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Abstract

Kalman filter (KF) based methods for multi-object tracking (MOT) as-
sume that objects move linearly. While this assumption is acceptable for
very short periods of occlusion, linear estimates of motion for prolonged
time can be highly inaccurate. Moreover, when there is no measurement
available to update Kalman filter parameters, the standard convention is
to trust the priori state estimations for posteriori update. This leads to
the accumulation of errors during a period of occlusion. The error causes
significant motion direction variance in practice. In this work, we show
that a basic Kalman filter can still obtain state-of-the-art tracking perfor-
mance if proper care is taken to fix the noise accumulated during occlusion.
Instead of relying only on the linear state estimate (i.e., estimation-centric
approach), we use object observations (i.e., the measurements by object
detector) to compute a virtual trajectory over the occlusion period to fix
the error accumulation of filter parameters. This allows more time steps
to correct errors accumulated during occlusion. We name our method
Observation-Centric SORT (OC-SORT). It remains Simple, Online, and
Real-Time but improves robustness during occlusion and non-linear mo-
tion. Given off-the-shelf detections as input, OC-SORT runs at 700+ FPS
on a single CPU. It achieves state-of-the-art on multiple datasets, includ-
ing MOT17, MOT20, KITTI, head tracking, and especially DanceTrack
where the object motion is highly non-linear. The code and models are
available at https://github.com/noahcao/OC_SORT.
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Chapter 1

Introduction

We aim to develop a motion model-based multi-object tracking (MOT) method that

is robust to occlusion and non-linear motion. Most existing motion model-based

algorithms assume that the tracking targets have a constant velocity within a time

interval, which is called the linear motion assumption. This assumption breaks in

many practical scenarios, but it still works because when the time interval is small

enough, the object’s motion can be reasonably approximated as linear. In this work,

we are motivated by the fact that most of the errors from motion model-based tracking

methods occur when occlusion and non-linear motion happen together. To mitigate

the adverse effects caused, we first rethink current motion models and recognize some

limitations. Then, we propose addressing them for more robust tracking performance,

especially in occlusion.

As the main branch of motion model-based tracking, filtering-based methods

assume a transition function to predict the state of objects on future time steps,

which are called state “estimations”. Besides estimations, they leverage an observation

model, such as an object detector, to derive the state measurements of target objects,

also called “observations”. Observations usually serve as auxiliary information to help

update the posteriori parameters of the filter. The trajectories are still extended by

the state estimations. Among this line of work, the most widely used one is SORT [5],

which uses a Kalman filter (KF) to estimate object states and a linear motion function

as the transition function between time steps. However, SORT shows insufficient

tracking robustness when the object motion is non-linear, and no observations are

1



1. Introduction

(a) SORT

(b) The proposed OC-SORT

Figure 1.1: Samples from the results on DanceTrack [63]. SORT and OC-SORT use
the same detection results. On the third frame, SORT encounters an ID switch for
the backflip target while OC-SORT tracks it consistently.

available when updating the filter posteriori parameters.

In this work, we recognize three limitations of SORT. First, although the high

frame rate is the key to approximating the object motion as linear, it also amplifies the

model’s sensitivity to the noise of state estimations. Specifically, between consecutive

frames of a high frame-rate video, we demonstrate that the noise of displacement of

the object can be of the same magnitude as the actual object displacement, leading

to the estimated object velocity by KF suffering from a significant variance. Also,

the noise in the velocity estimate will accumulate into the position estimate by the

transition process. Second, the noise of state estimations by KF is accumulated along

the time when there is no observation available in the update stage of KF. We show

that the error accumulates very fast with respect to the time of the target object’s

being untracked. The noise’s influence on the velocity direction often makes the

track lost again even after re-association. Last, given the development of modern

detectors, the object state by detections usually has lower variance than the state

estimations propagated along time steps by a fixed transition function in filters.

However, SORT is designed to prolong the object trajectories by state estimations

instead of observations.

2



1. Introduction

To relieve the negative effect of these limitations, we propose two main innovations

in this work. First, we design a module to use object state observations to reduce the

accumulated error during the track’s being lost in a backcheck fashion. To be precise,

besides the traditional stages of predict and update, we add a stage of re-update to

correct the accumulated error. The re-update is triggered when a track is re-activated

by associating to an observation after a period of being untracked. The re-update uses

virtual observations on the historical time steps to prevent error accumulation. The

virtual observations come from a trajectory generated using the last-seen observation

before untracked and the latest observation re-activating this track as anchors. We

name it Observation-centric Re-Update (ORU).

Besides ORU, the assumption of linear motion provides the consistency of the

object motion direction. But this cue is hard to be used in SORT’s association because

of the heavy noise in direction estimation. But we propose an observation-centric

manner to incorporate the direction consistency of tracks in the cost matrix for the

association. We name it Observation-Centric Momentum (OCM). We also provide

analytical justification for the noise of velocity direction estimation in practice.

The proposed method, named as Observation-Centric SORT or OC-SORT in

short, remains simple, online, real-time and significantly improves robustness over

occlusion and non-linear motion. Our contributions are summarized as the following:

1. We recognize, analytically and empirically, three limitations of SORT, i.e.sensitivity

to the noise of state estimations, error accumulation over time, and being

estimation-centric;

2. We propose OC-SORT for tracking under occlusion and non-linear motion by

fixing SORT’s limitations. It achieves state-of-the-art performance on multiple

datasets in an online and real-time fashion.

3



1. Introduction

4



Chapter 2

Background

2.1 Motion Models

Many modern MOT algorithms [5, 15, 71, 79, 83] use motion models. Typically, these

motion models use Bayesian estimation [41] to predict the next state by maximizing

a posterior estimation. As one of the most classic motion models, Kalman filter

(KF) [37] is a recursive Bayes filter that follows a typical predict-update cycle. The

true state is assumed to be an unobserved Markov process, and the measurements

are observations from a hidden Markov model [52]. Given that the linear motion

assumption limits KF, follow-up works like Extended KF [60] and Unscented KF [35]

were proposed to handle non-linear motion with first-order and third-order Taylor

approximation. However, they still rely on approximating the Gaussian prior assumed

by KF and require motion pattern assumption. On the other hand, particle filters [28]

solve the non-linear motion by sampling-based posterior estimation but require

exponential order of computation. Therefore, these variants of Kalman filter and

particle filters are rarely adopted in the visual multi-object tracking and the mostly

adopted motion model is still based on Kalman filter [5].

5



2. Background

2.2 Multi-object Tracking

As a classic computer vision task, visual multi-object tracking is traditionally ap-

proached from probabilistic perspectives, e.g.joint probabilistic association [2]. And

modern video object tracking is usually built upon modern object detectors [54, 56, 82].

SORT [5] adopts the Kalman filter for motion-based multi-object tracking given

observations from deep detectors. DeepSORT [71] further introduces deep visual fea-

tures [29, 59] into object association under the framework of SORT. Re-identification-

based object association[50, 71, 80] has also become popular since then but falls

short when scenes are crowded and objects are represented coarsely (e.g.enclosed

by bounding boxes), or object appearance is not distinguishable. More recently,

transformers [66] have been introduced to MOT [12, 47, 62, 77] to learn deep rep-

resentations from both visual information and object trajectories. However, their

performance still has a significant gap between state-of-the-art tracking-by-detection

methods in terms of both accuracy and time efficiency.

6



Chapter 3

Method

3.1 Rethink the Limitations of SORT

In this section, we review Kalman filter and its widely used implementation for

multi-object tracking, i.e.SORT [5]. We recognize some of their limitations, which

are significant with occlusion and non-linear object motion. In this work, we are

motivated to improve the accuracy and robustness of Kalman filter-based multi-object

tracking by fixing these recognized limitations.

3.1.1 Preliminaries

Kalman filter (KF) [37] is a linear estimator for dynamical systems discretized

in the time domain. KF only requires the state estimations on the previous time

step and the current measurement to estimate the target state on the next time step.

The filter maintains two variables, the posteriori state estimate x, and the posteriori

estimate covariance matrix P. In the task of object tracking, we describe the KF

process with the state transition model F, the observation model H, the process noise

Q, and the observation noise R. At each step t, given observations zt, KF works in

7



3. Method

an alternation of predict and update stages:

predict

{
x̂t|t−1 = Ftx̂t−1|t−1

Pt|t−1 = FtPt−1|t−1F
⊤
t + Qt

,

update


Kt = Pt|t−1H

⊤
t (HtPt|t−1H

⊤
t + Rt)

−1

x̂t|t = x̂t|t−1 + Kt(zt −Htx̂t|t−1)

Pt|t = (I−KtHt)Pt|t−1

.

(3.1)

The stage of predict is to derive the state estimations on the next time step t.

Given a measurement of target states on the next step t, the stage of update aims to

update the posteriori parameters in KF. Because the measurement comes from the

observation model H, it is also called “observation” in many scenarios.

SORT [5] is a multi-object tracker built upon KF. The KF’s state x in SORT is

defined as x = [u, v, s, r, u̇, v̇, ṡ]⊤, where (u, v) is the 2D coordinates of the object

center in the image. s is the bounding box scale (area) and r is the bounding box

aspect ratio. The aspect ratio r is assumed to be constant. The other three variables,

u̇, v̇ and ṡ are the corresponding time derivatives. The observation is a bounding

box z = [u, v, w, h, c]⊤ with object center position (u, v), object width w, and height

h and the detection confidence c respectively. SORT assumes linear motion as the

transition model F which leads to the state estimation as

ut+1 = ut + u̇t∆t, vt+1 = vt + v̇t∆t. (3.2)

To leverage KF (Equation (3.1)) in SORT for visual MOT, the stage of predict

corresponds to estimating the object position on the next video frame. And the

observations used for the update stage usually come from a detection model. The

update stage is to update Kalman filter parameters and does not directly edit the

tracking outcomes.

