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Abstract

Deploying robots in open-ended unstructured environments such as homes
has been a long-standing research problem. However, robots are often
studied only in closed-off lab settings, and prior mobile manipulation
work is restricted to pick-move-place, which is arguably just the tip of
the iceberg in this area. In this paper, we introduce Open-World Mobile
Manipulation System, a full-stack approach to tackle realistic articulated
object operation, e.g. real-world doors, cabinets, drawers, and refrigerators
in open-ended unstructured environments. The robot utilizes an adaptive
learning framework to initially learns from a small set of data through
behavior cloning, followed by learning from online practice on novel objects
that fall outside the training distribution. We also develop a low-cost
mobile manipulation hardware platform capable of safe and autonomous
online adaptation in unstructured environments with a cost of around
25,000 USD. In our experiments we utilize 20 articulate objects across
4 buildings in an university campus. With less than an hour of online
learning for each object, the system is able to increase success rate from
50% of BC pre-training to 95% using online adaptation.



vi



Acknowledgments

I would like to express my sincere gratitude to my advisor, Professor
Deepak Pathak, whose guidance and support have been invaluable through-
out this journey.

I extend my heartfelt appreciation to my committee members, Profes-
sor Guanya Shi and Kenneth Shaw, for their insightful feedback and
encouragement.

[ am deeply thankful to every member of my lab for their contributions
and camaraderie. Special thanks to Ananye Agarwal, Dr. Shikhar Bahl,
Lili Chen, Alex Li, Russell Mendonca, Mihir Prabhudesai, Dr. Unnat Jain,
Alexandre Kirchmeyer, Shagun Uppal, Kexin Shi, Murtaza Dalal, Shivam
Duggal, Ellis Brown, and Xuxin Cheng for their unwavering support and
collaboration.

To my friends, Jianren Wang, Tianyi Zhang, Zipeng Fu, Ken Liu, Tianyuan
Zhang, Heng Yu, and Quanting Xie, your encouragement and friendship
have meant the world to me.

Last but not least, I am deeply grateful to my parents for their unwavering
love, encouragement, and sacrifices.

vii



viil



Funding

This work was supported in part by CMU-AIST Bridge project,
AFOSR research grant FA9550-23-1-0747 and Sony faculty award.

X






Contents

1 Introduction

2 Related Works
2.1 Adaptive Real-world Robot Learning . . . . . ... ... ... ....
2.2 Learning-based Mobile Manipulation Systems. . . . . .. .. .. ..
2.3 Door Manipulation . . . . . ... . ... oL

3 Method
3.1 Adaptive Learning Framework . . . . . . . ... ... ... ... ...
3.1.1 Action Space . . . . .. ...
3.1.2 Adaptive Learning . . . . . . .. ... L

4 System
4.1 Open-world Mobile Manipulation Systems . . . . . . ... ... ...
4.1.1 Hardware . . . . . . . . ...
4.1.2  Structured Action Space with Primitives . . . . . . ... . ..
4.1.3 Task Definition . . . . . . . ... ... L
4.1.4 BC Pretraining . . . . . . .. ... oo
4.1.5  Online Adaptation . . . . . .. ... ... ... ... .....
4.1.6 Model Parameterization Details . . . . . ... ... ... ...

5 Result
5.1 Results . . . . . .
5.1.1 Online Improvement . . . . . . . .. ... ... ... .....
5.1.2  Hardware Teleop Strength . . . . . ... ... ... ... ...

6 Conclusions

Bibliography

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xi



List of Figures

pall

3.1

3.2

3.3

3.4

4.1

4.2

5.1

Adaptive Learning Framework: The policy outputs low-level pa-
rameters for the grasing primitive, and chooses a sequence of manipu-
lation primitives and their parameters. . . . . . . . .. .. ... ... 10
Mobile Manipulation Hardware Platform: We design a mobile
manipulation hardware platform that is cost-effective and user-friendly
using off-the-shelf components. Our mobile manipulation system con-
sists of a base and a robotic arm. As shown in the figure, the kinematic
coordination includes the base frame and the arm end-effector frame.
The end-effector frame is defined relative to (i.e. with respect to) the
base frame. . . . . ... 13
Articulated Objects: Visualization of the 12 training and 8 testing objects
used, with type labeled, and with location indicators corresponding to the
buildings in the map below. The training and testing objects are significantly
different from each other, in terms of different visual appearances, different
modes of articulation, or different physical parameters, e.g. weight or friction. 14
Field Test on University Campus: The system was evaluated on
articulated objects from across four distinct buildings on the university
CAMPUS. .+« o v o o e e e e e e e e e e e 15

Primitives. We design a set of primitives to articulate a diverse set
of everyday objects. Each primitive serves as a functional API that
take low-level parameters to instantiate action executions. . . . . . . 26
Online Improvement: Comparison of our approach to the imitation
policy on 4 different categories of articulated objects, each consisting
of two different objects. Our adaptive approach is able to improve in
performance, while the imitation policy has limited generalization. . 27

