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Abstract

We propose UpFusion, a system that can perform novel view synthesis and
infer 3D representations for generic objects given a sparse set of reference
images without corresponding pose information. Current sparse-view
3D inference methods typically rely on camera poses to geometrically
aggregate information from input views, but are not robust in-the-wild
when such information is unavailable/inaccurate. In contrast, UpFusion
sidesteps this requirement by learning to implicitly leverage the available
images as context in a conditional generative model for synthesizing novel
views. We incorporate two complementary forms of conditioning into
diffusion models for leveraging the input views: a) via inferring query-
view aligned features using a scene-level transformer, b) via intermediate
attentional layers that can directly observe the input image tokens. We
show that this mechanism allows generating high-fidelity novel views
while improving the synthesis quality given additional (unposed) images.
We evaluate our approach on the Co3Dv2 and Google Scanned Objects
datasets and demonstrate the benefits of our method over pose-reliant
sparse-view methods as well as single-view methods that cannot leverage
additional views. Finally, we also show that our learned model can
generalize beyond the training categories and even allow reconstruction
from self-captured images of generic objects in-the-wild.
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Chapter 1

Introduction

The long-standing problem of recovering 3D objects from 2D images has witnessed

remarkable recent progress. In particular, building on the success of generative

modeling, several single-view to 3D methods [24, 25] have shown promising results for

reconstructing generic objects. However, such single-view methods are inherently ill-

suited for capturing details of a specific object as they need to hallucinate unobserved

aspects. On the other hand, multi-view 3D methods methods [20, 29] excel at

recovering highly detailed 3D models of objects or scenes given densely sampled

observations.

However, in real-world scenarios such as casual capture settings and online mar-

ketplaces, obtaining dense multi-view images is often impractical. Instead, only a

limited set of observed views may be available, often leaving some aspects of the

object unobserved. With the goal of reconstructing similarly high-fidelity 3D objects

in these settings, several learning-based methods [53, 57, 62] have pursued the task

of sparse-view 3D inference. While these methods can yield impressive results, they

crucially rely on known accurate camera poses for the input images, which are often

only available in synthetic settings or using privileged information in additional views,

and are thus not currently applicable for in-the-wild sparse-view reconstruction where

camera poses are not available.
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1. Introduction

Zero-1-to-3 UpFusionInput Images Zero-1-to-3 UpFusionInput Images

Input Images UpFusion Input Images UpFusion

Figure 1.1: 3D Inference from Unposed Sparse views. Given a sparse set of
input images without associated camera poses, our proposed system UpFusion allows
recovering a 3D representation of the underlying object. Top: Unposed input images
(black) and corresponding novel views synthesized by UpFusion (green). Bottom:
Compared to single-view 3D methods that cannot benefit from additional images
(orange), UpFusion can better capture the instance-specific details. See supplementary
for video results.

In this work, we seek to overcome the limitation of requiring known camera poses

and address the task of 3D inference given unposed sparse views. Unlike pose-aware

sparse-view 3D inference methods which use geometry-based techniques to leverage

the available input, we introduce an approach that can implicitly use the available

views for novel-view generation. Specifically, we designate one of the input images
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1. Introduction

as an anchor to define a coordinate frame, and adopt a scene-level transformer [38]

that implicitly incorporates all available input images as context to compute per-ray

features for a desired query viewpoint. Utilizing these query-aligned features, we can

train a conditional denoising diffusion model to generate novel-view images.

However, we observe that relying solely on query-aligned features learned from

unposed input views does not fully utilize the available context. To further enhance the

instance-specificity in the generations, we propose to also add ‘shortcuts’ via attention

mechanism in the diffusion process to allow direct attending to the input view features

during the generation. Furthermore, to enable generalization to unseen categories, we

adopt a pre-trained 2D foundation diffusion model [36, 59] as initialization and adapt

it to leverage the two forms of context-based conditioning. Finally, the novel view

images synthesized from the learned diffusion model, despite high fidelity, may not

guarantee 3D consistency. Therefore, we additionally extract 3D-consistent models

via score-based distillation [32, 61].

