot’s behavior was confusing, surprising, natural, and
predictable to participants during the trials.

We performed a two-way ANOVA to examine the effect of failure types and explanation
conditions on the level of unexpectedness, with the distribution shown in Figure 4.1. From the
analysis, we found a statistically significant main effect for failure types (F (3, 80) = 4.51, p <
0.01). The main effect of explanation conditions approached statistical significance (F (3, 80) =
2.25, p = 0.09), as did the interaction between failure types and explanation conditions (F (9, 80) =
1.81, p = 0.08). However, a post hoc pairwise comparison using Tukey’s test with Holm-
Bonferroni correction [24] (H0 : µi = µj) revealed that there was no pairwise differences
between Perception and Reach failures, as well as Perception and Size failures.

There were no statistically significant differences in unexpectedness between the Head and
Head & Arm conditions, which confirmed prior work [23].

We also ran a Least Significant Number analysis on the conditions to see if the marginal
significance results were due to our sample size. With the significance level α = 0.05, the error
standard deviation σ = 1.09, and the effect size δ = 0.3, the minimum number of participants we
needed to run was approximately 108. This is far above a typical in-person experiment, but well
below the 366 online participants that Han et al. [23] recruited. This power analysis suggested
that even if we had more participants, the bases of our conclusion on unexpectedness would
likely remain unchanged.

In order to investigate the unexpectedness effect of the explanation conditions in each type
of failure, we performed four additional one-way ANOVA tests for the Unexpectedness mea-
sure. We plotted the Unexpectedness scores of all four explanation conditions when paired with
each of the failures in Figure 4.2. We found a statistically significant main effect of explanation
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Figure 4.1: Unexpectedness scores for four types of failures (left) and four modes of explanations
(right). The white diamond and black diamond icons indicate the mean scores and the outliers,
respectively.

conditions when paired with Perception failure (F (3, 20) = 5.75, p < 0.01), but no significant
main effects when paired with Reach, Size, and Grasp failures. Through post hoc pairwise com-
parisons using Tukey’s test with Holm-Bonferroni correction (H0 : µi = µj), we found the
difference between Head & Speech and Head explanation conditions when paired with Percep-
tion failure approached statistical significance (meandiff = 1.83, p = 0.07).

4.2 Human-Robot Difference
The Human-Robot Difference item measures the similarity of the robot’s behavior compared to
that of a human. This supports discussion on whether robots and humans should explain their
failures in the same way.

Similar to the Unexpectedness item, we performed a two-way ANOVA to examine the effect
of failure types and explanation conditions on the level of human-likeness, with the distribution,
shown in Figure 4.3. From the analysis, we found statistically significant main effects for failure
types (F (3, 80) = 2.82, p < 0.04) and explanation conditions (F (3, 80) = 10.34, p < 0.01).
However, we did not find a statistically significant interaction between the two (F (9, 80) =
0.85, p = 0.57). We also performed a post hoc pairwise comparison using Tukey’s test with
Holm-Bonferroni correction (H0 : µi = µj). We found that there were no significant pairwise
differences across the failure types. However, across the conditions, the Head & Speech explana-
tion condition was found to have a significantly higher mean score than that of the Head condition
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Figure 4.2: The distribution of Unexpectedness scores of four explanation conditions in each
type of failure. The white diamond and black diamond icons indicate the mean scores and the
outliers, respectively. Boxes in blue, orange, green, and red represent Head, Head & Arm, Head
& Projection, and Head & Speech conditions, respectively.
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Figure 4.3: Human-Robot Difference scores in four types of failures (left) and four modes of
explanations (right). The white diamond icons indicate the mean scores. ∗∗ represents p −
value < 0.01, and ∗∗∗ represents p− value < 0.001.

(meandiff = 2.46, p < 0.001), the Head & Arm condition (meandiff = 2.04, p < 0.01), and
the Head & Projection condition (meandiff = 2.25, p < 0.001). According to participants, the
robot explaining its failures with speech was more human-like than with other non-verbal cues.
This finding is also consistent with Han et al. [23], as approximately half of their participants
preferred the robot to say the same thing as a human does during an explanation.

