
Representation Reuse for Learning Robust
Robot Manipulations

Mohit Sharma
Technical Report Number: CMU-RI-TR-24-03

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee

Oliver Kroemer Carnegie Mellon University (Chair)
Abhinav Gupta Carnegie Mellon University
David Held Carnegie Mellon University
Dieter Fox University of Washington

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

February, 2024

Abstract

Real world robots need to continuously learn new manipulation tasks. These new manipulation tasks
often share many sub-structures with previously learned tasks, e.g., sub-tasks, controllers, preconditions.
In this thesis, we aim to utilize these shared sub-structures to efficiently learn new manipulation tasks. For
this, we explore reusing skill representations. These skill representations are either provided manually as
structured policy representations or learned in a data-driven manner.

The first part of this thesis focuses on policy representations. To learn compositional skill policies we
propose object-centric task-axes controllers. Our task-axes controllers learn the skill structure and are
composed into specialized policy representations for individual tasks. These representations utilize the
compositional, object-centric and geometric structure underlying many manipulation tasks. As we show
through extensive experiments, these representations are robust to environment variations and are learned
from limited data. We also show how parameterized policy representations help learn new tasks efficiently
in a lifelong learning manner. To achieve this, we propose skill effect models, which predict the effects
of stereotypical skill executions. We utilize skill effect models together with the power of search-based
planning to effectively plan for new tasks and learn new skills over time.

The second part of this thesis focuses on visual representations. These visual representations, learned ei-
ther from simulation or offline web data are used for efficient learning of skill preconditions and policies
respectively. Specifically, for skill preconditions we focus on compositional learning and show how com-
plex manipulation tasks, with multiple objects, can be simplified by focusing on pairwise object relations.
These relational representations are learned offline using large scale simulation data. In the latter part, we
focus on skill policies that utilize large pretrained visual representations for robot manipulation. First,
we propose RoboAdapters, which uses neural adapters as an alternative to frozen or fully-finetuned vi-
sual representations for robot manipulation. RoboAdapters bridge the performance gap between frozen
representations and full fine-tuning while preserving the original capabilities of the pretrained model.
Finally, we explore using large pretrained vision-language representations for real-time control of precise
and dynamic manipulation tasks. We use multiple sensing modalities at different hierarchies to enable
real-time control while maintaining the generalization and robustness of pretrained representations.

iii

For my parents and all my teachers

iv

Acknowledgements
The work presented in this thesis has only been possible by the support of the many amazing people I
have met in the past few years. I acknowledge their support gratefully.

First, I would like to thank my advisor Oliver Kroemer. My foray into real-world robot learning began
with Oliver taking me under his wing and I joined the Intelligent Autonomous Manipulation (IAM)1

Lab. Before joining Oliver’s lab I had almost never worked on a real-robot and by the end of my PhD
I loved working on real-robot hardware. Oliver’s mentorship was instrumental in my development as
a robotics researcher. Over the past few years, I have learned not only the tools and technical aspects
of robot manipulation and robotics in general, but what being a researcher entails—that is, patience,
perseverance and kindness.

Oliver has always supported me in my research ideas. I am grateful for his patience and for giving me
the opportunity to explore many different ideas with as much academic freedom as possible. Over the
course of my PhD, I worked on many different projects and ideas and Oliver has provided me with both
research guidance and encouragement for all of these projects. His guidance on asking the right research
question, designing insightful and efficient experiments was invaluable. Oliver has an almost unparalleled
knack of designing the right real-world experiment setup. Finally, I am grateful to him for having faith
and confidence in me even when my ideas did not work.

Research is only one part of life and I would be remiss if I don’t mention all the other ways in which
Oliver has helped me in the past few years. He has always been there for any of our personal needs. From
visa to health issues, he always prioritized personal well-being over everything else. He has always been
very patient to my ramblings on the state of research to the lack of computing resources. Overall, Oliver’s
mentorship was a transformative experience. He not only helped me develop my technical skills but also
instilled in me a sense of confidence and a love for research. I am incredibly grateful for his support and
guidance.

I would also like to thank other members of my committee—Abhinav Gupta, David Held and Dieter
Fox. I really appreciate Abhinav’s guidance and his mentorship. He has always encouraged me to work
on challenging and impactful problems. David’s ability to question and deeply focus on the technical
aspects of a research problem has been invaluable. His efforts on building a larger CMU robot manipu-
lation community has helped me make new friends and be exposed to many rich and diverse ideas. I have
immensely benefitted from the research papers coming from Dieter’s group and lab. Dieter’s ability to
cut through the vast array of research and focus on the big picture has often guided me in my research.

I am also thankful to Kris Kitani for giving me the initial opportunity to pursue research. Working with
Kris was a huge learning experience. The book reading sessions in Kris’s lab meetings were always a great
source of learning. Kris taught me how to write good research papers, structure my research problem
statements and overall get a sense of joy from solving them.

Over the course of graduate school, I have been lucky to have many amazing mentors. I am grateful to
Adith Swaminathan for providing me with the opportunity to work with him during an internship. He

1There is a word play here – I think therefore IAM.

v

taught me the value of focusing on important real-world problems and how to break them down into
precise and manageable research questions. I am also extremely grateful to Jonathan (Jon) Scholz for
giving me the opportunity to spend a great summer working with him and the many amazing people
at DeepMind. Jon not only gave me the freedom to pursue what I thought was interesting but pro-
vided me with all the support needed to be successful. This support was also extended by many others
at DeepMind. I am also extremely grateful to Yusuf Aytar for taking me under his wing and providing
me with the opportunity to work closely with him. Despite his busy schedule, Yusuf was always able
to take time out for research discussions and pair-programming sessions. His guidance and mentorship
was invaluable and helped me grow as a researcher. I would also like to thank my other collaborators at
DeepMind for all the brainstorming sessions, writing help and making my internship project a reality:
Claudio Fantacci, Yi Yang, Mel Vecerik, Todor Davchev, Oleg Sushkov. I am also grateful to Chris Paxton
and Vikash Kumar. Chris’s passion towards robotics research and general enthusiasm towards real-world
robots helping people is infectious. Vikash showed me how to carefully think about a new research state-
ment in a very planned and systematic manner. He always finds time for any research or life discussion
and I am extremely grateful for his guidance and advice.

I am also grateful to the wider CMU community, especially RI’s administrative staff. Their presence and
tiring effort is what makes our research possible. I would like to thank Suzanne Muth and Jean Harpley
for always helping me with missed forms and academic requirements. I am grateful to Barbara Jean (B.J.)
Fecich for making my initial CMU years easy.

Over the past few years I have been fortunate to be a part of two academic labs – Oliver’s IAM-lab during
my PhD and Kris Kitani’s K-Lab during my Masters. Throughout this period I have been able to make
amazing friends who have taught me much about research and life than I could have possibly imagined.
I would like to thank my fellow IAMLab members – Alan Zhao, Ami Sawhney, Steven Lee, Tabitha Lee,
Erin Zhang, Sarvesh Patil, Pat Callaghan, Mark Lee, Alex LaGrassa, Zilin Si, Xinyu Wang, Samuel Clarke,
Austin Wang, Max Sieb. From KLab, I thank Nicholas Rhinehart, Xinshuo Weng, Xiaofang Wang, Shin
Usami, Ye Yuan, Rawal Khirodkar, Aashi Manglik, Eshed Ohn-Bar, Harsh Agarwal, Yan Xu.

Throughout my time at CMU I have had the privilege to know and learn from many amazing people.
I have listed the names of these people below, and I sincerely apologize in advance, if I have missed a
name due to blatant oversight. At RI I would like to thank—Arpit Agarwal, Ashwin Khadke, Ratnesh
Madaan, Thomas Weng, Wenxuan Zhou, Azarakhsh Keipour, Blake Buchanan, Shohin Mukherjee, Ab-
hijat Biswas, Gaurav Mittal, Himangi Mittal, Ramkumar Natarajan, Jaskaran Grover, Sameer Barda-
purkar, Kalyan Vasudev Alwala, Dominik Bauer, Swaminathan Gurumurthy, Adithya Murali, Pragna
Mannam, Dinesh Reddy; fellow A-floor members: Arkadeep Chaudhury, Mrinal Verghese; fellow
London-CMU∗ crew: Leqi Liu, Mohak Bhardwaj, Ben Eisner; friends within Machine Learning De-
partment (MLD) CMU—Yusha Liu, Arundhati Banerjee, Ashwini Pokle.

I also want to thank fellow IIIT friends at CMU—Ishan Misra and Rohit Girdhar. I have known Ishan
since undergraduate days and his dedication towards his work has always been inspiring. I also thank both
Ishan and Rohit for their invaluable feedback and general advice during the time I applied to graduate
school. Senthil Purushwalkam for providing me with useful feedback during multiple stages of my PhD.
Gaurav Pathak and Siddharth Ancha for the many coffee sessions in the latter years of my PhD and for
our shared disdain of the bright white rooms with no windows and the very short ceiling height in our

vi

respective labs. I want to thank Gaurav Pathak for sharing his enthusiasm of running with me. Tanmay
Shankar for the many discussions and his thought provoking questions. Nikolaos Gkanatsios (Nikos) for
helping me navigate the large literature around visual learning for manipulation and helping me with his
experiences on using some of this literature. Shivam Vats for our many discussions on what we need to
do to improve our robots working in the real-world. Shivam often provides the sane voice in the room
and helps me better contextualize our research musings.

Research is rarely a one person endevaor. One of the great joys during my PhD has been to bounce ideas
off peers, learn from their experience, expertise and collaborate with them. While some collaborations
did not end in a successful project, I learned from all of them in many different ways. I am grateful to
many people for these collaborations. I would like to thank Kevin Zhang, with Kevin I collaborated
on the first few projects of my PhD. Kevin is a jack-of-all-robots, his vast experience working with all
the different kinds of robots made my initial robotics experience much easier. Kevin was also almost
always extremely generous with his time, willing to help me with any of my hardware needs for any of
of my projects. I would also like to thank Jacky Liang, with Jacky I worked on wrote two co-authored
papers as part of this thesis. Both of these papers were possible due to Jacky’s meticulous and incisive
thoughts on what directions to pursue and how to formulate the right experiment and setting to make
the project a reality. I would also like to thank Saumya Saxena with whom I worked on the last project
of my thesis. Saumya’s deep knowledge of controls and her love of physics had a greet influence on me.
Her patience and insightful feedback in our many brain-storming sessions made the project a reality. I
also thank Alex LaGrassa for being curious about many things, for helping me with any of my task and
motion planning queries. I also deeply appreciate Alex’s championing for robot teaching (whether it
be undergrad mentoring or Girls-of-steel), robot ethics and our work’s impact on society both within
IAM-lab and at CMU.

I would also like to thank my collaborators from different labs. Within KLab I had the pleasure of col-
laborating with Arjun Sharma, Navyata Sanghvi and Shin Usami. With Arjun I had great fun working
on many class projects and one research project. I deeply appreciate Arjun for introducing me to many
different ideas and opportunities which greatly enriched my learning experience. Our late night coding
sessions and our shared passion for soccer led to many impromptu virtual (FIFA) or real-world (Smith-
Hall) soccer games. Overall, working with Arjun made research feel like a breeze. I would also like to
thank Navyata Sanghvi and Shin Usami for involving me in their work of extending my masters project.
Navyata and Shin were excellent collaborators, and working with them further enriched my own under-
standing of our work. During later stages of my PhD I also got the chance to collaborate with Homanga
Bhardwaj and Jay Vakil. Homanga is a master of collabortion. During our collaboration he was always
able to delineate the different part of the project that each of us should focus on, which made remote col-
laboration easy and fun. Jay took the burden of conducting most real-world experiments and the project
would have been impossible without it.

I am also grateful to my many friends, both near and far, for supporting me throughout my PhD journey.
My roommate, Aman Tyagi, for the first few years of my graduate school life. I have known Aman since
undergraduate days and my initial days in Pittsburgh were made easy because of him. He took time to
show me around and helped me settle into the academic rhythm. I am also grateful to Abhishek Bhatia,
Ayush Dhingra, Abhilash Chowdhery, Aman Jain, for their companionship in Pittsburgh during these
past few years. Abhilash’s wedding in Pittsburgh was a really fun time which helped bring many of my

vii

undergrad friends together. I am thankful to Jasmeet Singh, Ashish Massand, Oshin Paranjape for host-
ing me in San Francisco and Washington DC respectively. These visits helped me get away from the daily
grind of a PhD life and allowed me to get a bigger perspective.

I would like to thank my partner, Tanya Marwah, for her constant support and guidance. She has been
through the ups and downs of my PhD life and enriched it in ways too numerous to count. She taught
me to stop and appreciate the small joys of life—be it cooking, coffee, or running. There are too many
things I am grateful for but most importantly I am grateful to have her in my life.

Finally, none of this would have been possible without the constant support of my family. I would like
to thank my brother, Rohit Sharma and his wife Aartika Rai. Their advice and feedback on many things
outside research has helped me improve myself in tremendous ways. They often provide a clear reflection
of my fractured reality, for which I will always be grateful. Last, but maybe most importantly, I would
like to thank my parents who encouraged me to pursue my own dreams without the fear of failing. Their
constant support, advice and wisdom has helped me gain perspective. It is their hard work and sacrifices
that allowed me to get the best possible education and opportunities. While research stole many of my
India visits, I hope to find more time now. It is impossible to fully express my gratitude for everything
they have done for me. Their love and guidance are the most precious gifts I have received in my life.

viii

Contents

I Beginnings 1

1 Introduction 2
1.1 Role of Structure in Robot Manipulation . 2
1.2 Why Lifelong learning? . 3
1.3 Thesis Contributions . 4
1.4 List of Publications . 6
1.5 Open-Source Contributions . 6

II Reusing Policy Representations 8

2 Object-Centric Task-Axes Controllers forManipulation 9
2.1 Introduction . 9
2.2 Related Works . 10
2.3 Learning Hierarchical Compositions of Object-Centric Controllers 12

2.3.1 Controller Types . 12
2.3.2 Controller Composition . 13
2.3.3 RL with Object-Axis Controllers . 14

2.4 Experiment Tasks and Setup . 15
2.5 Experiment Results and Discussion . 17
2.6 Conclusion and Future Work . 19

3 EfficientlyLearningGeneralizableManipulationsusingTask-AxesControllers 20
3.1 Introduction . 20
3.2 Related Work . 22
3.3 Preliminaries: Skill Fundamentals . 23

3.3.1 Object and End-Effector Keypoints . 23
3.3.2 Task Axes . 24
3.3.3 Controller Types and Parameters . 24

3.4 Learning Visual Controller Parameters . 25
3.4.1 Keypoint Parameters . 26
3.4.2 Axes Parameters . 27

3.5 Learning and Selecting Skills using Demonstrations 27
3.5.1 Task Segmentation . 28
3.5.2 Computing Posteriors over Skill Representations 28

ix

Contents

3.5.3 Controller Selection and Learning . 30
3.6 Experimental Setup . 30

3.6.1 Tasks . 30
3.6.2 Compared Approaches . 32
3.6.3 Metrics and Training . 34

3.7 Results . 34
3.7.1 Learning Visual Controller Parameters . 34
3.7.2 Results - Efficiently Learning Skill Representations using Demonstrations . . . 36
3.7.3 Real World Results . 37

3.8 Conclusion . 38

4 PlanningwithLearned Skill EffectModels for LifelongRoboticManipula-
tion 39
4.1 Introduction . 39
4.2 Related Works . 41
4.3 Task Planning with Learned Skill Effect Models . 42

4.3.1 Skill Planning Problem Formulation . 42
4.3.2 Learning Skill Effect Models (SEMs) . 43
4.3.3 Search-based Task Planning . 45

4.4 Experiments . 46
4.4.1 Task Domain . 46
4.4.2 Lifelong Task Planning Results . 47

4.5 Conclusion . 49

III Reusing Visual Representations 52

5 Relational Learning for Skill Preconditions 53
5.1 Introduction . 53
5.2 Related Works . 54
5.3 Approach . 55

5.3.1 Generating Pairwise Interactions In Simulation 56
5.3.2 Learning Object Relations . 57
5.3.3 Learning Precondition Models . 58

5.4 Experiments . 59
5.4.1 Sweeping Objects in Line . 59
5.4.2 Food Cutting . 61
5.4.3 Block Unstacking . 62

5.5 Ablation Study . 63
5.6 Conclusion . 64

6 RoboAdapters: AdaptingPretrainedVisionModelsForRoboticManipulation 65
6.1 Introduction . 65
6.2 Related Works . 67

x

Contents

6.3 Approach . 68
6.3.1 Adapter Modules . 68
6.3.2 Visual Adapters for Control . 69

6.4 Experimental Setup . 71
6.4.1 Manipulation Tasks . 71
6.4.2 Network Architectures . 72

6.5 Results . 72
6.5.1 Fixed Pretrained Features vs Adapter Representations 73
6.5.2 Effects of Adapter Locations & Different Pretrained Representations 74
6.5.3 Sim2Real Results . 76

6.6 Conclusion . 76

7 Multi-ResolutionSensingforReal-TimeControlwithVision-LanguageMod-
els 78
7.1 Introduction . 78
7.2 Related work . 80
7.3 Proposed Approach . 81

7.3.1 Multi-Resolution Architecture . 81
7.4 Experimental Setup . 83

7.4.1 Environments . 84
7.4.2 Baselines . 84

7.5 Experimental Results . 85
7.5.1 Comparison to Multi-Task Baselines . 86
7.5.2 Additional Baseline Comparisons . 86
7.5.3 Ablations . 88

7.6 Conclusion and Limitations . 89

8 Conclusion and FutureWork 91
8.1 Conclusion . 91
8.2 Future Outlook . 91

8.2.1 Benchmarking Policy Representations via Generative Simulations 92
8.2.2 Scaling Data for Robotics . 92
8.2.3 Fast Real-World Adaptation . 93

IV Appendices 94

9 Appendices 95
9.1 Appendix - Relational Learning for Skill Preconditions 95

9.1.1 Generating Pairwise Interactions in Simulation 95
9.1.2 Experimental Setup . 95
9.1.3 Real2Sim Baseline . 96
9.1.4 Architecture Details . 97
9.1.5 Training Details . 98
9.1.6 Task Setup . 101

xi

Contents

9.1.7 Additional Results . 101
9.2 Appendix - Hiearchical Object-Centric Controllers for Robotic Manipulation 103

9.2.1 Controller Implementation Details . 103
9.2.2 Task Details . 106
9.2.3 Franka Hex Screw . 107
9.2.4 RL Training Details . 108
9.2.5 Detailed Experiment Results . 109
9.2.6 Controller Selection Analyses . 115

9.3 Appendix - Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation 118
9.3.1 Related Works . 118
9.3.2 SEM Implementation . 119
9.3.3 Guarantees on the Constructed Graph . 121
9.3.4 Task Domain Skill Details . 123
9.3.5 Additional Results - Qualitative Planning Results 124
9.3.6 Failure Modes . 125

9.4 Appendix - Adapting Pretrained Vision Models For Robotic Manipulation 127
9.4.1 Experimental Setup . 127
9.4.2 Training Details . 127
9.4.3 Additional Results . 128
9.4.4 Discussion . 131

Bibliography 133

xii

List of Figures

1.1 This thesis explores the questions on how can we effeciently reuse representations to
learn new manipulation tasks more efficiently. 3

1.2 This thesis shows how parameterized policy representations (Left) and data-driven visual
representations (Right) can be used to efficiently learn robust manipulation policies. . . 4

2.1 Controller Selection and Composition Pipeline. Given current observations and list of
low-level controllers, an RL policy chooses an ordered list of controllers to use. These
controllers are composed via nullspace projection, where the controls of lower-priority
controllers are projected onto the nullspace of higher-priority ones. The combined con-
trol signals are used to actuate a robot via task-space impedance control. The controller
combination runs for T time steps before the RL policy is queried again. 10

2.2 Force-Position Controller Composition. Here, the agent controls the green block to
push the red block up along the vertical gray wall. A) The agent is given 4 controllers
to choose from, each corresponding to points of interests in the scene. B) The agent
chooses 2 controllers, with the force controller into the red block at the higher priority
(0), and position controller toward the wall corner at the lower priority (1). C) The error
of the lower-priority position controller is projected onto the null space of the higher-
priority force controller (purple dashed line). D) The projected errors are combined to
form the desired position target. 12

2.3 Rotation Controller Composition. Here, the agent rotates the Franka robot’s gripper
from the initial pose (A) to the final pose (E), so the gripper aligns with a door handle.
A) The agent is given 4 rotation controllers to choose from, aligning various axes of the
gripper with different target axes of the handle. B) Two controllers are chosen with the
higher-priority labeled as (0) and the lower-priority as (1). C) Both the current and target
axes of the lower-priority controller (green arrows) are projected down to the null-space
(green planes) of the current axis of the higher-priority controller (gripper’s blue axis).
D) The desired rotation target is formed by combining the higher-priority rotation in
the blue plane with the projected lower-priority rotation in the green plane. Note that
the lower-priority rotation does not interfere with the higher-priority rotation. 14

2.4 Experiment Tasks. From left to right: Block Fit, Block Push, Franka Hex-Screw, Franka
Door-Opening tasks implemented in simulation, and Franka tasks in the real world. . . 16

2.5 Example environment configurations for Block Push (left) and Block Fit (right) envi-
ronments. Top row shows some examples of train configurations, and the bottom row
shows some examples of test configurations. The orange wall shows the goal wall to reach. 16

2.6 Success rates for all tasks on training environment configurations. 17

xiii

List of Figures

3.1 Overview of our proposed approach. We extend task-axes controllers to operate on vi-
sual input and use them to present a simple and generalizable approach for learning ma-
nipulation tasks. 21

3.2 Skill composition using different TAC representations. 25
3.3 Left: Palm keypoint with an arbitrary frame. Right: Tool keypoint with EE frame and

surface normal (black arrow) for black mark on the board. The other in-plane axes for
the black mark are much more arbitrary. 25

3.4 The three different tasks used to evaluate our visual controller parameter approach. From
left to right: Button Press, Block Tumble, and Door Opening. 27

3.5 Robosuite [269] tasks used to evaluate the efficiency of using our structured skill rep-
resentation approach. From left to right – Lift, Stack, Wipe, Wipe with slanted board.

. 27
3.6 We represent object and end-effector keypoints using × (object keypoints as ×, end-

effector keypoints as×) and axes as ↑. Left: Large set of skill representations. Middle:
Use few demonstrations to select a small set of relevant skill representations. Right: Use
RL to select the most appropriate skill representation for the task. The bottom plots
show the likelihood values over different elements of our skill representation. Bottom
Left: Initially, we have similar likelihoods for all skill representations. Bottom Middle:
Using a demonstration we select skill representations with high likelihood (shown as
black dots). Bottom Right: We use interactions to directly learn the most relevant skill
representation (black dot) from this imitation reduced set. 28

3.7 Example task variations used for training the Button Press and Door Open tasks. 31
3.8 Task Success Rate for all three different environment. The dark line shows the mean

success-rate while the shaded region plots the std across 5 seeds. 32
3.9 Visualization for reference images and pixels (left image in each column) and correspond-

ing pixels predicted using learned descriptors. For door open, one reference pixel is closer
to door joint to show that our approach learns to not use it. 33

3.10 Dense object descriptor results for Door Open Task. 33
3.11 Qualitative Results we show that our learned control policy although not trained on any

of the above models does successfully transfer to them (see results in project-page). . . . 34
3.12 Success Ratio for the different tasks – Lift, Stack, and Wipe. All tasks in simulation are

run for 4 seeds. 36
3.13 Real world tasks Open-Toolbox and Wipe. 37
3.14 Success Ratio for real world tasks, run on 2 seeds. 37

4.1 Overview of the proposed search-based task planning framework with learned skill effect
models (SEMs) for lifelong robotic manipulation. New skills and training tasks can be
added incrementally. We collect skill effects data by running the planner using all skills on
all training tasks in simulation. The collected data is used to train GNN SEMs for new
skills or fine-tune models of existing skills. Learned models predict both the terminal
state and cost of skill executions. The planner can use SEMs to plan low-cost paths on
test tasks in the real world. This approach supports planning 1) with a set of differently
parameterized skills that can grow over time and 2) for test tasks unseen during training. 40

xiv

List of Figures

4.2 Different tasks used in our experiments. The top row shows examples of initial states,
the bottom shows examples of goal states. Left: blocks to bin tasks (tasks (A,B)). Right:
blocks to far bin tasks (tasks (C,D)). 46

4.3 Task execution costs plotted over time as new skills are learned and integrated in a life-
long manner. Blue vertical lines signify the addition of a new skill. Weighted costs are
calculated by weighting the task cost with the success rate. 50

4.4 Task execution success rate for each new added skill. Each skill is being added over time.
Orange are train tasks; purple are test tasks. Solid lines are planning with new skills;
dashed are with any skills. 51

4.5 Success on task B with SEM trained on random vs. planner data. 51

5.1 Overview of the overall precondition learning process. We learn precondition model by
decomposing a scene into its objects and relations. To learn continuous representations
for object relations we utilize simulations to observe how objects interact with each other. 54

5.2 Left: Overall architecture to learn object relation model frel. Right: Precondition learn-
ing architecture based on GNNs, shows graph model at initialization and the graph edge
and node models. 57

5.3 Left: Example scenes with 3 and 4 objects used for the objects in line task. Right: Example scenes
with 0 and 2 distractor objects for learning food cutting preconditions. 59

5.4 Left: Test set examples with different shapes and sizes for sweeping task. Baseline here
referrs to visual baseline. Right: Example scenes for sweeping task when imported using
the real2sim baseline. The top row shows the initial scene before the sweep while the
bottom row shows the after scene. 60

5.5 Left: Example scenes for block unstacking task. Right: Test set examples for block un-
stacking task. The black block shows the block to be removed. Baseline here refers to
visual baseline. 62

5.6 Left: Test set examples for block unstacking with different shape and size than train
set. Baseline: visual baseline. Right: Example scenes which are unstable but are predicted
as stable by the Real2Sim baseline. 63

6.1 Parameter efficient lossless adaptation. Existing works adapt preretrained general
purpose visual models (a) through full end-to-end fine-tuning as shown in (b), which
looses the original capabilities of the model; or adapting frozen pretrained models through
top-adapters as shown in (c), which often fails to achieve optimal control performance.
However, by introducing additional mid-level and bottom-level adaptation as in (d), we
still maintain the existing perceptual capabilities while approaching the full fine-tuning
performance as empirically shown in (e) over many network architectures and pretrain-
ing methods. 66

6.2 Adapter layers used for convolution based (Left) and transformer based (Right) archi-
tectures. For both scenarios we use a bottleneck design. 68

6.3 Different locations to insert adapter modules for convolution (Left) and transformer
(Right) models. 69

6.4 Different environments we evaluate our approach on. For Metaworld and Kitchen suites
we frollow the setup from [158] including the same set of demonstrations. For RGB-
Stacking suite we use Skill Mastery setting [119]. 71

xv

List of Figures

6.5 Ablation results on the RGB-Stacking environment for 3 different network architec-
tures. 74

6.6 Results with different pretraining initializations (for 3 different models) all 3 environ-
ments – NFNet with CLIP, ResNet with BYOL and ViT with MAE. Bottom Left: points
plots performance of fixed pretrained features with top adapters. Top Right: points plot
full fine-tuning performance (with top adapters). Solid Lines: indicate adapter perfor-
mance with adapters first added to bottom and then middle layers. 75

7.1 Our proposed approach uses sensing at different spatial and temporal resolutions for
real time control of coarse, precise and dynamic tasks while enabling generalization to
novel visual features and interactions. 79

7.2 Overall architecture: Global low frequency information is extracted from third-person
camera images using slow inference networks, local high frequency information is ex-
tracted from first-person camera images and proprioceptive, force-torque feedback us-
ing fast inference networks. These sensing modalities are then fused at different frequen-
cies to enable real time high frequency control. 81

7.3 Task settings for evaluating our proposed approach. Left: Precision tasks. Middle-left:
Dynamic tasks. Middle-right: Coarse tasks. Right: Real world pick and insertion tasks. 83

7.4 Temporal resolution and robustness baselines used to compare our multi-resolution ap-
proach. 84

7.5 Example failure case for MT-Dynamic (Ballbot) task. As can be seen in the figure, if the
robot approaches the object but does not react fast enough to the object contact, the
block can topple resulting, in task failure. 85

7.6 Left: Ablation results (see Section 7.5.3). Right: Robustness result for real-world pickup. 88

8.1 How can we robustly adapt pretrained policies that have been finetuned with narrow
data? . 93

9.1 Experimental Setup with 5 cameras mounted around the robot arm. We combine the
3D point cloud output from each camera to create a full 3D scene. 96

9.2 Left:: Example train scenes with 4 and 5 blocks used in the block unstacking task. Right:
Sample test scenes which are correctly classified by our model but incorrectly by the
learning based baselines. In both images the top block is at different locations. 100

9.3 Axes Visualization for Franka End-Effector and Door Handle for the Door-Open Task.
RGB corresponds to XYZ. 104

9.4 Different hex screw and key sizes used for testing in the real world. The middle size
represents 1.0× scale factor, while the left is 1.5×, and the right 0.7×. 107

9.5 Different environment configurations used to train the Block Fit task. The plot below
each environment configuration shows how the trained policy performed on each par-
ticular configuration. 110

9.6 Test configurations for the Block Fit task. Table 9.9 shows results on each environment
configuration. 111

9.8 Test environment configurations for the Block Push task. Table 9.10 shows results on
each environment config. 112

xvi

List of Figures

9.7 Different environment configurations used to train the Block Push task. The plot be-
low each environment configuration shows how the trained policy performed on each
particular configuration. 113

9.9 Franka tasks success ratios on training environment configurations during training. . . 114
9.10 Controller Selection Frequency: Success rate for Block Fit task when object axes-

controllers are run for T = 80 steps. Results averaged over 4 seeds (instead of usual
8). 116

9.11 Controller Selection Visualization for Block Fit during Task Execution. The thick
blue lines show the different walls in the environment. The dots represent the block
position at each step. While the arrows represent the wall object used by the selected
controller. The left most plot shows the top priority (priority: 0) controller being se-
lected, while the right most plot shows the controllers with lowest priority (priority: 2).
Top and bottom rows are two different train configurations (A and B from Figure 9.6a). 117

9.12 Latent Space Model Architecture. The encoder model is used to encode states into latent
states while the decoder model converts latent states into original states. While the skill
dynamics model acts on the latent state and given skill parameters outputs the final latent
state and a skill execution cost. We use a shared encoder-decoder model for all skills while
each skill has a separate dynamics model. 119

9.13 Qualitative results: Plans found for Task-A with increasing number of skills. Left most
columns are the skills executed at t=0, with skills being executed as we move towards
right. Each row also lists the different skills used to plan. 124

9.14 Qualitative results: Plans found for Task-B with increasing number of skills. Left most
columns are the skills executed at t=0, with skills being executed as we move towards
right. Each row also lists the different skills used to plan. 125

9.15 Qualitative results: Plans found for Task-D with increasing number of skills. Left most
columns are the skills executed at t=0, with skills being executed as we move towards
right. Each row also lists the different skills used to plan. 126

9.16 Results on the RGB-Stacking environment for 3 different type of model architectures. 132

xvii

List of Tables

2.1 Mean (SD) success rates for Block Fit and Block Push tasks on different environment
configurations. 18

2.2 Success rates for Franka Hex-Screw and Open-Door tasks on train and test environment
configurations across 8 seeds. Parentheses denote standard deviation. Real-world results
are evaluated over 10 trials each. We did not run EE-Space policies in the real world as
they were unable to learn the tasks in simulation. 18

3.1 Different elements of task-axes controllers along with the possible values each element
can take. 24

3.2 Controller Statistics for each of the tasks. 33
3.3 Mean (std) for each method on all three different manipulation tasks. Each approach

was verified on 15 different environment variations. 34

4.1 Comparing plan times in seconds using simulator vs. SEMs. Parenthesis indicate stan-
dard deviations. 48

4.2 Plan times (seconds) using SEMs for objects to bin tasks (A, B) with an increasing num-
ber of skills. 48

4.3 Real-world results on Red Blocks to Bin. Costs: mean (std). 48

5.1 Precondition learning results for sweeping objects in a line and food food skill. 60
5.2 Results for block unstacking task with two different train-test splits. 61
5.3 Results for precondition learning of box stacking task with completely different blocks

(objects) in the test set. 62
5.4 Ablation results for different losses. The first three rows show values for food cutting

task with 2 distractor objects in training and 4 the test set. The next 3 rows show block
unstacking results with 3 to 5 objects in train set and 7 in the test set. 62

6.1 Success rate comparison using fixed pretrained features (using pretrained large vision
models) with methods that update the pretrained visual features on the downstream
manipulation task. 73

6.2 Mean success rate comparisons between using fixed pretrained features, adapters and
full fine-tuning across all three different environments with three different architecture
choices. 73

6.3 Sim2Real results for RGB-Stacking Task with and without using any visual domain ran-
domized (DR) data for learning the manipulation task policy. 76

6.4 Number of parameters to be learned for different adapters as well as full fine-tuning. . . 76

7.1 Task success comparison for multi-task baselines across all task domains. 86

xviii

List of Tables

7.2 Results for multi-spatial resolution experiments (Section 7.5.2). Here, − implies that
we remove this input from policy. Thus, π−Ih implies that the policy only operates on
third-person camera views and force-torque feedback. 87

7.3 Results for multi-temporal resolution experiments (Section 7.5.2). Here, both πlow-res
and πhigh-res are single-resolution approaches which run at 5 Hz and 20 Hz respectively,
while ours is a multi-resolution approach. 87

7.4 Robustness experiment results, each cell shows train/heldout success rate (Section 7.5.2) 87
7.5 Mean (stdev) results (using 2 seeds) for multi-spatial resolution for real world tasks. . . 87
7.6 Real-World results for using commonly used imitation learning (single-spatial resolution

baselines) for Pickup task. 89
7.7 Additional Results for multi-temporal resolution experiments. As before, both πlow-res

and πhigh-res are single-resolution approaches which run at 5 Hz and 20 Hz respectively,
while ours is a multi-resolution approach. 89

7.8 Results using low-temporal resolutions for camera-inputs (5Hz) and high-temporal res-
olutions for force-torque (75Hz). 89

9.1 Batch Size and Learning rates for different models used 99
9.2 Parameters for the convolution layers of our VGG* network. 99
9.3 Different hyper-parameters for contrastive loss formulation. 99
9.4 Precondition learning results for cutting food skill. 100
9.5 Results for precondition learning of block unstacking task with 6 and 7 objects in the

train set and 4 objects in the test set. 101
9.6 Controller Gains and Magnitude Clips Across Tasks. 105
9.7 Task-Space Impedance Control Parameters. KS is stiffness, KD is damping, and T

is how many timesteps a controller combination runs before the RL policy is queried
again. The simulation and real-world values are not the same due to differences in con-
trol frequencies and Franka dynamics between real-world and simulation. We tune the
real-world values to ensure that the resultant controller behaviors are similar to those in
simulation. This tuning was done prior to task evaluations. 106

9.8 PPO Hyperparameters Across All Tasks. 109
9.9 Block Fit mean success on test environment configurations. Parentheses denote stan-

dard deviation across 8 seeds. 111
9.10 Block Push mean success on test environment configurations. Parentheses denote stan-

dard deviation across 8 seeds. 112
9.11 Franka Hex-Screw mean success across all test environment configurations. Parentheses

denote standard deviation across 8 seeds. 114
9.12 Franka Door-Opening mean success on test environment configurations. Parentheses

denote standard deviation across 8 seeds. 115
9.13 Related works on task planning with skills. 118
9.14 Training Details for each of the three different task suites used in our work. For each

task within the task suite we use the same set of hyperparameters. 128
9.15 Task specific results for using bottom, middle and top adapters with proprioceptive in-

formation (proprio) for each task in MetaWorld. 129
9.16 Task specific results for using bottom, middle and top adapters with proprioceptive in-

formation (proprio) for each task in Franka-Kitchen suite. 129

xix

List of Tables

9.17 Task specific results for using bottom, middle and top adapters for each task in RGB-
Stacking suite. 130

xx

Part I

Beginnings
We begin this thesis by first exploring the motivation for our problem statement as well as the particular
research questions we tackle in Chapter 1. In Chapter 2-Chapter 3 we propose parameterized policy
representations that utilize the compositional and object-centric nature of our physical world. These
policy representations further utilize the shared sub-structure among manipulation tasks to learn robust
policies for new tasks in a more efficient manner. In Chapter 4 we use parameterized skills to learn skill-
effect-models and combine them with search-based planning for learning new tasks new tasks efficiently.
Chapter 5- 7 focuses on reusing visual representations for manipulation tasks.

1

1 Introduction

The physical world we live in is compositional in nature. Much of the world consists of objects. Rigid ob-
jects can sometimes be broken down into finite parts, while deformable objects break down into infinite
parts. Objects occupy space and can be combined with other objects to create new objects. Each object
also has some state. Broadly, robot manipulation aims to affect this object state by interacting with the
object.

The physical world is also highly regular. This regularity is expressed in many different ways from the 3D
geometry of our surroundings, to the arrow of time and the law of gravity. Humans are remarkable in
utilizing these regularities in our daily lives. Our perceptual and motor systems have evolved to make use
of these regularities [215].

Moreover the physical world is not static and changes over time. Thus, the standard machine learning
assumption of a static fixed dataset that encompasses the entire task distribution rarely holds in practice.
By contrast, humans do not experience fixed scenarios and are known to be excellent incremental learners
[228]. Our experiences (data distributions) change over time and we actively learn new skills without
forgetting previously learned skills and simultaneously reuse them during our new experiences.

How can robots efficiently and continually accomplish new tasks in such a compositional and highly
regular physical world? This thesis aims to answer a small part of the above question. For our first set of
works we utilize the structure of manipulation tasks for efficient and robust learning. In the latter works,
we explore shared skill models that avoid catastrophic forgetting while continually learning new tasks.

1.1 Role of Structure in RobotManipulation
Robots in the real world will need to solve very diverse tasks such as cutting food, opening door, inserting
screw. From a task-level perspective these tasks share little in common – each task involves a very different
type of motion, the objects affected in each task are very different. Despite these differences, each of these
tasks share many commonalities. For instance, each task’s successful execution requires similar spatial
reasoning (common perceptual reasoning), e.g., the food, door or screw need to be free of any obstacles to
complete the task. Similarly, each of these tasks share many subtasks (common subtask representations),
e.g., reaching or task-oriented grasping of the desired object. Finally, each task (or their associated sub-
tasks) also share similar controllers (common execution), e.g., both cutting and inserting task requires ap-
propriate force control at different stages of the task. Broadly, very different tasks are often modular with
shared sub-structure across perception, planning and motor control aspects of these different tasks.

2

1 Introduction

Figure 1.1: This thesis explores the questions on how can we effeciently reuse representations to learn new manip-
ulation tasks more efficiently.

This shared sub-structure across tasks is important to learn new tasks both efficiently and robustly. By
efficient learning we refer to the ability of robots to learn from few examples. Such sample efficient learn-
ing is crucial for real world systems where the cost of demonstrations (for imitation), or collecting new
experience (for reinforcement learning), or programmatic implementation is prohibitively expensive. Be-
ing able to reuse or re-purpose the common sub-structure from previous tasks while learning new tasks
is crucial for sample efficient learning.

In addition to sample efficient learning, task modularity also allows for robust task learning. Robust
task learning is especially important for real world robot learning where we often have little training data
and consequently very little overlap between the train and test distributions. Given this little overlap,
and the inability of most function classes to extrapolate to out-of-distribution (OOD) scenarios, using
monolithic functions to learn each task separately results in non-robust learning. On the other hand,
with task modularity, the agent only needs to focus on the task aspect (sub-task or part of sub-task) that
requires generalization. For instance, for the screw insertion task with randomized poses for the screw,
the agent only needs to learn how to successfully align the screw and the tool (screw-driver). Once aligned
similar force and rotation controllers should be sufficient to complete the task. Such modularity is often
studied under the moniker of "compositional" learning.

1.2 Why Lifelong learning?
Robots in the real world (Figure 1.1) will operate in increasingly different scenarios over the course of their
lifetime. These different scenarios result in changing data distributions over time. Traditional machine
learning methods with static datasets and independent and identically distributed (i.i.d) assumptions of-
ten struggle with such changes in data distribution over time. While machines struggle, humans are well
known to utilize continual learning [78, 248].

In addition to changing data distributions, robots also have to accomplish new tasks over time, while
reusing the skills and data acquired from completing prior tasks. While appropriately reusing prior skills
is important another significant challenge in new task acquisition is how to merge diverse skills with pos-
sibly very different parameterizations.

Finally, from a practical robot deployment perspective there exist other important aspects of continual
learning. For instance, how to detect the change in data distribution for the robot to update it’s model.
While many works often assume streaming data and thus continuously update the model, real world
scenarios may not even afford such continuous model updates. Another challenge in continual learning

3

1 Introduction

Policy Representations

Reuse parameterized controllers

Common parameterized
object-centric controllers

Task:
Screw-Insertion

Visual Representations

Task:
Wipe-Whiteboard

Reuse offline pretrained representations

3D Object-Interaction Data

Figure 1.2: This thesis shows how parameterized policy representations (Left) and data-driven visual representa-
tions (Right) can be used to efficiently learn robust manipulation policies.

is to ensure that the previous abilities of the model are not lost over time. While it is indeed possible to
keep a subset of the data used to train the previous model, there exists no guarantees that training on this
data together with new data will result in exactly similar capabilities as before. This possibly requires a
data driven evaluation of the agent’s capabilities.

1.3 Thesis Contributions
The contribution of this thesis (Chapter 2 to Chapter 7) lies along two different axes (Figure 1.2). Along
the first axes, in Chapter 2 - Chapter 4 we focus on reusing parameterizing policy representations for
learning manipulation tasks. In our next set of works (Chapter 5 - Chapter 7) we focus on visual repre-
sentation learning.

Hierarchical Object-Centric Task-Axes Controllers: Chapter 2 focuses on compositional skill learn-
ing. Our main idea is based on the observation that many manipulation tasks often consists of multiple
subtasks which often need to be performed both in sequence and parallel. For instance, consider the wip-
ing task shown in Figure 1.1. To accomplish this task, the agent needs to focus on the surface-marks that
need to be wiped while simultaneously maintaining contact with the table surface and applying a suffi-
cient amount of force.

To achieve this we develop the idea of parameteric task-axis controllers. Our task-axes controllers con-
tains both geometric and controller parameters. The geometric parameters model the underlying geome-
try of the scene via object keypoints, surface-normals, object-centers. We use multiple different controller
implementations (e.g. position, force) and each controller contains its own set of parameters (e.g. force-
targets for force-control).

We use this common set of parameteric task-axes controllers for all different manipulation tasks. For each
manipulation task, we automatically instantiate a large set of controllers using our parameterized task-
axes controllers. These controllers are composed both hierarchically and temporally to perform the given

4

1 Introduction

manipulation. Unlike prior works, we are the first ones to propose parameterized geometric controllers
that can be instantiated automatically for each task. Further, unlike prior works we learn the appropriate
task-axes controller to run at each step directly via interactions using reinforcement learning.

Skill Effect Models for Lifelong Robot Manipulation: Chapter 4 investigates how robots can solve
new tasks with newly acquired skills while efficiently reusing prior learned skills. Prior works on planning
with skills [22, 44, 104, 242, 247, 254] often make assumptions on the structure of skills and tasks, such
as subgoal skills [247], shared skill implementations [134, 252], or task-specific plan skeletons [222, 254],
which limit adaptation to new skills and tasks. By contrast, we propose doing task planning by jointly
searching in the space of parameterized skills using high-level skill effect models learned in simulation.
We use an iterative training procedure to efficiently generate relevant data to train such models. Our
approach allows flexible skill parameterizations and task specifications to facilitate lifelong learning in
general-purpose domains.

Relational Learning for Skill Preconditions: In Chapter 5 we aim to learn skill preconditions by using
very little real-world data. Skill preconditions determine if a skill can be executed in any given environment
[109, 111]. For robots to operate in dynamic and unstructured environments, these precondition models
will need to generalize to new scenes containing variable number of objects with different shapes and sizes.
Thus, we focus on learning precondition models for manipulation skills in unconstrained environments.