When the time difference between two steps is constant during the transition,

e.g., the video frame rate is constant, we can set ∆t = 1. When the video frame

rate is high, SORT works well even when the object motion is non-linear globally,

(e.g.dancing, fencing, wrestling) because the motion of the target object can be well

approximated as linear within short time intervals. However, in practice, observations

8



3. Method
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Figure 3.1: The pipeline of our proposed OC-SORT. The red boxes are detections,
orange boxes are active tracks, blue boxes are untracked tracks, and dashed boxes
are the estimates from KF. During association, OCM is used to add the velocity
consistency cost. The target #1 is lost on the frame t+1 because of occlusion. But
on the next frame, it is recovered by referring to its observation of the frame t by
OCR. It being re-tracked triggers ORU from t to t+2 for the parameters of its KF.

are often absent on some time steps, e.g.the target object is occluded in multi-object

tracking. In such cases, we cannot update the KF parameters by the update operation

as in Equation (3.1) anymore. SORT uses the priori estimations directly as posterior.

We call this “dummy update”, namely

x̂t|t = x̂t|t−1,Pt|t = Pt|t−1. (3.3)

The philosophy behind such a design is to trust estimations when no observations

are available to supervise them. We thus call the tracking algorithms following

this scheme “estimation-centric”. However, we will see that this estimation-centric

mechanism can cause trouble when non-linear motion and occlusion happen together.

3.1.2 Limitations of SORT

In this section, we identify three main limitations of SORT which are connected. This

analysis lays the foundation of our proposed method.

9



3. Method

Sensitive to State Noise

Now we show that SORT is sensitive to the noise from KF’s state estimations. To

begin with, we assume that the estimated object center position follows u ∼ N (µu, σ
2
u)

and v ∼ N (µv, σ
2
v), where (µu, µv) is the underlying true position. Then, if we assume

that the state noises are independent on different steps, by Equation (3.2), the object

speed between two time steps, t −→ t + ∆t, is

u̇ =
ut+∆t − ut

∆t
, v̇ =

vt+∆t − vt
∆t

, (3.4)

making the noise of estimated speed δu̇ ∼ N (0, 2σ2
u

(∆t)2
), δv̇ ∼ N (0, 2σ2

v

(∆t)2
). Therefore,

a small ∆t will amplify the noise. This suggests that SORT will suffer from the

heavy noise of velocity estimation on high-frame-rate videos. The analysis above is

simplified from the reality. In pratice, velocity won’t be determined by the state on

future time steps. For a more strict analysis, please refer to Section 5.3.

Moreover, for most multi-object tracking scenarios, the target object displacement

is only a few pixels between consecutive frames. For instance, the average displacement

is 1.93 pixels and 0.65 pixels along the image width and height for the MOT17 [49]

training dataset. In such a case, even if the estimated position has a shift of only a

single pixel, it causes a significant variation in the estimated speed. In general, the

variance of the speed estimation can be of the same magnitude as the speed itself or

even greater. This will not make a massive impact as the shift is only of few pixels

from the ground truth on the next time step and the observations, whose variance is

independent of the time, will be able to fix the noise when updating the posteriori

parameters. However, we find that such a high sensitivity to state noise introduces

significant problems in practice after being amplified by the error accumulation across

multiple time steps when no observation is available for KF update.

Temporal Error Magnification

For analysis above in Equation (3.4), we assume the noise of the object state is

i.i.d on different time steps (this is a simplified version, a more detailed analysis is

provided in Section 5.3). This is reasonable for object detections but not for the

estimations from KF. This is because KF’s estimations always rely on its estimations

on previous time steps. The effect is usually minor because KF can use observation

10



3. Method

in update to prevent the posteriori state estimation and covariance, i.e.x̂t|t and Pt|t,

deviating from the true value too far away. However, when no observations are

provided to KF, it cannot use observation to update its parameters. Then it has

to follow Equation (3.3) to prolong the estimated trajectory to the next time step.

Consider a track is occluded on the time steps between t and t + T and the noise of

speed estimate follows δu̇t ∼ N (0, 2σ2
u), δv̇t ∼ N (0, 2σ2

v) for SORT. On the step t+ T ,

state estimation would be

ut+T = ut + T u̇t, vt+T = vt + T v̇t, (3.5)

whose noise follows δut+T
∼ N (0, 2T 2σ2

u) and δvt+T
∼ N (0, 2T 2σ2

v). So without the

observations, the estimation from the linear motion assumption of KF results in

a fast error accumulation with respect to time. Given σv and σu is of the same

magnitude as object displacement between consecutive frames, the noise of final

object position (ut+T , vt+T ) is of the same magnitude as the object size. For instance,

the size of pedestrians close to the camera on MOT17 is around 50× 300 pixels. So

even assuming the variance of position estimation is only 1 pixel, 10-frame occlusion

can accumulate a shift in final position estimation as large as the object size. Such

error magnification leads to a major accumulation of errors when the scenes are

crowded.

Estimation-Centric

The aforementioned limitations come from a fundamental property of SORT that

it follows KF to be estimation-centric. It allows update without the existence of

observations and purely trusts the estimations. A key difference between state

estimations and observations is that we can assume that the observations by an object

detector in each frame are affected by i.i.d. noise δz ∼ N (0, σ′2) while the noise in

state estimations can be accumulated along the hidden Markov process. Moreover,

modern object detectors use powerful object visual features [56, 59]. It makes that,

even on a single frame, it is usually safe to assume σ′ < σu and σ′ < σv because the

object localization is more accurate by detection than from the state estimations

through linear motion assumption. Combined with the previously mentioned two

limitations, being estimation-centric makes SORT suffer from heavy noise when there

is occlusion and the object motion is not perfectly linear.

11
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Figure 3.2: Example of how Observation-centric Re-Update (ORU) reduces the error
accumulation when a track is broken. The target is occluded between the second and
the third time step and the tracker finds it back at the third step. Yellow boxes are
the state observations by the detector. White stars are the estimated centers without
ORU. Yellow stars are the estimated centers fixed by ORU. The gray star on the
fourth step is the estimated center without ORU and fails to match observations.

3.2 Observation-Centric SORT

In this section, we introduce the proposed Observation-Centric SORT (OC-SORT). To

address the limitations of SORT discussed above, we use the momentum of the object

moving into the association stage and develop a pipeline with less noise and more

robustness over occlusion and non-linear motion. The key is to design the tracker

as observation-centric instead of estimation-centric. If a track is recovered

from being untracked, we use an Observation-centric Re-Update (ORU) strategy to

counter the accumulated error during the untracked period. OC-SORT also adds an

Observation-Centric Momentum (OCM) term in the association cost. Please refer to

Algorithm 1 for the pseudo-code of OC-SORT. The pipeline is shown in Figure 3.1.

See the pseudo-code of OC-SORT in Algorithm 1.

3.2.1 Observation-centric Re-Update (ORU)

In practice, even if an object can be associated again by SORT after a period of

being untracked, it is probably lost again because its KF parameters have already

deviated far away from the correct due to the temporal error magnification. To

alleviate this problem, we propose Observation-centric Re-Update (ORU) to reduce

the accumulated error. Once a track is associated with an observation again after a

period of being untracked (“re-activation”), we backcheck the period of its being lost

and re-update the parameters of KF. The re-update is based on “observations” from

12
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∆𝜃

Figure 3.3: Calculation of motion direction difference in OCM. The green line indicates
an existing track and the dots are the observations on it. The red dots are the new
observations to be associated. The blue link and the yellow link form the directions of
θtrack and θintention respectively. The included angle is the difference of direction ∆θ.

a virtual trajectory. The virtual trajectory is generated referring to the observations

on the steps starting and ending the untracked period. For example, by denoting the

last-seen observation before being untracked as zt1 and the observation triggering the

re-association as zt2 , the virtual trajectory is denoted as

z̃t = Trajvirtual(zt1 , zt2 , t), t1 < t < t2. (3.6)

Then, along the trajectory of z̃t(t1 < t < t2), we run the loop of predict and

re-update. The re-update operation is

re-update


Kt = Pt|t−1H

⊤
t (HtPt|t−1H

⊤
t + Rt)

−1

x̂t|t = x̂t|t−1 + Kt(z̃t −Htx̂t|t−1)

Pt|t = (I−KtHt)Pt|t−1

(3.7)

As the observations on the virtual trajectory match the motion pattern anchored

by the last-seen and the latest associated real observations, the update will not

suffer from the error accumulated through the dummy update anymore. We call the

proposed process Observation-centric Re-Update. It serves as an independent stage

outside the predict-update loop and is triggered only a track is re-activated from a

period of having no observations.

13
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3.2.2 Observation-Centric Momentum (OCM)

In a reasonably short time interval, we can approximate the motion as linear. And

the linear motion assumption also asks for consistent motion direction. But the

noise prevents us from leveraging the consistency of direction. To be precise, to

determine the motion direction, we need the object state on two steps with a time

difference ∆t. If ∆t is small, the velocity noise would be significant because of the

estimation’s sensitivity to state noise. If ∆t is big, the noise of direction estimation

can also be significant because of the temporal error magnification and the failure

of linear motion assumption. As state observations have no problem of temporal

error magnification that state estimations suffer from, we propose to use observations

instead of estimations to reduce the noise of motion direction calculation and introduce

the term of velocity consistency to help the association.

With the new term, given N existing tracks and M detections on the new-coming

time step, the association cost matrix is formulated as

C(X̂,Z) = CIoU(X̂,Z) + λCv(Z,Z), (3.8)

where X̂ ∈ RN×7 is the set of object state estimations and Z ∈ RM×5 is the set of

observations on the new time step. λ is a weighting factor. Z contains the trajectory

of observations of all existing tracks. CIoU(·, ·) calculates the negative pairwise IoU

(Intersection over Union) and Cv(·, ·) calculates the consistency between the directions

of i) linking two observations on an existing track (θtrack) and ii) linking a track’s

historical observation and a new observation (θintention). Cv contains all pairs of

∆θ = |θtrack − θintention|. In our implementation, we calculate the motion direction in

radians, namely θ = arctan( v1−v2
u1−u2

) where (u1, v1) and (u2, v2) are the observations on

two different time steps. The calculation is also illustrated in Figure 3.3.