Similar to the unexpectedness measure, we performed four additional ANOVA tests for the
Human-Robot Difference measure. We plotted the Human-Robot Difference scores of all four
explanation conditions when paired with each of the failure types, as shown in Figure 4.4. We
found a statistically significant main effect for explanation conditions when paired with Reach
failure (F (3, 20) = 4.76, p = 0.012), and with Perception failure (F (3, 20) = 3.67, p = 0.03).
The main effect of explanation conditions approached statistical significance when paired with
Grasp failure (F (3, 20) = 2.74, p = 0.07). We found no statistically significant main effect for
explanation conditions when paired with Size failure. Through post hoc pairwise comparisons
using Tukey’s test with Holm-Bonferroni correction (H0 : µi = µj), we found the difference
between Head & Speech and Head & Projection explanation conditions when paired with Reach
failure approached statistical significance (meandiff = 3.5, p = 0.055). However, we did
not find any pairwise statistical significance among explanation conditions when paired with
Perception and Grasp failures.
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Figure 4.4: The distribution of Human-Robot Difference scores of four explanation conditions in
each type of failure. The white diamond and black diamond icons indicate the mean scores and
the outliers, respectively. Boxes in blue, orange, green, and red represent Head, Head & Arm,
Head & Projection, and Head & Speech conditions, respectively.

4.3 Level of Detail

The Level of Detail item measured the degree of completeness of the robot’s explanations, in
which (Q7) asked whether the robot should explain its behaviors in detail during the trials. The
score distribution of the Level of Detail item across four types of failures and four modes of
explanations are shown in Figure 4.5. We found no significant main effects or interactions for
failure types or explanation conditions. In general, participants agreed that the explanations from
the robot should be detailed, with the mean scores of the Level of Detail item between 0 (Neutral)
and 1 (Moderately Agree).

4.4 Conciseness

The Conciseness item measured the degree of brevity of the robot’s explanations, in which (Q8)
asked whether the robot should concisely explain its behaviors during the trials. The score distri-
bution of the Conciseness item across four types of failures and four modes of explanations are
shown in Figure 4.6. Again, there were no significant main effects or interactions. Overall, par-
ticipants reported that the robot should concisely explain its behaviors under all circumstances,
with the mean scores of the Conciseness item between 1 (Moderately Agree) and 2 (Agree).
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Figure 4.5: Level of Explanation Detail scores in four types of failures (left) and four modes of
explanations (right). The white diamond icons indicate the mean scores.

Figure 4.6: Conciseness scores in four types of failures (left) and four modes of explanations
(right). The white diamond and black diamond icons indicate the mean scores and the outliers,
respectively.
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4.5 Post-study Questions: Trust, Competence, Need for Ex-
planation, and Overall Perception

We present summary statistics for each question of the Post-Study Questionnaire individually
to provide detailed insights on participants’ general trust in the robot, the perceived competence
of the robot, the need for explanation from the robot, and the overall perception of participants
towards the robot. This data is illustrated in Figure 4.7, Figure 4.8, and Figure 4.9.

4.5.1 Trust

Participants, on average, found themselves to be engaging with the robot (Q9 and Q10) and
safe around the robot (Q16), with the mean scores above 1 (Agree in Likert-type scale). Par-
ticipants also moderately agreed that the robot was trustworthy (Q11), likable (Q13), and a po-
tentially good teammate (Q15), with the mean scores between 0 (Neutral) and 1 (Moderately
Agree). However, participants were neutral in empathy for the robot when it failed (Q12), with a
mean score of 0. Participants did not feel warmth interacting with the robot (Q14) with the mean
score between -1 (Moderately Disagree) and 0 (Neutral). Overall, we found that the robot was
trustworthy to the participants during interaction and the pick and place task.

4.5.2 Competence

Participants generally found the robot to be competent (Q17-19, Figure 4.8), with the mean
scores of all questions between 0 (Neutral) and 2 (Agree). They found that the robot’s movements
were clear, lifelike, and important in helping them understand the ability of the robot.

4.5.3 Need for Explanation

As mentioned, Questions 21-23 are not based on Likert-type items, so we reported the re-
sponses separately from the others. Participants preferred the robot to get their attention before
starting to explain its behavior (Q21), with 79% of them agreeing. To get their attention (Q22),
33% of participants preferred the robot to look at them, 75% of participants preferred the robot
to raise its volume or play some sounds to alert the participants, and others preferred the robot
to perform some actions like waiving the arm. This result is consistent with our finding of par-
ticipants’ preference in the Head & Speech explanation condition in our previous section. In
terms of explanation timing (Q23), 79% of participants preferred the robot to explain its behav-
ior whenever something unexpected happens, 17% of participants preferred the robot to explain
its behavior at the end, and the rest preferred the timing to be before something unexpected hap-
pens. This finding is consistent with [23] as they claimed approximately half of their participants
preferred in situ explanations, and only 18% preferred explanation before something unexpected
happens.