We present results using the challenging real-world dataset, Co3Dv2 [34], which

comprises multi-view sequences from 51 categories with 6-DoF pose variations. To

compare against recent single-view methods, we also train our model using renderings

from Objaverse [7] and test on Google Scanned Objects [9]. In both these settings, we

find that our approach allows extracting signal from the available unposed views, and

that the performance improves with additional images. In particular, we show that

our system significantly improves over recent pose-dependent methods when they

fed predicted camera poses and can outperform SoTA single-view 3D methods which

cannot leverage additional unposed images. We also demonstrate the ability of our

method to generalize beyond the training categories by showcasing its performance

on unseen object classes as well as on self-captured in-the-wild data.
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Chapter 2

Related Work

2.1 3D from Dense Multi-view Captures

Multi-view observations of a scene naturally provide geometric cues for understanding

its 3D structure, and this principle has been leveraged across decades to infer 3D

from dense multi-view. Classical Multi-View Stereo (MVS) methods [13] leverage

techniques such as structure from motion (SfM) [40] to estimate camera poses for

dense matching to 3D points. Recent neural incarnations [1, 11, 29, 30, 48, 54] of these

methods have further enabled breakthroughs in terms of the quality of the obtained

dense 3D reconstruction. While these methods rely on classical techniques for camera

estimation, subsequent approaches [2, 12, 23] have relaxed this requirement and can

jointly estimate geometry and recover cameras. However, these methods are unable

to predict unseen regions and crucially rely on densely-sampled images as input – a

requirement our work seeks to overcome.

2.2 Single-view to 3D

On the other extreme from dense multi-view methods are approaches that aim

to reconstruct a 3D representation from just a single view. While easily usable,

developing such systems is highly challenging as it requires strong priors to recover

unknown information. A common paradigm used to address this program is training
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2. Related Work

models conditioned on encoded image features to directly predict 3D geometry (e.g.,

voxels [14], meshes [15, 47, 55], point clouds [10], or implicit functions [6, 28, 52]).

However, given the uncertain nature of the task, the regression-based objectives in

these methods limits their generation quality. More recently, there has been growing

interest in distilling large text-to-image diffusion models [36, 37, 43] to generate 3D

representations [5, 32, 46, 50]. Building upon these advances, several distillation-

based [8, 25, 27, 33, 45, 51] and distillation-free [24, 26] single image to 3D methods

were proposed. While these can infer detailed 3D, they cannot benefit from the

information provided by additional (posed or unposed) views. Moreover, as they

hallucinate details in unobserved regions, the reconstructed object may significantly

differ from the one being imaged. If a user aims to faithfully capture a specific object

of interest, single-view methods are fundamentally ill-suited for this task.

2.3 Sparse-view to 3D

With the goal of reducing the burden in the multi-view capture process while still

enabling detailed capture of specific objects of interest, there has been a growing

interest in spare-view 3D inference methods. By leveraging the benefits of both

multi-view geometry and learning, regression-based methods achieve 3D consistency

by using re-projected features obtained from input views [34, 49, 56]. However, the

results tend to be blurry due to the mean-seeking nature of regression methods under

uncertainty. To improve the quality of generations, another stream of work [4, 21, 35,

61] formulate the problem as a probabilistic generation task. These methods achieve

better perceptual quality, yet usually require precise pose information, which is often

not practically available. To overcome this issue, one may either consider leveraging

recent sparse-view pose estimation methods [41, 58] in conjunction with state-of-the-

art novel-view synthesis methods, or consider methods that optimize poses jointly

with the objective of novel-view synthesis [19, 42]. However, the computation of

explicit poses may not always be robust, and we empirically show that this leads to

poor performance. Closer to our approach, UpSRT [38] and RUST [39] allow novel

view synthesis without explicit pose estimation (i.e., directly from unposed sparse

views). However, their regression-based pipelines limit the quality of the synthesized

outputs.
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Chapter 3

Approach

Our goal is to infer a 3D representation of an object given a sparse set of images.

While prior works [4, 56, 61] typically aggregate information from the input views by

using geometric projection and unprojection, these crucially rely on the availability

of accurate camera poses which are not readily available in-the-wild. We instead aim

to tackle the task of 3D inference given unposed sparse views.

Towards building a system capable of 3D inference in this unposed setting,

we propose a mechanism for implicitly leveraging the available images as context

when generating novel views. Specifically, we adapt Unposed Scene Representation

Transformer (UpSRT) [38], a prior work that leverages transformers as a mechanism

for implicitly aggregating information from input views, and computes query-view-

aligned features for view synthesis. However, instead of their mean-seeking regression

objective which results in blurry renderings, we enable probabilistic sparse view

synthesis by using the internal representations of UpSRT to condition a diffusion

model to perform novel view synthesis. While our diffusion model can yield high-

fidelity generations, the outputs are not 3D consistent. To obtain a consistent 3D

representation, we then train instance-specific neural representations [30, 44] which

maximizes the likelihood of the renderings under the learned generative model. We

detail our approach below, but first briefly review UpSRT and denoising diffusion

models [18] that our work builds on.
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Figure 3.1: UpSRT [38] performs novel view synthesis from a set of unposed images.
UpSRT consists of an encoder, a decoder, and an MLP. The encoder takes encoded
image features as inputs and outputs a set-latent representation cs. The decoder
takes query rays as inputs and attends to the set-latent representation to get features
cd, which are then fed into MLP to obtain final novel view RGB images. The first
input image (blue) is used as an anchor to define the coordinate system. We make
use of both cs and cd to provide conditional context to our model.