Following the assumptions of noise distribution mentioned before, we can derive a

closed-form probability density function of the distribution of the noise in the direction

estimation. The derivation is explained in detail in Section 5.1. By analyzing the

property of this distribution, we reach a conclusion that, under the linear-motion

model, the scale of the noise of direction estimation is negatively correlated to the

time difference between the two observation points, i.e.∆t. This suggests increasing

14
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∆t to achieve a low-noisy estimation of θ. However, the assumption of linear motion

typically holds only when ∆t is small enough. Therefore, the choice of ∆t requires a

trade-off.

Besides ORU and OCM, we also find it empirically helpful to check a track’s last

presence to recover it from being lost. We thus apply a heuristic Observation-Centric

Recovery (OCR) technique. OCR will start a second attempt of associating between

the last observation of unmatched tracks to the unmatched observations after the

usual association stage. It can handle the case of an object stopping or being occluded

for a short time interval.

By combining the proposed components upon the standard SORT [5] algorithm,

we finally implemented the Observation-Centric SORT, i.e.OC-SORT. The overall

process of the proposed algorithm in shown in Algorithm 1.
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Algorithm 1 Pseudo-code of OCSORT.
Input: Detections Z = {zik|1 ≤ k ≤ T, 1 ≤ i ≤ Nk}; Kalman Filter KF; threshold to remove untracked tracks texpire
Output: The set of tracks T = {τi}
Initialization: T ← ∅ and KF;
for timestep t← 1 : T do

/* Step 1: match track prediction with observations */

Zt ← [z1t , ..., z
Nt
t ]⊤ /* Obervations */

X̂t ← [x̂1
t , ..., x̂

|T |
t ]⊤ from T /* Estimations by KF.predict */

Z ← Historical observations on the existing tracks
Ct ← CIoU(X̂t,Zt) + λCv(Z,Zt) /* Cost Matrix with OCM term */

Linear assignment by Hungarians with cost Ct

T matched
t ← tracks matched to an observation
T remain
t ← tracks not matched to any observation

Zremain
t ← observations not matched to any track

/* Step 2: perform OCR to find lost tracks back */

ZT remain
t ← last matched observations of tracks in T remain

t

Cremain
t ← CIoU(ZT remain

t ,Zremain
t )

Linear assignment by Hungarians with cost Cremain
t

T recovery
t ← tracks from T remain

t and matched to observations in ZT remain
t

Zunmatched
t ← observations from ZT remain

t that are still unmatched to tracks
T unmatched
t ← tracks from T remain

t that are still unmatched to observations
T matched
t ← {T matched

t , T recovery
t }

/* Step 3: update status of matched tracks */

for τ in T matched
t do

if τ.tracked = False then
/* Perform ORU for track from untracked to tracked */

zτ
t′ , t

′ ← The last observation matched to τ and the time step
Rollback KF parameters to t′

/* Generate virtual observation trajectory */

Ẑτ
t ← [ẑτ

t′+1
, ..., ẑτt−1]

Online smooth KF parameters along Ẑτ
t

end
τ.tracked = True
τ.untracked = 0
Append the new matched associated observation zτt to τ ’s observation history
Update KF parameters for τ by zτt

end

/* Step 4: initialize new tracks and remove expired tracks */

T new
t ← new tracks generated from Zunmatched

t
for τ in T unmatched

t do
τ.tracked = False
τ.untracked = τ.untracked+ 1

end

T reserved
t ← {τ | τ ∈ T unmatched

t and τ.untacked < texpire} /* remove expired unmatched tracks */

T ← {T new
t , T matched

t , T reserved
t } /* Conclude */

end
T ← Postprocess(T ) /* [Optional] offline post-processing */

Return: T
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Chapter 4

Experiments

4.1 Experimental Setup

Datasets. We evaluate our method on multiple multi-object tracking datasets

including MOT17 [49], MOT20 [19], KITTI [26], DanceTrack [63] and CroHD [64].

MOT17 [49] and MOT20 [19] are for pedestrian tracking, where targets mostly move

linearly, while scenes in MOT20 are more crowded. KITTI [26] is for pedestrian

and car tracking with a relatively low frame rate of 10FPS. CroHD [64] is a dataset

for head tracking in the crowd. DanceTrack [63] is a recently proposed dataset for

human tracking. For the data in DanceTrack, object localization is easy, but the

object motion is highly non-linear. Furthermore, the objects have a close appearance,

severe occlusion, and frequent crossovers. Considering our goal is to improve tracking

robustness under occlusion and non-linear object motion, we would emphasize the

comparison on DanceTrack.

Implementations. For a fair comparison, we directly apply the object detections

from existing baselines. For MOT17, MOT20, and DanceTrack, we use the publicly

available YOLOX [25] detector weights by ByteTrack [79]. For KITTI [26], we use the

detections from PermaTrack [65] publicly available in the official release1. For ORU, we

generate the virtual trajectory during occlusion with the constant-velocity assumption.

Therefore, Equation (3.6) is adopted as z̃t = zt1 + t−t1
t2−t1 (zt2 − zt1), t1 < t < t2. For

1https://github.com/TRI-ML/permatrack/
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OCM, the velocity direction is calculated using the observations three time steps

apart, i.e.∆t = 3. The direction difference is measured by the absolute difference of

angles in radians. We set λ = 0.2 in Equation (3.8). Following the common practice

of SORT, we set the detection confidence threshold at 0.4 for MOT20 and 0.6 for

other datasets. The IoU threshold during association is 0.3.

Metrics. We adopt HOTA [44] as the main metric as it maintains a proper balance

between the accuracy of object detection and association [44]. We also emphasize

AssA to evaluate the association performance. IDF1 is also used for association

performance evaluation. Other metrics we report, such as MOTA, are highly related

to detection performance.

Table 4.1: Results on MOT17-test with the private detections. ByteTrack and OC-
SORT share detections.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

FairMOT [80] 59.3 73.7 72.3 2.75 11.7 3,303 8,073 58.0 63.6
TransCt [75] 54.5 73.2 62.2 2.31 12.4 4,614 9,519 49.7 54.2
TransTrk [62] 54.1 75.2 63.5 5.02 8.64 3,603 4,872 47.9 57.1
GRTU [68] 62.0 74.9 75.0 3.20 10.8 1,812 1,824 62.1 65.8
QDTrack [50] 53.9 68.7 66.3 2.66 14.7 3,378 8,091 52.7 57.2
MOTR [77] 57.2 71.9 68.4 2.11 13.6 2,115 3,897 55.8 59.2
PermaTr [65] 55.5 73.8 68.9 2.90 11.5 3,699 6,132 53.1 59.8
TransMOT [16] 61.7 76.7 75.1 3.62 9.32 2,346 7,719 59.9 66.5
GTR [84] 59.1 75.3 71.5 2.68 11.0 2,859 - 61.6 -
DST-Tracker [12] 60.1 75.2 72.3 2.42 11.0 2,729 - 62.1 -
MeMOT [7] 56.9 72.5 69.0 2.72 11.5 2,724 - 55.2 -
UniCorn [76] 61.7 77.2 75.5 5.01 7.33 5,379 - - -
ByteTrack [79] 63.1 80.3 77.3 2.55 8.37 2,196 2,277 62.0 68.2
OC-SORT 63.2 78.0 77.5 1.51 10.8 1,950 2,040 63.2 67.5

Table 4.2: Results on MOT20-test with private detections. ByteTrack and OC-SORT
share detections.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

FairMOT [80] 54.6 61.8 67.3 10.3 8.89 5,243 7,874 54.7 60.7
TransCt [75] 43.5 58.5 49.6 6.42 14.6 4,695 9,581 37.0 45.1
Semi-TCL [42] 55.3 65.2 70.1 6.12 11.5 4,139 8,508 56.3 60.9
CSTrack [43] 54.0 66.6 68.6 2.54 14.4 3,196 7,632 54.0 57.6
GSDT [69] 53.6 67.1 67.5 3.19 13.5 3,131 9,875 52.7 58.5
TransMOT [16] 61.9 77.5 75.2 3.42 8.08 1,615 2,421 60.1 66.3
MeMOT [7] 54.1 63.7 66.1 4.79 13.8 1,938 - 55.0 -
ByteTrack [79] 61.3 77.8 75.2 2.62 8.76 1,223 1,460 59.6 66.2
OC-SORT 62.1 75.5 75.9 1.80 10.8 913 1,198 62.0 67.5
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Table 4.3: Results on DanceTrack test set. Methods in blue share the same detections.

Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

CenterTrack [83] 41.8 78.1 22.6 86.8 35.7
FairMOT [80] 39.7 66.7 23.8 82.2 40.8
QDTrack [50] 45.7 72.1 29.2 83.0 44.8
TransTrk[62] 45.5 75.9 27.5 88.4 45.2
TraDes [72] 43.3 74.5 25.4 86.2 41.2
MOTR [77] 54.2 73.5 40.2 79.7 51.5
GTR [84] 48.0 72.5 31.9 84.7 50.3
DST-Tracker [12] 51.9 72.3 34.6 84.9 51.0
SORT [5] 47.9 72.0 31.2 91.8 50.8
DeepSORT [71] 45.6 71.0 29.7 87.8 47.9
ByteTrack [79] 47.3 71.6 31.4 89.5 52.5
OC-SORT 54.6 80.4 40.2 89.6 54.6
OC-SORT + Linear Interp 55.1 80.4 40.4 92.2 54.9

Table 4.4: Results on DanceTrack test set. “Ours (MOT17)” uses the YOLOX
detector trained on MOT17-training set.

Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

SORT 47.9 72.0 31.2 91.8 50.8
OC-SORT 55.1 80.3 38.0 89.4 54.2
OC-SORT (MOT17) 48.6 71.0 33.3 84.2 51.5

4.2 Benchmark Results

Here we report the benchmark results on multiple datasets. We put all methods that

use the shared detection results in the blue blocks at the bottom of each table.