Online Adaptation with CLIP reward. Adaptive learning using rewards
from CLIP, instead of a human operator, showing our system can operate
autonomously. . . . .. L L L L 33



List of Tables

4.1

4.2

5.1

5.2

2.3

Comparison of different aspects of popular hardware systems for mobile
manipulation . . . . ... 19
The hyperparameters that are used in our system are listed in this table. 20

In this table, we present improvements in online adaptation with CLIP

reward. . . ... L L L 29
We compare the performance of our adaptation policies and initialized
BC policies with KNN baselines. . . . . . ... .. ... .. ...... 31
Human expert teleoperation success rate using stretch and our system for
opening doors . . . ... ... 32

xiil



Xiv



Chapter 1

Introduction

Deploying robotic systems in unstructured environments such as homes has been a
long-standing research problem. In recent years, significant progress has been made
in deploying learning-based approaches [3, 8, 27, 50] towards this goal. However, this
progress has been largely made independently either in mobility or in manipulation,
while a wide range of practical robotic tasks require dealing with both aspects [7, 14,
49, 61]. The joint study of mobile manipulation paves the way for generalist robots
which can perform useful tasks in open-ended unstructured environments, as opposed
to being restricted to controlled laboratory settings focused primarily on tabletop
manipulation.

However, developing and deploying such robot systems in the open-world with the
capability of handling unseen objects is challenging for a variety of reasons, ranging
from the lack of capable mobile manipulator hardware systems to the difficulty of
operating in diverse scenarios. Consequently, most of the recent mobile manipulation
results end up being limited to pick-move-place tasks[20, 32, 53, 62], which is arguably
representative of only a small fraction of problems in this space. Since learning
for general-purpose mobile manipulation is challenging, we focus on a restricted
class of problems, involving the operation of articulated objects, such as doors,
drawers, refrigerators, or cabinets in open-world environments. This is a common
and essential task encountered in everyday life, and is a long-standing problem in the
community [2, 5, 10, 11, 21, 37, 40]. The primary challenge is generalizing effectively

across the diverse variety of such objects in unstructured real-world environments
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rather than manipulating a single object in a constrained lab setup. Furthermore,
we also need capable hardware, as opening a door not only requires a powerful and
dexterous manipulator, but the base has to be stable enough to balance while the

door is being opened and agile enough to walk through.
We take a full-stack approach to address the above challenges. In order to

effectively manipulate objects in open-world settings, we adopt a adaptive learning
approach, where the robot keeps learning from online samples collected during
interaction. Hence even if the robot encounters a new door with a different mode of
articulation, or with different physical parameters like weight or friction, it can keep
adapting by learning from its interactions. For such a system to be effective, it is
critical to be able to learn efficiently, since it is expensive to collect real world samples.
The mobile manipulator we use as shown in Figure. 3.2 has a very large number of
degrees of freedom, corresponding to the base as well as the arm. A conventional
approach for the action space of the robot could be regular end-effector control for the
arm and SE2 control for the base to move in the plane. While this is very expressive
and can cover many potential behaviors for the robot to perform, we will need to
collect a very large amount of data to learn control policies in this space. Given that
our focus is on operating articulated objects, can we structure the action space so

that we can get away with needing fewer samples for learning?

Consider the manner in which people typically approach operating articulated
objects such as doors. This generally first involves reaching towards a part of the object
(such as a handle) and establishing a grasp. We then execute constrained manipulation
like rotating, unlatching, or unhooking, where we apply arm or body movement to
manipulate the object. In addition to this high-level strategy, there are also lower-
level decisions made at each step regarding exact direction of movement, extent of
perturbation and amount of force applied. Inspired by this, we use a hierarchical
action space for our controller, where the high-level action sequence follows the
grasp, constrained manipulation strategy. These primitives are parameterized by
learned low-level continuous values, which needs to be adapted to operate diverse
articulated objects. To further bias the exploration of the system towards reasonable
actions and avoid unsafe actions during online sampling, we collect a dataset of
expert demonstrations on 12 training objects, including doors, drawers and cabinets

to train an initial policy via behavior cloning. While this is not very performant on
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new unseen doors (getting around 50% accuracy), starting from this policy allows
subsequent learning to be faster and safer.

Learning via repeated online interaction also requires capable hardware. As
shown in Figure 3.2, we provide a simple and intuitive solution to build a mobile
manipulation hardware platform, followed by two main principles: (1) versatility and
agility - this is essential to effectively operate diverse objects with different physical
properties in potentially challenging environments, for instance a cluttered office. (2)
affordability and rapid-prototyping - Assembled with off-the-shelf components, the
system is accessible and can be readily be used by most research labs.