3.1 Preliminaries

3.1.1 Unposed Scene Representation Transformer.

Given a set of N images I = {I1, I2, ..., IN}, UpSRT [38] seeks to generate novel view

images by predicting RGB color r for any query ray q, where the first input image is

used as an anchor to define the coordinate system (see supplementary for details).

As illustrated in figure 3.1, it first extracts patch-wise features for each image Ii with

an image encoder UI . Then, it uses an encoder transformer UE to obtain a set latent

representation cs. Finally, it uses a decoder transformer UD which attends to vc,

followed by an MLP, to predict the RGB color. In summary, the UpSRT workflow

can be represented by the following equations:

cs = UE({UI(I)}), C(r) = MLP(UD(r|cs)) (3.1)

We pre-train an UpSRT model using a pixel-level regression loss and leverage

it for subsequent generative modeling. While we follow a similar design, we make

several low-level modifications from the originally proposed UpSRT architecture (e.g.,

improved backbone, differences in positional encoding, etc.), and we expand on these

in the appendix.
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Set Latent Representation

Decoder Features
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Diffusion Model
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Figure 3.2: UpFusion 2D is the proposed conditional diffusion model performing
novel view synthesis conditional on information extracted from a set of unposed
images. To reason about the query view, Upfusion takes as additional inputs the
view-aligned decoder features cd obtained from UpSRT decoder. To further allow the
model to attend to details from input views, UpFusion conditions on the set-latent
representation cs via attentional layers.

3.1.2 Denosing Diffusion.

Denoising diffusion models [18] seek to learn a generative model over data samples x

by learning to reverse a forward process where noise is gradually added to original

samples. The learning objective can be reduced to a denoising error, where a diffusion

model ϵϕ is trained to estimate the noise added to a current sample xt:

LDM = Ex0,t,ϵ∼N (0,1)[∥ϵt − ϵϕ(xt, t)∥22] (3.2)

While the above objective summarizes an unconditional diffusion model, it can be

easily adapted to learn conditional generative models p(x|y) by adding a condition y

(such as a set of unposed images) to the input of the denoising model ϵϕ(xt, t,y).

3.2 Probabilistic View Synthesis using Sparse

Unposed Views

We aim to learn a generative model over novel views of an object given a sparse set

of unposed images. Given this, our goal is to learn the distribution p(I|I, π), where π
denotes a query pose, I denotes the set of unposed images and I denotes the query-
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3. Approach

view image. Instead of learning the distribution directly in pixel space, we follow

a common practice of instead learning this distribution in latent space p(x|I, π),
using pre-trained encoders and decoders corresponding to this latent space [36]:

x = E(I); I = D(x).

We model this probability distribution by training a conditional diffusion model

which leverages the available unposed images as context, and seek to propose an

architecture that embraces several desirable design principles. First, we note that

such a diffusion model must be able to (implicitly) reason about the query view it is

tasked with generating in the context of the available input, and leverage the UpSRT

encoder-decoder framework to enable this. While the decoder features from UpSRT

can ground the query-view generation, we note that these may abstract away the

salient details in the input, and we propose to complement these by allowing the

generative model to directly leverage the patch-wise latent features and more easily

‘copy’ content from input views. Lastly, to enable efficient training and generalization

beyond training data, we propose to adapt off-the-shelf diffusion models for view-

conditioned generation.

View-aligned Features for Image Generation. Given a target view π, we

construct a set of rays R corresponding to a grid of 2D pixel locations in this view.

We query the UpSRT decoder with this set of rays to obtain view-aligned decoder

features cd of the same resolution as the image latent x. As illustrated in figure 3.2,

these query-aligned features are concatenated with the (noisy) image latents to serve

as inputs to the denoising diffusion model.

Incorporating Direct Attention to Input Patches. To allow the generation

model to directly incorporate details visible in the input views, we also leverage the

set-latent feature cs representation extracted by the UpSRT encoder. Importantly,

this representation comprises of per-patch features aligned with the input images and

allows efficiently ‘borrowing’ details visible in these images. Unlike the view-aligned

decoder feature which can be spatially concatenated with the noisy diffusion input, we

condition on these set-latent features via attentional layers in the generation model.