4.2.1 Results on MOT17 and MOT20

Private tracking. We report OC-SORT’s performance on MOT17 and MOT20 in

Table 4.1 and Table 4.2 using private detections. To make a fair comparison, we use

the same detection as ByteTrack [79]. OC-SORT achieves performance comparable to

other state-of-the-art methods. Our gains are especially significant in MOT20 under

severe pedestrian occlusion, setting a state-of-the-art HOTA of 62.1. As our method

is designed to be simple for better generalization, we do not use adaptive detection

thresholds as in ByteTrack. Also, ByteTrack uses more detections of low-confidence

to achieve higher MOTA scores but we keep the detection confidence threshold the

same as on other datasets, which is the common practice in the community. We

inherit the linear interpolation on the two datasets by baseline methods for a fair
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Table 4.5: Results on KITTI-test. Our method uses the same detections as Per-
maTr [65]

Car Pedestrian

Tracker HOTA↑ MOTA↑ AssA↑ IDs↓ Frag↓ HOTA↑ MOTA↑ AssA↑ IDs↓ Frag↓

IMMDP [73] 68.66 82.75 69.76 211 181 - - - - -
SMAT [27] 71.88 83.64 72.13 198 294 - - - - -
TrackMPNN [53] 72.30 87.33 70.63 481 237 39.40 52.10 35.45 626 669
MPNTrack [6] - - - - - 45.26 46.23 47.28 397 1,078
CenterTr [83] 73.02 88.83 71.18 254 227 40.35 53.84 36.93 425 618
LGM [67] 73.14 87.60 72.31 448 164 - - - - -
TuSimple [15] 71.55 86.31 71.11 292 218 45.88 57.61 47.62 246 651
PermaTr [65] 77.42 90.85 77.66 275 271 47.43 65.05 43.66 483 703
OC-SORT 74.64 87.81 74.52 257 318 52.95 62.00 57.81 181 598
OC-SORT + HP 76.54 90.28 76.39 250 280 54.69 65.14 59.08 184 609

Table 4.6: Results on CroHD Head Tracking dataset [64]. Our method uses the
detections from HeadHunter [64] or FairMOT [80] to generate new tracks.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓

HeadHunter [64] 36.8 57.8 53.9 5.18 30.0 4,394 15,146
HeadHunter dets + OC-SORT 39.0 60.0 56.8 5.18 28.1 4,122 10,483

FairMOT [80] 43.0 60.8 62.8 11.8 19.9 12,781 41,399
FairMOT dets + OC-SORT 44.1 67.9 62.9 10.2 16.4 4,243 10,122

comparison.

Public tracking. Although we use the same object detectors as some selected

baselines, there are still variances in detections when compared with other methods.

Therefore, we also report the public detections on MOT17/MOT20 in Table 4.7 and

Table 4.8. OC-SORT still outperforms the existing state-of-the-arts in the public

tracking setting. And the outperforming of OC-SORT is more significant on MOT20

which has more severe occlusion scenes. Some samples from the test set of MOT20

are shown in the last row in Figure 5.2.

4.2.2 Results on DanceTrack

To evaluate OC-SORT under challenging non-linear object motion, we report results

on the DanceTrack in Table 4.3. OC-SORT sets a new state-of-the-art, outperforming

the baselines by a great margin under non-linear object motions. We compare the

tracking results of SORT and OC-SORT under extreme non-linear situations in
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(a) SORT: dancetrack0036 (b) OC-SORT: dancetrack0036

(c) SORT: dancetrack0054 (d) OC-SORT: dancetrack0054

(e) SORT: dancetrack0064 (f) OC-SORT: dancetrack0064

(g) SORT: dancetrack0078 (h) OC-SORT: dancetrack0078

(i) SORT: dancetrack0089 (j) OC-SORT: dancetrack0089

(k) SORT: dancetrack0100 (l) OC-SORT: dancetrack0100

Figure 4.1: More samples where SORT suffers from the fragmentation and ID switch
of tracks from occlusion or non-linear motion but OC-SORT survives. We selected
samples from diverse scenes. Best viewed in color and zoomed in.
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Table 4.7: Results on MOT17 test set with the public detections. LI indicates Linear
Interpolation.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

CenterTrack [83] - 61.5 59.6 1.41 20.1 2,583 - - -
QDTrack [50] - 64.6 65.1 1.41 18.3 2,652 - - -
Lif T [32] 51.3 60.5 65.6 1.50 20.7 1,189 3,476 54.7 59.0
TransCt [75] 51.4 68.8 61.4 2.29 14.9 4,102 8,468 47.7 52.8
TrackFormer [47] - 62.5 60.7 3.28 17.5 2,540 - - -

OC-SORT 52.4 58.2 65.1 0.44 23.0 784 2,006 57.6 63.5
OC-SORT + LI 52.9 59.4 65.7 0.66 22.2 801 1,030 57.5 63.9

Table 4.8: Results on MOT20 test set with the public detections. LI indicates Linear
Interpolation.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

MPNTrack [6] 46.8 57.6 59.1 17.0 20.1 1,210 1,420 47.3 52.7
TransCt [75] 43.5 61.0 49.8 4.92 14.8 4,493 8,950 36.1 44.5
ApLift [33] 46.6 58.9 56.5 1.77 19.3 2,241 2,112 45.2 48.1
TMOH [61] 48.9 60.1 61.2 3.80 16.6 2,342 4,320 48.4 52.9
LPC MOT [18] 49.0 56.3 62.5 1.17 21.3 1,562 1,865 52.4 54.7

OC-SORT 54.3 59.9 67.0 0.44 20.2 554 2,345 59.5 65.1
OC-SORT + LI 55.2 61.7 67.9 0.57 19.2 508 805 59.8 65.9

Table 4.9: Influence from the value of ∆t in OCM.

MOT17-val DanceTrack-val

HOTA↑AssA↑ IDF1↑ HOTA↑AssA↑ IDF1↑

∆t = 1 66.1 67.5 76.9 51.3 34.3 51.3
∆t = 2 66.3 68.0 77.3 52.2 35.4 51.4
∆t = 3 66.5 68.9 77.7 52.1 35.3 51.6
∆t = 6 66.0 67.5 76.9 52.1 35.4 51.8

Figure 1.1 and more samples are available in Figure 4.1. We also visualize the output

trajectories by OC-SORT and SORT on randomly selected DanceTrack video clips in

Figure 4.2. For multi-object tracking in occlusion and non-linear motion, the results

on DanceTrack are strong evidence of the effectiveness of OC-SORT.

To gain more intuition about the improvement of OC-SORT over SORT, we

provide more comparisons. In Figure 4.1, we show more samples where SORT suffers

from ID switch or Fragmentation caused by non-linear motion or occlusion but OC-

SORT survives. Furthermore, in Figure 4.2, we show more samples of trajectory

visualizations from SORT and OC-SORT on DanceTrack-val set.

DanceTrack [63] is proposed to encourage better association algorithms instead

of carefully tuning detectors. We train YOLOX [25] detector on MOT17 training

22



4. Experiments

set only to provide detections on DanceTrack. We find the tracking performance of

OC-SORT is already higher than the baselines (Table 4.4). We believe the potential

to improve multi-object tracking by better association strategy is still promising and

DanceTrack is a good platform for the evaluation.

4.2.3 Results on KITTI

In Table 4.5 we report the results on the KITTI dataset. For a fair comparison, we

adopt the detector weights by PermaTr [65] and report its performance in the table

as well. We run OC-SORT given the shared detections. As initializing SORT’s track

requires continuous tracking across several frames (“minimum hits”), we observe that

the results not recorded during the track initialization make a significant difference.

To address this problem, we perform offline head padding (HP) post-processing by

writing these entries back after finishing the online tracking stage. The results of the

car category on KITTI show an essential shortcoming of the default implementation

version of OC-SORT that it chooses the IoU matching for the association. When

the objects move fast or the frame rate is low, the IoU of bounding boxes between

consecutive frames can be very low or even zero. This issue does not come from the

intrinsic design of OC-SORT and is widely observed when using IoU as the association

cue. Adding other cues [57, 81, 83] and appearance similarity [46, 71] have been

demonstrated [71] effective to solve this. In contrast to the relatively inferior car

tracking performance, OC-SORT improves pedestrian tracking performance to a new

state-of-the-art. Using the same detections, OC-SORT achieves a large performance

gap over PermaTr with 10x faster speed.

4.2.4 Results on HeadTrack

When considering tracking in the crowd, focusing on only a part of the object can

be beneficial [8] as it usually suffers less from occlusion than the full body. This

line of study is conducted over hand tracking [48, 58], human pose [74] and head

tracking [3, 51, 64] for a while. Moreover, with the knowledge of more fine-grained part

trajectory, it can be useful in downstream tasks, such as action recognition [22, 23]

and forecasting [9, 13, 38, 40]. As we are interested in the multi-object tracking

in the crowd, we also evaluate the proposed OC-SORT on a recently proposed
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human head tracking dataset CroHD [64]. To make a fair comparison on only the

association performance, we adopt OC-SORT by directing using the detections from

existing tracking algorithms. The results are shown in Table 4.6. The detections

of FairMOT [80] and HeadHunter [64] are extracted from their tracking results

downloaded from the official leaderboard 2. We use the same parameters for OC-

SORT as on the other datasets. The results suggest a significant tracking performance

improvement compared with the previous methods [64, 80] for human body part

tracking. But the tracking performance is still relatively low (HOTA=∼ 40). It is

highly related to the difficulty of having accurate detection of tiny objects. Some

samples from the test set of HeadTrack are shown in the first two rows of Figure 5.2.

The results on multiple benchmarks have demonstrated the effectiveness and

efficiency of OC-SORT. We note that we use a shared parameter stack across datasets.

Carefully tuning the parameters can probably further boost the performance. For

example, the adaptive detection threshold is proven useful in previous work [79].

Besides the association accuracy, we also care about the inference speed. Given

off-the-shelf detections, OC-SORT runs at 793 FPS on an Intel i9-9980XE CPU @

3.00GHz. Therefore, OC-SORT can still run in an online and real-time fashion.

Table 4.10: Ablation on MOT17-val and DanceTrack-val.

MOT17-val DanceTrack-val

ORU OCMOCR HOTA↑AssA↑ IDF1↑ HOTA↑AssA↑ IDF1↑

64.9 66.8 76.9 47.8 31.0 48.3
✓ 66.3 68.0 77.2 48.5 32.2 49.8
✓ ✓ 66.4 69.0 77.8 52.1 35.0 50.6
✓ ✓ ✓ 66.5 68.9 77.7 52.1 35.3 51.6

Table 4.11: Ablation on the trajectory hypothesis in ORU.