In this paper, we present Open-World Mobile Manipulation System, a full-
stack approach to tackle the problem of mobile manipulation of realistic articulated
objects in the open world. Efficient learning is enabled by a structured action space
with parametric primitives, and by pretraining the policy on a demonstration dataset
using imitation learning. Adaptive learning allows the robot to keep learning from self-
practice data via online RL. We introduce a low-cost mobile manipulation hardware
platform that offers 1) a high payload, making it capable of repeated interaction
with objects, e.g. a heavy, spring-loaded door, 2) and a human size, which is capable
of maneuvering across various doors and navigating around narrow and cluttered
spaces in the open world. We conducted a field test of 8 novel objects ranging across
4 buildings on a university campus to test the effectiveness of our system, and found
adaptive earning boosts success rate from 50% from the pre-trained policy to 95%

after adaptation.
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Chapter 2

Related Works

2.1 Adaptive Real-world Robot Learning

There has been a lot of prior work that studies how robots can acquire new behavior
by directly using real-world interaction samples via reinforcement learning using
reward [22, 23, 29, 30], and even via unsupervised exploration [4, 33, 41]. More
recently there have been approaches that use RL to fine-tune policies very efficiently
that have been initialized via by imitating demonstrations [16, 17]. Other methods
aim to do so without access to demonstrations on the test objects, and pretrain
using other sources of data - either using offline robot datasets [28], simulation [51]
or human video [18, 24, 34, 60] or a combination of these approaches [20]. We
operate in a similar setting, without any demonstrations on test objects, and focus on
demonstrating RL adaptation on mobile manipulation systems that can be deployed in
open-world environments. While prior large-scale industry efforts also investigate this
[20], we seek to be able to learn much more efficiently with fewer data samples. Prior
research has been dedicated to utilizing real-world online data to infer environmental
parameters or latent representations for adapting policies [9, 31, 36, 44, 46]. For
example, Active Sys-Id is a promising direction, Jacky Liang [31] proposes a framework

for training task-oriented exploration policies to identify system parameters.
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2.2 Learning-based Mobile Manipulation Systems.

In recent years, the setup for mobile manipulation tasks in both simulated and
real-world environments has been a prominent topic of research [6, 13, 14, 35, 48, 52,
57, 58, 63, 64]. Notably, several studies have explored the potential of integrating
Large Language Models into personalized home robots, signifying a trend towards
more interactive and user-friendly robotic systems [1, 6, 59]. While these systems
display impressive long horizon capabilities using language for planning, these assume
fixed low-level primitives for control. In our work we seek to learn low-level control
parameters via interaction. Furthermore, unlike the majority of prior research which
predominantly focuses on pick-move-place tasks [62], we consider operating articulated

objects in unstructured environments, which present an increased level of difficulty.

2.3 Door Manipulation

The research area of door opening has a rich history in the robotics community [10, 21,
37,40, 47]. A significant milestone in the domain was the DARPA Robotics Challenge
(DRC) finals in 2015. The accomplishment of the WPI-CMU team in door opening
illustrated not only advances in robotic manipulation and control but also the potential
of humanoid robots to carry out intricate tasks in real-world environments [2, 5, 11].
Nevertheless, prior to the deep learning era, the primary impediment was the robots’
perception capabilities, which faltered when confronted with tasks necessitating visual
comprehension of complex and unstructured environments. Approaches using deep
learning to address vision challenges include Wang et al. [55], which leverages synthetic
data to train keypoint representation for the grasping pose estimation, and Qin et,
al. [42], which proposed an end-end point cloud RL framework for sim2real transfer.
Another approach is to use simulation to learn policies, using environments such as
Doorgym [54], which provides a simulation benchmark for door opening tasks. The
prospect of large-scale RL combined with sim-to-real transfer holds great promise for
generalizing to a diverse range of doors in real-world settings [15, 42, 54]. However,

one major drawback is that the system can only generalize to the space of assets
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already present while training in the simulation. Such policies might struggle when
faced with a new unseen door with physical properties, texture or shape different from
the training distribution. Our approach can keep on learning via real-world samples,

and hence can learn to adapt to difficulties faced when operating new unseen doors.
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Chapter 3

Method

3.1 Adaptive Learning Framework

In this section, we describe our algorithmic framework for training robots for adaptive
mobile manipulation of everyday articulated objects. To achieve efficient learning, we
use a structured hierarchical action space. This uses a fixed high-level action strategy
and learnable low-level control parameters. Using this action space, we initialize our
policy via behavior cloning (BC) with a diverse dataset of teleoperated demonstrations.
This provides a strong prior for exploration and decreases the likelihood of executing
unsafe actions. However, the initialized BC policy might not generalize to every
unseen object that the robot might encounter due to the large scope of variation of
objects in open-world environments. To address this, we enable the robot to learn
from the online samples it collects to continually learn and adapt. We describe the

continual learning process as well as design considerations for online learning.

3.1.1 Action Space

For greater learning efficiency, we use a parameterized primitive action space. Con-
cretely, we assume access to a grasping primitive G(.) parameterized by g. We also
have a constrained mobile-manipulation primitives M (.), which primitive M(.) takes
two parameters, a discrete parameter C' and a continuous parameter c. Trajectories

are executed in an open-loop manner, a grasping primitive followed by a sequence of
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Figure 3.1: Adaptive Learning Framework: The policy outputs low-level parame-
ters for the grasing primitive, and chooses a sequence of manipulation primitives and
their parameters.

