
Offline Learning for Stochastic Multi-Agent Planning
in Autonomous Driving

Adam Villaflor

CMU-RI-TR-24-13

April 2024

School of Computer Science
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Thesis Committee:

Jeff Schneider (Co-Chair)
John Dolan (Co-Chair)

David Held
Philipp Krähenbühl (The University of Texas at Austin)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Adam Villaflor

ii

ABSTRACT

Fully autonomous vehicles have the potential to greatly reduce vehicular accidents and rev-

olutionize how people travel and how we transport goods. Many of the major challenges for

autonomous driving systems emerge from the numerous traffic situations that require com-

plex interactions with other agents. For the foreseeable future, autonomous vehicles will

have to share the road with human drivers and pedestrians, and thus cannot rely on central-

ized communication to address these interactive scenarios. Therefore, autonomous driving

systems need to be able to negotiate and respond to unknown agents that exhibit uncer-

tain behavior. To tackle these problems, most commercial autonomous driving stacks use

a modular approach that splits perception, agent forecasting, and planning into separately

engineered modules. However, fully separating prediction and planning makes it difficult

to reason how other vehicles will respond to the planned trajectory for the controlled ego-

vehicle. So to maintain safety, many modular approaches have to be overly conservative

when interacting with other agents. Ideally, we want autonomous vehicles to drive in a

natural and confident manner, while still maintaining safety.

Thus, in this thesis, we will explore how we can use deep learning and offline reinforce-

ment learning to perform joint prediction and planning in highly interactive and stochastic

multi-agent scenarios in autonomous driving. First, we discuss our work in using deep

learning for joint prediction and closed-loop planning in an offline reinforcement learning

(RL) framework (Chapter 2). Second, we discuss our work that directly tackles the diffi-

culties of using learned models to do planning in stochastic multimodal settings (Chapter

3). Third, we discuss how we can scale to more complicated multi-agent driving scenarios

like merging in dense traffic by using a Transformer-based traffic forecasting model as our

world model (Chapter 4). Finally, we discuss how we can draw from offline model-based

RL to learn a high-level policy that selects over a discrete set of pre-trained driving skills to

perform effective control without additional online planning (Chapter 5).

iii

iv

Acknowledgments

These last six years have been some of the most difficult but also some of the most reward-

ing years of my life, and I am grateful for all the people that have helped me on this journey.

First, I would like to thank my advisors, Professor John Dolan and Professor Jeff Schnei-

der, for their mentorship and guidance. In addition, I would like to thank my committee

members, Professor David Held and Professor Philipp Krähenbühl, for their time and ex-

pertise. I would like to thank my undergraduate research mentors, Professor Sergey Levine,

Professor Pieter Abbeel, and Gregory Kahn, for inspiring me to pursue academic research.

I would like to thank my collaborators — Brian Yang, Ian Char, Viraj Mehta, Christoph

Killing, Zhe Huang, Swapnil Pande, and Chloé Su — without whom this research would

not be possible. I would also like to thank everyone in the CMU Robotics Institute and the

Auton Lab for creating a collaborative environment conducive for this work. In particular,

thank you to Youngseog Chung, Yeeho Song, Conor Igoe, Ben Freed, and Tejus Gupta for

all the thoughtful and engaging discussions over the years.

I would like to thank the CMU Ultimate community for welcoming me in when I first

moved to Pittsburgh. I would also like to thank Matthew Mosso, my best friend and room-

mate, for helping make this city feel like home. Thank you to my Spikeball family — David,

Michelle, Vicki, Calvin, Eric, Art, Tiffany, Alice, Danji, Charlotte, and Nikhil — and the

Catan squad — Mary Cundiff, Dooplis, Vanjie, and Daisy — for providing me an outlet for

fun, even on the cloudiest Pittsburgh day. Thank you to my friends back home — Jarren

Suzuki, Evan Martin, Omar Agha and Joshua Jokom — for your continued transcontinental

friendship.

Thank you to my parents, Cindy and Rom Villaflor, for your endless love and support,

and for always having my back. Lastly, thank you to my partner Alexandra Yoon-Hendricks

for always supporting me and encouraging me even when an entire country separated us. I

am eternally grateful for your love and patience over these last 6 years.

v

vi

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . v

LIST OF FIGURES . xi

LIST OF TABLES . xiii

CHAPTER

1 Introduction . 1

1.1 Related Work . 2
1.2 Contributions . 4

2 Offline Learning with Conservative Counterfactuals 6

2.1 Related Work . 6
2.1.1 Behavior-Regularized Model-Free RL 7
2.1.2 Uncertainty-Aware Model-Based RL 7

2.2 Preliminaries . 8
2.3 Model-Based Behavior-Regularized Policy Optimization for Offline Fine-

Tuning . 8
2.3.1 Conservative MBPO . 9
2.3.2 Behavior-Regularized Model-Free RL with AWAC 10
2.3.3 Model-Based Behavior-Regularized Policy Optimization 11

2.4 Experiments . 12
2.5 Conclusion . 14

3 Addressing Optimism Bias in Sequence Modeling for Reinforcement Learn-
ing in Stochastic Environments . 16

3.1 Introduction . 16
3.2 Related Work . 18

3.2.1 Sequence-Modeling for Offline RL 18
3.2.2 Conservatism and Risk-Sensitive RL 20
3.2.3 Trajectory Prediction in Autonomous Driving 20

vii

3.2.4 Learning Behavior for Self-Driving 21
3.3 Preliminaries . 22

3.3.1 Transformers . 22
3.3.2 Variational Auto-Encoder . 22

3.4 Separated Latent Trajectory Transformer 23
3.4.1 Discrete Latent Variable VAE 23
3.4.2 Encoders . 23
3.4.3 Policy Decoder . 24
3.4.4 World Model Decoder . 25
3.4.5 Variational Lower Bound . 25
3.4.6 Training . 26
3.4.7 Planning . 27

3.5 Experiments . 28
3.5.1 Illustrative Example . 28
3.5.2 NoCrash . 29
3.5.3 Leaderboard . 31

3.6 Conclusion . 32

4 Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving . 34

4.1 Introduction . 34
4.2 Related Work . 36

4.2.1 Trajectory forecasting models for driving 36
4.2.2 Planning over learned forecasting models 36
4.2.3 Learning to drive in CARLA . 37

4.3 Trajectory Prediction . 37
4.3.1 Model formulation . 37
4.3.2 Network architecture . 38
4.3.3 Training objectives . 41

4.4 Closed-Loop Planning over Discrete Behavior Modes 41
4.4.1 Planning with autoregressive rollouts 41
4.4.2 Evaluating ego-modes . 42
4.4.3 Reward function . 43

4.5 Results . 43
4.5.1 Model training and hyperparameters 43
4.5.2 Merging scenarios . 44
4.5.3 Longest6 benchmark scenarios 46

4.6 Conclusion . 48

5 Learning Hierarchical Driving Policies with Offline Reactive Simulation . . . 50

5.1 Introduction . 51
5.2 Related Works . 54

5.2.1 Hierarchical Policy Learning . 54

viii

5.2.2 Imitation Learning in Autonomous Driving 54
5.2.3 Multi-Agent Motion Forecasting 55
5.2.4 Learning for Planning in Autonomous Driving 55
5.2.5 Learning from Simulation . 56

5.3 Background . 57
5.4 Extracting Skills from a Multimodal Forecasting Model 58

5.4.1 Low-Level Policies from Multimodal Trajectory Forecasting . . . 58
5.4.2 Connections to VQ-VAE . 60

5.5 Learning a High-Level Policy from Offline Simulation 61
5.5.1 Learning Offline to Select Skills 61
5.5.2 Reactive Simulation . 62
5.5.3 Evaluation . 62
5.5.4 Policy Training . 63

5.6 Experiments . 65
5.6.1 CARLA Merge Scenarios . 65
5.6.2 nuPlan . 67

5.7 Conclusion . 69

6 Conclusion . 70

6.1 Learning for Motion Planning . 71
6.2 Evaluating with Simulation . 71
6.3 Computational Efficiency . 72
6.4 On-Policy Samples . 73
6.5 Final Remarks . 74

BIBLIOGRAPHY . 75

ix

x

LIST OF FIGURES

FIGURE

3.1 Simple stochastic MDP where being optimistic leads to suboptimal behavior. . 19
3.2 Overview of the SPLT Transformer architecture for generating a reconstruc-

tion prediction. The World Model (top) attempts to reconstruct the discounted
returns, rewards, and states while the Policy Model (bottom) attempts to recon-
struct the action sequence. 24

3.3 Visualization of a failed lane change in CARLA during our Leaderboard ex-
periments. The black car is the ego-vehicle, and it is tasked with following
the route indicated with black squares. The black ego-vehicle initiates a lane
change despite the faster trailing yellow vehicle in the target lane, which leads
to a collision. 32

4.1 Forecasting model architecture. 39
4.2 Merge scenario visualization. The red car is the ego-vehicle, the orange arrow

indicates the desired merging behavior, and the blue arrows indicate the flow
of traffic in the target lane. 44

4.3 Qualitative example of proactive merging with closed-loop planning. The top
row is from our proposed closed-loop planner and the bottom row is from the
open-loop variant of our planner. Frames are in sequential order from left
to right. The closed-loop planner merges proactively in front of other cars,
causing the car behind to yield to the ego-agent. The open-loop planner does
cannot predict that the ego will affect the behavior of other cars, so it does not
attempt to merge. 47

xi

5.1 These images illustrate the red ego-vehicle attempting to merge from an on-
ramp onto a highway. The leftmost image is the successful ground truth merge
demonstrated in the logged dataset. The other three images illustrate the poten-
tial results of the ego-vehicle taking different counterfactual actions with the
other vehicles reacting with closed-loop control. The second image illustrates
that a slightly slower merge would still be successful because the trailing green
vehicle should react and slow down for the ego-vehicle. However, the third im-
age illustrates that merging too slowly could still lead to a collision if the green
trailing vehicle is not given enough space to react. The final image illustrates
that a faster merge could lead to a collision by rear-ending the blue leading ve-
hicle. Better understanding the tolerances for a successful merge should help
the ego-vehicle learn to generalize to harder merges with conditions that are
slightly different than those observed in the logged data. 52

5.2 This figure depicts the steps involved in using our offline simulation to train
the hierarchical policy π1

ϕ for the ego-vehicle. 61

xii

LIST OF TABLES

TABLE

1.1 Comparison of how different algorithms use forecasting for online motion
planning or offline policy learning through simulation. Mutually Reactive
refers to forecasting in an auto-regressive manner where all the traffic agents
and ego-agent continually react to each other in a closed-loop. Probabilistic
Planning indicates whether the planned ego-agent behavior is properly evalu-
ated with respect to the stochastic distribution of potential responses from the
environment. Enumerates Modes indicates whether planning considers all the
distinct behavior modes of the learned distribution for the ego-vehicle. Multi-
Agent Forecasting indicates whether the dynamics model used for planning
represents the other vehicles and pedestrians in the scene as a multi-agent sys-
tem instead of a unified stochastic environment. We find that our work is the
only one that ticks all of these boxes. 2

2.1 Here we compare AWAC (averaged over 4 seeds) and AWAC + MB2PO (Ours)
(averaged over 4 seeds) to recent offline model-free and model-based RL algo-
rithms. We report the normalized score where 100 is the performance of a fully
trained SAC policy and 0 is the performance of a uniform random policy. For
the other methods, we report the results from their own papers or the original
D4RL paper. “-expert” results for MOPO were not included in the original pa-
per and thus are omitted here. We include the standard deviation for our results
and for previous results if reported. We bold the highest mean. 13

3.1 We evaluate all methods with 3 seeds and on 100 different trials in the environ-
ment. We report the mean and standard deviation across seeds. DT(m) is DT
conditioned on the maximum return in the dataset. DT(e) is DT conditioned
on the expected return of the best controller used to collect the dataset. TT(a)
is TT with more aggressive search parameters. For reference, the best IDM
controller in the distribution of controllers used to collect the data gets a return
of 78.6. We bold the highest mean. 28

xiii

3.2 We evaluate all methods with 3 seeds and on 4 different runs through all 25
routes in the unseen Town02. We report the mean and standard deviation across
seeds and bold the learning-based approach with highest mean. DT(m) is De-
cision Transformer conditioned on the maximum return in the dataset. DT(t) is
DT with a hand tuned conditional return. AP(t) is the best autopilot controller
from the distribution used to collect the data. 30

3.3 We train and evaluate each method using 3 seeds on the public Leaderboard
testing routes. We report the mean and standard deviation across seeds. Driv-
ing scores (DS) are calculated using the official Leaderboard evaluator. For
both driving score and route completion (RC) (%) a larger value is better.
DT(m) is Decision Transformer conditioned on the maximum return in the
dataset. DT(t) is DT with a hand tuned conditional return. AP is the autopilot
controller we used to collect the dataset. 31

4.1 We report results with averages and standard errors over 3 different seeds of
running the 200 different episodes. ↑ and ↓ indicates that higher or lower
numbers are better respectively. We bold the results with the best mean. 45

4.2 We report results with averages and standard errors over 5 different seeds of
running the 36 different routes. We bold the results with the best mean. Route
Completion (RC) is the percentage of the route completed. Infraction Penalty
(IP) is a multiplier that gets lower with each infraction or collision. Driving
scores (DS) are calculated by multiplying the RC score and IP score for each
route. Higher is better for all of these metrics. 48

5.1 We report results with averages and standard errors over 3 different seeds of
running the 200 different episodes. ↑ and ↓ indicates that higher or lower
numbers are better respectively. We bold the results with the best mean. 66

5.2 We report nuPlan driving scores on the Test14-random and Test14-hard splits,
run with reactive closed-loop simulation (R-CLS). Higher is better, with a max
theoretical score of 100. For each of the Test14-random and Test14-hard splits,
we bold the best results. The approaches denoted with * are our own imple-
mented baselines that leverage the same pre-trained forecasting model as our
approach, but in different ways. For approaches denoted with †, we use the
reported results from the PlanTF paper. 68

xiv

CHAPTER 1

Introduction

Imagine a situation where a vehicle is exiting a crowded parking lot after a football game.

Most drivers know that in bumper-to-bumper traffic, they should behave proactively by

cautiously asserting themselves to make space for themselves and progress forward. While

this is intuitive for human drivers, these highly interaction-dense scenarios are a major

challenge for current autonomous vehicles. In these situations, we require a robust model

of how other agents might behave, and crucially, how they might dynamically respond to

our own actions.

However, many autonomous driving systems separate prediction of the surrounding

agents and motion planning for the ego-vehicle into two distinct processes. Separating

these modules limits the ego-vehicle’s potential to anticipate how other agents will react to

its own actions and how it could dynamically adapt to different behaviors from surrounding

traffic. Thus, these traditional methods that separate prediction and planning can easily lead

to suboptimal plans in interactive scenarios, like exiting a parking lot or merging on a high-

way, when they do not account for these dynamic mutual interactions. To avoid these issues

and unify prediction and planning, autonomous vehicles need to predict how surrounding

agents will interact with the ego-vehicle’s potential actions, and adjust the ego-vehicle’s

plan accordingly in a closed-loop manner. Making these interactive predictions is partic-

ularly challenging due to the complex multimodal stochasticity of pedestrians and traffic.

Other agents’ trajectories often strongly depend on information that is not directly available

to the ego-vehicle, such as their intended goals or driving styles. Depending on the given

traffic situation, the same ego-vehicle trajectory could be met with substantially different re-

sponses from the surrounding agents. For example, when merging onto a highway, vehicles

in the target lane could yield to the ego-vehicle, speed up to make room for the ego-vehicle,

or ignore the ego-vehicle, depending on both their driving style and the ego-vehicle’s ac-

tions. In this thesis, we study how we can use deep learned models to address these issues

1

and perform joint prediction and planning in these complex stochastic environments.

1.1 Related Work

Algorithm
Mutually
Reactive

Probabilistic
Planning

Enumerates
Modes

Multi-Agent
Forecasting

Symphony [50] ✓ ✗ ✗ ✓

hoplan [47] ✗ ✓ ✗ ✓

GameFormer [49] ✗ ✗ ✗ ✓

PDM-Hybrid [29] ✗ ✗ ✓ ✓

Lookout [24] ✗ ✓ ✓ ✓

MFP [106] ✓ ✗ ✓ ✓

CfO [92] ✓ ✓ ✗ ✓

MB2PO (Ours) ✓ ✗ ✗ ✗

SPLT (Ours) ✓ ✓ ✓ ✗

P2DBM (Ours) ✓ ✓ ✓ ✓

HOLOS (Ours) ✓ ✓ ✓ ✓

Table 1.1: Comparison of how different algorithms use forecasting for online motion plan-
ning or offline policy learning through simulation. Mutually Reactive refers to forecasting
in an auto-regressive manner where all the traffic agents and ego-agent continually react
to each other in a closed-loop. Probabilistic Planning indicates whether the planned ego-
agent behavior is properly evaluated with respect to the stochastic distribution of potential
responses from the environment. Enumerates Modes indicates whether planning considers
all the distinct behavior modes of the learned distribution for the ego-vehicle. Multi-Agent
Forecasting indicates whether the dynamics model used for planning represents the other
vehicles and pedestrians in the scene as a multi-agent system instead of a unified stochastic
environment. We find that our work is the only one that ticks all of these boxes.

In order for autonomous vehicles to be both safe and proactive when interacting with

unknown stochastic agents, they need to be able to anticipate the various ways other agents

could react to their own actions and how they could adapt to differing behaviors from sur-

rounding traffic. In this thesis, we explore 4 different characteristics of how prediction is

used with planning that we believe should facilitate safe yet proactive driving in real inter-

active scenarios:

1. Mutually Reactive. Plans that the environment will continually react to the ego-

vehicle, and that the ego-vehicle can continually react to the environment in closed-

loop.

2

2. Probabilistic Planning. Expects the environment response to be stochastic, and

plans appropriately over this uncertainty.

3. Enumerates Modes. Explicitly considers all the different important modes of be-

havior available to the ego-vehicle during planning.

4. Multi-Agent Forecasting. Takes advantage of the inherent structure in autonomous

driving and explicitly represent the environment as a multi-agent system with dy-

namic agents and road objects in order to facilitate better predictions.

As outlined in Table 1.1, only our work has all of the 4 previously mentioned charac-

teristics. Most prior approaches that incorporate forecasting into planning, either directly

online or indirectly through offline policy learning, do not perform mutually reactive and

probabilistic planning where they anticipate potential stochastic interactions between the

ego-vehicle and surrounding traffic. Many of these approaches [47; 49; 29; 24] instead use

open-loop predictions for the ego-vehicle and the surrounding traffic and do not directly

consider the stochastic joint interactions between all the agents in the future. Therefore,

they cannot anticipate the future mutual reactions between the ego-vehicle and the sur-

rounding agents in the scene, which can lead to suboptimal behavior like the “frozen robot

problem.” In contrast, approaches that do jointly model the interactions between the ego-

vehicle and the other agents in the scene [50; 106] in a closed-loop manner often do not

properly evaluate the ego-behavior with respect to the stochastic distribution of potential

responses from other agents in the scene. Instead, approaches like [50] search for one

promising joint scene outcome, which can lead to overly optimistic behavior, as we explore

in Chapter 3.

While CfO [92] does do mutually reactive and probabilistic planning, it does not ex-

plicitly enumerate the learned behavior modes during planning and it is only evaluated in

scenarios with one other interacting agent. Many recent works in deep motion forecasting

with real-world driving data [76; 38; 106; 49; 77] output GMMs or other similar distri-

bution models with explicit and discrete multimodal outputs. One of the main benefits of

representing these multimodal distributions this way is that it makes it trivial to enumerate

the important behavior modes of the learned distribution even if the distributions of these

modes are imbalanced. In Chapter 4, we demonstrate how these type of explicit multi-

modal models can facilitate efficient planning and lead to superior performance. Finally,

if we want to use learned multi-agent aware models for motion planning in real-world au-

tonomous driving, it is important that we use architectures that can actually scale to large

3

and diverse real-world datasets like graphical neural networks [93; 24; 25], Transformers

[112; 38; 76; 77], or similar architectures [111].

1.2 Contributions

In this thesis, we discuss how we start with offline learning for robotic control in a simple

deterministic setting, and how we iteratively build on our work until we conclude with

tackling learning for motion planning in complex autonomous driving scenarios with real-

world driving data.

In Chapter 2, we discuss our work in using deep learning for joint prediction and closed-

loop planning in an offline reinforcement learning (RL) framework. This work explores the

benefits of combining uncertainty-aware model-based RL and behavior-regularized model-

free RL in a unified model-based policy optimization (MBPO) [51] framework. We evaluate

our method in the simpler robotic locomotion setting where there is no multimodal stochas-

ticity. Even in this simpler setting, this work demonstrates the importance of considering

many different potential interactions between the agent and the environment during the

learning and decision making process, and how this can be distilled into a policy.

In Chapter 3, we discuss our work that directly tackles the difficulties of planning in

stochastic multimodal settings. Even approaches that jointly perform prediction and plan-

ning by forecasting potential futures for the entire scene can produce biased optimistic solu-

tions by not disentangling the effects of the agent’s actions and the multimodal stochasticity

in the scene. Specifically, approaches that search for the single most likely or best potential

joint scene outcome can lead to dangerously optimistic behavior because the surrounding

environment could potentially respond in an entirely different way to the same agent ac-

tions. In this work, we propose a method that addresses this optimism bias by explicitly

disentangling learned policy and world models, which allows us at test time to search for

policies that are robust to multiple possible futures in the environment.

In Chapter 4, we discuss how we can scale to more complicated multi-agent driving

scenarios like merging in dense traffic by using a Transformer-based [112] traffic forecast-

ing model as our world model. By using Transformer neural networks with a vector-based

representation for all the relevant entities in the scene, such as vehicles, pedestrians, traffic

lights, and map points, we can learn a model that makes more accurate marginal predictions

for all the dynamic agents in the scene. In particular, we use an architecture that explicitly

predicts a multimodal trajectory distribution for each agent by conditioning on a discrete

set of distinct learned anchor embeddings to predict a variety of potential behaviors. These

4

specific design choices for the model allow us to efficiently plan online by evaluating many

distinct behaviors for the ego-vehicle with respect to a variety of potential responses from

all the other agents in the scene. We find that our approach of using these powerful forecast-

ing models with fully reactive closed-loop planning outperforms our baselines on a suite of

challenging CARLA scenarios in dense traffic, while avoiding the “frozen robot problem.”