MOT17-val DanceTrack-val

HOTA↑AssA↑ IDF1↑ HOTA↑AssA↑ IDF1↑

Const. Speed 66.5 68.9 77.7 52.1 35.3 51.6
GPR 63.1 65.2 75.7 49.5 33.7 49.6
Linear Regres-
sion

64.3 66.5 76.0 49.3 33.4 49.2

Const. Acceler-
ation

66.2 67.9 77.4 51.3 34.8 50.9

2https://motchallenge.net/results/Head Tracking 21/
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4.3 Ablation Study

Component Ablation. We ablate the contribution of proposed modules on the

validation sets of MOT17 and DanceTrack in Table 4.10. The splitting of the

MOT17 validation set follows a popular convention [83]. The results demonstrate

the effectiveness of the proposed modules in OC-SORT. The results show that the

performance gain from ORU is significant on both datasets but OCM only shows

significant help on DanceTrack dataset where object motion is more complicated and

the occlusion is heavy. The ablation study proves the effectiveness of our proposed

method to improve tracking robustness in occlusion and non-linear motion.

Virtual Trajectory in ORU. For simplicity, we follow the naive hypothesis of

constant speed to generate a virtual trajectory in ORU. There are other alternatives

like constant acceleration, regression-based fitting such as Linear Regression (LR)

or Gaussian Process Regression (GPR), and Near Constant Acceleration Model

(NCAM) [34]. The results of comparing these choices are shown in Table 4.11. For

GPR, we use the RBF kernel [14] k(x,x′) = exp
(
− ||x−x

′||2
50

)
. We provide more studies

on the kernel configuration in Section 5.2.1. The results show that local hypotheses

such as Constant Speed/Acceleration perform much better than global hypotheses

such as LR and GPR. This is probably because, as virtual trajectory generation

happens in an online fashion, it is hard to get a reliable fit using only limited data

points on historical time steps.

∆t in OCM. There is a trade-off when choosing the time difference ∆t in OCM

(Section 3.2). A large ∆t decreases the noise of velocity estimation. but is also likely to

discourage approximating object motion as linear. Therefore, we study the influence

of varying ∆t in Table 4.9. Our results agree with our analysis that increasing ∆t

from ∆t = 1 can boost performance. But increasing ∆t higher than a best-practice

value instead hurts the performance because of the difficulty of maintaining the

approximation of linear motion.
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dancetrack0004_GT#3

(a) GT #3 on video #0003

dancetrack0005_GT#0

(b) GT #0 on video #0005

dancetrack0007_GT#1

(c) GT #1 on video #0007

dancetrack0010_GT#2

(d) GT #2 on video #0010

dancetrack0018_GT#0

(e) GT #0 on video #0018

dancetrack0025_GT#6

(f) GT #6 on video #0025

dancetrack0034_GT#9

(g) GT #9 on video #0034

dancetrack0035_GT#6

(h) GT #6 on video #0035

dancetrack0041_GT#0

(i) GT #0 on video #0041

dancetrack0047_GT#0

(j) GT #0 on video #0047

dancetrack0065_GT#0

(k) GT #0 on video #0065

dancetrack0077_GT#5

(l) GT #5 on video #0077

dancetrack0079_GT#3

(m) GT #3 on video #0079

dancetrack0081_GT#0

(n) GT #0 on video #0081

dancetrack0081_GT#11

(o) GT #11 on video #0081

Figure 4.2: Trajectory samples from Dancetrack-val set. black cross: ground truth
trajectory; red dots: trajectory output by OC-SORT green triangles: trajectory
output by SORT. SORT and OC-SORT use the same hyperparameters and detections.
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Chapter 5

More Analysis

5.1 Velocity Direction Variance in OCM

In this section, we work on the setting of linear motion with noisy states. We provide

proof that the trajectory direction estimation has a smaller variance if the two states

we use for the estimation have a larger time difference. We assume the motion model

is xt = f(t) + ϵ where ϵ is gaussian noise and the ground-truth center position of the

target is (µut , µvt) at time step t. Then the true motion direction between the two

time steps is

θ = arctan(
µvt1
− µvt2

µut1
− µut2

). (5.1)

And we have |µvt1
− µvt2

| ∝ |t1− t2|, |µut1
− µut2

| ∝ |t1− t2|. As the detection results

do not suffer from the error accumulation due to propagating along Markov process

as Kalman filter does, we can assume the states from observation suffers some i.i.d.

noise, i.e., ut ∼ N (µut , σ
2
u) and vt ∼ N (µvt , σ

2
v). We now analyze the noise of the

estimated θ̃ =
vt1−vt2
ut1−ut2

by two observations on the trajectory. Because the function

of arctan(·) is monotone over the whole real field, we can study tan θ̃ instead which

simplifies the analysis. We denote w = ut1 − ut2 , y = vt1 − vt2 , and z = y
w

, first we

can see that y and w jointly form a Gaussian distribution:[
y

w

]
∼ N

([
µy

µw

]
,

[
σ2
y ρσyσw

ρσyσw σ2
w

])
, (5.2)
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where µy = µvt1
− µvt2 , µw = µut1

− µut2
, σw =

√
2σu and σy =

√
2σv, and ρ is the

correlation coefficient between y and w. We can derive a closed-form solution of the

probability density function [31] of z as

p(z) =
g(z)e

g(z)2−αr(z)2

2β2r(z)2

√
2πσwσyr(z)3

[
Φ

(
g(z)

βr(z)

)
− Φ

(
− g(z)

βr(z)

)]
+

βe−2α/β

πσwσyr(z)2

(5.3)

where

r(z) =

√
z2

σ2
y

− 2ρz

σyσw

+
1

σ2
w

,

g(z) =
µyz

σ2
y

− ρ(µy + µwz)

σyσw

+
µw

σ2
w

,

α =
µ2
w + µ2

y

σ2
y

− 2ρµyµw

σwσy

, β =
√

1− ρ2,

(5.4)

and Φ is the cumulative distribution function of the standard normal. Without loss

of generality, we can assume µw > 0 and µy > 0 because negative ground-truth

displacements enjoy the same property. This solution has a good property that larger

µw or µy makes the probability density at the true value, i.e. µz = µy

µw
, higher, and

the tails decay more rapidly. So the estimation of arctan θ, also θ, has smaller noise

when µw or µy is larger. Under the assumption of linear motion, we thus should select

two observations with a large temporal difference to estimate the direction.

It is reasonable to assume the noise of detection along the u-axis and v-axis are

independent so ρ = 0. And when representing the center position in pixel, it is also

moderate to assume σw = σy = 1 (also for the ease of presentation). Then, with

different true value of µz = µy

µw
, the visualizations of p(z) over z and µy are shown in

Figure 5.1. The visualization demonstrates our analysis above. Moreover, it shows

that when the value of µy or µw is small, the cluster peak of the distribution at µz is

not significant anymore, as the noise σy and σw can be dominant. Considering the

visualization shows that happens when µy is close to σy, this can happen when we

estimate the speed by observations from two consecutive frames because the variance

of observation can be close to the absolute displacement of object motion. This makes
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another support to our analysis in the main paper about the sensitivity to state

estimation noise.

Table 5.1: Ablation study about the interpolation post-processing.

MOT17-val DanceTrack-val

HOTA↑ AssA↑ MOTA↑ IDF1↑ HOTA↑ AssA↑ MOTA↑ IDF1↑

w/o interpolation 66.5 68.9 74.9 77.7 52.1 35.3 87.3 51.6
Linear Interpolation 68.0 69.9 77.9 79.3 52.8 35.6 89.8 52.1
GPR Interpolation 65.2 67.0 72.9 75.9 51.6 35.0 86.1 51.2

5.2 More Experiments

5.2.1 Interpolation by Gaussian Progress Regression

Interpolation as post-processing. Although we focus on developing an online

tracking algorithm, we are also interested in whether post-process can further optimize

the tracking results in diverse conditions. Despite the failure of GPR in online tracking

in Table 4.11, we continue to study if GPR is better suited for interpolation in Table 5.1.

We compare GPR with the widely-used linear interpolation. The maximum gap for

interpolation is set as 20 frames and we use the same kernel for GPR as mentioned

above. The results suggest that the GPR’s non-linear interpolation is simply not

efficient. We think this is due to limited data points which results in an inaccurate

fit of the object trajectory. Further, the variance in regressor predictions introduces

extra noise. Although GPR interpolation decreases the performance on MOT17-val

significantly, its negative influence on DanceTrack is relatively minor where the object

motion is more non-linear. We believe how to fit object trajectory with non-linear

hypothesis still requires more study.

From the analysis in the main paper, the failure of SORT can mainly result from

occlusion (lack of observations) or the non-linear motion of objects (the break of the

linear-motion assumption). So the question arises naturally whether we can extend

SORT free of the linear-motion assumption or at least more robust when it breaks.

One way is to extend from KF to non-linear filters, such as EKF [37, 60] and

UKF [35]. However, for real-world online tracking, they can be hard to be adopted
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(a) µz = 0.1 (b) µz = 0.5

(c) µz = 2 (d) µz = 5

Figure 5.1: The probability density of z = tan θ under different true value of z, i.e.
µz = µy

µw
. We set µy and z as two variables. It shows that under different settings of

true velocity direction when µy is smaller, the probability of estimated value with
a significant shift from the true value is higher. As µy is proportional to the time
difference of the two selected observations under linear motion assumption, it relates
to the case that the two steps for velocity direction estimation has a shorter time
difference.
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Table 5.2: Ablation study about using Gaussian Process Regression for object
trajectory interpolation. LI indicates Linear Interpolation, which is used to interpolate
the trajectory before smoothing the trajectory by GPR. MT indicates Median Trick
for kernel choice in regression. Lτ is the length of trajectory.