Algorithm 1 Adaptive Learning

Grasping primitive G(.) taking parameter g Constrained manipulation prim-
itives M(.), taking parameter C and c. Initialize primitive classifier m4s({C;}X,|I)
Initialize conditional action policyma(g, {c;} 4|1, {C;}X,) Collect a dataset D of
expert demos {I,9,{Ci}¥,, {c;}}¥,} Train 7, and 7y on D using Imitation
Learning 3.2 online RL iteration 1:Ny., sampling rollout 1:N,, Given image I,
sample {C;}N | ~ 74(.|Ly), sample (g, {c;},) ~ mo(.|I,) Execute trajectory
{G(9),{M(Cj, )}, 1, observe reward R Update policies 7, and 7y using
RL (Eqgs. 3.5, 3.4, 3.2)

N constrained mobile-manipulation primitives:

{]sa G(g>> {M<Clv 01')}1']\;17 va R}

where [, is the initial observed image, G(g), M (C},¢;)) denote the parameterized
grasp and constrained manipulation primitives respectively, I; is the final observed
image, and r is the reward for the trajectory. While this structured space is less
expressive than the full action space, it is large enough to learn effective strategies for
the everyday articulated objects we encountered, covering 20 different doors, drawers,
and fridges in open-world environments. The key benefit of the structure is that it
allows us to learn from very few samples, using only on the order of 20-30 trajectories.

We describe the implementation details of the primitives in section 4.1.2.

10
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3.1.2 Adaptive Learning

Given an initial observation image I, we use a classifier ,({C;},|I) to predict the
a sequence of N discrete parameters {C;}Y | for constrained mobile-manipulation,
and a conditional policy network ma(g, {c;}¥1|I, {C;}X,) which produces the contin-
uous parameters of the grasping primitive and a sequence of N constrained mobile-
manipulation primitives. The robot executes the parameterized primitives one by

one in an open-loop manner.

Imitation

We start by initializing our policy using a small set of expert demonstrations via
behavior cloning. The details of this dataset are described in section 4.1.4. The
imitation learning objective is to learn policy parameters my 4 that maximize the
likelihood of the expert actions. Specifically, given a dataset of image observations I,

and corresponding actions {g, {C;}¥,, {c;}}¥,}, the imitation learning objective is:

max [log 7o ({C: 12, | ) + log mo(g. {ei s [ {CiHY, L) (3.1)

Online RL

The central challenge we face is operating new articulated objects that fall outside
the behavior cloning training data distribution. To address this, we enable the policy
to keep improving using the online samples collected by the robot. This corresponds

to maximizing the expected sum of rewards under the policy :

Z (8¢, ay ] (3.2)

t=0

max B

Since we utilize a highly structured action space as described previously, we can
optimize this objective using a fairly simple RL algorithm. Specifically we use the
REINFORCE objective [56]:

11
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T

Voo (0,6) =En,, | Y Vologm(as,) - r, (3.3)
=0

=Er,, [(Vglogmy(Ci|I) + Vglog me(g, ci|Ci, 1)) - R] (3.4)

where R is the reward provided at the end of trajectory execution. Note that we
only have a single time-step transition, all actions are determined from the observed
image I, and executed in an open-loop manner. Further details for online adaptation

such as rewards, resets and safety are detailed in section 4.1.5.

Overall Finetuning Objective

To ensure that the policy doesn’t deviate too far from the initialization of the imitation

dataset, we use a weighted objective while finetuning, where the overall loss is :

Eoverall = ﬁonline + a* ﬁoﬁ'line (35)

where loss on online sampled data is optimized via Eq.3.4 and loss on the batch
of offline data is optimized via BC as in Eq.3.2. We use equal sized batches for online

and offline data while performing the update.

12
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Figure 3.2: Mobile Manipulation Hardware Platform: We design a mobile
manipulation hardware platform that is cost-effective and user-friendly using off-the-
shelf components. Our mobile manipulation system consists of a base and a robotic
arm. As shown in the figure, the kinematic coordination includes the base frame and
the arm end-effector frame. The end-effector frame is defined relative to (i.e. with
respect to) the base frame.

13
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set

train

test set

Figure 3.3: Articulated Objects: Visualization of the 12 training and 8 testing objects
used, with type labeled, and with location indicators corresponding to the buildings in the
map below. The training and testing objects are significantly different from each other, in
terms of different visual appearances, different modes of articulation, or different physical
parameters, e.g. weight or friction.

14
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Figure 3.4: Field Test on University Campus: The system was evaluated on
articulated objects from across four distinct buildings on the university campus.
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Chapter 4

System

4.1 Open-world Mobile Manipulation Systems

In this section, we describe details of our full-stack approach encompassing hardware,
action space for efficient learning, the demonstration dataset for initialization of the
policy and crucially details of autonomous, safe execution with rewards. This enables
our mobile manipulation system to adaptively learn in open-world environments, to
manipulate everyday articulated objects like cabinets, drawers, refrigerators, and

doors.