Our work is motivated by the intuition that many complex manipulation tasks, with multiple objects,
can be simplified by focusing on less complex pairwise object relations. Prior works have shown the ad-
vantages of learning object relations for manipulation [3, 139, 190]. However, these works focus on simple
discrete relations and use simple visual settings (i.e. with very few objects). By contrast, the key idea in our
work is that we can learn high-dimensional object-relation representations by self-supervised learning in
simulation and then transfer these learned relations for efficient precondition learning.

RoboAdapters – Lossless Adaptation of Pretrained Vision Models for Robot Manipulation:
Chapter 6 focuses on robot perception for lifelong skill learning. Our work in Chapter 6 is motivated by
the observation that large models pretrained on common visual learning tasks can provide useful repre-
sentations for a wide range of specialized perception problems, as well as a variety of robotic manipulation
tasks [61, 158, 171]. While prior work [158, 251] on robotic manipulation predominantly used frozen pre-
trained features, we demonstrate that in robotics this approach can fail to reach optimal performance,
and that fine-tuning of the full model can lead to significantly better results. Unfortunately, fine-tuning
disrupts the pretrained visual representation, and causes representational drift towards the fine-tuned
task thus leading to a loss of the versatility of the original model.

We introduce lossless adaptation to address the feature disruption of classical fine-tuning. We demon-
strate that appropriate placement of our parameter efficient adapters [5, 67] can significantly reduce the
performance gap between frozen pretrained representations and full end-to-end fine-tuning without
changes to the original representation and thus preserving original capabilities of the pretrained model.

Multi-Resolution Sensing for Real-Time Control with Vision-Language Models: Chapter 7 fo-
cuses on using pretrained vision-language models (VLMs) [4, 123, 179, 225] for robot manipulation.
However, for many manipulation tasks large pretrained models can be very slow. Further, improving
the inference of pretrained models without losing their existing capabilities is extremely challenging. In-

5

1 Introduction

stead, in this work we leverage additional sensing modalities to complement the generalization capability
of pretrained VLMs

We propose a multi-resolution architecture that uses multi-spatial as well as multi-temporal sensing modal-
ities. Multi-spatial resolution sensing provides hierarchical information captured at different spatial scales
(e.g. third-person camera captures global view while wrist-mounted camera and force-torque sensors
capture very local information) and enables both coarse and precise motions. Multi-temporal resolution
sensing uses each sensing modality at a different temporal resolution. Specifically, images from a static
third-person camera change very slowly while force-torque information changes much more rapidly. By
comparison, most prior works that use VLMs focus on quasi-static tasks only [219, 251], while works that
perfom dynamic tasks do not focus on language guided generalization [154, 195, 216].

Overall, our framework learns generalizable language-conditioned multi-task policies that utilize sensing
at different spatial and temporal resolutions using networks of varying capacities to effectively perform
real time control of precise and reactive tasks. We leverage off-the-shelf pretrained vision-language models
to operate on low-frequency global features along with small non-pretrained models to adapt to high fre-
quency local feedback. We show that our multi-temporal resolution sensing enables the agent to exhibit
high reactivity and real-time control.

1.4 List of Publications
• Chapter 2 Learning to Compose Hierarchical Object-Centric Task-Axes Controllers for Robotic

Manipulation [213]

• Chapter 3 Generalizing Object-Centric Task-Axes Controllers using Keypoints [210] and Effi-
ciently Learning Manipulations by Selecting Structured Skill Representations [209]

• Chapter 4 Search-Based Task Planning with Learned Skill Effect Models for Lifelong Robotic Ma-
nipulation [130]

• Chapter 5 Relational Learning of Skill Preconditions [212]

• Chapter 6 Lossless Adaptation of Pretrained Vision Models For Robotic Manipulation [208]

• Chapter 7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models [196]

1.5 Open-Source Contributions
During the course of this thesis we released some of our infrastructure code for ease of working with
the Franka-Panda robots [263]. We released FrankaPy https://github.com/iamlab-cmu/frankapy which
provides a simple to use python interface. FrankaPy is further accompanied with a C++ based interface
which implements common robot controllers https://github.com/iamlab-cmu/franka-interface.

6

https://github.com/iamlab-cmu/frankapy
https://github.com/iamlab-cmu/franka-interface

1 Introduction

We have also released code for some of our other papers. We provide our implementation of hierarhical
object-centric controllers Chapter-2 in https://github.com/iamlab-cmu/hierarchical-object-controllers.
Further, we also open-source both our code and data for multi-resolution transformer policy (Chapter-7)
in https://github.com/iamlab-cmu/mrest-multi-resolution-transformer.

7

https://github.com/iamlab-cmu/hierarchical-object-controllers
https://github.com/iamlab-cmu/mrest-multi-resolution-transformer

Part II

Reusing Policy Representations
Robots in real world will need to solve a very wide range of diverse manipulation tasks. While each in-
dividual task can be different, its underlying components (e.g. subtasks, affected objects, controllers) are
often shared with other tasks. In the first part of this thesis, we make use of this inherent compositionality
of manipulation tasks. We propose a shared parameterized policy representation which can be composed
to efficiently learn manipulation tasks [210, 213]. We further explore how parameterized policy represen-
tations can be used for efficient lifelong learning [130]. Specifically, we learn skill-effect-models (SEMs)
which learn effects of stereotypical policy rollouts. We use SEMSs with search-based planning to compose
existing skills and learn new skills for accomplishing varying tasks over time.

8

2 Object-Centric Task-Axes
Controllers forManipulation

This chapter is based on [Sharma, Liang, Zhao, LaGrassa, and Kroemer, 213].

Abstract: Manipulation tasks can often be decomposed into multiple subtasks performed in parallel, e.g.,
sliding an object to a goal pose while maintaining contact with a table. Individual subtasks can be achieved
by task-axis controllers defined relative to the objects being manipulated, and a set of object-centric controllers
can be combined in an hierarchy. In prior works, such combinations are defined manually or learned from
demonstrations. By contrast, we propose using reinforcement learning to dynamically compose hierarchi-
cal object-centric controllers for manipulation tasks. Experiments in both simulation and real world show
how the proposed approach leads to improved sample efficiency, zero-shot generalization to novel test environ-
ments, and simulation-to-reality transfer without fine-tuning.

2.1 Introduction
Manipulation tasks are inherently object-centric and often require a robot to perform multiple subtasks
in parallel, such as pressing on a sponge while wiping across a surface, balancing a saucer while serving
tea, or maintaining alignment of a screwdriver while unscrewing a screw. The individual subtasks need to
be performed in parallel to accomplish the overall task. As the above examples illustrate, subtasks usually
correspond to goals and constraints associated to objects in the robot’s environment. Thus, manipulation
skills are often defined as 3D motions, which are implemented as simple position or force controllers, of
the end effector in object-centric coordinate frames.

One drawback of such an approach is that it results in monolithic controllers for each task, i.e. controllers
which act specifically with respect to some fixed coordinate frame. In addition, for many tasks it is not
always necessary to control all axes of a given object-centric coordinate frame. For instance, for the wiping
task in Figure 2.1, the sponge needs to use the table surface normal to make contact with the surface, while
it is free to move with respect to any other object (wall, corners, dirt) on the surface. Based on this insight,
we adopt a modular approach by defining task-axis controllers for each potential subtask. Importantly,
the controllers are associated with object-centric axes, such as the normal of a surface or the direction
from the end-effector to an object.

We focus on learning an hierarchy of such object-centric task-axis controllers, or object-axis controllers
(Figure 2.1). This hierarchy is especially important since many tasks require performing multiple subtasks
in parallel. Previous works use pre-defined sets of task frames attached to objects or the robot, and they

9

2 Object-Centric Task-Axes Controllers for Manipulation

Figure 2.1: Controller Selection and Composition Pipeline. Given current observations and list of low-level con-
trollers, an RL policy chooses an ordered list of controllers to use. These controllers are composed via
nullspace projection, where the controls of lower-priority controllers are projected onto the nullspace of
higher-priority ones. The combined control signals are used to actuate a robot via task-space impedance
control. The controller combination runs for T time steps before the RL policy is queried again.

often learn a fixed task-frame hierarchy from human demonstrations. Instead, we use Reinforcement
Learning (RL) to learn a policy that outputs an ordered list of controllers, which are then composed to
be executed on the robot. To ensure different object-axis controllers do not interfere with each other, we
compose controllers via nullspace projections [1], where the control signals of lower-priority controllers
are projected onto the nullspace of higher priority ones.

In addition to modularity, our approach provides several other benefits. First, the object-axis controllers
are not task specific, so they can be reused across multiple tasks. Second, composing controllers across
multiple different objects makes the learned policies invariant to certain object properties e.g., a con-
troller that reaches toward an object is invariant to object size. Such invariances are useful for general-
izing learned policies beyond the set of objects the policies are trained on. Finally, the use of a structured
action space introduces meaningful inductive biases by ensuring robot actions are performed both in re-
lation and with respect to objects in the scene. We successfully evaluated our approach on four different
manipulation tasks, including two 2D tasks of fitting and pushing a block and two real robot tasks of
screwing and door-opening. Experiments show that the proposed approach leads to improved sample
efficiency, zero-shot generalization to novel environment configurations, and simulation-to-reality trans-
fer without further fine-tuning. See videos and supplementary materials at https://sites.google.com/
view/compositional-object-control/.

2.2 RelatedWorks
Task Frames: Our use of task-axes is related to the notion of 6D task frames [11, 12, 142]. One of the
first works to formalize task frames is [142]. There, the authors referred to different task-axes as compliant
or non-compliant based on the type of desired motion along each axis. The authors of [181] proposed
hybrid force-position control, which selects different axes of the constraint frame for either position or
force control. Simultaneously, the authors of [11, 12] proposed task frames to define robotic manipulation
primitives; they noted that the geometric level of task frames can serve as a good middle ground between
symbolic actions and the motor control input. Since then, task frames in the form of task spaces have
been used extensively in robotics [203]. Prior works treat task-frames as fixed coordinate frames which are
either attached to objects of interest or generated from constraints in the environment. By contrast, our

10

https://sites.google.com/view/compositional-object-control/
https://sites.google.com/view/compositional-object-control/

2 Object-Centric Task-Axes Controllers for Manipulation

approach is more modular and dynamic, as it enables an RL policy to combine task-axes across different
objects and dynamically synthesize task-frames.

Task Frame Selection: Although the use of task frames and spaces is widespread in robotics [17, 100,
103, 138, 151, 155, 243], only a few works have explored using learning to select which task frames are
appropriate for the given task [31, 103, 155, 177, 243]. However, most of these works use imitation learning
i.e., they learn task frame selection from human demonstrations [103, 155, 177, 243]. The criterion for task-
frame selection is typically manually defined using properties such as inter-trial variance or convergence
behavior of demonstrations. In our work, we set task-axes selection as the action space for an RL agent, so
we do not require demonstrations. Moreover, the RL agent chooses a hierarchy of task-axis controllers,
which are composed together for execution.

Hierarchical Controllers: Combining multiple task-axis controllers is related to works in hierarchical
control. Hierarchical control is often used in robots with redundant degrees of freedom or bi-manual
robot setups where multiple tasks or objectives can be executed in parallel [41, 92, 96, 159]. To com-
bine different controllers, these works project the control signals of lower-priority controllers onto the
nullspace of higher-priority controllers. However, most of these works assume a fixed priority order
for the tasks/objectives being considered, while some recent works [92] learn the priorities from human
demonstrations. Similar to these works, our approach also uses nullspace projections to combine multi-
ple task-axis controllers together. However, instead of using a fixed priority order, our method learns to
prioritize controllers by directly interacting with the environment.

Reinforcement Learning: Finally, our approach is related to works on structured action spaces for
reinforcement learning (RL) for contact-rich manipulation tasks. Recent works have studied how the
choice of action spaces affect robot learning performance [16, 18, 141]. However, these methods focus
only on the final controller output, i.e., comparing fixed with variable impedance control [18, 141] or with
hybrid-force position control [16] in joint and task-spaces. Our work provides additional structure to the
action space via composing hierarchical object-centric controllers.

Hierarchical RL: Composing task-axes controllers for performing tasks is also related with hierarchical
RL (HRL) [30, 105, 238]. HRL uses the notion of options, which are temporally-extended actions, and
learns to combine them to accomplish a given task. There has been a large body of work which aims to ex-
tract the underlying options [9, 224, 233], using techniques such as bottleneck states [233], policy sketches
[217], or expert demonstrations [35, 108, 214]. Similarly, there have also been works that use predefined op-
tion policies and compose them to learn a “meta-policy" [131]. However, these option policies are defined
specifically with respect to the underlying task, and hence it is not clear how reusable these policies are.
By contrast, our proposed task-axes controllers are reusable across multiple different manipulation tasks.
This is desirable for efficient learning of new manipulation tasks[153]. Additionally, task-axes controllers
are different than options since they can be composed both hierarchically and temporally.

11

2 Object-Centric Task-Axes Controllers for Manipulation

Figure 2.2: Force-Position Controller Composition. Here, the agent controls the green block to push the red block
up along the vertical gray wall. A) The agent is given 4 controllers to choose from, each corresponding
to points of interests in the scene. B) The agent chooses 2 controllers, with the force controller into the
red block at the higher priority (0), and position controller toward the wall corner at the lower priority
(1). C) The error of the lower-priority position controller is projected onto the null space of the higher-
priority force controller (purple dashed line). D) The projected errors are combined to form the desired
position target.

2.3 LearningHierarchical Compositions of
Object-Centric Controllers

We propose training an RL policy to perform manipulation tasks by using a structured action space con-
sisting of hierarchical compositions of object-centric controllers. Each object in the scene is associated
with a fixed set of task-axes, positioned either at object centers or other object key points. For each axis,
we define a set of controllers that perform force, position, and rotation controls. This gives a set of pre-
defined object-centric task-axis controllers, or object-axis controllers, which define our structured action
space. With this action space, instead of directly commanding the end-effector, the RL policy selects
multiple object-axis controllers in a prioritized order, which are composed together using null-space pro-
jections. Figure 2.1 shows an overview of the overall proposed approach.

In the next subsections, we first define the different types of object-centric low-level controllers we use,
including how their object-centric axes are defined. We then discuss how to combine different object-axis
controllers together using null-space projections. Finally, we discuss different RL approaches for learning
the high-level policy that selects multiple controllers.

2.3.1 Controller Types
In this work, we use three different types of controllers: position, force, and rotation. These controllers
are object-centric, i.e. their control targets and axes correspond to objects in the scene. For example,
position controllers could be attractors that lead the end-effector (EE) close to an object of interest, force
controllers could be applying forces perpendicular to object surfaces, and rotation controllers could be
aligning an axis of the EE with an axis of the object. Currently, these controllers are manually specified
(see details in Section 2.4), but they could also be autonomously inferred from visual observations of
objects in the environment. Figure 2.2 illustrates force and position controllers and their composition,
and Figure 2.3 shows the rotation controllers.

Let xc ∈ R3, Rc ∈ SO(3), and fc ∈ R3 respectively denote the current end-effector position, orienta-
tion, and forces expressed in the robot’s base frame.

12

2 Object-Centric Task-Axes Controllers for Manipulation

Position and Force Controllers: The position controller consists of a target position xd and an axis u
along which the controller will move the robot’s end-effector toward the target. u can be a fixed direction,
like the normal direction of a surface, or it can be adapted with respect to xc: u = xd−xc

∥xd−xc∥2
. LetP(u) =

uu⊤ be the projection matrix for the given axis. Then, the translation error a position controller produces
is defined as δx(xd, u, xc) = P(u)(xd−xc). The force controller is similar to the position controller, i.e.
given a force target fd and an axes-direction u, the force error the controller produces is δf (fd, u, fc) =
P(u)(fd − fc).

Rotation Controller: The rotation controller attempts to align one axis Rcu of Rc with a target axis
rd, where u is a unit vector that performs axis-selection. For example,to align the X-axis of the end-
effector frame to align with rd, then u = [1, 0, 0]⊤. The rotation controller produces a delta rotation
target in the end-effector frame, which we compute via the angle-axis representation: δR(rd, u, Rc) =
cos−1((Rcu)

⊤rd)((Rcu)× rd)

Null Controllers: The high-level policy also has the option to choose a null controller, which would give
0 errors for both δx and δR. While other controllers can be chosen at most 1 time, the null controllers
can be chosen multiple times, giving the high-level policy more flexibility.

2.3.2 Controller Composition
Force-Position Composition: The RL policy selects at most 3 force and position controllers to com-
pose. Only 3 of force and position controllers can execute concurrently, because there are only 3 position
dimensions. The RL policy outputs a priority order for these controllers. Let the indices [0, 1, 2] denote
the 3 controllers in decreasing priority, so 0 is the highest, and 2 the lowest. The final position target is
computed by projecting the lower-priority targets onto the nullspaces of the higher-priority controllers,
then summing them. LetN (U) = I −U †U be a nullspace projection matrix with respect to rows ofU ,
where † denotes the pseudoinverse. LetKx be the position controller gain andKf the force gain:

∆0
x = Kxδx(x

0
d, u

0, xc) (2.1)
∆1
x = KxN ([u0])δx(x

1
d, u

1, xc) (2.2)
∆2
x = KxN ([u0, u1])δx(x

2
d, u

2, xc) (2.3)

∆x =
2∑
i=0

∆i
x (2.4)

where [. . .] represents a concatenation operator, i.e. concatenation of vectors into a matrix, e.g., [u0, u1] ∈
R2×3. Although the above expressions are written with all 3 controllers as position controllers, in our im-
plementation we combine multiple position and force controllers together. If force controllers are used,
for the corresponding controller, swap δx with δf , xd with fd, xc with fc, and Kx with Kf . Figure 2.2
illustrates the force-position controller composition.

Rotation Composition: The RL policy selects at most two rotation controllers to compose. This is
because when the highest priority controller fixes one axis of a rotation frame, there is only one degree of
freedom left, which is a rotation in the 2D nullspace of the fixed axis. Similar to force-position controller

13

2 Object-Centric Task-Axes Controllers for Manipulation

Figure 2.3: Rotation Controller Composition. Here, the agent rotates the Franka robot’s gripper from the initial
pose (A) to the final pose (E), so the gripper aligns with a door handle. A) The agent is given 4 rotation
controllers to choose from, aligning various axes of the gripper with different target axes of the handle.
B) Two controllers are chosen with the higher-priority labeled as (0) and the lower-priority as (1). C)
Both the current and target axes of the lower-priority controller (green arrows) are projected down to
the null-space (green planes) of the current axis of the higher-priority controller (gripper’s blue axis). D)
The desired rotation target is formed by combining the higher-priority rotation in the blue plane with
the projected lower-priority rotation in the green plane. Note that the lower-priority rotation does not
interfere with the higher-priority rotation.

compositions, we project the errors of lower-priority controllers onto the nullspace of higher-priority
controllers:

∆0
R = KRδR(r

0
d, u

0, Rc) (2.5)
∆1
R = KRδR(N ([Rcu

0])r1d, u
1,N ([Rcu

0])Rc) (2.6)
∆R = ∆1

R ◦∆0
R (2.7)

where ◦ denotes composing rotations, andKR denotes a rotation error gain. This procedure ensures the
higher-priority rotation controller always reaches its goal, and the trajectory of that axis is not affected by
the lower-priority controller (see Figure 2.3 for an illustration).

Controlling the Robot: We use task-space impedance control to convert translation and rotation targets
to configuration-space targets via Jacobian transpose, and we actuate the robot via joint torques. We first
concatenate the translation target∆x with the axis-angle representation of∆R to form the final 6D delta
end-effector target∆. Then, the robot joint-torque commands are computed as τ = J⊤(KS∆+KD∆̇),
where KS and KD are diagonal stiffness and damping matrices, and J is the analytic Jacobian. Terms
for compensating gravity and Coriolis forces are omitted for brevity. In practice, we cap the magnitude
of ∆ to limit maximum control effort, and we add an integral term to the force controllers for better
convergence. Once a set of controllers are selected, their combination runs forT timesteps before the RL
policy is queried again for a new set of controllers.

2.3.3 RLwithObject-Axis Controllers
We use RL to learn a policy that composes object-axis controllers to perform the underlying task. The
policy outputs an ordered list of controllers, which are composed together to output the final control
signal to move the robot. The combination of controllers is run for a fixed T timesteps, before the RL
policy is queried again. Note that the controllers do not have to converge before the RL policy switches

14

2 Object-Centric Task-Axes Controllers for Manipulation

to the next combination. We next discuss multiple ways in which the RL policy can output the ordered
list of controllers.

Discrete Combinatorial Actions: Let N be the total number of available controllers, and Nc be the
number of controllers that can be executed simultaneously. One simple way to output an ordered list
of Nc controllers is to use a discrete action space, where the policy selects an action from all available
controller permutations. Such an action space grows combinatorially (O(NNc)), and is not scalable for
environments with a large number of controllers.

Continuous Priority Scores: A continuous space alternative is to allow the policy to output a priority
score in [0, 1] for all controllers. These priority scores are then used to order the controllers, where the
Nc controllers with highest priorities are executed at each step. Although the dimension of this action
space grows linearly with the number of controllers, it can often lead to sub-optimal performance since
the agent now needs to explore a much larger action space than before.

Expanded-MDP: To avoid the sub-optimal performance of the above methods, we propose an expanded-
MDP formulation that still uses a discrete action space while avoiding combinatorial expansion. Here,
we expand each environment-execution step of the MDP intoNc intermediate controller-selection steps,
with the original environment-execution step occurring after theNc’th intermediate step. At each inter-
mediate step, the policy selects one controller from the N choices. Once Nc controllers are selected, the
robot takes an actual environment step. The reward function is modified such that 0 rewards are given for
the controller-selection steps before the Nc’th step. Similar MDP transformations have been suggested
previously to solve continuous action MDPs using discrete action space RL algorithms [150, 175].

To use the Expanded-MDP formulation, at each controller-selection step the policy needs to know its
previous controller selections. One approach is representing each controller with 1-hot encoding and
appending the 1-hot encodings of previously selected controllers to the observations. This expands the
observation space by N × (Nc − 1) dimensions, and we refer to this representation as multi-1-hot.
However, in many cases it might not be necessary to know the order of the previous controllers being
selected, i.e., it is sufficient to know which controllers have been selected previously but not their order.
So, for the second representation, we merge the one-hot encodings of multiple previous controllers into
one binary vector. This only increases the observation space by N dimensions, and can lead to faster
learning. We refer to this representation as single-1-hot

2.4 Experiment Tasks and Setup
With our experiments we aim to evaluate 1) How useful are the proposed object-axis controllers for task
learning, 2) How important is controller composition for task learning, and 3) How well does our pro-
posed approach generalize to the different test configurations.

Figure 2.4 visualizes the tasks used to evaluate our approach. There are two 2D tasks, Block Fit and
Block Push, and two real robot tasks, screwing hex-screws and opening doors with the 7 DoF Franka
Emika Panda arm. We compare both learning performance of the proposed approach against baselines,
as well as their ability to generalize to novel environment configurations. To study generalization, we train

15

2 Object-Centric Task-Axes Controllers for Manipulation

Figure 2.4: Experiment Tasks. From left to right: Block Fit, Block Push, Franka Hex-Screw, Franka Door-Opening
tasks implemented in simulation, and Franka tasks in the real world.

Figure 2.5: Example environment configurations for Block Push (left) and Block Fit (right) environments. Top
row shows some examples of train configurations, and the bottom row shows some examples of test
configurations. The orange wall shows the goal wall to reach.

policies on a small set of training environment configurations and test them on a novel test set. Training
over multiple environments is important to avoid overfitting. Details of each task, including controller
specifications, task variations, observation and action spaces, and the reward functions can be found in
the Appendix.

Block Fit: In this task, a 2D block robot needs to navigate to a 2D goal pose in the scene. There are
multiple walls or obstacles in the scene, so the robot cannot directly proceed towards the goal. Figure 2.5
(Left) shows some of the different train and test configurations. The low-level controllers are wall-centric.
Different environment configurations have different wall lengths and angles between walls. The training
set has 8 different environment configurations, while the test set has 9.

Block Push: In this task, a 2D block robot needs to push another block along a vertical wall over a ledge
to a desired goal pose. Figure 2.5 (right) visualizes some train and test configurations. Controllers and en-
vironment wall configurations are similar to those of Block Fit. The environment samples the initial pose
of the block robot and the target block. The training set has 11 different environment configurations,
and the test set has 8.

Franka Hex-Screw: In this task, a 7-DoF Franka Panda arm is used to insert a hex-key into a screw, and
turn the screw to a desired angle while applying a downward force and maintaining vertical orientation.
The screw will not turn unless a sufficient pre-defined (20N) downward force is applied. Different envi-
ronment configurations have different wrench and screw sizes. The training set uses size scale multipliers
of (0.9, 1.0, 1.3), and the test set uses (0.7, 0.8, 1.1, 1.2, 1.4, 1.5).

Franka Door-Opening: In this task, the Franka robot needs to open a door by first turning its door
handle and then pulling the door beyond an opening threshold. To avoid trivial policy solutions, the
door will not open unless the handle is first turned to a desired angle. The environment samples the

16

2 Object-Centric Task-Axes Controllers for Manipulation

EE-space 1-Controller 3-Priority 3-Exp-Single 3-Exp-Multi3-Combo

Block Fit Block Push Franka Hex Screw Franka Door Open

Figure 2.6: Success rates for all tasks on training environment configurations.

initial relative pose between the EE and the door, and different configurations have different locations of
the door handle on the door. The training and test set contain 4 and 3 configurations.

Compared Approaches: We set Nc = 3 across all experiments, which we found to be sufficient. To
evaluate the utility of our proposed object-axis controllers we compare against an RL agent that controls
the robot directly via end-effector delta-poses. We call this approach EE-Space. We also evaluate the
need for executing multiple controllers in parallel by comparing against a baseline which only chooses 1
controller at each timestep. We call this 1-Ctrlr. To show the efficacy of our proposed Expanded-MDP
formulation we compare against both: discrete combinatorial (3-Combo) and continuous priority scores
(3-Priority) action spaces. Both these approaches naively combine all possible controller combinations
and we show how this can lead to sub-optimal performance.

RL Training: We use Proximal Policy Optimization (PPO) [201] implemented in stable-baselines [65]
across all tasks and action space variants. Given the high variance in policy-gradient RL algorithms, we
run all methods with 8 different seeds (sampled uniformly between 1 and 100). All tasks are simulated
with an NVIDIA Isaac Gym 1, a GPU-accelerated robotics simulator [129].

Metrics: We report the success rates of the learned policies separately for train and test environment
configurations. Performance on the train set indicates whether or not the approach can robustly solve a
task, and performance on the test set evaluates generalization abilities. Test set is split into two subsets,
one with small deviations from the train configurations, and another with larger deviations. We report
additional results including more fine-grained analysis for each task in the Appendix.

2.5 Experiment Results andDiscussion
Block Tasks: Figure 2.6 (left) plots the success ratios averaged over all train environment configurations
for Block Fit and Block Push. The Expanded-MDP methods are able to successfully learn both tasks.
While EE-Space also makes progress on both tasks, it has a lower success rate, and this is due to its inabil-
ity to robustly solve a few challenging configurations (see Appendix). Both 1-Ctrlr and 3-Priority perform
well on Block Fit but poorly on Block Push. We attribute this difference to how there is a greater need

1https://developer.nvidia.com/isaac-gym

17

https://developer.nvidia.com/isaac-gym

2 Object-Centric Task-Axes Controllers for Manipulation

Task Variation EE-Space 1-Ctrlr 3-Priority 3-Combo 3-Exp-Single 3-Exp-Multi

Block Fit Train 0.87 (0.213) 0.778 (0.38) 0.936 (0.032) 0.294 (0.18) 0.998 (0.002) 1.00 (0.0)
Test-Small 0.87 (0.10) 0.916 (0.14) 0.99 (0.001) 0.184 (0.12) 0.99 (0.001) 0.99 (0.01)
Test-Large 0.371 (0.246) 0.396 (0.423) 0.877 (0.141) 0.165 (0.23) 0.974 (0.048) 0.953 (0.087)

Block Push Train 0.966 (0.046) 0.594 (0.087) 0.548 (0.129) 0.0 (0.0) 0.974 (0.025) 0.978 (0.022)
Test-Small 0.912 (0.045) 0.577 (0.193) 0.396 (0.041) 0.0 (0.0) 0.945 (0.045) 0.960 (0.030)
Test-Large 0.518 (0.185) 0.152 (0.137) 0.376 (0.032) 0.0 (0.0) 0.751 (0.103) 0.788 (0.132)

Table 2.1: Mean (SD) success rates for Block Fit and Block Push tasks on different environment configurations.

Task Variation EE-Space 1-Ctrlr 3-Priority 3-Combo 3-Exp-Single 3-Exp-Multi

Hex-Screw Train 0.002 (0.002) 0.183 (0.303) 0.960 (0.048) 0.774 0.194) 0.984 (0.01) 0.980 (0.016)
Test-Small 0.00 (0.00) 0.13 (0.072) 0.62 (0.045) 0.429 (0.430) 0.963 (0.01) 0.966 (0.015)
Test-Large 0.00 (0.00) 0.026 (0.025) 0.633 (0.081) 0.34 (0.057) 0.936 (0.028) 0.936 (0.035)
Real-World n/a 0.0 0.5 0.0 0.9 0.6

Door-Open Train 0.002 (0.006) 0.947 (0.021) 0.982 (0.007) 0.984 (0.013) 0.987 (0.009) 0.984 (0.015)
Test-Small 0.066 (0.063) 0.922 (0.043) 0.965 (0.046) 0.975 (0.011) 0.997 (0.006) 0.992 (0.015)
Test-Large 0.000 (0.001) 0.936 (0.032) 0.983 (0.006) 0.985 (0.007) 0.996 (0.005) 0.994 (0.013)
Real-World n/a 0.0 1.0 0.9 1.0 1.0

Table 2.2: Success rates for Franka Hex-Screw and Open-Door tasks on train and test environment configurations
across8 seeds. Parentheses denote standard deviation. Real-world results are evaluated over10 trials each.
We did not run EE-Space policies in the real world as they were unable to learn the tasks in simulation.

to use multiple controllers in the right order for Block Push. For instance, the policy needs to choose
a force/position controller that pushes into the wall and then another controller to move up. In addi-
tion, robustly pushing the block around the edge of the vertical wall also requires multiple controllers.
Although it is feasible to achieve this by quickly switching between controllers, such a strategy is not
robust. 1-Ctrlr is unable to use multiple controllers at the same time, and using the high-dimensional
priority score action space is challenging.

Table 2.1 shows success rates for both tasks on two sets of test configurations. Both EE-space and Expanded-
MDP methods perform well when test configurations have small deviations from train configurations,
with EE-Space performing slightly worse. However, for large deviations, EE-space performs poorly, achiev-
ing success ratios of 0.371 for Block Fit and 0.518 for Block Push. By contrast, Expanded-MDP meth-
ods perform much better, achieving 0.974 for Block Fit and 0.788 for Block Push, and 3-Priority also
outperforms EE-Space for the Block Fit task. In addition, 1-Ctrlr sees greater performance degradation
going from small to large deviations in test configurations. Together, these results indicate that using a
structured action space of multiple object-centric controllers leads to better generalization than using one
controller or directly learning in the EE-space.

Franka Tasks: Figure 2.6 (right) shows training results for both Franka Hex-Screw and Door-Open
tasks. The Expanded-MDP methods perform well on both the tasks, while EE-Space does not make
progress on either task. For Hex-Screw, the EE-Space policy is able to reach the screw, but is unable to

18

2 Object-Centric Task-Axes Controllers for Manipulation

learn to simultaneously rotate the screw and apply sufficient downward force. For Door-Open, the EE-
Space policy reaches the door handle, but fails to grasp and completely rotate the door handle in a robust
manner to open the door. One reason for these EE-Space failures is that exploration in both tasks is
difficult in the end-effector space. To aid EE-Space exploration, we evaluated the approach from [173],
which gives the agent additional exploration rewards. While doing so leads the agent to cover a larger
region in the state space, the explored states do not always correspond with meaningful behaviors for task
completion, so we did not observe any gains using this method.

Unlike with the Block 2D tasks, 3-Priority is able to learn both the Franka tasks. This is because the
Franka tasks have fewer possible controllers, which resulted in lower dimensional priority-score action
spaces. The reduced action-space dimensions of Franka tasks allowed us to evaluate 3-Combo, which is
also able to learn both tasks, although it achieves worse performance on Hex-Screw. Similarly, 1-Ctrlr
is able make progress on Door-Open but not Hex-Screw, which suggests that Hex-Screw requires more
precise coordination of multiple controllers than Door-Open. Table 2.2 (rows 2, 3, 5 and 6) shows the
success rates for both tasks on test configurations with small and large deviations. All methods that use
hierarchical combination of multiple object-axis controllers generalize well to both small and large test
deviations. Methods that performed poorly during training, EE-Space for both tasks and 1-Ctrlr Hex-
Screw, do not generalize well.

To evaluate Franka tasks in the real-world, we performed 10 trials of each method on the real robot,
each trial with a different sampled initial state. For the Hex-Screw task, we further tested on 3 different
screw and key sizes. All methods that used the proposed composition of hierarchical controllers were able
to robustly perform Door-Open in the real world, while only 3-Exp-Single was able to do so for Hex-
Screw. Hex-Screw is more challenging than Door-Open, because it requires more precise movements for
alignment and insertion. As a result, sim-to-real gap in the robot dynamics and controller responses leads
to greater performance degradation for Hex-Screw than for Door-Open.

2.6 Conclusion and FutureWork
In this work, we propose using RL to learn how to compose hierarchical object-centric controllers for
manipulation tasks. Our approach has several advantages. First, the object-centric controllers can be
reused across multiple tasks. Second, controller compositions are invariant to certain object properties.
Finally, the use of a structured action space introduces meaningful inductive biases for manipulation.
Our experiments show that the proposed approach leads to more guided exploration and consequently
improved sample efficiency, and it enables zero-shot generalization to test environments and simulation-
to-reality transfer without fine-tuning. In future work, we will tackle the main limitations of the current
approach – the set of controllers is fixed and manually-defined.

19

3 Efficiently Learning Generalizable
Manipulations using Task-Axes
Controllers

This chapter is based on [Sharma and Kroemer, 210] and [Sharma and Kroemer, 209].

3.1 Introduction
Manipulation tasks in real world involve objects of varying and often unknown shapes, sizes and geom-
etry. Learning manipulation skills to successfully perform tasks across a wide range of objects, without
access to their underlying geometric models, is a challenging problem. Recent work has shown how sim-
ple keypoint representations can obviate the need of known geometric models [49, 140]. These keypoint
representations which are learned purely from visual data are easy to acquire, and importantly provide
accurate and robust intra-category generalization capabilities. However, the keypoint representations as
used in [140] are only used for 1-step actions, which are found as a solution of an optimization problem.
Additionally, although keypoint representations have been used for Imitation Learning (IL) [48], they
have only been used for state representations, which are used as inputs to monolithic neural networks
and thus do not encode any semantic information (e.g. handle of a cup) about the object and the task
being performed. In this chapter, we focus on learning such generalizable manipulation skills by possibly
utilizing the semantic structure of the task.

A key challenge for learning generalizable manipulation skills is to choose an appropriate skill representa-
tion. For instance, we can use monolithic neural-network controllers [110, 122] to generate trajectories or
low-level actions for many different manipulation tasks. On the other hand, we can also use more special-
ized skill representations, e.g., parameterized force-controllers [181], object-centric attractors [52, 213], or
Dynamic Movement Primitive (DMP) [71]. While general skill representations may enjoy widespread ap-
plicability their over-parameterization can make them unnecessarily difficult to learn. More specialized
skill representations often work well in only limited settings, but they can be faster to learn and adapt
given their fewer parameters. The robot should therefore ideally use the most specific skill representation
that is still suitable for the given task.

Ov3erall

However, [213] does not use any visual data in their formulation. Instead, they use heuristics to define
the set of possible controller parameterizations for each task. These controller parameters include both

20

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Parameterized Task-Axes
Controllers

Position Attractor (,)
Force Attractor (,)

Step 1: Generate Dense Object Descriptors
using Multi-View Dense-Correspondences

Step 2: Annotate Reference Pixels on some
Reference Image.

Pre-Training

Find Unknown Task-Axes Controller Parameters

Given new scene with a different object
of same category

Find Keypoint Parameters Using
Pre-Trained Dense Object Descriptors

Generate Axes Parameters

Position Attractor (,)
Force Attractor (,)
Position Attractor (,)
Force Attractor (,)

<latexit sha1_base64="j9JFVFD3Ckskm1EQysQQdgqvyJU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh14i+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1EPjdE=</latexit>⇡

Learned Policy to Select
Task-Axes Controllers

Policy Training

Use Generated Parameters to
Create Task-Axes Controllers

<latexit sha1_base64="B1pwU2JRVAB4dpn6t+NGyIzL2QQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMF+wFtKJvNpl272Q27k0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbITFMcMkayFGwdqoZSULBWuHwbua3RkwbruQjjlMWJKQvecwpQSs1u6NIoemVK17Vm8NdJX5OKpCj3it/dSNFs4RJpIIY0/G9FIMJ0cipYNNSNzMsJXRI+qxjqSQJM8Fkfu3UPbNK5MZK25LoztXfExOSGDNOQtuZEByYZW8m/ud1MoxvggmXaYZM0sWiOBMuKnf2uhtxzSiKsSWEam5vdemAaELRBlSyIfjLL6+S5kXVv6p6D5eV2m0eRxFO4BTOwYdrqME91KEBFJ7gGV7hzVHOi/PufCxaC04+cwx/4Hz+AMzBj0Y=</latexit>...

<latexit sha1_base64="B1pwU2JRVAB4dpn6t+NGyIzL2QQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMF+wFtKJvNpl272Q27k0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbITFMcMkayFGwdqoZSULBWuHwbua3RkwbruQjjlMWJKQvecwpQSs1u6NIoemVK17Vm8NdJX5OKpCj3it/dSNFs4RJpIIY0/G9FIMJ0cipYNNSNzMsJXRI+qxjqSQJM8Fkfu3UPbNK5MZK25LoztXfExOSGDNOQtuZEByYZW8m/ud1MoxvggmXaYZM0sWiOBMuKnf2uhtxzSiKsSWEam5vdemAaELRBlSyIfjLL6+S5kXVv6p6D5eV2m0eRxFO4BTOwYdrqME91KEBFJ7gGV7hzVHOi/PufCxaC04+cwx/4Hz+AMzBj0Y=</latexit>...

Keypoint Parameter
Axes Parameter

Unknown Controller Parameters

Figure 3.1: Overview of our proposed approach. We extend task-axes controllers to operate on visual input and use
them to present a simple and generalizable approach for learning manipulation tasks.

the position targets i.e. 3D positions for relevant objects or other semantically meaningful points on the
object such as edges or corners, as well as the axes targets i.e., the axes along which the controller acts. Our
aim in this work is to extend [213] to allow it to operate directly on visual input. More specifically, instead
of using fixed heuristics to find the position-target parameters we would like to infer them directly from
visual data. This is important since the previously used heuristics are often defined as functions of object
parameters, and thus assume direct knowledge of an object’s shape, size, and overall geometry, which
might not be easily available in the real world. Additionally, instead of using heuristics to provide the
axes-parameters we populate them automatically for each of the task-axes controllers. This results in an
overall approach that requires minimal user input and allows the robot to learn complex manipulations
tasks directly through interaction.

Our overall contributions in this paper include: 1) We marry two seemingly different approaches for gen-
eralization of manipulation tasks. Specifically, we show how multi-view dense correspondence learning
can be effectively used with task-axes controllers, allowing for a simple and yet flexible approach for learn-
ing manipulation tasks. 2) We empirically validate the above approach on multiple manipulation tasks
and show the generalization abilities of the resulting approach across both object (shape, size) and envi-
ronment (lighting) properties.

21

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

3.2 RelatedWork
Task Frames: As noted in [213], task-axes controllers are closely related to the notion of 6D task frames
[11, 12, 142]. Task Frames have been long been used in the robotics community. The early works of [11,
142, 181] formalized and used the notion of task-axes and constraint based task-frames (also referred to
as constraint frames) for different manipulation tasks. Also, the authors of [11] noted the generalization
ability that the geometric level of task frames provide by serving as a common middle ground between
symbolic actions and motor control input. Since then task frames (often referred to as task-spaces) have
found widespread use in robotics, for both planning and control [17, 100, 103, 138, 151, 155, 243].

However, only recently, methods have been proposed to learn to select the appropriate task frame for the
given task [31, 103, 155, 177, 243]. All of these methods cast the task-frame selection problem as an imita-
tion learning (IL) problem. Each of these methods advocate the use of some manually defined heuristic
such as inter-trial variance between multiple demonstrations or the convergence behavior of demonstra-
tions when viewed from different frames. In contrast to IL, [213] proposed an approach that uses Rein-
forcement Learning (RL) and learns to compose multiple task-axes based controllers to perform different
manipulation tasks. The main motivation behind [213] is that many manipulation tasks often require
multiple different subtasks to be performed in parallel. Each of these subtasks are accomplished by us-
ing different task-axes controllers and multiple task-axes controllers are combined hierarchically at each
step to complete the overall manipulation task. Our work in this paper extends [213] to allow task-axes
controller parameters to be inferred directly from visual input. As discussed previously, this is benefi-
cial, since it avoids using heuristics, which often require direct knowledge of an object’s pose, shape, size,
and overall geometry. Another difference between our work and [213] is that we avoid using any prior
knowledge to define target axes parameters. Example of such priors include – force controllers should be
applied normal to surfaces and not across them. Instead, we would like the robot to learn such priors di-
rectly through interaction. This is important, since it allows us to create a simple method which requires
minimal user input but can still learn to perform complex manipulation tasks.

Manipulation Skills can be represented in many different ways. Early work on manipulation skill rep-
resentation used both geometric and mechanical features of the task to define manipulation primitives
such as position, force primitives or visual servoing primitives [69, 153]. Contact states have also been
used to define manipulation skills [64]. While early skills were often manually parameterized, recent skills
have become more versatile utilizing learned parameters and preconditions [53, 81, 104, 211, 237, 247].
Some of the widely used skill representations include, Dynamic Movement Primitives (DMPs) [71, 111,
169], Neural Networks [87, 187, 198], Task-Parameterized GMMs (TP-GMMs) [24, 25]. In contrast to the
above approaches, we do not propose a new skill representation but instead we utilize these different skill
representations and learn to select the most appropriate skill-representation for the underlying task.

Hierarchical RL: Composing task-axes controllers for performing RL tasks is also related with hierar-
chical RL (HRL) [30, 86, 105, 238]. HRL uses the notion of options, which are temporally-extended
actions, and learns to combine them to accomplish a given task. There has been a large body of work
which aims to extract the underlying options [9, 135, 224, 233]. Many works aim to find options by using
bottleneck states [146, 233], or policy sketches [217], while other works have also looked at the use of ex-
pert demonstrations [35, 108, 112, 214]. The use of task-axes controllers is different than the traditional use

22

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

of options in RL since options are only composed temporally, while task-axes controllers are composed
both hierarchically i.e. at each step as well as temporally.

Multi-view Correspondence Learning: Our approach also builds upon the recent work on using key-
points for manipulation learning [48, 49, 140]. Most closely related to our work is [140] which uses key-
points on objects to define a specific optimization problem for each task. Solving this optimization prob-
lem leads to a transformation in SE(3) which is executed to perform the task. By contrast, we use the
inferred keypoints to solve a temporally extended RL problem, wherein the robot learns by interaction.
Another difference between the two approaches is that [140] manually annotate the relevant keypoints
for each task and do not use self-supervised dense correspondence learning [49, 199].

3.3 Preliminaries: Skill Fundamentals
We use a compositional approach towards skill representation. Our skill representation is grounded in
the geometry of the given task and its associated environment. We utilize a task-frame based formulation
to utilize this geometric representation. Task-frame formalism (TFF) [21, 36, 113] allows us to associate
3D frames with task relevant objects in the environment. Instead of relying on full 3D task-frames we
decompose each task-frame into a set of task-axes and only use the relevant axes for each task. This for-
mulation is important in scenarios where frames or axes on different objects are required for control, e.g.
in a wiping task we only need the surface normal of the surface being wiped while the target location is
the marker to be wiped (Figure 3.3 Right).

