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Abstract

This thesis introduces a novel transfer learning framework for deep
reinforcement learning. The approach automatically combines goal-
conditioned policies with temporal contrastive learning to discover mean-
ingful sub-goals. The approach involves pre-training a goal-conditioned
agent, finetuning it on the target domain, and using contrastive learning
to construct a planning graph that guides the agent via sub-goals. Ex-
periments on PointMaze and multi-agent coordination Overcooked tasks
demonstrate improved sample efficiency, the ability to solve sparse-reward
and long-horizon problems, and enhanced interpretability compared to
baselines. The results highlight the effectiveness of integrating goal-
conditioned policies with unsupervised temporal abstraction learning for
complex multi-agent transfer learning. Compared to state-of-the-art base-
lines, our method achieves the same or better performances while requiring
only 23.4% of the training samples.
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Chapter 1

Introduction

Reinforcement Learning (RL) has emerged as a powerful framework for solving

decision-making problems by enabling agents to learn optimal policies through in-

teractions with the environments. It has achieved remarkable success in various

challenging domains, such as robotics [2, 27, 28] and game-playing [44, 49]. Despite

its impressive advancements, RL often struggles with sample inefficiency, requiring

many interactions with the environment to learn effective policies [52]. This problem

is exacerbated in multi-agent systems, where the size of the state and action space

increase combinatorially with the number of agents. Moreover, sparse rewards and

partial observability can further worsen the sample inefficiency of RL algorithms [52].

Transfer learning (TL) has emerged as a promising approach to address these chal-

lenges and improve the sample efficiency of RL. TL aims to leverage knowledge learned

in a task to accelerate learning and boost performance in a target task [52]. The

key idea behind TL is that related tasks often share common structures or features,

which can be extracted and reused instead of learned from scratch. For example,

skills learned in previous navigation tasks can transfer to new navigation goals or

environment layouts [51].

This thesis introduces a novel transfer learning framework that integrates goal-

conditioned reinforcement learning (GCRL) policies [38] with unsupervised temporal

abstraction learning and graph-based planning to capture and exploit reusable knowl-

edge across tasks. Our approach employs contrastive learning [10] to learn a compact

representation of the temporal structure from agent trajectories and then transforms
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1. Introduction

this learned latent space into a graph through clustering. The resulting graph encodes

abstract states as nodes representing clusters of similar states and temporal transitions

between these clusters as edges. This graph structure enables efficient planning and

sub-goal generation, guiding the GCRL policy in the target domain. Our approach

consists of three main steps: 1. First, we train a GCRL agent by reaching diverse

short-horizon goals in the source domain, enabling it to acquire diverse skills for

reaching various goals. 2. Next, we finetune the GCRL agent on the target domain,

learn a latent space of the temporal structure from the trajectories generated by the

GCRL agent using contrastive learning [10], and construct a planning graph from the

latent space. 3. Finally, we guide the GCRL agent using sub-goals generated from

the planning graph to complete the task in the target domain.

We demonstrate the effectiveness of our proposed framework through extensive

experiments across the PointMaze environment [33] and multiple multi-agent transfer

scenarios on the Overcooked environment [9]. Our approach offers several key benefits,

including: 1. improved sample efficiency when learning new tasks, 2. the ability to solve

challenging sparse-reward or long-horizon tasks by leveraging the learned temporal

abstractions and 3. enhanced the learning process’s interpretability by discovering

meaningful sub-goals and skills.

The main contributions of this thesis are:

1. We introduced a novel TL approach for RL that enables agents to learn new

tasks efficiently by leveraging prior experience.

2. We combined goal-conditioned policies with unsupervised learning of temporal

abstractions, enabling more sample-efficient and adaptable RL agents
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Chapter 2

Background

This chapter provides the relevant technical backgrounds, related works, and problem

definition.

2.1 Preliminaries

In this section, we introduce the technical backgrounds relevant to this thesis.

2.1.1 Reinforcement Learning

Reinforcement learning (RL) is a paradigm for agents to achieve pre-defined goals

through interaction with the environment.

Markov Decision Process

Markov Decision Processes (MDPs) [5] offer a structured approach for modeling

sequential decision-making in environments where outcomes are influenced by the

environment’s randomness and the agent’s actions. An MDP is defined by a tuple

(S,A, T ,R, p0, γ). Here, S represents the set of states in the environment; A is

the set of actions available to the agent; T : S × A × S → [0, 1] is the transition

function defining the probability of moving from one state to another given an action;

R : S × A × S → R assigns a reward to each transition between states under an
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2. Background

action; p0 : S → [0, 1] specifies the initial state distribution; and γ ∈ [0, 1] is the

discount factor for future rewards.