4.1.1 Hardware

The transition from tabletop manipulation to mobile manipulation is challenging
not only from algorithmic studies but also from the perspective of hardware. In this
project, we provide a simple and intuitive solution to build a mobile manipulation
hardware platform. Specifically, our design addresses the following challenges -

e versatility and agility: Everyday articulated objects like doors have a wide degree
of variation of physical properties, including weight, friction and resistance. To
successfully operate these, the platform must offer high payload capabilities via
a strong arm and base. Additionally, we sought to develop a human-sized, agile
platform capable of maneuvering across various real-world doors and navigating

unstructured and narrow environments, such as cluttered office spaces.

17
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® affordability and rapid-prototyping: The platform is designed to be low-cost for
most robotics labs and employs off-the-shelf components. This allows researchers
to quickly assemble the system with ease, allowing the possibility of large-scale

open-world data collection in the future.

We show the different components of the hardware system in Figure 3.2. Among
the commercially available options, we found the Ranger Mini 2 from AgileX to be
an ideal choice for robot base due to its stability, omni-directional velocity control,
and high payload capacity. The system uses an xArm for manipulation, which is an
effective low-cost arm with a high payload (5kg), and is widely accessible for research
labs. The system uses a Nvidia Jetson computer to support real-time communication
between sensors, the base, the arm, as well as a server that hosts large models. We
use a D435 Intel Realsense camera mounted on the frame to collect RGBD images
as ego-centric observations and a T265 Intel Realsense camera to provide visual
odometry which is critical for resetting the robot when performing trials for RL. The
gripper is equipped with a 3D-printed hooker and an anti-slip tape to ensure a secure
and stable grip. The overall cost of the entire system is around 25,000 USD, making

it an affordable solution for most robotics labs.

We compare key aspects of our modular platform with that of other mobile
manipulation platforms in Table 4.1.This comparison highlights advantages of our
system such as cost-effectiveness, reactivity, ability to support a high-payload arm,

and a base with omnidirectional drive.

4.1.2 Structured Action Space with Primitives

Inspired by the recent works of efficient policy learning with manipulation primi-
tives [38], we pre-built four expressive primitives, including grasp, unlock, rotate,
open. Each primitive is a functional API that takes continuous low-level parameters
as the input to instantiate an action execution. A sequential combination of these
primitives effectively handles mobile manipulation tasks of a diverse set of articulated

objects. We detail the implementation of our parameterized primitives in this section.

18
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Hardware features comparison

Arm payload DoF arm omni-base footprint base max speed price
Stretch RE1 [61] 1.5kg 2 53 34 cm, 33 cm 0.6 m/s 20k USD
Gol-air + WidowX 250s [13] 0.25kg 6 51 59 cm, 22 cm 2.5 m/s 10k USD
Franka + Clearpath Ridgeback [25] 3kg 7 51 96 cm, 80 cm 1.1 m/s 75k USD
Franka + Omron LD-60 [45] 3kg 7 53 70 cm, 50 cm 1.8 m/s 50k USD
Xarm-6 + Agilex Ranger mini 2 (ours) 5kg 6 51 74 cm, 50 cm 2.6 m/s 25k USD

Table 4.1: Comparison of different aspects of popular hardware systems for mobile
manipulation

Grasp Primitive

At the testing time, the robot is initialized randomly in front of the objects. Given
the RGBD image of the scene obtained from the realsense camera, we use off-the-shelf
visual models [26, 65] to obtain the mask of the door frame using just text prompts.
Furthermore, since the door is a flat plane, we can estimate the surface normals of
the door using the corresponding mask and the depth image. This is used to move

the base close to the door and align it perpendicularly.

We further obtain the grasp pose of the handles from the detection and segmen-
tation models [26, 65]. As shown in Fig: 4.1, given a text prompt of "handle”, the
open-vocabulary detection model [65] returns a 2D bounding box of the handle. As
shown in the left image of the grasp examples in Fig: 4.1, if the width of the 2D
bounding box is smaller than the length of the bounding box, we determine it is
a vertical handle. Otherwise, it is a horizontal handle. The grasp orientation is
determined by the surface normal of the door frame, the vertical-horizontal type of
the handle, and the direction of gravity. We draw a dotted middle line to find the
center point of the segmentation mask of the handle, and then it is projected into
3d coordinates using camera calibration and depth. However, passive detection and
segmentation models are insufficient to predict a robust grasp pose for all types of
handles. For the grasp primitve, we introduce a 3-dimension continuous low-level
parameter ranging from —1 to 1 as the grasp primitive input, which is then rescaled
to the grasp offset ranging from —d to d. This is beneficial since our residual grasp

can be adapted to diverse handles via online adaptation.
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Hyperparameters Table

Hyperparameter Symbol  Value
Mobile Manipulation Primitives Sequence N 2
Number of Mobile Manipulation Primitives N, 4
Number of parameter dimension M 3
BC Learning Rate lrpe le—3
Online Adaptation Learning Rate Ir agp le — 4
Constrained mobile manipulation primitive execution Time T 2.5s
Unlock velocity U, 10cm/s
Rotate velocity Uyaw 250 /s
Open velocity Vi 20cm/s
Grasp offset d 2.5em
Batch size B 16
Number of iteration during sample Niter 5
Number of rollout during sample N,ol 5
Overall loss function hyperparameter Q@ 0.2

Table 4.2: The hyperparameters that are used in our system are listed in this table.