In Chapter 5, we discuss how we can use ideas from offline model-based RL to learn

a high-level policy offline that selects over a discrete set of pre-trained skills to perform

effective control without additional online planning. Specifically, we use the discrete set of

predictions from our multimodal forecasting model from Chapter 4 to represent a discrete

set of observation-conditioned skills for driving. Then, we use our traffic forecasting model

as a world model to explore a variety of counterfactual simulations offline in order to learn

the high-level policy that selects over these skills. We find that for training this high-level

policy, using stochastic and closed-loop simulations to evaluate different counterfactual

behaviors for the ego-vehicle leads to the best performance compared to learning from other

simulation methods like “log-replay.” Ultimately, we find that our approach to learning a

hierarchical motion planning policy scales well with real-world driving data and achieves

state-of-the-art results on the extensive nuPlan [40] benchmark for a solely learning-based

policy when evaluated in closed-loop reactive simulation. Additionally, we find that our

planning approach from Chapter 4 achieves results that are competitive on nuPlan [40] with

other hybrid approaches that use learning to guide online planning.

Finally in Chapter 6, we conclude by discussing some high-level takeaways from our

various projects and discuss some interesting directions for future work.

5

CHAPTER 2

Offline Learning with Conservative Counterfactuals

An appealing alternative to online data collection is to use learned models to collect ad-

ditional hallucinated data in a model-based policy optimization [51] or Dyna [105] frame-

work. This could allow the agent to explore different counterfactual alternatives beyond

those previously experienced in the dataset. The main issue is that given limited data, these

learned models can fail to generalize to different ego actions or fail to capture the full distri-

bution of potential environment responses. Thus, these hallucinated trajectories can easily

diverge from reality and cause the agent to learned a biased and suboptimal policy.

In this chapter, we present an algorithmic framework that combines ideas from behavior-

regularization and uncertainty-aware model-based learning into an approach that allows us

to effectively train a policy with both offline data and model-based hallucinated trajecto-

ries. Specifically, we first train a policy using behavior-regularized model-free RL. Then,

we fine-tune our results with our algorithm Model-Based Behavior-Regularized Policy Op-

timization (MB2PO). We find that our approach is able to combine the upside of these

approaches and achieve competitive or superior results on most of the Gym-MuJoCo [108]

tasks in the D4RL [36] benchmark.

2.1 Related Work

While there exist many off-policy RL methods that can learn to solve a large variety of

complex control tasks and can scale with large amounts of online data collection, these

methods often perform quite poorly when run completely offline without any online data

collection. Recently, there have been several methods that made progress in improving the

capabilities of offline RL. For a general overview of the field of offline RL, we refer the

reader to Levine et al. [64]. Here we will discuss some recent works that are particularly

relevant to our approach.

6

2.1.1 Behavior-Regularized Model-Free RL

A variety of recent offline RL approaches have incorporated constraints or penalties on the

learned policy’s divergence from the empirical behavioral policy. However, most behavior-

regularization or policy-constraint methods require the behavioral policy to be represented

explicitly in order to estimate these divergences or to enforce their policy constraint [63].

In contrast, AWAC [74] or CRR [115] is able to incorporate a KL divergence constraint

without explicitly representing the behavioral policy. They do this by reformulating the

policy-constrained RL optimization equations into a form that resembles behavioral cloning

re-weighted by the exponential of the advantage. Wang et al. [115] demonstrates that this

method can effectively learn complex control tasks purely from offline data, and Nair et al.

[74] demonstrate that performance can even be improved with further online data collection.

In this work, we demonstrate that these properties make AWAC work exceptionally well

when used for initialization as well as when used for fine-tuning with model-based policy

optimization (MBPO) [51].

2.1.2 Uncertainty-Aware Model-Based RL

Model-based (MB) RL algorithms have several natural advantages for offline RL compared

to model-free RL algorithms. First, MB RL algorithms rely on supervised learning, which

provides more robust gradient signals compared to bootstrapped learning and policy gradi-

ents. Second, learning a dynamics model often provides strong task-independent supervi-

sion, which allows MB RL algorithms to learn from sub-optimal trajectories. These benefits

make generalization easier, and can allow MB RL algorithms to surpass the performance

of the demonstrated data. In fact, in many environments, MB RL methods have already

been effective in learning with offline or randomly collected datasets. Recently, incorpo-

rating uncertainty estimation techniques from supervised learning in MB RL has demon-

strated further improvement in both online [20] and offline deep RL. In particular, two

recent works, Model-Based Offline Policy Optimization (MOPO) [124] and Model-Based

Offline Reinforcement Learning (MoREL) [55], have demonstrated impressive results by

incorporating uncertainty-aware MB RL with the Dyna [105] style algorithm MBPO [51].

Both methods use these models to create conservative MDPs that have a lower potential

expected sum of rewards compared to the true MDP. By performing policy optimization in

the conservative MDP through MBPO they are able to learn a conservative policy that can

outperform the demonstrated trajectories. However, these methods can often fail to recover

the expert policy even though it was demonstrated in the dataset. We believe that this is

7

largely due to a lack of effective methods for estimating epistemic uncertainty for neural

network regression.

2.2 Preliminaries

In RL, we treat the environment as a Markov decision process (MDP) represented as

(S,A, T,R, ρ0, γ), where S denotes the state space, A denotes the action space, T (s′|s, a)
represents the probabilistic transition dynamics, R is the reward function, ρ0 is the initial

state distribution, and γ ∈ (0, 1) is the discount factor.

For MDPs, a trajectory is a sequence of states and actions τ =

{s0, a0, s1, a1, · · · , sT , aT }. Each trajectory has corresponding rewards rτ =

{r0, · · · , rT }. The discounted return for a specific timestep is Rt =
∑T

i=t γ
t−iri.

The goal in RL is to find a policy that maximizes the expected discounted return

E
[∑T

t=0 γ
trt

]
.

In offline RL, we are a given a fixed dataset Dβ consisting of trajectories collected by

some behavioral policy πβ in the environment. Without collecting additional data, we must

learn a policy that will be effective immediately upon deployment.

2.3 Model-Based Behavior-Regularized Policy Optimization for
Offline Fine-Tuning

For many offline datasets, it could be much harder to learn an effective model of the MDP

than to learn a reasonable policy. This is especially the case when there is low variability

or insufficient coverage of the state and action space in the collected dataset, or in envi-

ronments with complex observations, like images, or long horizons. To overcome these

issues, recent works [124; 55] have leveraged uncertainty estimation methods in order to

construct conservative MDPs that use soft penalties or hard thresholds on model uncer-

tainty to discourage deviating from the confident regions. However, these methods rely

on the efficacy of ensemble-based neural network uncertainty estimation methods, which

currently are not particularly effective at estimating epistemic uncertainty in regression

settings. Therefore, we propose Model-Based Behavior-Regularized Policy Optimization

(MB2PO). In MB2PO, we follow the offline uncertainty-aware MB framework of MOPO,

but use the behavior-regularized model-free algorithm AWAC (also known as CRR-exp)

instead of SAC [41] for policy optimization.

8

2.3.1 Conservative MBPO

In this work, we use MOPO [124] as a basis for our conservative MBPO, due to its sim-

plicity and prior effective results on the D4RL benchmarks [36]. In MOPO, they construct

a conservative MDP by augmenting the reward function as follows

r̃(s, a) = r̂(s, a)− λu(s, a)

where r̂ is the learned estimate of the reward and u is the estimated uncertainty for the

model transition. Note that this general formulation for a conservative MDP has also been

explored in other prior work such as [37]. Still, we specifically follow MOPO in using the

maximum standard deviation across an ensemble of probabilistic dynamics models as our

measure of uncertainty.

While in theory, with well-calibrated uncertainty estimates and a proper tuning of λ,

this should lead to only safe policy improvements over the behavioral policy, in practice it

seems that MOPO is often unable to recover expert-level performance when it is provided

in the offline dataset. This is unsurprising given that it is hard to generate well-calibrated

epistemic uncertainty estimates in regression settings, and there will inevitably be model

errors that will lead to overestimated Q-values.

To address these issues, we use policy-constrained model-free RL in MB2PO. In policy-

constrained model-free RL, we attempt to optimize the following policy objective

π =π Ea∼π(·|s)[Q
π(s, a)] (2.1)

s.t. DKL(π(·|s)∥πβ(·|s)) ≤ ϵ

If we estimate both π and πβ to be roughly Gaussians with similar variances, then

the KL constraint becomes an ℓ2 constraint on the policy mean. Because we expect our

models to be locally accurate around the data, this constraint can help ensure that we stay

in the effective region of the estimated MDP even if we have poorly calibrated uncertainty

estimation. Additionally, Janner et al. [51] demonstrated that the difference between the true

expected returns J(π) and the expected returns Ĵ(π) of an MDP induced by an approximate

model can be bounded by

J(π) ≥ Ĵ(π)−
[
2γrmax(ϵm + 2ϵπ)

(1− γ)2
+

4rmaxϵπ
1− γ

]
where rmax is the maximum reward, γ is the discount factor, ϵm is a bound on the total

9

variation distance (TVD) between the learned model and the true model, and ϵπ is a bound

on the TVD between π and πβ on the demonstrated states. By Pinker’s inequality, bounding

the KL divergence also bounds the TVD. Therefore, by leveraging policy constraints in the

policy optimization in MBPO, we can reduce the gap in expected returns and improve the

algorithm’s robustness to model errors.

2.3.2 Behavior-Regularized Model-Free RL with AWAC

For performing behavior-regularized policy optimization, we use AWAC [74], also known

as CRR-exp [115] due to its impressive results in offline RL and its ability to be fine-tuned

with additional online data.

By enforcing the KKT conditions [79; 81; 39], we can derive an analytic solution to

Equation 2.1, where the Lagrangian is

L(π, α) = Ea∼π(·|s) [Q
π(s, a)] + α(ϵ−DKL(π(·|s)∥πβ(·|s)))

We can substitute Aπ(s, a) for Qπ(s, a) because it does not affect the optimum and get the

closed-form solution

π∗(a|s) = 1

Z(s)
πβ(a|s) exp

(
Aπ(s, a)

α

)
where Z(s) is the normalizing partition function. In order to project this solution into our

policy space, we update our parameters by minimizing DKL(π
∗∥πθ). This leads to the

following iterative update

θk+1 =θ Es,a∼D

[
− log πθ(a|s)

1

Z(s)
exp

(
Aπk(s, a)

α

)]
(2.2)

One of the major benefits of using AWAC is that we can leverage behavior regularization

in a principled manner without needing to explicitly represent the behavioral policy. This

is particularly important in 3 major cases: 1. when there are not enough data to learn the

behavioral policy; 2. when the data were collected by a variety of different policies or

sources; 3. when the data were collected by a policy outside of your policy class, such as a

human expert or a controller that leverages hidden state information.

Additionally, we can view AWAC as a reweighted behavioral cloning algorithm. Unlike

SAC [41] and DDPG [65], it does not rely on the reparametrization trick or gradients of your

learned Q-function to perform policy updates. This allows us to use a wider ranger of policy

10

classes, which in this work we take advantage of by using a tanh-squashed GMM with 5

components. We suspect that there are also some additional benefits to not depending on

the gradients of the learned Q-function, which might be particularly bad in offline settings,

but leave further investigation to future work.

An important thing to note with AWAC is that we can influence the implicit behavioral

penalty by controlling the source of the data we train with. This holds, for example, if we

perform a series of policy updates only using data collected by the previous policy iterate.

Then, we are implicitly performing a trust-region policy update like TRPO [96] and PPO

[97] of the form

πk+1 =π Ea∼π(·|s)[Q
πk(s, a)]

s.t. DKL(π(·|s)∥πk(·|s)) ≤ ϵ

In fact, if we train on data collected by the last n policy iterates, then we are ap-

proximately constraining our policy to a weighted sum of the previous n policies π
(n)
k =

1
n

∑n−1
i=0 πk−i and damping our learning process in the policy space.

In our work, we train with a ω ∈ [0, 1] portion of the data from offline data collected

by πβ and a (1 − ω) portion of the data collected online from the last n policy iterates in

the conservative MDP defined by our learned models. Therefore, we are approximately

optimizing the following objective

Ea∼π(·|s)

[
Q̂π(s, a)

]
− α

(
ωDKL(π(·|s)∥πβ(·|s)) + (1− ω)DKL(π(·|s)∥π(n)

k)
)

Therefore, by using AWAC as the policy optimization algorithm in MB2PO, we can

easily perform behavior-regularized policy optimization with soft damped trust region up-

dates in the conservative MDP to reduce the effects of model errors and poor uncertainty

estimation.

2.3.3 Model-Based Behavior-Regularized Policy Optimization

We first initialize our policy by training with AWAC solely on the offline data. Next for fine-

tuning with MB2PO, we train an ensemble of probabilistic dynamics models represented by

neural networks that output a diagonal Gaussian distribution over the next state and reward:

{T̂ i
θ(st+1, r|st, at) = N (µi

θ(st, at),Σ
i
θ(st, at))}Ni=1

11

We construct a conservative MDP that at every time step uses a randomly drawn dynam-

ics model from {T̂ i
θ}Mi=1 to determine the next state transition. Additionally, we incorporate

a penalty on the largest predicted standard deviation among the dynamics models as a prac-

tical means of penalizing both epistemic and aleatoric uncertainty.

Algorithm 1: MB2PO
Train πθ, Qϕ with AWAC with samples from Dβ

Train an ensemble of N probabilistic dynamics
{T̂ i

θ(st+1, r|st, at) = N (µi
θ(st, at),Σ

i
θ(st, at))}Ni=1 on the data in Dβ

for epoch k= 1, 2, . . . do
Initialize empty replay buffer Dk

for 1, 2, . . . , batchsize do
Sample state s1 from Dβ

for j = 1, 2, . . . , h do
aj ∼ π(sj)
Uniformly sample T̂ from {T̂ i}Ni=1

sj+1, rj ∼ T̂ (sj , aj)
r̃j = rj − λmaxNi=1 ∥Σi(sj , aj)∥F
Add sample (sj , aj , r̃j , sj=1) to Dk

end
end
Draw ω portion of the samples from Dβ and the rest uniformly from
{Dk−i}99i=0 to train πθ and Qϕ with AWAC

end

Then, we alternate between collecting data with our current policy in the conservative

MDP and updating our policy and Q-network. When collecting data in the conservative

MDP, we collect h-length truncated trajectories starting from states in the original offline

dataset. By collecting data this way, we are able to collect a variety of imagined data without

relying on long model rollouts, which would inevitably lead to compounding errors. When

performing training updates, we sample ω ∈ [0, 1] of the data from the original dataset

and the remaining 1 − ω uniformly from the last 100 policy iterates. Our full algorithm is

outlined in Algorithm 1.

2.4 Experiments

In our experiments, we want to demonstrate that we can further improve performance by

fine-tuning with MB2PO. We evaluate this by fine-tuning the policy and Q-function, after

running AWAC for 500000 gradient steps, with MB2PO. In particular, we compare our re-

12

Task and Dataset AWAC
AWAC+
MB2PO
(Ours)

MOPO BEAR BRAC CQL

halfcheetah-random 18.8± 1.5 25.5± 1.1 35.4 ± 2.5 25.5 28.1 35.4
hopper-random 11.2± 0.1 11.4± 0.1 11.7 ± 0.4 9.5 12.0 10.8
walker2d-random 1.4± 3.0 0.2± 2.3 13.6 ± 2.6 6.7 0.5 7.0
halfcheetah-medium 40.9± 0.3 40.7± 0.2 42.3± 1.6 38.6 45.5 44.4
hopper-medium 35.0± 3.9 55.7± 14.6 28.0± 12.4 47.6 32.3 58.0
walker2d-medium 74.3± 1.6 80.4± 0.9 17.8± 12.7 33.2 81.3 79.2
halfcheetah-expert 106.7± 0.6 105.1± 1.3 108.2 −1.1 104.8
hopper-expert 108.1± 3.8 105.5± 10.5 110.3 3.7 109.9
walker2d-expert 100.5± 12.3 107.4± 1.1 106.1 0.0 153.9
halfcheetah-med-expert 104.7± 1.6 104.8 ± 1.1 63.3± 38.0 51.7 45.3 62.4
hopper-med-expert 75.1± 15.9 79.1± 13.5 23.7± 6.0 4.0 0.8 111.0
walker2d-med-expert 81.8± 18.9 86.2± 35.5 44.6± 12.9 26.0 66.6 98.7
halfcheetah-mixed 42.3± 0.3 55.6 ± 0.6 53.1± 2.0 36.2 45.9 46.2
hopper-mixed 30.1± 0.9 72.6 ± 25.5 67.5± 24.7 25.3 0.8 48.6
walker2d-mixed 16.9± 1.7 61.9 ± 8.2 39.0± 9.6 10.8 0.9 26.7

Table 2.1: Here we compare AWAC (averaged over 4 seeds) and AWAC + MB2PO (Ours)
(averaged over 4 seeds) to recent offline model-free and model-based RL algorithms. We
report the normalized score where 100 is the performance of a fully trained SAC policy
and 0 is the performance of a uniform random policy. For the other methods, we report
the results from their own papers or the original D4RL paper. “-expert” results for MOPO
were not included in the original paper and thus are omitted here. We include the standard
deviation for our results and for previous results if reported. We bold the highest mean.

sults to other model-free offline RL algorithms: BRAC-v [120], BEAR [61], and CQL [62]

on the Gym-MuJoCo tasks [108] in the D4RL benchmark. In addition, we also compare

these results to the MB offline RL algorithm MOPO.

Results in Table 2.1 demonstrate that AWAC on its own can get reasonable results on

all the datasets and can approach state-of-the-art results on “-expert” and “-med-expert”

datasets. Unlike the other behavior-regularized model-free methods, AWAC and CQL are

able to get near or fully recover expert-level performance when trained on the “med-expert-

” datasets. This indicates that AWAC and CQL are more robust, as there is less of a drop in

performance compared to other methods when incorporating additional sub-optimal trajec-

tories.

Next, we fine-tune the trained AWAC policies with MB2PO. For each task and dataset,

we pretrain an ensemble of 5 probabilistic dynamics models for 100000 gradient steps on

the behavioral dataset. We then perform MB2PO for 500 iterations. Each iteration consists

of collecting 1000000 steps from h-length truncated trajectories in the conservative MDP,

13

which should run in a few seconds on modern GPU hardware, followed by 1000 AWAC

gradient steps.

Results in Table 2.1 demonstrate that our method is effective in improving the perfor-

mance over AWAC in 11 of the 15 tasks. In particular, we find that MB2PO significantly

improves the performance on all of the “-mixed” datasets. These strong results in the “-

mixed” datasets demonstrate that our model-based fine-tuning method can be especially

beneficial when there is sufficient variation in the behavioral dataset. Additionally, the no-

ticeable improvement in some of the “-medium” and “-med-expert” datasets demonstrates

that our fine-tuning can be effective even when the data were collected by one or two poli-

cies. In the 4 cases where MB2PO fine-tuning degrades performance, it is always negligible

and never over 3 points.

Our method is quite competitive with CQL, as we beat it for 7 of the 15 tasks, and

generally our results are quite comparable. One important note is that our method signifi-

cantly outperforms CQL in all of the “-mixed” datasets. These results indicate the potential

benefits of leveraging learned models when there is variety in the offline dataset.

Finally, our method outperforms MOPO, the most direct comparison, in 8 out of

the 12 comparable tasks. These results demonstrate the benefits of combining behavior-

regularized model-free RL with uncertainty-aware MB RL, as we are able to get the best

of both worlds. We are able to recover high-level performance when available like the “-

expert” and “-med-expert” datasets, and we can still generalize and learn to outperform the

best observed trajectory, as demonstrated in the “-medium” and “-mixed” datasets.

2.5 Conclusion

In this chapter, we proposed an algorithmic framework that leverages the benefits of both

behavior-regularized model-free methods and uncertainty-aware model-based methods. We

do this by first training an initial policy with the offline model-free AWAC algorithm. Then,

we fine-tune with our MB2PO algorithm. We perform this by learning uncertainty-aware

models that are used to create a conservative MDP. Then, we continue to use AWAC to

further update our policy and Q-function in this conservative MDP. By using AWAC, we

are able to perform policy optimization while implicitly constraining the learned policy’s

KL divergence to the behavioral policy. We demonstrate that this two-stage process allows

us to get the best of both worlds between behavior-regularized model-free methods and

uncertainty-aware model-based methods. Specifically, the initial AWAC training allows us

to often recover the best-performing behavior in the dataset, and MB2PO fine-tuning can

14

allow us to generalize and outperform the demonstrated behavior.

15

CHAPTER 3

Addressing Optimism Bias in Sequence Modeling for
Reinforcement Learning in Stochastic Environments

Our work in the prior chapter and most related works in offline RL have focused on the

mainly deterministic D4RL [36] benchmarks and a variety of weakly stochastic Atari [5]

benchmarks. Therefore, there has been limited focus on the difficulties of deploying such

methods in largely stochastic domains. In this work, we instead focus specifically on

stochastic safety-critical domains like autonomous driving. In autonomous driving, un-

derstanding the stochastic and multimodal nature of traffic is critical to safe and robust

performance. For example, the same turning sequence for the ego-vehicle could lead to a

successful traversal of an intersection or a crash depending on the unknown intentions of the

other agents. In these stochastic settings, it is important to disentangle the effects of the pol-

icy and the world dynamics when evaluating different potential outcomes. In this chapter,

we will present our work that does explicit disentangling of the policy and world models,

which allows us at test time to search for policies that are robust to multiple possible futures

in the environment.