Skill Representation: Each skill in our formulation consists of a set of one or more task-axes controllers
(TACs). Overall, each task-axes controller (TAC) is parameterized by an object keypoint (k ∈ K) that
acts as the anchor for the controller, an end-effector keypoint (e ∈ E) which indicates which part of
the end-effector will interact with the object, a task-axes (u ∈ U) that denotes the motion axes, and a
controller with type (c ∈ T) and corresponding parameters (θ) (e.g. DMP weights, or control-points for
splines), which is used to generate the motion. Table 3.1 lists these elements and we describe each of them
below. We use uppercase symbols K,E,U, T to denote sets of end-effector and object keypoints, axes,
and controllers. Each element of these sets is indexed using lowercase symbols, i.e., k, e, u, c respectively.
Figure 3.2 visualizes how TACs are combined together to achieve skill representations.

3.3.1 Object and End-Effector Keypoints
We utilize keypoint-based representations to ground the task-axes controllers in the task environment.
In this work, we assume a fixed set of object keypoints, denoted as K , which can be tracked in the envi-
ronment. It is possible to predict these keypoints directly from the image input or the 3D point cloud
representations. However, this often requires pre-training to learn features based on local object geom-
etry [49, 199]. Further, in some scenarios using object-part centric approaches [39] may also be useful,
e.g. grasping an airplane model from its tip. All of the above approaches can provide suitable keypoint
representations for TACs.

23

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

TAC Element Values

Object-Keypoint Keypoints on object surface, center of object,
object edges or corners

End-Effector Keypoints End-effector center, Points on fingers,
Palm points, Palm edges, Tool Keypoint

Task Axes Global axes, Surface normals, Object axes,
Linear axes to goal keypoints

Controller Types
Min-Jerk controllers, Force controllers,
Alignment controllers, DMPs,
Neural Networks

Table 3.1: Different elements of task-axes controllers along with the possible values each element can take.

In addition to the object keypoints we also utilize end-effector keypointsE that ground the end-effector
interaction with the object. Figure 3.3 visualizes the palm end-effector keypoints. Overall, we use the
end-effector center, finger keypoints, tool keypoint or palm keypoints. Although for most interactions
the middle keypoint of the end-effector suffices, for many scenarios utilizing the fingers of the robot or
the palm surface may also be relevant.

3.3.2 Task Axes
Each TAC is associated with some axis u ∈ U along which it acts (u ∈ R3). While prior works often
assume full 3D frames associated with each keypoint [52, 68], we decompose these frames into separate
task axes. This is beneficial since in many scenarios only some axes of the full 3D reference frame are
useful. For instance, in the peg insertion task or wiping tasks in [52] it is only the Z-axes of the hole or
the surface normal of the board which are important, while the other axes can be more arbitrary e.g. any
two axes in the plane normal to the hole will suffice for circular peg insertion. Based on this, we note that
for most manipulation tasks a common set of axes can be used. These include the global X, Y, Z axes,
the surface normals on objects, object-axes (which can be found from object-pose if known), linear axes
from ee-keypoints to anchor keypoints (that are estimated as k − e, where k is an object keypoint and e
is the end-effector keypoint), and joint-axes which can be used to define motion constraints.

3.3.3 Controller Types and Parameters
Each TAC is further associated with a feedback-based controller that generates the robot motion. These
controllers can combine trajectory generators and feedback controllers together to generate the final robot
motion. These TAC controllers can utilize the object and end-effector keypoints discussed above. How-
ever, they have their own set of parameters cθ for motion generation. Table 3.1 lists the possible set of
controllers.

24

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

DMP Controller

Linear Controller

Object Keypoint

End-Effector Keypoint

Target Linear Axes
Global Y-Axes
Global Z-Axes

DMP Controller

Final Controller
Linear Controller

Task-Axes Controllers

Skills are composed using
sets of Task-Axes Controllers

Figure 3.2: Skill composition using different TAC rep-
resentations.

Figure 3.3: Left: Palm keypoint with an arbitrary
frame. Right: Tool keypoint with EE frame
and surface normal (black arrow) for black
mark on the board. The other in-plane axes
for the black mark are much more arbitrary.

Min-Jerk controllers are parameterized with the goal keypoint k ∈ K and an offset ko ∈ R3 with respect
to these keypoints. Thus, the final target for the given end-effector keypoint isk+ko, and these controllers
act along the provided task-axes. They are further parameterized by the duration to reach the target.

Force controllers are parameterized by a desired force target ft ∈ [fmin, fmax] and act along the given
task-axes.

Dynamic Movement Primitive based controllers are parameterized with goal location (i.e. the keypoint k
and keypoint offset ko). DMPs can be used to imitate arbitrary smooth motions by learning appropriate
shape parameters w ∈ RN , (where N are the number of basis vectors) used to represent the forcing
function [71, 111].

Alignment controllers are used to align some axes of the end-effector with some task-axes such as the sur-
face normal of the whiteboard to wipe. These controllers can additionally be parameterized with (θ, ϕ)
which specify the remaining 2-DOF for the 3-DOF orientation space.

Neural Network controllers can be parameterized with respect to goal locations (which are inferred from
keypoints and offsets). The parameters for neural network controllers consist of all the weight and bias
parameters in their layers. Given different TACs we compose them together using null-space projections
similar to [213].

3.4 Learning Visual Controller Parameters
As discussed previously, [213] defines controller parameters such as xc using heuristics e.g. using the mid-
dle of the door handle or the middle of the wall as target positions. Similarly, the axis parameters u were
either set to the world axes or the object axes. However, each controller is only instantiated with the rele-
vant axes, i.e., some prior knowledge is provided by either specifying which target-axes is relevant for the
current controller or which axes of the end-effector should possibly align with the known target axes. For
instance, to clean a planar 2D surface we should only apply force control along the normal of the surface
and not along the surface. Our main in this paper is to: 1) Extend task-axes controllers to operate directly
on visual input, which avoids the usage of heuristics to specify the controller parameters, 2) Reduce the

25

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

use of prior knowledge to specify relevant axes-parameters, which results in an approach that requires
minimal user input and still can be used to solve complex manipulation tasks.

From the discussion in 3.3.3 we see that both position and force controllers are parameterized by a 3D
position target and a 1-D target axes. Rotation controllers are additionally parameterized by the EE-axes
used to orient with some target axes. We next explain our proposed methods to infer the relevant 3D
position targets (keypoints) and target axes directly from visual inputs and interactions.

3.4.1 Keypoint Parameters
To infer keypoint parameters i.e., the 3D position targets we use multi-view dense correspondence learn-
ing. Specifically, we use DenseObjectNets [48, 49] which learn dense object descriptors for each pixel
from multi-view data in a completely self-supervised manner. Not only does this setup avoid the need of
any expensive manual data-labeling procedure, prior works have shown that the learned object descrip-
tors are quite robust in presence of mild occlusions and importantly, lead to category-level generalizations
[48]. This category level generalization is extremely desirable for task-axes controllers since the controller
position targets are often associated with semantic parts of the objects such as middle of the door handle
to rotate it, or edge of a block to tumble it. Thus, category level generalization allows us to infer con-
sistent controller targets irrespective of the object’s size and position as well as variation in its shape and
geometry.

To train dense object descriptors for our scenario, we use a small set of objects (≈ 10) relevant to each task
family and learn dense descriptors on these objects. All of these objects belong to the same category, e.g.,
for the door opening task we learn descriptors across doors with varying sizes of door handles as well as
their locations on the door frame. Thus, the learned dense object descriptors should generalize to other
novel objects that belong to the same category, e.g., door handles with complex shapes. Figure 3.10 plots
some learned object descriptors.

Given dense object descriptors, we extract the target keypoints for each controller by using a reference im-
age from the dataset collected for training dense descriptors. This reference image is used as representative
for the object category being manipulated. More specifically, we use this reference image to manually la-
bel some reference pixels on it. These reference pixels represent semantic information about the scene
which is relevant for the task. For instance, for the door handle object we label pixels near the edge and
middle of the door handle since these keypoints afford rotating the door handle compared to some posi-
tion closer to the handle’s rotation joint. Similarly for the block tumble task we label pixels near the edge
instead of the middle of the block. Figure 3.9 shows example keypoints for the tasks considered in our
current work. Each of these reference pixels is then used to create the desired position targets for both
force and position controllers. To create position targets for a new scene which contains a novel object
of the same category, we use the dense descriptors at the reference pixels and find pixels on the new object
with the closest matching descriptor. These corresponding pixels should represent the same semantic
information as the reference pixels e.g. close to the edge of the door handle. We set the 3D location of
these corresponding as position targets for the task-axes controllers. This step is done before each training
episode as well as while executing the learned policy at test time.

26

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Figure 3.4: The three different tasks used to eval-
uate our visual controller parameter
approach. From left to right: But-
ton Press, Block Tumble, and Door
Opening.

Figure 3.5: Robosuite [269] tasks used to evalu-
ate the efficiency of using our struc-
tured skill representation approach.
From left to right – Lift, Stack,
Wipe, Wipe with slanted board.

3.4.2 Axes Parameters
Given keypoint parameters for each controller, we need to associate each keypoint with some set of axes.
These axes are assigned as values to the axes-parameter defined above. To find this axes set we first find
the relevant axes for the given task, which we refer to as the candidate axes set.

Although dense object descriptors allow us to extract relevant keypoints, these descriptors do not convey
any information about the possible candidate axes values. In this work we use heuristics to extract the
candidate axes. Specifically, as possible candidate axes we use both the global (world) and the object axes.
Additionally, we also extract candidate axes by using the local geometry of the object around each inferred
keypoint e.g., using the axes normal to surface (surface-normal) or along the surface (surface-tangent).

Given the set of candidate axis, we need to associate each inferred keypoint parameter with some subset
of this axis set. Instead of using user defined priors [213] or additional data (e.g. demonstrations [209]),
Instead of using user-defined priors [213], in this part we use a combinatorial approach – we associate
every keypoint with each of the axis in the candidate axes set. Since each keypoint-axes pair defines a
controller, this combinatorial mix of keypoints and axes leads to large set of controllers for the robot to
choose from (i.e. a larger action space). In the following sections, we empirically validate how this choice
affects the performance of task-axes controllers for different manipulation tasks.

Figure 3.1 visualizes the pipeline of our overall approach. Our proposed approach is simple as it only
requires user input to annotate reference pixels. An integral part of the above pipeline are the reusable
task-axes controllers, i.e., we use the same set of controllers across multiple tasks

3.5 Learning and Selecting Skills using Demonstrations
As we show in 3.6 using a combinatorial action space, as discussed above, results in poor sample com-
plexity and makes real-world learning impossible. Further, instead of solely using task-axes controllers
we would also like the agent to choose between different skill representations. To achieve these goals we
propose to use a small set of demonstrations (≤ 5) to narrow down the possible set of valid skills for the
given task, and provide a multi-modal space of skills for the agent to explore.

27

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Use demonstration to select few
appropriate skill representations

EE-Keypoints
Object-Keypoints

Axes

Given a task with a large set of
skill representations

Use interactions to select most
appropriate skill representations

Figure 3.6: We represent object and end-effector keypoints using× (object keypoints as×, end-effector keypoints
as×) and axes as ↑. Left: Large set of skill representations. Middle: Use few demonstrations to select
a small set of relevant skill representations. Right: Use RL to select the most appropriate skill repre-
sentation for the task. The bottom plots show the likelihood values over different elements of our skill
representation. Bottom Left: Initially, we have similar likelihoods for all skill representations. Bottom
Middle: Using a demonstration we select skill representations with high likelihood (shown as black
dots). Bottom Right: We use interactions to directly learn the most relevant skill representation (black
dot) from this imitation reduced set.

3.5.1 Task Segmentation
Before learning appropriate TACs we segment a given task into multiple subtasks. This segmentation
breaks down long horizon problems and is often necessary given the non-linearity around contact mode
changes. We use change point detection to find contact mode transitions and use them to decompose the
given task demonstration into multiple subtasks. For each subtask we now aim to find a subset of relevant
TACs which are composed using null-space projections. TACs for all subtasks are then composed over
time to accomplish the given task.

3.5.2 Computing Posteriors over Skill Representations
Given demonstrations for each subtask we would now like to infer a distribution over all sets of TACs
to identify a small set of valid controllers that could be used to perform the task. For this we use a
likelihood based approach. We denote by q(k, e, u, c, cθ ∈ RN) some prior distribution over TACs.
Given the demonstration data X we would like to find the posterior distribution over these parameters
p(k, e, u, c, cθ|X), where

p(k, e, u, c, cθ|X) ∝ p(X|k, e, u, c, cθ)q(k, e, u, c, cθ). (3.1)

28

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Since the set of possible keypoints and controllers can be very large, we use some general priors to effi-
ciently estimate the posterior distribution in (3.1). This set of priors is applicable across a large variety of
manipulation tasks.

Proximity and Alignment priors: We first note that the geometric properties for the TACs, i.e, the object
and end-effector keypoints and task axes can be separated from the feedback controllers. This is because
given a set of values for these geometric properties multiple different controllers can be used to generate
the robot motion. More specifically, the object keypoint parameter is used as an anchor for the controller
the end-effector keypoint is used as the origin for the controller, and the task-axes projects the motion
onto the appropriate direction. Given these parameters different feedback controllers can be used to
generate the motion. We utilize this property of geometric properties to rewrite (3.1) as,

p(k, e, u, c, cθ|X) = p(c, cθ|X, k, e, u)p(k, e, u|X). (3.2)

We estimate the second quantity in this product of posteriors p(k, e, u|X) using proximity and align-
ment priors. A proximity prior allows us to find the most relevant keypoints based on the idea that
relevant object and end-effector keypoints should be close to each other at the end of the interaction.
Similarly, for the alignment prior we project the motion onto the relevant task axes and find proximity
along this axes. Denoting the end-effector keypoint trajectory as Xe

1:T (we use the subscript to denote
time) we transform it to the appropriate object-keypoint and axes using

X
e|k,u
1:T = −

(
uuT

)
(Xe

1:T − k), (3.3)

where we use the notationXe|k,u
1:T to denote the trajectory for end-effector keypointewith object-keypoint

k as origin and along task-axes u.

Given this projected trajectory we use heuristics to estimate the likelihood for the given geometric param-
eters i.e., P (X|k, e, u). We use simple distance-based heuristic based on the last position of the demon-
stration trajectory,

p(X|k, e, u) = exp

(
−||X

e|k,u
T − k̂||2
η

)
(3.4)

where k̂ is the 3D location for the given keypoint k and η is the temperature parameter. Using a low
temperature value focuses on the closest keypoints alone while a larger value may use multiple keypoints.
We note that other heuristics which look at the convergence behaviors of demonstrations can also be used
[1, 103, 177].

Additionally, to estimate the full posterior p(k, e, u|X)we can incorporate an informed prior q(k, e, u),

p(k, e, u|X) =
exp
(
−||Xe|k,u

T − k̂||2/η
)
+ q(k, e, u)∑

k′,e′,u′ exp
(
−||Xe′|k′,u′

T − k̂′||2/η
)
+ q(k′, e′, u′)

29

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

These priors encapsulate task knowledge to guide the learning process. For instance, for prehensile ma-
nipulation a relevant prior is to use the middle EE-keypoint, while for tool-based tasks, when the hand
is already grasping an object, the prior can focus on tool keypoints. Previous approaches to task-frame
selection, and the more recent keypoint based approaches, use similar priors on end-effector keypoints
[52].

3.5.3 Controller Selection and Learning
To estimate p(c, cθ|X, k, e, u), we need to calculate the likelihood p(X, k, e, u|c, cθ). For this we we use
a set of criterions for the different controller types listed in Table 3.1. We note that as before we project
the trajectory data onto the particular axes similar to (3.3). We use force-controller only in scenarios
where the observed force in the projected force-data is beyond a threshold. We use a threshold of 2N in
simulation and slightly larger 6N in real world given noisy force-torque measurements in real world. The
force controller is parameterized by a force-value which is directly inferred from the demonstration.

For linear controllers (min-jerk) we use a simple linear regression on the non-zero velocity part of the
trajectory to verify if the linear motion does not underfit the observed trajectory. We parameterize a linear
controller with the time required to reach the target. On the other hand, DMP and Neural-Network
(NN) controllers can fit arbitrary trajectories and thus we can always learn parameters for these controllers
that correspond to the observed demonstration trajectories. However, given limited training data NN
controllers can easily overfit to the trajectories and may not generalize well. We provide more details on
controller criterions in the appendix on the project website.

3.6 Experimental Setup
With our experiments we aim to evaluate: 1) How well can we infer the keypoint controller parameters
and use them to accomplish different manipulation tasks? 2) How well do the inferred task-axes param-
eters and the resulting policies generalize, i.e., we would prefer to train our RL agent on as few object
instances as possible and generalize to new objects of varying shapes and sizes.

Further for the second part of our work we use a single task demonstration to answer the following ques-
tions: 1) Can our proposed demonstration-based approach extract relevant skill information and discard
irrelevant TACs using the demonstrations? 2) How efficiently can we use the reduced TACs for overall
task completion? 3) Does our approach allow real-world learning on the robot?

3.6.1 Tasks
To evaluate our proposed approach we use 3 different manipulation tasks of increasing complexity –
Button Press, Block Tumble, and Door Opening. Figure 3.4 visualizes the three different tasks.

Button Press: In this task, a 7-DoF Franka Panda arm is used to push down a button which is positioned
on top of a box placed infront of the robot (Figure 3.4 left). Instead of using only one type of button ob-
ject, we verify our approach on multiple objects with different shapes and sizes. These variations include

30

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Figure 3.7: Example task variations used for training the Button Press and Door Open tasks.

the button position on top of the box object, sizes of both the button as well as its underlying box object.
Figure 3.7 (top) visualizes some of these variations.

Block Tumble: In this task, a 7-DoF Franka Panda arm is required to tumble a block along a particular
axis (Figure 3.4 middle). This task is particularly interesting since there exist multiple different ways to
accomplish it. For instance, the robot can tumble the block by applying a downward force anywhere
along its edge. To test generalization for this task, we vary the size of the block between 0.07m to 0.16m.

Door Opening: We also verify our approach on the door-opening task used in [213]. In this task, the
Franka robot needs to open a door by first turning its door handle and then pulling the door beyond
an opening threshold. In contrast to [213], which tests generalization by only varying the position of the
door handle on the door frame, we vary both the size of the door handle as well as the location of the door
handle on the door. Additionally, we also change the door shape and evaluate the proposed approach for
both cuboidal, cylindrical and more complex door handle shapes. See Figure 3.7,3.11 or attached video
(project page) for reference.

To evaluate how the use of demonstrations impacts our approach we use three different tasks from robo-
suite [269] – Lift, Stack, and Wipe (Figure 3.5). We use [269] tasks since they provide infrastructure to
collect demonstrations in simulation.

The robosuite tasks we use are of varying difficulty and evaluate different aspects of our approach. For
the Lift task we do not make any changes to the robosuite env. While for Stack we make one change,
i.e., we ensure that the blocks to be stacked will have a minimum distance of 3cm between them. This
ensures that the demonstration trajectory environment and the train environments align with each other.
Finally, for the Wipe task we make two changes. First, we reduce the number of markers to only 1, this
makes it easy for us to test our approach in the real world, since we can use a simple vision system to detect
this marker. Second, we stochastically add a slanted board (Figure 3.5 right) and place the marker on this
board instead of the table surface. This requires the agent to better generalize the wiping task.

31

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Button Press Block Tumble Door Open

EE-Space TAC (Manual) TAC (Keypoints) TAC (Keypoints + Axes)

Figure 3.8: Task Success Rate for all three different environment. The dark line shows the mean success-rate while
the shaded region plots the std across 5 seeds.

3.6.2 Compared Approaches
To evaluate our proposed approach we compare multiple different methods. In the below sections we
refer to task-axes controllers using the shorthand TAC.

1. EE-Space: We verify the utility of the structured action space provided by object-centric task-axes
controllers by comparing against an approach that directly controls the robot via end-effector delta
targets.

2. TAC (Manual) We also evaluate our approach against manually specified controller parameters.
We note that we do not aim to use the smallest possible number of controllers and their parameters.
Instead, we specify the controllers and their parameters only to provide some useful priors for
overall task learning.

3. TAC (Keypoints): We evaluate one version of our proposed approach in which we only infer the
keypoints i.e. the target positions for each position or force controller. We reuse the axes specified
for TAC (Manual) with the inferred keypoints.

4. TAC (Keypoints+Axes): We evaluate our proposed approach wherein both the keypoints as well
as the axes parameters are inferred for each scene.

Table 3.2 shows the number of keypoints and axes parameters inferred for each of the tasks. We note that
there exist controllers which do not have any axes associated with them such as the error axis controllers
[213].

To evaluate how the use of different skill representations affects our demonstration guided approach we
use another set of baselines. These baselines include commonly used skill representations.

1. BC with DMPs: We compare our approach against a behavior-cloning (BC) baseline. Given that
we only use one expert trajectory we use DMPs for BC instead of neural networks, since the latter
would require a much larger number of expert trajectories for generalization.

32

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Figure 3.9: Visualization for reference images and pixels (left image in each column) and corresponding pixels pre-
dicted using learned descriptors. For door open, one reference pixel is closer to door joint to show that
our approach learns to not use it.

Figure 3.10: Dense object descriptor results for Door Open Task.

2. BC + RL with DMPs: In addition to behavior cloned DMPs, we also compare against an ap-
proach in which we finetune the learned DMPs with RL.

3. RL: We also compare against an RL based approach. For this, we tried using both on-policy i.e.
Proximal Policy Optimization (PPO) [201] as well as off-policy Soft-Actor Critic (SAC) [57] ap-
proaches. However, the PPO based approach did not make any progress within sufficient amount
of time, hence we show results only for SAC. Additionally, for SAC we tried using the single expert
demonstration by adding it to the replay buffer, however this did not yield any advantage.

4. TACs: We evaluate our proposed approach wherein all TAC elements including keypoints, ee-
keypoints, axes, controller types are first selected from demonstration using IL and then refined
using RL.

Task TAC (Manual) TAC (Keypoints+Axes) Keypoints

Button Press 5 14 2
Block Tumble 10 40 10
Door Open 8 51 4

Table 3.2: Controller Statistics for each of the tasks.

Metrics: We compare all approaches using the success ratio metric. We report the success ratios of the
learned policies separately for both train and test environment configurations. For each task we use 4
train configurations while we test on 15 different configurations for each environment.

33

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Figure 3.11: Qualitative Results we show that our learned control policy although not trained on any of the above
models does successfully transfer to them (see results in project-page).

Env EE-Space TAC (Manual)* TAC (Keypoints+Axes)

Button Press 0.98 (0.01) 1.0 (0.0) 1.0 (0.0)
Block Tumble 0.487 (0.26) 0.96 (0.03) 0.932 (0.04)
Door Opening 0.0 (0.0) 0.97 (0.01) 0.94 (0.05)

Table 3.3: Mean (std) for each method on all three different manipulation tasks. Each approach was verified on 15
different environment variations.

3.6.3 Metrics and Training
For our visual task-axes controller experiments we train all methods using Proximal Policy Optimization
(PPO) [201] using stable-baselines [65]. All results are run and reported for 5 different seeds (we do not
use any top-K seeds criterion). We use same hyper-parameters as used in the door-opening task of [213].

For the RL baseline to select appropriate skill representation experiments we use the code provided by
the robosuite-benchmark. We use the same hyperparameter settings provided by them and run their code
on the slightly modified environments.

We use success ratio as the metric to quantitatively compare the approaches, since reward as a metric may
not be consistent across different baselines due to their different horizons and overall steps. Also impor-
tantly, we plot the success-ratio metric against the trajectory steps instead of environment steps. This is
because in trajectory based approaches (such as DMPs or ours) a single environment step corresponds to
multiple simulator steps. Thus, we also divide the RL steps by the maximum number of trajectory steps.

3.7 Results

3.7.1 Learning Visual Controller Parameters
Figure 3.8 plots success ratio for all approaches across each of the three different tasks. As seen above, we
observe that for the simplest task i.e. button press, all methods are able to learn the task quickly. Also,
since the underlying task is not complex, each method has little variance across multiple seeds. For the
Block Tumble task (Figure 3.8 middle), although all methods perform well on the training task, methods
that use task-axes controllers are much more sample efficient. This is true even when we use a much larger
set of controllers i.e. the TAC (Keypoints + Axes) approach. This is because most of the keypoints used
in the task (Figure 3.9) can be used to accomplish the task. Also, since there is only one axes along which

34

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

the block needs to be flipped, the robot is quickly able to find this relevant axes using the provided dense
rewards. Thus, even with a much larger action space our approach of inferring the keypoints and axes
performs similarly, when compared to their manual specification.

Figure 3.8 (right) plots the success ratios for the door opening task. From the above figure, we observe
that the EE-space is unable to solve the overall task. Similar results were also observed in [213]. The main
reason for this failure is the overall task complexity, especially since task completion requires many differ-
ent subtasks (reaching, grasping, turning the handle and pulling it back) to be performed in sequence. On
the other hand, we observe that all methods that utilize task-axes controllers are able to learn to perform
the task. However, in contrast to the previous tasks, our proposed approach, TAC (Keypoints+Axes),
does require more samples compared to when we manually provide these parameters, TAC (Manual).
We also observe that only inferring the keypoints and not the axes (TAC - Keypoints) is still quite sample
efficient. This indicates that the agent in TAC Keypoints+Axes does spend some initial time exploring
different axes which can be used to accomplish the task. This is possible because there exist multiple ways
to grasp the handle. For instance, it is possible to grasp the handle both along the vertical as well as the
horizontal axes. However, using the vertical axes is not robust, since it can easily collide with the door
frame. Thus, as a large number of actions are not particularly useful for the task, the agent will have to
interact and learn the most suitable and robust ways to achieve it.

Generalization Results

Table 3.3 shows the generalization performance for three different methods. This generalization perfor-
mance was recorded on 15 different environment settings with varying object sizes and shapes. We note
that for TAC (Manual) we only used primitive shapes (cuboids and cylinders) since we need to manually
provide keypoint parameters. By contrast, for TAC (Keypoints+Axes), we directly use the visual input
to infer the relevant keypoint parameters. See Figure 3.11 for test configurations used for TAC (Key-
points+Axes), for door open task. As seen in Table 3.3, both methods that use task-axes controllers are
able to generalize quite well across all of the tasks. On the other hand, the EE action-space provides good
generalization capabilities only for the simplest task (Button Press). While even for the moderately com-
plex task of Block Tumble its performance reduces significantly. One reason for this drop in performance
is the lack of any inductive bias in the EE-space, and since we train on a small set of objects only, the EE-
space policy fails to generalize to larger changes in object variations. Figure 3.11 shows some objects with
complex underlying geometry that were never used either for dense descriptor or policy training. While
TAC (Manual) cannot be applied to such objects, we show in the attached video results that our method
is successfully able to zero-shot generalize to such large variations as well.

Qualitative Results

In addition to the above quantitative results, we also show some qualitative results for the learned descrip-
tors and the inferred keypoints. Figure 3.9 plots the keypoints used for each of the tasks. The left image in
each column is the reference image with the annotated reference keypoints. While the right column shows
scenes with two different objects used in the test set to evaluate the learned policies. We visualize objects at
same scale to show their original sizes. Additionally, in Figure 3.10 we plot the learned descriptors for the
door opening task. As seen above, the learned descriptors are able to approximately cluster semantically

35

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Lift Stack Wipe

Figure 3.12: Success Ratio for the different tasks – Lift, Stack, and Wipe. All tasks in simulation are run for 4 seeds.

meaningful regions together. For instance, the part of door handle close to its rotation joint, the middle
and end of the door handles, as well as the right end of the hinge are all well estimated. While in Fig-
ure 3.11 we see that the reference pixels are also able to generalize to objects with very different shapes and
geometry. We also show qualitative results for these samples in our video results. This is not surprising
since as long as the above keypoints afford grasping and rotating the door handle, the underlying task-
axes controllers should be able to generalize. See video results for all tasks and supplementary material at
https://sites.google.com/view/robotic-manip-task-axes-ctrlrs.

3.7.2 Results - Efficiently Learning Skill Representations using
Demonstrations

Given the reduced set of skill representations we now discuss the results of choosing (and refining) the
most appropriate controllers using RL. Figure 3.12 plots the success ratio for each of the environment
across all approaches. This success ratio is obtained using the deterministic policy by running it for 50
episodes intermittently during training. Also, as noted in Section-3.6.3 the X-axes in Figure 3.12 refer to
the trajectory steps and not the environment steps.

From Figure 3.12 we can see that for the simplest task, Lift, the DMPs learned from demonstrations
directly suffice to complete the task. By comparison, for our approach, since there exists multiple sim-
ilar TACs initially, a small amount of exploration is required to arrive at the optimal solution. For the
Stack task (Figure 3.12 Middle)), learned DMPs achieve around 60% success rate and do not generalize
perfectly to all test scenarios. These scenarios include when the objects are placed in very different config-
urations than in the provided expert demonstrations and consequently the robot often ends up hitting
the other object instead of moving above it. We provide qualitative results of this failure on our website.
Alternatively, using these learned DMPs with our TAC skills or performing RL with these DMPs does
learn to solve the task quickly and robustly. However, our approach is slightly more sample efficient since
the high-level policy chooses to use the linear min-jerk controller for placing instead of a DMP controller
for the XY axes. This linear controller is only parameterized by its velocity and hence is faster to optimize
than a 10-dimensional DMP. This result signifies the advantage of our approach wherein the higher level
policy is able to choose the most appropriate controller to optimize.

Finally, the Wipe task Figure 3.12 (Right) requires a more fine-grained contact interaction than previous
tasks. We find that the learned DMPs perform comparatively worse (around 30%). This is because a

36

https://sites.google.com/view/robotic-manip-task-axes-ctrlrs

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

Figure 3.13: Real world tasks Open-Toolbox and Wipe.
Wipe (Real World)Open ToolBox (Real World)

Figure 3.14: Success Ratio for real world tasks, run on
2 seeds.

sufficient amount of downward force needs to be generated to wipe the marker which is hard to learn
from position trajectories alone. Training these DMPs with RL we find that although they can com-
plete the task, the resultant policy can be very unsafe (see video on project website). Hence, we add
an additional constraint to force the RL trajectory to have the final EE-location within a safe threshold
(0.12m, 0.04m, 0.04m)of the final demonstration location. Even with this change the DMP controllers
are still less sample efficient and plateau early in comparison to our approach, which instead uses a force
controller to generate the appropriate amount of force to wipe the marker.

3.7.3 RealWorld Results
We also evaluate our approach in the real-world on two different tasks – Open ToolBox and Wipe (Fig-
ure 3.13). We use these task to show that our approach can learn a policy from scratch directly in the real
world (given a single demonstration).

Setup: Figure 3.13 shows out task setups. For the Open-ToolBox task we use a common toolbox and learn
to open its locks. For Wipe, we use a setup similar to our simulation, wherein a single black mark needs
to be erased. We use OpenCV’s blob detector to get the marker positions. For both tasks we change
the object orientations i.e. the toolbox and whiteboard orientations arbitrarily and use the covariance
of point cloud around the keypoint positions to get their surface normal. We do not utilize any other
instrumentation for state-estimation. We use the open-source FrankaPy [263] to run our code, and and
use the same set of controllers as used in simulation.

We use one demonstration to reduce the initial set of TACs. We do not use DMP controllers during the
interaction with the toolbox or whiteboard. We do this purely for safety reasons as is evident from the
unsafe nature of updating learned DMPs for Wipe in simulation. During RL training we provide a re-
ward of 1 to the agent for reaching close to the target object, and an additional reward of 4 for completing
the task. Additionally, for the open-toolbox task we also provide an additional reward of 1 if the agent
correctly aligns with the toolbox. We do this to evaluate how much of an effect dense rewards have on
the learning process. In all other scenarios for both tasks we provide 0 reward.

Figure 3.14 plots the success ratio for both tasks, using a deterministic policy which runs for 5 episodes
intermittently during training. As seen above, for both tasks we are quickly able to learn the appropriate
controller sequence and parameter values in real world settings. However, the robot learns the Open-
ToolBox task much faster than the Wipe task. This is because of two reasons: First, for the former we

37

3 Efficiently Learning Generalizable Manipulations using Task-Axes Controllers

provide better shaped rewards (additional reward for alignment with tool lock). Second, the low level
parameters inferred from the demonstrations for this task (e.g. force parameter) is sufficient for task com-
pletion, hence the agent requires less exploration to successfully complete the task.

While we do not observe any intra-seed variance for the Open-ToolBox task there exists some variance
for Wipe. This is due to the high level policy (for one seed) not using the appropriate alignment and
force-controller for performing the wiping task. Instead, initially, the policy incorrectly aligns with the
whiteboard, and once the correct alignment is learned the policy only chooses the force controller after
more exploration. However, once learned both of the policies are able to accomplish the task successfully.

3.8 Conclusion
Our work in this paper leads to a naturally modular architecture which separates perceptual learning from
the control policy, i.e., although the control policy acts on the perceptual input, both of the models are
trained separately. This stream of work is similar to the recently proposed [140], wherein the predicted
keypoints are used to solve an optimization problem whose output is used to perform the task. Despite
differences between both approaches, they both lead to an improved interpretability of the learned mod-
els. This is a consequence of semantic keypoints in [140], while for our work this is a consequence of
both semantic keypoints as well as task-axes controllers which operate on semantic inputs. In addition
to interpretability, a modular architecture also implies that given the same control policy, we can retrain
the perceptual network on a completely different set of objects (e.g. different geometries) and still learn
to perform the task as long as the semantic keypoints for both of these objects provide the requisite affor-
dances such as grasping, turning, pushing. This is in contrast to end-to-end DeepRL approaches where
the perceptual network is closely tied with the control policy and it is not possible to update one without
updating the other.

38

4 Planningwith Learned Skill Effect
Models for Lifelong Robotic
Manipulation

This chapter is based on [Liang, Sharma, LaGrassa, Vats, Saxena, and Kroemer, 130].

Abstract: Robots deployed in many real-world settings need to be able to acquire new skills and solve
new tasks over time. Prior works on planning with skills often make assumptions on the structure of skills
and tasks, such as subgoal skills, shared skill implementations, or task-specific plan skeletons, which limit
adaptation to new skills and tasks. By contrast, we propose doing task planning by jointly searching in the
space of parameterized skills using high-level skill effect models learned in simulation. We use an iterative
training procedure to efficiently generate relevant data to train such models. Our approach allows flexible
skill parameterizations and task specifications to facilitate lifelong learning in general-purpose domains.
Experiments demonstrate the ability of our planner to integrate new skills in a lifelong manner, finding
new task strategies with lower costs in both train and test tasks. We additionally show that our method can
transfer to the real world without further fine-tuning.

4.1 Introduction
Lifelong-learning robots need to be able to plan with new skills and for new tasks over time [241]. For
example, a home robot may initially have skills to rinse dishes and place them individually on a rack.
Later, the robot might obtain a new skill of operating a dishwasher. Now the robot can plan to either
wash the dishes one by one or use the dishwasher depending on the costs of each skill and the number
of dishes to be cleaned. In other words, robots need to be able to obtain and use new skills over time to
either adapt to new scenarios, solve new tasks, or to improve performance on existing tasks. Otherwise,
the robot engineer would need to account for all potential tasks and strategies the robot can use before
deployment. As such, we propose a task planning system that can efficiently incorporate new skills and
plan for new tasks in a lifelong robot manipulation setting.

To create such a versatile manipulation system, we use parameterized skills that can be adapted to different
scenarios by selecting suitable parameter values. We identify three properties of skills that are important to
support in this context: 1) skills can have different implementations, 2) skills can have different parameters
which can take discrete, continuous, or mixed values, and 3) skill parameters may or may not correspond
to subgoals. Property one means the skills can be implemented in a variety of manners, e.g., hard-coded,
learned without models, or optimized with models. This requires relaxing the assumptions placed on the

39

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

Figure 4.1: Overview of the proposed search-based task planning framework with learned skill effect models (SEMs)
for lifelong robotic manipulation. New skills and training tasks can be added incrementally. We collect
skill effects data by running the planner using all skills on all training tasks in simulation. The collected
data is used to train GNN SEMs for new skills or fine-tune models of existing skills. Learned models
predict both the terminal state and cost of skill executions. The planner can use SEMs to plan low-
cost paths on test tasks in the real world. This approach supports planning 1) with a set of differently
parameterized skills that can grow over time and 2) for test tasks unseen during training.

skill structures made in previous works, such as implementing all skills with the same skill-conditioning
embedding space [125, 134, 206, 252]. Property two requires the task planner to not assume any fixed
structure for skill parameters. Unlike previous works [137, 161], each skill can utilize a different number
of parameters, and these parameters can be a mix of discrete and continuous values. Property three means
that instead of chaining together skill subgoals, the planner needs to reason about the effects of the skills
for different parameter values. For example, the home robot may need to predict how clean a plate is for
different rinsing durations.

Planning for new tasks requires the planner to be flexible about the structure of task specifications. One
way to do this is by using either goal condition functions or goal distributions [32], instead of shared
representations like task embeddings [162] or specific goal states [70, 125, 161, 232]. Using predefined task
representations limits the type of tasks a robot can do, and using learned task embeddings may require
fine-tuning on new tasks. Only having a goal condition function also makes it more difficult to represent
a task as an input to a general value or policy function implemented using a function approximator.

To satisfy the skill and task requirements for the lifelong manipulation planning problem, we propose
a task planning system that performs search-based planning with learned effects of parameterized
skills. Search-based methods directly plan in the space of skill-parameter tuples. A key advantage of
search-based planning methods is they can use skills regardless of parameter choices or implementation
details, and only need a general goal condition check to evaluate task completion.

40

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

To efficiently use search-based planning methods for task planning, we propose to learn skill effect models
(SEMs). SEMs are learned instead of hardcoded or simulated, since manually engineering models is not
scalable for complex skills and simulations are too expensive to perform online during planning. Every
skill has its own SEM that predicts the terminal state and costs of a skill execution given a start state and
skill parameters. We interleave training SEMs with generating training data by running the planner with
the learned SEMs on a set of training tasks. Our data collection method efficiently collects skill execution
data relevant for planning, and supports the addition of new skills and tasks over time. The planner uses
the SEMs to plan for existing tasks with different initial states, as well as new test tasks.

Our contributions are 1) a search-based task planning framework with learned skill-effect models that 2)
relaxes assumptions of skill and task representations in prior works; skill effect models are learned with 3)
an iterative data collection scheme that efficiently collects relevant training data, and together they enable
4) planning with new skills and tasks in a lifelong manner. Please see supplementary materials, with addi-
tional results and experiment videos, at https://sites.google.com/view/sem-for-lifelong-manipulation.

4.2 RelatedWorks
Subgoal skills. Many prior works approached planning with skills with the subgoal skill assumption.
The successful execution of a subgoal skill always results in the same state or a state that satisfies the
same preconditions of all skills, regardless of where the skill began in its initiation set [104]. As such,
the skill effects are always known, and such approaches instead focus on learning preconditions [161] of
goal-conditioned policies, efficiently finding parameters that satisfy preconditions [137, 222], or learning
feasible skill sequences [70]. While subgoal planning is powerful, it limits the types of skills the robot can
use.

Non-subgoal skills. For works that plan with non-subgoal skills, many represent the skill policy as a neu-
ral network that takes as input both the state and an embedding that defines the skill. This can be viewed
as planning with one parameterized skill or a class of non-parameterized skills, each defined by a different
embedding. Such skills can be discovered by experience in the real world [134] and in learned models [206,
252], or learned from demonstrations [125]. Planning with these skills is typically done via Model Predic-
tive Control (MPC), where a short sequence of continuous skill embeddings is optimized, and replanning
occurs after every skill execution. While these approaches do not assume subgoal skills, they require skills
to share the same implementation and space of conditioning embeddings, and MPC-style planning can-
not easily support planning with multiple skills with different parameter representations [125, 134, 161,
252].

Planning with parameterized skills. To jointly plan sequences of different skills and parameters, works
have proposed a two-stage approach, where the planner first chooses the skills, then optimizes skill pa-
rameters [168, 222, 254]. Unlike directly searching with skills and parameters, it is difficult for two-stage
approaches to give guarantees on solution quality. Some also require hardcoded or learned plan skele-
tons [222, 254], which limits the planner’s applicability to new tasks.

Instead of planning, an alternative approach is to learn to solve Markov Decision Processes (MDPs) with
parameterized skills [60, 143, 253]. However, learning value or policy functions typically requires a fixed

41

https://sites.google.com/view/sem-for-lifelong-manipulation

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

representation for function approximators, so these methods cannot easily adapt to new skills and skills
with parameters with different dimensions or modalities (e.g. mixed continuous and discrete). Doing
so for search-based planning can be done by directly appending new skills when expanding a node for
successors.

Obtaining skill effects. Many prior works used simulated skill outcomes during planning [98, 99, 168,
230]. This can be prohibitively expensive to perform online, depending on the complexity of simulation
and the duration of each skill. To avoid simulation rollouts, works have used hardcoded analytical [10, 22]
or symbolic [44, 88, 89] skill effect models. Manually engineering such models may not always be feasible,
and they do not easily scale to changes in skills, dynamics, and tasks. Although symbolic models can be
automatically learned [6, 104, 235, 242, 247], these approaches also make the subgoal skill assumption. By
contrast, our method, which learns skill effect models in continuous states without relying on symbols,
can plan with both subgoal skills as well as skills that do not share this property.

The works most closely related to ours are [254] and [247]. In [254], the authors jointly train latent dy-
namics, latent preconditions, and parameter samplers for hardcoded skills and a model that proposes plan
skeletons. Planning is done MPC-style by optimizing skill parameters with the fixed plan skeleton. Al-
though this approach does not assume subgoal skills and supports skills with different parameters, learn-
ing task-specific plan skeletons and skill parameter samplers makes it difficult to use for new tasks without
finetuning. The method in [247] learns to efficiently sample skill parameters that satisfy preconditions.
Task planning is done using PDDLStream [54], which supports adding new skills and tasks. Though this
approach does not use subgoal parameters, the desired skill outcomes are narrow and predefined, and the
learned parameter sampler aims to achieve these predefined effects. As such, the method shares the lim-
itations of works with subgoal skills, where the skill-level transition model is not learned but predefined
as the subgoals.

4.3 Task Planningwith Learned Skill EffectModels
The proposed method consists of two main components - learning skill effect models (SEMs) for pa-
rameterized skills and using SEMs in search-based task planning. These two components are interleaved
together - we run the planner on a set of training tasks using SEMs to generate data, which is used itera-
tively to further train the SEMs. New skills and training tasks can be added to the pipeline because the
planner and the SEMs do not assume particular implementations of skills and tasks. The planner can also
directly apply the learned SEMs to solve test tasks. See overview in Figure 4.1.

4.3.1 Skill Planning Problem Formulation
Parameterized skills. Central to our approach is the options formulation of skills [104, 238]. Denote
a parameterized skill as o with parameters θ ∈ Θ. Parameters are skill-specific and may contain subgoal
information such as the target object pose for a pick-and-place skill. We assume a fully observable state
x ∈ X that contains all information necessary for task planning, cost evaluations, and skill executions.
We define the low-level action u ∈ U as the command sent to the robot by a low-level controller shared
by all skills (e.g. torque).

42

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

In our formulation, a parameterized skill o contains the following 5 elements: an initiation set (precon-
dition) Io(x, θ) → {0, 1}, a parameter generator that samples valid parameters from a distribution
po(θ|I(x, θi) = 1), a policy πo(x) → u, a termination condition βo(x, θ, t) → {0, 1}, and the skill
effects fo(xt, θ)→ xt+T , whereT is the time it took for the skill to terminate. To execute skill o at statex
with parameters θ, we first check if (x, θ) satisfies the preconditions Io. If it does, then we run the skill’s
policyπo until the termination condition is satisfied. We assume that the preconditions, parameter gener-
ator, policy, and termination conditions are given, and the skill effects are unknown but can be obtained
by simulating the policy. To enable reasonable planning speeds, the SEMs learn to predict these skill-level
transitions.

To justify the assumption of given skill preconditions, we note that our preconditions are broader than
ones in prior works and consequently can be easily manually defined. Preconditions in many prior works,
especially ones that use subgoal skills, are only satisfied when a specific outcome is reached, so they may
require learning sophisticated functions to classify which (state, parameter) tuple lead to the intended
outcome [247, 254]. By contrast, because we allow non-subgoal skills, our preconditions are satisfied if
skill execution leads to any non-trivial and potentially desirable outcome. For example, for a table sweep-
ing skill, the preconditions are satisfied as long as the robot sweeps something, instead of requiring sweep-
ing specific objects into specific target regions. Due to the broad and simple nature of our more flexible
preconditions, we argue it is reasonable to assume they are given.