An extension to MDP is the Partially Observable Markov Decision Processes (POMDPs)

[3], which are defined by (S,A, T ,R,O, p0, γ), where O : S → Ω maps states to a set

of observations Ω. Instead of having access to the complete state information, the

agent in POMDPs only has access to partial observations.

Policy Gradients

Policy gradient methods are a category within reinforcement learning that aims to

optimize a policy directly to maximize the expected total discounted rewards, denoted

as Eπθ
[
∑T

t=0 γ
tRt], where T represents the horizon of the environment, πθ denotes a

policy parameterized by θ. Policy gradient methods compute an estimator of the

policy gradients and optimize the policy parameters via the gradient ascent algorithm.

The most common gradient estimator has the form ĝ = Et[∇θ log πθ(at|st)Ât], where

Ât is an estimator of the advantage function at timestep t.

Various trade-offs between bias and variance exist in the choice of the advantage

estimator. A standard option is the generalized advantage estimator GAE(γ, λ) [41],

where λ controls the bias-variance trade-off. Higher λ values result in lower bias but

higher variance in the estimator, and vice versa.

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l, where δVt = −V (st) + rt + γV (st+1) (2.1)

Proximal Policy Optimization (PPO) [42] aims to improve standard policy gradient

methods by employing a clipped objective function, preventing large policy updates,

and ensuring more stable and efficient learning. This approach encourages moderate

adjustments to the policy.

LCLIP (θ) = E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(2.2)

Here, rt =
πθ(att|st)

πθold
(att|st) , and ϵ is a hyperparameter that controls the degree in which

the updated policy can deviate from the old policy.
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2. Background

2.1.2 Contrastive Representation Learning

Contrastive representation learning is a self-supervised learning approach that aims

to learn meaningful representations by contrasting positive pairs against negative

pairs. The goal is to learn an embedding space where similar samples are pulled

together, and dissimilar ones are pushed apart.

The basic contrastive loss, also known as the triplet loss [40], is defined for a triplet

(x, x+, x−), where x is an anchor point, x+ is a positive example (i.e., a point similar

to the anchor), and x− is a negative example (i.e., a point dissimilar to the anchor).

The loss function encourages the anchor-positive distance to be smaller than the

anchor-negative distance by a margin ϵ:

L(x, x+, x−) =
∑
x∈X

(0, d(x, x+)− d(x, x−) + ϵ) (2.3)

where d(·, ·) is a distance metric, such as Euclidean distance.

InfoNCE (Information Noise-Contrastive Estimation) [31] generalizes the contrastive

loss to handle multiple positive and negative examples. Given a positive pair (i, j),

the InfoNCE loss is defined as:

LInfoNCE = −E
[
log

f(x, c)∑
x′∈X f(x′, c)

]
(2.4)

where f(x, c) = exp(xTWc), W is a trainable weight matrix.

Large batch sizes and hard negative mining are crucial to successfully training

contrastive models. SimCLR [10] demonstrates that larger batch sizes can significantly

improve the quality of the learned representations by providing more negative examples.

Hard negative mining techniques, such as the ones used in [36], focus on selecting the

most informative negative examples to improve the contrastive learning process.

2.2 Related Works

In this section, we introduce the related works to this thesis.
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2. Background

2.2.1 Goal-Conditioned Reinforcement Learning

Goal-conditioned reinforcement learning (GCRL) is a framework where an agent learns

to achieve a specified goal state instead of maximizing a scalar reward signal. Schaul

et al. [38] introduced the concept of universal value function approximators (UVFA),

which extends the standard value function to consider goal states. Andrychowicz

et al. [1] proposed Hindsight Experience Replay (HER), a technique that allows

the agent to learn from failures by treating the achieved state as the desired goal

state. Recent works have extended GCRL to handle multi-goal scenarios [34] and

hierarchical goal-setting [24, 30].

Exploration is crucial for GCRL, especially in sparse reward settings. Go-Explore

[12] addresses this by building an archive of diverse, high-performing states dur-

ing exploration and learning a policy to reach these states reliably. Skew-Fit [35]

introduces a goal sampling scheme that favors goals of intermediate difficulty, en-

couraging exploration and learning. DISCERN [25] learns a goal-conditioned policy

using an unsupervised reward function that promotes exploration and skill discovery.

Plan2Explore [43], LEXA [29] and PEG [20] build on top DreamerV2 [18] and promote

exploration during training.