3.1 Introduction

Recent works have achieved impressive results in a variety of sequence modeling problems

from NLP [10; 86; 85] to trajectory prediction [77; 68; 84; 125] by leveraging powerful

Transformer [112] models. Inspired by these numerous successes, several recent works

[16; 52] have explored ways of reformulating sequential decision-making problems in the

offline RL framework as a single sequence modeling problem. In particular, these ap-

proaches jointly model the states, actions, and rewards as a single data stream with a high-

capacity Transformer. These Transformer-based methods are able to outperform the behav-

16

ioral policy at test time by either conditioning on desired outcomes when picking actions

or leveraging the model to search for high-reward trajectories. The main benefit of this

paradigm is that it avoids many of the complexities involved in modern model-free and

model-based offline RL algorithms.

There are 2 major issues with treating RL as a single sequence modeling problem like

the words or characters in a NLP problem. (1) States and actions are fundamentally differ-

ent concepts. The agent always has complete control over its action sequences, but often

has only limited influence on the resulting state transitions. In adversarial or stochastic en-

vironments, the same action in the same state can lead to potentially different outcomes,

which affects the likelihood or feasibility of achieving a desired result. This leads to the

more practical issue (2), which is that we often need to perform different optimizations

over the policy actions and the potential state transitions. Generally, we want to find the

action that maximizes reward, but either in expectation over possible future states or with

respect to the worst case scenario. Thus, in safety-critical domains or adversarial games

we often want to perform a maximum over potential actions and a minimum over possible

futures in the environment. Thus in these types of environments, special considerations are

needed to ensure effective planning during deployment. Ozair et al. [78] demonstrates sim-

ilar issues when deploying MuZero [95] with different MCTS [23] frameworks in chess.

They find that planning with a single-player variant of MuZero that treats the other player

as an unknown part of the environment results in a catastrophic drop in performance relative

to the traditional two-player adversarial framework.

In stochastic or adversarial settings, the deployment strategies described in recent se-

quence modeling approaches for offline RL will lead to overly optimistic behavior because

they do not properly disentangle the effects of the policy and world dynamics on the out-

come. Specifically, they are biased to believe that the environment will cooperate with

them because those sequences are most likely to lead to desired high returns. In order to ad-

dress this optimism bias in prior approaches, we develop a method called SeParated Latent

Trajectory Transformer (SPLT Transformer), which learns separate generative Transformer

models for the policy and dynamics. Because we focus on the autonomous driving domain,

we represent each of these models as a discrete latent variable Variational Auto-Encoder

(VAE) [57] as inspired by prior work [106]. By training two separate discrete latent vari-

able VAE models, we can efficiently search over different possible ego behaviors and their

interactions with different possible environment responses. We demonstrate how this plan-

ning approach allows us during test-time to search for policies that are robust to many

possible futures in the environment.

17

3.2 Related Work

Many recent works have explored leveraging high-capacity sequence models in sequen-

tial decision making problems as well as in autonomous driving. Most of the works in

the former area have focused on deterministic environments and thus struggle in stochastic

and multimodal problems like autonomous driving. Many of the works applying sequence

models to autonomous driving have focused specifically on joint trajectory forecasting for

all the vehicular and pedestrian agents in the scene. These methods have been effective in

capturing the multimodal stochastic nature of autonomous driving, but often do not con-

sider how these approaches should be leveraged to generate a robust driving policy during

deployment. In this work, we develop a method that learns separate sequential policy and

dynamics models entirely from offline data. Then, we demonstrate how these models can

be leveraged at test-time to perform robust planning solely from quantities inferable from

an ego-centric perception system.

3.2.1 Sequence-Modeling for Offline RL

Two major works that have explored reformulating the offline RL problem as a single se-

quence modelling problem are Decision Transformer [16] and Trajectory Transformer [52].

In stochastic environments like autonomous driving, both approaches can act optimistically

because they fail to account for the uncontrollable factors in the environment that can affect

the ability to achieve a specific return.

Decision Transformer is a return-conditioned model-free method that learns a

Transformer-based policy that takes in the historical states and actions and a target return,

and outputs the action that is most likely to lead to a trajectory sequence that achieves the

target return. In stochastic environments, the difficulties come from picking a suitable target

return without strong prior knowledge of the testing domain. This is especially problematic

because the distribution of possible returns is heavily dependent on the stochastic transitions

of the environment. Thus, setting a large target return that is not always feasible can lead to

overly aggressive and optimistic behavior, while setting any lower target return could lead

to sub-optimal behavior in situations where the environment does unroll favorably.

Trajectory Transformer is a model-based method that trains a Transformer-based tra-

jectory model that can hallucinate potential trajectories in the environment. In stochastic

environments, the main concern is how you use this model to properly search for a suitable

next action or trajectory-sequence given the uncontrollable stochastic transitions. Naively

deploying NLP-style beam search as proposed in the original Trajectory Transformer pa-

18

per [52] without accounting for these uncontrollable stochastic transitions will be biased

to explore and pick trajectories where the environment just so happens to unroll favorably.

This will similarly lead to optimistic behavior, which can be dangerous in safety-critical

environments. To address this issue, a different searching procedure needs to be used that

can reason about the states and actions separately. One possible avenue for doing this step-

wise would be to explore the different variants of MCTS described in Ozair et al. [78], but

that would lead to an approach that scales exponentially with the search horizon, while our

approach only scales linearly with the search horizon.

s0

a1 a2

s11 s12 s21 s22

r = 10 r = −10 r = 6 r = 4

50% 50% 50% 50%

Figure 3.1: Simple stochastic MDP where being optimistic leads to suboptimal behavior.

In order to illuminate the optimism bias in Decision Transformer and Trajectory Trans-

former, consider the simple discrete and stochastic MDP in Figure 3.1 where there are only

5 states {s0, s11, s12, s21, s22} ∈ S and 2 actions {a1, a2} ∈ A. The agent always starts in

s0. Then, if the agent takes a1 it will stochastically transition from s0 → s11 or s0 → s12

with equal probability. Similarly, if the agent takes a2 it will stochastically transition from

s0 → s21 or s0 → s22 with equal probability. The reward at each state is: 0 for s0, 10

for s11, -10 for s12, 6 for s21, and 4 for s22. The trajectory terminates upon reaching any

state besides s0. In this MDP, the expected return for taking a1 is 0 and for taking a2 is 5.

Let’s assume that our dataset consists of samples from a uniform random policy. Now, the

optimism bias in Trajectory Transformer comes from the modified beam search they use

at test-time. They jointly unroll the next action and resulting state, reward, and return and

then filter based on which trajectories have the highest estimated return. In this setting, the

trajectory model should properly predict all possible transitions. Then, their beam search

19

will chose to take action a1 because it will lead to the highest return of 10 when it predicts

the transition s0 → s11. However, picking a1 is obviously suboptimal in expectation, even

if a1 could lead to the best possible return. The optimism bias for Decision Transformer

comes from picking a fixed target return and their default heuristic of setting it to be the

highest in the dataset. If we condition on getting a return of 10 (the highest possible), then

it will clearly pick action a1 as that is the only action where the probability of achieving the

desired outcome is nonzero. Note that this is an issue for any return-conditioned method,

not just Decision Transformer. The inclination for both methods to select a1 because there

is a possibility it has the highest return, even though a2 is a better action in expectation and

in the worst-case scenario is the specific optimism bias we allude to in this proposal.

We validate the optimism bias in these approaches in a toy multimodal autonomous

driving task, and further demonstrate how addressing these issues leads to our method

achieving superior performance.

3.2.2 Conservatism and Risk-Sensitive RL

Our work is also related to the fields of risk-sensitive RL and conservatism for offline RL.

Most prior works in risk-sensitive RL focus on learning a policy that is optimized not for ex-

pected return, but rather some risk-sensitive profile over the distribution of returns [72; 100].

Many approaches accomplish this by learning a distributional Q-function that estimates the

full distribution of potential returns [26] rather than just the expected return. Instead of

learning a distributional or risk-sensitive Q-function, we use a learned Transformer world

model to hallucinate possible future trajectories and pick a robust behavior that does well

in the worst-case predicted future.

Prior works in offline RL have explored different methods of incorporating conser-

vatism in both model-based [124; 55] and model-free [62; 58] RL methods. However,

offline RL approaches generally leverage conservatism specifically to discourage the agent

from visiting state-actions that are outside the training distribution where the learned mod-

els could fail to generalize [64]. In contrast, in this work we explore using a conservative

approach to address the difficulties of planning in stochastic environments in safety-critical

domains, like autonomous driving.

3.2.3 Trajectory Prediction in Autonomous Driving

Many recent works in trajectory prediction leverage attention-based models [106; 19] and

in particular Transformer neural networks [77; 68; 84; 125] to make accurate long-term

20

predictions in complex traffic situations. These methods can learn to attend specifically to

the relevant factors in both the target and surrounding vehicles’ recent trajectories in order

to make predictions that are consistent with the surrounding traffic. Additionally, many tra-

jectory prediction approaches have incorporated VAEs [106; 84; 125] to facilitate covering

the different possible modes of future traffic trajectories. However, these approaches have

mostly been evaluated on different variations of prediction error on a held out test-set with

little focus on the effectiveness of leveraging these models for long-term online planning,

like for the CARLA [31] NoCrash [22] or Leaderboard1 benchmarks. In this work, we also

leverage Transformers and VAEs in order to make multimodal trajectory predictions. How-

ever, we focus specially on learning models that can be effectively used for robust search

during deployment on an ego vehicle.

Still, there are some works that have leveraged multi-agent trajectory prediction for

online planning in simulation. Rhinehart et al. [92] explores similar problems with planning

interactive behaviors under uncertainty, but in different multi-agent planning frameworks

for autonomous driving. We focus, on the other hand, on addressing the optimism bias that

arises in prior single-agent Transformer-based offline RL approaches by training separate

world and policy latent models with discrete time-consistent latent variables, so that we can

do robust planning efficiently. Cui et al. [24] also evaluates using closed-loop simulation,

but only for a limited horizon of 18 seconds. Additionally, they do not incorporate a learned

ego-vehicle policy in planning like our work, and instead do MPC with a learned cost

function evaluated over different predicted potential traffic scene futures.

3.2.4 Learning Behavior for Self-Driving

Recently, there have been several works that have focused on learning behavioral policies

for autonomous driving from offline datasets. Most of this work revolves around performing

imitation learning on the behavioral policy of a privileged autopilot agent in simulation

[14; 83; 15]. In our work, we also use a privileged autopilot to collect our offline dataset in

simulation. Instead of just learning the behavioral policy, we use these data to learn both a

multimodal policy, and a multimodal world model that allows us to do efficient and robust

search at test-time. Later, we demonstrate how this search leads our method to outperform

pure imitation learning.
1https://leaderboard.carla.org/

21

3.3 Preliminaries

3.3.1 Transformers

Transformers [112] are a neural network architecture that use several stacks of self-attention

blocks to process an arbitrary collection of inputs. By leveraging positional encodings and

a causal-attention map, Transformers can be used as sequence models for autoregressive

generation. In this work, we mostly use a similar GPT-based [85] architecture as DT [16].

In particular, we use the same linear layer + layer normalization to project the raw inputs

into the embedding dimension. We use 4 self-attention blocks with 8 self-attention heads.

While our high-level details are more inspired by DT, our code and GPT implementation

are based on the publicly available TT [52] codebase2.

3.3.2 Variational Auto-Encoder

Our method uses conditional variational autoencoders (CVAE) [102] as generative policy

and world models that we can use to generate realistic and multimodal candidate trajectories

for test-time search. Thus, in this section we give a general overview of variational autoen-

coders (VAE) [57]. The goal of a VAE model is to generate samples d̂ that are within the

distribution of a training set D = {di}Ni=1. Thus the model should be trained to maximize

the likelihood of all training points di. VAEs accomplish this by sampling a latent variable

z from some prior p(z) and training a decoder pθ(d|z) to convert the latent variable into a

sample. However, optimizing this model is often intractable and thus Kingma and Welling

[57] introduces an encoder qϕ(z|d) that can be used to instead optimize the evidence lower

bound (ELBO) on the log-likelihood of the data

log p(d) ≥Ez∼qϕ(z|d)[log pθ(d|z)]−DKL(qϕ(z|d)||p(z))

The expectation term represents the reconstructions loss, and the KL Divergence term acts

as a regularizer that keeps the encoder output close to the prior. Thus with a trained VAE

model, we can sample a z from our prior p(z) and pass it to our decoder pθ(d|z) to generate

a sample from the desired distribution.

β-VAE When training VAEs with high-capacity models like Transformers or CNNs

[60], the decoders often learn to ignore the high-entropy stochastic latent variables. There-

fore, Higgins et al. [45] proposed a modification to the standard ELBO loss and introduced
2https://github.com/JannerM/trajectory-transformer

22

a coefficient β to the KL Divergence term. Lowering this hyperparameter β below 1 re-

duces the regularizing effect on the latent variables and thus makes it easier for the models

to incorporate the latent variables into their predictions. We find β ∈ [0.0001, 0.01] to be

effective for our experiments.

3.4 Separated Latent Trajectory Transformer

In this section, we describe how we train two separate Transformer-based discrete latent

variable VAEs to represent our policy and world models, and how we leverage these models

for robust planning at test-time. Figure 3.2 contains an overview of the entire SPLT model

architecture.

3.4.1 Discrete Latent Variable VAE

In order for our models to be useful for search, they need to (1) be able to produce a good

range of candidate behaviors for any given situation for the ego vehicle and (2) cover a

majority of the different modes of potential responses from the agents in the environment.

Towards this end we train separate Transformer-based VAEs for both the policy and world

models. We make the specific design choice for the stochastic latent variables for both mod-

els to be discrete and consistent over the entire planning horizon. This allows us to tractably

enumerate all possible candidate trajectories without exponential branching, which enables

efficient search at test-time. The intuition is that the policy latent variables should corre-

spond to different high-level intentions or policies for the ego-vehicle, like whether to tail

another vehicle aggressively or keep your distance. Similarly, the world latent variables

should correspond to different possible intentions of the observable vehicles, like whether a

vehicle in the opposing lane will go straight or turn through the intersection. Additionally,

the world latent variables should capture other events like lights changing or cars suddenly

appearing in the sensing range after rounding a corner.

3.4.2 Encoders

Both the world encoder qϕw and policy encoder qϕπ use the same architecture and receive

the same trajectory representation. Specifically, they both take in K-length trajectory se-

quences of the form τKt = {st, at, st+1, at+1, · · · , st+K , at+K} and output a nw or nπ

23

Figure 3.2: Overview of the SPLT Transformer architecture for generating a reconstruction
prediction. The World Model (top) attempts to reconstruct the discounted returns, rewards,
and states while the Policy Model (bottom) attempts to reconstruct the action sequence.

dimensional discrete latent variable with each dimension having c possible values

zw ∼ qϕw(·|τKt), zw ∈ {1, · · · , c}nw

zπ ∼ qϕπ(·|τKt), zπ ∈ {1, · · · , c}nπ

The core modules for both encoders are Transformers based on the GPT architecture similar

to TT and DT, except we do not perform any masking of the attention. Thus, all elements

in the Transformer can fully attend to every other component in the sequence. We take

the mean of the Transformer outputs for all the elements in order to coalesce the entire

trajectory into a single vector representation vw and vπ. Finally, we pass each of these

outputs into a small MLP that outputs the nw and nπ independent categorical distributions

for zw and zπ respectively. Thus, the conditional distributions for zw and zπ are repre-

sented as nw and nπ independent multinomial distributions respectively. We leverage the

straight-through gradient estimator [6] as described in Hafner et al. [42] in order to make

the sampling procedure fully differentiable for training.

3.4.3 Policy Decoder

The policy decoder uses a similar input trajectory representation

τ ′t
k = {st, at, st+1, at+1, · · · , st+k} and also takes in the latent variable zπ. The goal of the

policy decoder is to estimate pθπ(at+k|τ ′tk; zπ) ∀k ∈ [1,K], so that we can predict the most

likely next action in the trajectory. We represent this decoder with a causal Transformer

model that is very similar to the ones used in Decision Transformer. Beyond excluding

the returns-to-go as inputs, the main difference in our model is that we need to incorporate

24

the latent variable zπ. In this work, we incorporate zπ by first converting it into a single

embedding vector, similar to the positional encodings used in other Transformer works,

and add it to all the state and action embeddings. We make this design choice instead of

inputting the latent variable as another element in the sequence because our method makes it

harder for the decoder Transformer to learn to ignore the latent variable, which is a common

issue when using high-capacity models in VAEs.

For simplicity, we represent our output distribution as a unit-variance isotropic Gaussian

with the mean outputted by our deterministic decoder fπ

pθπ(at+k|τ ′tk; zπ) := N (fπ(τ
′
t
k, zπ), I)

3.4.4 World Model Decoder

The world model decoder is very similar to the policy decoder, except that its goal is to

estimate pθw(st+k+1|τkt ; zw), pθw(rt+k|τkt ; zw), pθw(Rt+k+1|τkt ; zw) ∀k ∈ [1,K] so that

we can predict the most likely next state, reward, and discounted return in the trajectory. The

world model decoder is similarly represented with a causal Transformer and incorporates

its latent variable zw in the same manner as the policy decoder. The major difference is that

the world model decoder has 3 separate heads to output the 3 different required quantities.

The output distributions are similarly represented as unit-variance isotropic Gaussians with

the means outputted by the different heads of the deterministic decoder fw

pθw(st+k+1|τkt ; zw) := N (fs
w(τ

k
t , z

w), I)

pθw(rt+k|τkt ; zw) := N (f r
w(τ

k
t , z

w), I)

pθw(Rt+k+1|τkt ; zw) := N (fR
w (τkt , z

w), I)

3.4.5 Variational Lower Bound

In order to train our CVAEs, we wish to minimize the standard evidence lower bound

(ELBO) on the log-likelihood of the behavioral data for the policy model

Ezπ∼qϕπ

[
K∑
k=1

log pθπ(at+k|τ ′tk; zπ)

]
−DKL(qϕπ(z

π|τKt)||p(zπ)) (3.1)

25

and the world model

Ezw∼qϕw

[
K∑
k=1

log pθw(st+k+1, rt+k, Rt+k+1|τkt ; zw)

]
−DKL(qϕw(z

w|τKt)||p(zw))

(3.2)

The main difference between our CVAE formulation and the standard formulation is that

we use independent discrete uniform distributions as our prior

p(zπ)i := U{1, c} ∀i ∈ [1, nπ]

p(zw)i := U{1, c} ∀i ∈ [1, nw]

because our latent variables are discrete and multidimensional. This prior makes the KL-

Divergence terms in equations (3.1) and (3.2) equivalent to independently maximizing the

entropy of each dimension of zπ and zw respectively. This regularizes the decoders and

encourages the VAEs to leverage all available combinations of discrete latent variables.

Because we use the straight-through gradient estimator, we can differentiate through

the multinomial sampling of the latent variables. Thus for both CVAEs, we can jointly train

the encoders and decoders end-to-end by directly optimizing objective (3.1) for the policy

models and objective (3.2) for the world models.

3.4.6 Training

During training, we sample batches of K-length trajectories from our offline dataset. The

states and actions of these trajectories are passed into the world and policy encoders in

order to generate the corresponding zw and zπs. Each zπ and its corresponding trajectory

are passed into the policy decoder, where it predicts all actions in the trajectory through

the standard teacher-forcing procedure [118]. Each zw and its corresponding trajectory are

passed into the world decoder, where it predicts all the next states, rewards, and discounted

returns in the trajectory also through the teacher-forcing procedure. The policy decoder

and encoder parameters are updated to minimize equation (3.1), and the world decoder and

encoder parameters are updated to minimize equation (3.2). We train all our models with

the Adam optimizer [56] with a learning rate of 1e−4 and weight decay 0.1. Additionally,

we normalize all raw values by subtracting the mean and dividing by the standard deviation

of the dataset.

26

3.4.7 Planning

In this section, we describe how we can use our trained conditional policy and world model

decoders in order to perform efficient and robust search at test-time.

First, we describe how we can generate a single candidate trajectory given a spe-

cific zπ and zw. Assume that we are currently at a state st and we have stored a his-

tory of the last k steps of the trajectory τ ′t−k
k = {st−k, at−k, st−k+1, at−k+1, · · · , st}.

Our goal is to predict a possible continuation of that trajectory over the planning hori-

zon h, which corresponds to τ̂k+h
t−k = {st−k, at−k, · · · , st, ât, ŝt+1, · · · , ŝt+h, ât+h}. Ad-

ditionally, we want to estimate the future discounted returns for our candidate trajectory

R̂(τ̂ht) =
∑h

i=0

[
γir̂t+i

]
+ γh+1R̂t+h+1.

In order to predict these quantities, we alternatively make autoregressive predictions

from the policy and world models. Specifically, we alternate between predicting the next

action ât+i = fπ({st−k, at−k, · · · , st, ât, · · · , ŝt+i}, zπ) and the next state, reward, and

return

ŝt+i+1, r̂t+i, R̂t+i+1 = fw({st−k, at−k, · · · , st, ât, · · · , ŝt+i, ât+i}, zw). We repeat this

alternating procedure until we reach the horizon length h and compute τ̂ht and its corre-

sponding R̂(τ̂ht).

Because we use discrete latent variables, we can enumerate all possible combinations

of zπ and zw. There are cnπ possible values for zπ and cnw possible values for zw, which

leads to cnπ+nw different possible candidate trajectories. In this work, we found c = 2,

nw ≤ 4, and nπ ≤ 4 to be sufficient for all our explored problems. Thus, we only need to

consider a maximum of 256 different combinations of latent variables, which is a standard

batch size in many deep learning applications. Therefore, it is easy to run the candidate

trajectory generation procedure previously described for all combinations of latent variables

on modern GPU hardware.

Without loss of generality we can order the possible values of zπ and assign each one

an index i ∈ [1, cnπ]. We can do the same for zw and assign each one an index j ∈ [1, cnw].