MOT17-val DanceTrack-val

Interpolation Method HOTA AssA MOTA IDF1 HOTA AssA MOTA IDF1

w/o interpolation 66.5 68.9 74.9 77.7 52.1 35.3 87.3 51.6
Linear Interpolation 69.6 69.9 77.9 79.3 52.8 35.6 89.8 52.1

GPR Interp, l = 1 66.2 67.6 74.3 76.6 51.8 35.0 86.6 50.8
GPR Interp, l = 5 66.3 67.0 72.9 75.9 51.8 35.1 86.5 51.1
GPR Interp, l = Lτ 66.1 67.0 73.1 77.8 51.6 35.1 86.4 50.7
GPR Interp, l = 1000/Lτ 65.9 67.0 73.0 77.8 51.8 35.0 86.9 51.0
GPR Interp, l = MT(τ) 65.9 67.0 73.1 77.8 51.7 35.1 86.7 50.9

LI + GPR Smoothing, l = 1 69.5 69.6 77.8 79.3 52.8 35.6 89.9 52.1
LI + GPR Smoothing, l = 5 69.5 69.7 77.8 79.3 52.9 34.9 89.7 52.1
LI + GPR Smoothing, l = Lτ 69.6 69.5 77.8 79.2 52.9 35.6 89.9 52.1
LI + GPR Smoothing, l = 1000/Lτ 69.5 69.9 77.8 79.3 53.0 35.6 89.9 52.1
LI + GPR Smoothing, l = MT(τ) 69.5 69.6 77.8 79.3 52.8 35.6 89.8 52.1

as they need knowledge about the motion pattern or still rely on the techniques

fragile to non-linear patterns, such as linearization [36]. Another choice is to gain

the knowledge beyond linearity by regressing previous trajectory, such as combing

Gaussian Process (GP) [39, 55, 70]: given a observation z⋆ and a kernel function

k(·, ·), GP defines gaussian functions with mean µz⋆ and variance Σz⋆ as

µz⋆ = k⊤⋆ [K + σ2I]−1y,

Σz⋆ = k(z⋆, z⋆)− k⊤⋆ [K + σ2I]−1k⋆,
(5.5)

where k⋆ is the kernel matrix between the input and training data and K is the

kernel matrix over training data, y is the output of data. Until now, we have

shown the primary study of using Gaussian Process Regression (GPR) in the online

generation of the virtual trajectory in ORU and offline interpolation. But neither of

them successfully boosts the tracking performance. Now, We continue to investigate

in detail the chance of combining GPR and SORT for multi-object tracking for

interpolation as some designs are worth more study.
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5.2.2 Choice of Kernel Function in Gaussian Process

The kernel function is a key variable of GPR. There is not a generally efficient

guideline to choose the kernel for Gaussian Process Regression though some basic

observations are available [21]. When there is no additional knowledge about the

time sequential data to fit, the RBF kernel is one of the most common choices:

k(x,x′) = σ2exp

(
−||x− x′||2

2l2

)
, (5.6)

where l is the lengthscale of the data to be fit. It determines the length of the

“wiggles” of the target function. σ2 is the output variance that determines the average

distance of the function away from its mean. This is usually just a scale factor [21].

GPR is considered sensitive to l in some situations. So we conduct an ablation study

over it in the offline interpolation to see if we can use GPR to outperform the linear

interpolation widely used in multi-object tracking.

5.2.3 GPR for Offline Interpolation

We have presented the use of GPR in online virtual trajectory fitting and offline

interpolation where we use l2 = 25 and σ = 1 for the kernel in Equation (5.6).

Further, we make a more thorough study of the setting of GPR. We follow the

settings of experiments in the main paper that only trajectories longer than 30 frames

are put into interpolation. And the interpolation is only applied to the gap shorter

than 20 frames. We conduct the experiments on the validation sets of MOT17 and

DanceTrack.

For the value of l, we try fixed values, i.e. l = 1 and l = 5 (2l2 = 50), value

adaptive to trajectory length, i.e. l = Lτ and l = 1000/Lτ , and the value output

by Median Trick (MT) [24]. The training data is a series of quaternary [u, v, w, h],

normalized to zero-mean before being fed into training. The results are shown in

Table 5.2. Linear interpolation is simple but builds a strong baseline as it can stably

improve the tracking performance concerning multiple metrics. Directly using GPR

to interpolate the missing points hurts the performance and the results of GPR are

not sensitive to the setting of l.

There are two reasons preventing GPR from accurately interpolating missing
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segments. First, the trajectory is usually limited to at most hundreds of steps,

providing very limited data points for GPR training to converge. On the other hand,

the missing intermediate data points make the data series discontinuous, causing

a huge challenge. We can fix the second issue by interpolating the trajectory with

Linear Interpolation (LI) first and then smoothing the interpolated steps by GPR.

This outperforms LI on DanceTrack but still regrades the performance by LI on

MOT17. This is likely promoted by the non-linear motion on DanceTrack. By fixing

the missing data issue of GPR, GPR can have a more accurate trajectory fitting over

LI for the non-linear trajectory cases. But considering the outperforming from GPR

is still minor compared with the Linear Interpolation-only version and GPR requires

much heavier computation overhead, we do not recommend using such a practice in

most multi-object tracking tasks. More careful and deeper study is still required on

this problem.

5.3 More Discussion of State Noise Sensitivity

We have shown that the noise of state estimate will be amplified to the noise of

velocity estimate. This is because the velocity estimate is correlated to the state

estimate. But the analysis is in a simplified model in which velocity itself does not

gain noise from the transition directly and the noise of state estimate is i.i.d on

different steps. However, in the general case, such a simplification does not hold. We

now provide a more general analysis of the state noise sensitivity of SORT.

For the process in Equation (3.1), we follow the most commonly adapted imple-

mentation of Kalman filter 1 and SORT 2 for video multi-object tracking. Instead of

writing the mean state estimate, we consider the noisy prediction of state estimate

now, which is formulated as

xt|t−1 = Ftxt|t−1 + wt, (5.7)

where wt is the process noise, drawn from a zero mean multivariate normal distribution,

N , with covariance, wt ∼ N (0,Qt). As xt is a seven-tuple, i.e.xt = [u, v, s, r, u̇, v̇, ṡ]⊤,

1https://github.com/rlabbe/filterpy
2https://github.com/abewley/sort
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Figure 5.2: The visualization of the output of OC-SORT on randomly selected
samples from the test set of HeadTrack [64] (the first two rows) and MOT20 [19] (the
bottom row). These two datasets are both challenging because of the crowded scenes
where pedestrians have heavy occlusion with each other. OC-SORT achieves superior
performance on both datasets.

34



5. More Analysis

the process noise applies to not just the state estimate but also the velocity estimates.

Therefore, for a general form of analysis of temporal error magnification in Equa-

tion (3.5), we would get a different result because not just the position terms but also

the velocity terms gain noise from the transition process. And the noise of velocity

terms will amplify the noise of position estimate by the transition at the next step.

We note the process noise as in practice:

Qt =



σ2
u 0 0 0 0 0 0

0 σ2
v 0 0 0 0 0

0 0 σ2
s 0 0 0 0

0 0 0 σ2
r 0 0 0

0 0 0 0 σ2
u̇ 0 0

0 0 0 0 0 σ2
v̇ 0

0 0 0 0 0 0 σ2
ṡ


, (5.8)

and the linear transition model as

Ft =



1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


. (5.9)

We assume the time step when a track gets untracked is t1 and don’t consider the

noise from previous steps. For simplicity, we assume the motion in the x-direction and

y-direction do not correlate. We take the motion on the x-direction as an example

without loss of generality:

δut0
∼ N (0, σ2

u), δu̇t0
∼ N (0, σu̇

2). (5.10)

On the next step, with no correction from the observation, the error would be
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keep tracking

target lost

re-associated direction difference

KF estimate trajectory
tracked trajectory
untracked trajectory
virtual trajectory

KF estimations
estimations by ORU
untracked observations
tracked observations

(a) (b) (c)

Figure 5.3: Illustration of how ORU changes the behaviors of SORT after an untracked
track is re-associated to an observation. (a). The track is re-associates with an
observation zt2 . (b). Without ORU, on the next step of re-association, there is
still a direction difference between the true object trajectory and the KF estimates.
Therefore, the track is unmatched with detections again (in blue). (c). With ORU,
we get a more significant change in the state, especially the motion direction by
updating velocity.

accumulated (∆t = 1),

δut0+1 ∼ N (0, 2σ2
u + σu̇

2), δu̇t0+1 ∼ N (0, 2σu̇
2). (5.11)

Therefore, the accumulation is even faster than we analyze in Section 3.1.2 as

δut0+T
∼ N (0, (T + 1)σ2

u +
1

2
T (T + 1)σ2

u̇). (5.12)

In the practice of SORT, we have to suppress the noise from velocity terms because

it is too sensitive. We achieve it by setting a proper value for the process noise Qt.
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For example, the most commonly adopted value 3 of Qt in SORT is

Qt =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0.01 0 0

0 0 0 0 0 0.01 0

0 0 0 0 0 0 0.0001


. (5.13)

In such a parameter setting, we have the ratio between the noise from position

terms and velocity terms as

β =
(T + 1)σ2

u

0.5T (T + 1)σ2
u̇

=
200

T
. (5.14)

In practice, a track is typically deleted if it keeps untracked for Tdel time steps. Usually

we set Tdel < 10, so we have β > 20. Therefore, we usually consider the noise from

velocity terms as secondary. Such a convention allows us to use the simplified model

for noise analysis. But it also brings a side-effect that SORT can’t allow the velocity

direction of a track to change quickly in a short time interval. We will see later

(Section 5.4) that it makes trouble to SORT when non-linear motion and occlusion

come together and motivates the design of ORU in OC-SORT.

5.4 Intuition behind ORU

ORU is designed to fix the error accumulated during occlusion when an untracked

track is re-associated with an observation. But in general, the bias in the state estimate

x̂ after being untracked for T time steps can be fixed by the update stage once it gets

re-associated with an observation. To be precise, the Optimal Kalman gain, i.e.Kt,

can use the re-associated observation to update the KF posteriori parameters. In

general, such an expectation of KF’s behavior is reasonable. But because we usually

set the corresponding covariance for velocity terms very small (Equation (5.13)), it is

3https://github.com/abewley/sort/blob/master/sort.py#L111
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difficult for SORT to steer to the correct velocity direction at the step of re-association.