Task planning of skills and parameters. Before specifying tasks, we first define a background, task-
agnostic cost c(xt, ut) ≥ 0 that should be minimized for all tasks. This cost is accumulated at each step
of skill o execution, so the total skill cost is co =

∑T
t=0 c(xt, ut). A task is specified by a goal condition

G(x) → {0, 1} that classifies whether or not a state achieves the task. We denote a sequence of skills,
parameters, and their incurred states as a pathP = (x0, o0, θ0, x1, . . . xn, on, θn, xn+1, . . . , xN), where
N is the number of skill executions, and the subscripts indicate the nth skill in the sequence (not time).
We assume the environment dynamics and skill policies are deterministic. The task planning problem is
to find a path P such that the goal condition is satisfied at the end of the last skill, but not sooner, and
the sequence of skill executions is feasible and valid. See equation 4.1.

min
P

N−1∑
n=0

con (4.1)

s.t. G(xN) = 1

∀n ∈ [0, N − 1],G(xn) = 0

Ion(xn, θn) = 1,fon(xn, θn) = xn+1

Note that θ, Io, and fo are all skill-specific, so with M types of skills, there are M different parameter
spaces, preconditions, and skill effects.

4.3.2 Learning Skill EffectModels (SEMs)
Defining SEMs for manipulation skills. We learn a separate SEM for each skill, which takes as input
the current state xt and a skill parameter θ. The SEM predicts the terminal state xt+T reached by the skill

43

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

when it is executed from xt using θ and the total skill execution cost co. We assume SEMs are queried
only with state and parameter tuples that satisfy the precondition. Because we focus on the robot manip-
ulation domain, we assume the state spaceX can be decomposed into a list of object-centric features that
describe discrete objects or robots in the scene.

We represent SEMs using Graph Neural Networks (GNNs), because their inductive bias can efficiently
model interactions among entities through message passing, encode order-invariance, and support dif-
ferent numbers of nodes and edges during training and testing [14, 74, 93, 239]. Each node in the SEM
GNN corresponds to an object in the scene and contains features relevant to that object from the state
x. We denote these object features as sk ∈ RS , where k denotes the kth object in the scene. Because
a skill may directly affect multiple objects, each node also contains the skill parameters θ as additional
node features. The full node feature is the concatenation of [sk, θ]. There are no edge features. The
network makes one node-level prediction, the change in object features ∆sk, and one graph-level pre-
diction, the total skill execution cost co. As SEMs make long-term predictions about the entire skill
execution, the graph is fully connected to allow all objects to interact with each other, not just objects
that are initially nearby. The loss function to train SEMs for a single step of skill execution prediction is
L = λc∥co − ĉo∥22 + λs

K

∑K
k=1 ∥∆sk − ∆̂sk∥22. The hat notation denotes predicted quantities, and the

λs are positive scalars that tune the relative weights between the loss terms. The GNN is implemented
with PyTorch Geometric [46].

SEMs enable efficient planning of diverse parameterized skills, as well as two additional benefits. First,
because the model is on the skill-level, not action-level, it only needs one evaluation to predict the effects
of a skill execution, which reduces planning time as well as covariate shift by reducing the number of
sequential predictions [75, 115, 156, 204]. Second, a long-horizon skill-level model can leverage a skill’s
ability to act as a funnel in state space during execution, which simplifies the learning problem.

Collecting diverse and relevant data for training SEMs. To learn accurate and generalizable SEMs,
they must be trained on a set of skill execution data that is both diverse and relevant to task planning.
While we assume knowledge of the initial state distribution of all tasks, we do not know the distribution
of all states visited during planning and execution. As we cannot manually specify this incurred state
distribution, we obtain it and train the SEMs in an iterative fashion that interleaves SEM training with
data generation by planning and execution, as seen in Figure 4.1. First, given an initial set of skills, we
generate single skill execution transitions from the known initial state distribution. This data is used to
train the initial SEMs. Then, given a set of training tasks, we use the planner to plan for these tasks using
the learned SEMs across a set of initial states. The planner terminates when it finds a path to the goal
or reaches a fixed planning budget (reaching maximum number of nodes expanded, maximum search
depth, or maximum planning time). Then we sample paths in the graph and simulate them to collect skill
execution data, which is added to a dataset of all skill data collected so far. Path sampling is biased toward
longer paths and ones that have the newly added skills. The transitions added are filtered for duplicates,
since multiple paths in a planning graph may share the same initial segments which would bias the dataset
towards transitions closer to the initial states. After a fixed amount of path data is collected, we continue
training the SEMs on the updated dataset before restarting the data collection process. In the beginning,
it is expected that the planner performance will be highly suboptimal due to the inaccurate initial SEMs.
While we use simulation data due to benefits in speed, this is not a requirement and SEMs can be trained
with real-world data.

44

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

Planning with new skills. The above procedure supports incrementally expanding the list of skills
used by the planner. Given a new skill, we first train an initial SEM by sampling from the initial state
distribution, then during planning data generation the search-based planner can use the new SEM to
get successors. SEMs for new and existing skills will be improved and continuously trained on this new
planning data. Fine-tuning previous SEMs is needed, because the new skill might have incurred states
that were previously absent from the dataset. Although this fine-tuning may not be necessary in specific
cases, we leave detecting such scenarios and reducing overall training budget to future work. Learning one
SEM for each skill allows for different parameter spaces (e.g. dimensions, discrete, continuous, mixed)
that cannot be easily represented with a shared, common model.

Planning with new tasks. Because the planner does not rely on predefined plan skeletons, it can directly
use SEMs to plan for new tasks. Two main factors about data collection affect the generalization capability
of the SEMs when applied to unseen test tasks. The first is whether the states incurred while planning for
training tasks are sufficiently diverse and relevant to cover the states incurred by planning for test tasks.
The second is the planner itself — how greedy is its search and how much it explores the state space. Many
planners have hyperparameters that can directly balance this exploration-exploitation trade-off.

4.3.3 Search-based Task Planning
We pose task planning as a graph search problem over a directed graph, where each node is a state x, and
each directed edge from x to x′ is a tuple (o, θ) such that fo(x, θ) = x′. Edges also contain the costs of
skill executions co. During search, this graph is constructed implicitly. Given a node to expand, we iterate
over all skills, generate up to Bo parameters per skill that satisfy the preconditions, then evaluate the
skill-level dynamics on all state-parameter tuples to generate successor states. Bo decides the maximum
branching factor on the graph. This number varies per skill, because some skills have a broader range of
potential parameters than others, requiring more samples.

To search on this graph, we apply Weighted A* (WA*), which guarantees completeness on the given graph.
If the heuristic is admissible, WA* also guarantees the solution found is no worse than ϵc∗, where c∗ is the
cost of the optimal path and ϵ determines how greedily the search follows the heuristic. We assume an
admissible heuristic is given. This is in line with previous works that have shaped rewards or costs that
guide the planner [125, 134, 161, 254].

The proposed method enables planning with new skills and to solve new tasks in continuous states. Plan-
ning for new tasks is done by replacing the heuristic and goal conditions, which does not affect the graph
construction procedure or the SEMs. Searching in continuous states is more flexible than searching in
symbolic states, and it is not necessarily slower. Flexibility comes from the ability to integrate new skills
and tasks without needing to create new symbols. Planning speed depends on the size of the action space
(branching factor) and the state space. Using symbolic instead of continuous states does not reduce the
branching factor, and partitioning continuous states into symbolic states without subgoal skills yield little
benefits [104].

45

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

Task A Task B Task C Task D

Figure 4.2: Different tasks used in our experiments. The top row shows examples of initial states, the bottom shows
examples of goal states. Left: blocks to bin tasks (tasks (A,B)). Right: blocks to far bin tasks (tasks (C,D)).

4.4 Experiments
Our main experiment analyzes the effect of incrementally adding new skills to the proposed method on
planning performance of both train and test tasks. We apply our method to a block manipulation do-
main (Figure 4.2) because it can be reliably simulated, contains a diverse set of skills, and the skills have
broader applications in desktop manipulation and tool use. In addition, we show our approach compares
favorably against planning with simulation and the benefits of using planning data to train SEMs.

4.4.1 Task Domain
The task domain has a Franka Emika Panda 7 DoF arm, a set of colored blocks, a table, a tray, and a bin.
On the table, blocks of the same size and different colors are initialized in random order on a grid with
noisy pose perturbations. The tray on the table can be used as a tool to carry and sweep the blocks. Beside
the table is a bin, which is divided into two regions, the half which is closer to the robot, and the half that
is farther away. The state space contains the 3D position of each block, color, and index. We implement
the task domain in Nvidia Isaac Gym [164], a GPU-accelerated robotics simulator [129] that enables fast
parallel data collection.

Skills. We experiment with four skills: Pick and Place (Figure 4.1 skill 1) moves a chosen block to a
target location. It has a mixed discrete and continuous parameter space — which object to pick and its
placement location. Tray Slide (Figure 4.1 skill 2) grasps the tray, moves it to the bin, and tilts it down,
emptying any blocks on it into the bin. Its parameter is a continuous value defining where along the length
of the bin to rotate the tray. Tray Sweep (Figure 4.1 skill 3) uses the tray to perform a sweeping motion
along the table. Its parameter specifies where to start the sweeping motion, and the sweep motion ends
at the table’s edge. Bin Tilt (Figure 4.1 skill 4) grasps the handle at the side of the bin and tilts the bin by
lifting the handle, which moves blocks in the bin from the close half to the far half. Skills are implemented
by following open-loop trajectories defined by the skill parameters. We did not learn more complex skills
as our work focuses on task planning and not skill learning.

Tasks. We evaluate on four different tasks (Figure 4.2) that are variations of moving specific sets of blocks
to different regions in the bin. Two tasks are used to collect SEM training data: Move All Blocks to Bin (A)

46

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

and Move All Blocks to Far Bin (C), while the remaining two are used to evaluate learned SEMs: Move Red
Blocks to Bin (B) and Move Red Blocks to Far Bin (D). Each task uses the same background cost function,
which is the distance the robot’s end-effector travels, plus a small penalty for placing the gripper inside the
bin. The admissible heuristic used is the mean distance of each block to the closest point in their target
regions.

While Pick and Place can make substantial progress on all tasks, it alone is not sufficient because kinematic
constraints inhibit the robot from directly placing blocks on the far side of the bin, so Bin Tilt or Tray
Slide is needed. Additionally, using other skills can achieve lower costs; Tray Sweep can quickly move
multiple blocks into the bin, but this may move blocks that need to stay on the table. The sequence of
skills may change depending on the initial placement of the blocks, and the path needs to be low-cost.

4.4.2 Lifelong Task Planning Results
To evaluate our approach for lifelong integration of new skills, we add the four skills over time using the
iterative training procedure. We evaluate two scenarios, first in which the train-test task pair are respec-
tively tasks A and B, and second with C and D. In each case, the robot starts with only Pick and Place,
while Tray Slide, Tray Sweep, and Bin Tilt are added successively in that order at pre-determined intervals.
We measure planning performance using execution costs, execution success, and planning time. For each
goal, the robot plans only once from the initial state, which terminates when it succeeds or times out.

Figure 4.3 plots the execution costs over time for both scenarios. The proposed method is able to incor-
porate new skills over time, lowering execution costs when applicable by planning with new skills. For
example, adding Tray Slide allows the planner to find plans with significantly reduced costs across all
tasks, since multiple blocks can now be moved together. In other cases, adding a new skill does not affect
task performance. One example is adding Bin Tilt to the blocks to anywhere in bin tasks (A,B), because
the main use of the skill is to move blocks to the far side of the bin. Another is on adding Tray Sweep — it
significantly reduced costs for moving all blocks to the bin (A,C), but less so for moving only red blocks
to the bin (B,D). This is because sweeping is only useful for the latter task when multiple red blocks line
up in a column near the bin, which rarely occurs in the randomly initialized states.

Figure 4.4 plots the success rate of finding successful plans (dashed) and optimal plans (solid) with new
skills. Immediately after adding a new skill, there is insufficient data to learn a robust SEM, so the planner
is unlikely to find optimal plans using the new skill. Or, if it does find a plan, the plan often leads to exe-
cution failures. As more data is collected, SEM accuracy improves and the probability of finding optimal
plans increases. Figure 4.4 also shows how some tasks can only be completed after a new skill is incorpo-
rated. For instance, with just Pick and Place, the robot can accomplish blocks to bin tasks (A,B), but fails
to plan for the blocks in far bin tasks (C,D). Adding new skills for (A,B) did not change the success rate of
the task, which remained at 100%, although the composition of the plans found does change. For (C,D),
adding Tray Slide enabled 100% success rate, while adding Tray Sweep did not affect plan compositions,
but adding Bin Tilt did. These results show that our proposed method can learn skill effects and plan
with SEMs in a lifelong manner, and that SEMs can plan for new tasks without additional task-specific
learning. Qualitative results can be found in Appendix 9.3.5.

47

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

Task Sim SEMs (Ours)

A 776.19 (46.9) 1.3 (0.7)
C 1736.8 (187.) 0.98 (0.3)

Table 4.1: Comparing plan times in seconds using simulator vs. SEMs. Parenthesis indicate standard deviations.

Task Pick-Place +Tray-Slide +Tray Sweep +Tilt Bin

A 11.3 (3.4) 20.2 (7.9) 0.6 (0.5) 1.3 (0.7)
B 7.4 (2.3) 14.9 (8.2) 18.0 (14.3) 22.1 (12.4)

Table 4.2: Plan times (seconds) using SEMs for objects to bin tasks (A, B) with an increasing number of skills.

Success Cost
Pick and Place 1.0 6.68 (0.3)
+Tray Slide 0.9 3.9 (0.9)
+Tray Sweep 0.8 2.61 (0.7)

Table 4.3: Real-world results on Red Blocks to Bin. Costs: mean (std).

Planning with a Simulator. To highlight the need for learning SEMs instead of simulating skill effects
for task planning, we compare their planning times in Table 4.1. We only benchmarked cases where the
tasks are about moving all blocks and all skills are available. On average, using the learned model takes
less than a second while using the simulator takes ten minutes to half an hour. Note that these results
leverage the simulator’s ability to simulate many skill executions concurrently. Thus, using the simulator
for more complex scenarios is prohibitively time consuming due to 1) the large branching factor and 2) a
skill’s extended horizon, which is much longer than single-step low-level actions or short-horizon motion
primitives. Additionally, Table 4.2 shows the plan times for SEMs with increasing number of skills. In
all cases our planner find plans in less than half a minute.

Training on Planning Data vs. Random Data. To evaluate the benefits of using planning data for
the iterative training of SEMs, we compare the test-task success rate between our approach and one that
generates data by executing random skill sequences. See results in Figure 4.5. Training on planning data
achieves higher success rates using fewer samples than training on random data does, illustrating the ben-
efit of guiding data collection using a planner.

Real-world Results. We built our task domain in the real world (test tasks in Figure 4.1) and used the
learned SEMs to plan for the test task B. Three sets of planning experiments were performed, one with
only Pick and Place, one with the addition of Tray Slide, and one with the addition of Tray Sweep. Each
set of experiments in Table 4.3 consists of 10 planning trials with different initial block configurations.
These results are similar to the ones shown in the task A test curves in Figure 4.3. The differences are due
to the small changes in real-world object locations and controller implementations. While we did not
fine-tune SEMs on real-world data, doing so may improve real-world performance.

48

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

4.5 Conclusion
We propose using search-based task planning with learned skill effect models (SEMs) for lifelong robotic
manipulation. Our approach relaxes prior works’ assumptions on skill and task representations, enabling
planning with more diverse skills and solving new tasks over time. Using SEMs improves planning speed,
while the proposed iterative training scheme efficiently collects relevant data for training.

In future work, we will scale our method to larger number of skills and parameters by using partial ex-
pansions and learned parameter samplers. We will also explore estimating model uncertainty, using that
to both steer planning away from uncertain regions and also fine-tune existing SEMs only on data about
which the models are sufficiently uncertain.

49

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

Tasks A, B Tasks C, D

Tasks A, B Tasks C, D

Figure 4.3: Task execution costs plotted over time as new skills are learned and integrated in a lifelong manner. Blue
vertical lines signify the addition of a new skill. Weighted costs are calculated by weighting the task cost
with the success rate.

50

4 Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation

Tasks A, B Tasks C, D

Tasks A, B Tasks C, D

Figure 4.4: Task execution success rate for each new added skill. Each skill is being added over time. Orange are
train tasks; purple are test tasks. Solid lines are planning with new skills; dashed are with any skills.

Figure 4.5: Success on task B with SEM trained on random vs. planner data.

51

Part III

Reusing Visual Representations
In this next set of works we develop techniques that reuse visual representations for learning different
robot manipulation tasks. Similar to previous works, our main aim with these works is to efficiently learn
robust robot manipulations. For this, Chapter 5 develops a common visual representation for learning
manipulation skill preconditions. We decompose manipulation tasks into objects and their interactions.
Large-scale object interactions generated in a simulator is used to learn a common 3D representation.
This common representation is then used to efficiently learn robot skill preconditions from very little
real-world data. For our next set of works we focus on reusing web-trained visual representations for
robot manipulation. Chapter 6 proposes RoboAdapters for efficient adaptation of pretrained visual rep-
resentations for robot manipulation. RoboAdapters maintain the original capabilities of pretrained vi-
sion model and allow them to be adapted for a large number of tasks over time. Chapter 7 proposes a
multi-resolution sensing architecture to enable real-time with lage pretrained vision-language models.

52

5 Relational Learning for Skill
Preconditions

This chapter is based on [212].

Abstract: To determine if a skill can be executed in any given environment, a robot needs to learn the pre-
conditions for the skill. As robots begin to operate in dynamic and unstructured environments, precondition
models will need to generalize to variable number of objects with different shapes and sizes. In this work, we
focus on learning precondition models for manipulation skills in unconstrained environments. Our work is
motivated by the intuition that many complex manipulation tasks, with multiple objects, can be simplified
by focusing on less complex pairwise object relations. We propose an object-relation model that learns con-
tinuous representations for these pairwise object relations. Our object-relation model is trained completely in
simulation, and once learned, is used by a separate precondition model to predict skill preconditions for real
world tasks. We evaluate our precondition model on 3 different manipulation tasks: sweeping, cutting, and
unstacking. We show that our approach leads to significant improvements in predicting preconditions for
all 3 tasks, across objects of different shapes and sizes

5.1 Introduction
Skill preconditions are necessary for a robot to know when a given skill can be executed across different
situations. For robot manipulators to operate in complex and unstructured environments, precondition
models need to adapt to variable number and type of objects in the scene, e.g., preconditions for food
cutting should generalize between apples and carrots. Additionally, since collecting large amounts of real
world data for every skill is impractical, we also require precondition models to learn from few samples. To
achieve the above requirements, we observe that many complex manipulation tasks often require specific
relations between a number of objects to be valid. Thus, these tasks can often be simplified by decompos-
ing them into less complex object interactions. We focus on modeling pairwise relations between objects.
Moreover, these object relations are also often shared across multiple tasks. Thus, we also aim to learn a
common representation for these relations, which can be directly used by our precondition models.

Our work uses a compositional approach for precondition learning. We learn precondition models from
a few different example scenes. Each scene is decomposed into its constituent objects and their relations as
shown in Figure 5.1. Learning precondition models from such a structured representation requires us to
infer object identities and pairwise object relations. While object labels can be found using state-of-the-
art algorithms [62], we focus on learning representations for object pair relations. Most of the prior work
uses discrete representations for object relations [47, 190, 261]. These discrete relations are mostly fixed

53

5 Relational Learning for Skill Preconditions

Can we execute the cutting skill?

Learn object relations using Pairwise Interactions in simulation

Objects + Pairwise Relations

Yes/No?

Scene Precondition
Model

f

<latexit sha1_base64="viESoDqJ+cuG/wd24titL9AdFDs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWrFXqt3kcRTiDc7gED66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBzTeM8Q==</latexit>

Scene Voxel SceneAction
Down Left Right

Action Effects

Similar

SimilarDissimilar

Similar Similar

Similar

Figure 5.1: Overview of the overall precondition learning process. We learn precondition model by decomposing a
scene into its objects and relations. To learn continuous representations for object relations we utilize
simulations to observe how objects interact with each other.

and often insufficient to distinguish between similar scenes. For instance, in Figure 5.1, even though
both relations might be classified as “above” the semantics of each scene are very different. Although
recent approaches have looked at learning continuous representations for object relations [85, 147], these
approaches use a pre-defined set of relations. They further assume access to binary labels which allows
them to cluster scenes with similar relations together.

Instead of assuming a fixed set of relations we propose a novel data-driven approach to learn continuous
representations for object relations. We leverage simulations to allow for unconstrained interactions be-
tween object pairs. Using simulations provides us access to a large set of labeled data underlying these
interactions, such as object contacts, pose changes. We use these interaction effects to create a contrastive
loss formulation that allows us to learn continuous representations for object relations. Our main con-
tributions include 1) We propose a novel approach that leverages simulations to learn a continuous rep-
resentation for object relations. 2) Our approach is grounded in object interactions and hence does not
assume a fixed set of object relations. 3) We show that our continuous representations, which are learned
via simulation, can be directly used for precondition learning of real world manipulation tasks, without
requiring any specific sim2real adaptation.

5.2 RelatedWorks
Learning skill preconditions is closely related with symbol learning. Symbolic language formulations
explicitly include pre-conditions and post-conditions [145]. Thus previous approaches have looked at
inferring discrete symbols and predicates from continuous states. There have been two sets of approaches
in this regard. At one end, previous works have looked into classifying continuous states into pre-defined
symbolic forms [15, 47, 89, 174]. Alternately, other works aim to discover these discrete forms by methods
such as clustering [77, 114, 172, 190]. Some of the above approaches have also looked into learning discrete
representations for object relations. For instance, [47] uses histogram features extracted from point clouds
to classify object relations into discrete categories. In [190], the authors construct a graph of contact
points between two objects, which is used to classify object relations using supervised learning. While
[261] learns discrete spatial relations by geometrically dividing the space around an object into a fixed
set of regions. In contrast to discrete symbolic forms, we focus on learning continuous representations

54

5 Relational Learning for Skill Preconditions

for object relations. Also, instead of solely focusing on either geometric relations [261] or contact points
[190], our approach is grounded in a robot’s interaction with pairs of objects. This allows us to learn
continuous relational representations by leveraging spatial geometry, contact information, and object-
interaction dynamics all together.

Recent work has also focused on learning continuous representations for object relations [85, 147]. Both
[85, 147] learn these representations from a dataset of N ∼ 500 scenes. Each scene has a pair of objects,
which are sampled from a set of known object templates. The object pair arrangement is sampled from
a pre-defined set of relations and the aim is to generalize these arrangements to new sets of objects. The
dataset is manually labelled with binary similarity value for each scene pair [147]. Based on this dataset
[147] proposes a distance metric to extract similar scenes. While [85] uses contrastive learning to learn this
distance metric. Although [85, 147] learn continuous relationas, the dataset used to learn these consists of
a pre-defined set of discrete relations only. Additionally, using only binary labels to distinguish between
scenes is limiting, e.g. scenes where object A is on the left of object B are labeled similarly irrespective of
the distance between two objects. By contrast, rather than manually labelling scenes, we leverage simu-
lations to generate large amount of object pair interactions. We group similar scenes together based on
effets of these interaction. Since these effects have continuous values, our model is able to learn richer
relational representations. Further, since these interactions are randomly generated, we do not assume
any predefined set of relations.

Previous work [111] has also looked into precondition learning using objects, parts and their interactions.
In [111] these are referred to as scene elements and represented by their mean 3D position. All scene el-
ements are then used together for spatial precondition learning using random forests. However, using
position features alone is severely limiting since many manipulations tasks depend on object sizes, orien-
tation, geometry, and specific contact distributions.

5.3 Approach
We learn skill preconditions by decomposing a scene S into its constituent objects (o1, o2, o3, . . .) and
their continuous relations (r(o1, o2), r(o1, o3), . . .). We assume the scene decomposition is already known
and object identities can be determined if required. To infer object relations r(oi, oj), we learn a func-
tion frel : RC×L×W×H → RK , which uses a 3D voxel based perceptual input, where C is the number
of channels and L,W,H are the length, width and height of the scene, and outputs a continuous rela-
tional embedding of size K . This perceptual input consists of a pair of objects in the scene. To learn
frel, we leverage simulations to generate a large set of pairwise object interactions and use their observed
effects as our learning signal. More specifically, we assume the existence of a set of simple perturbation
actions that allow a robot to move an object around. These actions let the robot freely interact with pairs
of objects. The use of simulation also gives us access to the underlying effects of these interactions e.g.,
change in pose, object contacts and normals, and force-torque values. We utilize these observed effects
to create a contrastive learning formulation which groups scenes together based on the similarity of these
interaction effects.

Once we learn frel, we use it to extract object relations r(oi, oj) = frel(oi, oj) for all object pairs in the
scene. These extracted relations are then used as input to our precondition learning model, which is

55

5 Relational Learning for Skill Preconditions

trained directly on real world manipulation task data. While training the precondition model, we do not
fine-tune the object relation model frel. We show that frel trained in simulation can be directly transferred
to the real world without requiring any sim2real adaptation.

5.3.1 Generating Pairwise Interactions In Simulation
Pairwise object relations are closely intertwined with their potential interactions. For instance, in Fig-
ure 5.1 (right) if an object is gently placed on another object it will either stay in place or it might tilt
over and fall. Although both of these scenes might classify a discrete object relation as being “above",
the exact semantics of these relations are quite different. To generate object pair interactions we use the
V-REP simulator [188] with the underlying Bullet physics engine (v2.83) [33]. For each interaction, we
initially create a scene with two objects oi and oj . Each object’s shape is chosen from a fixed set of prim-
itive shapes including cuboids, cylinders and spheres. We generate a voxel representation for this scene
using an object-centric approach, i.e., the reference frame of the scene is centered on one of the objects,
referred to as the anchor object (oi), while oj is the the referrant object. Figure 5.1 (right column) shows
an example of such a voxel based representation. To observe the interaction effects of these two objects
we keep the anchor object static.

Since objects in the real world occur in varying spatial locations we do not assume any fixed object po-
sitions. However, since the scene reference frame is centered on the anchor object we do not need to
set its position and orientation. To position the referrant object we sample a location (x, y, z) around
the anchor object such that the referrant object is less than 0.5 meter away from the anchor. To set the
orientation we rotate the object around the z-axis between (−π/6, π/6) radians.

To create object pair interactions, we apply local perturbations to the referrant object. These local pertur-
bations move the referrant object in the Euclidean space. Figure 5.1 (right column) shows three different
instances of local perturbations. Formally, these perturbation can be expressed in polar format as (r, θ, ϕ),
where r is the action magnitude and θ, ϕ, represents the action direction. We sample action directions
that are axes aligned with the objects reference frame as well as along the diagonals of each axis pair. We
use two different strategies to sample action magnitude. First, we use a fixed action magnitude sampled
from [5cm, 20cm]. Additionally, we also use adaptive actions, wherein the action magnitude is set as the
distance between the anchor and the referrant object centers. These adaptive actions ensure that objects
will interact even if the distance between them is greater than the maximum fixed action magnitude. To
perform local perturbation actions, we add a virtual robot with a spring-damper system.

Given the data generation process, we generateN ∼ 100, 000 pairwise object scenes. For each scene, we
save the voxel representation for the anchor and referrant objects. Additionally, for each action we also
record the distance moved (in meters) by the referrant object (∆p), as well as the change in orientation (in
radians) of the referrant object (∆θ) when it interacts with the anchor object. For scenes which involve
contacts between objects we also record the contact position and the contact normals. These contact
positions are recorded for the anchor object relative to its frame of reference. More specific details can be
found in the supplementary material.

56

5 Relational Learning for Skill Preconditions

3D-ResNet-18

Action
(e.g. down)

Ltriplet

<latexit sha1_base64="Pp4/douqxR1537H/kPH2snczEuY=">AAACBXicbVA9SwNBEN3zM8avqKUWh0GwCncS0DJoY2ERwXxALoS9zVyyZG/v2J0Tw3GNjX/FxkIRW/+Dnf/GvSSFJj4YeLw3w8w8PxZco+N8W0vLK6tr64WN4ubW9s5uaW+/qaNEMWiwSESq7VMNgktoIEcB7VgBDX0BLX90lfute1CaR/IOxzF0QzqQPOCMopF6pSMvpDhkVKQ3WS/1EB4wRcVjAZhlvVLZqTgT2IvEnZEymaHeK315/YglIUhkgmrdcZ0YuylVyJmArOglGmLKRnQAHUMlDUF308kXmX1ilL4dRMqURHui/p5Iaaj1OPRNZ36znvdy8T+vk2Bw0U25jBMEyaaLgkTYGNl5JHafK2AoxoZQpri51WZDqihDE1zRhODOv7xImmcVt1qp3lbLtctZHAVySI7JKXHJOamRa1InDcLII3kmr+TNerJerHfrY9q6ZM1mDsgfWJ8/RV6ZuA==</latexit>

Lposition

<latexit sha1_base64="ZmK2gTQaGcDhrtJhTmibYwTBPUU=">AAACBnicbVDLSsNAFJ34rPUVdSlCsAiuSiIFXRbduHBRwT6gCWEynbRDJ5kwcyOWkJUbf8WNC0Xc+g3u/BsnbRbaemDgcM693DknSDhTYNvfxtLyyuraemWjurm1vbNr7u13lEgloW0iuJC9ACvKWUzbwIDTXiIpjgJOu8H4qvC791QqJuI7mCTUi/AwZiEjGLTkm0duhGFEMM9ucj9zgT5AlgjFCjfPfbNm1+0prEXilKSGSrR888sdCJJGNAbCsVJ9x07Ay7AERjjNq26qaILJGA9pX9MYR1R52TRGbp1oZWCFQuoXgzVVf29kOFJqEgV6svi0mvcK8T+vn0J44WUsTlKgMZkdClNugbCKTqwBk5QAn2iCidTZiUVGWGICurmqLsGZj7xIOmd1p1Fv3DZqzcuyjgo6RMfoFDnoHDXRNWqhNiLoET2jV/RmPBkvxrvxMRtdMsqdA/QHxucPIcOaMw==</latexit>

Lorient

<latexit sha1_base64="XfdLJJMjFMFcZwWh0SSyMSXqeMA=">AAACBHicbVDLSsNAFJ34rPUVddlNsAiuSiIFXRbduHBRwT6gCWEynbRDJ5MwcyOWkIUbf8WNC0Xc+hHu/BsnbRbaemDgcM49zL0nSDhTYNvfxsrq2vrGZmWrur2zu7dvHhx2VZxKQjsk5rHsB1hRzgTtAANO+4mkOAo47QWTq8Lv3VOpWCzuYJpQL8IjwUJGMGjJN2tuhGFMMM9ucj9zgT5AFktGBeS5b9bthj2DtUycktRRibZvfrnDmKSRThOOlRo4dgJehiUwwmledVNFE0wmeEQHmgocUeVlsyNy60QrQyuMpX4CrJn6O5HhSKlpFOjJYmW16BXif94ghfDCy5hIUqCCzD8KU25BbBWNWEMmKQE+1QQTyfSuFhljiQno3qq6BGfx5GXSPWs4zUbztllvXZZ1VFANHaNT5KBz1ELXqI06iKBH9Ixe0ZvxZLwY78bHfHTFKDNH6A+Mzx9mOZk7</latexit>

Lcontacts

<latexit sha1_base64="65vJ4HV39HCV2emcMBSTUUIfgEs=">AAACBnicbVBNS8NAEN34WetX1KMIwSJ4KokU9Fj04sFDBfsBTQib7aZdutmE3YlYQk5e/CtePCji1d/gzX/jps1BWx8MPN6bYWZekHCmwLa/jaXlldW19cpGdXNre2fX3NvvqDiVhLZJzGPZC7CinAnaBgac9hJJcRRw2g3GV4XfvadSsVjcwSShXoSHgoWMYNCSbx65EYYRwTy7yf3MBfoAGYkFYAIqz32zZtftKaxF4pSkhkq0fPPLHcQkjagAwrFSfcdOwMuwBEY4zatuqmiCyRgPaV9TgSOqvGz6Rm6daGVghbHUJcCaqr8nMhwpNYkC3Vkcrea9QvzP66cQXngZE0kKVJDZojDlFsRWkYk1YJIS4BNNMJFM32qREZY6A51cVYfgzL+8SDpndadRb9w2as3LMo4KOkTH6BQ56Bw10TVqoTYi6BE9o1f0ZjwZL8a78TFrXTLKmQP0B8bnD/+omh0=</latexit>

eo1
o2

<latexit sha1_base64="mNLidygJ1ETTOQYsT1rXecUQRX0=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUgi6LblxWsA9oxyGTZtrQTDImmUIZ+h1uXCji1o9x59+YtrPQ1gP3cjjnXnJzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044vp37nQlVmknxYKYJ9WM8FCxiBBsr+fQxk4E3C2yvzYJyxa26C6B14uWkAjmaQfmrP5AkjakwhGOte56bGD/DyjDC6azUTzVNMBnjIe1ZKnBMtZ8tjp6hC6sMUCSVLWHQQv29keFY62kc2skYm5Fe9ebif14vNdG1nzGRpIYKsnwoSjkyEs0TQAOmKDF8agkmitlbERlhhYmxOZVsCN7ql9dJu1b16tX6fb3SuMnjKMIZnMMleHAFDbiDJrSAwBM8wyu8ORPnxXl3PpajBSffOYU/cD5/ALrakhQ=</latexit>

f

<latexit sha1_base64="1c7W7wy6qvDuGTfhsiDggk0jdtA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0J6DHoxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaca+bWtErlf2KPwdZJUFOypCj3it9dfuaZQlXyCS1thP4KYYTalAwyafFbmZ5StmIDnjHUUUTbsPJ/NopOXdKn8TauFJI5urviQlNrB0nketMKA7tsjcT//M6GcbX4USoNEOu2GJRnEmCmsxeJ31hOEM5doQyI9ythA2poQxdQEUXQrD88ippXlaCaqV6Xy3XbvI4CnAKZ3ABAVxBDe6gDg1g8AjP8ApvnvZevHfvY9G65uUzJ/AH3ucPnniPKg==</latexit>

f✓

<latexit sha1_base64="R7dMmLFi0pgtbktd6+BDaxXnTJk=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8lUQKeix68VjBfkAbymY7aZduNnF3IpTSP+HFgyJe/Tve/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaPbmd96Qm1Eoh5onGIQs4ESkeCMrNSOel0aIrFeqexVvDncVeLnpAw56r3SV7ef8CxGRVwyYzq+l1IwYZoElzgtdjODKeMjNsCOpYrFaILJ/N6pe26Vvhsl2pYid67+npiw2JhxHNrOmNHQLHsz8T+vk1F0HUyESjNCxReLoky6lLiz592+0MhJji1hXAt7q8uHTDNONqKiDcFffnmVNC8rfrVSva+Wazd5HAU4hTO4AB+uoAZ3UIcGcJDwDK/w5jw6L86787FoXXPymRP4A+fzBx/RkAg=</latexit>

anchor

positive

negative

Action
effects

(+)

Figure 5.2: Left: Overall architecture to learn object relation model frel. Right: Precondition learning architecture
based on GNNs, shows graph model at initialization and the graph edge and node models.

5.3.2 Learning Object Relations
We use pairwise object interactions to learn our object relation model frel. The input to frel is 3D voxel
representation of an object pair and it outputs a continuous low dimensional relation embedding. This
formulation does not require an action as an input and hence frel can be used directly at test time. Our
main insight to learn frel is based on the fact that the same actions on similar scenes should result in similar
effects. These action effects refer to change in properties such as object position, orientation, contacts.
We use these action effects to train frel using two different sets of losses. First, we take a metric learning
approach and use the action effects to create contrastive losses that group similar scenes together and away
from dissimilar ones. Second, we combine the output relation embedding with the action representation
to directly predict the action effects.

Model: Figure 5.2 (Left) shows the architecture of our model. We use a ResNet [63] based architecture as
our backbone model to process the 3D voxel input. We use [59] to adapt the ResNet model to operate on
3D input. The output of the model is projected down toRK=256 using a linear projection. We refer to the
output of the linear projection as the relation embedding r(oi, oj) = frel(X), where oi, oj denotes the
anchor and referrant object respectively andX is the perceptual input with the object pair. The projected
relation embedding r(oi, oj) is then concatenated with the action input a. We create a by combing the
action vector of size R3 with a one-hot label of size R2, this label is used to differentiate between fixed
and adaptive perturbation actions. This combined representation is then used to predict a set of outputs
which correspond to the observed effects of this action.

Loss: We learn frel using contrastive losses, which have been used to learn continuous embeddings from
high dimensional data [58, 85, 165, 200]. Contrastive losses are useful for our formulation since they
compare sample similarity directly in the representation space. Amongst the multiple contrastive loss
formulations we use the triplet loss [200]. Formally, the triplet loss requires an anchor (a) and positive
(p) - negative (n) pairs. The aim is to keep the anchor and positive samples together while pushing the
negative sample away based on a margin,Ltriplet = (dap − dan + γ)+ where dap and dan are the squared
euclidean distance between the anchor and positive embedding, and anchor and negative embedding
respectively. γ is a constant margin between similar and dissimilar pairs.

We utilize the observed effects of the perturbation actions to get positive and negative samples for the
anchor scene. Specifically, scenes where all local perturbations lead to similar effects are more similar than
other scenes. Based on this we add triplet loss for both position (∆p) and orientation changes (∆θ)
separately. To get positive samples for (∆θ), we compare all action effects using |∆θi1 −∆θi2| < ∆θsim,

57

5 Relational Learning for Skill Preconditions

where∆θi1, and∆θi2 are the effects of i’th local perturbation action on two different scenes. To achieve the
same for position changes, instead of using∆p directly we use the ratio of observed change in position to
the desired change in position∆pr = ∆pobserved

∆pdesired ,where∆pobserved is the observed change in referrant object
center position, and ∆pdesired is the desired change i.e. action vector. We set ∆pdesired to 1 for normal
actions, while for adaptive actions it is set to the voxel distance between objects centers. This is required
to allow adaptive actions to be compared against each other since these actions result in different∆pdesired

values across different scenes. We sample negative scenes by using |∆θi1 − ∆θi2| > ∆θdiff, where we set
∆θdiff = ∆θsim + ϵ, where ϵ is a small value set manually. We include implementation details, including
the different hyper-parameters, for the contrastive loss, in the supplementary material. In addition to
contrastive losses, we also use the following prediction losses to train frel:
Predicting object positions: We use frel to predict the change in object position ∆p for the referrant
object. However, since we use voxels for our scene representation we lose the granularity of continuous
movement in the euclidean space. Hence, instead of predicting the raw values of change in position we
predict the voxel displacement of the referrant object’s origin ∆pv. We add a mean-squared loss on this
prediction, Lpos = ||∆pvpred −∆pvgt||2

Predicting object orientations: We also predict the change in orientation ∆θ of the referrant object.
Since the object is attached to a robot and moved controllably the magnitude of ∆θ is usually low ∆θ ∼
0.1. Hence, instead of using L2 loss we use L1 loss, Lorient = ||∆θpred −∆θgt||1

Predicting contact distributions: We also predict the contact distributions between interacting ob-
jects. Given the contact data from simulation we fit a Gaussian model to predict the mean (x, y, z) of
the contact point distribution. We then add the following loss, Lcontact = ||(µpred − µgt||2.

5.3.3 Learning PreconditionModels
Once we learn the object relation model frel from pairwise object interaction data we use it for down-
stream real-world precondition learning tasks. Our precondition learning model is based on deep neural
network architectures which can operate on a set of inputs which are provided by the learned frel model.
Formally, given a scene S with objects S = {o1, o2, . . . , oN}. We use frel to get object relation embed-
dings for all N × (N − 1) object pairs frel(oi, oj), where oi and oj are the anchor and referrant object.
For our precondition learning model we use two different network architectures i.e. Relational Networks
(RNs) and Graph Neural Networks (GNNs). RNs have been used to reason about objects and their re-
lations [194]. GNNs are more general neural network architectures where the input can be represented
as a graph G = (V,E), with vertices V and edges E [13, 102, 197]. Figure 5.2 (Right) shows our formu-
lation of a scene S as a GNN. Specifically, we represent each object as a separate node vi ≡ oi and add
bi-directional edges between every node pair. At initialization, we add frel(oi, oj) as the edge information
for edge eij = (vi, vj)Unless explicitly specified, we do not add any node information to the vertices. To
allow for better inference, we stack two layers of our graph network architecture. The output of the final
graph layer is classified using the sum of all the node and edge embeddings. More details are presented in
the supplementary material.

58

5 Relational Learning for Skill Preconditions

`

Figure 5.3: Left: Example scenes with 3 and 4 objects used for the objects in line task. Right: Example scenes with
0 and 2 distractor objects for learning food cutting preconditions.

5.4 Experiments
Our aim is to investigate the following questions, 1) Given limited amount of precondition training data,
how effective are the embeddings learned by our object relation model for precondition learning? 2) Does
a structured representation of a scene as objects and relations help in precondition learning for scenes with
variable number of objects? and 3) How effectively do the precondition models generalize to objects with
different shapes and sizes than the train set? To verify these we use three different manipulation tasks:
sweeping objects in a line, food cutting, and 3D block unstacking. Moreover, to show the effectiveness of
our learned embeddings, we do not finetune the object relation model frel during precondition learning.

Metrics: Since precondition learning is a binary prediction problem we compare models using F1 and
weighted F1 scores. F1 score is the harmonic mean of precision and recall with higher values (max: 1.0)
indicating better models and wt. F1-score is used to account for data imbalance.

Baselines: We compare our approach against both learning and non-learning baseline methods. Among
learning based methods we initially use models that use 3D scene input and output the binary precondi-
tion. We use multiple baseline architectures to represent this learned model. First, similar to our object
relation model, we use a 3D ResNet-18 model with the output being projected down using multiple
linear layers to predict the precondition output. To increase the representation capacity of this baseline
model we also evaluate a ResNet-34 based model which is adapted in the same way as [59]. Given the
limited amount of real world data, we also compare against a smaller VGG [223] based model with 3D
convolutions.

To verify the effectiveness of continuous relations we also use a discrete relation baseline, wherein instead
of continuous relations we use discrete relations. We refer to this as DiscreteRel. Finally, in addition
to learning based methods we also evaluate another approach which utilizes the simulator to verify the
preconditions. In this approach we transfer the 3D representation of a real world scene into the simulator.
Once the scene has been transferred we simulate the task to verify the preconditions. We refer to this
baseline as real2sim. See appendix for training and implementation details.

5.4.1 Sweeping Objects in Line
Humans are adept at inferring if objects lie in an approximately straight line. However for robots, the
presence of sensor noise, variances in object sizes and small amount of input data make this a challenging
task. Specifically, we look at task preconditions when a robot arm sweeps along the X-axis. Figure 5.3
(left) shows some examples from the train dataset. We collect scenes with variable number of objects (3,
4 and 6) and train on 25 different scenes. Table 5.1 (left) shows results for multiple train-test sets. For the
first train-test split all methods perform well. However, for the other splits i.e., when we test on 6 objects
and objects with different shapes and sizes, the learning baseline methods perform poorly (wt. F1-score

59

5 Relational Learning for Skill Preconditions

Sweep Objects In Line Food Cutting

Model Train Set
(objects)

Test Set
(objects) F1 Wt-F1 Train Set

(distractors)
Test Set
(distractors) F1 Wt.-F1

ResNet-18 3, 4 4 0.934 0.951 0, 1 2 0.667 0.741
Resnet-34 3, 4 4 0.934 0.951 0, 1 2 0.701 0.741
VGG* 3, 4 4 0.911 0.948 0, 1 2 0.720 0.590
DiscreteRel 3, 4 4 0.96 0.96 0, 1 2 0.38 0.456
Real2Sim 3, 4 4 0.869 0.871 - - N/A N/A
Our Model (RN) 3, 4 4 0.949 0.970 0, 1 2 0.649 0.720
Our Model (GNN) 3, 4 4 0.921 0.944 0, 1 2 0.841 0.804

ResNet-18 3, 4 6 0.802 0.771 0,1,2 3 0.844 0.902
ResNet-34 3, 4 6 0.823 0.833 0,1,2 3 0.777 0.871
VGG* 3, 4 6 0.667 0.481 0,1,2 3 0.788 0.842
DiscreteRel 3, 4 6 0.98 0.98 0,1,2 3 0.200 0.658
Real2Sim 3, 4 6 0.960 0.960 - - N/A N/A
Our Model (RN) 3, 4 6 0.971 0.981 0,1,2 3 0.880 0.935
Our Model (GNN) 3, 4 6 0.948 0.969 0,1,2 3 0.921 0.940

ResNet-18 3, 4 6 (diff. size) 0.695 0.662 0,1,2 4 0.827 0.866
ResNet-34 3, 4 6 0.692 0.640 0,1,2 4 0.833 0.868
VGG* 3, 4 6 0.640 0.601 0,1,2 4 0.720 0.770
DiscreteRel 3, 4 6 0.782 0.801 0,1,2 4 0.400 0.590
Real2Sim 3, 4 6 0.904 0.912 0,1,2 4 N/A N/A
Our Model (RN) 3, 4 6 0.952 0.952 0,1,2 4 0.929 0.944
Our Model (GNN) 3, 4 6 0.952 0.952 0,1,2 4 0.960 0.960

Table 5.1: Precondition learning results for sweeping objects in a line and food food skill.