Then, we will label the candidate trajectories that are produced when conditioned on the

ith zπ and jth zw as τ̂ij and its corresponding return R̂ij . Then, we select the candidate

trajectory that corresponds to maximinj R̂ij . We execute the first action of τ̂i∗j∗ and repeat

this procedure at every timestep. The intuition behind this procedure, is that we are trying

to pick a policy to follow that will be robust to any realistic possible future in the current

environment. Later, we will show how this procedure allows our method to be opportunistic

in safe situations and cautious in more dangerous situations.

27

3.5 Experiments

For all experiments, we compare our SPLT Transformer method to Trajectory Transformer

(TT), Decision Transformer (DT), and Behavioral Cloning (BC) with a Transformer model.

3.5.1 Illustrative Example

We start with a toy autonomous driving problem that we designed to be very simple, but

that still demonstrates the dangerous optimism bias in prior Transformer-based approaches.

Metric SPLT
(Ours) BC DT(m) DT(e) TT TT(a)

Return 78.5 ±0.2 58.0 ±1.0 28.5 ±0.4 68.9 ±0.4 58.8 ±0.5 67.3 ±5.6
Success(%) 100.0 ±0.0 100.0 ±0.0 50.0 ±0.0 100.0 ±0.0 100.0 ±0.0 91.7 ±5.8

Table 3.1: We evaluate all methods with 3 seeds and on 100 different trials in the environ-
ment. We report the mean and standard deviation across seeds. DT(m) is DT conditioned
on the maximum return in the dataset. DT(e) is DT conditioned on the expected return of
the best controller used to collect the dataset. TT(a) is TT with more aggressive search
parameters. For reference, the best IDM controller in the distribution of controllers used to
collect the data gets a return of 78.6. We bold the highest mean.

In this toy problem, we use our own simple simulation environment where we have an

ego vehicle trailing a leading vehicle with both travelling in the same direction on a 1-D

path. Both vehicles are represented using point-mass dynamics, but only the ego vehicle is

controllable. Half of the time the leading vehicle will begin hard-braking at the last possible

moment in order to stop just before the 70m mark before continuing. The other half of the

time the leading vehicle will immediately speed up to the maximum speed and continue for

the entire trajectory. The ego vehicle cannot infer beforehand whether the leading vehicle

will brake or not, and thus this is a completely stochastic event from the perspective of the

ego vehicle.

The observation space is the absolute position and velocity of both the ego and leading

vehicle. The action space is just the acceleration for the ego vehicle clipped to [−1, 1]m/s2.

The maximum velocity for both vehicles is 10m/s and the minimum velocity is 0m/s, so

the vehicles cannot travel backwards. The ego vehicle is rewarded for the distance traveled

at each timestep, but is given a penalty of −100 if it crashes. The trajectory ends after 10s

or if the ego vehicle crashes into the leading vehicle. The ego vehicle is initialized at 0m

with a random velocity in [7.5, 10]m/s. The leading vehicle is initialized randomly within

[10, 20]m and with the same velocity as the ego vehicle.

28

For the offline dataset, we collected ∼100000 steps with a distribution of different IDM

[109] controllers that demonstrate a wide range of aggressiveness, and includes some tra-

jectories where the IDM controller is too aggressive and collides with the leading vehicle.

We show our results in Table 3.1.

For DT, we find that conditioning on the maximum return in the dataset (DT(m)) leads

to crashes every time the leading vehicle brakes. If we condition on the mean return of

the best controller used to collect the dataset (DT(e)), then we get the opposite behavior.

The agent does not crash, but also does not take full advantage of the situations where the

leading vehicle does not brake, and thus underperforms. While we were able to tune the

conditional return in order to get a reasonable return result of 73.4, we found the optimal

value to be quite arbitrary. Thus, we believe this parameter will be very difficult to tune

in more general and complex stochastic environments, where the possible returns would be

very hard to estimate beforehand without significant prior knowledge of the specific testing

scenario.

For TT, we find that the results depend heavily on the scope of the search used. When

we use the default parameters from their codebase for the beam search (TT), we get results

very comparable to behavior cloning, which is quite suboptimal. When we reduce the low-

probability filtering to allow for more aggressive search (TT(a)), we find that the method

sometimes crashes into the leading vehicle because it picks the predicted trajectory where

both vehicles will continue at max speed. Similar to DT, we expect tuning the search

aggressiveness for TT to be difficult without significant prior knowledge of the intended

testing scenario.

For our method, we find that our world VAE is able to predict both possible modes for

the leading vehicle’s behavior. Additionally, the policy VAE seems to be able to predict

a range of different trailing behaviors. Thus, our method is able to properly search for an

effective and robust behavior and achieves results comparable to the best IDM controller in

the distribution used to collect the data.

3.5.2 NoCrash

Next, we evaluate our method on the CARLA [31] NoCrash [22] benchmark. For these

experiments, we run the 0.9.11 version of CARLA at 5fps. We assume access to a global

route planner that can generate dense waypoints to our goal, an accurate localization system,

and a perception system that can identify the state of any vehicle or traffic light directly in

front of us within a limited sensing range. In our experiments, we obtain these ground truth

29

quantities from the CARLA simulator, as commercial self-driving car efforts already have

systems to provide these quantities. Thus, we leave implementing such systems as beyond

the scope of this project.

The goal in the CARLA NoCrash benchmark is to navigate in a suburban town to a

desired goal waypoint from a predetermined start waypoint. The benchmark takes place in

the CARLA towns Town01 and Town02 and consists of 25 different routes in each town.

For our observation we use a low-dimensional vector representation consisting of: (1) the

relative heading error to the next target waypoint, (2) the distance from the center of the

target lane, (3) the ego vehicle speed, (4) the relative distance to the leading vehicle or the

max sensing range if there is no leading vehicle in range, (5) the speed of the leading vehicle

or the max speed if there is no leading vehicle in range, (6) the distance to the upcoming

red light or the max sensing range if there is no red light in range. There are 2 actions: the

steering and the target velocity for a PID controller. The ego car is rewarded for traveling

faster and receives a small penalty for deviating from the target lane and a large penalty

for crashing or incurring a traffic infraction. We terminate the trajectory whenever the car

crashes, incurs an infraction, times out, or reaches the goal.

We collect our offline dataset with autopilot agents with a distribution of different levels

of aggressiveness. This aggressiveness corresponds to the parameters of a time-to-collision-

based controller that is used to adjust the vehicle’s speed in response to any leading vehicles.

Additionally, the autopilots use a PID controller for steering, and always immediately brake

if they are too close to a red light. We collect ∼300000 steps with these autopilots in the

Town01 routes in the dense traffic setting. Due to the variations in aggressiveness, these

autopilots demonstrate a wide range of imperfect behaviors like crashing into other vehicles

or driving unnecessarily slow during data collection.

Metric SPLT
(Ours) BC TT DT(m) DT(t) AP(t)

Success (%) 99.7 ± 0.5 97.7± 1.9 87.0± 4.9 93.0± 6.4 96.0± 3.7 100.0
Speed (m/s) 2.79± 0.08 2.74± 0.09 2.85± 0.06 2.93± 0.04 2.96 ± 0.04 2.75

Table 3.2: We evaluate all methods with 3 seeds and on 4 different runs through all 25
routes in the unseen Town02. We report the mean and standard deviation across seeds and
bold the learning-based approach with highest mean. DT(m) is Decision Transformer con-
ditioned on the maximum return in the dataset. DT(t) is DT with a hand tuned conditional
return. AP(t) is the best autopilot controller from the distribution used to collect the data.

We evaluate all methods by training on this Town01 dataset and then running in the

unseen Town02 routes with the dense traffic setting. We depict our results in Table 3.2.

30

We find that TT and DT conditioned on the max return (DT(m)) have a lower success rate

than BC, which we suspect is due to the optimism bias we previously described leading

to unnecessary collisions and infractions. When we tune the target return for DT(t) it can

outperform BC in terms of average success rate and speed. However, similar to the toy

problem, we found the tuned return to be quite arbitrary. Without online evaluation or prior

knowledge of the testing domain, it would be quite difficult to estimate the best target return,

especially considering that the testing scenarios are different from the training scenarios.

Our SPLT method achieves a higher average success rate than all of our learning-based

baselines, while still maintaing a higher average speed compared to BC. We suspect that

our positive results are due to our method’s planning procedure, which avoids the optimism

bias of TT’s naive beam search.

3.5.3 Leaderboard

Metric SPLT
(Ours) BC DT(m) DT(t) TT AP

DS 52.4 ± 5.8 46.4± 6.9 41.8± 4.8 51.0± 12.5 42.3± 11.7 84.6± 1.5
RC (%) 90.6± 8.0 91.0 ± 9.4 73.6± 5.9 84.1± 11.0 66.4± 9.0 99.6± 0.3

Table 3.3: We train and evaluate each method using 3 seeds on the public Leaderboard
testing routes. We report the mean and standard deviation across seeds. Driving scores (DS)
are calculated using the official Leaderboard evaluator. For both driving score and route
completion (RC) (%) a larger value is better. DT(m) is Decision Transformer conditioned
on the maximum return in the dataset. DT(t) is DT with a hand tuned conditional return.
AP is the autopilot controller we used to collect the dataset.

Next, we evaluate our method on a modified version of the CARLA Leaderboard3

benchmark. For these experiments, we run the 0.9.10.1 version of CARLA at 10fps. The

only additional assumption we make is that our perception system can identify the state of

any vehicles or pedestrians directly surrounding us in all directions within a limited sensing

range.

The CARLA Leaderboard benchmark is much more comprehensive and requires the

agent to perform more involved maneuvers, like lane-changing in urban and highway sit-

uations. The major difference from our NoCrash setup is that we introduce 8 additional

variables to the observation, corresponding to the distance and speed of surrounding ve-

hicles in each of the 4 diagonal directions. We collect ∼1.2 million time steps using the
3https://leaderboard.carla.org/

31

autopilot from the Transfuser [83] codebase4 in the CARLA Challenge 2021 training routes

for our offline dataset. We evaluate all methods on the publicly available testing routes. We

depict our results in Table 3.3.

Our method achieves the best overall driving score among all of our learning baselines.

Driving score is a comprehensive indicator for driving quality that accounts for route com-

pletion, collisions, and traffic infractions. The increased complexity in the Leaderboard

scenarios leads to the world being less predictable and cooperative from the ego-vehicle’s

perspective. Thus, our SPLT Transformer method, which disentangles the world dynam-

ics and the agent decision-making process, is better equipped to handle this stochastic and

uncooperative environment. We believe that TT in particular underperforms relative to our

SPLT method because its naive beam search does not plan appropriately for the range of

possibly uncooperative multimodal outcomes.

3.6 Conclusion

In this chapter, we presented our SeParated Latent Trajectory Transformer (SPLT Trans-

former) method, which trains two separate policy and world VAE models that can be used

at test-time to efficiently perform robust search. We discussed how our approach avoids

the optimism bias that other Transformer-based approaches for offline RL struggle with in

stochastic settings. Finally, we demonstrated how our method outperforms these baseline

approaches on a variety of autonomous driving tasks.

Figure 3.3: Visualization of a failed lane change in CARLA during our Leaderboard exper-
iments. The black car is the ego-vehicle, and it is tasked with following the route indicated
with black squares. The black ego-vehicle initiates a lane change despite the faster trailing
yellow vehicle in the target lane, which leads to a collision.

4https://github.com/autonomousvision/transfuser

32

While our approach does achieve the best driving score among our different learning-

based approaches, it still underperforms by a large margin compared to the autopilot used

to collect the dataset. Empirically, we find that many of the failures of our SPLT approach

come from interactions with vehicles that are approaching from the side or from behind in a

different lane, which is particularly relevant when lane changing or navigating intersections.

These failures seem to be caused by the limitations of our observation space and model rep-

resentation. With the current observation space, it is almost impossible for the ego-vehicle

to anticipate a vehicle approaching from these directions, especially if the approaching ve-

hicle is traveling at a significantly different speed from the ego-vehicle, as illustrated in

Figure 3.3. Thus, in the next chapter we will discuss how we can incorporate recent ad-

vancements in multi-agent traffic forecasting models to better handle these different types

of interactive scenarios.

33

CHAPTER 4

Tractable Joint Prediction and Planning over Discrete
Behavior Modes for Urban Driving

In order to better model the complex multi-agent interactions in real-world traffic, we move

away from abstract feature spaces and instead shift towards entity-centric representations

that are explicitly aware of the various other relevant entities in the scene like vehicles,

pedestrians, and road elements. We take inspiration from many recent works in motion

forecasting [76; 77; 38] and use a Transformer [112] neural network to process and learn

the complex interactions between all these various entities in the scene. While these types

of models have been used to achieve impressive results in multimodal trajectory forecast-

ing, effectively integrating these models with downstream planners and model-based con-

trol approaches is still an open problem. Although these models have conventionally been

evaluated for open-loop prediction, we show that they can be used to parameterize autore-

gressive closed-loop models without retraining. We consider recent trajectory prediction

approaches which leverage learned anchor embeddings to predict multiple trajectories, find-

ing that these anchor embeddings can parameterize discrete and distinct modes representing

high-level driving behaviors. In this chapter, we present an approach that performs fully re-

active closed-loop planning over these discrete latent modes, allowing us to tractably model

the causal interactions between agents at each step. We validate our approach on a suite

of more dynamic merging scenarios, finding that our approach avoids the “frozen robot

problem” which is pervasive in conventional planners.

4.1 Introduction

In dense interactive situations like exiting a crowded parking lot after a sports game or

merging during rush hour traffic, we require a robust model of how other agents might be-

34

have, and crucially, how they might respond to our own actions. To this end, significant

progress has been made towards learning trajectory forecasting models from large datasets

of urban driving logs [106; 111; 77; 38; 11]. State-of-the-art trajectory prediction models

can capture the highly stochastic and multimodal distribution of outcomes in driving with-

out needing to manually engineer complex human driving behaviors. In this work, we aim

to explore fully leveraging these learned models for model-based planning and control.

Planning and prediction are usually treated as separate modules within a conventional

autonomy stack. Usually a forecasting model will make predictions for all of the actors

in the scene, and then plan open-loop against a set of possible open-loop trajectories for

other agents in the scene. While this may ensure collision avoidance, it can cause the

agent to behave overly conservatively, resulting in the “frozen robot problem” — if we are

highly uncertain about nearby actors, then the only perfectly safe course of action is to do

nothing, which can result in deadlock. Ideally, we should perform fully reactive closed-

loop prediction and planning, such that the ego-vehicle actions directly affect the predicted

behaviors of other agents, and vice versa.

Unfortunately, performing fully reactive closed-loop planning over a learned forecast-

ing model is often computationally intractable. The distribution over agent trajectories is

highly multimodal and subject to change at every timestep, which means the space of pos-

sible outcomes grows exponentially over time. It is also impossible to enumerate and check

every possible future, since the distribution is continuous. Existing work [92] performs

fully reactive closed-loop planning by first parameterizing agent policies as continuous la-

tents in a normalizing flow [88], and then optimizing the ego-agent policy with respect to

some differentiable cost function, but these approaches have previously only been shown

to work at small scale with one or two other interacting agents. We show later that our

approach scales favorably on more challenging tasks.

In this chapter, we devise a novel approach for performing fully reactive closed-loop

planning over multimodal trajectory prediction models. We consider recent approaches to

trajectory prediction that leverage learned anchor embeddings [111; 38; 77] to predict a

diverse set of trajectories. While these approaches have previously only been evaluated for

open-loop prediction, to the best of our knowledge ours is the first work to show how these

models can also be used for closed-loop planning for dense urban driving. Our contributions

are as follows:

• Closed-loop prediction with open-loop training. We show how trajectory predic-

tion models trained open-loop with learned anchor embeddings can be used to pa-

rameterize autoregressive closed-loop models without the need for retraining.

35

• Fully reactive closed-loop planning over discrete latent modes. We propose a

novel planning approach which leverages discrete latent modes to do planning over a

compact latent behavior space. Our planning approach scales linearly with the num-

ber of agents and the planning horizon, as opposed to naive search, which scales ex-

ponentially. This allows us to tractably model the causal interactions between agents

when performing autoregressive rollouts; the predictions for other agents react to

the planned ego-trajectory and vice versa. Similar to [92], this allows us to perform

fully reactive closed-loop planning, but over discrete rather than continuous latent

conditioned policies. We find that our discrete formulation ensures diverse trajectory

proposals and improves downstream planning performance.

We validate our approach called Predicting and Planning over Discrete Behavior Modes

(P2DBM) on a challenging suite of highly interactive urban driving scenarios, outperform-

ing the demonstrator agent and several strong baselines. Our P2DBM approach also beats

the previous state-of-the-art in CARLA [31] on the Longest6 benchmark [83] when evalu-

ated at realistic speeds.

4.2 Related Work

4.2.1 Trajectory forecasting models for driving

There has been a substantial amount of work towards training trajectory forecasting mod-

els for urban driving [91; 106; 11; 77; 38; 111]. However, none of these papers performs

evaluations on closed-loop planning tasks beyond doing log-replay on offline driving logs

for short time horizons. Most closely related to the model we use are Scene Transformer

[77] and AutoBots [38], which both use vector-based input representations and large Trans-

former models. Our model can support many state-of-the-art forecasting approaches, and

only requires minimal modification to most in order to facilitate planning. Note that al-

though all of these approaches are trained to perform open-loop prediction, our P2DBM

approach demonstrates how they can be adapted to perform fully reactive closed-loop pre-

diction and planning without needing to substantially modify the training procedure.

4.2.2 Planning over learned forecasting models

There is a substantial amount of literature on planning over learned forecasting models

for driving. Several prior works plan over imitation models, but do not perform closed-

loop planning, instead optimizing a fixed ego-trajectory [90; 126; 103; 67; 48]. Another

36

common approach is to not model the influence of the ego-agent on other agents [44; 127;

24]. As we will demonstrate, these approaches are unable to perform proactive planning

when forced into close interactions with dense traffic. Model-based reinforcement learning

approaches such as [119; 54] can theoretically leverage learned models and perform closed-

loop prediction and planning for autonomous driving. However, many of these approaches

have been restricted to small state spaces and have not been shown to perform well on more

difficult closed-loop driving environments. In particular, we argue that rich vector-based

state representations such as the one used in this work are key to effective prediction and

planning. [49] models joint interactions between agents using a game-theoretic framework

and evaluates planning performance in simulation, but does not use online fully reactive

closed-loop planning like our approach.

The most similar work to ours in the literature is CfO [92], which also does fully reac-

tive closed-loop planning for driving in CARLA. The tasks they consider are significantly

simpler than the ones considered in this paper – they only consider interactions with one

other vehicle (we consider up to 100). Their approach also relies on an autoregressive

normalizing flow model which, to our knowledge, has not yet been scaled to larger-scale

datasets, whereas our model architecture is similar to other Transformer-based forecasting

models in the literature which have been deployed at scale.

4.2.3 Learning to drive in CARLA

Most competing approaches in CARLA [31] are based on imitation learning [14; 15; 13;

83; 18]. While most approaches focus on the visual imitation setting, our closest competitor

is PlanT [87], which also does imitation learning, but operates in a similar setup to ours,

where we assume the perception problem is solved. Imitation learning approaches rely

on collecting optimal demonstrations, which can be challenging as we scale up to harder

scenarios and more realistic data collection settings. We show that unlike imitation learning,

our P2DBM method is able to out-perform the demonstrator on our suite of challenging

urban navigation tasks.

4.3 Trajectory Prediction

4.3.1 Model formulation

In this section, we present our model architecture used for trajectory prediction. Let xat
denote the state of vehicle a at timestep t (we assume x0t and x1:At are the vehicle states

37

for the ego-vehicle and the rest of the vehicles respectively). We also assume that t = 0 is

the current timestep and x≤T refers to future vehicle states x1, ...xT (ignoring the current

timestep). Our goal is to model the distribution over future vehicle states P (x≤T |x0, c)
where c is some arbitrary conditioning information (omitted from now on for brevity). We

can factorize this distribution autoregressively over time, as is common in conventional

trajectory prediction approaches. In this work we only model marginal (as opposed to

joint) distributions over agents, so we can additionally factorize our distribution as

P (x≤T |x0) =
T∏
t=0

A∏
a=0

P (xat+1|xt) (4.1)

We propose a simple model formulation which captures multimodality and is well-

suited for downstream reactive planning. We represent the high-level multimodal behavior

of the agents with categorical latent variables zat ∈ [1, ...,K] for each agent:

P (x≤T |x0) =
T∏
t=0

A∏
a=0

P (xat+1|xt, zat)P (zat |xt) (4.2)

Following Casas et al. [11], we implicitly characterize P (xat+1|xt, zat) using a deterministic

mapping xat+1 = f(xt, z
a
t). Therefore, we only require our model to learn this 1-step

prediction mapping xat+1 = f(xt, z
a
t), and estimate P (zat |xt). In practice, we find that

training our model to predict H steps open-loop into the future xat+1:t+H = f(xt, z
a
t) is

a useful auxiliary task that improves the training and generalization of the desired 1-step

prediction mapping. Below we show how f(xt, z
a
t) and P (zat |xt) can be parameterized by

a Transformer model.

4.3.2 Network architecture

We design our architecture to predict each of the different modes for all agents indepen-

dently, but all in one pass of the model. Thus, our model outputs a vector with shape

[K,A,H, 4] of potential future states of all agents in the scene, where K is the number of

modes and A is the number of agents. This corresponds to K ×A trajectories of length H ,

where each waypoint consists of position, heading, and speed. The high-level structure of

our model is depicted in Figure 4.1.