2.2.2 Contrastive Representation Learning in Robotics

Contrastive learning has been successfully applied to robotics for learning state and

reward representations. Srinivas et al. [22] proposed the Contrastive Unsupervised

Representations for Reinforcement Learning (CURL) framework, which learns a

contrastive representation of raw pixels to improve sample efficiency in robotic control

tasks. Zhan et al. [50] introduced a framework for learning robotic manipulation skills

using contrastive learning, demonstrating improved performance and generalization.

Other works have utilized contrastive learning for various aspects of robotic learning.

Singh et al. [45] employed contrastive learning to learn reward functions, while Laskin

et al. [23] used it to learn invariant representations. Florence et al. [14] and Cao et

al. [7] trained view-angle invariant contrastive representations to improve robotic

manipulation tasks, enabling the agent to handle variations in object poses and camera

viewpoints. Cao et al. [8] proposed a method for learning sim-to-real pixel-to-pixel

consistent contrastive representations, which allows for zero-shot transfer of policies
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learned in simulation to real-world robotic manipulation tasks. [32] and [32] used

contrastive learning to learn a mapping from states to latent representation that

preserves the temporal structure.

2.2.3 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) aims to learn a hierarchy of policies

operating at different abstraction levels. The goal is to break down a complex task

into simpler subtasks, which can be learned more efficiently. Sutton et al. [46]

introduced the options framework, which extends the standard MDP to include

temporally extended actions. Bacon et al. [4] proposed the Option-Critic architecture,

which simultaneously learns the policy over options and the options themselves.

Recent works have explored learning goal-conditioned hierarchical policies [24, 30]

and combining HRL with meta-learning [15].

2.2.4 Transfer Learning in Reinforcement Learning

Transfer learning in RL aims to leverage knowledge learned from one task to improve

learning efficiency and performance in another related task. Zhu [52] provides a

comprehensive survey of transfer learning methods in RL. Rusu et al. [37] introduced

the Progressive Neural Networks (PNN) architecture, which allows for transferring

knowledge across a sequence of tasks while avoiding catastrophic forgetting. Other

approaches include learning invariant feature spaces [17], meta-learning for fast

adaptation [13], and learning transferable representations [19].

Recent advancements include Distilling Policy Distillation [11], which combines

policy distillation with teacher-student curriculum learning for efficient knowledge

transfer, and Kickstarting Deep Reinforcement Learning [39], which uses human

demonstrations in a source task to initialize policies in a target task, reducing

exploration and improving learning efficiency. JumpstartRL [47] uses a guidance

policy to help a new policy to learn in a curriculum setting.
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2.3 Problem Definition

This thesis addresses the challenge of transfer learning in the context of reinforcement

learning (RL). Transfer learning in RL entails adapting knowledge gained from one

scenario to enhance learning efficiency and effectiveness in a related but distinct

scenario [52]. By leveraging information extracted from the source domain alongside

the inherent characteristics of the target domain, the aim is to accelerate the learning

process and enhance the agent’s performance in achieving desired objectives within

the target environment. Transfer learning involves leveraging knowledge from a

source domain, denoted asMs = {Ms ∈Ms}, to facilitate faster learning in a target

domain,Mt. In the realm of RL, the objective is to enable an agent to acquire new

skills or improve its performance in a target environment by harnessing both external

information, Is, from the source domainMs, and internal information, It, inherent
to the target domainMt. This thesis assumes one expert demonstration is given for

each environment.

8



Chapter 3

Method

Our transfer learning framework facilitates the efficient adaptation of trained agents to

new environments through a three-stage approach, as shown in Figure 3.1: 1. training

a GCRL agent on a source environment to acquire diverse skills that can be leveraged

in target environments, as shown in section 3.2; 2. finetuning the GCRL agent on

the target environment, learning a latent representation of the agent’s behavior using

contrastive learning to capture the temporal structure of the agent’s trajectories,

and constructing a planning graph based on the learned latent space, as shown in

section 3.3; and 3. execute the task in the target environment by following sub-goals

generated from the planning graph using the finetuned GCRL agent as shown in

section 3.4. We assume access to a single demonstration of successful task completion

in the target environment, which we utilize to guide agent finetuning and graph

construction. During training the GCRL agent, by resetting to states in the expert

trajectory, we allow the GCRL agent to focus on state regions related to completing

the task rather than searching over a much larger space for finding the optimal policy,

which improves sample efficiency [48].