Adapting Large-scale Diffusion Models for Novel-view Synthesis. Instead

of training our generative model from scratch, we aim to take advantage of the

strong priors learned by large diffusion models such as Stable Diffusion [36]. To
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3. Approach

this end, we use a modified version of the ControlNet architecture [59] to adapt a

pre-trained Stable Diffusion model to incorporate additional conditionings cd, cs for

view generation.

Putting it Together. In summary, we reduce the task of modeling p(x|I, π)
to learning a denoising diffusion model pϕ(x|cd, cs), and leverage the ControlNet

architecture to incorporate the two conditioning features and learn a denoising model

ϵϕ(xt, t, cd, cs). More specifically, ControlNet naturally allows adding the spatial

feature cd as via residual connections to the spatial layers of the UNet in a pre-trained

Stable Diffusion model. To incorporate the set-level features cs, we modify the

ControlNet encoder blocks to use cs in place of a text encoding (see appendix for

details). We can train such a model using any multi-view dataset, where we train the

denoising diffusion model to generate the underlying image from a query view given

a variable number of observed input views.

3.3 Inferring 3D Consistent Representations

While the proposed conditional diffusion model can provide high-fidelity renderings

from query views, the generated views are not 3D consistent. To obtain a 3D repre-

sentation given the inferred distribution over novel views, we subsequently optimize

an instance-specific neural representation. Towards this, we follow SparseFusion [61]

which seeks neural 3D modes by optimizing the likelihood of their renderings by

adapting a Score Distillation Sampling (SDS) [32] loss to view-conditioned generative

models.

Specifically, we optimize a neural 3D representation gθ by ensuring its renderings

have high likelihood under our learned distribution p(I|I, π). We do so by minimizing

the difference between the renderings of the instance-specific neural model and the

denoised predictions from the learned diffusion model. Denoting by gθ(π) the rendering

of the neural 3D representation from viewpoint π, and by x̂0 the denoised prediction

inferred from the learned diffusion model ϵϕ(xt; t, cd, cs), the training objective can

be specified as:

L3D = Et,ϵ,π[∥gθ(π)−D(x̂0)∥2] (3.3)

Unlike SparseFusion [61] which additionally uses a rendering loss for the available

11



3. Approach

input views using known cameras, we rely only on the above denoising objective for

optimizing the underlying 3D representation given unposed input views.

3.4 Training Details

We follow a multi-stage training procedure to optimize our models. We first train

the UpSRT model separately using a reconstruction loss on the color predicted for

query rays given the set of reference images I. Then, we train the denoising diffusion

model while using the conditioning information from the pre-trained UpSRT, which

is frozen in this stage.

To enable the usage of classifier-free guidance [17] during inference, we train our

diffusion model in the unconditional mode for a small fraction of the time. We do this

by following the condition dropout procedure used in [3, 25] that randomly replaces

the conditioning information with null tokens (for more details, please refer to the

supplementary).

Once the diffusion model is trained, we can extract a 3D representation for an

object by optimizing an Instant-NGP [30, 44] using the neural mode seeking objective

discussed in Section 3.3. We use DDIM [43] for fast multi-step denoising. Inspired

by [50], we follow an annealed time schedule for score distillation. We also use some

regularization losses while training the NeRF as used in [61]. For more details, please

refer to the supplementary.
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Chapter 4

Experiments

4.1 Experimental Setup

4.1.1 Dataset

We test our approach in two different experimental setups. First, we use the Co3Dv2

[34], a large-scale dataset with real multi-view images of objects from 51 categories.

Following [22, 58], we train our model on 41 categories and hold out 10 categories to

test the ability of our method to generalize to unseen categories. We use the fewview-

train split for training and fewview-dev split for evaluation. We limit our focus to

modelling only objects and not their backgrounds. To this end, we create a white

background for our objects by using the masks available in the dataset. As our full

method (as well as some baselines) optimize instance-specific neural representations,

which can take 1hr per instance, we limit our evaluations to 5 object instances per

category. To account for the inherent (scale) ambiguity in the coordinate systems

between the predictions and ground-truth, we define aligned versions of the typical

image reconstruction metrics (PSNR-A, SSIM-A, LPIPS-A). For more details, please

refer to the supplementary.