Since the number of agents and context objects in the scene is not fixed, we adopt a

flexible vector-based representation of the scene. We consider two types of entities: vehicles

X and scene context objects C which consist of road points, traffic lights, pedestrians, stop

38

Vehicle objects

Context objects

Vehicle features

Encoder

Context features

Vehicle featuresVehicle featuresVehicle featuresVehicle features

Create K copies for each
mode

Broadcast seed
parameters

Seed parametersSeed parametersSeed parametersSeed parameters
Decoder

Vehicle featuresVehicle featuresVehicle featuresVehicle predictions

Predict K trajectories for
each agent

Input scene

Figure 4.1: Forecasting model architecture.

signs, and goal waypoints. Each object is represented by a feature vector that contains

the relevant raw information. For vehicles, this is relative pose, bounding box, speed, and

current effective speed limit. For road points this is relative pose, lane width, whether the

point is in an intersection, and whether one can change lanes to the left and right. For traffic

lights this is relative pose, affected bounding box, and light state. For pedestrians this is

relative pose, bounding box, and speed. For stop signs this is relative pose and affected

bounding box. For goal waypoints this is relative pose and lane width. We assume access

to all agents and context objects within 50m of the ego-vehicle up to a hard cap for each

class of object. Each object is encoded using a MLP (one for each object type) to ensure

all object features have the same dimension D. Then the entire set of input features is

processed by an encoder to produce encoded vehicle features: X ′ = Enc(X , C).
The encoder consists of stacked cross-attention layers where each vehicle cross-attends

to both the vehicle features X and the context features C concatenated together. In practice,

we find that only allowing each vehicle to attend to nearby map features improves per-

formance, so we only attend to the closest 50 map features. Additionally, we use relative

positional embeddings to maintain translational invariance. Prior work [25] has demon-

strated that translational invariance is a useful inductive bias when performing multi-agent

trajectory prediction. When feature ui cross-attends to uj , we compute query Qij , key Kij ,

39

and value Vij as follows:

Qij = W qui

Kij = W k(uj + pij)

Vij = W v(uj + pij)

where W q,W k,W v are learned projection matrices and pij is a learned relative positional

embedding. All features have an associated spatial position (x, y) as well as an orientation

θ. To compute pij , we compute the pose (xj , yj , θj) of feature uj transformed to the frame

of feature ui at pose (xi, yi, θi) to get a relative pose (xij , yij , θij). We then construct a

relative pose feature by concatenating xij and yij , as well as sin(θij) and cos(θij). Finally,

an MLP is used to encode this relative pose feature to obtain pij . Note that we do not

include any absolute positional information in our features, so the network is only able to

observe the relative poses of scene objects.

Following the encoder, our encoded vehicle features are of shape [A,D]. We expand

these features to be of shape [K,A,D] so that each unique combination of mode and actor

corresponds to a single D-dimensional feature. Following [38; 111; 77], we introduce

learnable anchor embeddings M ∈ RK×D for each of the K modes, which are broadcasted

and added to the encoded vehicle features in order to distinguish the different modes. We

learn two separate sets of anchor embeddings: one for the ego-vehicle only, and one for all

other vehicles.

For each combination of agent and mode we get the query features Qa
k = X ′a+Mk with

appropriate broadcasting. Then, we use the decoder to produce K trajectory predictions for

each agent: Yk = Dec(Qa
k,X ′). The decoder consists of two alternating operations: the

query features Qa
k cross-attend to both the encoded vehicle features X ′ and map features C,

and then the query features Qa
k self-attend along the K modes dimension. In other words,

for each agent, the different mode features self-attend to each other. Note that during self-

attention, only features corresponding to the same agent can attend to each other. This

ensures that each agent future is decoded independently.

Finally, the processed query features are passed to a MLP. Since each unique agent and

mode has its own feature, each D-dimensional feature is mapped to a trajectory of length

H , where each waypoint consists of positions, orientations, and speeds. For each agent, we

predict relative to that agent’s coordinate frame, and also for each time step predict in-frame

displacements rather than absolute positions, orientations, and speeds.

40

4.3.3 Training objectives

We train the model to predict the ground truth trajectories using a negative log-likelihood

loss, where each prediction is parameterized by a Gaussian. Note that although we train our

model to parameterize a Gaussian, we always take the mean when unrolling our model. In

order to ensure our model can capture multimodal outcomes, we adopt a winner-takes-all

objective [75] where only the closest of the K predictions will backpropagate its loss. Since

we are doing marginal prediction, our winner-takes-all objective takes the best prediction

for each agent separately. Our model is also trained to output a logit for each mode to

estimate the probability of that mode being used, and this is trained using a cross-entropy

loss with a one-hot target for the closest of the K predictions.

4.4 Closed-Loop Planning over Discrete Behavior Modes

4.4.1 Planning with autoregressive rollouts

Our objective is to find the behaviors for the ego-vehicle that will maximize the discounted

sum of rewards over T timesteps, where γ is a discount factor:
∑T

t γtR(xt, c). Because

the ego-vehicle’s decision in the trajectory is determined by the chosen z0, we can write our

objective as

argmax
z0

E[
T∑
t

γtR(xt, c)] (4.3)

As illustrated in equation 4.2, we can sample x≤T autoregressively using our Transformer

model. For each timestep, we just deterministically decode xat+1 = f(xt, z
a
t) for our latent

sample zat .

Given our specific Transformer architecture, we can perform each autoregressive step

of this procedure with just one forward pass of the model. We generate all the multimodal

predictions at once by leveraging the anchor embeddings and pick the mode prediction that

corresponds to xat+1 = f(xt, z
a
t). Note that even though we trained these models to make

multi-step open-loop predictions, we only need to take the first step of the prediction, which

is xat+1. Then, we can repeat this procedure up to the decided horizon T in order to generate

a sample of x≤T .

41

4.4.2 Evaluating ego-modes

Now in order to perform planning, we need to evaluate Equation 4.3 for specific values

of z0. Since the ego latents z0 = [z00 , ...z
0
T−1] can vary between timesteps, z0 can take

on KT possible values (K possible ego-modes for T timesteps), which is computationally

expensive to fully enumerate.

Empirically, we find that keeping the latent modes consistent across time (i.e. z0 = ... =

zT−1) for both the ego-vehicle and surrounding vehicles leads to good performance, and

thus we use this scheme in our experiments to reduce complexity. We hypothesize that this

works because the learned anchor embeddings encourage the model to learn locally con-

sistent modes since the embeddings are shared globally, i.e., they are not state-conditioned.

Additionally, we find that conditioning on these different modes leads to meaningfully di-

verse behaviors over time. Thus by keeping the latent modes consistent across time, we

only need to compare K ego latent modes to optimize Equation 4.3.

Specifically, we evaluate Equation 4.3 for any specific z0 by generating N samples of

x≤T with the previously described procedure. At the first time step, for each surrounding

agent we sample za0 ∼ P (·|x0) and for the ego-agent we set z00 to the ego mode we are eval-

uating. Then, we continue to set zt = z0 at every subsequent timestep during autoregressive

generation. We estimate E[
∑T

t γtR(xt, c)] by taking the mean over these N samples. We

do this for all K ego modes for z0, and pick the mode with the maximum expected sum of

rewards. We use MPC and execute the first step by using it as a target for a PID controller,

and continue to replan at every step.

This approach enables us to perform fully reactive closed-loop planning. Note that

we are planning over latent modes rather than open-loop trajectories, which means we can

effectively model the causal influence of the ego on other vehicles and vice versa. Addi-

tionally, this allows us to be robust to different responses from other agents, since we can

evaluate each candidate ego latent z0 under a variable number of latent samples.

42

4.4.3 Reward function

Our reward function is as follows:

R(xt, c) = βcollRcoll(xt, c) + βlaneRlane(xt, c)

+ βspeedRspeed(xt, c) + βlightRlight(xt, c)

Rcoll(xt, c) = −1coll

Rlane(xt, c) = 1− |lateral(xt, c)|
0.5× (lane width)

Rspeed(xt, c) = 1− |speed(xt)− (speed limit)|
(speed limit)

Rlight(xt, c) = −1red
speed(xt)
speed limit

where βcoll, βlane, βspeed, and βlight control the relative weight assigned to each reward

term. The collision term Rcoll is -1 and leads to a termination if the ego collides with

another object and 0 otherwise. The lane term Rlane penalizes deviation from the route,

where lateral(xt, c) is the lateral distance of the ego from the closest route segment. The

speed term Rspeed encourages the ego to drive at the speed limit. The light term Rlight

penalizes the ego for having non-zero speed if the light is red; the penalty is scaled by the

driving speed proportional to the speed limit.

4.5 Results

4.5.1 Model training and hyperparameters

For all experiments, we train our method with 4 encoder layers consisting of a cross-

attention layer followed by a feedforward layer, and 4 decoder layers consisting of a cross-

attention layer, self-attention layer, and a feedforward layer. Following [122], we use Pre-

Layer Normalization. For the merging scenarios, we use an embedding size of 128 for a

model with approximately 1.9 million parameters. For the CARLA Longest6 benchmark,

we use an embedding size of 256 for a model with approximately 7.4 million parameters.

We train our model with AdamW [69; 56] with an initial learning rate of 2e−4 with cosine

annealing to 0 as we train for 100 epochs. We train our multimodal model with K = 8

latent modes and use N = 8 samples to estimate expected rewards during planning.

For both experiment settings, we use a visualization range of 50m and observe the

closest vehicles by distance up to a cap of 100 vehicles. For the merging scenarios, we set

43

Figure 4.2: Merge scenario visualization. The red car is the ego-vehicle, the orange arrow
indicates the desired merging behavior, and the blue arrows indicate the flow of traffic in
the target lane.

the coefficients of the cost function as βcoll = 20, βlane = 0.1, βspeed = 1, and βlight = 0,

as there are no traffic lights in these scenarios. For the CARLA Longest6 benchmark, we

set the coefficients of the cost function as βcoll = 20, βlane = 1, βspeed = 1, and βlight = 4.

4.5.2 Merging scenarios

We design a suite of challenging urban navigation scenarios in order to evaluate whether our

P2DBM approach can safely perform proactive maneuvers in dense traffic. We identify 10

distinct merging scenarios that each involve a high degree of interaction with other cars in

the midst of dense urban traffic. These other cars are controlled by CARLA’s internal traf-

fic manager, which uses an adaptive controller with randomly initialized minimum safety

distances and target speeds. In each scenario, the goal is point-to-point navigation where

the goals are specified a priori. Three of these scenarios are visualized in Figure 4.2.

An episode is considered a success if the ego-vehicle reaches the goal without commit-

ting any traffic infractions; otherwise, the episode is considered a failure. A common theme

we found in prior CARLA driving benchmarks was that they rarely assessed the ego-agent’s

assertiveness, instead relying solely on metrics related to collisions and other traffic infrac-

tions. As such, many of the top-performing approaches in CARLA tend to engage in overly

conservative and unrealistic behaviors. To additionally assess the ability of each approach

to be proactive, we introduce an additional infraction type for static episodes, i.e., situations

where the car is stopped for long periods of time.

For each approach, we evaluate it on all 10 merging scenarios, each with 20 different

random traffic initializations for a total of 200 episodes. We separately report success rates,

44

Approach Success (%) ↑ Static (%) ↓ Crash (%) ↓
P2DBM (Ours) 96.5 ± 1.8 2.2 ± 1.0 1.2 ± 0.8
Open-Loop 78.3 ± 2.1 20.5 ± 2.3 1.2 ± 0.2
Multimodal IL 50.2 ± 1.0 46.5 ± 1.5 3.3 ± 0.6
Unimodal IL 51.8 ± 1.6 46.3 ± 2. 1.8 ± 1.0
Continuous Latents 71.8 ± 0.8 24.3 ± 1.4 3.8 ± 0.6
PlanT 67.2 ± 1.2 30.7 ± 0.9 2.2 ± 0.3
Data Policy 68.0 12.5 19.5
Autopilot 85.5 1.5 13.0

Table 4.1: We report results with averages and standard errors over 3 different seeds of
running the 200 different episodes. ↑ and ↓ indicates that higher or lower numbers are
better respectively. We bold the results with the best mean.

static rates, and crash rates for each approach. On these merge scenarios, we compare to

several baselines:

• Multimodal imitation. Same Transformer model as our approach, except we execute

the mode prediction with the highest predicted probability.

• Unimodal imitation. Same Transformer backbone as our approach, except we only

use one mode and only make one prediction.

• Ours w/ open-loop planning. Same model as our proposed approach, except instead

of unrolling our model autoregressively, we run our model once to generate marginal

open-loop predictions for all cars. The planning procedure is the same as in the

closed-loop case, except the trajectory predictions are fixed.

• Ours w/ continuous latent variables. We train a CVAE [102] with Gaussian latent

variables with our Transformer backbone and do sampling-based planning for all

agents (including the ego). The number of samples is equivalent to the total number

of mode combinations expanded by our approach in order to ensure fair comparison.

• PlanT. We compare to PlanT [87], which is an imitation learning approach that is

state-of-the-art on the CARLA Longest6 benchmark. We use the original code im-

plementation of the model.

• Data policy. The configurable heuristic policy used to collect the dataset. We sample

random configuration parameters (e.g. planning horizon, bounding box sizes, etc.) to

generate diverse demonstrations.

45

• Autopilot policy. The best-performing configuration of the data collection policy.

To train all approaches, we collect a dataset of 100K samples using the data policy. We

train our models on all scenarios and share them across baselines where possible. We report

mean and standard error across 3 different model seeds.

Table 4.1 shows the results on the merge scenario suite. Our P2DBM approach outper-

forms the baselines and achieves the highest overall success rate. Notably our method is

the only learned approach which actually outperforms the best-performing heuristic policy

(autopilot). The open-loop variant of our approach performs worse than our closed-loop

approach and has a higher static rate. The open-loop planner cannot predict that other

vehicles will alter their current trajectory if the ego attempts to merge and therefore be-

haves much more conservatively, resulting in more static episodes. On the other hand,

our closed-loop planner will predict that other vehicles will sometimes slow down to al-

low the ego-vehicle to merge. Figure 4.3 shows a qualitative comparison between the open

and closed-loop planners. The imitation policies all have low crash rates due to excessive

static episodes, and generally engage in extremely conservative behavior. This also sug-

gests that the dominant modes in the dataset are highly cautious, even when we explicitly

model multiple modes. However, our P2DBM approach is able to identify and execute the

high-performance modes in the dataset.

Since our choice of discrete latents distinguishes our approach from previous work [92],

we provide a more detailed comparison here between our approach and a CVAE baseline

which uses continuous latents based on a Gaussian prior. We suspect the main reason for

the disparity in performance is that our approach is better able to predict and sample distinct

trajectories. Empirically we find that our discrete latent modes correspond to semantically

different predictions that lead to a greater diversity of closed-loop predictions for both the

ego-vehicle and the surrounding vehicles. On the other hand, taking arbitrary samples from

a CVAE will not necessarily cover the relevant behavior modes, especially in a limited

computation setting. Additionally, our approach explicitly enumerates distinct latent modes

for the ego-vehicle independent of the predicted likelihood under the dataset, so it can more

easily capture less common modes in the data.

4.5.3 Longest6 benchmark scenarios

We also evaluate our approach on the CARLA Longest6 benchmark, which consists of

driving on a difficult subset of the publicly available CARLA Leaderboard routes with

added dense traffic. Unlike the previous scenario suite, these routes are much longer and

46

Figure 4.3: Qualitative example of proactive merging with closed-loop planning. The top
row is from our proposed closed-loop planner and the bottom row is from the open-loop
variant of our planner. Frames are in sequential order from left to right. The closed-loop
planner merges proactively in front of other cars, causing the car behind to yield to the ego-
agent. The open-loop planner does cannot predict that the ego will affect the behavior of
other cars, so it does not attempt to merge.

consist of multiple scenarios defined according to the NHTSA typology.

We found that existing state-of-the-art approaches in CARLA Leaderboard are able to

avoid many of the highly interactive scenarios by simply driving significantly under the

speed limit. For instance, pedestrians on CARLA Leaderboard are regularly spawned to

cross the road in front of the ego-vehicle at a constant speed. Many approaches avoid these

scenarios by driving at a low enough speed such that the ego-vehicle will never be going

fast enough to hit the spawned pedestrians. In general, driving at low speeds substantially

reduces the degree of interaction present in these scenarios.

To circumvent this loophole, we collect demonstration data with an autopilot policy

driving at the speed limit. Specifically, we use the same autopilot to collect the data that

was used in both Prakash et al. [83] and Renz et al. [87], but have the target speed be

the current speed limit instead of a constant 4 m/s. This significantly increases the level of

47

Approach DS ↑ RC ↑ IP ↑
P2DBM (Ours) 51.0 ± 1.2 89.2 ± 1.7 0.582 ± 0.010
Autopilot 44.6 ± 1.6 84.0 ± 1.1 0.546 ± 0.040
PlanT 37.1 ± 1.4 86.1 ± 1.5 0.457 ± 0.017
Multimodal IL 48.4 ± 2.6 83.3 ± 2.1 0.603 ± 0.021

Table 4.2: We report results with averages and standard errors over 5 different seeds of
running the 36 different routes. We bold the results with the best mean. Route Completion
(RC) is the percentage of the route completed. Infraction Penalty (IP) is a multiplier that
gets lower with each infraction or collision. Driving scores (DS) are calculated by multi-
plying the RC score and IP score for each route. Higher is better for all of these metrics.

interaction required to solve these routes. In order to facilitate fair comparison with existing

approaches, we retrained a state-of-the-art approach PlanT [87] using our new dataset.

We adopt the main metric used by the CARLA Leaderboard. Driving score (DS) is

the primary metric used to compare and rank approaches in CARLA Leaderboard, and is

the product of a route completion score (RC) and an infraction penalty (IP) score. Route

completion is the percentage of the route that is completed. Infraction penalty is a multiplier

which penalizes various infractions such as collisions, running red lights, etc.

For baselines, we compare to the autopilot policy, a multimodal imitation baseline

trained using our Transformer backbone, and PlanT [87]. We collect 440K samples us-

ing the modified autopilot policy and use this dataset to train all approaches. For each

approach, we evaluate on all 36 routes each with 5 different random seeds for a total of 180

episodes and we report the mean over all episodes and standard error over the 5 seeds.

Table 4.2 shows the results on the CARLA Longest6 scenarios evaluated at reasonable

driving speeds. Our P2DBM approach outperforms the autopilot used to collect the dataset

as well as PlanT, which is the current state-of-the-art on the original Longest6 benchmark.

While the imitation learning baseline has a better infraction penalty score, it ultimately has a

lower overall driving score because it often deadlocks earlier in the denser routes and avoids

many of the challenging interactions. In contrast, our approach is able to act proactively and

make much more progress in these dense scenarios and achieve a superior driving score.

4.6 Conclusion

In this chapter, we proposed a novel approach for performing closed-loop planning over

multimodal trajectory prediction models. Our approach is able to excel on a challenging

48

suite of dynamic merging scenarios that require proactive planning behaviors. Additionally,

we show that our approach outperforms state-of-the-art approaches on CARLA Longest6

scenarios when evaluated at reasonable driving speeds.

49

CHAPTER 5

Learning Hierarchical Driving Policies with Offline
Reactive Simulation

In the previous chapter, we found that our P2DBM method was able to perform effective

online control by planning to select a behavior corresponding to one of our learned discrete

latent modes. In particular, we found that P2DBM outperformed our multimodal imita-

tion learning baseline, despite the fact that both methods were actually selecting over the

same pre-trained latent modes. The positive results of our P2DBM method indicate that

our approach of using learned anchor embeddings [76; 77; 38] to parameterize discrete and

distinct behavior modes in combination with training with the winner-takes-all objective

[75] is an effective means of learning a suitable set of candidate behaviors for online con-

trol. However, the poorer performance of our multimodal IL baseline indicates that using

a classifier that is trained to maximize the likelihood of the behavioral data is significantly

less effective at selecting the best of these behaviors when run online. Thus, in this chap-

ter we are interested in exploring how we can use the principles from offline RL that we

explored in Chapter 2, in order to learn a better policy for selecting over the pre-trained

behavior modes offline. In particular, we reformulate our problem as a hierarchical RL

problem, where we treat the learned discrete latent modes as a discrete set of observation-

conditioned skills with the corresponding modes of our pre-trained traffic forecasting model

acting as the low-level policies. Then in order to train our discrete high-level policy, we ad-

ditionally use our multimodal traffic forecasting model as a world model to collect offline

simulated trajectories with reactive traffic. Inspired by the success of our P2DBM method,

we develop a policy learning algorithm that resembles distilling the outputs of P2DBM run

on offline samples plus an additional behavioral constraint. We validate our approach in our

CARLA [31] merging scenarios and find that our offline hierarchical learning approach is

able to significantly reduce the performance gap with P2DBM, while reducing the planning

50

latency by more than a factor of 10. Finally, we find that our approach is able to outperform

the state of the art for a purely learning-based motion planning policy in nuPlan [40], when

run in closed-loop simulation.

5.1 Introduction

Deep stochastic forecasting models [76; 111; 25] trained on large and diverse datasets have

achieved impressive results in a variety of complex and extensive motion forecasting bench-

marks [32; 12] for autonomous driving. In particular, there recently has been significant

progress in improving both diversity and precision in forecasting complex scenes [77] with

many potential yet distinct outcomes.

These forecasting models generally perform well on coverage metrics like minADE, but

struggle on closed-loop metrics when executing their maximum-likelihood actions. Hybrid

approaches [49; 121] that select over the same learned proposals using online planning often

achieve greatly superior closed-loop performance. This indicates that generally these fore-

casting models can predict proposals that cover the expert behavior, but struggle to learn to

predict the specific correct behavior to execute when trained purely from behavior-cloning.

While these hybrid approaches can achieve stronger metrics, the additional planning also

increases the latency for decision making. This is often not directly considered during

simulation, but a longer latency could lead to consequential delays when executing online

control in tight interactive scenarios or when traveling at high speed. Ideally, we would

like to reduce latency and get similar metrics by just using one forward pass of our model

without requiring the additional computational complexity caused by invoking an online

planner.

Towards this end, we reformulate the problem of selecting over the discrete proposals

provided by these multimodal forecasting models as a hierarchical reinforcement learning

problem. Prior works in both reinforcement learning and autonomous driving have explored

using offline datasets in order to pretrain a continuous [80; 114; 2; 35] or discrete [71; 27] set

of skills. The goal in these skill learning approaches is to learn a relatively small library of

temporally extended actions that lead to useful behaviors in the downstream task. Then for

online control, we can learn a high-level policy that learns to just select the most effective

of these skills to execute in the current state.