3.1 Assumptions

This thesis makes the following assumptions in our transfer learning framework: 1. We

utilize a GCRL setup, where the agent’s observations are augmented with a goal state

that the agent aims to achieve [38]. This enables the agent to learn general skills
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3. Method

for reaching various goals. 2. We assume access to a single expert demonstration

trajectory τexpert of successful task completion in the target environment. This

demonstration guides agent finetuning and graph construction in the target domain.

3. We employ partially observable agents that receive incomplete observations of the

true environment state [21]. Partial observability can improve the generalization of

learned behaviors across related environments.

Transfer

(s=   , g=   )

Finetune agent on
target environment

Training & clustering temporal 
contrastive latent space

Pre-train

(s=   , g=   )

Pre-train agent on 
source environment

Execute Task

Follow sub-goals to 
execute task

GCRL Agent Goal Expert trajectory

Figure 3.1: Our method follows three steps: 1) pre-train the GCRL agent to acquire
diverse transferable skills by achieving short-horizon goals in the source environment;
2) finetune the GCRL agent on the target environment, learn a latent space to
encapsulate the temporal structure of trajectories form rolling out the finetuned
GCRL agent, and construct a planning graph, whose nodes are clusters from the latent
space and edges are transitions between clusters observed in the expert trajectory;
3) and, execute task in the target environment by following sub-goals. We assume a
single successful demonstration in the target environment is given, which we utilize
to guide agent finetuning and graph construction.

3.2 Goal-Conditioned Reinforcement Learning

Agent

To train the GCRL agents, we utilize the universal value approximator [38] and

Proximal Policy Optimization [42]. We assume we can sample goal states for a given

initial state. On each episode, we sample the initial state from the expert trajectory

τexpert and sample a goal state g ∼ P (g|s0), where P (g|s0) is sampling a goal state by

random walking from s0. For a comprehensive algorithm description, we refer the

10



3. Method

reader to [38] and [42]. Upon transferring, we first finetune the GCRL agent on the

target environment and perform temporal contrastive learning and clustering.

3.3 Temporal Contrastive Learning and

Clustering

Providing sub-goals guiding the GCRL agents to complete tasks in target environments

is a promising avenue to efficiently transfer skills learned in the source environment to

the target environment. This motivates the efficient construction of planning graphs

grounded in agent behaviors. To achieve this, we utilize contrastive learning to distill

a latent space representing temporal distances, specifically, the minimal steps required

for an agent to transition from one state to another. However, obtaining the minimal

temporal distance between state pairs is hard because this requires optimal control

between every pair of states. Hence, we use state pairs and corresponding temporal

distances from rollouts generated by the GCRL agent for approximation. The resulting

temporal distances are noisy. Hence, we employ the InfoNCE [31] approach to learn

a mapping fw from the observational space to the embedding space, where geometric

proximities in the embedding space mirror temporal distances in the trajectories. This

relationship is encapsulated in Equation 3.1, with d(·, ·) representing a metric distance

function. In this thesis, we choose d(·, ·) as the L2 distance. Adopting a metric space

as d(·, ·) enables estimating temporal distances between unobserved state pairs using

the triangular inequality. This contrastive learning and metric formulation, coupled

with neural network modeling, empowers our system to process and generalize from

noisy trajectory data. During training, we select state pairs within T timesteps in a

trajectory to be positive samples and randomly sample states within the same batch

to be negative samples. T is a hyper-parameter governing the maximum temporal

threshold for positive sample pairs.

Ltc(x, xpos, X) = −E
[
log

exp(−d(fw(x), fw(xpos)))∑
x′∈X exp(−d(fw(x), fw(x′)))

]
(3.1)

Note that the learned latent space reflects the temporal distances of the underlying

trajectories used for training. Thus, curating a dataset representative of the state and
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3. Method

transition distribution for the designated task is crucial. Collecting rollouts of states

relevant to the desired task with temporal distances close to the minimal temporal

distances is essential for learning latent space structures useful for the task.

In Algorithm 1, we sample initial states from an expert trajectory τexpert to ensure we

efficiently cover state regions relevant to the completing the task; we use the trained

GCRL agent πθ to collect rollouts; furthermore, we sample state pairs to balance the

probabilities of sampling each state. After learning the temporal embeddings, we

construct a graph to capture the essential temporal structure of the task. The graph

is constructed as follows: first, we employ the K-means clustering algorithm to group

the embeddings into distinct clusters and utilize the elbow method to determine the

optimal number of clusters [6, 26]. Each cluster in the embedding space represents

a node in the graph. Then, we create edges between nodes based on the observed

transitions between clusters in the expert trajectory. Specifically, for each consecutive

pair of states in the expert trajectory, we identify their corresponding clusters and

add an edge between the associated nodes in the graph. It is crucial to note that the

learned embeddings and the resulting graph are grounded in the original state space,

enabling us to map each state to its corresponding embedding, cluster, and graph

node. This property allows for seamless integration of the graph-based planning

with the reinforcement learning agent. The constructed graph captures the essential

temporal structure of the task, facilitating efficient planning and sub-goal generation

for the agent during the transfer learning process.