Constrained Mobile-Manipulation Primitives

We introduce three primitives, including unlock, rotate, and open. Each primitive
is a functional API that takes a low-level parameter as the input to instantiate
constrained mobile-manipulation action executions. As shown in Fig.3.2, we define
two coordinate frames in the mobile manipulation system. We have a base frame,
and an arm end-effector frame. The end-effector frame is defined relative to (i.e. with
respect to) the base frame. With a 3-DOF motion for the base (in the SE(2) plane),

and a 6-DOF arm (with respect to the base frame), we have a 9-dimensional vector -

(v:m Vy, Uz, Uyaw, Upitch, Uroll, ‘/X? ‘/y: Vw)

The first 6 dimensions correspond to velocity control for the arm end-effector, and

the last three are the velocity control for the base. The primitives we use impose

20
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contraints on this space as follows -

Unlock : (0,0, v;, vyaw, 0,0,0,0,0)
Rotate :  (0,0,0, vyaw, 0,0,0,0,0)
Open: (0,0,0,0,0,0,Vs,0,0)

The velocities of these primitives are a fixed value, and the low-level parameters are
continuous one-dimension values ranging from —1 to 1, which is then rescaled to the
primitive execution time ranging from —7' to T". The sign of the low-level parameters
dictates the direction of the velocity control, either clockwise or counter-clockwise for

unlock and rotate, and forward or backward for open.

4.1.3 Task Definition

In this project, we consider a set of articulated objects that consist of three rigid parts:
a base part, a frame part, and a handle part. The base and frame are connected by
either a revolute joint (as in a cabinet) or a prismatic joint (as in a drawer). The
frame is connected to the handle by either a revolute joint or a fixed joint. This covers
objects such as doors, cabinets, drawers, and fridges. We identify four major types of
the articulated objects, which relate to the type of handle, and the joint mechanisms.
Handle articulations commonly include levers (Type A) and knobs (Type B). For
cases where handles are not articulated, the body-frame can revolve about a hinge
using a revolute joint (Type C), or slide back and forth along a prismatic joint, for
example, drawers (Type D). While not exhaustive, this categorization covers a wide

variety of everyday articulated objects a robot system might encounter.

We define success rate as the major metric for our task. If there is a resultant
gap between the door frame and base, large enough to ensure that 1) human experts
can visually identify the gap 2) the robot base is able to traverse through the door by

human expert teleopration, it is a success.
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4.1.4 BC Pretraining

We start with Behavior Cloning (BC) pre-training to initialize the policy. We first
collect an offline demonstration dataset by teleoperating the mobile manipulation
robot in the open world. We type the keyboard to select the primitives and long-press
the keyboard bottom to instance the low-level parameters. We include 3 objects
from each category in the BC training dataset, collecting 10 demonstrations for
each object, producing a total of 120 trajectories. We also have 2 held-out testing
objects from each category for generalization experiments. The training and testing
objects differ significantly in visual appearance (eg. texture, color), physical dynamics
(eg. if spring-loaded), and actuation (e.g. the handle joint might be clockwise or
counter-clockwise). We include visualizations of all objects used in train and test sets

in Fig. 3.3, along with which part of campus they are from as visualized in Fig. 3.4.

4.1.5 Online Adaptation

The key challenge we face is operating with new objects that fall outside the BC
training domain. For example, it is extremely difficult to generalize to ”"push” doors
if we only initialize the policy with BC on ”pull” doors. To address this, we develop a
system capable of fully autonomous Reinforcement Learning (RL) online adaptation.
In this subsection, we demonstrate the details of the autonomy and safety of our

system.

Safety Aware Exploration

It is crucial to ensure that the actions the robot takes for exploring are safe for its
hardware, especially since it is interacting with objects under articulation constraints.
Ideally, this could be addressed for dynamic tasks like door opening using force
control. However, low-cost arms like the xarm-6 we use do not support precise force
sensing. For deploying our system, we use a safety mechanism based which reads the
joint current during online sampling. If the robot samples an action that causes the
joint current to meet its threshold, we terminate the episode and reset the robot, to
prevent the arm from potentially damaging itself, and also provide negative reward

to disincentivize such actions.

22



4. System

Reward Specification

In our main experiments, a human operator provides rewards- with +1 if the robot
succesfully opens the doors, 0 if it fails, and -1 if there is a safety violation. Manual
reward annotation is feasible since the system requires very few samples for learning.
For autonomous learning however, we would like to remove the bottleneck of relying
on humans to be present in the loop. We investigate using large vision language
models (VLMs) as a source of reward. Specifically, we use CLIP [43] to compute
the similarity score between two text prompts and the image observed after robot
execution. The two prompts we use are - "door that is closed” and “door that is
open”. We compute the similarity score of the final observed image and each of these
prompts and assign a reward of +1 if the image is closer to the prompt indicating the
door is open, and 0 in the other case. If a safety protection is triggered the reward is
-1.