In autonomous driving, this discrete set of skills should ideally represent semantically

meaningful yet distinct behaviors in the given state, like the vehicle asserting itself or yield-

ing at a merge. Thus, leveraging these pre-trained skills should both accelerate and simplify

51

︸ ︷︷ ︸
Ground truth trajectory

︸ ︷︷ ︸
Counterfactual closed-loop simulations

Figure 5.1: These images illustrate the red ego-vehicle attempting to merge from an on-
ramp onto a highway. The leftmost image is the successful ground truth merge demon-
strated in the logged dataset. The other three images illustrate the potential results of the
ego-vehicle taking different counterfactual actions with the other vehicles reacting with
closed-loop control. The second image illustrates that a slightly slower merge would still
be successful because the trailing green vehicle should react and slow down for the ego-
vehicle. However, the third image illustrates that merging too slowly could still lead to a
collision if the green trailing vehicle is not given enough space to react. The final image
illustrates that a faster merge could lead to a collision by rear-ending the blue leading vehi-
cle. Better understanding the tolerances for a successful merge should help the ego-vehicle
learn to generalize to harder merges with conditions that are slightly different than those
observed in the logged data.

policy learning, as it should limit the search space to be over different high-level behaviors,

rather than individual steering and acceleration commands. However, due to the safety-

critical nature of autonomous driving, we would like to avoid the need for additional on-

line samples in order to train our high-level policy. Therefore, we instead adopt an offline

model-based approach similar to our prior work in Chapter 2, and use our pre-trained traffic

forecasting model as a world model in order to collect offline samples to train our discrete

high-level policy.

Unlike several prior works in using reinforcement learning to learn a driving policy

offline [33; 70], we run the traffic forecasting model in closed-loop during the rollouts for

the ego-vehicle. This will allow the other vehicles in the scene to dynamically adapt their

behavior in potentially non-trivial ways in response to the ego-vehicle. With these dynamic

offline simulations, we can explore counterfactual behaviors and learn from potential failure

cases without needing to execute dangerous maneuvers in the real world (see Figure 5.1 for

an example). Additionally, we can easily generate a diverse set of different responses from

the other agents in the environment by taking different stochastic samples from our world

model. This is important because from the perspective of the ego-vehicle, the other agents

52

in the scene can act quite stochastically due to each agent’s unknown intent, driving style,

and alertness. Thus even for the same action sequence from the ego-vehicle, the same

initial traffic scene can unfold in a variety of different ways. This inherent stochasticity

means that any individual simulation or individual log in the dataset will often not be fully

representative of the potential behaviors for other actors in the scene. Thus during policy

training, we evaluate the different potential skills with respect to many different stochastic

responses from the surrounding traffic in order to provide more accurate signal for training

our high-level policy.

In particular, inspired by our results in Chapter 4, we develop an algorithm for learning

the discrete high-level policy that is analogous to distilling the results of running a sample-

based planner on the offline samples. Specifically, we enumerate and evaluate each of the

discrete skills in each offline state by simulating several different closed-loop interactions

with the surrounding traffic agents using our traffic forecasting model as a world model.

Then, we simply distill the resulting rewards of running all of the different skills into our

discrete high-level policy. Similar to many prior works in offline RL, we additionally adopt

a soft behavioral constraint to prevent the high-level policy from diverging too far from the

behavioral data. Our contributions are as follows:

• Learning discrete skills with learned anchor embeddings. We demonstrate that the

approach used in many recent state-of-the-art traffic forecasting models [76; 77; 38]

of learning multimodal predictions by conditioning on a discrete set of learned anchor

embeddings to produce a discrete set of different trajectory decodings trained with

a winner-takes-all training objective [75] can be an effective means of learning a

discrete set of useful observation-conditioned skills.

• Hierarchical policy learning with closed-loop offline trajectory simulation. Fur-

thermore, we propose a novel approach for offline learning a discrete high-level pol-

icy over these offline learned skills that involves using a pre-trained traffic forecasting

model as a world model for simulating closed-loop rollouts with interactive traffic.

In particular, our policy learning algorithm involves enumerating and evaluating all

of the skills in each offline state over several stochastic samples, and distilling these

results with an optional behavioral constraint into a discrete high-level policy.

We test our approach for Hierarchical Offline Learning with Offline reactive Simulation

(HOLOS) in a curated set of merging scenarios run in the CARLA [31] simulator that

require tight interaction and negotiation with stochastic actors. Finally, we validate the

53

effectiveness of our HOLOS approach for learning a reactive policy by evaluating its closed-

loop performance in the more extensive nuPlan [40] benchmark and demonstrate state-of-

the-art results for a solely learning-based motion planning policy in closed-loop reactive

simulation.

5.2 Related Works

5.2.1 Hierarchical Policy Learning

Many prior works have tackled learning for online control by learning a hierarchical policy

where a high-level policy learns to select which low-level skills policy to execute in any

given state. These low-level policies can either be hand-designed [28; 116] for the specific

environment or be learned from data. Most relevant to this work, several prior works have

explored extracting low-level skills from previously collected datasets, and using them to

either facilitate online RL [80; 114; 99; 59] or to constrain offline model-free RL [2; 71].

In particular, Luo et al. [71] explored learning a discrete set of skills with a VQ-VAE [110]

from offline data, and then using offline model-free RL to learn a high-level policy to pick

over these discrete skills. In this work, instead of using these offline learned skills to accel-

erate online RL or as a constraint for offline model-free RL, we instead use offline simu-

lated rollouts from our traffic forecasting world model in order to train a discrete high-level

policy. Additionally instead of learning these discrete set of skills with a VQ-VAE [110]

like Luo et al. [71], we instead use an approach that is inspired by recent advances in multi-

modal traffic forecasting models [76; 77; 38]. Specifically, we represent each of the discrete

learned skills as the different trajectory decodings from our multimodal forecasting model,

where each trajectory is decoded with a different learned anchor embedding and the whole

multimodal model is trained with a winner-takes-all objective [75].

5.2.2 Imitation Learning in Autonomous Driving

Many prior works have explored using IL to learn a driving policy directly from sensors

[8; 82] or from the outputs of a developed perception system [87]. Imitation learning di-

rectly from the driving logs will often suffer from distribution shift as the ego-vehicle visits

states outside of the training distribution when deployed in real-world environments, which

leads to accumulating errors and catastrophic failures. Several prior works [8; 3] have ame-

liorated some of these issues with heuristic-based data augmentations. While these data

augmentations are quite effective at reducing the more trivial failure cases like driving off

54

the road or swerving, they are less effective at improving the safety performance in the

more challenging driving scenarios [70]. Additionally, several prior works have demon-

strated that imitation learning can struggle due to causal confusion [30] or the “copy-cat

problem” [117; 21], where the autonomous agent erroneously selects a behavior that is cor-

related with past actions rather than the current state. For example, in the dataset if the

autonomous agent is currently stopped, then it quite likely that it will continue to stay still

in the next time step. Thus, once the agent comes to a full stop during online execution, it

can be biased towards staying stopped, even if the original cause for the stop is no longer

present. In particular, De Haan et al. [30] demonstrated how causal confusion could be

alleviated by evaluating a limited number of online samples in the environment in order to

pick the most effective causal graph for a learned policy. In this work, instead of requir-

ing online samples in the environment, we use offline simulated trajectories with our traffic

forecasting world model in order to determine the most effective of our pre-trained skills

and use that to learn a discrete high-level policy.

5.2.3 Multi-Agent Motion Forecasting

One of the major challenges in forecasting vehicles in autonomous driving is that in many

situations surrounding vehicles will act stochastically with a multimodal distribution. For

example, when merging with another vehicle, some drivers might yield and slow down,

while other drivers will speed up and assert themselves depending on their driving style

and the specific situation. Recent works have continually improved both the diversity and

precision of these models by incorporating multiple learned anchor embeddings [111; 106;

38], and using Transformer [112] neural networks to handle the arbitrary number of agents

in the scene. Depending on the intended use case of these models, some approaches model

the marginal distribution for each agent independently [76], while other approaches model

the joint distribution over all agents [77].

5.2.4 Learning for Planning in Autonomous Driving

In traditional autonomy stacks, multi-agent motion forecasting is used to instantiate occu-

pancy maps for future timesteps, which is used to guide trajectory optimization. Several

different hybrid approaches have explored incorporating forecasting models to generate

initializations for trajectory optimization [47; 49] or to propose candidates for a sampling-

based approach [49; 121]. Most of these approaches do evaluations with open-loop predic-

tions for the ego-vehicle and for the other agents in the scene because these predictions can

55

be made quickly with one forward pass of a forecasting model which facilitates online exe-

cution. In this work, because we are using our model to perform offline simulation for train-

ing our high-level skill selection policy, we can simulate rollouts with reactive closed-loop

predictions without concerns for the time and memory constraints of onboard execution.

5.2.5 Learning from Simulation

Many prior works have attempted to mitigate the issues with IL by training in a simulated

environment in order to explore the effects of different counterfactual behaviors for the

ego-vehicle. Several of these approaches only roll out the other agents in the scene with

log-replay [15] even though the ego-agent is rolled out closed-loop and can take different

actions than those in the driving logs. Some approaches attempt to avoid issues with di-

vergence by using some variant of GAIL [46; 4; 9], classmate-forcing [106], or adding an

imitation loss to RL [70] in order to encourage the ego-vehicle to visit similar state-actions

as those demonstrated in the logs. However, this can be quite limiting as it discourages the

agent from gathering information about the effects of performing realistic yet significantly

different behaviors from those executed in the driving logs.

On the other hand, there have been a few approaches that have explored using learned

models to control the other agents in the scene during offline simulation. Generally these ap-

proaches either use behavioral models that were trained to imitate human trajectories from

large offline datasets [33; 104] like in our work, or they specifically train adversarial behav-

ior models [43; 34] that are optimized to cause negative outcomes for the ego-vehicle. Our

work is most similar to Feng et al. [33], which uses pre-trained traffic forecasting models

autoregressively to generate traffic scenarios. However, they then train their reinforcement

learning policy from scratch in the generated scenario, while we instead use our pre-trained

multimodal forecasting model as a skill model to help guide exploration and provide an im-

plicit behavioral constraint that should help avoid potential model exploitation. Approaches

that learn against adversarial agents [43] should theoretically have better worse-case perfor-

mance, but are inclined to learn overly conservative behaviors in interactive environments,

as they will learn to assume that all agents will act adversarially. This could potentially

exacerbate the “frozen robot problem” that already occurs in traditional autonomy stacks.

Symphony [50] is another approach that is similar to ours in that it uses reactive closed-

loop simulation to train a motion planning policy, except that it uses beam-search over the

entire joint trajectory to determine good behavior. The potential issue with this approach

is that optimizing for a single good future joint trajectory in a stochastic environment like

56

autonomous driving can lead to an over-optimism bias (as we discussed in Chapter 3) in

situations where the surrounding vehicles could actually have realistically taken different

actions that would have led to much worse outcomes then the one found positive trajectory.

5.3 Background

Autonomous driving is a multi-agent setting where all agents are trying to accomplish their

own hidden goals while avoiding negative joint interactions like dead-locks, near misses,

or collisions. Thus, autonomous driving can be represented as a general sum Markov game

[66; 50] G = {S,A,P, {ri}Ni=1, ρ0}. S is the joint state space; A is the joint action space;

P is the transition dynamics; {ri}Ni=1 are the separate reward functions for each of the

i ≤ N actors; ρ0 is the joint initial state distribution. An important caveat is that each agent

i ∈ N only partially observes the scene with observation oit at each time step t and takes a

conditionally independent action drawn from its policy distribution ait ∼ πi(·|oit). We will

denote the kinematic state of each agent like its relative position, orientation, bounding-box,

and velocity compared to the ego-vehicle at time 0 as sit. By convention, we will assume

that the ego-vehicle will always have index 1 and whose kinematic state is given by s1t ,

while all other agents will have an index 2 ≤ i ≤ N .

In this work, we specifically use a hierarchical policy formulation where we explicitly

break down our policy into a discrete set of K observation-conditioned skills (low-level

policies) and a high-level policy that selects which of the discrete skills to execute in a

given state. Thus, our hierarchical policy has the following form

πi(ait|oit) = πi
θ(a

i
t|oit; zit)︸ ︷︷ ︸

low-level policy

∗ πi
ϕ(z

i
t|oit)︸ ︷︷ ︸

high-level policy

(5.1)

Once we have pre-trained our discrete set of skills, our ultimate objective is to learn

a high-level policy specifically for the ego-vehicle π1
ϕ that best recovers the expert policy

and maximizes expected reward when deployed in the real system. In order to avoid the

potential instabilities that come from training a value function in the loop of a learned

world model, we train our policy to optimize the reward over our finite simulation horizon

of H = 8 steps at 2Hz. Thus, we ultimately train our high-level policy in order to optimize

57

the following objective

max
ϕ

E

[
H∑

h=1

r1(st+h, at+h)

]
(5.2)

We believe that this is not a limiting assumption, as autonomous driving systems have

generally been able to achieve strong performance with limited horizon planning. However,

we leave further exploration of learning the value function in the loop as an interesting

direction for future work.

We assume access to a reasonably strong perception system that can take in the onboard

sensor readings like lidar and images to output estimates of all the surrounding vehicles,

bicycles, and pedestrians’ kinematic states Xt, if they are within the visibility range of

50m. Additionally, we assume access to both static and dynamic map information Ct like

relatively dense map points, route points, traffic cones, and the location and state of traffic

lights.

5.4 Extracting Skills from a Multimodal Forecasting Model

In this section, we will discuss how we can leverage the discrete set of predictions produced

by a multimodal traffic forecasting model in order to produce a discrete set of observation-

conditioned skills for hierarchical reinforcement learning in autonomous driving.

5.4.1 Low-Level Policies from Multimodal Trajectory Forecasting

In order to train a forecasting model with parameters θ, we assume we have access to a

large dataset Dβ of logged demonstrations of multi-agent traffic. These demonstrations

include state trajectories τ i = {si0, si1, ..., siT } for each of the agents i ≤ N visible to the

ego-vehicle while navigating a traffic scene. With this dataset Dβ we train our forecasting

model to maximize the likelihood of the observed trajectory data for all the vehicles and

bicycles in the scene.

max
θ

logP i
θ(τ

i
gt|oit) (5.3)

As we have previously discussed, each agent in the environment tends to act stochasti-

cally due to internal unknown factors like their intended goals, driving styles, and alertness.

Therefore, in any particular state we expect the trajectory distribution for all dynamic agents

58

to be multimodal. Many prior works in traffic forecasting [32; 12; 76; 111; 38] have ad-

dressed this by predicting a discrete set of potential trajectories for the different agents in

the scene. In this work we use a similar structure to prior works Nayakanti et al. [76]; Girgis

et al. [38], and use a Transformer-based encoder-decoder structure where we first pass the

entire scene into a Transformer [112] encoder to produce an encoding for the entire scene

E i
t = Encθ(X i

t , Ci
t) (5.4)

where (X i
t , Ci

t) comes from the observation oit for agent i. Specifically, X i
t are the relative

states of the dynamic agents in the scene like the vehicles and bicycles, Ci
t are the features

of the map context objects like road and route points, and E i
t is the outputted scene encoding

from the perspective of agent i. Then, we produce multiple distinct trajectory predictions

for each agent by conditioning the decoder on one of a discrete set of K learned anchor

embeddings z.

τ̂ iz = Decθ(E i
t , z) (5.5)

Each of these trajectory predictions τ̂ iz takes the form of a timeseries of future positions

and orientations for that specific agent τ̂ iz = {ŝit+1, ŝ
i
t+2, ..., ŝ

i
t+H}z . By decoding with

each of the K learned anchor embeddings z, we are able to produce K distinct trajec-

tory predictions. Each of these trajectory predictions is represented by a Gaussian with a

predicted mean and variance. Therefore, our models ultimately predict a Gaussian mixture-

model (GMM) distribution. However, instead of directly training these models to maxi-

mize the likelihood of the data under this induced GMM distribution, we follow prior work

[76; 38; 111] and instead adopt a winner-takes-all objective [75] where we split the training

loss into separate classification and regression losses.

max
θ

log
(
P i
θ(τ

i
gt|ot; z∗)

)︸ ︷︷ ︸
regression loss

+ log
(
P i
θ(z

∗|ot)
)︸ ︷︷ ︸

classification loss

(5.6)

Specifically, given the ground truth trajectory τ igt for agent i, we assign the index z∗ to the

index of the predicted trajectory τ̂ iz with lowest l2 error. Then, we train just that prediction

τ̂ iz∗ with regression to match τ igt. Additionally, we train a classifier P i
θ(·|ot) over these K

different predictions to maximize the likelihood of index z∗ with cross entropy-loss.

Now with each of these H step open-loop predictions τ̂ iz produced by our forecasting

model, we can infer an action ait for the agent at the current time step. During simulation,

59

we do this by assuming that the vehicles will track the first step of the predicted trajectories

exactly, and during online execution for the ego-vehicle we use a controller to track the tra-

jectory. Thus, we can use this model to represent a discrete set of observation-conditioned

low-level policies with

πi
θ(at|ot; z) = Deciθ(Encθ(X i

t , Ci
t), z) (5.7)

Additionally, we define the high-level policy πi
ϕ(z

i
t|oit) with parameters ϕ as a discrete

observation-conditioned policy that selects over the K latents z. Because the potential out-

puts are discrete, we can simply represent this with a categorical policy. Therefore, we can

treat the previously mentioned classifier P i
θ(·|ot) as such a high-level policy, which we will

denote as πi
θ(·|ot). However, as we have shown in Chapter 4, this high-level policy is not

particularly effective at picking which low-level policy to execute for online control. Thus,

in Section 5.5.1 we will discuss how we can learn a better high-level policy by evaluating

the different observation-conditioned skills with offline simulated rollouts collected in our

traffic forecasting world model.

While our HOLOS approach could be used with any multimodal forecasting model

that follows the above structure and makes a discrete set of predictions for each agent by

conditioning on a discrete set of latent variables, we specifically use our architecture from

Chapter 4 in Section 4.3. To adapt the architecture to nuPlan, the main structural change

we make is that our model takes in a history of the past states for the dynamic agents, rather

than just their current state. To account for this, we add a small 1d CNN that processes

these timeseries in order to generate the initial embedding for each agent.

5.4.2 Connections to VQ-VAE

We note that Equation 5.6 is reminiscent of the structure used in many hierarchical RL

approaches. In particular, it is similar to prior works that have explored using a VQ-VAE

[110] in order to train a discrete set of skills from offline datasets [71; 113]. The difference

is that when learning a discrete set of skills offline with a VQ-VAE, one picks which latent

prediction to update based on whichever of the latents is closest to the output of the cur-

rent posterior model. This is similar to our approach in that it introduces a hard cutoff that

causes only one of the potential discrete set of predictions to be updated. However, with

VQ-VAEs this hard cutoff is done in the latent space, while in our approach this cutoff is

determined by which of the discrete predictions is closest in actual prediction space. We

hypothesize that our method might be a more effective way of learning skills offline for a

60

Figure 5.2: This figure depicts the steps involved in using our offline simulation to train
the hierarchical policy π1

ϕ for the ego-vehicle.

hierarchical policy, as it more directly encourages each distinct skill to further specialize in

the actions it is already good at predicting. However, we leave further theoretical analysis

into these comparisons as an interesting direction for future work. Still, later we show ex-

perimentally that our approach to offline skill learning leads to superior online performance

in an interactive autonomous driving setting.

5.5 Learning a High-Level Policy from Offline Simulation

In this section, we discuss how we use pre-trained forecasting models in order to perform

offline reactive simulation and evaluation in order to learn our high-level policy. For an

overview of our HOLOS approach, we include a diagram in Figure 5.2.

5.5.1 Learning Offline to Select Skills

We train the high-level skill selection policy by learning a new discrete categorical policy

π1
ϕ with parameters ϕ to replace the pre-trained classifier from the forecasting model. As

with the pre-trained classifier, this new discrete high-level policy π1
ϕ will select over the

different K modes of behavior from the ego-forecasting model. In order to avoid potential

issues with model exploitation, we just use these offline simulations in order to train our

high-level policy and we do not fine-tune the lower-level policies π1
θ(at|ot; z). Keeping

the low-level skills fixed should act as an implicit policy constraint that keeps the overall

hierarchical policy within the support of the data. During simulation, we assume the ego-

vehicle commits to one of the discrete skills for the entire short simulation horizon H .

In addition to providing further regularization, committing to a specific low-level policy

for the entire simulation horizon has the added benefit that it simplifies the simulated data

collection procedure for training. Still, by having the ego-agent commit to a skill that is

61

different from the one demonstrated in the logged dataset, we can explore the results of

different counterfactual actions.

5.5.2 Reactive Simulation

When performing these offline simulations to evaluate counterfactual ego-vehicle behav-

iors, it is important that the surrounding traffic react to the new actions taken by the ego-

vehicle. Thus, in this subsection we will describe how we can use our pre-trained forecast-

ing models in order to perform closed-loop reactive simulation.

First, we initialize the traffic scene based on a specific traffic instance from the logs.

Then, we fix the latent mode z for the high-level ego-action. At each step we query just

the low-level ego-policy with the current observation of the environment and determined

mode z to get its next action a1t ∼ π1
θ(·|o1t ; z). Additionally at each step, we independently

sample both a high-level and corresponding low-level action for each of the other vehicles

in the scene ait ∼ πi
θ(·|oit) according to our pre-trained forecasting model. We use a constant

velocity assumption for forecasting pedestrians, and we assume that traffic lights will not

change from their initial state during simulation. Then, we update the observations for all

the agents in the scene and mask any vehicles that leave the visibility range. We repeat this

until we reach the end of our relatively short simulation horizon of 4s, which should reduce

the potential effects of divergence due to inaccuracies from the learned models.