Algorithm 1 Training Temporal Latent Space

1: Input: env, fw, πθ, τexpert, P (g|s0)
2: s0 ∼ τexpert
3: g ∼ P (g|s0)
4: Dataset ← rollouts(πθ, env, s0, g)
5: while not converged do
6: x, xpos, X ← BalancedSampling(Dataset)
7: Optimize Ltc(x, xpos, X)
8: end while
9: ClusterClassifier ← Cluster fw(Dataset)

10: PlanningGraph ← construct graph(Dataset, fw, τexpert)

12



3. Method

3.4 Task Execution

After finetuning on the target environment, we combine the GCRL agent πτ , the

temporal contrastive mapping fw, the expert demonstration τexpert, and the cluster

classifier to execute tasks. As shown in Algorithm 2, on each step, we predict the

current cluster and select the next sub-goals g as the state that transitions to the

next cluster on the shortest path from the current cluster to the target cluster, or the

target state if we are already in the target cluster, and execute the action sampled

from πθ(s, g).

Algorithm 2 Task Execution

1: Input: env, πθ, τexpert, fw, ClusterClassifier
2: s← env.reset()
3: while not done do
4: c← ClusterClassifier(fw(s))
5: g ← GetSubGoal(fw, c, τexpert)
6: action ∼ πθ(s, g)
7: s, done← env.step(action)
8: end while

13
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Chapter 4

Experiments

In this chapter, we provide qualitative and quantitative experiment results to demon-

strate the effectiveness of our method. We aim to answer the following questions:

1) Does our method enable learning in a new environment for single-agent and

multi-agents faster? 2) Are the generated sub-goals qualitatively interpretable?

4.1 Setup

We evaluated our methods and four other baselines on eight transfer learning exper-

iments across two environments. For each experiment, we pre-train agents on the

source environment envs and transfer to the target environment envt. We set the

target environments as variants (different layouts or tasks) of the source environment.

We report the learning curve and time-to-threshold for each experiment. We used

partial observable agents in all experiments unless specified otherwise.

Point Maze is a continuous 2D maze environment. The agent’s goals and initial

positions are randomly initialized on the maze. The agent’s observation includes

distance measures of a simulated 2D lidar sensor and a delta to the goal position.

The action space is the 2D planar velocity. The agent is considered to reach the goal

if it is close to the goal position and not blocked by any wall. The task reward, not

used in our method, is the shortest distance to the target position, approximated

from a graph search over a discretized maze version. We evaluated each method on

500 episodes and reported the success rate in reaching the goal position. The source

15



4. Experiments

and target tasks are shown in Figure 4.1a. Our implementation of Point Maze is

adapted from [33].

Source Target

(a) PointMaze

Cilantro Cilantro Left

Eight Shape Bottleneck

Ring Small Corridor

Corridor

Source Target

(b) Overcooked

Figure 4.1: a) The source and target PointMaze [33] tasks. Agents must navigate
from the initial position (the orange point) to the target position (the green star).
b) The source and target Overcooked [9] tasks. The two chefs need to coordinate
to make soup and deliver soups. In each environment, there are two chefs (the chef
with the green hat and the chef with the blue hat), onion dispensers, plate dispensers,
ovens (the grey box with a black top), a serving area (the plain light grey box), walls
(brown box) and optionally cilantro dispensers.

Overcooked is a simplified version of the popular video game Overcooked [16],

where 2-4 players control chefs cooking and serving dishes in a kitchen. We consider

two-player scenarios where the chefs must coordinate to prepare and deliver soups.

Each dish recipe contains several high-level steps, as shown in Figure 4.2. The

task rewards are dish pickup (3), soup pickup (5), placing onion in the oven (3),

adding cilantro to soup (5), delivering soup (20), and 0 otherwise. Note that task

rewards are used in baselines but not in our method. The target environments were

designed as variants of the source environment, differing in layout or task. The

cilantro and cilantro left environments have different recipes and layouts, and the

ring, eight shape, bottleneck, small corridor and corridor environments have different

layouts. The source and target tasks are visualized in Figure 4.1b. We used partially

observable agents in all experiments unless specified otherwise. Each episode consisted

of 500 timesteps, and the performance was evaluated based on the number of soups

delivered per episode. The Overcooked environment has a fixed initial configuration
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and deterministic dynamics. We randomly rolled out the agent for ten steps before

executing the policy to introduce randomness to the environment. We provide a

single expert trajectory for each environment via hard-coded policies.