GT: ✓ Our: ✓ Baseline: !GT: ✓ Our: Baseline: !!

GT: ! Our: Baseline: ! ✓ ! ! ✓GT: Our: Baseline:

Figure 5.4: Left: Test set examples with different shapes and sizes for sweeping task. Baseline here referrs to visual
baseline. Right: Example scenes for sweeping task when imported using the real2sim baseline. The top
row shows the initial scene before the sweep while the bottom row shows the after scene.

60

5 Relational Learning for Skill Preconditions

Model Train Set Test Set F1 Wt-F1 Train Set Test Set F1 Wt.-F1

ResNet-18 3,4,5 7 0.741 0.836 3,4,5,7 6 0.770 0.820
ResNet-34 3,4,5 7 0.712 0.809 3,4,5,7 6 0.769 0.820
VGG* 3,4,5 7 0.711 0.804 3,4,5,7 6 0.744 0.818
DiscreteRel 3,4,5 7 0.561 0.655 3,4,5,7 6 0.594 0.617
Real2Sim 3,4,5 7 0.671 0.732 3,4,5,7 6 0.651 0.717
Our Model (RN) 3,4,5 7 0.685 0.775 3,4,5,7 6 0.679 0.771
Our Model (GNN) all edges 3,4,5 7 0.825 0.869 3,4,5,7 6 0.819 0.857
Our Model (GNN) sparse edges 3,4,5 7 0.864 0.898 3,4,5,7 6 0.866 0.894

Table 5.2: Results for block unstacking task with two different train-test splits.

of 0.83 and 0.66). This is not unexpected given that we have limited training data and a large mismatch
between train and test distributions. While, discrete relations baseline performs quite well on the first
two splits but poorly on the last split. Also, real2sim is unaffected by the distribution mismatch and
performs quite well with a small decrease in its performance on the 3rd split. Both of the latter baselines
perform poorly due to more complex geometries of objects in the test set. This leads to imperfect voxel
representations, which results in incorrect discrete relations and noisy simulation results when exported
into the simulator respectively. We visualise this in Figure 5.4 (Right) which shows two different sets of
scenes, each containing two scenes with similar initial configurations but very different final positions.
Alternately, both of our models are able to outperform the baseline methods with a wt. F1-score of 0.96
and 0.95 respectively. Note that we only input object relation embeddings to our model and no other
object specific information.

5.4.2 Food Cutting
We use cutting food as our next task since it requires reasoning about multiple types of interactions. For
instance, to cut a food item the robot needs to hold the knife with its sharp edge in close contact with the
food item, the knife should be oriented correctly to pass through the food item, and there should be no
obstacle that can potentially hamper the back-and-forth cutting motion. Since the simulator does not
implement cutting we cannot use the real2sim baseline. Figures 5.3 (right) shows some samples of the
collected data. Table 5.1 (right) shows results for this task. For the initial case, wherein we train with only
one distractor object and test on more than one distractor objects, all methods perform poorly with a
maximum wt. F1-score of our GNN based model 0.804. We believe this happens because with just one
distractor in the train set many different object permutations were never observed and hence the model
performs poorly on the test set. However, when we train models with upto 2 distractors the performance
on test sets with 3 or 4 distractors is much better. Also, for all of the train-test splits our relational pre-
condition models are able to outperform all other baseline methods (wt. F1: 0.960 and 0.940). Among
our object relation based precondition models, the GNN based models perform slightly better. This can
be attributed to their larger representation capacity, since we stack two GNN layers while the relation
network model only contains one relational layer.

61

5 Relational Learning for Skill Preconditions

Model F1 Wt-F1

ResNet-18 0.695 0.719
ResNet-34 0.714 0.673
VGG* 0.545 0.665
DiscreteRel 0.200 0.355
Real2Sim 0.827 0.817
Our Model (RN) 0.697 0.736
Our Model (GNN) all 0.923 0.919
Our Model (GNN) sparse 0.923 0.919

Table 5.3: Results for precondition
learning of box stacking task
with completely different
blocks (objects) in the test set.

Model Task F1 Wt-F1

Only predictive loss Cutting Food 0.72 0.78
Only ∆p and ∆θ predictive loss 0.72 0.78
Only triplet loss 0.828 0.866

Only predictive loss Block Unstacking 0.802 0.824
Only ∆p and ∆θ predictive loss no contacts 0.775 0.800
Only triplet loss 0.835 0.849
Using mean position 0.681 0.721
Using mean position + bounding box 0.776 0.816
Only position loss (pred. + cont.) 0.672 0.759

Table 5.4: Ablation results for different losses. The first three rows
show values for food cutting task with 2 distractor objects
in training and 4 the test set. The next 3 rows show block
unstacking results with 3 to 5 objects in train set and 7 in
the test set.

GT: Our: Baseline: ✓ ! ! GT: Our: Baseline: GT: Our: Baseline: ✓ ✓ ! ✓ ✓ !

Figure 5.5: Left: Example scenes for block unstacking task. Right: Test set examples for block unstacking task. The
black block shows the block to be removed. Baseline here refers to visual baseline.

5.4.3 Block Unstacking
Block unstacking involves a large amount of geometric and contact based reasoning since the blocks can
be arranged in many complex configurations. We formulate the precondition learning problem to predict
the stability of a stack of blocks given a particular block to be removed. Figure 5.5 (Left) shows examples
with 3 blocks where the grey block can be safely removed from all scenes. In addition to the previous
models, we add another GNN based model where graph edges only exist between blocks (vertices) that
are closer than a certain threshold (0.1m), thus easing the learning problem. Table 5.2, 5.3 shows results
for multiple train-test splits. As seen above, our GNN based models outperform all other methods across
all the different scenarios. The 3D CNN based baseline models have a higher wt. F1-score (∼ 0.80)
for the 1st-two splits but when tested on objects with different sizes (Table 5.3, Figure 5.6(Left)) they
perform much worse. This shows that the 3D CNN based baseline models overfit to the train set objects
and cannot transfer to objects with different shapes and sizes. While the DiscreteRel baseline is clearly
insufficient for this task. For instance, given a 3-block configuration, with 1 block above and 2 supporting
it from below. Although, this configuration has the same discrete representation, the overall stability of
this 3-block configuration depends upon the location of the bottom blocks. We discuss this in detail in
Appendix 9.1.7.

Also, the real2sim baseline performs poorly on the 1st-two test splits, wt. F1-score (∼ 0.70). This is
because blocks are in contact and quite close to each other, their voxel representations are quite noisy

62

5 Relational Learning for Skill Preconditions

GT: Our: Baseline: ! ✓ ✓ GT: Our: Baseline: GT: Our: Baseline: ! ! ✓ ✓ ✓ !

Figure 5.6: Left: Test set examples for block unstacking with different shape and size than train set. Baseline:
visual baseline. Right: Example scenes which are unstable but are predicted as stable by the Real2Sim
baseline.

e.g. with blocks often embedded into other blocks. These noisy voxel representations when imported
into VREP lead to inaccurate predictions. Figure 5.6 (Right) visualizes scenes which are unstable but are
predicted as stable in VREP. Interestingly, amongst our models, the relational network (RN) performs
similar to the baseline models and much worse than the corresponding GNN models. We believe this is
due to the complexity of the reasoning problem. Since we only use one layer of the relational network
model, its representation capacity is much less than the corresponding GNN models with 2 layers.

5.5 Ablation Study
We perform an ablation study to understand the effects of different architecture and algorithmic choices
in our proposed approach. First, we look at the effects of different loss functions used to train the object
relation model. Table 5.4 shows the effect of different loss functions on the precondition learning prob-
lem. As seen above, using triplet loss performs better than predictive losses for both food cutting and
block unstacking tasks. We believe this happens because the low dimensional embeddings learned using
supervised losses alone might not be discriminatory enough for the downstream tasks. In comparison,
since triplet loss explicitly forces embeddings to be further apart, it eases the learning problem for the
precondition model. Also, comparing Table 5.4 with previous results we see that combining all the losses
does outperform using any of the losses individually.

To illustrate the utility of our learned embeddings, we evaluate only using the mean 3D position (similar
to [111]) and bounding box of the blocks as input to our sparse GNN model. The bounding box is esti-
mated min-max values for each axes from the voxel representation of the block. Table 5.4 shows that using
mean positions alone performs poorly (wt. F1-score: 0.72) while adding object bounds performs better
(wt. F1-score: 0.816). However, our GNN model with learned object relations still outperforms them.
One reason for this is the sensory noise in the input data, especially since object bounds are sensitive to
outliers. More importantly, these results indicate the utility of our learned embeddings which perform
well despite sensory noise and limited data. Table 5.4 also shows the utility of the contact based losses for
the block unstacking task. Using contacts based losses increase the wt. F1-score on the block unstacking
task from 0.80 to 0.824. This is not surprising since the block unstacking task requires inferring contact
locations for stability prediction.

63

5 Relational Learning for Skill Preconditions

5.6 Conclusion
We learn preconditions for manipulation skills by using structured scene representations that decompose
scene into its objects and their relations. We propose a novel approach to learn generalizable continuous
representations for these object relations. Our approach has several advantages. First, it is grounded in
a robot’s interaction with objects, and hence we do not assume a fixed set of discrete object relations.
Second, simulations provides us access to large set of ground truth data such as contacts distribution
which allow us to learn rich representations. Finally, our approach can be directly used for precondition
learning in a sample efficient manner.

64

6 RoboAdapters: Adapting
Pretrained VisionModels For
RoboticManipulation

This chapter is based on [Sharma, Fantacci, Zhou, Koppula, Heess, Scholz, and Aytar, 208].

Project page: https://sites.google.com/view/robo-adapters/

Abstract: Recent works show that large models pretrained on common visual learning tasks can provide
useful representations for a wide range of specialized perception problems, as well as a variety of robotic ma-
nipulation tasks. While prior work on robotic manipulation predominantly use frozen pretrained features,
we demonstrate that in robotics this approach can fail to reach optimal performance, and that fine-tuning
of the full model can lead to significantly better results. Unfortunately, fine-tuning disrupts the pretrained
visual representation, and causes representational drift towards the fine-tuned task thus leading to a loss of
the versatility of the original model. We introduce lossless adaptation to address this shortcoming of classi-
cal fine-tuning. We demonstrate that appropriate placement of our parameter efficient adapters can signifi-
cantly reduce the performance gap between frozen pretrained representations and full end-to-end fine-tuning
without changes to the original representation and thus preserving original capabilities of the pretrained
model. We perform a comprehensive investigation across 3 major model architectures (ViTs, NFNets, and
ResNets), supervised (ImageNet-1K classification) and self-supervised pretrained weights (CLIP, BYOL, Vi-
sual MAE) in 3 task domains and 35 individual tasks, and demonstrate that our claims are strongly vali-
dated in various settings.

6.1 Introduction
Pretrained general-purpose vision models, often also referred to as vision foundation models [259], have
developed a growing set of perceptual capabilities in recent years. Large-scale vision-language models
such as CLIP [179] and ALIGN [79]) are examples of these highly capable general-purpose vision models
which have enabled many applications for image generation/editing [182, 193] and image-based dialog [4].
Existing self-supervised pretrained visual models, such as SimCLR [29], BYOL [55] or Visual MAE [61],
have also been shown to provide strong initializations for a wide range of visual downstream tasks, and can
thus also be considered general-purpose vision models. How can we unlock the power of these models
for increasingly novel and challenging control applications?

65

https://sites.google.com/view/robo-adapters/

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

ç
√

ç
√

Classification
Detection
Segmentation
Captioning
Tracking

Pretrained
Vision
Model

Visual Understanding

ç
√

Classification
Detection
Segmentation
Captioning
Tracking

Robot Manipulation

Classification
Detection
Segmentation
Captioning
Tracking

Robot Manipulation

top-adapter

Finetuned
Pretrained

Model

ç
√

Classification
Detection
Segmentation
Captioning
Tracking

Robot Manipulation

top-adapter

bottom-adapter

middle-adapter

Frozen Pretrained
ModelFrozen

Pretrained
Model

Transfer

(a) (b) (c) (d) (e)

Figure 6.1: Parameter efficient lossless adaptation. Existing works adapt preretrained general purpose visual
models (a) through full end-to-end fine-tuning as shown in (b), which looses the original capabilities of
the model; or adapting frozen pretrained models through top-adapters as shown in (c), which often fails
to achieve optimal control performance. However, by introducing additional mid-level and bottom-
level adaptation as in (d), we still maintain the existing perceptual capabilities while approaching the full
fine-tuning performance as empirically shown in (e) over many network architectures and pretraining
methods.

One solution is to add an output head for each control task and fine-tune the entire architecture. How-
ever, fine-tuning degrades performance on the original task(s) the model was trained for, and therefore
requires maintaining copies of the model for all tasks we wish to concurrently support. This strategy
quickly becomes infeasible as we move towards more general and multi-task agents. For instance, em-
bodied agents acting in the real world will end up solving thousands of downstream manipulation tasks.
Given limited hardware capabilities of robots keeping separate copies of increasingly large models (e.g.
billions of parameters) for a growing set of tasks is unscalable. This is further exacerbated for robot ma-
nipulation wherein hardware and tool differences can result in different task configurations which may
require different representations.

In this paper our target is to achieve lossless adaptation, which we define as adapting the original pre-
trained model for the new task or series of tasks, while maintaining the original capabilities of the model.
To solve the lossless adaptation problem we inject additional parameters, i.e. adapters, to several specific
locations throughout pretrained architecture. We use similar adapters as in previous non-control settings
[67, 184], but carefully insert them at different network locations to improve our off-domain representa-
tions for control. We demonstrate that, with a reasonably small cost (∼ 1% of the original model size)
of additional parameters scattered throughout the model, we can bridge the performance gap between
frozen pretrained features and full end-to-end fine-tuning. Our approach offers close to the performance
of full fine-tuning while maintaining all the original capabilities of a pretrained model (the original model
definition can co-exist with the new task head, reusing the vast majority of parameters). We show that as
the manipulation tasks get harder through complex multi-object interaction and increased level of varia-
tion in the randomized initial configurations, the pretrained visual features can’t cope with the increased
complexity but our parameter efficient adapters can. Overall our contributions include:

• We show that frozen pretrained representations are insufficient to reach optimal manipulation task
performance especially for complex manipulation tasks.

66

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

• We propose the use of adapters with strong evidence that our adapters can largely close the perfor-
mance gap between frozen pretrained representations and full end-to-end fine-tuning while adding
only a small amount of (≈ 1% of the original model) adapter parameters.

• Comprehensive evaluation of our approach across 3 different manipulation suites (35 individual
tasks), 3 major model architectures (ViTs, NFNets, and ResNets) with supervised (imagenet clas-
sification) and self-supervised pretraining (CLIP, BYOL, Visual MAE).

• Experiments demonstrating that adapters also help in sim2real transfer. Thus, enabling fixed large
pretrained visual models to be directly used for real world manipulation tasks.

6.2 RelatedWorks
The general problem of representation learning for control can be broadly divided into two distinct cate-
gories – works that use in-domain task data to learn task relevant representations for the underlying task,
and on the other hand are more recent works that use out-of-domain visual data to learn generally useful
representations for control.

In Domain Representation Learning for Control: Within the first broad category the majority of
works learn representations that reflect certain invariances that are presumed to be relevant for the down-
stream task(s) of interest. Prior works show that useful representations can be learned via data augmenta-
tions [106, 117], temporal contrastive learning [116], information bottlenecks [166], goal relabeling [268],
or via real world priors [83, 84].

Out of Domain Representation Learning for Control: An alternative set of works have emphasized
the use of in-the-wild visual datasets for representation learning [95, 171, 219]. They have shown that
features learned by large visual models pretrained on common visual learning tasks such as image classi-
fication, image inpainting, and contrastive learning can be surprisingly effective for downstream control
tasks. Many of these works utilize the large scale pretrained CLIP model [51, 95, 219], while other works
also show the effectiveness of features trained on ImageNet [171, 205], or using temporal data from Ego4D
[158]. Our work is similar in spirit to these works, i.e., we focus on models trained on large scale out-of-
domain data. However, in contrast to prior work which solely shows the effectiveness of the extracted
off-the-shelf representations, we aim to adapt those representations for better downstream performance.

Transfer Learning: Adapting a given large model for different downstream tasks has been widely stud-
ied in the literature [26, 27, 80, 126, 127, 136, 184, 236]. Within the vision community [184] introduced
adapter modules to learn a single representation across multiple domains. [126] used similar adapters for
few-shot image classification in new domains. However, previous works within vision mostly use adapters
for classification tasks and the pretraining task is also image classification. By contrast, we focus on con-
trol tasks which are significantly different than image classification. In addition to task-differences our
work also includes significant domain shifts, e.g., non-canonical camera views, moving robot arm, heavy
occlusion, textureless objects. As we show, unlike previous works, this requires require carefully inserting
adapters in different sections without tremendously increasing the parameter count. Adapter modules
have also been explored in the language community. [67] adapt the BERT model for different tasks, while

67

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

Multi-Head
Attention

MLP

Adapter

MLP (down)

MLP (up)

Transformer Layer

Adapter Layer

Conv

ReLU

Adapter

Adapter
(down)

Adapter
(up)

Convolution Layer
Adapter Layer

Figure 6.2: Adapter layers used for convolution based (Left) and transformer based (Right) architectures. For both
scenarios we use a bottleneck design.

[127] show that optimizing small amount of task-specific vectors (prefixes) can often match the full fine-
tuning performance [133]. Another aspect of transfer learning is continual or lifelong learning wherein
learning involves a sequence of tasks [5, 183, 192, 202, 218, 256], but wherein the original model is distilled
for new tasks and thus not necessarily perfectly preserved. Our work is similar to the former set of works
– we keep the large pretrained model frozen and improve it using light-weight adaptation to extract the
final representation for control.

6.3 Approach
Our main aim is to use fixed pretrained visual models but adapt their representations for improved down-
stream control task performance. To achieve this we use parameter efficient adapter modules that can be
inserted in appropriate locations throughout the deep network. These non-pretrained adapter modules
are the only set of parameters that are updated during downstream policy learning.

A common approach to use fixed pretrained visual models is to attach a learned policy head (i.e. top-
adapter) and train for the downstream control task [158, 171]. However such an approach cannot adjust
the low-level perception and mid-level abstraction for the downstream control task. By contrast, other
works have shown that adapting the initial layers (i.e. bottom-adapter) can be important for transferring
across large domain-shifts (i.e. sim2real [76], images to line-drawings [7]). One can also inject mid-level
adapters as demonstrated in many non-control settings [67, 184]. We adapt these works for the control
setting and show how carefully inserting adapters in different sections of the network leads to improved
control task performance without any loss of information.

6.3.1 AdapterModules
Adapter modules are light-weight neural modules that can be inserted at different layers of a pretrained
deep neural network. Prior works have explored adapter modules for transfer learning, wherein adapter
modules are inserted at each layer of a pretrained deep network and only these adapters are updated at the
fine-tuning stage [67]. Overall, adapter modules have two important properties, 1) they are lightweight,

68

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

ViT Transformer
Layer

Patch Em
b

× 12

Bottom Middle

256

Top
Pool /

Shared M
LP

Initial
Conv

NFNet/ResNet
Blocks

Top

!

Pool / Conv

256

M
LP

2
Layers

LinearHead

Bottom Middle

M
LP

2
Layers

!

LinearHead

Figure 6.3: Different locations to insert adapter modules for convolution (Left) and transformer (Right) models.

i.e., they have fewer parameters compared to the original network, and 2) they keep the initialization
provided by the pretrained deep network. Below, we provide a short discussion on how adapter modules
achieve these properties.

Prior works limit the number of parameters in the adapter modules by either using 1 × 1 convolutions
[184] or via bottleneck architectures for transformers [67]. In our formulation, we use a bottleneck archi-
tecture for both convolution- and attention-based architectures, as well as utilizing 1×1 convolutions for
the former. Specifically, for a given input x ∈ Rn×f where n is the number of samples, f is the input fea-
ture dimensionality, adapter outputs are parameterized as a combination of down- (d) and up-projection
(u) weights: x′ ← W u

A

(
h
(
W d
Ax
))

, where h is some non-linearity, W d
A ∈ Rf×f ′ and W u

A ∈ Rf ′×f are
the adapter (A) weights, f ′ is the bottleneck feature size. Since f ′ << f , the adapter modules utilize a
very small number of parameters in comparison to the original pretrained network. Importantly, we use
the above formulation for both convolutional and transformer based architectures – for convolutional
architectures we downproject across the channel (feature) dimension, while for transformer based archi-
tectures we downproject along the feature dimension for each patch. Figure 6.2 visualizes the adapters
used in our work.

To fully utilize the initialization provided by the pretrained weights, we initialize the adapter modules
with weights close to 0 and add skip connections when inserting the adapter modules into the pretrained
network. This ensures that adapter modules have no effect at initialization and thus the pretrained net-
work’s initialization remains intact. Overall, for a input x, the output for a pretrained model’s layer with
an adapter is x′ ← gpretrain(x) + gadapter(x). Finally, we note that the adapter modules can also be added
serially, i.e., directly after the output of a pretrained layer, in which case gpretrain can be viewed as an iden-
tity function. Finally, similar to previous works [37, 67, 176] we also add offsets to the normalization
parameters used in different architectures (e.g. layernorm [8] for vision transformers).

6.3.2 Visual Adapters for Control
We first discuss why adapting out-of-domain representations for control is different from previous usage
of adapters for language and visual understanding tasks.

Task Differences: Prior works often utilize adapter modules for a broadly similar set of tasks in a given do-
main. For instance, text classification tasks [67], neural machine translation tasks [178], or few-shot visual
classification tasks [126]. Additionally, the pretrained model used in these tasks (e.g. BERT [40] or Ima-
geNet pretraining) is strongly correlated with the downstream tasks. By contrast, there exists much larger
task differences in our work – the visual pretraining task (e.g. image-inpainting/classification) is vastly dif-

69

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

ferent from downstream robot manipulation (continuous action prediction). While visual classification
tasks mostly require semantic features (i.e. what is in an image), manipulation tasks require actionable
features (“what” and “where” are the objects to predict actions) [43, 189]. These actionable features need
both semantic as well as spatial features (e.g. being able to localize objects of interest in space).

Domain Shifts: Few works in language understanding use adapters for domain shifts [265] (even [265]
use unlabelled target data to pretrain adapters). While works in visual understanding do involve domain
shifts, e.g., train on ImageNet, Birds and transfer to MS-COCO, CIFAR-10 [126]. However, such shifts
are very different from our work – robot manipulation data consists of table-top settings, simulation
images, moving robot arm, heavy occlusion, which is very different from object-centered images of Im-
ageNet. Based on above differences we next discuss how and where to efficiently insert adapter modules
to improve upon “off-the-shelf" representations produced by the fixed pretrained network.

While we can add adapter modules through all layers of the pretrained network, such a choice is highly
parameter inefficient and redundant especially for large networks with many layers. We coarsely catego-
rize the network layers based on their functional forms as bottom, middle and top sections as visualized in
Figure 6.3. Next, motivated by the above discussion on visual adapters for control, we provide intuitive
reasoning for injecting adapters in each section. Importantly, as we show empirically, unlike previous
works [67, 126, 184] using adapter parameters at each of these network sections is important for task per-
formance.

The bottom layer directly uses the raw images as input. In scenarios, where there is a mismatch between
the downstream task’s image observations and the pretrained bottom layer feature statistics, the down-
stream task performance can be sub-optimal. As discussed above, such scenarios are common for down-
stream manipulation tasks, since there exists a significant domain gap between the data distribution of
pretrained vision models (often in-the-wild data) and standard table-top settings with much closer and
non-canonical camera views.

The middle category, which contains most of the fixed pretrained network (≈ 90%) weights, is used to
extract the appropriate input abstraction. However, these network weights are trained on visual learning
tasks which often focus on semantic understanding (e.g. image classification) instead of spatial and causal
understanding which are important for control. Nevertheless, earlier layers of the network are known
to capture useful invariances [171, 262]. Hence, sparsely inserting adapter layers through the pretrained
network can allow us to better adapt “off-the-shelf" representations for downstream manipulation tasks.
Finally, we note that the output of the middle category is a set of spatial features for conv-nets and patch
features for ViTs.

The top category uses the spatial representation from the middle category as input and outputs the robot
action. This high dimensional spatial representation (size≈ 20K) is converted into a smaller represen-
tation (size≈ 2K) either via average/max pooling or by down-projecting using 1 × 1 convolutions or a
small shared MLP. Finally, this smaller representation can be used to directly output the action using a
linear policy head. While a linear head is sufficient in settings where there is strong task alignment [29],
given the large difference in the pretraining and downstream tasks, additional top layer adaptation helps
further improve performance. We note that most prior works that use fixed pretrained features [158, 170]

70

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

Assembly Bin-Picking Button-Press Drawer-Open Hammer

Kitchen-Sdoor Open Kitchen-Micro Open Kitchen-Light On Kitchen-LDoor Open Kitchen-Knob On

Triplet 1 Triplet 2 Triplet 3 Triplet 4 Triplet 5

M
et

aw
or

ld
Fr

an
ka

-K
itc

he
n

RG
B-

St
ac

ki
ng

Figure 6.4: Different environments we evaluate our approach on. For Metaworld and Kitchen suites we frollow
the setup from [158] including the same set of demonstrations. For RGB-Stacking suite we use Skill
Mastery setting [119].

also utilize such top layer adaptation. We discuss implementation details for specific architectures in Sec-
tion 6.4.2.

Training Adapters for Control: We use behaviour cloning to learn task policies from demonstrations.
We use euclidean loss to optimize adapter parameters.

6.4 Experimental Setup
We evaluate our use of adapters for large pretrained visual models across three different environment
suites each with increasing task complexity and across three different network architectures. We elaborate
on each of these further below.

6.4.1 Manipulation Tasks
In this work, we consider Metaworld [258], Franka-Kitchen [56], and RGB-Stacking task suites [119]. Fig-
ure 6.4 visualizes the tasks considered from each of these task suites. Both Metaworld and Kitchen have
been used previously [158] to evaluate fixed “off-the-shelf" pretrained visual representations. Hence, for
both suites we use the same environments and demonstrations. Overall, we use 5 different environments
from the Metaworld and Kitchen task suites. For each environment we use 3 different camera configu-
rations as provided by [158]. Additionally, similar to previous work we use 25 demonstrations for each
environment and train a separate policy for each environment and camera configuration.

While both Metaworld and Kitchen suites consider many tasks, each task often has a very narrow state-
space distribution. For instance, Kitchen tasks use fixed object positions while MetaWorld tasks have
limited position variance only. Hence, we also evaluate our approach on a much more challenging RGB-
stacking suite [119] (Figure 6.4 bottom). The RGB-stacking tasks involve three objects colored Red,
Green, and Blue and the goal is to stack the red object on top of blue object. These tasks randomize

71

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

object positions and orientations in a basket and thus result in a large initial state-space distribution. Fur-
ther, since these tasks consider a diverse range of shapes, stacking requires precise control and cannot be
achieved simply by dropping one object onto the other. To obtain demonstrations for these tasks, we
initially train an RL policy and collect 100,000 demonstrations from it. We use the Skill Mastery setting
from [119] for evaluation.

6.4.2 Network Architectures
We evaluate the effectiveness of adapters for manipulation tasks in the context of three different network
architectures. Specifically, we use normalization free networks (NFNet) [19], residual networks (ResNet)
[63] and vision transformers (ViT) [42]. Among the different architectures within each category we use
NFNet-f0, ResNet-50 and ViT-B/16. In addition to imagenet pretraining across all three architectures,
we also evaluate using ALIGN [79] for NFNet, BYOL for ResNet [55] and masked auto-encoder (MAE)
for ViT [61].

Adapter Parameterizations: As noted previously in Sub-Section 6.3.2 we use bottom, middle and top
adapters. We discuss the specific parameterizations for each of these adapter types. Table 6.4 provides an
overall adapter parameter count. We provide detailed parameterization in Appendix 9.4.1.

Bottom: For NFNet and ResNet architectures we use the initial convolution, while for ViT we use the
initial patch embedding as the only bottom set of layers. We add 1 adapter for this bottom layer.

Middle: For middle adapters we use 4 and 6 adapters for the convnet and transformer based architectures
respectively. For the convnet based architectures we add each adapter to the first convolution in each block
group except the last group, where we add it at the end. While for the transformer based architectures we
apply them at layers {0, 1, 5, 6, 10, 11}.

Top: We project spatial features from the middle layer onto a lower dimensional space. To process these
features we optionally add 2 MLPs each with 256 parameters, we refer to these as top adapters.

Evaluation: We evaluate our approach using 40 rollouts from the BC learned policy. We use mean success
rate of the final policy as our metric. When providing task suite metric we average the mean success rate
across all environments and camera configurations. We also note that some previous works evaluate the
BC policy at fixed training step intervals and use the maximum over the mean success rates at each interval
as the metric. However, using max as a statistic is not robust and is easily influenced by outliers. While
comparing with previous works we use the max statistic, however for all other results we use the mean.
Training details and hyper-parameters are in Appendix 9.4.1.

6.5 Results
With our experiments we aim to show the following: 1) Using fixed pretrained representations often
leads to sub-optimal task performance as compared to directly adapting the representation for the down-
stream task, especially for more challenging manipulation tasks. 2) Inserting small adapter modules into
a fixed pretrained network (i.e. lossless adaptation) is sufficient to achieve optimal manipulation task

72

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

Metaworld Franka-Kitchen RGB Stacking

Fixed Pretrained Feat. - ImNet (R3M) [158] 0.66 0.30 -
Fixed Pretrained Feat. - MoCo-345 (R3M) [171] 0.64 0.38 -
Fixed Pretrained Feat. - R3M (R3M) [158] 0.78 0.56 0.30
Fixed Pretrained Feat- (Ours - ImNet) 0.62 0.48 0.28
Full Finetune (Ours) 0.98 0.72 0.70
Fixed Pretrained Feat. - (Ours ImNet - mean succ) 0.44 0.34 0.14
Full Finetune (Ours - mean succ) 0.91 0.57 0.49

Table 6.1: Success rate comparison using fixed pretrained features (using pretrained large vision models) with meth-
ods that update the pretrained visual features on the downstream manipulation task.

Metaworld Franka-Kitchen RGB Stacking
Pretrain Feat. Adapters Full FT. Pretrain Feat. Adapters Full FT. Pretrain Feat. Adapters Full FT.

NFNet 0.44 0.82 0.94 0.12 0.39 0.42 0.14 0.45 0.47
ResNet 0.39 0.80 0.88 0.12 0.24 0.25 0.14 0.48 0.49
ViT 0.19 0.78 0.84 0.15 0.26 0.25 0.18 0.49 0.48

Table 6.2: Mean success rate comparisons between using fixed pretrained features, adapters and full fine-tuning
across all three different environments with three different architecture choices.

performance across a wide range of tasks and network architectures. 3) Adapter modules are parameter
efficient as well as robust to different initializations of the fixed large pretrained vision model (e.g. via
different visual pretraining strategies). We look at each of these points in the following subsections.

6.5.1 Fixed Pretrained Features vs Adapter Representations
Fixed Off-the-Shelf Representations: In the first part of our experiments we show that while fixed off-
the-shelf representations (without any adaptation) are useful, they can be highly sub-optimal for the given
downstream task. To show this we compare the fixed representations extracted using pretrained weights
(Pretrained Feat.) obtained via supervised imagenet pretraining and compare them with full fine-tuning
(Full FT). Table 6.1 compares these across all task suites. For a fixed comparison with previous works
Table 6.1 reports results for the ResNet-50 model, since previous works only evaluate the ResNet ar-
chitecture. As seen in Table 6.1, fixed off the shelf-representations are comparatively much worse across
all environment suites. For Metaworld, Kitchen and RGB-Stacking suites the relative change in per-
formance is around ≈ 20%, 30% and 100% respectively. Also, for the RGB-stacking suite the mean
performance is much lower 14%, which shows that fixed pretrained representations become significantly
less effective for challenging manipulation tasks.

Lossless Adaptation of pretrained Visual Features: We now show that our proposed adapters can
match full-fine-tuning performance for downstream manipulation tasks without losing any existing in-
formation. Table 6.2 compare full fine-tuning (Full FT.) approaches with our adapters (Adapters) as
well as fixed pretrained representations (Pretrained Feat.) We note that for these and future results we
report metrics using the more robust mean statistic. Additionally, for task suites with limited state-space
distributions, i.e., Metaworld and Franka-Kitchen, we avoid using any proprioceptive information (see
Appendix 9.4.3 for results with proprioceptive). This allows us to robustly verify the visual representa-

73

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

NFNet ResNet ViT

Pretrained Feat. Bottom
Adapters

Middle
Adapters

Bottom + Middle
Adapters

Full
Finetuning

Figure 6.5: Ablation results on the RGB-Stacking environment for 3 different network architectures.

tion and avoids any proprioceptive information leakage which can allow to solve the task even without
using the visual features.

Table 6.2 shows the results for each task suite and network architecture combination. For the adapter re-
sults we report results with bottom, middle and top adapters. As before, for a fair comparison we use top
adapters for all other approaches. As seen in the above table, our parameter efficient adapters can closely
match full fine-tuning performance across all environment suites and architectures. Most noticeably, for
both Franka-Kitchen and RGB-Stacking tasks, our use of adapters is able to exactly match (average differ-
ence in performance < 2%) the performance derived from full fine-tuning (Full FT). While there exists
a slightly larger gap for the metaworld environments – average performance difference ≈ 6%. How-
ever, compared with directly utilizing the fixed pretrained features, we see a huge performance increase
of around 30% averaged over all tasks and architectures. In addition to the average results, Table 6.2 also
shows that there exists a performance increase across all architectures. Our results clearly show that the
features derived from visual pretraining are quite useful and inserting few additional adapters allows us
to achieve close to optimal performance without sacrificing any of the previously learned abilities of the
pretrained vision models.

6.5.2 Effects of Adapter Locations & Different Pretrained
Representations

We investigate the effect of inserting adapters in each of the different network layers (see Subsection 6.3.2).
Figure 6.5 shows results for inserting adapters in each network layer for RGB stacking suite (see Ap-
pendix 9.4.3 for results across all suites). We split each network plot above into two parts – 1) without
using top layer adapters (i.e. directly using a linear policy head), and 2) using a top layer adapter (i.e. using
2 additional MLPs before the linear policy head).

From Figure 6.5 we see that without top layer adapters (greyed out left plots) the performance for all meth-
ods decreases – more so for fixed pretrained features. As seen above, top adapters are crucial, e.g., not using
top layer adapters almost halves the control performance across all different architectures. Figure 6.5 also
shows that bottom adapters alone can give a significant performance boost (almost 2× than Pretrained

74

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

MetaWorld RGB-StackingFranka-Kitchen

Figure 6.6: Results with different pretraining initializations (for 3 different models) all 3 environments – NFNet
with CLIP, ResNet with BYOL and ViT with MAE. Bottom Left: points plots performance of fixed
pretrained features with top adapters. Top Right: points plot full fine-tuning performance (with top
adapters). Solid Lines: indicate adapter performance with adapters first added to bottom and then mid-
dle layers.

Feat. with top adapters). Since bottom adapters for conv-net architectures have very few parameters (a
few thousand see Table-6.4), this performance increase is not merely a function of more parameters and
thus shows the need for better adaptation of pretrained visual features. Overall, best performance is often
achieved when using all top, middle and bottom adapters together. Since previous works [126, 184] only
consider adapters in middle sections, our results show the benefits of bottom/top adapters for control
tasks.

Adapters with Different Pretrained Representations: We now show that our proposed adapters
give similar benefits with pretrained weights obtained from vastly different pretraining (pretext) tasks.
For NFNet we use CLIP pretraining [179], for ResNet we use BYOL [55] and for ViT we use masked
auto-encoder (MAE) [61]. Figure 6.6 plots the result for each of these architectures across all three task
suites. The X-axes shows the number of train parameters (see Table 6.4). The bottom left points in each
of the above plots indicate the performance of fixed pretrained features. While top right points show full
fine-tuning’s performance. On the other hand, the solid lines indicate the performance improvements on
inserting bottom and middle adapters (top adapters are used for all approaches). As seen in Figure 6.6,
for all tasks and pretrained weights adapters are able to closely match the performance of full fine-tuning
approach, while only registering a very marginal increase in the number of trainable parameters.

Additionally, comparing MetaWorld results in Figure 6.6 (Left) and Table 6.2 we see that while there ex-
ists a minor gap between adapters and full-FT with imagenet-supervised weights≈ 6%, this gap reduces
significantly for self-supervised pretraining weights. Somewhat similar results on the benefits of MAE
features for control were also observed in [251].

Additionally, similar to some previous works [180], we also find that CLIP pretrained weights (top adapters
only) can perform poorly. For instance, they get< 5% on RGB-stacking tasks. However, using adapters
the performance significantly improves≈ 50% and closely matches full fine-tuning performance. More-
over, the adapted representations match the performance of models known to be performant (e.g. MAE
[251]).

75

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

Triplet 1 Triplet 2 Triplet 3 Triplet 4 Triplet 5 Average

NFNet - Pretrained Feat. 0 0 0 0 0 0.0
NFNet - Scratch 0.02 0.02 0.01 0.16 0.04 0.05
NFNet - Adapters 0.18 0.14 0.16 0.47 0.23 0.24
NFNet - Full FT. 0.22 0.36 0.15 0.76 0.26 0.35
NFNet - Pretrained Feat. (DR) 0.00 0.02 0.0 0.06 0.03 0.02
NFNet - Adapters. (DR) 0.38 0.40 0.38 0.88 0.64 0.53
NFNet - Full FT. (DR) 0.40 0.36 0.32 0.91 0.62 0.52
ViT - Adapters 0.04 0.08 0.04 0.24 0.12 0.10
ViT - Full FT. 0 0 0 0 0 0

Table 6.3: Sim2Real results for RGB-Stacking Task with and with-
out using any visual domain randomized (DR) data for
learning the manipulation task policy.

Bottom Middle Top Full

NFNet-f0 0.5K 0.4M 0.6M 71M
ResNet-50 6.9K 0.4M 0.6M 25M
ViT 0.74M 0.4M 0.9M 86M

Table 6.4: Number of parameters to be
learned for different adapters
as well as full fine-tuning.

6.5.3 Sim2Real Results
Finally, we investigate if large scale visual pretraining combined with our use of adapters can allow for
sim2real transfer. Prior works that utilize fixed pretrained vision models for real robot tasks often only
evaluate on tasks requiring simple motions (reach/grasp) and almost always train the policy on real robot
data [158, 219]. By contrast, we show results for sim2real transfer, i.e, we use no extra real-world robot
data. We use the more challenging RGB-stacking suite for evaluation. We evaluate sim2real transfer both
with and without using any visual domain randomization data. We report results using 100 rollouts for
each policy and object triplet.

Table 6.3 shows results for one conv- (NFNet) and transformer- (ViT) architecture. From the above
results we see that ViT based policies perform much more poorly compared to NFNet policies. For in-
stance, a fully fine-tuned ViT policy is completely unable to solve any task. We believe one reason for this
is the high learning capacity of transformer based models which allows it to quickly learn on the given
task and lose any prior information [249], thus making real world transfer challenging. However, using
adapters instead of fine-tuning is able to achieve non-zero performance. While the average performance
is poor 10%, it is able to achieve 24% success on the easier setting (triplet 4). Table 6.3 further shows
that NFNet based policies perform much better than ViTs across different training settings. For full fine-
tuning and adapter approaches NFNet policies can achieve 35% and 24% success rate, while training
from scratch only achieves 5% and fixed pretrained features do not result in any successes. Finally, we
also evaluate the NFNet policies using visual domain randomization data (DR rows). These policies
show much superior performance ≈ 53% for our adapters and full fine-tuning, and closely match the
policy performance in simulation.

6.6 Conclusion
In this work we propose the lossless-adaptation problem, i.e., we aim to adapt representations from large-
scale pretrained vision models for close to optimal manipulation task performance. We show that using
fixed representations by solely using top-adapters (as is common) can fail to achieve optimal task per-
formance especially for challenging manipulation tasks. To solve this we propose our parameter efficient
adapters. We show that that inserting these adapters at appropriate network locations can achieve close to
optimal downstream task performance (closely matching full fine-tuning performance). We show that

76

6 RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation

our results hold across 3 different manipulation suites, 3 different network architectures and multiple
different pretrained weights. Further, we show that adapters also allow for sim2real transfer, all while
maintaining the pretrained network’s original capabilities.

77

7 Multi-Resolution Sensing for
Real-Time Control with
Vision-LanguageModels

This chapter is based on [Saxena, Sharma, and Kroemer, 196].

Project page: https://mohitsharma0690.github.io/multi-res-real-time-control/

Abstract: Leveraging sensing modalities across diverse spatial and temporal resolutions can improve per-
formance of robotic manipulation tasks. Multi-spatial resolution sensing provides hierarchical informa-
tion captured at different spatial scales and enables both coarse and precise motions. Simultaneously multi-
temporal resolution sensing enables the agent to exhibit high reactivity and real-time control. In this work, we
propose a framework for learning generalizable language-conditioned multi-task policies that utilize sens-
ing at different spatial and temporal resolutions using networks of varying capacities to effectively perform
real time control of precise and reactive tasks. We leverage off-the-shelf pretrained vision-language models to
operate on low-frequency global features along with small non-pretrained models to adapt to high frequency
local feedback. Through extensive experiments in 3 domains (coarse, precise and dynamic manipulation
tasks), we show that our approach significantly improves (2× on average) over recent multi-task baselines.
Further, our approach generalizes well to visual and geometric variations in target objects and to varying
interaction forces.

7.1 Introduction
Performing robotic manipulation tasks in the real world often requires using sensing modalities at differ-
ent spatial resolutions. For instance, for peg-insertion, the robot can use a statically-mounted third-person
camera (low spatial resolution or global information) to reach close to the hole, use a wrist-mounted
first-person camera for finer alignment, and finally use proprioception and force-feedback for insertion
(high spatial resolution or local information). Additionally, each sensing modality can be utilized at a
different temporal resolution. For example, for coarse quasi-static subtasks (“reach hole”), using third-
person camera images at a low frequency can be sufficient. However, finer reactive subtasks (“insert peg”),
might require high-frequency force-torque feedback. Based on this insight, we propose a multi-resolution
(spatial and temporal resolution) sensor fusion approach for coarse quasi-static as well as precise reactive
manipulation tasks.

78

https://mohitsharma0690.github.io/multi-res-real-time-control/

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

action

Real-time control loop

Third person view

Multi-resolution policy

ResNet18
with FiLM

Pretrained
VLM

Policy
headTr

an
sf

or
m

er

Proprioception
Force-torque MLP

First person view

5 Hz

20 Hz

75 Hz

Coarse
manipulation

Precise
manipulation

Dynamic
manipulation

Generalization

75 Hz

“Pick men’s shoe”

C
ol

or

“Pick red block”

“Insert in black peg” “Insert in red peg”

“Instruction”

Sh
ap

e

“Pick women’s shoe”

In
te

ra
ct

io
n

fo
rc

es

Multi-resolution tasks

Figure 7.1: Our proposed approach uses sensing at different spatial and temporal resolutions for real time control of
coarse, precise and dynamic tasks while enabling generalization to novel visual features and interactions.