As seen in Figure 4.9, we also found that participants strongly preferred the robot to explain
its behavior (Q20), with a mean score above 2 (Agree). Moreover, participants acknowledged the
value of signaling failure through gestures (Q24), but preferred out loud verbal announcements
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Figure 4.7: Distribution of scores in trust-related questions. The white diamond and black dia-
mond icons indicate the mean scores and the outliers, respectively.
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Figure 4.8: Distribution of scores in competence-related questions. The white diamond icons
indicate the mean scores.

Figure 4.9: Distribution of scores in need-for-explanation-related questions. The white diamond
and black diamond icons indicate the mean scores and the outliers, respectively. Questions 21,
22, and 23 are discussed separately as they are not based on Likert-type items.
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of failure from the robot (Q25), with the mean scores being between 1 (Moderately Agree) and 2
(Agree). Finally, participants did not prefer non-verbal explanations from the robot (Q26), with
a mean score being between -1 (Moderately Disagree) and 0 (Neutral). This has face validity
since there were statistical differences between Head & Speech condition and other non-verbal
and visual cues in the Human-Robot Difference item.

4.5.4 Overall Perception
Participants were asked an open-ended question at the end of the Post-Study Questionnaire

about their overall perception of the robot (Q27). Some participants preferred the robot’s voice
to be louder and more human-like. They also liked the fact that the robot focused visually on
its target, as its head always looked at the block it was planning to pick up and the tray. Some
mentioned adding a signal before the explanation to alert humans about its intention to explain
its behavior. A few participants commented that they did not understand the projection mode of
explanation as they only saw an image, not an explanation or a solution to the failure. They also
thought that the robot’s movements were natural for a robot, but its ability to rotate its joints 360
degrees might be perceived as not natural for humans.
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Chapter 5

Discussion

Research on the consistency of results between online and in-person studies in human-robot in-
teraction has been sparse. The findings among study replications across different robot platforms
have also been inconsistent [49]. Thus, we designed and carried out the in-person experiment
under the assumption that our results could be different from those of the online experiment con-
ducted by Han et al. [23]. We found that replicated conditions had consistent findings between
their online study and our in-person study. Our results revealed that there was minimal differ-
ence in effects on participants of both Head and Head & Arm conditions, with both resulting
in Neutral scores on the level of unexpectedness. As seen in [23], participants also preferred
the robot to get their attention before explaining its behavior, preferably with an in situ explana-
tion. Moreover, participants also acknowledged the importance of robots signaling their failures.
Therefore, our study successfully replicated and reinforced findings from the prior study.

Along with our successful replication of prior work results, we found that the introduction of
the Projection component did not lead to additional benefits in participants’ perceptions of the
robot. This finding is related, but not identical, to Han et al. [22], which claimed that standalone
projection markers can worsen participants’ causal inference performance, as seen by the fact
that in their experiment, only half of the participants correctly inferred the missing information
about the object picking task when only projection marker was used. In contrast, our projection
condition was comparable to the other non-verbal conditions.

Findings from [23] suggested that speech is preferred to gesture for robot explanations, which
our findings confirmed. Moreover, participants rated that the Head & Speech explanation condi-
tion is the most human-like among all explanation conditions to explain robot failures.

Findings from our post-study questionnaire provided further evidence that speech was a pre-
ferred component of failure explanation, as most participants wanted the robot to announce its
failure out loud and raise its volume to alert them before giving explanations. Those findings,
along with the positive perceptions of the robot’s trustworthiness and competence, agree with
prior work suggesting human preference for verbal over nonverbal communication. For exam-
ple, Nikolaidis et al. [35] reported that short sentences as verbal commands were more effective
than non-verbal actions and promoted trust between a human and a robot in a collaborative table-
carrying task, and Grigore et al. [20] revealed that humans perceived robots as more friendly and
socially present with speech-based communication compared to action-based communication.
Furthermore, Maggioni et al. [33] indicated that robots capable of verbal interaction are per-
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ceived as “more human” and can eliminate the difference between human- human interaction
and human-robot interaction, all with short and easy-to-understand utterances.