Motivated by such observations, we design ORU. In the simplified model shown

in Figure 5.3, the circle area with the shadow around each estimate footage is the

eligible range to associate with observations inside. ORU is designed for the case that

a track is re-associated after being untracked. Therefore, the typical situation is as

shown in the figure that the true trajectory first goes away from the linear trajectory

of KF estimates and then goes closer to it so that there can be a re-association. After

the re-association, there would be a cross of the two trajectories.

In SORT, after re-associating with an observation, the direction of the velocity of

the previously untracked track still has a significant difference from the true value.

This is shown in Figure 5.3(b). This makes the estimate on the future steps lost

again (the blue triangle). The reason is the convention of Q discussed in Section 5.3.

Therefore, even though the canonical KF can support fixing the accumulated error

during being untracked theoretically, it is very rare in practice. In ORU, we follow the

virtual trajectory where we have multiple virtual observations. In this way, even if

the value of Q[4 :, 4 :] is small, we can still have a better-calibrated velocity direction

after the time step t2. We would like to note that the intuition behind ORU is from

our observations in practice and based on the common convention of using Kalman

filter for multi-object tracking. It does not make fundamental changes to upgrade

the power of the canonical Kalman filter.

Here we provide a more formal mathematical expression to compare the behaviors

of SORT and OC-SORT. Assume that the track was lost at the time step t1 and

re-associated at t2. We assume the mean state estimate is

x̂t1|t1 = [u1, v1, s1, r1, u̇1, v̇1, ṡ1]
⊤, (5.15)
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and the covariance at t1 is

Pt1|t1 =



σ2
u1

0 0 0 0 0 0

0 σ2
v1

0 0 0 0 0

0 0 σ2
s1

0 0 0 0

0 0 0 σ2
r1

0 0 0

0 0 0 0 σ2
u̇1

0 0

0 0 0 0 0 σ2
v̇1

0

0 0 0 0 0 0 σ2
ṡ1


. (5.16)

Then, because the covariance expands from the input of process noise at each step of

predict, at t2, we have the priori estimates (t∆ = t2 − t1) of state

x̂t2|t2−1 = [u2, v2, s2, r2, u̇2, v̇2, ṡ2]
⊤, (5.17)

with
u2 = u1 + u̇1t∆,

v2 = v1 + v̇1t∆,

s2 = s1 + ṡ1t∆,

r2 = r1,

u̇2 = u̇1,

v̇2 = v̇1,

ṡ2 = ṡ1.

(5.18)

And the priori covariance

Pt2|t2−1 =



σ2
u2

0 0 0 0 0 0

0 σ2
v2

0 0 0 0 0

0 0 σ2
s2

0 0 0 0

0 0 0 σ2
r2

0 0 0

0 0 0 0 σ2
u̇2

0 0

0 0 0 0 0 σ2
v̇2

0

0 0 0 0 0 0 σ2
ṡ2


, (5.19)
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(5.20)

Now, SORT will keep going forward as normal. Therefore, with the re-associated

observation zt2 , we have

SORT

{
x̂t2|t2 = x̂t2|t2−1 + Kt2(zt2 −Hx̂t2|t2−1),

Pt2|t2 = (I−Kt2H)Pt2|t2−1
(5.21)

where the observation model is

H =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

 , (5.22)

and the Kalman gain is

Kt2 = Pt2|t2−1H
⊤(HPt2|t2−1H

⊤ + Rt2)
−1. (5.23)

On the other hand, OC-SORT will replay Kalman filter predict on a generated

virtual trajectory to gain the posteriori estimates on t2 (ORU). With the default

linear motion analysis, we have the virtual trajectory as

z̃t = zt1 +
t− t1
t2 − t1

(zt2 − zt1), t1 < t < t2. (5.24)

Now, to derive the posteriori estimate, we will run the loop between predict and
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re-update from t1 to t2.

OC-SORT

{
x̂t|t = Fx̂t−1|t−1 + Kt(z̃t −HFx̂t−1|t−1)

Pt|t = (I−KtH)(FPt−1|t−1F
⊤ + Qt)

(5.25)

where the Kalman gain is

Kt = Pt|t−1H
⊤
t (HPt|t−1H

⊤ + Rt)
−1, (5.26)

and we can always rewrite it with

Pt|t−1 = FPt−1|t−1F
⊤ + Qt. (5.27)

In the common practice of Kalman filter, we assume a constant set of Gaussian noise

for the process noise Qt. This assumption typically can’t hold in practice. This

makes the conflict that when there are consistent observations over time, we require

a small process noise for multi-object tracking in high-frame-rate videos. However,

when there is a period of observation missing, the direction difference between the

true direction and the direction maintained by the linear motion assumption grows.

This causes the failure of SORT to consistently track previously lost targets even

after re-association.

We show the different outcomes of SORT and OC-SORT upon re-associating

lost targets in Equation (5.21) and Equation (5.25). Analyzing their difference more

deeply will require more assumptions of the underlying true object trajectory and

the observations. Therefore, instead of theoretical proof, we demonstrate the gain of

performance from OC-SORT over SORT empirically as shown in the experiments.
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Chapter 6

Deep OC-SORT: Combine

OC-SORT with appearance

As DeepSORT [71] improves SORT [5] by adding the appearance similarity into the

association cost calculation, we tried to use appearance similarity as a supplementary

term in the association cost calculation to improve the tracking performance. We

name this version of implementation Deep OC-SORT [45]. We demonstrate that

Deep OC-SORT improves the tracking accuracy on multiple benchmarks. However,

these modifications also slow down the running time efficiency of OC-SORT.

Figure 6.1: Illustration of Deep OC-SORT, incorporating camera motion compensation
and appearance similarity to improve OC-SORT.
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6.1 Method

Now we introduce in details the innovations Deep OC-SORT makes upon OC-

SORT. We make three implementation adaptations upon OC-SORT to improve its

performance: Camera Motion Compensation (CMC), Dynamic Appearance (DA),

and Adaptive Weighting (AW). The pipeline is illustrated in Figure 6.1.

6.2 Camera Motion Compensation (CMC)

As OC-SORT is highly dependent on the detection quality, we introduce CMC to

more accurately localize objects from frame to frame in moving scenes. Given a scaled

rotation matrix Mt = stRt and a translation Tt where Mt ∈ R2×2and Tt ∈ R2×1, we

apply them to OC-SORT’s three components respectively:

1. ORU + CMC. The Kalman filter is updated from the linearly interpolated

path, starting at the last known measurement. This last known measurement is

comprised of [xc, yc, a, s], with the first two entries as the center of the bounding

box. The center of the bounding box is similarly transformed by c←Mtc+Tt, so

that the path is interpolated starting from the camera corrected measurement.

2. OCM + CMC. Let p1, p2 be the upper-left and lower-right corner points of

a bounding box. OCM uses the last ∆t = 3 bounding boxes to compute a

bounding box angular velocity. At each timestep t, we apply the transformation

pi ←Mtpi +Tt to the bounding box. This goes from t−∆t to timestep t during

OCM.

3. OCR + CMC. For the last-seen bounding box position in OCR, at each

timestep t, we apply pi ←Mtpi + Tt to adjust its position under CMC.

For OC-SORT, the Kalman state is x = [xc, yc, a, s, ẋc, ẏc, ȧ]. We apply CMC to

correct the Kalman state:

x[0 : 2]←Mtx[0 : 2] + Tt,

x[4 : 6]←Mtx[4 : 6],

P [0 : 2, 0 : 2]←MtP [0 : 2, 0 : 2]MT
t ,

P [4 : 6, 4 : 6]←MtP [4 : 6, 4 : 6]MT
t .

(6.1)
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We note that we could apply the scale of the CMC transform to the area a, or

approximate rotation to change the aspect ratio s. However, in contrast to the center

point, the enclosing bounding box of a rotated object is not approximated linearly

and requires a fine-grained mask of the enclosed object. While the approximation

works well with OCM and OCR, the Kalman filter is empirically more sensitive to

approximate changes. We apply this CMC update before the Kalman extrapolation

step so that the prediction stage is from the CMC-corrected states.

6.3 Dynamic Appearance (DA)

In previous work [1, 20], the deep visual embedding used to describe a tracklet is

given by an Exponential Moving Average (EMA) of the deep detection embeddings

frame by frame. This requires a weighting factor α to adjust the ratio of the visual

embedding from historical and current time steps. We propose to modify the α of

the EMA on a per-frame basis, depending on the detector confidence. This flexible α

allows selectively incorporating appearance information into a track’s model only in

high-quality situations.

We use low detector confidence as a proxy to recognize image degradation due to

occlusion or blur, allowing us to reject corrupted embeddings. Let et be the tracklet’s

appearance embedding at time t. The standard EMA is

et = αet−1 + (1− α)enew, (6.2)

where enew is the appearance of the matched detection being added to the model. We

propose replacing α with a changing αt defined as

αt = αf + (1− αf )(1− sdet − σ

1− σ
), (6.3)

where sdet is the detector confidence, and σ is a detection confidence threshold to

filter noisy detections, a common practice of previous works [5, 10, 20, 79]. We set the

fixed value αf = 0.95. The detector prediction provides sdet, controlling the dynamic

operation. With sdet = σ, we have αt = 1, so that the new appearance embedding is

totally ignored. In contrast, sdet = 1 implies αt = αf , and enew is maximally added

to the update of tracklet visual embedding. The value scales linearly with detector
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confidence. The operation to generate the dynamic appearance introduces no new

hyper-parameters to the standard EMA.

6.4 Adaptive Weighting (AW)

Our Adaptive Weighting increases the weight of appearance features depending on

the discriminativeness of appearance embeddings. Using standard cosine similarity

across track and box embeddings results in an M ×N appearance cost matrix, Ac

where M and N are the numbers of tracks and detections respectively. Ac[m,n]

indicates the entry at the intersection of the m-th row and the n-th column. This is

typically combined with the IoU cost matrix Ic as C = Ic + awAc, with a linear sum

assignment minimizing cost over −C.