Multi-resolution sensor fusion can enable generalization to novel visual-semantic targets. For instance,
by utilizing global information from third-person camera images only for coarse localization and relying
on local information from in-hand cameras and force-torque feedback for finer motions, the policy can
learn to generalize to novel objects. Previous approaches to learning generalizable policies either require
extensive data collection [20, 73, 185] or rely on pretrained models [4, 79, 123, 179] for policy adaptation
[219]. However, such approaches typically utilize a single sensory modality, while others that incorporate
multiple sensors do not prioritize generalization [220]. In our work, we avoid extensive data collection
and instead leverage pretrained vision-language models in our multi-resolution approach to learning gen-
eralizable language-conditioned multi-task policies.

Although pretrained vision or vision-language models (VLMs) provide impressive generalization capa-
bilities and enable learning language-conditioned multi-task policies, using large VLMs can have certain
disadvantages. First, given their large size (e.g. Flamingo has 80B parameters [4]), they have slow inference
which makes them unusable for real-time closed-loop control which is necessary for reactive tasks. Sec-
ond, since pre-trained models are often trained on out-of-domain data, using them to solve in-domain
manipulation tasks (especially precise tasks) may require finetuning [207]. However, task-specific fine-
tuning can make models less robust with reduced generalization [249].

To overcome the above challenges of utilizing large pretrained VLMs for real-time control of reactive
tasks, we propose a framework that incorporates different capacity networks (that operate on different
sensing modalities) at different frequencies. Specifically, we use large pretrained VLMs with slow in-
ference at a lower frequency while small networks with fast inference at a higher frequency. Our low-
frequency pretrained VLMs operate on statically mounted third-person views and can provide global
coarse feedback (such as approximate object locations) that is usually only needed at a low rate. On
the other hand, we propose using small trained-from-scratch models with first-person camera views and
force-torque data to obtain the high-frequency fine-grained feedback necessary to perform precise and
reactive tasks. Further, to overcome the challenge of loss in generalization when finetuning pre-trained
VLMs, we freeze the pretrained VLMs to avoid losing their robustness and maintain their generalization
abilities. Overall main contributions include:

79

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

• a framework for learning generalizable multi-task policies that incorporates multiple sensory modal-
ities to capture global to local spatial information,

• combine sensor modalities at different frequencies to avoid bottlenecks and enable reactive control
which we show empirically is essential for dynamic tasks,

• comprehensive experiments across 3 domains (and 2 real-world tasks) that include coarse, precise
and dynamic manipulations tasks, and

• effective generalization across semantic task variations in both simulation and real-world.

7.2 Relatedwork
Vision-Language Pretrained Models for Robot Manipulation: Many prior works combine vision
and language for robotic tasks. While early works focus on tabula-rasa learning [144, 240, 246], more re-
cent works, use pretrained large language models (LLMs) and show efficient learning and improved gen-
eralization for robotics tasks [2, 51, 128, 132, 226]. Many recent works also combine large general-purpose
pretrained vision or vision-language models (VLMs) [4, 179, 225] for manipulation [148, 149, 158, 171, 207,
219, 234, 250, 266]. Our work is more closely related to these latter works in that we also use pretrained
VLMs for robot manipulation. Among these works, many works only use language for task-specification
and do not focus on the generalization provided by pretrained models [148, 149]. Additionally, other
works adapt the pretrained representation for the downstream task [207, 208, 250]. However, as we show
empirically, such updates lead to representation drift and a loss of robustness for the pretrained general-
purpose VLM. Hence, we propose not updating the pretrained representations. While [219, 234] use
frozen VLMs, [234] only uses pretrained VLM as an open-world object detector to get pixel targets for
the task at the first episode step. On the other hand, [219] uses the pretrained VLM with templated pick-
and-place actions for manipulation. By contrast, we use VLMs in our multi-resolution framework with
continuous feedback for reactive manipulation tasks.

Multi-Spatial Resolution for Robot Manipulation: Many prior works use multiple sensor modalities
for robot manipulation, wherein each modality operates at a different spatial resolution. For instance,
prior works often combine visual (low spatial resolution) and proprioceptive (high spatial resolution)
feedback [90, 120, 122], use wrist-mounted cameras for visual servoing [107, 163, 257] or for contact-rich
manipulation tasks [82, 152, 231, 244], while other works focus on combining vision and haptic sensing
[23, 45, 121, 124]. Our work is similar to the first set of works i.e. we use both third person and first person
cameras for precise manipulation. However, unlike most prior works [231, 244] which focus on single-
task settings, we focus on multi-task settings and fuse multiple sensing modalities at different resolutions.

Multi-Temporal Resolution for Robot Manipulation: Learning reactive policies requires the robot
to operate at high frequencies. Some recent works in robot manipulation focus on learning policies at
different temporal resolutions. For instance, [160] decompose a manipulation task into different phases
(e.g. visual reaching phase and tactile interaction phase) and learn separate policies for each phase as
well as a blending policy. While [227] avoid the discrete formulation of an MDP and instead learn a
continuous differential equation [50, 97] to model the low resolution features. By contrast, we use the

80

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

“Pick block”

Vision
Language

Model

ResNet18

Film
conditioning

M
LP

x3

x3

2-
la

ye
r

M
LP

Se
lf

A
tte

nt
io

n

C
ro

ss

A
tte

nt
io

n

Proprioception
Force-torque

5 Hz

20 Hz

75 Hz
MLP

Third person view

First person view

Se
lf

A
tte

nt
io

n

M
LP

C
ro

ss

A
tte

nt
io

n

actions

Figure 7.2: Overall architecture: Global low frequency information is extracted from third-person camera images
using slow inference networks, local high frequency information is extracted from first-person camera
images and proprioceptive, force-torque feedback using fast inference networks. These sensing modal-
ities are then fused at different frequencies to enable real time high frequency control.

discrete formulation and instead of decomposing policies into different phases we reuse features from
low-resolution signals while operating at a high temporal resolution.

Dynamic Reactive Manipulation: Many prior works in robot manipulation focus on quasi-static
tasks [20, 51]. However, there has been increased interest in solving tasks that are reactive and dynamic in
nature [154, 195, 216]. Previous works focus on explicitly learning the dynamics [195] or using analytical
models [216, 221] of such systems for achieving reactivity. These works often assume access to the ground
truth object pose and are limited to a single-task setting. In our work, we learn how to perform such
dynamic and reactive tasks using visual inputs in a multi-task setting.

7.3 Proposed Approach
In this section, we discuss our approach for learning a generalizable language-conditioned multi-resolution
multi-task policy for precise and reactive manipulation tasks. Below, we provide details on how we uti-
lize different sensing modalities and then delineate our training/inference and discuss how our approach
enables real time control for reactive tasks while generalizing to novel tasks.

7.3.1 Multi-Resolution Architecture
Figure 7.2 shows the architecture of our multi-resolution approach. Our model takes as input multiple
sensing modalities with different spatial resolutions, i.e., statically-mounted third-person camera view,
first-person camera view and high frequency force-torque feedback. Each input is first processed sepa-
rately before being fused together at different temporal resolutions to output high frequency robot ac-
tions. Below we expand on each component of our architecture.

81

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

Low-Spatial Resolution Model: We use a low-spatial resolution sensor (third-person camera) to pro-
vide global task information to our agent. We use pretrained visual-language models to extract this global
information from third-person views as well as to enable language-conditioning in a multi-task setting.
Such pretrained models enable generalization to novel semantic features such as new objects or novel lan-
guage commands. However, to ensure the pretrained model maintains its robustness we keep it frozen.
However, using large VLMs to extract this generalizable global information comes with the drawback
that the inference speed is very slow (≈ 5Hz). We experiment with two models CLIP [179] and MDETR
[91] (language-conditioned DETR [26]), which use image-level and object-level information respectively.

High-Spatial Resolution Model: To ensure reactivity in the face of slow inference of pretrained VLMs,
we use a smaller non-pretrained vision model (ResNet-18) [63] to process the first-person camera view at
a higher frequency (≈ 20Hz). This view provides us with high-resolution local spatial information. To
provide appropriate task-context to the first-person view we use small FiLM layers [176] for language
conditioning. We train this model from scratch with augmentations (explained in the next paragraphs)
to extract local spatial features that are useful for precise tasks. While using a small vision model enables
faster processing it can still be insufficient for some highly dynamic tasks. Hence, we process the force-
torque feedback and proprioceptive information at a much higher frequency (≈ 75Hz) using a small
linear layer.

Multi-Resolution Sensor Fusion: We combine local and global sensing information (spatial resolu-
tions) mentioned above at different temporal resolutions based on the capacities of the respective net-
works. Specifically, we reuse features (network activations) from lower frequency (third-person and first-
person views) networks to match the frequency of the highest frequency (force-torque feedback) net-
work. Doing this ensures that the policy network outputs actions at a high frequency (equal to the fre-
quency of the force-torque feedback network), thus enabling real-time control.

In addition to temporal-sensor fusion we also spatially fuse local and global sensing information, i.e, we
fuse information extracted from third-person views with first-person view information and vice-versa.
We achieve this using two small camera-specific transformers together with cross-attention. Each trans-
former uses self-attention within each modality (for its associated camera view) and cross-attention with
the other modality (other camera view). As shown in Figure 7.2, we readout the CLS token from each
transformer and concatenate them with the force-torque and proprioception embedding. This concate-
nated embedding is then processed using a 2-layer MLP policy head to output the robot actions.

Data Augmentations: Data augmentations have been shown to be helpful for single-task learning of
manipulation tasks [117, 231]. However, naively using image augmentations can be detrimental for learn-
ing generalizable multi-task policies. This is because pixel-level augmentations, such as color-jitter, grayscale
etc., can result in semantic changes in the overall scene. Such semantic changes can lead to mismatch be-
tween the input image and language instruction provided for the given task. For instance, a demonstra-
tion shows “move to red block” but pixel augmentations can change the red block’s color. To avoid this
while being able to utilize the benefits of augmentations we propose to use two different sets of augmen-
tations. First, for third-person cameras we only use image-level augmentations (e.g. random crops, shifts).
This avoids mismatch between image-and-text instructions and allows visual-language grounding from
pretrained VLM to be utilized. Second, for first-person camera we use both image-level and pixel-level
augmentations (color-jitter, grayscale). Since these augmentations lead to image-text mismatch this fur-

82

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

Pickup Blocks

Insert Blocks

Square Insert Pick & Lift Small

Shape Sort Take USB Out

MT-Coarse MT-Precise MT-Dynamic Real-World

Figure 7.3: Task settings for evaluating our proposed approach. Left: Precision tasks. Middle-left: Dynamic tasks.
Middle-right: Coarse tasks. Right: Real world pick and insertion tasks.

ther enforces our agent to use the third-person camera view for coarse localization, while only relying on
the in-hand view for finer precise motions. Using strong pixel-level augmentations on first-person view
further make the in-hand model invariant to texture but rely more on edges and corners [229]. This, as we
show empirically, improves the generalization performance of our model on heldout object variations.

Training and Inference: We use behavior cloning from expert demonstrations to train our model. We
record data from each sensor at their respective frequencies. Specifically, camera images are recorded at
30 Hz and force-torque feedback at 250Hz. To match slower processing times of larger models during
inference we sub-sample the third-person camera images to 5Hz and first-person camera images to 20Hz.
We use AdamW [101] optimizer with learning rate 1 × e−4 and weight decay 0.01. We train our model
for 60 epochs, using a linear warmup, starting with learning rate 0, for 5 epochs and then decay the
learning rate using a cosine-scheduler. We use a GTX-1080Ti for inference. Overall our architecture has
≈ 250M parameters. The pretrained vision-language model has ≈ 150M parameters (for MDETR)
with an inference time of ≈ 0.1 seconds. The first-person camera model has ≈ 25M parameters with
an inference time of 0.04 seconds. Finally, the force-torque and proprioception model along with the
policy head have a total of≈ 250K parameters with an inference time of≈ 0.005 seconds. This allows
the actions to be inferred at a max frequency of≈ 200Hz although we use it at a reduced frequency of
≈ 75Hz which was sufficient for our tasks.

7.4 Experimental Setup
We first identify the key research questions that we aim to evaluate:

Q1: How does multi-spatial resolution sensing benefit learning language-conditioned multi-task (MT)
manipulation polices for precise tasks? Specifically, we aim to evaluate the utility of multi-spatial resolu-
tion sensing for tasks that involve visual occlusions, partial observability, and precision.

Q2: How does multi-temporal resolution sensor fusion benefit learning reactive manipulation tasks?
Specifically, we evaluate how our architecture enables closed loop control for reactive tasks.

83

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

Frozen

Ours

VLM

ResNet18

MLP

SA
+

CA

I3

Ih

FT

Finetuned

2-
la

ye
r M

LP

VLM

MLP

SA
I3

FT 2-
la

ye
r M

LP

I3-only

Lang Lang

VLM

MLP

SA
+

CAIh

FT

M
LP

“Instruction”

VLM

Robustness baselines

Temporal resolution baselines

Mention frequencies in the arrows

I3 SA
+

CA
ResNet18

ResNet185 Hz

5 Hz

5 Hz Ih

FT

“Instruction”

I3 20 Hz

20 Hz

20 Hz
Ih

FT

“Instruction”

Robustness baselines

I3
SA

M
LP

5 Hz

75 Hz

20 Hz

FT

“Instruction”

I3 5 Hz

75 Hz

ResNet18

Oursπlow-res πhigh-res πI3-Frozen

M
LP

MLP

SA
+

CA

M
LP

MLP

VLM VLM

MLP

Figure 7.4: Temporal resolution and robustness baselines used to compare our multi-resolution approach.

Q3: How well does our approach generalize to tasks with novel visual-semantic targets? Specifically, we
evaluate our approach’s robustness to distribution shifts, e.g., object colors and geometries.

7.4.1 Environments
To evaluate the above questions we use three task settings, 1) MT-Precise: Precise manipulation tasks, 2)
MT-Dynamic: Dynamic manipulation tasks, and 3) MT-Coarse: Coarse table-top manipulation tasks.
Below we detail each environment and discuss its usage to answer above questions.

MT-Precise For precise manipulation we use 4 spatial precision tasks from RLBench [72] (see Figure 7.3
(Left)) – square block insertion, pick up small objects, shape sorting, and unplug usb. We use this task
domain to answer Q1. Specifically, we evaluate the need for multi-spatial resolution sensing in manipu-
lation tasks that require precise feedback and have partial observability, i.e., objects can go out of view of
the first-person camera.

MT-Dynamic: We use the CMU ballbot [157] platform to perform dynamic pickup tasks in simulation
(Figure 7.3 (Middle-Right)). We choose ballbot since it is a highly dynamic robot with an omnidirectional
base (ball) capable of performing fast, reactive and interactive tasks. We consider the task of dynamically
picking up an object, which requires quick reaction to contact with the object and grasping it to prevent
toppling the object over. We use this setting to answer Q2.

MT-Coarse: We consider a canonical table-top manipulation setting ([258, 267]) involving coarse pick-
and-place manipulation tasks with diverse objects – blocks, shoes, mugs, cylinders. We use this environ-
ment to answer Q1 and Q3. Specifically, for Q1 we contrast these coarse manipulation tasks with high
precision tasks to evaluate the utility of multi-spatial resolution sensing.

Real-World Setup: We evaluate our approach on two real-world tasks. For precise manipulation (Q1)
we use an insertion task to insert different blocks into cylindrical pegs (Figure 7.3 (Right top)). We also
evaluate generalization abilities (Q3) using a pickup task, wherein we use 2 train objects and evaluate the
learned policy on 8 objects with different geometry (shape, size) and visual (color, texture) features.

7.4.2 Baselines
We compare our approach against recent methods which focus on learning generalizable policies in multi-
task settings. We compare against RT-1[20] which proposes a transformer based policy and also against

84

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

Figure 7.5: Example failure case for MT-Dynamic (Ballbot) task. As can be seen in the figure, if the robot ap-
proaches the object but does not react fast enough to the object contact, the block can topple resulting,
in task failure.

BC-Zero [73] which uses language conditioning using FiLM [176]. However, both [20, 73] focus on
coarse manipulation tasks and operate at a single-resolution (both temporal and spatial). To the best of
our knowledge no prior work focuses on a multi-resolution approach for multi-task learning. Hence, to
highlight the benefit of each component of our approach and answer the questions posed in Section 7.4
we modify our approach along different axes and propose additional baselines below.

Spatial Resolution baselines: To verify the utility of multiple spatial resolutions (Q1) we modify our
approach and remove one sensory modality at a time. We use π−Ih, π−I3, π−FT to refer to policies which
remove first-person (hand view), 3rd person view and force-torque respectively.

Temporal Resolution baselines: To answer Q2 we compare against single temporal-resolution ap-
proaches (Figure 7.4 (Left)), i.e., where all modalities (including force-torque) operate at the same fre-
quency. We introduce two baselines, 1) πhigh-res : small models with fast inference for both cameras
(20Hz), and 2) πlow-res : larger models with slow inference for both cameras (5Hz).

Robustness baselines: We compare visual-semantic generalization ability of our approach (Q3) against
two baselines (Figure 7.4 (Right)): 1)πmulti-res-FT: Finetune the pretrained VLM model, 2a)πI3-Frozen: Uses
only third-person camera (and force-torque) and keeps the pretrained model frozen. 2b)πI3-FT: Uses only
third-person camera (and force-torque) but finetunes the pretrained model.

Metrics: We use task success as the evaluation metric and report mean success over all tasks. During
training, we evaluate the policy every 4 epochs and report average over top-5 mean success rates across
all evaluation epochs. For task generalization (Q3) we evaluate the train policy on novel visual-semantic
tasks not seen during training. For all evaluations we use 20 rollouts per task.

7.5 Experimental Results
First, we evaluate the effectiveness of our multi-resolution approach against common multi-task baselines,
RT-1[20] and BC-Zero[73]. We then present results for each research question. For qualitative results see:
https://sites.google.com/view/multi-res-real-time-control.

85

https://sites.google.com/view/multi-res-real-time-control

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

MT-Coarse MT-Precise MT-Dynamic

RT-1 81.0 12.5 4.5
BC-Z 74.1 7.8 4.8
Ours 82.0 55.0 73.6

Table 7.1: Task success comparison for multi-task baselines across all task domains.

7.5.1 Comparison toMulti-Task Baselines
Table 7.1 shows the results for the multi-task baselines RT-1[20] and BC-Zero[73] across all task We note
that for coarse manipulation tasks (MT-Coarse) these baselines, that use single camera views, can per-
form quite well. This is because these tasks only require coarse localization of the target object for task
completion. However, for precise manipulation tasks (MT-Precise), such baselines perform quite poorly
since these tasks require fine-grained grasping (as many objects are≈ 1cm in size) and insertion for suc-
cessful task completion. domains. On the other hand, our multi-resolution approach, performs much
better as it uses the first-person camera view and force-feedback for finer grasping and insertion. For dy-
namic tasks (MT-Dynamic), our method considerably outperforms the baselines (1.5x). This is because
dynamic tasks require reactive response to contact events. Only our multi-temporal resolution approach
utilizes high spatial and temporal resolution sensing, enabling fast response to contact events.

7.5.2 Additional Baseline Comparisons
Q1 – Spatial Resolution Experiments: We now compare against the spatial resolution baselines dis-
cussed in Section 7.4.2. For this set of baselines all methods use multi-temporal resolution sensing with
high-frequency force-torque feedback. Table 7.2 shows results across all task settings. For MT-Coarse we
see that only using a first-person camera (π−I3) performs poorly. This is because of partial observability
in this view, i.e., the target object can be out of view and lead to task failure. On the other hand, for
MT-Precise (Row 2), only using first-person camera (π−I3) performs better (≈ 2×) than using only the
third-person camera (π−Ih). This is because MT-Precise tasks require finer motions which are hard to
perform from low spatial resolution (third-person) view only. Further, for dynamic tasks (Row 3), using
first-person views alone again suffers because of partial observability.

Q2 – Temporal Resolution Experiments: Table 7.3 compares against single-temporal resolution base-
lines (πlow-res and πhigh-res). Table 7.2 shows that for coarse and precise domains single-resolution perform
as well as our multi-resolution approach. This is because tasks in both domains are quasi-static and hence
fast reaction to contact events is not critical for task success. On the other hand, for dynamic tasks (Ta-
ble 7.2 bottom row), since fast response to contact events is necessary (to avoid failures such as object top-
pling, see Figure 7.5 Appendix) our multi-resolution approach performs better than both πlow-res (5Hz)
and πhigh-res (20Hz) since it incorporates force feedback at 75Hz.

Q3 – Robustness Experiments: Table 7.4 compares results (train / heldout) for visual-semantic gener-
alization against the robustness baselines in Section 7.4.2. As noted previously, for these experiments we
evaluate the trained policies on heldout environments. We note that our approach, with frozen pretrained

86

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

π−Ih π−I3 π−FT Ours

MT-Coarse 74.5 41.0 81.8 82.0
MT-Precise 7.7 29.6 56.1 55.0
MT-Dynamic 65.8 27.5 33.2 73.6

Table 7.2: Results for multi-spatial resolution experi-
ments (Section 7.5.2). Here, − implies that
we remove this input from policy. Thus,
π−Ih implies that the policy only operates
on third-person camera views and force-
torque feedback.

πlow-res πhigh-res Ours

MT-Coarse 82.0 81.0 82.0
MT-Precise 53.4 56.2 55.0
MT-Dynamic 4.2 12.2 73.6

Table 7.3: Results for multi-temporal resolution ex-
periments (Section 7.5.2). Here, both
πlow-res and πhigh-res are single-resolution
approaches which run at 5 Hz and 20
Hz respectively, while ours is a multi-
resolution approach.

πI3-Frozen πI3-FT πmulti-res-FT Ours

MT-Coarse (Visual) 74.5 / 7.1 81.8 / 25.8 82.4 / 45.6 82.0 / 72.3
MT-Coarse (Geometry) 44.2 / 16.8 56.4 / 18.4 60.7 / 31.9 58.9 / 44.6
MT-Precise (Visual) 7.7 / 4.5 15.6 / 9.2 56.4 / 31.9 55.0 / 48.1

Table 7.4: Robustness experiment results, each cell shows train/heldout success rate (Section 7.5.2)

model, generalizes better than the finetuned model πmulti-res-FT. This shows the ability of our approach to
maintain the generalization capabilities of the pretrained VLM as compared to the finetuned model that
suffers from ’forgetting’ and representation drift towards the training tasks. Additionally, from column-1
and column-2, we again note that the finetuned πI3-FT model suffers a larger decrease in performance as
compared to πI3-Frozen. Finally, comparing πI3-FT against πmulti-res-FT, we see that even with finetuning our
multi-spatial resolution approach generalizes better because it can utilize first-person views for improved
task success.

Real-World Experiments: We evaluate our approach in the real-world on two tasks, pickup and peg-
insertion [263]. Table 7.5 shows comparison against the spatial resolution baselines. We note that our
approach, with multi-spatial resolution, performs≈ 3× better than the baselines on both tasks.

We see that given limited demonstrations bothπ−I3 andπ−Ih fail to perform well (across both tasks). On
the other hand, removing force-torque feedbackπ−Ih only affects performance on insertion task (≈ 20%
less) since this task relies more on contact feedback. Additionally, Figure 7.6 (c) figure plots the robustness

π−Ih π−I3 π−FT Ours

Pickup 7.5 (3.5) 20.0 (14.1) 67.5 (3.5) 75.0 (7.0)
Peg-Insert 10.0 (0.0) 12.5 (4.6) 42.5 (3.5) 67.5 (3.5)

Table 7.5: Mean (stdev) results (using 2 seeds) for multi-spatial resolution for real world tasks.

87

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

0

20

40

60

80

100

Train Heldout

Ta
sk

 S
uc

ce
ss

No Augmentation No Cross-Attention
No Pre-Trained VLM Ours

0

20

40

60

80

100

Full Finetuning Ours

Ta
sk

 S
uc

ce
ss

(a) Ablation results
(c) Robustness results (Q3) for

real-world Pickup

0

20

40

60

80

Train Heldout

(b) Ablation results using
pre-trained CLIP model

Figure 7.6: Left: Ablation results (see Section 7.5.3). Right: Robustness result for real-world pickup.

result for pickup task. As before we see that our approach with frozen model performs better. See website
for qualitative results.

7.5.3 Ablations
For these set of results instead of using all 3 environment suites for evaluation, we choose the most ap-
propriate environment suite for each component of our approach and evaluate on it.

Pixel-Level Augmentations: We evaluate the effect of pixel-level augmentations (color jitter, gray-scale)
on the training and generalization of our MT-policies on MT-Coarse. Figure 7.6 reports results on both
training and heldout (novel) evaluation configurations. We see that while there is very little difference
in training performance, extensive pixel-level augmentations helps generalization by close to ≈ 15%.
While pixel-level augmentations change the semantics of the task, our multi-modal approach is still able
to complete the task because of visual-language grounded provided from pretraining.

Multi-Modal Fusion using Cross-Attention: We compare use of early fusion using cross-attention
with late fusion using concatenation. Figure 7.6 shows that using cross-attention improves the perfor-
mance by around≈ 8% on both train and heldout configuration. Thus, using cross-attention for multi-
modal fusion is more effective than concatenation. However, we note that cross-attention requires more
parameters and has slower inference.

Effect of Pretrained-VLMs: We also evaluate the effects of using pretrained-VLMs. Figure 7.6 shows
the training and heldout performance using ImageNet initialization which only has visual pretraining and
no vision-language pretraining. We see that while training performance matches our approach the held-
out performance decreases tremendously. This large decrease is due to missing visual-language grounding
since we use separately trained visual and language models.

Real-World Temporal-Resolution Comparison: We also ablate the effect of temporal resolutions on
real-word robot performance. Specifically, we evaluate single temporal-resolution approaches (πlow-res)
and πhigh-res for the peg-insertion task in the real-world. As before, to evaluate the learned policy we run
each episode for a fixed duration of 60 seconds. However, we use early termination if the episode is
solved successfully or the robot violates the desired workspace. Table 7.7 shows our results. Given that

88

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

Setup BC-Z [73] RT-1 [20] Ours

Train 12.5 0.0 75.0
Eval 5.0 0.0 71.1

Table 7.6: Real-World results for using
commonly used imitation learning
(single-spatial resolution baselines)
for Pickup task.

πlow-res πhigh-res Ours

RealWorld - PegInsert 45.0 62.5 67.5

Table 7.7: Additional Results for multi-temporal
resolution experiments. As before, both
πlow-res and πhigh-res are single-resolution
approaches which run at 5 Hz and 20
Hz respectively, while ours is a multi-
resolution approach.

the insertion task is not dynamic, πhigh-res performs similarly to our approach. However, by comparison,
(πlow-res) performs much more poorly (45% only). This is because a low-temporal resolution policy is not
very reactive and hence doesn’t respond fast to contacts made with the wooden peg. Thus, it is often
unable to find the appropriate location to insert the block into the wooden peg. This can also be seen
from qualitative videos (see success and failure videos), where both success and failure scenarios are much
less reactive.

Temporal-Resolutions: Finally, we also ablate the temporal frequencies for the MT-Dynamic tasks.
We ablate the effect of using camera inputs at low-resolution (third-person and in-hand camera inputs at
5Hz) while only force-torque feedback is used at high-resolution (75Hz).

πlow-res-high-FT Ours

33.4 73.6

Table 7.8: Results using low-
temporal resolutions
for camera-inputs
(5Hz) and high-
temporal resolutions
for force-torque
(75Hz).

Table 7.8 below shows our results. From the table below, we ob-
serve that the performance on MT-Dynamic tasks drops significantly
when using the camera views at a very low temporal resolution. From
our qualitative observations we note two common failure cases. First,
where the ballbot is sometimes unable to reach the block to pick up.
This is because, due to latency in the camera inputs (5 Hz), the policy
outputs sub-optimal actions. Upon receiving updated camera inputs
the policy tries to correct the trajectory. The overall resulting trajectory
is noisy and fails to reach the target object. Second, again due to camera
latency, the end effector does not align well with the target object and
ends up toppling the object while trying to grasp it.

7.6 Conclusion and Limitations
Our work proposes using sensing modalities at multiple spatial and
temporal resolutions for learning multi-task manipulation policies. Our multi-resolution approach cap-
tures information at multiple hierarchies and allows the robot to perform both coarse and fine motions
with high reactivity and real-time control. To learn generalizable multi-task policies we further leverage
off-the-shelf pretrained vision-language models and freeze them to maintain their robustness. Our work
has several limitations. While our proposed framework is general for multi-spatial sensing we only rely on
global third-person camera and local first-person camera view. Further local sensing using vibro-tactile

89

https://youtu.be/mr15ELGZbFs
https://youtu.be/WlIM5fx5Zo4

7 Multi-Resolution Sensing for Real-Time Control with Vision-Language Models

sensors [255, 260, 264] was not explored. Further, it is unclear if our approach of using cross-attention
for sensor fusion will be optimal for more than 2 sensors. Additionally, while our multi-resolution policy
allows us to learn robust policies not all sensing modalities will be available for all tasks. Thus, future
work should explore adapting to scenarios with missing sensing modalities.

90

8 Conclusion and FutureWork

8.1 Conclusion
Reusing knowledge learned from solving previous related or unrelated tasks to solve new tasks is a hall-
mark of human intelligence. In this thesis, we investigate different ways of reusing knowledge, in the
form of representations, to perform new robot manipulation tasks. These representations were provided
either as an inductive bias in the policy form or learned in a data-driven manner.

In Part-I of this thesis (Chapter 2 - Chapter 4) we focused on policy representations. As our policy rep-
resentation, we proposed parameterized object-centric task-axes controllers (Chapter 2) which provide
a geometric object-centric action abstraction for the robot agent. There are many advantages of this ab-
stract action representation. First, it uses a compositional object-centric representation which makes it
amenable to transfer to new tasks. Second, the geometric nature of task-axes controllers ensures that the
learned policy is robust to many task-agnostic variations in the scene. Finally, these action representations
allow the robot to learn robust policies for manipulation tasks efficiently in the real-world.

In the final chapter (Chapter 4) of Part-I we focus on using parameterized skill representations for lifelong
learning of manipulation tasks. Our work relaxes prior works’s assumptions on skill and task representa-
tions, enabling planning with more diverse skills and solving new tasks over time.

In Part-II of this thesis (Chapter 5 - Chapter 7) we focused on reusing visual representations for robot
manipulation tasks. These visual representations are learned in simulation (Chapter-5) or learned from
offline pretrained visual representations ((Chapter-6, Chapter 7). In Chapter 5 we directly use simulation
trained 3D representations for learning skill preconditions. While Chapter-6 and Chapter 7 focus on
using web trained visual representations. We show how directly using web-trained visual representations
can be sub-optimal for moderately challenging manipulation tasks. Further, we show how adapting these
representations via neural-adapters (Chapter-6) or by using additional sensory modalities (Chapter-7)
can lead to much improved downstream robot manipulation performance.

8.2 Future Outlook
In this following sections, I briefly discuss some broad future ideas. While there are many ideas to pursue,
I currently believe that scaling robot learning presents the most exciting and promising opportunities to
improve real-world robots.

91

8 Conclusion and Future Work

8.2.1 Benchmarking Policy Representations via Generative
Simulations

In addition to reusing policy representations for learning new tasks we need to be able to share (deploy)
our policy representations. However, sharing (or deploying) policies on robots that operate in the real-
world is challenging due to safety considerations. To safely deploy our policy representations and reuse
them in completely novel settings requires us to provide some guarantees or benchmarks on the per-
formance of our policy representation. However, exhaustively benchmarking policies in many different
real-world settings is challenging. This is because creating many diverse settings in real-world is infeasible.
By contrast, physics simulators provide an efficient scalable alternative to this problem.

Physical simulators allow us to efficiently create novel scenarios with ease. Being able to efficiently gener-
ate many different scenarios allows us to benchmark our policy across many kinds of distribution shifts.
However, simulations often bring their own set of challenges. First, simulations require appropriate 3D
assets, which have always been a bottleneck. Uptil recently, large scale 3D asset datasets such as ShapeNet
[28] have been severely limited. However, recent efforts such as CO3D [186] or Objaverse [38] provide a
larger variety of 3D assets.

Besides large scale 3D assets, another issue with using simulators to benchmark policies is that creating
simulations in the first place is still expensive. It requires considerable amount of user time as well as use-
ful understanding of the underlying physics (e.g. contact dynamics, dynamics parameters). While this is
insignificant for small scale simulations, this can be a bottleneck for creating large-scale simulation scenar-
ios for benchmarking policies. However, given the impressive ability of large language models (LLMs)
to generate code [191], utilizing LLMs to generate simulation scenarios is a plausible solution. Further,
the common sense reasoning embedded in LLMs can be used to generate counterfactuals to robustly
benchmark our policy representations.

8.2.2 Scaling Data for Robotics
Past few years have repeatedly demonstrated that data underlies the biggest wins within the wider ma-
chine learning community. Be it language, vision or robotics, large amounts of data has widely surpassed
existing approaches in all of these fields. However, while language data is widely available on the internet
and there is an increasingly large amount of visual data (e.g. YouTube), we do not have such data luxury
in robotics. In fact, in robotics, we largely operate in data sparse settings.

Very recently, wide-scale community efforts [167] have focused on pooling large amounts of imitation
learning data often collected in different academic and industrial labs. Such community efforts to crowd-
source data will be crucial to scale robotics data. However, given that individual datasets are often col-
lected in very limited lab settings, it is unclear if they provide sufficient diversity. One solution to this
problem is to be able to provide useful robots to end-users. These end-users can take these robots home
and collect data with them. However, such useful robots will need to have some basic skills and therein
lies a chicken-and-egg problem. Recent efforts on building hardware for scaleable data collection and
large scale robotics industry efforts (Tesla’s Optimus, 1X, Figure), focus on similar problems and provide
some glimmer of hope.

92

8 Conclusion and Future Work

7

!!"#$$ "#$$%"" = 1)*"+)

-*)*	("$%/*012")

Current policy
performance

!!"#$$ "#$$%"" = 1)*"+)

-*)*	("$%/*012")

New policy
performance

AdaptationPolicy

Pretrained policy
performance

Figure 8.1: How can we robustly adapt pretrained policies that have been finetuned with narrow data?

While real-world high quality data collection is important, alternative approaches to scale robotics data
will become increasingly important. For instance, real2sim which uses scaleable simulations to collect
increasingly large amounts of data. Alternatively, being able to utilize video datasets to bootstrap policy
representations can provide useful avenues for future research. These approaches can focus on imputing
the missing action labels in the video datasets, or extracting (building) structured policy representations,
such as our task-axes controllers (Chapter 2), from them. These extracted structured policy representa-
tions can then be used to interact with the real world and autonomously collect larger datasets for further
scaling.

8.2.3 Fast Real-World Adaptation
Fast adaptation (Figure 8.1) in the real-world is crucial for robotics. Reusing knowledge such as our task-
axes controllers or using data-driven pretrained representations (Chapter 5 - Chapter 6) allow for fast
adaptation in the real-world. However, each of these methods have their own set of limitations. For in-
stance, [209] (Chapter 3) still requires few hours of trial and error learning. On the other hand, [212]
(Chapter 5) requires collecting hundreds of data items (demonstrations, precondition learning data) for
downstream tasks. Removing these limitations presents many opportunities for future research. As an
example, learning from trial and error in the real-world, which often happens using reinforcement learn-
ing (RL) can be significantly improved. Data-driven priors such as proposing useful sub-goals, or which
task-specific objects to interact with, or which controllers (low-level interaction policy) to use for certain
sub-tasks can significantly reduce the exploration space of the robot agent. Alternatively, model-based
approaches also provide an important and useful avenue for fast real-world adaptation [94].

93

Part IV

Appendices

94

9 Appendices

9.1 Appendix - Relational Learning for Skill
Preconditions

9.1.1 Generating Pairwise Interactions in Simulation
To position the referrant object in the scene we sample a location (x, y, z) around the anchor object
such that the distance between the anchor and referrant objects is less than 0.5 meter. We assume that
the referrant object will be upright and hence to set its orientation we rotate it only around the Z-axis
between [−pi/6, pi/6] radians. To set the size of both the anchor and referrant objects we randomly
sample each object dimension from [0.04m, 0.20m]. To save the voxel representation for each pairwise
scene we set the voxel size to 0.01m. To perform the local perturbation actions we use a virtual robot
which can move an object around. Our virtual robot consists of prismatic joints which allow it to move
along the XYZ axis and revolute joints to rotate around them. We use a spring-damper system to control
these joints. For the prismatic joints we setK = 100N/m andC = 10Ns/m, while for revolute joints
we useK = 10N/m andC = 3Ns/m.

9.1.2 Experimental Setup
Figure 9.1 shows our setup to collect real world data and perform skills based on the learned precondition
models. We have 5 cameras mounted near the robot’s workspace that allow us to create a full 3D scene.
To create the 3D scene we collect point cloud data from all the cameras and project them onto a common
frame. We finally use volumetric tsdf integration [34] to fuse all of the point clouds together.

Input Format. The input to our object relation mdoel and the baselines is of size (C, 100, 100, 100),
whereC is the number of channels. We next detail the exact input format for both the baseline and object
relation model.

Visual Baseline. Since the input scene contains variable number of objects we use two different input
formats for our baseline methods. First, we only add masks for each object, i.e., each voxel is labeled
with a value of 1 if it is occupied by any object, while unoccupied voxels are labeled with 0. Thus, this
input format only requires one channel in its formulation. For our second input format we add another
channel to the input. This additional channel contains labels for each object in the scene. Thus, if a voxel
is occupied by i′thobject we label it with integer i. This input format consists of 2 channels. Additionally,
we found using colored voxel representations to be extremely noisy since many objects in our experiments
were quite close to each other.

95

9 Appendices

Figure 9.1: Experimental Setup with 5 cameras mounted around the robot arm. We combine the 3D point cloud
output from each camera to create a full 3D scene.

We next discuss some changes to the input format for each specific task. For the food cutting task we add
labels that represent the knife object and the food object if they are present in the scene. For all other
objects in the scene we add a separate distractor label. For the block unstacking task we use two different
labels. The block to be removed is marked by one label, while all the other objects in the scene use the
other label. As before, we experiment with object ids for each block. But for the block unstacking task
this method performed much worse and did not generalize at all when tested on a larger set of blocks.

Object Relation Model. The input to our object relational model frel consists of 3 channels, where the
first channel contains binary masks for both anchor and referrant objects. The second and third channel
contains the binary masks for the anchor and referrant object separately. When using the object relation
model on real world manipulation data we take the object masks of two objects i and j. We set i as the
anchor object and j as the referrant object. We transform the view such that the anchor object i is in
the middle of the scene and centered at (0, 0, 0). This is similar to the formulation used to train frel in
simulation.

9.1.3 Real2Sim Baseline
As shown in the main paper we evaluate our approach against the real2sim baseline. The real2sim baseline
we use the same voxel representations as used by our approach and other baseline methods. As the first
step to implement the real2sim baseline we need to import the voxel representations from the real world to
VREP [188]. Since these voxel representations do not conform to any fixed shape we cannot really import
these object representations directly. Hence we import each voxel for every object separately into VREP.
Thus each voxel is initially added as cuboid object. Once all the voxels of a given object are imported we
group them together to form one composite object. Once all the objects in a scene have been imported we
use it to test our preconditions. In addition to this, we also tried convex decomposition of the non-convex
object shapes, but we found this to be incredibly slow and inaccurate for our purpose.

96

9 Appendices

Since the VREP simulator does not support cutting we use the sim2real baseline only for the sweeping
objects in a line and block unstacking task. To verify the preconditions for the sweeping objects in a
line task we additionally add a virtual robot with a long cuboid attached to it. This robot consists of
prismatic joints which allow us to move in the XY Z axes. As before we use a spring-damper system to
move the robot. At the beginning of the task we move the robot to its start position. We set the initialX
coordinate as the minimumX-position of all object corners minus some threshold (0.02m). The Y and
Z coordinates are set as the median of all object centers. This allows us to sweep through the scene in a
consistent manner. To verify if the objects are indeed along a line, we evaluate if all the objects lie on one
side (along theX-axes) of the robot handle.

We verify the preconditions for the block unstacking task by verifying if the blocks in the scene minus
the block to be removed are stable or not. To achieve this we import all the blocks except the one to be
removed into the simulator. Initially, all blocks are kept static. Once all of them have been imported we
convert them to dynamic and allow them to interact with each other. To verify if the blocks are indeed
stable we note each block’s position before and after allowing dynamic interactions. If any of the blocks
move by more than a certain specified threshold we assume that the blocks are not stable. To find the best
threshold value we do a grid search in the set (0.0005, 0.001, 0.0015, 0.002, 0.003, 0.004)m. We found
0.0015 and 0.002 to give the best and very similar results.

9.1.4 Architecture Details
Baselines. For our baseline architecture we adapt the resnet model for 3D input [59]. However, we
slightly tweak the ResNet architectures in [59] for our purposes. Additionally, different from [59] for
the first convolution layer we use the same stride for all three input channels. Besides these changes, we
follow the same architecture as [59]. For other specific architecture details please look at Table 1 in [59].
The output of the ResNet model is forwarded through 2 fully-connected layers with outputs of size 64
and 1 respectively.

We also use another baseline similar in style to VGG [223], i.e., our model consists of a series of convolu-
tions and ReLU non-linearities. More-specifically our architecture consists of 6 convolution layers, each
of which operates on 3D input. Table 9.2 lists the different parameters for each of these convolution
layers. The output of each convolution layer is passed through ReLU non-linearity. The final output
of the convolution is flattened to a 512 dimensional vector. This vector is then passed through multiple
fully-connected layers with output size [256, 64, 1].

Precondition Learning Model. We next detail the precondition learning model’s for both architecture
choices, i.e., using a relational network or a graph neural network.

Relational Network. For our relational network model we use the below function,

RN(S) = gϕ

(∑
i,j

fθ(frel(oi, oj)⊕ frel(oj, oi))

)
, (9.1)

where ⊕ represents the concat operation, the function fθ consists of two fully-connected (FC) layers
with ReLU non-linearity in-between, and gϕ also consists of 2 FC layers with ReLU non-linearity.

97

9 Appendices

We implement the relation network modelfθ using a two layer neural network with fully connected layers
with outputs of size 128 and 32 respectively. We implement gϕ, which acts as an accumulator, again by
using two fully connected layers with outputs of size 16 and 1 respectively. We use the ReLU non-linearity
for both fθ and gϕ.

Graph Neural Network: For our GNN model we use the following update model to process the output
at each node,

v
(1)
i = fψ

(
vi ⊕

∑
j

(
fedge(v

(0)
i , v

(0)
j , eij)

)
;ψ

)
(9.2)

We add separate node and edge models for our GNN model. Our edge model takes the edge input and
passes it through a fully connected layer with output size of 128, followed by ReLU, and finally with
another fully connected layer which outputs a continuous embedding for this edge. These edge embed-
dings are used for the next graph layer as well as for each node being processed. Our node model initially
sums the edge embeddings for all the edges connected to this node. This sum of edge embeddings is then
concatenated with the original node input and passed through a fully-connected layer with output size
128, followed by ReLU and then another fully conected layer with output size 128. This is similar in de-
sign to the edge update model. We stack two layers of the above GNN model for precondition learning.
The first layer uses an input of size 256 and outputs representations of size 128. The next layer uses an
input of size 128 and outputs representations of size 128. We sum the node and edge embeddings of the
last GNN model and concatenate them together to form an input of size 256. This input is then passed
through 2 fully conected layers with output size of 64 and 1 respectively.

Object Relation Model

Our object relation model initially uses the ResNet-18 model of [59]. As before, we make two changes
to this model, we use a stride of (2, 2, 2) for the first convolutional layer, and we do not use the Batch-
Norm layers. The convolutional layer output is flattened into a vector of size 1536 which is then pro-
jected through 2 fully-connected layers with output size 512 and 256. Thus, we get the final relational
embedding of size 256. We concatenate this with the action vector and pass them through three fully
connected layers of size 128, 64 and 9 respectively. The final output of size 9 consists of the predicted
position changes of size 3, predicted orientation changes of size 3 and predicted mean contact position
of size 3.

9.1.5 Training Details
Table 9.1 lists some of the training details for the different models used in our approach. Below we describe
training details for each model separately.

Object Relation Model. As noted previously, for our embedding network we use a 3D CNN with a
ResNet [63] based architecture [59], specifically we use the ResNet-18 architecture. The output of the
ResNet18 model is then downsampled using a linear layer to a size of 256. To train the above embedding
model, we use the Adam optimizer [101] and set an initial learning rate of 3e− 4 and a batch size of 256.
Our overall loss function for the

98

9 Appendices

Model Batch Size Learning Rates

Object Relation 256 3e-4
RN based Precondition 8 {1e-3, 3e-4}
GNN based Precondition 8 {1e-3, 3e-4}
Baseline (Resnet-18/34) 4, 8, 16 [1e-3, 1e-4]
VGG 4, 8, 16 [1e-3, 1e-4]

Table 9.1: Batch Size and Learning rates for different
models used

conv-{1,2} conv-{3, 4, 5, 6}

kernel 5 3
padding (2, 2, 2) (2, 2, 2)
stride (1, 1, 1) (1, 1, 1)

Table 9.2: Parameters for the convolution layers of
our VGG* network.