Trustworthiness, competence, empathy, and warmth go hand in hand with each other as one
or more attributes can positively influence others in human-robot interactions [11]. However,
from our study, participants found the robot to be trustworthy and competent, but they were
neutral about empathy when the robot failed and did not feel warmth when interacting with
it. This neutral feeling of empathy could be due to our pre-experiment briefing that the robot
may fail during the experiment. Moreover, the lack of feeling of warmth could partly be due
to participants only observing the robot instead of directly interacting with it during the task, as
prior work suggested that warmth is enhanced through physical interactions [40].
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Chapter 6

Limitations

Among humans, eye gaze can be a powerful action that promotes inter-human interaction. Eye
gaze and facial expressions have been proven to be effective in communicating intentions, strength-
ening human-robot collaboration, and improving engagement [26, 46]. Moreover, robot fa-
cial expressions have been studied and used to aid understanding and engagement of humans
[18, 34, 38]. Due to the limitations of our hardware, we were not able to incorporate eye gaze
and facial expressions into our modes of explanations. Thus, we recommend that eye gaze and
facial expressions be incorporated into future studies on human perceptions of robot failures and
explanations.

We conducted our experiment in-person in a university lab, which inherently limits the sam-
ple size. Han et al. [23] recruited 366 online participants compared to our 24 in-person par-
ticipants. Our sample size was near 30 (Central Limit Theorem, [29]) and our power analyses
suggested that increasing the sample size would be unlikely to change key findings. Having said
this, there is still a chance that some of our significance tests would be different with a larger
sample.

Next, there is value in multi-modal verbal/non-verbal communication in human-robot inter-
action [3, 27]. Therefore, there should be future studies combining verbal and non-verbal modes
of failure explanation. This would help explain the impact of multi-modal communication on
perceptions of the level of unexpectedness, human-likeness, and the level of detail in explana-
tion.

Finally, due to our experiment design, we were only able to measure absolute trust and com-
petence as opposed to those measures after participants observed different failures or explana-
tions. The absolute trust and competence measures are dependent on a number of unreplicable
factors such as task sequence, experiment design, or the specific robot itself. Measuring trust and
competence as the participants were exposed to robot behaviors would be helpful in modeling
such measurements and designing future interactions.
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Chapter 7

Conclusion

We extended prior work on non-verbal motion cues for robot explanation from an online study to
an in-person study. Our findings suggested that head motions and paired head and arm motions
produced comparable effects for failure explanation from robots. Our results confirmed the prior
findings and demonstrated consistency between online and in-person studies. We also gathered
new data on two additional methods of explanation, namely Projection and Speech, and found
that speech was the most preferred mode of failure explanation in terms of human-likeness.
However, the use of Projection as a component of explanation performed similarly to the status
quo of head motions and paired head and arm motions.

29



30



Bibliography

[1] Neziha Akalin, Annica Kristoffersson, and Amy Loutfi. Evaluating the sense of safety
and security in human–robot interaction with older people. Social robots: Technological,
societal and ethical aspects of human-robot interaction, pages 237–264, 2019. 2.2, 2.2.3

[2] Neziha Akalin, Annica Kristoffersson, and Amy Loutfi. Do you feel safe with your robot?
factors influencing perceived safety in human-robot interaction based on subjective and
objective measures. International journal of human-computer studies, 158:102744, 2022.
2.2, 2.2.3

[3] Amir Aly and Adriana Tapus. Towards an intelligent system for generating an adapted
verbal and nonverbal combined behavior in human–robot interaction. Autonomous Robots,
40:193–209, 2016. 6

[4] Jakob Ambsdorf, Alina Munir, Yiyao Wei, Klaas Degkwitz, Harm Matthias Harms, Su-
sanne Stannek, Kyra Ahrens, Dennis Becker, Erik Strahl, Tom Weber, et al. Explain your-
self! effects of explanations in human-robot interaction. In 2022 31st IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN), pages 393–400.
IEEE, 2022. 1

[5] Sule Anjomshoae, Amro Najjar, Davide Calvaresi, and Kary Främling. Explainable agents
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