An important thing to note is that the learned models for both the ego-vehicle and the

surrounding traffic are queried at every timestep in simulation, so the marginal trajectory

distribution for all agents should react to the current conditions. For example, the likelihood

of another vehicle yielding should dramatically increase if it sees another vehicle merging or

asserting in front of it. Prior work [104; 92] has demonstrated that this type of closed-loop

reactivity should improve the quality and realism of the joint traffic predictions. Specifically

for this work, this reactivity should allow the ego-vehicle to explore and better evaluate the

effects of non-trivial counterfactual actions in a replayed scene.

5.5.3 Evaluation

We then evaluate these different joint forecastings of the future using a heuristically de-

signed reward function just for the ego-vehicle and its interactions with the different agents.

Because the other agents in the scene will react stochastically to the ego-vehicle, we cannot

properly evaluate the expected reward for a specific counterfactual ego-behavior with just 1

simulated trajectory in the scene. Therefore, when evaluating a specific high-level action z

62

for the high-level policy, we simulate S > 1 different stochastic closed-loop trials. In each

of these S trials, we sample independently from the marginal distribution for each agent in

the scene at each timestep and thus should get S different scene outcomes drawn from the

joint traffic distribution given that the ego-vehicle is executing the specific skill correspond-

ing to the low-level policy π1
θ(·|ot; z). Thus to evaluate the high-level policy’s K different

high-level actions for an initial scene, we run K × S different closed-loop simulations and

coalesce the resulting rewards into a matrix R ∈ RK×S that we can use for policy training.

5.5.4 Policy Training

Now for training the high-level policy we take inspiration from maximum-entropy RL [53;

128] and assume that an expert would take actions proportional to the exponential of their

expected reward.

π∗(z|ot) ∝ expE

[
H∑

h=0

r(st+h, at+h)

]
(5.8)

We can estimate the expected reward for each possible high-level action for the high-level

policy by taking the mean over the S different samples collected in simulation. Thus, we

can represent the expert policy by taking a softmax over the mean rewards for each mode.

π̂∗(z|ot) = softmax

(
1

S

S∑
s=1

Rzs

)
(5.9)

Here z ≤ K corresponds to the ego-mode, and s ≤ S corresponds to a specific simulated

trial.

Following SAC [41], we train our policy to minimize the reverse KL divergence with

π̂∗. Because we are using discrete distributions and have an analytic form for π̂∗, we can

compute this loss exactly.

min
ϕ

DKL(π
1
ϕ(·|ot)||π̂∗(·|ot)) (5.10)

Note that this target policy π̂∗(z|ot), is almost equivalent to a stochastically smoothed ver-

sion of running our sample-based planner from Chapter 4 (P2DBM) on the offline sample

corresponding to st. Thus, the loss in Equation 5.10 is analogous to training our high-level

policy to distill the results of our P2DBM planner ran on the offline samples in the training

set.

63

In settings where we assume the initial trajectories from Dβ come from an actual expert

policy π∗ we can include an additional behavioral cloning (BC) loss to fit z∗, which corre-

sponds to the mode closest to the ground-truth trajectory. This loss is equivalent to fitting

the forward KL-divergence with π∗, but approximated with the limited samples from the

logged dataset Dβ . Thus, our final loss for training our high-level policy is

min
ϕ

DKL(π
1
ϕ(·|ot)||π̂∗(·|ot))︸ ︷︷ ︸
reward loss

(5.11)

+αDKL(π
∗(·|ot)||π1

ϕ(·|ot))︸ ︷︷ ︸
BC loss

where α corresponds to the weights for the optional BC loss.

Prior work in Rhinehart et al. [89] illustrates the benefits and effectiveness of using a

symmetric divergence for training, like our loss function in equation 5.12. Training with

each of the two directions of the KL-divergence has different yet complementary biases on

fitting the underlying distribution. The forward direction, often used in behavioral cloning,

encourages ”mode covering” even if this leads to an overly diffuse distribution that places

high probability mass on samples outside of the support of the data. On the other hand, the

reverse direction, often used in RL, encourages ”mode seeking” and greatly penalizes these

out-of-distribution samples. In motion-planning for autonomous driving, training with this

symmetric divergence should correspond to the high-level policy still covering the modes

of reasonable behavior while putting near zero probability on non-safe actions that could

lead to collisions or other serious infractions.

In order to further facilitate training the high-level policy, the high-level policy shares

the pre-trained encoder from the forecasting model and focuses on training just a new

Transformer-based decoder that outputs logits for each of the K different skills. We rep-

resent the categorical policy with a standard softmax distribution and train the model with

the loss from equation 5.12. During online execution, in order to maximize reactivity, we

requery the maximum-likelihood action from the high-level policy at every step and execute

the action from the corresponding low-level policy.

ẑ1t = max
z1t

log(π1
ϕ(z

1
t |o1t)) (5.12)

â1t = max
a1t

π1
θ(a

1
t |o1t ; ẑ1t) (5.13)

64

5.6 Experiments

5.6.1 CARLA Merge Scenarios

We first validate our approach in the same curated set of hand-designed merging scenarios

run in version 0.9.11 of the CARLA [31] simulator, as in Chapter 4. These scenarios re-

quire a high degree of interactivity with multiple other agents in the traffic scene in order

to succeed. The other agents in the scene react stochastically, as they are controlled by

their own adaptive cruise controllers with randomized parameters, roughly corresponding

to different levels of aggressiveness. In many of these scenarios, the ego-vehicle must assert

itself, knowing that the other vehicles will react and slow down for it given enough space.

However, depending on the traffic conditions and the stochasticity of the other agents, the

ego-vehicle needs to be able to reason about when it is truly safe to assert itself, and when

it would be better to yield.

In this setting, the neural networks take in the positions, orientations, bounding boxes,

and velocities of all the visible agents in the scene and do not track their histories. These

scenarios just focus on vehicle interactions, and thus do not include any pedestrians, stop

lights, or stop signs. The map information Ct includes dense points following the lane cen-

ters and dense route points for the ego-vehicle to follow. The pre-trained forecasting models

output K = 8 discrete modes, and we use S = 8 samples to evaluate expectations during

offline simulations. We collect potentially sub-optimal demonstrations with a stochastic

version of the rule-based autopilot from Prakash et al. [83] with the target speed set to the

current speed limit. Because we do not assume the trajectories come from an optimal policy,

we use α = 0 for the loss function in updating the high-level policy in equation 5.12. For

policy training and planning, we use the same reward function as in Chapter 2. We collect

a dataset of 100k samples in order to pre-train our forecasting model and to use as initial

states for our offline simulations. In order to avoid trivial solutions where the vehicle waits

for all traffic to pass before attempting to merge, we include static as a failure case when

the car freezes for several seconds before the merge point. We report results of performing

20 different trials in 10 different merging scenarios run over 3 different model seeds.

We compare to a variety of different baselines in order to validate the effectiveness of

our method for offline skill learning, and our Hierarchical Offline Learning with Offline

reactive Simulation (HOLOS) method for learning our high-level policy:

• Replay Sim uses the same training procedure as our approach, except it simulates the

other vehicles using log-replay.

65

Approach Success (%) ↑ Static (%) ↓ Crash (%) ↓ Speed (m/s) ↑ Inf Time (ms) ↓
Ours 96.3 ± 1.9 2.2 ± 1.4 1.5 ± 0.5 19.6 ± 0.0 14.6 ± 0.0
Replay Sim 94.5 ± 1.3 1.0 ± 0.3 4.5 ± 1.6 19.8 ± 0.1 14.6 ± 0.0
NR Sim 89.8 ± 0.6 8.8 ± 0.3 1.3 ± 0.4 18.3 ± 0.1 14.5 ± 0.0
IL 53.3 ± 1.4 43.8 ± 0.3 2.8 ± 1.6 14.9 ± 0.1 13.0 ± 0.0
VQ-VAE 89.2 ± 4.2 7.3 ± 3.8 3.5 ± 1.3 20.4 ± 0.2 15.6 ± 0.0
IQL 88.8 ± 2.2 4.3 ± 0.9 6.8 ± 2.5 18.7 ± 0.2 17.9 ± 0.0
P2DBM 97.7 ± 0.8 1.2 ± 0.4 1.2 ± 0.4 20.0 ± 0.1 196.3 ± 0.3
Data Policy 72.5 11.0 16.5 18.6 16.2

Table 5.1: We report results with averages and standard errors over 3 different seeds of
running the 200 different episodes. ↑ and ↓ indicates that higher or lower numbers are
better respectively. We bold the results with the best mean.

• Non-reactive (NR) Sim uses the same training procedure as our approach, except

it simulates the other vehicles using sampled open-loop trajectories predicted from

the first time step. Thus, the other vehicles will display a variety of counterfactual

behaviors, but will not react to the ego-vehicle’s actions.

• Imitation Learning (IL) executes the maximum likelihood action according to the

pre-trained forecasting model.

• VQ-VAE uses the same high-level policy training procedure as our approach, except

it use a VQ-VAE [110] model for learning the discrete skills for both the ego-vehicle

and surrounding agents.

• Implicit Q Learning (IQL) involves training a Q function using the offline RL algo-

rithm IQL [58]. Then, it executes the proposed action from the pre-trained forecasting

model with the highest Q value.

• P2DBM is our online planning approach from Chapter 4. In this work, we make a

minor modification where we resample the latent modes for each surrounding agent

at every time step, instead of sampling the latent modes for those agents at just the

first time step. Our HOLOS approach is analogous to distilling this version of our

P2DBM planner run on our offline dataset. Therefore, P2DBM represents an upper-

bound on our performance.

• Data Policy is the stochastic rule-based policy used to collect the dataset.

We report our results in Table 5.1 and find that all the approaches that learn the high-

level policy from offline simulations significantly outperform doing just standard IL. How-

66

ever, our approach of offline high-level policy learning using stochastic and reactive sim-

ulation does best in reducing the gap with online planning. We see that learning from

non-reactive simulation leads to overly cautious behavior with a higher static rate and lower

average speed because it fails to anticipate when other vehicles will yield for it. On the other

hand, learning from simulation with log-replay for the other agents leads to overly aggres-

sive behavior with a higher crash rate and higher average speed, presumably because the

ego-agent overfit to the specific logged trajectories during training and does not anticipate

the stochastic behavior of the other agents. Additionally, we find that running our high-

level policy training algorithm with the discrete set of skills from our offline skill learning

approach outperforms running our algorithm with skills learned from a VQ-VAE. Finally,

we outperform our representative offline RL baseline of IQL.

While using the forecasting model for online planning does lead to the best perfor-

mance, it would be impractical to use on a real system due to its prohibitive inference time

of 196 milliseconds, shown in the rightmost column of Table 5.1. During tight interactive

scenarios or when traveling at high speed, we would require a much higher control fre-

quency in order properly react to the evolving scene. Therefore, our approach, which just

needs one pass of the hierarchical policy to produce an action and is over 10x faster than

the planner, would be more suitable for online deployment.

5.6.2 nuPlan

In order to validate the scalability of our approach, we also report results on the nuPlan

benchmark [40]. This is a large-scale benchmark that aims to evaluate the closed-loop

performance of machine learning-based motion planners. The dataset consists of 1200

hours of human driving data collected from 4 cities in the US and Asia. Additionally,

nuPlan provides an open-source simulator for simulating various real traffic scenes in a

closed-loop manner. We evaluate results in the reactive closed-loop setting, where the other

agents use a rule-based policy to dynamically react to the ego-vehicle and other agents.

We follow Cheng et al. [17] and report results on two different splits of the public test set:

Test14-random and Test14-hard.

For our nuPlan results, the neural networks take in the positions, orientations, and

bounding boxes of all the visible agents in the scene and do track the last 2s of history

at 2Hz. We only train the forecasting model to make predictions for vehicles and bicyclists,

but we also include pedestrians and traffic cones as dynamic agents in the scene. For map

context Ct, we include dense map points along the road centers and route points. All the

67

Approach Test14
Type Method random ↑ hard ↑
Expert Log-replay 75.86 68.80
Rule-based IDM† 72.42 62.26

PDM-Closed† 91.64 75.18
Hybrid GameFormer† 79.31 68.83

PDM-Hybrid† 91.56 75.79
P2DBM (Ours)* 84.05 67.97

Learning RasterModel† 67.54 52.16
UrbanDriver† 61.02 49.07
PDM-Open† 57.23 35.83
PlanTF† 80.59 61.70
IL (Ours)* 71.65 53.51
Replay Sim (Ours)* 75.22 60.83
HOLOS (Ours) 81.58 63.54

Table 5.2: We report nuPlan driving scores on the Test14-random and Test14-hard splits,
run with reactive closed-loop simulation (R-CLS). Higher is better, with a max theoretical
score of 100. For each of the Test14-random and Test14-hard splits, we bold the best
results. The approaches denoted with * are our own implemented baselines that leverage the
same pre-trained forecasting model as our approach, but in different ways. For approaches
denoted with †, we use the reported results from the PlanTF paper.

map points include relative positions and orientations to the next map point, and the road

center points include additional information about whether they are affected by a traffic

light. The pre-trained forecasting models outputs K = 16 discrete modes, and we use

S = 8 samples to evaluate expectations during offline simulation. Because we assume the

trajectories come from expert demonstrations, we use α = 1 for the loss function in updat-

ing the high-level policy in equation 5.12. For both pre-training the forecasting model, and

training the high-level policy we use 1% of the training data, which corresponds to roughly

260K samples.

In Table 5.6.2, we compare to a variety of different rule-based [109; 29], hybrid learning

with planning [49; 29], and strictly learning-based approaches [40; 94; 29; 17] and include

the results reported in [17]. The most relevant approach for our comparisons is PlanTF,

which is a well-tuned and ablated IL-based approach that uses a Transformer [112] back-

bone. To the best of our knowledge, PlanTF is the state of the art on solely learning-based

motion planning for closed-loop simulation in nuPlan.

Similar to our CARLA results, we find that there is still a gap between our learning-

68

based approach’s performance and the performance of approaches that incorporate online

planning. However, we find that our approach is the closest to bridging that gap and out-

performs all the other learning-based approaches on the reactive closed-loop evaluations.

We again outperform Replay Sim, which uses the same training procedure as our approach,

except it simulates the other vehicles using log-replay. We even outperform PlanTF, which

uses a similar Transformer-based backbone to ours, but was specifically designed and ab-

lated to get the best IL-based results.

5.7 Conclusion

In this chapter, we presented our Hierarchical Offline Learning with Offline reactive Simu-

lation (HOLOS) approach. We illustrated how we could extract a discrete set of low-level

skill policies from multimodal traffic forecasting models that were pre-trained on offline

datasets. Additionally, we demonstrated how we could train a high-level policy that learns

to selects over this discrete set of skills with offline reactive simulation. In particular, we

used our pre-trained multimodal forecasting model as a world model to predict different

potential stochastic responses from the other dynamic agents in the scene in closed-loop.

Then, we distilled the results of running these many stochastic and reactive simulations for

all of the discrete skills into our high-level policy. Ultimately, we demonstrated how our ap-

proach was the closest to reducing the gap between a purely learning-based motion planning

policy and hybrid approaches that include online planning. Additionally, we demonstrate

how our approach can outperform a state-of-the-art IL approach in the extensive nuPlan

benchmark.

69

CHAPTER 6

Conclusion

In this thesis, we explored how we can learn deep models offline from previously collected

datasets of driving trajectories in order to facilitate online motion planning in autonomous

driving. In particular, we explored different ways in which we could train and use these

models in order to better handle stochastic interactions with unknown agents. We first

demonstrated how we can use offline model-based RL to collect additional counterfactual

rollouts in order to improve an offline-learned policy in a deterministic robotic locomotion

setting. Next, we transitioned to a stochastic autonomous driving setting and showed how

we can avoid optimism bias by appropriately disentangling the effects of the policy and

the world model on the resulting reward during online planning. We found, however, that

our simple feature-based observation space was not sufficient to handle more complicated

interactions in autonomous driving. Thus, we moved on to using a multi-agent formulation

of the environment with a Transformer-based multimodal traffic forecasting model acting

as the world model. With this multi-agent formulation, we demonstrated how we could ef-

ficiently do mutually reactive and stochastic online planning by explicitly planning over the

different discrete behavior predictions from the multimodal forecasting model. Finally, we

presented an offline hierarchical learning algorithm that learned which high-level behavior

to execute by training with stochastic closed-loop rollouts collected in our traffic forecasting

world model.

We believe the work in this thesis and other ongoing recent works in the field contribute

to improving the capability for learning-based motion planners to engage in proactive yet

safe behaviors in stochastic interactive scenarios. However, there are still several areas that

need further exploration. Below, we discuss some challenges we faced during our work, as

well as potential future directions for research.

70

6.1 Learning for Motion Planning

While we found that our offline hierarchical approach was able to outperform other purely

machine learning-based motion planning policies, our approach still underperformed by a

large margin when compared to a more traditional heuristic-based planning approach. In

fact, the PDM [29] planner approaches actually won the nuPlan competition and beat out

a variety of hybrid approaches that use learning to guide online planning. Both our results

and these results indicate that more future work needs to be done in order to improve the

capabilities of machine learning-based motion planners for autonomous driving.

Specifically, we found that many of the failure cases for our P2DBM approach in nuPlan

came from situations in which the underlying forecasting model failed to predict a drastic

action needed to resolve the current situation. For example, the model would fail to predict

an aggressive lane change or sudden brake in order to avoid a collision with a vehicle that

unexpectedly cut in front of the ego-vehicle. We suspect that this issue stems from some

version of the “copy-cat problem” [117] or causal confusion [30], which is exacerbated

by the fact that these drastic actions are not well represented in the data. Therefore, it is

difficult for these models, trained to maximize the likelihood of the data, to reliably output

these more drastic actions, even though these actions are extremely necessary to handle the

long-tail of potentially dangerous scenarios.

One potential direction to alleviate these issues would be to try to rebalance the dataset

in order to increase the prevalence of these less common drastic actions during training.

This should greatly increase the likelihood that the learned models produce these important

actions during critical states. Another interesting potential direction would be to use a more

expressive distribution for the ego-vehicle in combination with a more intelligent sampling

procedure, like non-maximum suppression [111]. This would allow us to explicitly sample

more diverse predictions from the learned model and improve the coverage of the proposed

candidates. Seff et al. [98] is one recent work that has explored these ideas in the context of

autoregressive traffic forecasting, but they do not explore how this could be used to facilitate

online motion planning. We leave how to do this efficiently and effectively in a mutually

reactive planning approach as a potential avenue for future exploration.

6.2 Evaluating with Simulation

One of the limitations of being an independent academic researcher is that we had no feasi-

ble means of evaluating our approaches in real-world driving situations. While we were able

71

to gain valuable insights by testing in closed-loop simulated environments like CARLA [31]

and nuPlan [40], there are definitely large gaps between these simulated environments and

the real world. In particular, the controllers used for the other vehicles in the environment

often behaved unnaturally in these more interesting interactive scenarios that we focused on

in this thesis. For example, the traffic-managed vehicles in CARLA would not react to the

ego-vehicle until the ego-vehicle entered the same lane. Afterwards, however, the traffic-

managed vehicle would often overreact and abruptly brake even when there was plenty of

headway for the ego-vehicle. Initially, we hoped that these unnatural behaviors would be

ameliorated in the nuPlan benchmark because it is based on real-world traffic trajectories.

While the traffic scenarios in nuPlan were significantly more varied and realistic, the IDM

controllers used to control the other vehicles in the closed-loop reactive simulations still

exhibited similar issues to those in CARLA. Unfortunately, generating realistic and respon-

sive traffic for evaluating an autonomous system seems to be a “chicken and egg” problem,

since developing realistic and responsive behaviors for the other vehicles is equally as dif-

ficult as producing good behaviors for the ego-vehicle. Therefore, I am excited to see how

advances in work like Montali et al. [73], Igl et al. [50], Bhattacharyya et al. [7], and Xu

et al. [123] that look at learning models for performing more accurate closed-loop traffic

simulation can be used to better evaluate autonomous systems and for training RL agents in

the loop.

6.3 Computational Efficiency

I think that joint prediction and planning will be critical in enabling autonomous driving

systems to smoothly and naturally interact with human drivers on the road. While there are

inherent computational difficulties in searching over the entire space of joint interactions

between all of the different agents, I am optimistic that machine learning can be used to

help guide and prune the search process. In this thesis, we took some initial steps in ex-

ploring how learning multimodal forecasting models from logged trajectories can be used

to efficiently reduce the search space. However, we believe that there is a lot of work to

be done in order to further improve the efficiency and efficacy of using these models in

planning.

Specifically, we want to reduce the runtime of these systems as much as possible in

order to maximize their responsiveness. While autoregressive Transformer models can

achieve impressive results in multi-agent motion forecasting [104; 98], the compute needed

to use these large models scales poorly with respect to the number of agents and time

72

steps. We believe an important direction for future work will be to explore different ways

in which we can get the benefits of these types of models, while improving their computa-

tional efficiency. Some promising approaches include using more efficient architectures like

Varadarajan et al. [111], Nayakanti et al. [76], or some of the various efficient Transformer

architectures that try to circumvent the quadratic scaling of attention [107]. Additionally,

autoregressive architectures that avoid running the entire neural network model for each

future prediction could be a promising direction for reducing the computational scaling in

time [98].

Another direction would be to use approaches that attempt to directly perform joint

predictions with one pass of the neural network model [77; 104]. While using these models

would reduce the computational complexity, such approaches will have to be careful to

avoid the optimism bias that we discussed in this thesis. For example, joint predictions for

the ego-vehicle and surrounding traffic will be biased to predict that the surrounding traffic

will engage in behaviors that are harmonious with the chosen ego-vehicle behavior because

most traffic datasets only contain positive scene outcomes. But if these potential biases can

be addressed, directly planning over joint predictions could be an efficient means of using

learning to guide motion planning.