To compare with popular state-of-the-art single-view baselines that are trained

on Objaverse [7], we also fine-tune a version of our model (which are already pre-

trained on Co3Dv2) on Objaverse renderings. We denote versions of our model

fine-tuned on Objaverse with † as a superscript (for example, UpFusion† (3D)) and
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Input 
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SF+RP

UpSRT

UpFusion 2D

UpFusion 3D

Ground 

Truth

Figure 4.1: Qualitative comparison with sparse-view baselines. We compare
UpFusion with baseline methods using 3 and 6 unposed images as inputs. SparseFusion
fails to capture the correct geometry, due to the imperfect camera poses estimated by
RelPose++. UpSRT generates blurry results due to the nature of regression-based
methods. On the contrary, UpFusion 2D synthesizes sharp outputs with correct
object poses. UpFusion 3D further improves the 3D consistency.

evaluate this model using the Google Scanned Objects [9] dataset. As both Objaverse

and GSO comprise of normalized origin-centered objects (unlike CO3D where the

reconstructions are in arbitrary SfM coordinate systems), we use the ‘normal’ image

reconstruction metrics for evaluation.

4.1.2 Baselines

We highlight the benefits of our approach by comparing it to prior pose-dependent

and unposed novel-view generation techniques. Specifically, we compare our 2D
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diffusion model (‘UpFusion 2D’) and obtained 3D representations (‘UpFusion 3D’)

against the following baselines:

SparseFusion [61] is a representative method for pose-dependent sparse-view

inference on Co3Dv2. We compare against its performance when using a recent

sparse-view pose estimation system RelPose++ [22], and also report its performance

using GT camera poses as an upper bound.

UpSRT. We compare against the prediction from the UpSRT [38] backbone

used in our approach, where the improvements over this indicate the gains from the

diffusion and subsequent 3D distillation.

FORGE [19] is a method that jointly optimizes for poses while being trained on a

novel-view synthesis objective. As FORGE uses the GSO dataset [9] to demonstrate

its generalization capability, we compare it against our Objaverse fine-tuned UpFusion†

(3D).

Single-view methods. To highlight the benefit of using more input views, we

compare UpFusion† (3D) to two representative state-of-the-art single-view baselines:

Zero-1-to-3 [25] and One-2-3-45 [24]. For Zero-1-to-3, we include comparisons with

two versions – the original version which uses SJC [46] and the highly optimized

threestudio implementation [16] (which uses additional tricks to aid 3D distillation).

We compare against these baselines on the GSO dataset.

Type Method
PSNR-A (↑) SSIM-A (↑) LPIPS-A (↓)

1V 3V 6V 1V 3V 6V 1V 3V 6V

Posed SparseFusion (GT) — 22.41 24.02 — 0.79 0.81 — 0.20 0.18

Unposed

SparseFusion (RelPose++) — 17.76 17.12 — 0.67 0.64 — 0.30 0.33
UpSRT 16.84 17.75 18.36 0.73 0.74 0.75 0.34 0.32 0.31
UpFusion (2D) 16.54 17.12 17.41 0.71 0.72 0.73 0.23 0.22 0.22
UpFusion (3D) 18.17 18.68 18.96 0.75 0.76 0.76 0.22 0.21 0.21

Table 4.1: Sparse-view synthesis evaluation on seen categories (41 cate-
gories). We conduct comparisons using 5 samples per category and then and report
the average across these. UpFusion performs favorably against baseline methods,
and demonstrates the capability to leverage additional unposed images. Moreover,
UpFusion 3D consistently improves the results from UpFusion 2D.

15



4. Experiments

Figure 4.2: Generalization beyond training categories. We show results for
UpFusion (3D) across object categories not seen in training. For each instance, we
present the 1, 3, or 6 unposed input views (left), as well as 4 novel view renderings
(right). We observe that despite not being trained on these categories, UpFusion
is able to accurately infer the underlying 3D structure and generate detailed novel
views.

4.2 Results

4.2.1 Novel-view synthesis on CO3Dv2

We compare UpFusion with baseline methods on the categories seen during training,

as shown in Table 4.1. UpFusion performs favorably against both UpSRT and unposed

SparseFusion. Furthermore, UpFusion consistently improves the prediction when

more views are provided. However, there is still room for improvement compared to

the methods using ground-truth poses. In Figure 4.1, we qualitatively present the

novel view synthesis results. SparseFusion can capture some details visible in the

input views but largely suffers due to the error in input poses. UpSRT, on the other

hand, can robustly generate coarse renderings, but is unable to synthesize high-fidelity

outputs from any viewpoints. Our 2D diffusion model, UpFusion 2D, generates higher

Method
PSNR-A (↑) SSIM-A (↑) LPIPS-A (↓)