Reset Mechanism

The robot employs visual odometry, utilizing the T265 tracking camera mounted
on its base, enabling it to navigate back to its initial position. At the end of every
episode, the robot releases its gripper, and moves back to the original SE2 base
position, and takes an image of I for computing reward. We then apply a random
perturbation to the SE2 position of the base so that the policy learns to be more
robust. Furthermore, if the reward is 1, where the door is opened, the robot has a

scripted routine to close the door.

4.1.6 Model Parameterization Details

In this section, we discuss the details of the policy model parameterization and the
primitive execution. We also list all the related hyperparameters in Table 4.2.
Hybrid Open-loop Policy

In our setup, We introduce a hybrid policy that incorporates a high-level policy and
a low-level policy. The high-level policy takes a visual input and outputs discrete

actions to determine a sequence of primitive types. The low-level policy takes a visual
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input and the actions output of the high-level policy, and outputs the continuous
parameters for the corresponding primitives. The discrete actions of the high-level
policy and the continuous parameters of the low-level policy instantiate a sequence
of primitives. The robot executes the primitives sequence in an open-loop manner.
To make sure the open-loop policy output action sequence has a fixed horizon, we

introduce a blank primitive in policy learning, skipping the action execution.

Network Architecture and Policy Parameterization

The high-level and low-level policy shares a frozen visual backbone, which is a ResNet-
18 [19] pre-trained on ImageNet [12]. The visual backbone takes a cropped “door

handle” RGB image as the input, and outputs encoded visual features.

The high-level policy takes the encoded visual features as the input and outputs
a sequence of H indicates that represent the primitive types. For instance, [0, 1, 3]
represents [Grasp, Unlock, Open. In our implementation, the high-level policy head
is a three-layer of multi-layer perception (MLP), it outputs action logits as a size of
[B, N, H], where B is the batch size, N is the number of the primitives, and H is
the horizon of the primitive sequence. The values of these hyperparameters are listed
in Table: 4.2. We use a sofmax layer to get the action probabilities of the categorical
distribution from the action logits. The discrete high-level actions are sampled from

the categorical distribution by a simple greedy sampling.

The low-level policy head takes the encoded visual features and the sampled
action of the high-level policy as the input and outputs a sequence of H*M, where
H is the horizon of the primitive sequence, M is the low-level parameter dimension.
In our setup, the grasp primitive takes a M-dimension parameter, where M is 3,
While the other primitives only take a 1-dimension parameter. To allow batch tensor
computations across primitives with different parameter dimensions, The low-level
policy outputs a “one size fits all” distribution over the parameters. For execution,
similar to Maple [38], the grasp primitive takes the M-dimension parameter, but the
other primitives only take the first dimension of the M-dimension parameter. In
our implementation, the low-level policy head outputs the mean and the standard
deviation of Gaussian distributions for the low-level parameters of the primitives.

The low-level policy head has a shared two-layer MLP, a fully connected layer of
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the mean, and another fully connected layer of the standard deviation. For mean,
the output of the two-layer MLP is passed through the third fully connected layer
of mean, and a tanh activation function is applied. For the standard deviation, the
output of the two-layer MLP is passed through the third fully connected layer of std,
and a sigmoid activation function is applied. We sample low-level actions from the

Gaussian distributions and clip the actions from —1 to 1.
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Grasp

Unlock

Rotate

Open

Figure 4.1: Primitives. We design a set of primitives to articulate a diverse set
of everyday objects. Each primitive serves as a functional API that take low-level
parameters to instantiate action executions.
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Figure 4.2: Online Improvement: Comparison of our approach to the imitation
policy on 4 different categories of articulated objects, each consisting of two different
objects. Our adaptive approach is able to improve in performance, while the imitation
policy has limited generalization.
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Chapter 5

Result

5.1 Results

We conduct an extensive field study involving 12 training objects and 8 testing objects
across four distinct buildings on the university campus to test the efficacy of our

system. In our experiments, we seek to answer the following questions:

1. Can the system improve performance on unseen objects via online adaptation

across diverse object categories?

2. How does this compare to simply using imitation learning on provided demon-

strations?
3. Can we automate providing rewards using off-the-shelf vision-language models?

4. How does the hardware design compare with other platforms?

CLIP-reward comparison

BC-0 Adapt-GT Adapt-CLIP
Success Rate A1 (lever) 20% 100% 80%
Success Rate B1 (knob)  30% 80% 80%

Table 5.1: In this table, we present improvements in online adaptation with CLIP
reward.
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5.1.1 Online Improvement

Diverse Object Category Evaluation

: We evaluate our approach on 4 categories of held-out articulated objects. As
described in section 4.1.4, these are determined by handle articulation and joint
mechanisms. This categorization is based on types of handles, including levers (type
A) and knobs (type B), as well as joint mechanisms including revolute (type C) and
prismatic (type D) joints. We have two test objects from each category. We report
continual adaptation performance in Fig. 4.2 over 5 iterations of fine-tuning using
online interactions, starting from the behavior cloned initial policy. Each iteration of
improvement consists of 5 policy rollouts, after which the model is updated using the
loss in Equation 3.5.