Put cilantro into soup

X3

Put 3 onions in 
the pot

Cook for 20 
steps

Put soup on 
plate

Figure 4.2: Overcooked recipes. To make one soup, the two chefs need to 1) fetch
three onions from the onion dispenser and put them into the oven one by one, and 2)
turn on the oven and wait for 20 steps, and 3) fetch a plate from the plate dispenser,
take the soup from the oven to the plate, and 4) Optionally, to make a cilantro soup,
fetch cilantro from the dispenser and put it on the soup plate.

We compare our method to the following five methods.

• Vanilla RL: Training an RL agent from scratch.

• Fine-tuning: Fine-tuning the agent trained on the source environment.

• Policy Distillation (Loss): Policy distillation through an auxiliary cross-

entropy loss between the action probabilities from the policy pre-trained in the

source environment and the learning policy [39].

• Policy Distillation (Reward): Policy distillation through a reward shaping

term captures the difference of the pre-trained critic in the source environment

between current the previous timesteps [11].

• JumpStart RL: JumpStart RL [47] uses a guiding policy to form a curriculum

learning, where we gradually sample fewer actions from the guiding policy. In

this thesis, we evaluated eight variants of JumpStart RL: 1) whether the curricu-

lum schedule is random or curriculum, 2) whether the policy is initialized from
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the agent trained on the source environment and 3) whether the guiding policy

is trained on the source or target environment. Note that using policies trained

on the target environment as guide policies might give it unfair advantages.

4.2 Transfer Learning Results

Point Maze. We show the learning curves for transferring from the source environ-

ment to the target environment for the point maze environment in Figure 4.3. To

verify the GCRL agent could adapt local behaviors to the environments, we made

the target environment by copying and pasting parts of the source environment. We

augmented the planning graph from the source environment by copying and pasting

the node/cluster label of each position and cluster connection according to how we

copied and pasted it to create the target environment. We used the policy trained

from the source environment without fine-tuning with the adapted planning graph. As

a result, our method can transfer to the much bigger maze without fine-tuning. This

demonstrated the effectiveness of adapting the planning graph to new environments

and transferring the local skills of GCRL agents.

10M 20M 30M 40M 50M 60M 70M 80M 90M
0

0.2

0.4

0.6

0.8

1

JSRL Tune (curriculum) JSRL (random) JSRL (curriculum)
JSRL Tune (random) Distill (loss) Vanilla RL
Fine-tuning Distill (reward)

Training environment steps

Su
cc

es
s 

ra
te

Ours

Figure 4.3: Point maze Transfer Learning Curve. The average success rate of reaching
the goal is calculated over 500 episodes. Note that our method does not require
training for this experiment.

Overcooked. We show the average soups delivered for each method throughout
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training on each environment in Figure 4.6. We show the training steps taken to

convergence in Table 4.1 and the maximum soups delivered per method for each

environment in Table 4.2. The normalized performance and convergence speed is at

Figure 4.4. Time to convergence is defined as reaching 90% of maximum performance

per method. Each environment’s performance and convergence comparison is at

Figure 4.5. Our methods consistently learn 4.27 times faster on average than the

fastest baselines across all experiments, reaching similar or better performances. On

experiments transferring to environments with similar layouts but different tasks

from the source environment, the cilantro and cilantro left environments, the transfer

learning baselines perform poorly and, sometimes, even worse than the vanilla RL.

This is because the guidance from the source environment policy can be biased

toward the old behaviors, making it challenging to learn behaviors needed for the

new environments. This is especially true in the environments with the cilantro

recipes because delivering soups before putting cilantro in can significantly hinder the

resulting performance. This also shows that our method can effectively transfer to

environments with tasks where slight differences can result in significant performance

degradation. On experiments transferring to environments with similar tasks but

different layouts from the source environment, the cilantro, cilantro left, eight shape,

small corridor, corridor and bottleneck environments, our method could effectively

transfer to such environments. This demonstrates our method’s ability to efficiently

transfer skills learned from the source environment to target environments. Note

on the small corridor and corridor environments, other methods struggle to deliver

soups. This is because the narrow and long corridors require agents to coordinate

so as not to block others from delivering soups successfully. This demonstrates our

method’s ability to perform long-horizon multi-agent planning and coordination.