1V 3V 6V 1V 3V 6V 1V 3V 6V

UpSRT 16.75 17.57 18.06 0.73 0.74 0.74 0.35 0.33 0.32
UpFusion (2D) 16.33 17.04 17.38 0.70 0.71 0.72 0.25 0.23 0.23
UpFusion (3D) 18.27 18.83 19.11 0.75 0.76 0.76 0.23 0.22 0.22

Table 4.2: Sparse-view synthesis evaluation on unseen categories (10 cat-
egories). We conduct comparisons using 5 samples per category and report the
average across these. We observe a comparable performance to the results on seen
categories.
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Input 

Images

Zero-1-to-3

(SJC)

Zero-1-to-3

(TS)

One-2-3-45

UpFusion 3D

(1V)

FORGE

Ground Truth

UpFusion 3D

(6V)

Figure 4.3: Qualitative comparison on GSO. We compare UpFusion† (3D) to two
single-view baselines and one sparse-view baseline (FORGE) on the GSO dataset. For
each instance, single-view methods use only the image with the black border as input,
whereas sparse-view methods use all input images. We can observe that UpFusion†

(3D) while using 6 inputs views is able to better understand the 3D structure of the
object than the single-view baselines (e.g., size of cabinet in bedroom). Moreover,
it is able to incorporate information from the 6 inputs views much better than the
sparse-view baseline.

17



4. Experiments

# Input Views Method PSNR (↑) SSIM (↑) LPIPS (↓)

1V

Zero-1-to-3 (SJC) 18.72 0.90 0.12
Zero-1-to-3 (TS) 21.71 0.91 0.09
One-2-3-45 17.77 0.87 0.15
UpFusion† (3D) 20.52 0.89 0.12

6V
FORGE 17.40 0.88 0.15
UpFusion† (3D) 22.51 0.91 0.08

Table 4.3: Novel-view synthesis evaluation on GSO. We compare UpFusion 3D
to single-view baselines as well as a sparse-view pose-optimization baseline on GSO
dataset which is out of distribution for all methods.

fidelity images that improve over the baselines in the perceptual metrics. Finally, the

3D-consistent inferred representation Upfusion3D yields the best results.

Characterizing Generalization. As UpFusion is trained upon a pre-trained large-

scale diffusion model providing strong general priors, the learned novel view synthesis

capability is expected to be generalized to categories beyond training. We evaluate

UpFusion on 10 unseen categories, as shown in Table 4.2. Encouragingly, we find that

the performance does not degrade compared to the results on seen categories and

believe this highlights the potential of our approach to perform in-the-wild sparse-view

Input Images Decoder Features Only Set Latent Only Joint Conditioning

Figure 4.4: Ablation of generative model conditioning. Visualizations from
category-specific models trained teddybears using varying conditioning for novel-view
generation. We find that the model using only set-latent conditioning is unable to
understand the query pose, while the one relying on only decoder features does not
preserve instance identity. Our full model, using both features, allows respecting
viewpoint and preserving instance-specific details.
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Conditioning
PSNR-A (↑) SSIM-A (↑) LPIPS-A (↓)

1V 3V 6V 1V 3V 6V 1V 3V 6V

DF Only 14.65 15.28 15.53 0.63 0.64 0.64 0.32 0.30 0.30
SLT Only 13.15 13.38 13.49 0.60 0.60 0.60 0.36 0.35 0.35
DF+SLT 15.58 16.11 16.26 0.65 0.66 0.66 0.30 0.28 0.28

Table 4.4: Ablation of generative model conditioning. We ablate our conditional
diffusion model with different conditional contexts. DF stands for decoder features cd,
and SLT stands for set-latent representations cs. We train category-specific UpFusion
(2D) models for this ablation on the teddybear category and report performance.

3D inference. We also depict some qualitative results on unseen objects in Figure 4.5.

4.2.2 Novel-view synthesis on GSO

We compare UpFusion† (3D) to two state-of-the-art single-view baselines (Zero-1-to-3

and One-2-3-45) and a sparse-view baseline (FORGE) on 20 randomly sampled

instances from the GSO dataset. For Zero-1-to-3, we compare with both the original

SJC implementation and threestudio (TS) implementation. From Table 4.3, we can

Figure 4.5: 3D from self-captured images. Given 3-6 self-captured input images
for a generic object (left), we show 4 novel viewpoints of the 3D asset recovered via
UpFusion† (3D) (right).
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observe that UpFusion† (3D) while using 6 inputs views is able to outperform all

baselines. This demonstrates the ability of our method to effectively incorporate more

information when additional views are available, which single-view baselines cannot.