6.4 On-Policy Samples

The success of ChatGPT [1], Alpha-Zero [101], and many works in fine-tuning offline-

learned models with online RL [70; 58; 30] illustrate the importance of collecting on-policy

samples in order to continually improve models and reduce failures. While we believe that

it would be dangerous and impractical to learn a RL driving policy from scratch in the

real-world, we do think that it will be important to leverage on-policy samples in order to

continually improve driving performance on the long-tail of scenarios. In this thesis, we did

some initial work in using on-policy samples collected offline in a simulated world model in

order to improve a hierarchical policy. However, there is inevitably no replacement for real-

world driving data. Therefore, we believe that fully utilizing and learning from trajectories

with interventions and other on-policy failures from actual autonomous systems run in the

real-world will be invaluable to improving their performance.

73

6.5 Final Remarks

In this thesis, we presented our work on how we can use deep learning models to facilitate

safe yet proactive interactions with other stochastic vehicles. While we believe there are

still many challenges and open questions, I am optimistic that with the ingenuity of the

wider research community, we can resolve many of these issues I raised, and I am excited

for the future of deep learning-based motion planners for autonomous driving.

74

BIBLIOGRAPHY

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive
discovery for accelerating offline reinforcement learning. ICLR, 2021.

[3] M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to drive by imitat-
ing the best and synthesizing the worst. In RSS, 2019.

[4] N. Baram, O. Anschel, I. Caspi, and S. Mannor. End-to-end differentiable adversarial
imitation learning. In International Conference on Machine Learning, pages 390–
399. PMLR, 2017.

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning en-
vironment: An evaluation platform for general agents. CoRR, abs/1207.4708, 2012.
URL http://arxiv.org/abs/1207.4708.

[6] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[7] R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton, A. Kuefler, and M. J.
Kochenderfer. Multi-agent imitation learning for driving simulation. in 2018 ieee.
In RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1534–1539.

[8] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[9] E. Bronstein, M. Palatucci, D. Notz, B. White, A. Kuefler, Y. Lu, S. Paul, P. Nikdel,
P. Mougin, H. Chen, et al. Hierarchical model-based imitation learning for planning
in autonomous driving. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 8652–8659. IEEE, 2022.

75

http://arxiv.org/abs/1207.4708

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[11] S. Casas, C. Gulino, S. Suo, K. Luo, R. Liao, and R. Urtasun. Implicit latent variable
model for scene-consistent motion forecasting. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXIII 16, pages 624–641. Springer, 2020.

[12] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, et al. Argoverse: 3d tracking and forecasting with rich maps.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 8748–8757, 2019.

[13] D. Chen and P. Krähenbühl. Learning from all vehicles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17222–
17231, 2022.

[14] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. In Confer-
ence on Robot Learning, pages 66–75. PMLR, 2020.

[15] D. Chen, V. Koltun, and P. Krähenbühl. Learning to drive from a world on rails.
arXiv preprint arXiv:2105.00636, 2021.

[16] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srini-
vas, and I. Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

[17] J. Cheng, Y. Chen, X. Mei, B. Yang, B. Li, and M. Liu. Rethinking imitation-based
planner for autonomous driving. arXiv preprint arXiv:2309.10443, 2023.

[18] K. Chitta, A. Prakash, and A. Geiger. Neat: Neural attention fields for end-to-end
autonomous driving. In International Conference on Computer Vision (ICCV), 2021.

[19] S. Choi, J. Kim, and H. Yeo. Attention-based recurrent neural network for urban
vehicle trajectory prediction. Procedia Computer Science, 151:327–334, 2019.

[20] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning
in a handful of trials using probabilistic dynamics models. CoRR, abs/1805.12114,
2018. URL http://arxiv.org/abs/1805.12114.

[21] F. Codevilla, E. Santana, A. M. López, and A. Gaidon. Exploring the limitations of
behavior cloning for autonomous driving. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 9329–9338, 2019.

[22] F. Codevilla, E. Santana, A. M. López, and A. Gaidon. Exploring the limitations of
behavior cloning for autonomous driving. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 9329–9338, 2019.

76

http://arxiv.org/abs/1805.12114

[23] R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

[24] A. Cui, S. Casas, A. Sadat, R. Liao, and R. Urtasun. Lookout: Diverse multi-future
prediction and planning for self-driving. In 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 16087–16096. IEEE Computer Society,
2021.

[25] A. Cui, S. Casas, K. Wong, S. Suo, and R. Urtasun. Gorela: Go relative for
viewpoint-invariant motion forecasting. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 7801–7807. IEEE, 2023.

[26] W. Dabney, G. Ostrovski, D. Silver, and R. Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learn-
ing, pages 1096–1105. PMLR, 2018.

[27] R. Dadashi, L. Hussenot, D. Vincent, S. Girgin, A. Raichuk, M. Geist, and
O. Pietquin. Continuous control with action quantization from demonstrations. arXiv
preprint arXiv:2110.10149, 2021.

[28] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. Advances in Neural Information Pro-
cessing Systems, 34:21847–21859, 2021.

[29] D. Dauner, M. Hallgarten, A. Geiger, and K. Chitta. Parting with misconceptions
about learning-based vehicle motion planning. In Conference on Robot Learning
(CoRL), 2023.

[30] P. De Haan, D. Jayaraman, and S. Levine. Causal confusion in imitation learning.
Advances in neural information processing systems, 32, 2019.

[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban
driving simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.

[32] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp,
C. R. Qi, Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. Mc-
Cauley, J. Shlens, and D. Anguelov. Large scale interactive motion forecasting
for autonomous driving: The waymo open motion dataset. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 9710–9719,
October 2021.

[33] L. Feng, Q. Li, Z. Peng, S. Tan, and B. Zhou. Trafficgen: Learning to generate
diverse and realistic traffic scenarios. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 3567–3575. IEEE, 2023.

77

[34] S. Feng, H. Sun, X. Yan, H. Zhu, Z. Zou, S. Shen, and H. X. Liu. Dense rein-
forcement learning for safety validation of autonomous vehicles. Nature, 615(7953):
620–627, 2023.

[35] B. Freed, S. Venkatraman, G. A. Sartoretti, J. Schneider, and H. Choset. Learning
temporally abstractworld models without online experimentation. In International
Conference on Machine Learning, pages 10338–10356. PMLR, 2023.

[36] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

[37] M. Ghavamzadeh, M. Petrik, and Y. Chow. Safe policy improvement by
minimizing robust baseline regret. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 29, pages 2298–2306. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper/2016/file/
9a3d458322d70046f63dfd8b0153ece4-Paper.pdf.

[38] R. Girgis, F. Golemo, F. Codevilla, M. Weiss, J. A. D’Souza, S. E. Kahou, F. Heide,
and C. Pal. Latent variable sequential set transformers for joint multi-agent motion
prediction. ICLR, 2022.

[39] V. Gómez, H. J. Kappen, J. Peters, and G. Neumann. Policy search for path inte-
gral control. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 482–497. Springer, 2014.

[40] K. T. e. a. H. Caesar, J. Kabzan. Nuplan: A closed-loop ml-based planning bench-
mark for autonomous vehicles. In CVPR ADP3 workshop, 2021.

[41] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR,
abs/1801.01290, 2018. URL http://arxiv.org/abs/1801.01290.

[42] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world
models. arXiv preprint arXiv:2010.02193, 2020.

[43] N. Hanselmann, K. Renz, K. Chitta, A. Bhattacharyya, and A. Geiger. King: Gen-
erating safety-critical driving scenarios for robust imitation via kinematics gradients.
In European Conference on Computer Vision, pages 335–352. Springer, 2022.

[44] J. Hardy and M. Campbell. Contingency planning over probabilistic obstacle predic-
tions for autonomous road vehicles. IEEE Transactions on Robotics, 29(4):913–929,
2013.

[45] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner. beta-vae: Learning basic visual concepts with a constrained varia-
tional framework. 2016.

78

https://proceedings.neurips.cc/paper/2016/file/9a3d458322d70046f63dfd8b0153ece4-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9a3d458322d70046f63dfd8b0153ece4-Paper.pdf
http://arxiv.org/abs/1801.01290

[46] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

[47] Y. Hu, K. Li, P. Liang, J. Qian, Z. Yang, H. Zhang, W. Shao, Z. Ding, W. Xu,
and Q. Liu. Imitation with spatial-temporal heatmap: 2nd place solution for nuplan
challenge. arXiv preprint arXiv:2306.15700, 2023.

[48] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang,
et al. Planning-oriented autonomous driving. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 17853–17862, 2023.

[49] Z. Huang, H. Liu, and C. Lv. Gameformer: Game-theoretic modeling and learning of
transformer-based interactive prediction and planning for autonomous driving. arXiv
preprint arXiv:2303.05760, 2023.

[50] M. Igl, D. Kim, A. Kuefler, P. Mougin, P. Shah, K. Shiarlis, D. Anguelov,
M. Palatucci, B. White, and S. Whiteson. Symphony: Learning realistic and di-
verse agents for autonomous driving simulation. arXiv preprint arXiv:2205.03195,
2022.

[51] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems, pages
12519–12530, 2019.

[52] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in Neural Information Processing Systems, 34, 2021.

[53] E. T. Jaynes. Information theory and statistical mechanics. Physical review, 106(4):
620, 1957.

[54] A. Kamenev, L. Wang, O. B. Bohan, I. Kulkarni, B. Kartal, A. Molchanov, S. Birch-
field, D. Nistér, and N. Smolyanskiy. Predictionnet: Real-time joint probabilistic
traffic prediction for planning, control, and simulation. In 2022 International Con-
ference on Robotics and Automation (ICRA), pages 8936–8942. IEEE, 2022.

[55] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims. Morel : Model-based
offline reinforcement learning, 2020.

[56] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[57] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[58] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

79

[59] S. Krishnan, R. Fox, I. Stoica, and K. Goldberg. Ddco: Discovery of deep continuous
options for robot learning from demonstrations. In Conference on robot learning,
pages 418–437. PMLR, 2017.

[60] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25:1097–1105, 2012.

[61] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pages 11784–11794, 2019.

[62] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline
reinforcement learning, 2020.

[63] R. Laroche, P. Trichelair, and R. T. D. Combes. Safe policy improvement with base-
line bootstrapping. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 3652–3661, Long Beach, California, USA,
09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/
laroche19a.html.

[64] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems, 2020.

[65] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[66] M. L. Littman. Markov games as a framework for multi-agent reinforcement learn-
ing. In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

[67] J. Liu, W. Zeng, R. Urtasun, and E. Yumer. Deep structured reactive planning. In
2021 IEEE International Conference on Robotics and Automation (ICRA), pages
4897–4904. IEEE, 2021.

[68] Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou. Multimodal motion prediction with
stacked transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7577–7586, 2021.

[69] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[70] Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, R. Roelofs, B. Sapp, B. White,
A. Faust, S. Whiteson, et al. Imitation is not enough: Robustifying imitation with

80

http://proceedings.mlr.press/v97/laroche19a.html
http://proceedings.mlr.press/v97/laroche19a.html

reinforcement learning for challenging driving scenarios. In 2023 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 7553–7560.
IEEE, 2023.

[71] J. Luo, P. Dong, J. Wu, A. Kumar, X. Geng, and S. Levine. Action-quantized offline
reinforcement learning for robotic skill learning. In Conference on Robot Learning,
pages 1348–1361. PMLR, 2023.

[72] Y. Ma, D. Jayaraman, and O. Bastani. Conservative offline distributional reinforce-
ment learning. Advances in Neural Information Processing Systems, 34:19235–
19247, 2021.

[73] N. Montali, J. Lambert, P. Mougin, A. Kuefler, N. Rhinehart, M. Li, C. Gulino,
T. Emrich, Z. Yang, S. Whiteson, et al. The waymo open sim agents challenge.
Advances in Neural Information Processing Systems, 36, 2024.

[74] A. Nair, M. Dalal, A. Gupta, and S. Levine. Accelerating online reinforcement learn-
ing with offline datasets, 2020.

[75] S. Narayanan, R. Moslemi, F. Pittaluga, B. Liu, and M. Chandraker. Divide-
and-conquer for lane-aware diverse trajectory prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15799–
15808, 2021.

[76] N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp. Wayformer:
Motion forecasting via simple & efficient attention networks. In 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2980–2987. IEEE,
2023.

[77] J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs,
A. Bewley, C. Liu, A. Venugopal, et al. Scene transformer: A unified architecture
for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417, 2021.

[78] S. Ozair, Y. Li, A. Razavi, I. Antonoglou, A. v. d. Oord, and O. Vinyals. Vector
quantized models for planning. arXiv preprint arXiv:2106.04615, 2021.

[79] X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted re-
gression: Simple and scalable off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

[80] K. Pertsch, Y. Lee, and J. Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pages 188–204. PMLR, 2021.

[81] J. Peters and S. Schaal. Reinforcement learning by reward-weighted regression for
operational space control. In Proceedings of the 24th international conference on
Machine learning, pages 745–750, 2007.

81

[82] D. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
D. Touretzky, editor, Proceedings of (NeurIPS) Neural Information Processing Sys-
tems, pages 305 – 313. Morgan Kaufmann, December 1989.

[83] A. Prakash, K. Chitta, and A. Geiger. Multi-modal fusion transformer for end-to-
end autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7077–7087, 2021.

[84] A. Quintanar, D. Fernández-Llorca, I. Parra, R. Izquierdo, and M. Sotelo. Predicting
vehicles trajectories in urban scenarios with transformer networks and augmented
information. arXiv preprint arXiv:2106.00559, 2021.

[85] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language
understanding by generative pre-training. 2018.

[86] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[87] K. Renz, K. Chitta, O.-B. Mercea, A. S. Koepke, Z. Akata, and A. Geiger. Plant:
Explainable planning transformers via object-level representations. In Conference
on Robot Learning, pages 459–470. PMLR, 2023.

[88] D. Rezende and S. Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[89] N. Rhinehart, K. M. Kitani, and P. Vernaza. R2p2: A reparameterized pushforward
policy for diverse, precise generative path forecasting. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 772–788, 2018.

[90] N. Rhinehart, R. McAllister, and S. Levine. Deep imitative models for flexible infer-
ence, planning, and control. arXiv preprint arXiv:1810.06544, 2018.

[91] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine. Precog: Prediction con-
ditioned on goals in visual multi-agent settings. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2821–2830, 2019.

[92] N. Rhinehart, J. He, C. Packer, M. A. Wright, R. McAllister, J. E. Gonzalez, and
S. Levine. Contingencies from observations: Tractable contingency planning with
learned behavior models. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 13663–13669. IEEE, 2021.

[93] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[94] O. Scheel, L. Bergamini, M. Wolczyk, B. Osiński, and P. Ondruska. Urban driver:
Learning to drive from real-world demonstrations using policy gradients. In A. Faust,
D. Hsu, and G. Neumann, editors, Proceedings of the 5th Conference on Robot

82

Learning, volume 164 of Proceedings of Machine Learning Research, pages 718–
728. PMLR, 08–11 Nov 2022. URL https://proceedings.mlr.press/
v164/scheel22a.html.

[95] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,
A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mas-
tering atari, go, chess and shogi by planning with a learned model, 2020.

[96] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region policy
optimization. CoRR, abs/1502.05477, 2015. URL http://arxiv.org/abs/
1502.05477.

[97] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

[98] A. Seff, B. Cera, D. Chen, M. Ng, A. Zhou, N. Nayakanti, K. S. Refaat, R. Al-Rfou,
and B. Sapp. Motionlm: Multi-agent motion forecasting as language modeling. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
8579–8590, 2023.

[99] T. Shankar and A. Gupta. Learning robot skills with temporal variational inference.
In International Conference on Machine Learning, pages 8624–8633. PMLR, 2020.

[100] Y. Shen, M. J. Tobia, T. Sommer, and K. Obermayer. Risk-sensitive reinforcement
learning. Neural computation, 26(7):1298–1328, 2014.

[101] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al. Mastering chess and shogi by self-play with
a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[102] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems,
28, 2015.

[103] H. Song, W. Ding, Y. Chen, S. Shen, M. Y. Wang, and Q. Chen. Pip: Planning-
informed trajectory prediction for autonomous driving. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXI 16, pages 598–614. Springer, 2020.

[104] S. Suo, S. Regalado, S. Casas, and R. Urtasun. Trafficsim: Learning to simulate re-
alistic multi-agent behaviors. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10400–10409, 2021.

[105] R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting.
ACM Sigart Bulletin, 2(4):160–163, 1991.

83

https://proceedings.mlr.press/v164/scheel22a.html
https://proceedings.mlr.press/v164/scheel22a.html
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

[106] C. Tang and R. R. Salakhutdinov. Multiple futures prediction. Advances in Neural
Information Processing Systems, 32:15424–15434, 2019.

[107] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient transformers: A survey.
ACM Computing Surveys, 55(6):1–28, 2022.

[108] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based con-
trol. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033, 2012.

[109] M. Treiber, A. Hennecke, and D. Helbing. Congested traffic states in empirical
observations and microscopic simulations. Physical review E, 62(2):1805, 2000.

[110] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Ad-
vances in neural information processing systems, 30, 2017.

[111] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti, A. Cornman,
K. Chen, B. Douillard, C. P. Lam, D. Anguelov, et al. Multipath++: Efficient in-
formation fusion and trajectory aggregation for behavior prediction. In 2022 Inter-
national Conference on Robotics and Automation (ICRA), pages 7814–7821. IEEE,
2022.

[112] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[113] S. Venkatraman. Latent skill models for offline reinforcement learning. PhD thesis,
Master’s thesis, Carnegie Mellon University Pittsburgh, PA, 2023.

[114] L. Wang, J. Liu, H. Shao, W. Wang, R. Chen, Y. Liu, and S. L. Waslander. Efficient
reinforcement learning for autonomous driving with parameterized skills and priors.
arXiv preprint arXiv:2305.04412, 2023.

[115] Z. Wang, A. Novikov, K. Zolna, J. T. Springenberg, S. Reed, B. Shahriari, N. Siegel,
J. Merel, C. Gulcehre, N. Heess, and N. de Freitas. Critic regularized regression,
2020.

[116] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning composi-
tional models of robot skills for task and motion planning. The International Journal
of Robotics Research, 40(6-7):866–894, 2021.

[117] C. Wen, J. Lin, T. Darrell, D. Jayaraman, and Y. Gao. Fighting copycat agents
in behavioral cloning from observation histories. Advances in Neural Information
Processing Systems, 33:2564–2575, 2020.

[118] R. J. Williams and D. Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280, 1989.

84

[119] J. Wu, Z. Huang, and C. Lv. Uncertainty-aware model-based reinforcement learning
with application to autonomous driving. arXiv preprint arXiv:2106.12194, 2021.

[120] Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learn-
ing, 2019.

[121] W. Xi, L. Shi, and G. Cao. An imitation learning method with data augmentation
and post processing for planning in autonomous driving. URL https://opendrivelab.
com/e2ead/AD23Challenge/Track 4 pegasus weitao. pdf, 2023.

[122] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang,
and T. Liu. On layer normalization in the transformer architecture. In International
Conference on Machine Learning, pages 10524–10533. PMLR, 2020.

[123] D. Xu, Y. Chen, B. Ivanovic, and M. Pavone. Bits: Bi-level imitation for traffic
simulation. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 2929–2936. IEEE, 2023.

[124] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo:
Model-based offline policy optimization, 2020.

[125] Y. Yuan, X. Weng, Y. Ou, and K. Kitani. Agentformer: Agent-aware transformers
for socio-temporal multi-agent forecasting. arXiv preprint arXiv:2103.14023, 2021.

[126] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun. End-to-end
interpretable neural motion planner. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8660–8669, 2019.

[127] W. Zhan, C. Liu, C.-Y. Chan, and M. Tomizuka. A non-conservatively defensive
strategy for urban autonomous driving. In 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC), pages 459–464. IEEE, 2016.

[128] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA,
2008.

85

	Abstract
	acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Contributions

	Offline Learning with Conservative Counterfactuals
	Related Work
	Behavior-Regularized Model-Free RL
	Uncertainty-Aware Model-Based RL

	Preliminaries
	Model-Based Behavior-Regularized Policy Optimization for Offline Fine-Tuning
	Conservative MBPO
	Behavior-Regularized Model-Free RL with AWAC
	Model-Based Behavior-Regularized Policy Optimization

	Experiments
	Conclusion

	Addressing Optimism Bias in Sequence Modeling for Reinforcement Learning in Stochastic Environments
	Introduction
	Related Work
	Sequence-Modeling for Offline RL
	Conservatism and Risk-Sensitive RL
	Trajectory Prediction in Autonomous Driving
	Learning Behavior for Self-Driving

	Preliminaries
	Transformers
	Variational Auto-Encoder

	Separated Latent Trajectory Transformer
	Discrete Latent Variable VAE
	Encoders
	Policy Decoder
	World Model Decoder
	Variational Lower Bound
	Training
	Planning

	Experiments
	Illustrative Example
	NoCrash
	Leaderboard

	Conclusion

	Tractable Joint Prediction and Planning over Discrete Behavior Modes for Urban Driving
	Introduction
	Related Work
	Trajectory forecasting models for driving
	Planning over learned forecasting models
	Learning to drive in CARLA

	Trajectory Prediction
	Model formulation
	Network architecture
	Training objectives

	Closed-Loop Planning over Discrete Behavior Modes
	Planning with autoregressive rollouts
	Evaluating ego-modes
	Reward function

	Results
	Model training and hyperparameters
	Merging scenarios
	Longest6 benchmark scenarios

	Conclusion

	Learning Hierarchical Driving Policies with Offline Reactive Simulation
	Introduction
	Related Works
	Hierarchical Policy Learning
	Imitation Learning in Autonomous Driving
	Multi-Agent Motion Forecasting
	Learning for Planning in Autonomous Driving
	Learning from Simulation

	Background
	Extracting Skills from a Multimodal Forecasting Model
	Low-Level Policies from Multimodal Trajectory Forecasting
	Connections to VQ-VAE

	Learning a High-Level Policy from Offline Simulation
	Learning Offline to Select Skills
	Reactive Simulation
	Evaluation
	Policy Training

	Experiments
	CARLA Merge Scenarios
	nuPlan

	Conclusion

	Conclusion
	Learning for Motion Planning
	Evaluating with Simulation
	Computational Efficiency
	On-Policy Samples
	Final Remarks

	Bibliography