Table 4.1: Overcooked training steps to convergence (reaching 90% of the max soups
per method per environment) table. n/a means the method did not deliver any soup.

Environment Cilantro Cilantro Left Eight Shape Ring Small Corridor Corridor Bottleneck

Ours 680.5K 806.3K 1.1M 1.0M 1.1M 1.3M 1.0M
Vanilla RL 5.0M 6.0M 7.0M 6.0M n/a n/a 8.0M
Fine-tuning 3.0M 1.0M n/a 5.0M n/a n/a 8.0M

Distill 9.0M 3.0M 5.5M 6.5M n/a n/a 6.5M
JSRL 6.2M 5.8M 6.6M 5.8M 5.0M n/a 7.4M
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Table 4.2: Overcooked max soups delivered table.

Environment Cilantro Cilantro Left Eight Shape Ring Small Corridor Corridor Bottleneck

Ours 12.58 12.10 10.32 10.36 4.92 3.84 6.60
Vanilla RL 9.72 10.54 9.00 11.06 0.00 0.00 8.10
Fine-tuning 11.22 0.02 0.00 12.32 0.00 0.00 8.00

Distill 9.58 0.03 10.53 10.91 0.00 0.00 7.90
JSRL 8.28 5.97 6.59 12.38 0.42 0.00 7.87
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1
Method

Optimal
Ours
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Figure 4.4: The scatter plot for normalized performance and sample efficiency in the
Overcooked environment. The maximum number of soups delivered is normalized
using the formula: maximum number of soups delivered for a given method / maximum
number of soups delivered for all methods in an environment. The Sample efficiency is
normalized using the formula: 1 - (steps to convergence for a given method / maximum
steps to convergence in the environment). Steps to convergence are determined by
the steps at which a method reaches 90% of its maximum performance. Variants of
the same method are grouped under a single plot category.
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(a) Cilantro environment performance, max
soups delivered (higher better).
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(b) Cilantro environment steps taken to reach
convergence (lower better).
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(c) Cilantro left environment performance, max
soups delivered (higher better).
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(d) Cilantro left environment steps taken to reach
convergence (lower better).

Figure 4.5
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(e) Eight shape environment performance, max
soups delivered (higher better).
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(f) Eight shape environment steps taken to reach

convergence (lower better).
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(g) Ring environment performance, max soups
delivered (higher better).
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(h) Ring environment steps taken to reach con-
vergence (lower better).

Figure 4.5
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(i) Small corridor environment performance, max
soups delivered (higher better).
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(j) Small corridor environment steps taken to
reach convergence (lower better).
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(k) Corridor environment performance, max
soups delivered (higher better).
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(l) Corridor environment steps taken to reach
convergence (lower better).

Figure 4.5
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(m) Bottleneck environment performance, max
soups delivered (higher better).
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(n) Bottleneck environment steps taken to reach
convergence (lower better).

Figure 4.5: Overcooked performance and steps to convergence across various environ-
ments. The step to convergence is n/a when no soup is delivered.

4.3 Interpretable Sub-goals

The sub-goals generated from section 3.4 exhibit semantically meaningful breakdown

of tasks, e.g., fetching onions, loading onion to the oven, and serving soups, as shown

qualitatively in Figure 4.7. This empirically demonstrated that unsupervised temporal

contrastive learning could discover semantically meaningful structures from rollouts.

One intuitive explanation behind this is that the connection between clusters in the

latent space tends to be the connection of a bottleneck structure, where the bottleneck

transitions are a sequence of actions that enable the agent to reach states previously

impossible to achieve. Such transitions often correspond to sub-goals for a task since

the agent can advance to previously inaccessible states by following the next sub-goal.

One example of such a bottleneck is fetching an onion when the agent has no onion.

By fetching an onion, the agent can reach states of carrying onions around that were

previously inaccessible.

24



4. Experiments

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

5

10

2M 4M 6M 8M 10M
0

2

4

2M 4M 6M 8M 10M
0

1

2

3

4

2M 4M 6M 8M 10M
0

5

Ours Vanilla RL Fine-tuning
Distill (loss) Distill (reward) JSRL (curriculum)
JSRL (oracle, curriculum) JSRL (oracle, random) JSRL (random)
JSRL Tune (curriculum) JSRL Tune (oracle, curriculum) JSRL Tune (oracle, random)
JSRL Tune (random) Vanilla RL (full-obs) Vanilla RL (partial-obs)
Distill (loss, full-obs) Distill (loss, partial-obs) Distill (reward, full-obs)
Distill (reward, partial-obs) JSRL (curriculum, full-obs) JSRL (curriculum, partial-obs)
JSRL (oracle, curriculum, full-obs) JSRL (oracle, curriculum, partial-obs) JSRL (oracle, random, full-obs)
JSRL (oracle, random, partial-obs) JSRL (random, full-obs) JSRL (random, partial-obs)
JSRL Tune (Oracle, curriculum) JSRL Tune (Oracle, random)