From Fig. 4.2, we see that our approach improves the average success rate across
all objects from 50 to 95 percent. Hence, continually learning via online interaction
samples is able to overcome the limited generalization ability of the initial behavior
cloned policy. The adaptive learning procedure is able to learn from trajectories that
get high reward, and then change its behavior to get higher reward more often. In
cases where the BC policy is reasonably performant, such as Type C and D objects
with an average success rate of around 70 percent, RL is able to perfect the policy
to 100 percent performance. Furthermore, RL is also able to learn how to operate
objects even when the initial policy is mostly unable to perform the task. This can
be seen from the Type A experiments, where the imitation learning policy has a very
low success rate of only 10 percent, and completely fails to open one of the two doors.
With continual practice, RL is able to achieve an average success of 90 percent. This
shows that RL can explore to take actions that are potentially out of distribution
from the imitation dataset, and learn from them, allowing the robot to learn how to

operate novel unseen articulated objects.

Action-replay baseline

: There is also another very simple approach for utilizing a dataset of demonstrations
for performing a task on a new object. This involves replaying trajectories from

the closest object in the training set. This closest object can be found using k-
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Action-Replay Comparison

KNN-open KNN-close BC-0 Adapt-GT
Success Rate B1 (knob) 10% 0% 30% 80%
Success Rate A2 (lever) 0% 0% 0% 80%

Table 5.2: We compare the performance of our adaptation policies and initialized BC
policies with KNN baselines.

nearest neighbors with some distance metric [39]. This approach is likely to perform
well especially if the distribution gap between training and test objects is small,
allowing the same actions to be effective. We run this baseline for two objects that
are particularly hard for behavior cloning, one each from Type A and B categories
(lever and knob handles respectively). The distance metric we use to find the nearest
neighbor in the training set is Euclidean distance of the the CLIP encoding of observed
images. We evaluate this baseline both in an open-loop and closed-loop manner. In
the former case, only the first observed image is used for comparison and the entire
retrieved action sequence is executed, and in the latter we search for the closest
neighbor after every step of execution and perform the corresponding action. From
Table 5.2 we see that this approach is quite ineffective, further underscoring the

distribution gap between the training and test objects in our experiments.

Autonomous reward via VLMs

We investigate whether we can replace the human operator with an automated
procedure to provide rewards. The reward is given by computing the similarity score
between the observed image at the end of execution, and two text prompts, one of
which indicate that the door is open, and the other that says the doors is closed, as
described in section 4.1.5.

As with the action-replay baseline, we evaluate this on two test doors, on each from
the handle and knob categories. From Table 5.1, we see that online adaptation with
VLM reward achieves a similar performance as using ground-truth human-labeled
reward, with an average of 80 percent compared to 90 percent. We also report the

performance after every iteration of training in Fig. 5.1. Removing the need for
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a human operator to be present in the learning loop opens up the possiblity for

autonomous training and improvement.

5.1.2 Hardware Teleop Strength

Expert teleoperation success rate

lever B knob A
Stretch RE1 ~ 0/5 0/5
Ours 5/5 5/5

Table 5.3: Human expert teleoperation success rate using stretch and our system for
opening doors

In order to successfully operate various doors the robot needs to be strong enough
to open and move through them. We empirically compare against a different popular
mobile manipulation system, namely the Stretch RE1 (Hello Robot). We test the
ability of the robots to be teleoperated by a human expert to open two doors from
different categories, specifically lever and knob doors. Each object was subjected to
five trials. As shown is Table 5.3, the outcomes of these trials revealed a significant
limitation of the Stretch RE1: its payload capacity is inadequate for opening a real

door, even when operated by an expert, while our system succeeds in all trials.
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Figure 5.1: Online Adaptation with CLIP reward. Adaptive learning using rewards
from CLIP, instead of a human operator, showing our system can operate autonomously.
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Chapter 6

Conclusions

We present a full-stack system for adaptive learning in open world environments
to operate various articulated objects, such as doors, fridges, cabinets and drawers.
The system is able to learn from very few online samples since it uses a highly
structured action space, which consists of a parametric grasp primitive, followed by a
sequence of parametric constrained mobile manipulation primitives. The exploration
space is further structured via a demonstration dataset on some training objects.
Our approach is able to improve performance from about 50 to 95 percent across
8 unseen objects from 4 different object categories, selected from buildings across
the university campus. The system can also learn using rewards from VLMs without
human intervention, allowing for autonomous learning. We hope to deploy such
mobile manipulators to continuously learn a broader variety of tasks via repeated

practice.
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