Moreover, we can see that our model significantly outperforms FORGE, which also uses

6 input views, and we believe this is because our approach allows bypassing explicit

pose prediction which can lead to inaccurate predictions. Qualitative comparisons

in Figure 4.3 further demonstrates the effectiveness of our approach in utilizing

information from multiple unposed images.

4.2.3 Ablating Diffusion Conditioning

We empirically study the complementary benefits of the two forms of conditioning

used. We illustrate the qualitative results in Figure 4.4 and quantitative results in

Table 4.4. We find that both, the decoder features and the set-latent representations

are complementary and instrumental to UpFusion.
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Chapter 5

Discussion

We presented UpFusion, an approach for novel-view synthesis and 3D inference given

unposed sparse views. While our approach provided a mechanism for effectively

leveraging unposed images as context, we believe that several challenges still remain

towards the goal of sparse-view 3D inference in-the-wild. In particular, although

our approach allowed high-fidelity 2D generations, these are not always precisely

consistent with the details in the (implicitly used) input views. Moreover, while our

approach’s performance does improve given additional context views, it does not

exhibit a strong scaling similar to pose-aware methods that can geometrically identify

relevant aspects of input images. Finally, while our work provided a possible path

for 3D inference from unposed views by sidestepping the task of pose estimation, it

remains an open question whether explicit pose inference for 3D estimation might be

helpful in the long term.
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Appendix A

Additional Results

We visualize additional samples from UpFusion (3D) for seen and unseen categories

in Figures (A.1, A.2, A.3) and Figure A.4 respectively.

Figure A.1: Additional results with 1 input view. We show results for UpFusion
(3D) across different object categories given 1 input view (left), and show 4 novel
view renderings (right).
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Figure A.2: Additional results with 3 input views. We show results for UpFusion
(3D) across different object categories given 3 input views (left), and show 4 novel
view renderings (right).
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Figure A.3: Additional results with 6 input view. We show results for UpFusion
(3D) across different object categories given 6 input views (left), and show 4 novel
view renderings (right).
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Figure A.4: Additional results for generalization beyond training categories.
We show results for UpFusion (3D) across object categories not seen in training. For
each instance, we present the 1,3, or 6 unposed input views (left), as well as 4 novel
view renderings (right). We observe that despite not being trained on these categories,
UpFusion is able to accurately infer the underlying 3D structure and generate detailed
novel views.
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Appendix B

Implementation and Training

Details

B.1 Coordinate Frame

Given N input images of an object, we define a coordinate system C such that the

first input image is 1 unit distance away along the Z-Axis from the origin. Our models

consume query pose information that are defined in this coordinate system. Do note

that each object in the Co3Dv2 dataset resides in an arbitrary coordinate system with

an unknown scale. Hence, to use pose information from such datasets for training,

we need to calculate a coordinate system transformation.

To do so, for each object instance during training, we need to identify a point in

its existing coordinate system to serve as the origin of the new coordinate system

C. We do this in two steps. First, we pick 6 random views from the dataset for that

object instance. Then, we solve for a point p that is closest to the rays that travel

along the Z-Axis of cameras that are associated with those 6 views. We then define

our new coordinate system C such that the first input image (which is part of those 6

views) is 1 unit distance away along the Z-Axis from this point p.
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Ground Truth Aligned Pred Aligned Overlay Unaligned Pred Unaligned Overlay

Figure B.1: Comparison of aligned and unaligned metric. Conventional image
reconstruction metrics are not well-suited to evaluate unposed view synthesis methods
due to the inherent ambiguities between coordinate systems. We adopt aligned
versions of these metrics by first performing optimized image warping. We illustrate
the images and metrics with and without the alignment.

B.2 Evaluating View Synthesis in Unposed

Settings

We are interested in evaluating our performance using standard view-synthesis metrics

such as PSNR, SSIM, and LPIPS [60]. However, these pixel-aligned metrics are not

well suited for evaluating unposed view synthesis due to the fundamental ambiguities

between the coordinate systems of the ground-truth and prediction. In particular,

given unposed images, there can be an ambiguity up to a similarity transform between

the coordinate frames of the reconstruction and prediction. While anchoring the

coordinate orientation to the first camera reduces this uncertainty, we still need to

consider scaling and shift between predictions and ground truth.

We highlight this issue in Figure B.1, where we observe that despite generally

matching the ground truth, the prediction is misaligned in pixel space.