Training environment steps Training environment steps

Training environment steps Training environment steps

Training environment steps Training environment steps

Training environment steps

Av
er

ag
e 

so
up

s 
de

liv
er

ed
Av

er
ag

e 
so

up
s 

de
liv

er
ed

Av
er

ag
e 

so
up

s 
de

liv
er

ed
Av

er
ag

e 
so

up
s 

de
liv

er
ed

Cilantro Cilantro Left

Eight shape Ring

Small Corridor Corridor

Bottleneck

Figure 4.6: Overcooked Learning Curves. Average soups delivered over 50 episodes
throughout training.
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(a) Cilantro

(b) Cilantro Left

(c) Eight Shape

(d) Ring

(e) Small Corridor

(f) Corridor

(g) Bottleneck

Figure 4.7: Overcooked sub-goals. Samples of sub-goal sequences were generated
for each overcooked environment. Semantically meaningful breakdown of the task
emerges naturally from the temporal contrastive embedding clusters. For example, the
sub-goals qualitatively demonstrate the intentions for handing over onions, fetching
plates, putting onions into the oven, and taking soups out of the oven.
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4.4 Experiment take-aways

The experimental results demonstrate several key takeaways of our transfer learning

framework. First, our method successfully learns to construct planning graphs that

capture meaningful subgoals for task completion in the target environments, without

requiring manual specification or domain knowledge. Second, the experiments on

the Overcooked environment showcase the method’s ability to handle multi-agent

scenarios by learning from joint agent trajectories and capturing the coordination

between agents. Finally, the PointMaze experiments show that when the target

environment is a permutation of the source environment, we can efficiently adapt

to the new environment by augmenting the learned graph structure, enabling zero-

shot transfer to related but unseen environments. These takeaways highlight the

effectiveness of our approach in automatically discovering transferable subgoals,

handling multi-agent settings, and efficiently adapting to new environments, opening

up exciting possibilities for more flexible and sample-efficient transfer learning in

reinforcement learning.
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Chapter 5

Conclusions

This paper introduced a novel transfer learning framework for deep reinforcement

learning that combines goal-conditioned policies with unsupervised learning of tem-

poral abstractions. Our approach automatically abstracts tasks into subgoals using

temporal proximity, eliminating the need for manual specification or domain knowl-

edge. This makes transfer learning more flexible and applicable to various domains.

Experiments on Overcooked multi-agent coordination tasks demonstrated the effec-

tiveness of our framework in terms of improved sample efficiency, the ability to solve

sparse-reward and long-horizon challenges, and enhanced interpretability through the

automatic discovery of meaningful sub-goals. These findings highlight the advantages

of integrating goal-conditioned RL with unsupervised temporal abstraction learning

for successful transfer to complex target domains, demonstrating superior performance

compared to baseline methods such as fine-tuning, policy distillations, and curriculum

learning methods. Notably, our method achieves the same or better performance while

requiring only 23.4% of the training samples compared to state-of-the-art baselines,

showcasing its sample efficiency and potential for real-world applications where data

collection and training can be expensive or time-consuming.

Our work opens up exciting directions for future research. One promising avenue is

integrating language guidance or instructions into the subgoal discovery process, which

could lead to more semantically meaningful and interpretable subgoals, enhancing the

transparency and explainability of the learned policies. Another direction is to extend

our framework to handle multiple tasks and environments simultaneously, potentially
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5. Conclusions

by learning a shared representation space or a hierarchical structure that captures the

commonalities and differences across tasks and environments. This could enable more

efficient and generalizable transfer learning. Furthermore, exploring the application

of our method to real-world problems, such as robotics, autonomous navigation,

or game AI, could demonstrate the benefits of automatic subgoal discovery and

efficient transfer learning in these domains. Finally, integrating our transfer-learning

framework with other learning paradigms, such as imitation learning, meta-learning,

or model-based reinforcement learning, could lead to developing more powerful and

versatile transfer-learning algorithms. Pursuing these research directions can pave the

way for more intelligent, adaptable, and collaborative AI systems that can efficiently

learn and transfer knowledge across various tasks and environments.
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