Parameter Value

∆prsim, ∆prdiff 0.2, 0.21
∆θsim, ∆θdiff 0.004, 0.008
γ for ∆p 2.0
γ for ∆θ 2.0

Table 9.3: Different hyper-parameters for contrastive loss formulation.

The total loss for the object relation model can be written as,

L = λcont
pos × Lcont

pos + λcont
orient × Lcont

orient

+ λpred × Lpred + λorient × Lorient + λcontact × Lcontact,

where the first set of lossesLcont
pos ,Lcont

orient are the position and orientation based contrastive losses. The next
set of lossesLpred,Lorient,Lcontact are the direct supervised losses. When training the object relation model
with all the above losses we set, λcont

pos = 2, λcont
orient = 2. For the supervised losses we set λpos = 1, since

orientation values change less we set λorient = 10, and finally λcontact = 1. Alternatively, when training
the model with just contrastive losses we set λcont

pos = λcont
orient = 1.

Contrastive Loss: To implement the contrastive loss we use a batch all strategy, i.e., instead of explicitly
sampling anchor, positive and negative pairs separately, we sample a batch of data and compare all scene
triplets. We compare normal and adaptive actions for each triplet pair separately, i.e., for each scene in
the triplet we compare their adaptive action effects with the other scene’s adaptive action effects only.
To compare normal actions with different action magnitudes we use a threshold of 0.04m to classify
similar actions. Thus, scenes with difference in action magnitude greater than the above threshold are
not compared directly in contrastive losses.

As noted in the paper, we use the following to compare the action effects on position changes,

∆pr =
∆pobserved

∆pdesired , (9.3)

99

9 Appendices

GT: Our: Baseline: ✓ GT: Our: Baseline: ✓ ! ! ! !

Figure 9.2: Left:: Example train scenes with 4 and 5 blocks used in the block unstacking task. Right: Sample test
scenes which are correctly classified by our model but incorrectly by the learning based baselines. In
both images the top block is at different locations.

Model Train Set Test Set F1 Wt-F1

ResNet-18 0, 1, 2 distractors 3 distractors 0.844 0.902
ResNet-34 0, 1, 2 3 0.877 0.871
VGG* 0, 1, 2 3 0.788 0.842
Real2Sim - - N/A N/A
Our Model (RN) 0, 1, 2 3 0.880 0.935
Our Model (GNN) 0, 1, 2 3 0.921 0.940

Table 9.4: Precondition learning results for cutting food skill.

where ∆pobserved is the observed change in referrant object center position, and ∆pdesired is the desired
change i.e. action vector. We set ∆pdesired to 1 for normal actions, while for adaptive actions it is set to
the voxel distance between objects centers. To find scenes with similar action effects we use a threshold
of 0.2. More precisely, given two scenes (m and n) and their action effects in terms of ∆pr, we say these
two scenes are similar if their action effects are below the threshold for all actions, |∆prm −∆prn| < 0.2.
Analogously, if |∆prm −∆prn| > 0.21 we set these two scenes as dissimilar. For orientation changes we
set ∆θsim = 0.004 and ∆θdiff = 0.008. Finally, we set the contrastive loss margin γ = 2.0 for both
position and orientation changes. Table 9.3 lists the above parameters for contrastive losses.

Precondition Learning Models. Our Model: For our RN and GNN based models, we use the Adam
optimizer [101] and set an initial learning rate of 3e−4. For accelerated learning, we also test with a larger
learning rate of 1e− 3. Since the precondition model is trained on less data we use a smaller batch of size
8 only. We also decay the learning rate with 0.995 after every epoch.

Baselines: For the baseline models we use the Adam optimizer as well. We experiment with both random
initialization as well as kaiming initialization for the resnet based baseline methods [63]. We do a grid
search to find the best learning rate between [1e − 3, 1e − 4] and report numbers with it. Also, given
the small train data size we test with multiple batch sizes of 4, 8 and 16 and report numbers with the best
results.

Table 9.1 lists the different parameters used to train the precondition models.

100

9 Appendices

Model Train Set Test Set F1 Wt-F1

ResNet-18 6, 7 4 0.735 0.765
ResNet-34 6, 7 4 0.765 0.784
VGG* 6, 7 4 0.688 0.712
Real2Sim - 4 0.89 0.86
Our Model (RN) 6, 7 4 0.74 0.764
Our Model (GNN) all edges 6, 7 4 0.772 0.798
Our Model (GNN) sparse edges 6, 7 4 0.824 0.825

Table 9.5: Results for precondition learning of block unstacking task with 6 and 7 objects in the train set and 4
objects in the test set.

9.1.6 Task Setup
Cutting Food: For the food cutting data we use a custom 3D printed tool holder with an embedded
knife that the robot can grasp and use to cut food items. We use multiple different target food items and
obstacles with different shapes and sizes. Unlike the sweeping objects in a line task we also add knife and
food labels to their respective voxel representations, while all the other objects have no label. We create
scenes with food, knife and multiple objects with a maximum of upto 6 objects in the scene.

Block Unstacking: To create the dataset we pre-program the robot to assemble a block of stacks in
different configurations and then manually label which blocks are crucial for stability. We create scenes
with variable number of blocks from 3 to 7. For each set of blocks we create between 10 to 20 scenes with
different configurations. In addition to the previous models, we add another GNN based model where
graph edges only exist between blocks (vertices) that are closer than a certain threshold (0.1m). This allows
us to remove edges between blocks which are far apart and thus eases the learning problem.

9.1.7 Additional Results
In this section we discuss some additional results for our main experiments.

Cutting Food. Table 9.4 shows the results for the food cutting experiment when we have 3 distractor
objects in the test set, but only upto 2 distractor objects in the train set. As observed above, the GNN
based model performs the best with a wt. F1-score of 0.94. Additionally, the baseline models also perform
well with a maximum wt. F1-score of 0.902. The good performance of the baseline models on food
cutting task can be attributed to the fact that there exist only two main objects in the scene (food and
the knife). Since we provide separate labels to both of these objects, the baseline models only needs to
focus on these objects and hence does not require complex compositional reasoning. Thus, even with
increasing number of distractor objects, the baseline model still performs quite well.

Block Unstacking. For the block unstacking task we also experiment with the scenario where the train
set contains larger number of objects as compared to the test set. Table 9.5 shows results when the train
set contains 6 or 7 objects while the test set contains only 4 objects. Interestingly, the performance of

101

9 Appendices

our GNN based models also reduces in this scenario. We get a max. wt. F1-score of 0.825 only, which
is worse as compared to the previous train-test splits. However, our GNN based models still perform
better than the visual baseline models, whose maximum wt F1 score is 0.784. This result indicates that
although structured representations are extremely useful, we cannot assume that training on a large set of
objects will automatically generalize to fewer objects as well. The real2sim baseline performs the best (wt.
F1 score: 0.889) in this setting. This is because using 4 blocks, we can only create a limited number and
types of block stacks. Hence, given only stacks with 3 blocks (since we remove 1 block before exporting
into the simulator) the Real2Sim baseline is able to perform quite well. Additionally, a small number
of blocks also result in fewer perception errors, these errors when transferred to simulation do not affect
the precondition output significantly. This is also similar to the real2sim results for sweeping task (main
paper) wherein we observe that larger number of objects lead to worse performance.

Figure 9.2 (Right) shows example scenes which show the complex reasoning required for solving the block
unstacking task. The only difference between the two scenes in Figure 9.2 (Right) is in the position of the
top block which results in different ground truth precondition labels. While our precondition model is
correctly able to predict the preconditions in both scenes, the visual baseline model always predicts false.
The above example clearly shows that our model is able to perform complex reasoning using the learned
object relational embeddings.

102

9 Appendices

9.2 Appendix - Hiearchical Object-Centric Controllers
for RoboticManipulation

9.2.1 Controller Implementation Details
Specific Controllers for each Task. Below we list out the controllers used for each task in our experimental
setup.

Block Fit. A set of controllers is associated with each wall in the environment. For a wall, let v be the
unit vector pointing in the wall’s normal direction, xwm be the coordinate of the middle of the wall. The
set of controllers associated for each wall include:

1. Position attractor along normal direction. xd = xwm, u = v

2. Position attractor along error direction. xd = xwm, u = xd−xc
∥xd−xc∥2

3. Force attractor along the normal direction. fd = 10, u = v

4. Rotation attractor aligning the block’s x-axis to the normal. rd = v, u = [1, 0]⊤

5. Rotation attractor aligning the block’s y-axis to the normal. rd = v, u = [0, 1]⊤

Block Push. In addition to all the per-wall controllers of the Block Fit task, Block Push has the following
per-wall controllers:

1. Position controller along the side of a wall. Let v′ be a unit vector orthogonal to v. Since there are
2 such possible directions, we pick the one that gives the direction pointing up along the vertical
wall in the scene.

Let xwc be the coordinate of a wall corner. Since walls form a corner-connect chain in this task,
using one of the two corners per wall covers all corners in the scene except the last corner in the
chain, which we ignore.

With these, this controller has xd = xwc and u = v′.

2. Position curl controller around a wall corner. This controller rotates the end-effector in a fixed-
radius circle around a point until it reaches the target position which also lies on the circle. The
attractor target is xd = xwc + ∥xc − xwc∥2v′, and the direction is u = R(π

2
) xc−xwc

∥xc−xwc∥2 , where
R(θ) gives a 2D rotation matrix with the angle θ.

Block Push has one more position controller that attracts the robot block toward the target block. Let
xg be the current location of the center of the target block. This position controller has xd = xg and
u = xd−xc

∥xd−xc∥2
.

Franka Hex-Screw. Let xs be the location of screw, and xg = xs + [0, 0.02, 0]⊤ be a point 2cm above
the screw (the y-axis is vertical in our coordinate frame). Position attractor controllers use xg as the tar-

103

9 Appendices

Figure 9.3: Axes Visualization for Franka End-Effector and Door Handle for the Door-Open Task. RGB corre-
sponds to XYZ.

get, instead of xs, because attracting the hex-key tip toward the inside of the screw directly can result in
collisions with the side of the screw and prevent the key from properly inserted.

1. Position attractor along vertical direction. xd = xg, u = [0, 1, 0]⊤

2. Position attractor along error direction. xd = xg, u = xd−xc
∥xd−xc∥2

3. Position controller that prevents motion in the vertical direction xd = xc, u = [0, 1, 0]⊤. This
controller does not attract the end-effector toward a goal. Instead, its utility is solely in its nullspace
projection, which ensures lower-priority controllers cannot move the end-effector outside of a hor-
izontal plane. This controller is useful for preventing prematurely inserting the hex-key.

4. Force controller that pushes downward toward the hex screw. fd = 20, u = [0,−1, 0]⊤.

5. Rotation controller that maintains the verticality of the end-effector. rd = [0, 1, 0]⊤,u = [0, 0, 1]⊤.
The positive z-axis of the end-effector frame corresponds to the direction that the hex-key points
towards.

6. Rotation controller that rotates the hex-key counter-clockwise. rd = Ry(100
◦)[1, 0, 0]⊤, u =

[1, 0, 0]⊤, whereRy(θ) gives a rotation matrix that rotates around the y-axis with the angle θ.

7. Rotation controller that rotates the hex-key clockwise. rd = Ry(−100◦)[1, 0, 0]⊤, u = [1, 0, 0]⊤

Franka Door-Open. See Figure 9.3 for a visualization of both the Franka end-effector and door handle
axes. Let r{x,y,z} correspond to the 3 axes of the door handle. Let xg be a grasp point on the door handle,
xh be the center of the handle axle (dark gray cylinder in Figure 9.3). The set of controllers include:

1. Position attractor to door handle along error direction. xd = xg, u = xd−xc
∥xd−xc∥2

2. Position curl attractor for rotating around the handle in the plane of the door panel (the nullspace
of rz). Let xe = N (rz)(xc − xh). Then xd = xh − ∥xe∥2ry, u = xe

∥xe∥2 × rz

3. Force controller to pull the handle. fd = 50, u = −rz

104

9 Appendices

4. Rotation controller to align the x-axes of the gripper and the handle. rd = rx, u = [1, 0, 0]⊤

5. Rotation controller to align the y-axes of the gripper and the handle. rd = ry, u = [0, 1, 0]⊤

6. Rotation controller to align the z-axes of the gripper and the handle. rd = rz , u = [0, 0, 1]⊤

Integral Term for Force Controllers. Using an integral term for force controllers can help reduce the
force error and improve stability. Let δ̄if be the accumulated force errors for the force controller used at
the ith priority. Then, the corresponding delta position target is computed as:

∆i
x = Ni(Kfδf (f

i
d, u

i, fc) +KI δ̄if) (9.4)

whereNi = N ([u0, . . . , ui−1]).

Delta Target Magnitude Clipping. To ensure safety and limit the maximum speed at which our con-
trollers can drive the robot, we clip the magnitude of delta position and rotation targets.

LetDx be the maximum delta translation magnitude corresponding to a position controller, andDf for
a force controller. The clipping for force and position controllers are computed as follows:

∆i
x ←

min(∥∆i
x∥2, D∗)

∥∆i
x∥2

∆i
x (9.5)

Note thatD∗ can beDx orDf , depending on if the ith controller is a position or force controller.

Similarly, letDR be the maximum delta rotation angle for rotation controllers:

∆i
R ←

min(∥∆i
R∥2, DR)

∥∆i
R∥2

∆i
R (9.6)

Controller Hyperparameters. Table 9.6 lists the different hyperparameters used for the object axes-
controllers for each task. We list the gains used for each controller as well as the clipping used while
executing each controller. Table 9.7 lists the task-space impedance parameters used for simulation and
real-world experiments. We use [263] to implement each controller for real-world experiments.

Block Fit Block Push Franka Hex-Screw Franka Door-Open

Dx (m) 1 0.5 0.03 0.03
Df (N) 0.5 0.1 10−4 10−4

DR (deg) 90 120 10 10

Kx 1 1 1 1
Kf 1 1 1 1
KI 0 0 10−4 10−4

Table 9.6: Controller Gains and Magnitude Clips Across Tasks.

105

9 Appendices

Simulation Real World

KS 1000 600

KD 2
√
1000 2

√
600

T 10 30

Table 9.7: Task-Space Impedance Control Parameters. KS is stiffness, KD is damping, and T is how many
timesteps a controller combination runs before the RL policy is queried again. The simulation and real-
world values are not the same due to differences in control frequencies and Franka dynamics between
real-world and simulation. We tune the real-world values to ensure that the resultant controller behav-
iors are similar to those in simulation. This tuning was done prior to task evaluations.

9.2.2 Task Details
Block Fit Observations.

1. 2D pose of block robot

2. 2D contact force direction and magnitude experienced by the block robot in the world frame.

3. 2D coordinates of centers and wall corners

Reward Function: Letϕd be the previous distance between the block translation and the goal translation,
ϕθ be previous the absolute angle difference between the block rotation and the goal rotation, and let ϕ′

d,
ϕ′
θ be there current counterparts. The reward function rewards making progress towards the goal with a

small alive penalty and a large task completion bonus:

R = 10(ϕ′
d − ϕd) + 5(ϕ′

θ − ϕθ)− 0.1 + 1000× 1(ϕ′
d < 0.16 ∧ ϕ′

θ < 5◦) (9.7)

The goal translation threshold 0.16 is about half the width of the block.

Block Push

Observations.

1. 2D pose of block robot

2. 2D contact force direction and magnitude experienced by the block robot in the world frame.

3. 2D coordinates of centers and wall corners

4. 2D pose of the target block

106

9 Appendices

Figure 9.4: Different hex screw and key sizes used for testing in the real world. The middle size represents 1.0×
scale factor, while the left is 1.5×, and the right 0.7×.

Reward Function: The reward function is similar to that of Block Fit, except the progress rewards are com-
puted w.r.t. the target block, not the block robot, and there is an additional reward term for approaching
the target block:

R = 10(ϕ′
d − ϕd) + 10(ϕ′

b − ϕb)− 0.1 + 200× 1(ϕ′
d < 0.05) (9.8)

where ϕb is the previous distance between the robot block and the target block, and ϕ′
b is the current

counterpart. The goal translation threshold of 0.05 is about half the width of the target block.

9.2.3 FrankaHex Screw
See Figure 9.4 for the different screw and key sizes used in real-world experiments.

Observations.

1. 7-dimension robot arm joint angles

2. Gripper width

3. 6D pose of the tip of the hex-screw. Rotations are represented via quaternions

4. End-effector contact forces

5. Position of the hex screw relative to the robot base

Reward Function: Let ϕd be the previous distance from the hex-key tip to the hex screw, ϕθ be the previ-
ous absolute angle difference between the screw angle and its target angle, and let ϕ′

d, ϕ′
θ be their respec-

tive current counterparts. Let ρ be the absolute angle difference between the negative y-axis (pointing
downwards) and the z-axis of the end-effector. The reward function rewards approaching the hex-screw,

107

9 Appendices

making progress in turning the screw, maintaining a vertical hex key orientation, plus a small alive penalty
and a large task bonus:

R = 400(ϕ′
d − ϕd) + 10(ϕ′

θ − ϕθ)− ρ− 1 + 1000× 1(ϕ′
θ < 5◦) (9.9)

The target screw rotation angle (at which point ϕθ = 0) is 70◦.

Franka Door Opening

Observations.

1. 7-dimension robot arm joint angles

2. Gripper width

3. 6D pose of the tip of the hex-screw. Rotations are represented via quaternions

4. End-effector contact forces

5. Door panel angle (How much the door has opened, not the angle of the door handle)

6. Position of the door handle relative to the robot base

Reward Function: Let ϕd be the previous distance from the end-effector to the door handle grasp point,
ϕθ be the previous absolute angle difference between the door handle angle and the target handle turning
angle, ϕρ be the previous absolute angle difference between the door panel angle and the target door
opening angle, and let ϕ′

d, ϕ′
θ, ϕ′

ρ be their respective current counterparts. Let c denote the current end-
effector contact forces. The reward function rewards approaching the door handle, turning the handle,
turning the door, plus small alive penalties and excessive force penalties, plus a large task bonus:

R = 10(ϕ′
d − ϕd) + 10(ϕ′

θ − ϕθ) + 100(ϕ′
ρ − ϕρ)− 0.01− 0.001∥c∥2 + 100× 1(ϕ′

ρ < 5◦) (9.10)

The target door handle turning angle (at which point ϕθ = 0) is 90◦, and the target door panel opening
angle (at which point ϕρ = 0) is 35◦.

9.2.4 RL Training Details
PPO Hyperparameters

Table 9.8 lists the hyperparameters used for each of the experiments. In addition to the above parameters,
we also decay the clip range using a linear schedule with a decay rate of 0.99 after every epoch. We set the
minimum clip range value to be 0.04. Also, for the Franka Hex-Screw and Franka Door-Open task we
evaluated a range of entropy coefficient values [0.01, 0.1] for the end-effector action space.

Network Architecture. For all tasks and methods, we use the same network architectures for both the
policy and value function networks. The network consists of 2 hidden layers with 256 hidden units each.

108

9 Appendices

Block Fit Block Push Franka Hex-Screw Franka Door-Open

num steps 500 240 450 480
discount factor 0.995 0.995 0.995 0.995
entropy coefficient 0.01 0.01 [0.01, 0.1] [0.01, 0.1]
learning rate 2.5× 10−4 2.5× 10−4 2.5× 10−4 2.5× 10−4

value loss coefficient 0.5 0.1 0.5 0.5
max gradient norm 0.5 0.5 0.5 0.5
lambda 0.95 0.95 0.95 0.95
num minibatches 50 30 30 50
num opt epochs 4 4 4 4
clip range 0.2 0.2 0.2 0.2

Table 9.8: PPO Hyperparameters Across All Tasks.

9.2.5 Detailed Experiment Results
We discuss results for each task in more detail in the following sections. Video results for all the different
tasks and methods can be seen at https://sites.google.com/view/compositional-object-control/.

Block Fit

Figure 9.5 plots the train results (success-rate) for all different train configurations. As can be seen in
the above figure, for all configurations besides a couple (Figure 9.5b left two plots), all the methods per-
form quite well during training. The poor performance in two of the training environments is due to
their more challenging configurations. In both of these configurations the slot to the target wall is ori-
ented in a different direction, so a robust policy needs to reason about this change. We observe that our
proposed Expanded-MDP methods are able to perform well for this configuration. However, the end-
effector action space shows a large variance i.e. many of the seeds fail to learn a robust policy to solve these
configurations. Additionally, we also observe that 1-Ctrlr is unable to solve this task robustly. This shows
the advantage of using multiple-controllers in parallel.

Figure 9.6a shows the different test configurations we evaluated. Each of the test configurations is a delta
change in the wall lengths or angles from the train configurations. Table 9.9 shows the results on each of
these test configurations. As seen above, our proposed Expanded-MDP formulations are able to outper-
form all other methods for all the configurations. 3-Priority performs well on most test configurations
besides the slightly harder ones (E, G). This indicates that Expanded-MDP methods are able to learn
more robust policies as compared to using a continuous priority score. Additionally, EE-Space perform
poorly, especially for more different test configurations (E, F, G, H). Qualitatively, we observe that EE-
Space policies often completely fail to generalize to the test configurations. 1-Ctrlr performs poorly on
the D, E, and G, H configurations. For the initial two configurations, we observe that the learned pol-
icy can often get stuck around wall corners, which prevents it from completing the episode within the
given time. Alternately, for the latter two environments, the learned policies across all seeds perform quite
poorly, so they are not able to generalize to either of the test configurations.

109

https://sites.google.com/view/compositional-object-control/

9 Appendices

(a)

(b)

Figure 9.5: Different environment configurations used to train the Block Fit task. The plot below each environment
configuration shows how the trained policy performed on each particular configuration.

110

9 Appendices

(A) (B) (C) (D)

(E) (F) (G) (H)

(a)

Figure 9.6: Test configurations for the Block Fit task. Table 9.9 shows results on each environment configuration.

Test-Cfg EE-Space 1-Ctrl 3-Pri. 3-Combo 3-Exp-Feat. 3-Exp-Single 3-Exp-Multi

A 0.86 (0.07) 0.98 (0.01) 1.0 (0.0) 0.19 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
B 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.20 (0.14) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
C 0.85 (0.27) 0.96 (0.03) 0.97 (0.03) 0.18 (0.08) 0.98 (0.01) 0.99 (0.01) 0.96 (0.01)
D 0.89 (0.14) 0.71 (0.31) 1.0 (0.03) 0.165 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.01)
E 0.16 (0.23) 0.64 (0.16) 0.76 (0.16) 0.0375 (0.05) 0.97 (0.02) 0.99 (0.01) 0.99 (0.02)
F 0.75 (0.39) 0.87 (0.16) 1.0 (0.0) 0.20 (0.14) 0.98 (0.01) 1.0 (0.0) 1.0 (0.0)
G 0.17 (0.30) 0.08 (0.23) 0.75 (0.45) 0.02 (0.03) 0.89 (0.13) 0.82 (0.23) 0.90 (0.15)
H 0.50 (0.53) 0.0 (0.0) 1.0 (0.0) 0.27 (0.18) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Table 9.9: Block Fit mean success on test environment configurations. Parentheses denote standard deviation across
8 seeds.

Block Push

Figure 9.7 shows the success rate for all the different environment configurations used in the Block Push
task. As seen in the above figure, both 1-Ctrlr and 3-Priority show large variance in training performance.
This is because both methods fail to learn the task for some seeds. All the Expanded-MDP methods are
able to successfully complete the task without large variance. One reason for this is that a robust task
strategy requires the use of multiple object-axis controllers to move the object along the vertical wall as
well as to move it around the corner of the top wall. Although it is feasible to accomplish the task by
quickly switching between controllers, it is hard to find a robust policy relying under such a switching
mechanism, especially when controllers are being run for fixed number of steps. Additionally, while EE-
Space also solves all the different environment configurations, its sample complexity is worse than the
proposed Expanded-MDP methods.

Table 9.10 evaluates the learned policy on 8 different test configurations. Figure 9.8a plots each of these
test configurations. These test configurations involve small perturbations in either the wall length or
the wall angles (or both) from the train configurations. Specifically, we limit small perturbations to be

111

9 Appendices

a max change in vertical wall angle of 3 − 5◦ (A, C, D, F), while larger perturbations are sampled from
∼ 6 − 10◦ (B, E, G, H). We observe that EE-Space is usually robust to small perturbations of the en-
vironment, while slightly larger perturbations can significantly affect its performance. However, even
with small perturbations our expand-MDP based methods are able to outperform the end-effector space.
This shows the advantage of using a structured action space for learning, as Expanded-MDP methods
perform well across both sets of configurations. Notably, the proposed approach only performs poorly
on B and E configurations. For both configurations, as the policy pushes the red block up the middle
wall, the agent block (green block) can sometimes end up under the red block, which leads to the green
block falling, ending the episode. Additionally, both 1-Ctrlr and 3-Priority perform poorly on the test
configurations. This is due to the poor performance of some of the learned policies (across a few seeds)
on the train configurations. However, good train performance does not necessarily lead to good test per-
formance. Specifically, 1-Ctrlr can move the green block upwards (by using the position controller for
the top-wall), but it is often not able to robustly push it around the corner. This shows the advantage of
being able to choose multiple object-axis controllers at each step.

(A) (B) (C) (D)

(E) (F) (G) (H)

(a)

Figure 9.8: Test environment configurations for the Block Push task. Table 9.10 shows results on each environ-
ment config.

Config EE-Space 1-Ctrl 3-Priority 3-Combo 3-Exp-Feat. 3-Exp-Single 3-Exp-Multi

A 0.94 (0.06) 0.62(0.47) 0.43 (0.47) 0.0 (0.0) 0.97 (0.02) 0.98 (0.01) 0.99 (0.00)
B 0.27 (0.28) 0.27(0.30) 0.38 (0.43) 0.0 (0.0) 0.50 (0.27) 0.72 (0.18) 0.65 (0.30)
C 0.86 (0.23) 0.30 (0.40) 0.43(0.37) 0.0 (0.0) 0.91 (0.10) 0.97 (0.01) 0.97 (0.04)
D 0.70 (0.28) 0.07 (0.13) 0.42 (0.46) 0.0 (0.0) 0.89 (0.06) 0.93 (0.07) 0.88 (0.12)
E 0.48 (0.31) 0.01 (0.01) 0.36 (0.39) 0.0 (0.0) 0.79 (0.17) 0.69 (0.23) 0.67 (0.17)
F 0.96 (0.03) 0.73 (0.41) 0.38 (0.42) 0.0 (0.0) 0.88 (0.11) 0.95 (0.06) 0.96 (0.03)
G 0.89 (0.10) 0.67 (0.49) 0.35 (0.39) 0.0 (0.0) 0.97 (0.03) 0.92 (0.06) 0.89 (0.07)
H 0.61 (0.26) 0.27 (0.41) 0.34 (0.38) 0.0 (0.0) 0.79 (0.11) 0.78 (0.10) 0.88 (0.07)

Table 9.10: Block Push mean success on test environment configurations. Parentheses denote standard deviation
across 8 seeds.

112

9 Appendices

Figure 9.7: Different environment configurations used to train the Block Push task. The plot below each environ-
ment configuration shows how the trained policy performed on each particular configuration.

113

9 Appendices

Franka Hex-Screw

0 30M steps
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
io

EE-Space
1-Controller
3-Priority
3-Exp-features
3-Exp-single-1-hot
3-Exp-multi-1-hot
3-Combo

(a) Franka Hex-Screw Task

0 14M steps
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
io

(b) Franka Door-Opening Task

Figure 9.9: Franka tasks success ratios on training environment configurations during training.

Config EE-Space 1-Ctrl 3-Priority 3-Combo 3-Exp-Feat 3-Exp-Single 3-Exp-Multi

0.7 0.0 (0.00) 0.05(0.14) 0.69 (0.44) 0.45 (0.43) 0.95 (0.04) 0.97 (0.02) 0.96 (0.035)

0.8 0.0 (0.00) 0.11(0.17) 0.66 (0.49) 0.43 (0.43) 0.97 (0.05) 0.96 (0.03) 0.98 (0.01)

1.1 0.0 (0.00) 0.21(0.37) 0.63 (0.49) 0.43 (0.36) 0.96 (0.03) 0.98 (0.03) 0.97 (0.03)

1.2 0.0 (0.00) 0.07 (0.15) 0.57 (0.42) 0.44 (0.42) 0.97 (0.04) 0.95(0.03) 0.95 (0.04)

1.4 0.0 (0.00) 0.0 (0.00) 0.67 (0.48) 0.34 (0.36) 0.92 (0.03) 0.94 (0.04) 0.95 (0.03)

1.5 0.0 (0.00) 0.03 (0.14) 0.54 (0.46) 0.24 (0.36) 0.92 (0.04) 0.90 (0.05) 0.92 (0.03)

Table 9.11: Franka Hex-Screw mean success across all test environment configurations. Parentheses denote standard
deviation across 8 seeds.

Figure 9.9a plots the mean success rates for all the different approaches (including using controller fea-
tures) during training. Since performance on all three train configurations (wrench and screw sizes) is very
similar, we report one plot which averages the result for all the configurations. As seen in Figure 9.9a, EE-
Space is not able to learn the task. While EE-Space policies can bring the wrench close to the screw, it does
not achieve proper alignment and insertion, nor does it apply sufficient downard force, all of which are
necessary to accomplish the task. Similarly, 1-Ctrlr also performs poorly. This is expected, since the task
requires the use of multiple controllers i.e. force or position controller into the screw object while also
rotating the wrench simultaneously. For approaches that use multiple object-axis controllers together,
we find that the expand-MDP approaches perform the best, robustly learning the task each time. All the
other approaches suffer from large variance in task performance.

Table 9.11 visualizes the result for each of the 6 different test configurations. Each test configuration
uses a different wrench and screw scale. Our proposed approach is able to generalize to the different test
configurations, achieving ≥ 0.9 success rate for all configurations. Although 3-Priority performs well
in training, its test performance is slightly poorer. This is because some of the learned policies (seeds)
fail to generalize well to any of the test configurations, while the remaining seeds perform as well as our

114

9 Appendices

Expanded-MDP approaches. This variance in performance of the learned policies leads to lower mean
success rate for 3-Priority. 1-Ctrlr fails to work well on any of the test configurations, which is expected
given its poor training performance.

Franka Door-Opening

Figure 9.9b shows the average success rate in all train environments for the Door-Open. All methods
except EE-Space are able to learn this task. One reason for this is that object-centric controllers make
exploration in this task much more efficient than directly using the end-effector space. Although the EE-
Space policy is able to grasp the handle, it fails to turn and pull. Table 9.12 shows quantitative results on
test environments. Methods that use 3 controllers have very similar performance and perform better than
1-Ctrlr. Using multiple controllers is beneficial for this task. When turning the handle, the robot needs
to learn to rotate the gripper and press down at the same time; when opening the door, the robot needs
to simultaneously press the handle and pull it open. Since the reward function contains separate rewards
for approaching the handle, turning the handle, and opening the door, the performance differences are
due to the complexity of the task and not a lack of informative reward signals.

Config EE-Space 1-Ctrl 3-Priority 3-Combo 3-Exp-Feat 3-Exp-Single 3-Exp-Multi

A 0.13 (0.13) 0.87(0.06) 0.93 (0.08) 0.97 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)

B 0.00 (0.00) 0.96 (0.02) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99(0.01) 0.99 (0.02)

C 0.00 (0.00) 0.93 (0.03) 0.99 (0.01) 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 0.99 (0.01)

Table 9.12: Franka Door-Opening mean success on test environment configurations. Parentheses denote standard
deviation across 8 seeds.

9.2.6 Controller Selection Analyses
We perform an ablation study to better understand the effects of algorithmic choices in our proposed
approach. First, we analyze the effects of controller selection frequency, i.e., we analyze the effect of T ,
where T is the number of steps for which object-axes controllers are run before the RL policy is queried
again. Second, we qualitatively evaluate the learned controller selection policy by visualizing the learned
policies. For both of these settings we use the Block Fit task.

Controller Selection Frequency. We evaluate how the controller selection frequencyT affects the learn-
ing performance. For all previous experiments we useT = 10, i.e., the object-axes controllers are run only
for a few (10) steps. Although switching controllers frequently allows the RL policy to be more expres-
sive, this comes at the associated cost of higher sample complexity. In this experiment we evaluate learning
performance when controllers are allowed to run for much larger steps i.e. T = 80. To keep the overall
simulation time fixed, we simultaneously reduce the maximum number of steps the RL policy is run, i.e.
we reduce the episode length of the MDP TMDP. This is important since running both the controllers
and the RL policy for large number of steps is computationally prohibitive, since the total number of
steps taken in the simulator is T × TMDP. We set TMDP = 15 for this experiment.

115

9 Appendices

0 30K steps
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

1-Controller
3-Exp-Single
3-Exp-Multi

Figure 9.10: Controller Selection Frequency: Success rate for Block Fit task when object axes-controllers are run
for T = 80 steps. Results averaged over 4 seeds (instead of usual 8).

Figure 9.10 plots the average success rate for all train configurations on the Block Fit task with T = 80.
As seen above, our proposed expand-MDP based approaches are able to perform quite well. Alternately,
selecting only one-controller (1-Controller) at each time step performs poorly as compared to T = 10
(Figure 9.5). This shows the advantage of being able to use multiple object-axes controllers in parallel.
With small T the 1-Controller policy is able to complete tasks by quickly switching between different
controllers. Since this is not possible with a largerT value, its performance decreases. This emphasizes the
importance of using multiple-controllers in parallel. Additionally, Figure 9.10 shows that the Expanded-
MDP based approaches are able to learn to perform the task in 30K steps only. This is significantly better
than the∼ 10M steps required for T = 10 (Figure 9.5).

Controller Selection Visualization

Figure 9.11 plots the controllers the policy selects along the block trajectory for two different train config-
uration of Block Fit. For the highest priority controller, the policy tends to select the one that attracts the
block toward the target wall. Interestingly, the second priority controllers are associated with a different
wall, i.e the left most wall. This shows that the RL policy learns to combine controllers across different
objects (walls). For the initial part of the trajectory, the RL policy learns to rotate (priority 0) and move
(priority 1) the block simultaneously. This composition of different behaviors is important for the policy
to accomplish the task as fast as possible. In addition, the policy chooses from a few set of controllers
for both priority 0 and priority 1, while it chooses from a large set of controllers for priority 2. This is
because many different choices for the priority 2 controller would often have little to no effect, e.g. if both
priority 0 and 1 controllers are position or force controllers, then choosing an additional position or force
controller for priority 2 will likely have no effect. Thus, it is hard for the policy to learn the appropriate
effect for lower priority controllers.

116

9 Appendices

Figure 9.11: Controller Selection Visualization for Block Fit during Task Execution. The thick blue lines show
the different walls in the environment. The dots represent the block position at each step. While the
arrows represent the wall object used by the selected controller. The left most plot shows the top pri-
ority (priority: 0) controller being selected, while the right most plot shows the controllers with lowest
priority (priority: 2). Top and bottom rows are two different train configurations (A and B from Fig-
ure 9.6a).

117

9 Appendices

9.3 Appendix - Planningwith Learned Skill EffectModels
for Lifelong RoboticManipulation

9.3.1 RelatedWorks
Low-level Skill High-level Planner

Paper Policy PC Effects Parameters PS Type Init Plan Heuristics
[98] MP n/a Sim n/a S MHA* n/a H
[230] MP n/a Sim n/a LE MCTS L H
[168] MB n/a Sim H, N-SG S Greedy n/a H
[134] MF n/a L n/a S MPPI n/a H
[161] MF L SG L, SG LE CEM H H
[252] MF n/a L L, N-SG LE CEM H L
[10] MF L SG n/a S RRT n/a n/a
[137] IL n/a SG L, SG S RL n/a L
[70] IL n/a SG L, SG S Sampling L n/a
[125] IL n/a L L, N-SG LE MPC n/a H
[22] HC H H n/a S WA* n/a H
[222] HC H SG L, SG V Sampling H n/a
[254] HC L L H, N-SG LE MPC L H
[89] HC H H H, N-SG S, Sym HPN n/a H
[104] HC L L n/a Sym mGPT n/a n/a
[247] HC L SG H, N-SG S, Sym PDDLStream n/a n/a
Ours HC H L H, SG, N-SG S WA* n/a H

Table 9.13: Related works on task planning with skills.

Table 9.13 compares the discussed related works and our proposed approach. We include this table to
illustrate the subtle but important similarities and differences among prior approaches, which may be
overlooked when they are compared at a more general level. This is not an exhaustive list of all works
in relevant areas. See below for the list of acronyms of each column. While we list the skill policy and
preconditions as hardcoded in our work, this is not a requirement, as our task planner does not restrict
the specific implementations of skills.

Policy: MB - Model-Based Optimization, MF - Model-Free RL, MP - Motion Primitives, HC - Hard-
coded Controllers, IL - Learned via Imitation Learning

Preconditions (PC): H - Hardcoded, L - Learned

Effects: H - Hardcoded, Sim - Simulator, L - Learned (usually from simulator data), SG - Assumes skill
reaches subgoal, FC - Fixed by algorithmic skill construction

Parameters: H - Hardcoded , L - Learned (e.g. training a CVAE parameter sampler), SG - Subgoal, N-SG
- Not Subgoals

118

9 Appendices

!!"#$%!& !%'"()*#+

!!

!!"

!#"

!$"

!%"

"!"

"#"

"$"

"%"
"!"&!

"#"&!

"$"&!

"%"&!

!%!#$%!& #!!"&!

#!#"&!

#!$"&!

#!%"&!

Skill Parameters

Skill Execution Cost

Figure 9.12: Latent Space Model Architecture. The encoder model is used to encode states into latent states while
the decoder model converts latent states into original states. While the skill dynamics model acts on
the latent state and given skill parameters outputs the final latent state and a skill execution cost. We
use a shared encoder-decoder model for all skills while each skill has a separate dynamics model.

Planning State (PS): S - State (e.g. low-dimensional object features), V - Visual (e.g. images, point
clouds), LE - Latent Embeddings (usually learned to encode high-dimensional visual observations), Sym
- Symbols

Init Plan (if the planner uses an initial plan, where does it come from?): L - Learned (e.g. from experience
or predefined plan skeleton), H - Hardcoded (e.g. a plan skeleton of a skill sequence, linear interpolation
of subgoals, or randomly sampled subgoals)

Heuristics (e.g. task value functions or shaped rewards/costs that guide planning towards a goal): H -
Hardcoded, L - Learned (could be from experience, analytical models, or demonstrations)

9.3.2 SEM Implementation
SEM Implementation: The GNN model contains four learnable multilayer perceptron (MLP) mod-
ules. The first is node feature embedding module, with two layers of sizes [32, 32]. The second is a message
embedding module that pass messages among nodes. It has three layers of sizes [128, 128, 128]. The third
is a node-level prediction module, with two layers of sizes [64, S + 32], where S is the dimension of per-
object features, and the extra 32 is used to produce graph-level predictions. The fourth is a graph-level
prediction module, which takes as input the sum of the last 32 dimensions of node-level predictions and
passes it through an MLP with sizes [32, 1] to predict skill execution costs.

The loss weight for terminal state prediction is λs = 100, and the weight for cost prediction is λc = 1.
All non-linearities are ReLU. The network is trained with the Adam optimizer with a batchsize of 128,
initial learning rate of 0.01, and for 300 epochs on every training run.

Each input object feature contains the position of the block, its color, and its index. Index is needed
for SEMs to identify which block is being grasped for Pick-Place. Color and indices are encoded with
an offset positional encoding. For example, for the ith color or index, its encoding is a two-dimensional
feature vector [i, i+ 1]. We found in practice that this simple approach allowed our network to capture
indices well and also allowed scaling to different number of objects and colors, which cannot be done
with one-hot encoding.

119

9 Appendices

Iterative Training: Instead of collecting all the data from the planner for training the SEM models,
we use heuristics to sample the more relevant data. First, we bias data collection towards longer paths in
the planning tree since these paths are more likely to be closer to the relevant task. Second, we also bias
data collection towards newly added skills. Since in the beginning we would not have sufficient data for
the newly added skill, this ensures that we get sufficient data for such new new skills. Algorithm 1 lists
the pseudo-code for the data-collection procedure including the heuristics used to sample paths from the
planner.

Algorithm 1 SEM iterative training pseudocode.
Input: Set of skills os, set of training tasks τ s.

for all new skills o do
SampleM0 initial states from x0 ∼ p(x0).
Sample P0 parameters θ for each initial state that satisfies βo(x0, θ).
Simulate πo with allM0 × P0 (state, parameter) tuples.
Add to dataset: Do ← {(x0, θ, xT , co)}.

end for
for all skills o do

Train onDo forE epochs the skill’s SEM from scratch or fine-tune previous model if it exists.
end for
for all training tasks τ do

SampleMp initial states from x0 ∼ p(x0).
for all sampled initial state x0 do
G← get planning graph by running WA* on τ with max search depthNd, max node expansions
Ne, and timeout Tp.
SampleNl nodes inG’s open list.
For each of theNl nodes, trace their optimal path found so far P from x0.
Give each of the Nl paths a weight w = no + 10ns, where no is the number of old skills in the
path, ns the number of new skills.
Sample without replacement Ns paths from all Nl paths with their normalized weights as likeli-
hoods.
Simulate eachNs path.
Add skill transitions to the corresponding datasetDo while ignoring duplicates (e.g. some paths
may share identical initial segments).

end for
end for

Weighted A* Planner: Weight A* (WA*) is a best-first graph search algorithm that expands nodes in the
order of lowest g(x) + ϵh(x), where g(x) is the total cost of the current optimal path from the initial
node to x, and h(x) is a heuristic function. The hyperparameter ϵ is called the inflation factor and is
usually greater than or equal to 1. If it is set to 1, then the search is no different from A*. The higher the
ϵ above 1, the greedier the search becomes at following the heuristic.

Hyperparameters: For all blocks in bin tasks (tasks A and C) with just the Pick-Place skill we use a high
value of ϵ = 20 since there are not many ways to achieve the task. With the addition of more skills i.e,

120

9 Appendices

Tray-Slide, Tray-Sweep and Bin-Tilt we set ϵ = 2. We found that this value to be sufficient to choose
optimal plans. Additionally we also set the maximum search depth for both tasks A and C to be 8, since
the longest plan for these tasks should be of length 8. For the colored blocks in bin tasks (tasks B and
D), we used ϵ = 2 and a max search depth of 5. Additionally, we sample a larger number of parameters
for Pick-Place skill as compared to the other skills. This is because the Pick-Place skill affects each block
separately and thus to find optimal plans we need to sample sufficient parameters for each block. This
necessitates a larger number of parameters for this skill. For Pick-Place we sample 24 parameters while for
all other skills we sample [4, 6] parameters.

9.3.3 Guarantees on the Constructed Graph
WA* guarantees completeness and bounded suboptimality on a given graph. Here we show that under
smoothness assumptions, the graph constructed with our parameter sampling approach is suitable for
search-based planning. Theorem 1 is about completeness — the distance between the reached goal state
by any solution path and the closest last state of a path on the graph is bounded. Theorem 2 is about
solution quality — for any solution path with a certain cost, the graph will contain a solution path with
a bounded cost difference.

Definition 1. The dispersion [118] of a finite set A of samples in a metric space (X, ρ) is defined as

δ(A) = sup
x∈X

min
p∈A

ρ(x, p)

Intuitively, it is the radius of the largest empty ball that can be drawn around any point in X without
intersecting any point in A.

In the following discussion, we assume all preconditions and the goal set are open sets.

Theorem 1. Let the skill transition function fo : X ×Θ→ X be Lipschitz continuous with a maximum
Lipschitz constant K and η = (x0, o0, θ0, x1, · · · , xN) be a solution to the planning problem. Then, ∃
a path η′ = (x0, o0, θ

′
0, x

′
1 · · · , x′N) on the constructed search graph such that ||xN − x′N || ≤ 2δκN =

2δK(KN−1)
K−1

if the dispersion δ of parameter samples is small enough.