To circumvent this issue, we compute aligned versions of the standard image

reconstructions metrics (PSNR-A, SSIM-A, and LPIPS-A) by first optimizing for

an affine image warping transform WA that best matches a predicted image to its

corresponding ground truth and then computing the metric. In other words, we

evaluate aligned metrics as minWA
M(WA(x), y), whereM is a metric, x is a predicted

image and y is the ground truth image. In practice, for expediency, we compute

the optimal transform for minimizing a pixel-wise L2 error instead of computing a
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per-metric warp.

B.3 UpSRT

Our UpSRT [38] model architecture mostly follows the original architecture with a

few modifications. Unlike the original UpSRT model, which trains a light-weight CNN

to extract patch-wise features from images, we use features from a frozen pre-trained

DINOv2 [31] model (specifically, the dinov2 vitb14 model). We leverage the key

facet from the attention block number 8 to serve as patch-wise features. Our UpSRT

transformer architecture has 8 encoder blocks and 4 decoder blocks. Also, we use

sinusoidal positional encoding instead of learnable positional encoding for the camera

and patch encoding. We also provide information about image intrinsics in the form

of additional positional encoding. We trained our model on 41 classes of the the

Co3Dv2 dataset (as described in section 4.1) for about 1M optimizer steps on 2 GPUs

with a global batch size of 12.

Additionally, UpFusion† models were fine-tuned on Objaverse to allow for fair

comparison with single-view baselines. To that end, we fine-tune the UpSRT model

which was pre-trained on Co3Dv2 on renderings obtained from the Objaverse dataset

for another 1M optimizer steps on 2 GPUs with a global batch size of 12. While

performing this fine-tuning, we sample instances from the Objaverse dataset with

90% probability and instances from the Co3Dv2 dataset with 10% probability.

B.4 UpFusion 2D

Model Architecture. Our diffusion model is a modified version of the Control-

Net [59] model. In the original architecture, the encoder has two branches, a frozen

branch and a trainable branch, both of which incorporate text conditioning informa-

tion using cross attention. In our architecture, instead of providing text conditioning

for the trainable branch, we provide the set latent representation cs. For the frozen

branch, we still need to provide a text prompt and we provide the following generic

prompt: “a high quality image with a white background”. Also, in the original archi-

tecture, the trainable branch receives an input image c as a conditioning input. In
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our architecture, we provide the decoder features cd as a conditioning input instead.

Adding Query Ray Context. Recall that, in section 3.2, we mentioned that

the view-aligned decoder features cd are generated using a set of rays R. To provide

additional context about query rays to the diffusion model, we concatenated Plücker

coordinate representation of R to the view-aligned decoder features to create cd that

is used the condition input by the diffusion model. Similarly, the transformer blocks

of the trainable branch of ControNet could benefit from additional query ray context,

as it incorporates information from the set-latent features cs into the U-Net features.

To this end, we append Plücker coordinate representation of R to the U-Net features

that are consumed by the transformer blocks.

Classifier-free Guidance. To enable classifier-free guidance [17] during inference,

we train our diffusion model in the unconditional mode for a small fraction of the time.

During training, similar to [17, 25], we devise a strategy to randomly replace only

cd with the null token Φd with 5% probability, only cs with the null token Φs with

5% probability, and both cd and cs with Φd and Φc with 5% probability. The null

tokens Φc and Φs are just zero tensors with the appropriate shape. During inference,

we used a guidance weight of 9.0 for all experiments.

Training Details. Following suggestions from the ControlNet codebase, we

start training our model with the decoder blocks locked for a few iterations. Then,

we resume training with the decoder unlocked. We train our model for about 1M

optimizer steps on 2 GPUs with a global batch size of 8. Additionally, UpFusion†

models were fine-tuned on Objaverse to allow for fair comparison with single-view

baselines. To that end, we fine-tune the diffusion model which was pre-trained on

Co3Dv2 on renderings obtained from the Objaverse dataset for another 870k optimizer

steps on 2 GPUs with a global batch size of 8. While performing this fine-tuning,

we sample instances from the Objaverse dataset with 90% probability and instances

from the Co3Dv2 dataset with 10% probability.

B.5 UpFusion 3D

For the multi-step diffusion model sampling, we use the DDIM [43] sampler with 30

steps. Inspired by [50], we use an annealed time schedule for optimizing our NeRF.

For the first 300 iterations, we sample time steps corresponding to very high noise to
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enable the NeRF to quickly learn coarse level details. Overall, the NeRF is trained

for 3000 iterations, which takes a little more than an hour on an A5000 GPU. We

use the same regularization losses as SparseFusion [61].
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