We propose to boost individual track-box scores based on discriminativeness,

adding wb(m,n) to the global aw. Let τm represent a track and dn represent a

detection. When τm has a high similarity score to only one box (included in the row

Ac[m, :]), we increase appearance weight over row Ac[m, :]. The same operation is

applied to the columns of Ac if a detection dn is associated discriminatively with only

one track. We use zdiff to measure the discriminativeness of box-track pairs, which is

defined as the difference between the highest and second-highest values at a row or a

column:
zdetdiff(Ac, n) = min(max

i
Ac[i, n]−max

j ̸=i
Ac[j, n], ϵ),

ztrackdiff (Ac,m) = min(max
i

Ac[m, i]−max
j ̸=i

Ac[m, j], ϵ),
(6.4)

where ϵ is a hyper-parameter to cap the boost where there’s a large difference in

appearance cost between the first and second best matches. Then, we derive the

weighting factor as

wb(m,n) =
[
ztrackdiff (Ac,m) + zdetdiff(Ac, n)

]
/2, (6.5)

which results in the final cost matrix C as

C[m,n] = IoU[m,n] + [aw + wb(m,n)]Ac[m,n]. (6.6)

We choose to measure the discriminativeness based on only the first and second-
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Table 6.1: Results on MOT17-test and MOT20-test. Methods in the blue blocks
share the same detections.

MOT17

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

FairMOT [80] 59.3 73.7 72.3 2.75 11.7 3,303 8,073 58.0 63.6
TransCt [75] 54.5 73.2 62.2 2.31 12.4 4,614 9,519 49.7 54.2
TransTrk [62] 54.1 75.2 63.5 5.02 8.64 3,603 4,872 47.9 57.1
GRTU [68] 62.0 74.9 75.0 3.20 10.8 1,812 1,824 62.1 65.8
QDTrack [50] 53.9 68.7 66.3 2.66 14.66 3,378 8,091 52.7 57.2
MOTR [78] 57.2 71.9 68.4 2.11 13.6 2,115 3,897 55.8 59.2
TransMOT [16] 61.7 76.7 75.1 3.62 9.32 2,346 7,719 59.9 66.5

ByteTrack [79] 63.1 80.3 77.3 2.55 8.37 2,196 2,277 62.0 68.2
OC-SORT [10] 63.2 78.0 77.5 1.51 10.8 1,950 2,040 63.2 67.5
StrongSORT [20] 63.5 78.3 78.5 - - 1,446 - 63.7 -
*StrongSORT++ [20] 64.4 79.6 79.5 2.79 8.62 1,194 1,866 64.4 71.0
Deep OC-SORT 64.9 79.4 80.6 1.66 9.88 1,023 2,196 65.9 70.1

MOT20

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

FairMOT [80] 54.6 61.8 67.3 10.3 8.89 5,243 7,874 54.7 60.7
Semi-TCL [42] 55.3 65.2 70.1 6.12 11.5 4,139 8,508 56.3 60.9
CSTrack [43] 54.0 66.6 68.6 2.54 14.4 3,196 7,632 54.0 57.6
GSDT [69] 53.6 67.1 67.5 3.19 13.5 3,131 9,875 52.7 58.5
TransMOT [16] 61.9 77.5 75.2 3.42 8.08 1,615 2,421 60.1 66.3

ByteTrack [79] 61.3 77.8 75.2 2.62 8.76 1,223 1,460 59.6 66.2
OC-SORT [10] 62.1 75.5 75.9 1.80 10.8 913 1,198 62.0 67.5
StrongSORT [20] 61.5 72.2 75.9 - - 1,066 - 63.2
*StrongSORT++ [20] 62.6 73.8 77.0 1.66 11.8 770 1,003 64.0 69.6
Deep OC-SORT 63.9 75.6 79.2 1.69 10.8 779 1,536 65.7 70.8

* : StrongSORT++ requires offline post-processing while ByteTrack, OC-SORT, StrongSORT and Deep OC-SORT
are for online multi-object tracking.

highest scores rather than probability distribution metrics like KL divergence, as

the spread of values between lower-scoring matches are irrelevant. A true positive

appearance match is indicated by one high score having a large distance from the

next best match.

6.5 Experiments

In this section, we provide experimental evidence to demonstrate the effectiveness

of Deep SORT. We also analyze the influence of each module we introduce over

OC-SORT [10].

Datasets and Metrics. We conduct experiments on multiple datasets to ensure
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Table 6.2: Results on DanceTrack test set. Methods in the blue block use the same
detections.

Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

CenterTrack [83] 41.8 78.1 22.6 86.8 35.7
FairMOT [80] 39.7 66.7 23.8 82.2 40.8
QDTrack [50] 45.7 72.1 29.2 83.0 44.8
TransTrk[62] 45.5 75.9 27.5 88.4 45.2
TraDes [72] 43.3 74.5 25.4 86.2 41.2
MOTR [78] 54.2 73.5 40.2 79.7 51.5

SORT [5] 47.9 72.0 31.2 91.8 50.8
DeepSORT [71] 45.6 71.0 29.7 87.8 47.9
ByteTrack [79] 47.3 71.6 31.4 89.5 52.5
OC-SORT [10] 55.1 80.3 38.3 92.0 54.6
*StrongSORT++ [20] 55.6 80.7 38.6 91.1 55.2
Deep OC-SORT 61.3 82.2 45.8 92.3 61.5

* : StrongSORT++ requires offline post-processing while others are for online tracking.

the generalizability of the proposed method. The investigated datasets include the

popular pedestrian tracking datasets MOT17 [49], MOT20 [19], and DanceTrack [63].

We follow the HOTA protocol[44] for quantitative evaluation, which provides a more

comprehensive measurement of the tracking quality. HOTA is the main metric we

refer to for tracking performance. AssA is the metric to measure association accuracy

and DetA is for detection accuracy. We also report the metrics in the classic CLEAR

protocol [4] for reference where MOTA indicates a overall performance of detection

and tracking and IDF1 provides a measurement of association accuracy.

Implementations Our implementation is based on OC-SORT [10, 17]. We use the

same YOLOX detector as recent works [1, 11, 20, 79] to make a fair comparison

of tracking performance. For Re-ID, we use SBS50 from the fast-reid [30] library.

For CMC, we adopt the OpenCV contrib VidStab module to generate similarity

transforms using feature point extraction, optical flow, and RANSAC, as previous

works [1] choose. Across all experiments, we use a fixed α = 0.95 for Dynamic

Appearance. For experiments on MOT17 and MOT20, we set aw = 0.75 and ϵ = 0.5

for Adaptive Weighting. We use aw = 1.25 for DanceTrack, where we see appearance

is more beneficial than IoU, and ϵ = 1.0.
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6.5.1 Benchmark Results

We conduct experiments on MOT17 [49], MOT20 [19], and DanceTrack [63]. The

results on MOT17-test and MOT20-test are shown in Table 6.1. On MOT17-test,

Deep OC-SORT achieves 64.9 HOTA, which outperforms all published methods and

ranks 2nd on the leaderboard. On MOT20-test, Deep OC-SORT achieves 63.9 HOTA,

ranking 1st on the leaderboard. Finally, on the most challenging dataset DanceTrack,

where tracking algorithms usually suffer from heavy occlusion and frequent crossovers,

our method achieves a new state-of-the-art among published methods as shown

in Table 6.2. On all three datasets, using the same detections, our method beats

the existing comparisons including SORT [5], DeepSORT [71], ByteTrack [79], OC-

SORT [10], and StrongSORT [20]. Being online and without offline post-processing,

our method still shows better association accuracy even compared to StrongSORT++,

which is the offline version of StrongSORT, enhanced by offline post-processing of

tracking trajectories. The benchmark results make strong evidence of the advanced

performance of Deep OC-SORT.

Table 6.3: Ablation study on MOT17-val, MOT20-val and DanceTrack-val set.

MOT17-val MOT20-val DanceTrack-val

Appr. DA CMC AW HOTA↑ AssA↑ IDF1↑ HOTA↑ AssA↑ IDF1↑ HOTA↑ AssA↑ IDF1↑

68.13 70.06 79.52 58.35 56.11 74.77 53.07 35.93 52.43
✓ 69.66 72.72 82.44 58.33 56.12 74.63 53.57 36.68 53.30

✓ 68.59 70.63 80.18 59.10 57.47 75.71 58.03 42.37 57.73
✓ ✓ 68.65 70.85 80.45 59.16 57.60 75.87 58.36 43.00 58.17
✓ ✓ ✓ 69.80 72.86 82.56 59.35 58.00 76.11 58.46 43.33 58.83
✓ ✓ ✓ ✓ 70.20 73.46 82.78 59.45 58.16 76.30 58.53 43.41 59.06

6.5.2 Ablation Study

To demonstrate the effectiveness of the proposed modules, we perform an ablation

study on validation sets of MOT17, MOT20, and DanceTrack. With a baseline of OC-

SORT, we describe performance with the addition of: Appearance Embedding with

a fixed EMA (Appr.), Dynamic Appearance (DA), Camera Motion Compensation

(CMC), and Adaptive Weighting (AW). The results are shown in Table 6.3.

We find that CMC improves performance on MOT17-val and DanceTrack-val

sets while providing no improvements on MOT20-val, which is captured from static
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cameras. Appearance cues (Appr.) improve performance on all datasets across all

metrics. Further applying Dynamic Appearance similarly boosts performance on all

metrics, while adding no additional hyper-parameters and entirely negligible compu-

tation. Finally, Adaptive Weighting provides yet another consistent improvement in

performance across all metrics and datasets.
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Conclusions

In this paper, we analyze the popular motion-based tracker SORT and recognize

its intrinsic limitations from using the Kalman filter. These limitations significantly

hurt tracking accuracy when the tracker fails to gain observations for supervision -

likely caused by unreliable detectors, occlusion, or fast and non-linear target object

motion. To address these issues, we propose Observation-Centric SORT (OC-SORT).

OC-SORT is more robust to occlusion and non-linear object motion while keeping

simple, online, and real-time. In our experiments on diverse datasets, OC-SORT

significantly outperforms the state-of-the-art. The gain is especially significant for

multi-object tracking under occlusion and non-linear object motion. OC-SORT is

simple, online, and fast, therefore it can provide a basic motion-based multi-object

tracking baseline. Also, we demonstrate that OC-SORT is flexible to incorporate other

association information, such as appearance similarity, for more accurate multi-object

tracking.
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