Proof Consider an instance of the randomly generated search tree T of depth more than N . We pick a
small enough δ such that T contains at least one path η′ that has the same sequence of skills as η. How-
ever, due to random sampling, the sampled parameters may not be the same. For every θi at a state, ∃ a
parameter sample θ′i such that

||θi − θ′i|| ≤ 2δ (9.11)

Using the definition of Lipschitz continuity and the triangle inequality, we have

||foi(xi, θi)− foi(x′i, θ′i)|| ≤ K||(xi, θi)− (x′i, θ
′
i)|| (9.12)

≤ K||xi − x′i||+K||θi − θ′i|| (9.13)

In particular,
||x1 − x′1|| = ||fo0(x0, θ0)− fo0(x0, θ′0)|| ≤ K||θ0 − θ′0||

121

9 Appendices

and

||xN − x′N || = ||foN−1
(xN−1, θN−1)− foN−1

(x′N−1, θ
′
N−1||

≤ K||θN−1 − θ′N−1||+K||xN−1 − x′N−1||

≤
N−1∑
i=0

KN−i||θi − θ′i|| ≤ ∆θ
N−1∑
i=0

KN−i

≤ 2κNδ (Using inequality 9.11)

(9.14)

where κN = K(KN−1)
K−1

.

To ensure that we have a path η′ on the graph that terminates ϵ-close to the terminal state of η, we require
that ||xN − x′N || ≤ 2κNδ ≤ ϵ.

To guarantee that η′ will also be a solution, we additionally need to ensure that ϵ < r, where r is the
radius of the largest ball we can draw around xN in G (goal set). This is always possible if G is an open
set.

Theorem 2. Let the cost function be Lipschitz continuous with a maximum Lipschitz constant of L. Let η
be a solution path of cost c(η) and r > 0, then for a sufficiently small dispersion δ, ∃ a solution path η′ on
the constructed search graph with cost c(η′) ≤ c(η) + δNL[1 +

∑N
i=1 κi].

Proof Choose δ such that 2κNδ < r and ∃ a path η′ on the graph with the same sequence of skills as η.
Then, from the previous theorem, ∃ a path η′ on the graph such that ||xN − x′N || ≤ 2κNδ < r. By the
definition of r, x′N ∈ G and hence η′ is a solution path. Next, we bound the cost of this path.

The cost of a path c(η) =
∑N−1

i=0 coi(xi, θi). For convenience, here we write the cost function as skill-
specific cost functions that vary w.r.t the initial state and skill parameters, instead of step-wise costs on
state and low-level controls. Let ci = coi(xi, θi) and c′i = coi(x

′
i, θ

′
i). Then, using the definition of

Lipschitz continuity, we have

||ci − c′i|| ≤ L||(xi, θi)− (x′i, θ
′)||

≤ L||xi − x′i||+ L||θi − θ′i||
≤ L[2κiδ + δ]

(9.15)

Hence,

||c(η)− c(η′)|| = ||
N−1∑
i=0

ci − c′i|| ≤
N−1∑
i=0

||ci − c′i||

≤ δNL[1 + 2
N∑
i=1

κi]

(9.16)

The dispersion of a set of sampled parameters depends on the sampling strategy used. For uniformly
random sampling, we can only estimate it probabilistically. [66] prove bounds on the expected dispersion

122

9 Appendices

of a set of i.i.d points which tightens with more points, i.e., we are more confident of a lower expected
dispersion with a larger number (Bo) of parameter samples.

Theorem 2 provides two additional observations. First, skills with dynamics that don’t change fast, i.e.,
their Lipschitz constant are small, can be approximated with a sparse graph (less parameter sampling).
Second, longer horizon tasks require more parameter sampling to guarantee good quality plans.

9.3.4 Task Domain Skill Details
All skill policies are implemented by end-effector waypoint following, where trajectories between way-
points are computed via min-jerk interpolation, and low-level control is achieved by end-effector impedance
control. A subset of waypoints for each skill is indirectly determined by the skill parameters. For example,
for Pick-Place, the object index parameter determines which object to pick. Together with the current
state, they are used to compute the waypoints associated with the picking motion.

Pick-Place: This skill picks up a chosen block and places it at a target location.

Parameter. A 4-vector consisting of an index corresponding to which block to pick and a 3D position
for placement

Parameter Sampling. For which block to pick, we sample the index of a block on the table with collision-
free grasps. For the placement position, we first sample which general placement region to use, table, bin,
or tray, with probabilities [0.2, 0.5, 0.4]. Then, we randomly sample a position on the surface of reach
placement region. The bin placement region is the half of the bin that is closer to the robot.

Precondition. The precondition function check returns satisfied if the placement position is collision free.
It assumes the pick grasp is collision free and the placement location is reachable.

Tray Slide

This skill picks up the tray, brings it over the bin, rotates the tray to let blocks fall to the bin, then brings
the tray back to its original pose.

Parameter. One value that determines where along the bin does the slide rotation motion. This allows
dropping blocks over the close or far side of the bin.

Parameter Sampling. This is done via uniform sampling over a range of the length of the bin.

Precondition. The precondition is satisfied when there is at least one block on the tray.

Tray Sweep: This skill picks up the tray, rotates it 90◦, brings it down toward the table, sweeps down-
stream objects into the bin, and returns the tray to its original pose.

Parameter. One value that determines where along the table the sweep motion begins.

Parameter Sampling. This is done via uniform sampling over a range of the width of the table.

123

9 Appendices

Pick-Place

Pick-Place + Tray Slide

Pick-Place + Tray Slide + Tray Sweep

Pick-Place + Tray Slide + Tray Sweep + Bin Tilt

Pick-Place Tray Slide Tray Sweep Bin Tilt
Time

Figure 9.13: Qualitative results: Plans found for Task-A with increasing number of skills. Left most columns are
the skills executed at t=0, with skills being executed as we move towards right. Each row also lists the
different skills used to plan.

Precondition. The precondition is satisfied when there is at least one block that will be swept by the skill
and the starting location for the tray is collision-free.

Bin Tilt: This skill lifts one side of the bin by a desired angle, allowing objects to slip down toward the
far side of the bin, before return the bin to the original configuration.

Parameter. One value that determines the angle of the tilt. With a shallow angle it is possible for some
blocks to remain in the near side of the bin, or not move at all due to friction.

Parameter Sampling. This is done via uniform sampling in the range of [5◦, 20◦].

Precondition. The precondition is satisfied if there is at least one block in the bin.

9.3.5 Additional Results - Qualitative Planning Results
In this section we show qualitative results for our train and test tasks.

Figure 9.13 shows the qualitative results for the train task A with an increasing number of skills. In the
above result we see that with only Pick-Place skill the planner finds a plan which needs to pick all blocks
and place them in the bin. However, after adding the Tray-Slide skill (row 2) the planner finds a longer
plan but with a lower cost 4.3. This lower cost is a result of being able to use the Tray-Slide skill to
transport multiple blocks to the bin directly. Additionally, with the addition of Tray-Sweep skill we can
perform the task with only 1 skill which significantly reduces the overall plan cost.

Similarly, Figure 9.14 and 9.15 show the qualitative results for both test tasks B and D respectively. Similar
to before, with an increasing number of skills the overall plan and its associated cost changes significantly.
For task B we observe that adding Tray-Sweep improves the performance only in some scenarios as shown

124

9 Appendices

Pick-Place

Pick-Place + Tray Slide

Pick-Place + Tray Slide + Tray Sweep

Pick-Place + Tray Slide + Tray Sweep

Pick-Place Tray Slide Tray Sweep Bin Tilt

Time

Figure 9.14: Qualitative results: Plans found for Task-B with increasing number of skills. Left most columns are
the skills executed at t=0, with skills being executed as we move towards right. Each row also lists the
different skills used to plan.

in Figure 9.14 (rows 3 and 4). In another instance the robot can also perform Pick-Place to align the red
blocks to sweep them into the bin (row 4).

Similarly, for test-task D we observe that using Pick-Place alone is not sufficient (as observed in Figure 4.3).
However, adding the Tray-Slide skill makes the task feasible (top row). However, in contrast to tasks A
and B, adding Tray-Sweep does not affect task execution since the robot cannot move the blocks to the
far bin with this skill. We observe this in Figure 9.15 where the top two rows use the same set of skills.
However, adding the Bin-Tilt skill allows the planner to use the Tray-Sweep skill, as shown in Figure 9.15
(row 3, second row from bottom).

Video results for most tasks and settings can be found at the project page https://sites.google.com/

view/sem-for-lifelong-manipulation.

9.3.6 FailureModes
Here we discuss examples of planning and execution failures due to insufficiently trained SEMs.

125

https://sites.google.com/view/sem-for-lifelong-manipulation
https://sites.google.com/view/sem-for-lifelong-manipulation

9 Appendices

Pick-Place Tray Slide Tray Sweep Bin Tilt

Time

Pick-Place + Tray Slide

Pick-Place + Tray Slide + Tray Sweep

Pick-Place + Tray Slide + Tray Sweep + Bin Tilt

Pick-Place + Tray Slide + Tray Sweep + Bin Tilt

Figure 9.15: Qualitative results: Plans found for Task-D with increasing number of skills. Left most columns are
the skills executed at t=0, with skills being executed as we move towards right. Each row also lists the
different skills used to plan.

First, if SEM predictions are not sufficiently accurate, then the predicted states would do not satisfy the
preconditions of necessary skills, and the planner will not find a plan. For instance, when Tray-Sweep is
trained with less data, the learned SEM predictions can incorrectly predict that the blocks move to the
edge of the table instead of being moved to the bin. Thus, the planner considers this to be a non-optimal
action and instead resorts to using the remaining skills (Pick-Place and Tray Slide), which leads to a sub-
optimal plan if one is found. Another scenario where incorrect SEM predictions lead to failure is when
Tray-Slide is added. Given the previously used Pick-Place was mostly trained on moving blocks from
the table to the bin (because of the train-task bias), the existing Pick-Place SEM may inaccurately predict
that the skill is unable to move blocks to the tray. This results in the failure for Tray-Slide preconditions
which finally results in either the planner timing out or finding sub-optimal plans.

Second, there are also scenarios where the planner is able to find a plan despite inaccurate SEM predic-
tions, but the plan does not work in execution. One common instance is with Pick-Place, where early
on with insufficient data the SEM often inaccurately predicts that the skill will move blocks to the bin,
despite the target placement location being on the edge of the table. Given the incorrect prediction by
the SEM, the planner mistakenly believes that the block has been placed in the bin, and it may find a plan
but its execution does not lead to success.

126

9 Appendices

9.4 Appendix - Adapting Pretrained VisionModels For
RoboticManipulation

9.4.1 Experimental Setup
We provide further training details for our approaches in the following sections. First we discuss the
adapter parameterizations in more detail specifically detailing the adapter locations and their associated
trainable parameters.

Adapter Parameterizations As noted previously in Sub-Section 6.3.2 we use bottom, middle and top
adapters. We discuss the overall number of parameters for each of these adapter types. Table 6.4 provides
an overall count for the number of adapter parameters.

Bottom: For NFNet and ResNet architectures we use the initial convolution, while for ViT we use the
initial patch embedding as the only bottom set of layers. We add 1 adapter for this bottom layer. Since
the image input only contains 3 channels and the bottom layer consists of only 16 and 256 channels for
NFNet and ResNets respectively, bottom adapters require very few (< 1000) parameters. While for ViT
since we have a large feature output, it results in a much larger number of parameters≈ 0.7M .

Middle: For middle adapters we use 4 and 6 adapters for the convnet and transformer based architectures
respectively. For the convnet based architectures we add each adapter to the first convolution in each block
group except the last group, where we add it at the end. While for the transformer based architectures we
apply them at layers {0, 1, 5, 6, 10, 11} which yields around∼ 400K adapter parameters. While better
choices and adapter placements may exist we use these uniformly across all tasks. Finally, the output of
middle layer consists of a set of spatial features. For NFNet and ResNet these are output of layer 4 and
final conv with a spatial size of 7 × 7 and a feature size of 3096 and 2048 respectively. For ViTs we get
196 patches each with 768 features.

Top: As noted previously in Sub-section 6.3.2, the high dimensional spatial features from the middle layer
can be reduced either via mean pooling or by projecting them onto a lower dimensional space through
a single layer. Since prior works use mean pooling we use it to compare our work with them. However,
since manipulation tasks are spatial in nature we also investigate down-projecting the high dimensional
spatial features into smaller dimensions and concatenating them. This formulation avoids any loss of
spatial information. To achieve this for NFNet and ResNets we use 1 convolution layer with 1×1 kernel
and 41 output channels. While for ViT we use a shared MLP that projects each patch embedding into
a 20 dimensional feature. Finally, to further process these features we optionally add 2 MLPs each with
256 parameters, we refer to these as top layer adapters.

Policy Head: We universally use a linear policy head that converts the output of the top layer into the
robot action to be executed.

9.4.2 Training Details
As noted in the main paper we use behavior cloning with mean squared loss as the optimization objective.
We use a linear policy head to predict continuous actions. While specific action parameterizations, such as

127

9 Appendices

Training Parameters MetaWorld Franka-Kitchen RGB Stacking

Loss MSE MSE MSE
Optimizer Adam Adam Adam
Learning Rate 1e-4 1e-3 1e-4
Weight Decay 1e-6 1e-6 1e-6
Gradient Norm Clip 1.0 1.0 1.0
Training Steps 40K 40K 200K
Learning Rate Schedule cosine cosine cosine
Learning Rate Schedule Warmup Steps 5K 5K 10K
Adapter Features Size 32 32 32

Table 9.14: Training Details for each of the three different task suites used in our work. For each task within the
task suite we use the same set of hyperparameters.

the use of binary gripper can help increase performance, for a fair comparison of representations we avoid
using any such techniques. Table 9.14 lists out the detailed hyperparameters used in our experiments. We
uniformly use the same set of hyperparameters across most task settings except the learning rate, wherein
we found using a slightly higher learning rate of 1e− 3 works better for Franka-Kitchen tasks.

Network Details: As discussed before our implementation uses three different network architectures –
NFNets, ResNets and ViTs. Figure 6.3 presents the overall architecture. In settings where we use pro-
prioceptive information, we use a single linear layer with 256 dimensions to map the low dimensional
proprioceptive information to a higher dimensional space. This high dimensional proprioceptive infor-
mation is then concatenated with the visual features before being forwarded to the 2 layer MLP (each with
256 units). Further, since we evaluate our approach across very different architectures we use the same
policy form across all of them. Thus, we avoid using any normalization techniques such as BatchNorm
or LayerNorm in our policy implementation.

9.4.3 Additional Results
We provide further results for the use of adapters in the three different environment suites considered
in the main paper. We then discuss the ablation results on adapter locations for all suites and network
architectures. For these results, in addition to average metrics across all enviroments, we also provide task
specific metrics.

Adapter Results with Proprioceptive Information. In this section we present detailed task-specific
success rate using our proposed adapters for each task in the three manipulation suites. For these results
we use all top, bottom and middle adapters in our implementation. Further, in addition to visual fea-
tures we also utilize proprioceptive information for these results. Table 9.15, 9.16 and Table 9.17 report
task-specific results for MetaWorld, Franka-Kitchen and RGB Stacking suites using all three different ar-
chitectures with imagenet pretrained weights. Comparing Table 9.15 with previous results in Table 6.2
we see that adding proprioceptive information results in≈ 10% increase in the average success rate. This
increase holds consistently across all architectures. More interestingly we also find that for most tasks

128

9 Appendices

Assembly Bin-Picking Button Press Drawer Open Hammer Average

NFNet 0.92 0.7 0.94 0.96 0.94 0.89
ResNet 0.90 0.66 0.96 0.94 0.92 0.88
ViT 0.92 0.8 0.91 0.98 0.92 0.91

Table 9.15: Task specific results for using bottom, middle and top adapters with proprioceptive information (pro-
prio) for each task in MetaWorld.

Knob1-On LDoor-Open Light-On Micro-Open SDoor-Open Average

NFNet 0.46 0.44 0.72 0.32 0.94 0.58
ResNet 0.48 0.46 0.60 0.30 0.88 0.54
ViT 0.6 0.48 0.59 0.36 0.83 0.57

Table 9.16: Task specific results for using bottom, middle and top adapters with proprioceptive information (pro-
prio) for each task in Franka-Kitchen suite.

(except Bin-Picking) the agent can reach greater than 90% performance, while for some tasks such as
Button-Press and Drawer-Open it can even reach close to 100% performance.

Table 9.16 shows the results for each task in the Franka-Kitchen suite. Compared to previous results in
Table 6.2 we see a much larger increase in the performance (≈ 60% relative performance increase on
average) of each architecture in the Franka-Kitchen suite. One reason for such a large increase is the very
limited state space distribution for these tasks. Since all objects in the environment are fixed and only
the initial robot configuration changes, it is much easier for the robot to memorize the proprioceptive
information and map it to observed expert actions for improved task performance. Additionally, while
both MetaWorld and Franka-Kitchen use 25 demonstrations, each demonstration in MetaWorld has 500
steps while in Franka-Kitchen each demonstration is only 50 steps. This results in 10× difference in the
amount of training data. However, since prior works use these settings for a fair comparison we follow
similar evaluation protocols.

Effects of Adapter Locations. In this section we investigate the effect of inserting adapters in each of the
different network layers as discussed in Subsection 6.3.2 and initially explored in Subsection 6.5.2. Due to
space constraints in Subsection 6.5.2 we only provide results for the RGB Stacking task. In this subsection
we show results across all manipulation suites and network architectures. For ease of comparison we also
plot the RGB Stacking results from before.

Figure 9.16 shows results for inserting adapters in each network layer across all 3 task suites and architec-
tures. As noted before, we split the results in each plot into two parts. 1) without using top layer adapters
(i.e. directly using a linear policy head), and 2) using a top layer adapter (i.e. using 2 additional MLPs
before the linear policy head). Moreover, in addition to the different adapter locations we also show re-
sults for fixed pretrained representations (Pretrain Feat.) and full fine-tuning (Full FT.) both with and
without top adapters. As noted in the main paper, prior works always use such top adapters in their
implementations.

129

9 Appendices

Triplet 1 Triplet 2 Triplet 3 Triplet 4 Triplet 5 Average

NFNet 0.40 0.18 0.11 0.67 0.90 0.45
ResNet 0.48 0.34 0.11 0.62 0.86 0.48
ViT 0.25 0.40 0.13 0.80 0.85 0.49

Table 9.17: Task specific results for using bottom, middle and top adapters for each task in RGB-Stacking suite.

Top Adapters: In our discussion in Subsection 6.5.2 we showed that for the RGB Stacking task top
adapters are quite important to achieve close to optimal task performance. We note that the greyed out
plots in Figure 9.16 indicate methods that do not use top adapters. Our results in Figure 9.16 show that
this holds true for both MetaWorld and Franka-Kitchen suites as well. For both of these suites we find
that using top adapters improves the downstream manipulation performance. However, as seen in the
metaworld results (top row of Figure 9.16), full fine-tuning approaches (last bar in each plot) can reach
good performance even without top adapters. However, this does not hold for the Franka-Kitchen tasks
(middle row in Figure 9.16). We hypothesize this is because of the metaworld setup, wherein there is usu-
ally a single object centered on an otherwise empty table, which presents an easier visual setting and sim-
ply fine-tuning the high capacity pretrained visual model can extract the appropriate task representation.
However, we do note that our use of adapters is able to closely match the full fine-tuning performance
across all architectures.

Bottom Adapters: Similar to RGB-stacking results before we note that the bottom adapters (plotted in
Green) with very few parameters (around a few thousand) can lead to substantially better results than
simply using fixed pretrained models. This holds when bottom adapters are combined with top adapters
and even in the absence of top adapters. Although, as noted before the overall results are much poorer
without top adapters. From Figure 9.16 we see that bottom adapters help for both NFNet (green bar in
column 1, row 1 and column 1, row2) and ResNet (green bar in column 1, row 1 and column 1, row2).
Thus, broadly similar results hold across environment suites.

Middle Adapters: From Figure 9.16 also shows that while bottom and top adapters together (green bar
on the right plots) can achieve good performance there still exists a significant gap compared to the full
fine-tuning approach. However, inserting middle adapters, either alone (shown by orange) or together
with bottom adapters (shown in purple) leads to a much more improved performance. Overall, using
adapters in all the layers is closely able to match the full fine-tuning performance. This substantial effect
of middle adapters is not unexpected since the middle part of the network contains a large part of the
pretrained network and thus has significant affect on the output representation.

Overall our results show the importance of adding adapters in each of the network section. As noted
previously, this usage of adapters in different network sections is different from prior works [126, 184]
which only focus on middle adapters. While such middle adapters are sufficient for semantic classification
tasks (considered in [126, 184], they are insufficient for control tasks considered here.

130

9 Appendices

9.4.4 Discussion
In this section we briefly discuss some observations on the use of adapters and future works that adapters
can enable for robot control tasks.

Sim2Real: Prior work in robotics often use extensive visual domain randomization, photo-realistic simu-
lators, and other sensory modalities such as depth (which have a smaller sim2real gap) to transfer simula-
tion trained policies to real-world. Our results show that using large pre-trained models (which are closer
to natural image statistics) can avoid the need for such expensive sim2real strategy. While there still exists a
performance gap (∼ 24% without visual domain randomization,∼ 53% with domain randomization),
we believe this opens up significant avenues for future research.

CLIP/ALIGN Representations: Recent works [158, 180] propose representations that outperform off-
the-shelf CLIP representations. However, CLIP representations are much more semantically powerful
[51] and highly robust across a range of data distributions [249]. Our results in Section 6.5.2 shows that
while off-the-shelf CLIP representations can be poor (especially for RGB-stacking see Figure 6.6 Right),
adapting them through our proposed adapters results in similar performance as other adapted represen-
tations (such as MAE ones). Moreover, adapting CLIP representations significantly outperforms all fixed
off-the-shelf representations. This is important since CLIP representations are much more semantically
powerful and have been used for vastly different task – dialogue generation [4], robot navigation [51], im-
ages sketching [245]. Our result shows that the same pretrained model can perform robot manipulation
and reach close to optimal performance. This provides exciting avenues for future research wherein a
single fixed model can be used to solve a very wide range of tasks.

131

9 Appendices

M
et

aW
or

ld
Fr

an
ka

Ki
tc

he
n

RG
B

St
ac

ki
ng

NFNet ResNet ViT

Pretrained Feat. Bottom
Adapters

Middle
Adapters

Bottom + Middle
Adapters

Full
Finetuning

Figure 9.16: Results on the RGB-Stacking environment for 3 different type of model architectures.

132

Bibliography

1. F. J. Abu-Dakka, B. Nemec, J. A. Jørgensen, T. R. Savarimuthu, N. Krüger, and A. Ude. “Adap-
tation of manipulation skills in physical contact with the environment to reference force profiles”.
Autonomous Robots 39:2, 2015, pp. 199–217.

2. M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrish-
nan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K.
Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L.
Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Siev-
ers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng. “Do
As I Can and Not As I Say: Grounding Language in Robotic Affordances”. In: arXiv preprint
arXiv:2204.01691. 2022.

3. E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter. “Learning the semantics
of object–action relations by observation”. The International Journal of Robotics Research 30:10,
2011, pp. 1229–1249.

4. J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, et al. “Flamingo: a visual language model for few-shot learning”. arXiv preprint
arXiv:2204.14198, 2022.

5. R. Aljundi, P. Chakravarty, and T. Tuytelaars. “Expert gate: Lifelong learning with a network
of experts”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 3366–3375.

6. B. Ames, A. Thackston, and G. Konidaris. “Learning symbolic representations for planning with
parameterized skills”. 2018 IEEE International Conference on Intelligent Robots and Systems, 2018.

7. Y. Aytar, L. Castrejon, C. Vondrick, H. Pirsiavash, and A. Torralba. “Cross-modal scene net-
works”. IEEE transactions on pattern analysis and machine intelligence 40:10, 2017, pp. 2303–
2314.

8. J. L. Ba, J. R. Kiros, and G. E. Hinton. “Layer normalization”. arXiv preprint arXiv:1607.06450,
2016.

9. P.-L. Bacon, J. Harb, and D. Precup. “The option-critic architecture”. In: Thirty-First AAAI Con-
ference on Artificial Intelligence. 2017.

10. A. Bagaria, J. Crowley, J. W. N. Lim, and G. Konidaris. “Skill Discovery for Exploration and Plan-
ning using Deep Skill Graphs”, 2020.

11. D. H. Ballard. “Task Frames in Robot Manipulation.” In: AAAI. Vol. 19. 1984, p. 109.
12. D. H. Ballard and L. Hartman. “Task frames: Primitives for sensory-motor coordination”. Com-

puter Vision, Graphics, and Image Processing 36:2-3, 1986, pp. 274–297.
13. P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A.

Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. “Relational inductive biases, deep learning,
and graph networks”. arXiv preprint arXiv:1806.01261, 2018.

133

Bibliography

14. P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu. “Interaction networks for
learning about objects, relations and physics”. Advances in Neural Information Processing Systems,
2016.

15. M. Beetz, L. Mösenlechner, and M. Tenorth. “CRAM—A Cognitive Robot Abstract Machine
for everyday manipulation in human environments”. In: 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. 2010, pp. 1012–1017.

16. C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, T. Nishi, S. Kikuchi, T. Matsubara,
and K. Harada. “Learning force control for contact-rich manipulation tasks with rigid position-
controlled robots”. IEEE Robotics and Automation Letters 5:4, 2020, pp. 5709–5716.

17. D. Berenson, S. Srinivasa, and J. Kuffner. “Task space regions: A framework for pose-constrained
manipulation planning”. The International Journal of Robotics Research 30:12, 2011, pp. 1435–
1460.

18. M. Bogdanovic, M. Khadiv, and L. Righetti. “Learning Variable Impedance Control for Contact
Sensitive Tasks”. arXiv preprint arXiv:1907.07500, 2019.

19. A. Brock, S. De, S. L. Smith, and K. Simonyan. “High-performance large-scale image recogni-
tion without normalization”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 1059–1071.

20. A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. “Rt-1: Robotics transformer for real-world control at scale”. arXiv
preprint arXiv:2212.06817, 2022.

21. H. Bruyninckx and J. De Schutter. “Specification of force-controlled actions in the" task frame
formalism"-a synthesis”. IEEE transactions on robotics and automation 12:4, 1996, pp. 581–589.

22. J. Butzke, K. Sapkota, K. Prasad, B. MacAllister, and M. Likhachev. “State lattice with controllers:
Augmenting lattice-based path planning with controller-based motion primitives”. IEEE Interna-
tional Conference on Intelligent Robots and Systems, 2014.

23. R. Calandra, A. Owens, D. Jayaraman, J. Lin, W. Yuan, J. Malik, E. H. Adelson, and S. Levine.
“More than a feeling: Learning to grasp and regrasp using vision and touch”. IEEE Robotics and
Automation Letters 3:4, 2018, pp. 3300–3307.

24. S. Calinon. “A tutorial on task-parameterized movement learning and retrieval”. Intelligent service
robotics 9:1, 2016, pp. 1–29.

25. S. Calinon, D. Bruno, and D. G. Caldwell. “A task-parameterized probabilistic model with min-
imal intervention control”. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2014, pp. 3339–3344.

26. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. “End-to-end ob-
ject detection with transformers”. In: European conference on computer vision. Springer. 2020,
pp. 213–229.

27. L. Castrejon, Y. Aytar, C. Vondrick, H. Pirsiavash, and A. Torralba. “Learning aligned cross-modal
representations from weakly aligned data”. In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. 2016, pp. 2940–2949.

28. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S.
Song, H. Su, et al. “Shapenet: An information-rich 3d model repository”. arXiv preprint arXiv:1512.03012,
2015.

29. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. “A simple framework for contrastive learn-
ing of visual representations”. In: International conference on machine learning. PMLR. 2020,
pp. 1597–1607.

134

Bibliography

30. G. Comanici and D. Precup. “Optimal policy switching algorithms for reinforcement learning”.
In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems:
volume 1-Volume 1. 2010, pp. 709–714.

31. A. Conkey and T. Hermans. “Learning Task Constraints from Demonstration for Hybrid Force/Position
Control”. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids).
IEEE. 2019, pp. 162–169.

32. A. Conkey and T. Hermans. “Planning under Uncertainty to Goal Distributions”. arXiv preprint
arXiv:2011.04782, 2020.

33. E. Coumans et al. “Bullet physics library”. Open source: bulletphysics. org 15:49, 2013, p. 5.
34. B. Curless and M. Levoy. “A volumetric method for building complex models from range im-

ages”. In: Proceedings of the 23rd annual conference on Computer graphics and interactive tech-
niques. 1996, pp. 303–312.

35. C. Daniel, H. Van Hoof, J. Peters, and G. Neumann. “Probabilistic inference for determining
options in reinforcement learning”. Machine Learning 104:2-3, 2016, pp. 337–357.

36. J. De Schutter and H. Van Brussel. “Compliant robot motion I. A formalism for specifying com-
pliant motion tasks”. The International Journal of Robotics Research 7:4, 1988, pp. 3–17.

37. H. De Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. C. Courville. “Modulating early
visual processing by language”. Advances in Neural Information Processing Systems 30, 2017.

38. M. Deitke, R. Liu, M. Wallingford, H. Ngo, O. Michel, A. Kusupati, A. Fan, C. Laforte, V. Voleti,
S. Y. Gadre, et al. “Objaverse-xl: A universe of 10m+ 3d objects”. arXiv preprint arXiv:2307.05663,
2023.

39. B. Deng, K. Genova, S. Yazdani, S. Bouaziz, G. Hinton, and A. Tagliasacchi. “Cvxnet: Learnable
convex decomposition”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2020, pp. 31–44.

40. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidirectional trans-
formers for language understanding”. arXiv preprint arXiv:1810.04805, 2018.

41. A. Dietrich, C. Ott, and A. Albu-Schäffer. “An overview of null space projections for redundant,
torque-controlled robots”. The International Journal of Robotics Research, 2015.

42. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. “An image is worth 16x16 words: Transformers for image
recognition at scale”. arXiv preprint arXiv:2010.11929, 2020.

43. D. Dwibedi, J. Tompson, C. Lynch, and P. Sermanet. “Learning actionable representations from
visual observations”. In: 2018 IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE. 2018, pp. 1577–1584.

44. M. Eppe, P. D. Nguyen, and S. Wermter. “From semantics to execution: Integrating action plan-
ning with reinforcement learning for robotic causal problem-solving”. Frontiers in Robotics and
AI 6, 2019, p. 123.

45. N. Fazeli, M. Oller, J. Wu, Z. Wu, J. B. Tenenbaum, and A. Rodriguez. “See, feel, act: Hierarchical
learning for complex manipulation skills with multisensory fusion”. Science Robotics 4:26, 2019,
eaav3123.

46. M. Fey and J. E. Lenssen. “Fast Graph Representation Learning with PyTorch Geometric”. In:
ICLR Workshop on Representation Learning on Graphs and Manifolds. 2019.

47. S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Krüger, and F. Guerin. “Learning spatial rela-
tionships from 3D vision using histograms”. In: 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2014, pp. 501–508.

135

Bibliography

48. P. Florence, L. Manuelli, and R. Tedrake. “Self-supervised correspondence in visuomotor policy
learning”. IEEE Robotics and Automation Letters 5:2, 2019, pp. 492–499.

49. P. R. Florence, L. Manuelli, and R. Tedrake. “Dense object nets: Learning dense visual object de-
scriptors by and for robotic manipulation”. arXiv preprint arXiv:1806.08756, 2018.

50. K.-i. Funahashi and Y. Nakamura. “Approximation of dynamical systems by continuous time
recurrent neural networks”. Neural networks 6:6, 1993, pp. 801–806.

51. S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song. “CLIP on Wheels: Zero-Shot
Object Navigation as Object Localization and Exploration”. arXiv preprint arXiv:2203.10421,
2022.

52. W. Gao and R. Tedrake. “kPAM 2.0: Feedback Control for Category-Level Robotic Manipula-
tion”. IEEE Robotics and Automation Letters 6:2, 2021, pp. 2962–2969.

53. C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
“Integrated task and motion planning”. Annual review of control, robotics, and autonomous systems
4, 2021, pp. 265–293.

54. C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling. “PDDLStream: Integrating symbolic plan-
ners and blackbox samplers via optimistic adaptive planning”. In: Proceedings of the International
Conference on Automated Planning and Scheduling. Vol. 30. 2020, pp. 440–448.

55. J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires,
Z. Guo, M. Gheshlaghi Azar, et al. “Bootstrap your own latent-a new approach to self-supervised
learning”. Advances in neural information processing systems 33, 2020, pp. 21271–21284.

56. A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. “Relay Policy Learning: Solving
Long Horizon Tasks via Imitation and Reinforcement Learning”. Conference on Robot Learning
(CoRL), 2019.

57. T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor”. In: International conference on machine
learning. PMLR. 2018, pp. 1861–1870.

58. R. Hadsell, S. Chopra, and Y. LeCun. “Dimensionality reduction by learning an invariant map-
ping”. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06). Vol. 2. IEEE. 2006, pp. 1735–1742.

59. K. Hara, H. Kataoka, and Y. Satoh. “Can Spatiotemporal 3D CNNs Retrace the History of 2D
CNNs and ImageNet?” In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2018, pp. 6546–6555.

60. M. Hausknecht and P. Stone. “Deep reinforcement learning in parameterized action space”. In-
ternational Conference on Learning Representations (ICLR), 2015.

61. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. “Masked autoencoders are scalable vision
learners”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 2022, pp. 16000–16009.

62. K. He, G. Gkioxari, P. Dollár, and R. Girshick. “Mask R-CNN”. In: Proceedings of the Interna-
tional Conference on Computer Vision (ICCV). 2017.

63. K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

64. D. Henrich, T. Ogasawara, and H. Worn. “Manipulating deformable linear objects-contact states
and point contacts”. In: Proceedings of the 1999 IEEE International Symposium on Assembly and
Task Planning (ISATP’99)(Cat. No. 99TH8470). IEEE. 1999, pp. 198–204.

136

Bibliography

65. A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse, O.
Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable Baselines.
https://github.com/hill-a/stable-baselines. 2018.

66. A. Hinrichs, D. Krieg, R. J. Kunsch, and D. Rudolf. “Expected dispersion of uniformly distributed
points”. Journal of Complexity 61, 2020, p. 101483.

67. N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly. “Parameter-efficient transfer learning for NLP”. In: International Confer-
ence on Machine Learning. PMLR. 2019, pp. 2790–2799.

68. Y. Huang, J. Silvério, L. Rozo, and D. G. Caldwell. “Generalized task-parameterized skill learn-
ing”. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE. 2018,
pp. 5667–5474.

69. S. Hutchinson, G. D. Hager, and P. I. Corke. “A tutorial on visual servo control”. IEEE transac-
tions on robotics and automation 12:5, 1996, pp. 651–670.

70. B. Ichter, P. Sermanet, and C. Lynch. “Broadly-Exploring, Local-Policy Trees for Long-Horizon
Task Planning”. arXiv preprint arXiv:2010.06491, 2020.

71. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. “Dynamical movement prim-
itives: learning attractor models for motor behaviors”. Neural computation 25:2, 2013, pp. 328–
373.

72. S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. “Rlbench: The robot learning benchmark &
learning environment”. IEEE Robotics and Automation Letters 5:2, 2020, pp. 3019–3026.

73. E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. “Bc-z:
Zero-shot task generalization with robotic imitation learning”. In: Conference on Robot Learning.
PMLR. 2022, pp. 991–1002.

74. M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn, and J. Wu. “Reasoning about
physical interactions with object-oriented prediction and planning”. International Conference on
Learning Representations (ICLR), 2019.

75. M. Janner, I. Mordatch, and S. Levine. “gamma-Models: Generative Temporal Difference Learn-
ing for Infinite-Horizon Prediction”. Advances in Neural Information Processing Systems, 2020.

76. R. Jeong, Y. Aytar, D. Khosid, Y. Zhou, J. Kay, T. Lampe, K. Bousmalis, and F. Nori. “Self-
supervised sim-to-real adaptation for visual robotic manipulation”. In: 2020 IEEE international
conference on robotics and automation (ICRA). IEEE. 2020, pp. 2718–2724.

77. N. Jetchev, T. Lang, and M. Toussaint. “Learning grounded relational symbols from continuous
data for abstract reasoning”, 2013.

78. D. Ji and M. A. Wilson. “Coordinated memory replay in the visual cortex and hippocampus dur-
ing sleep”. Nature neuroscience 10:1, 2007, pp. 100–107.

79. C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, and T. Duerig.
“Scaling up visual and vision-language representation learning with noisy text supervision”. In:
International Conference on Machine Learning. PMLR. 2021, pp. 4904–4916.

80. M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim. “Visual prompt
tuning”. arXiv preprint arXiv:2203.12119, 2022.

81. L. Johannsmeier, M. Gerchow, and S. Haddadin. “A framework for robot manipulation: Skill
formalism, meta learning and adaptive control”. In: 2019 International Conference on Robotics
and Automation (ICRA). IEEE. 2019, pp. 5844–5850.

137

https://github.com/hill-a/stable-baselines

Bibliography

82. E. Johns. “Coarse-to-fine imitation learning: Robot manipulation from a single demonstration”.
In: 2021 IEEE international conference on robotics and automation (ICRA). IEEE. 2021, pp. 4613–
4619.

83. R. Jonschkowski and O. Brock. “State Representation Learning in Robotics: Using Prior Knowl-
edge about Physical Interaction.” In: Robotics: Science and Systems. 2014.

84. R. Jonschkowski, R. Hafner, J. Scholz, and M. Riedmiller. “Pves: Position-velocity encoders for
unsupervised learning of structured state representations”. arXiv preprint arXiv:1705.09805, 2017.

85. P. Jund, A. Eitel, N. Abdo, and W. Burgard. “Optimization beyond the convolution: Generaliz-
ing spatial relations with end-to-end metric learning”. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 1–7.

86. L. P. Kaelbling. “Hierarchical learning in stochastic domains: Preliminary results”. In: Proceedings
of the tenth international conference on machine learning. Vol. 951. 1993, pp. 167–173.

87. L. P. Kaelbling. “Learning to achieve goals”. In: IJCAI. Vol. 2. Citeseer. 1993, pp. 1094–8.
88. L. P. Kaelbling and T. Lozano-Pérez. “Hierarchical task and motion planning in the now”. In:

2011 IEEE International Conference on Robotics and Automation. IEEE. 2011, pp. 1470–1477.
89. L. P. Kaelbling and T. Lozano-Pérez. “Integrated task and motion planning in belief space”. The

International Journal of Robotics Research 32:9-10, 2013, pp. 1194–1227.
90. D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-

ishnan, V. Vanhoucke, et al. “Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation”. arXiv preprint arXiv:1806.10293, 2018.

91. A. Kamath, M. Singh, Y. LeCun, G. Synnaeve, I. Misra, and N. Carion. “Mdetr-modulated detec-
tion for end-to-end multi-modal understanding”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 1780–1790.

92. A. Karami, H. Sadeghian, M. Keshmiri, and G. Oriolo. “Hierarchical tracking task control in re-
dundant manipulators with compliance control in the null-space”. Mechatronics, 2018.

93. R. Kartmann, F. Paus, M. Grotz, and T. Asfour. “Extraction of physically plausible support rela-
tions to predict and validate manipulation action effects”. IEEE Robotics and Automation Letters
3:4, 2018, pp. 3991–3998.

94. I. Kauvar, C. Doyle, L. Zhou, and N. Haber. “Curious replay for model-based adaptation”. arXiv
preprint arXiv:2306.15934, 2023.

95. A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi. “Simple but effective: Clip embeddings
for embodied ai”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 14829–14838.

96. O. Khatib. “A unified approach for motion and force control of robot manipulators: The opera-
tional space formulation”. IEEE Journal on Robotics and Automation 3:1, 1987, pp. 43–53.

97. P. Kidger, J. Morrill, J. Foster, and T. Lyons. “Neural controlled differential equations for irregular
time series”. Advances in Neural Information Processing Systems 33, 2020, pp. 6696–6707.

98. S.-K. Kim and M. Likhachev. “Parts assembly planning under uncertainty with simulation-aided
physical reasoning”. In: 2017 IEEE International Conference on Robotics and Automation. IEEE.
2017, pp. 4074–4081.

99. S.-K. Kim, O. Salzman, and M. Likhachev. “POMHDP: Search-based belief space planning using
multiple heuristics”. In: Proceedings of the International Conference on Automated Planning and
Scheduling. Vol. 29. 2019, pp. 734–744.

138

Bibliography

100. J. E. King, M. Cognetti, and S. S. Srinivasa. “Rearrangement planning using object-centric and
robot-centric action spaces”. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2016, pp. 3940–3947.

101. D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. arXiv preprint arXiv:1412.6980,
2014.

102. T. N. Kipf and M. Welling. “Semi-supervised classification with graph convolutional networks”.
arXiv preprint arXiv:1609.02907, 2016.

103. J. Kober, M. Gienger, and J. J. Steil. “Learning movement primitives for force interaction tasks”.
In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2015, pp. 3192–
3199.

104. G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. “From skills to symbols: Learning symbolic
representations for abstract high-level planning”. Journal of Artificial Intelligence Research 61,
2018, pp. 215–289.

105. G. D. Konidaris and A. G. Barto. “Efficient Skill Learning using Abstraction Selection.” In: Cite-
seer. 2009.

106. I. Kostrikov, D. Yarats, and R. Fergus. “Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels”. arXiv preprint arXiv:2004.13649, 2020.

107. D. Kragic, H. I. Christensen, et al. “Survey on visual servoing for manipulation”. Computational
Vision and Active Perception Laboratory, Fiskartorpsv 15, 2002, p. 2002.

108. S. Krishnan, R. Fox, I. Stoica, and K. Goldberg. “Ddco: Discovery of deep continuous options for
robot learning from demonstrations”. arXiv preprint arXiv:1710.05421, 2017.

109. O. Kroemer, S. Niekum, and G. Konidaris. “A review of robot learning for manipulation: Chal-
lenges, representations, and algorithms”. arXiv preprint arXiv:1907.03146, 2019.

110. O. Kroemer, S. Niekum, and G. D. Konidaris. “A review of robot learning for manipulation:
Challenges, representations, and algorithms”. Journal of machine learning research 22:30, 2021.

111. O. Kroemer and G. S. Sukhatme. “Learning spatial preconditions of manipulation skills using
random forests”. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids). IEEE. 2016, pp. 676–683.

112. O. Kroemer, H. Van Hoof, G. Neumann, and J. Peters. “Learning to predict phases of manipula-
tion tasks as hidden states”. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2014, pp. 4009–4014.

113. T. Kroger, B. Finkemeyer, and F. M. Wahl. “A task frame formalism for practical implementa-
tions”. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004. Vol. 5. IEEE. 2004, pp. 5218–5223.

114. J. Kulick, M. Toussaint, T. Lang, and M. Lopes. “Active learning for teaching a robot grounded re-
lational symbols”. In: Twenty-Third International Joint Conference on Artificial Intelligence. 2013.

115. N. O. Lambert, A. Wilcox, H. Zhang, K. S. Pister, and R. Calandra. “Learning Accurate Long-
term Dynamics for Model-based Reinforcement Learning”. arXiv preprint arXiv:2012.09156, 2020.

116. M. Laskin, A. Srinivas, and P. Abbeel. “Curl: Contrastive unsupervised representations for rein-
forcement learning”. In: International Conference on Machine Learning. PMLR. 2020, pp. 5639–
5650.

117. M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. “Reinforcement learning with
augmented data”. Advances in neural information processing systems 33, 2020, pp. 19884–19895.

118. S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

139

Bibliography

119. A. X. Lee, C. M. Devin, Y. Zhou, T. Lampe, K. Bousmalis, J. T. Springenberg, A. Byravan, A.
Abdolmaleki, N. Gileadi, D. Khosid, et al. “Beyond pick-and-place: Tackling robotic stacking of
diverse shapes”. In: 5th Annual Conference on Robot Learning. 2021.

120. A. X. Lee, C. Devin, Y. Zhou, T. Lampe, K. Bousmalis, J. T. Springenberg, A. Byravan, A. Ab-
dolmaleki, N. Gileadi, D. Khosid, C. Fantacci, J. E. Chen, A. Raju, R. Jeong, M. Neunert, A.
Laurens, S. Saliceti, F. Casarini, M. Riedmiller, R. Hadsell, and F. Nori. “Beyond Pick-and-Place:
Tackling Robotic Stacking of Diverse Shapes”. In: Conference on Robot Learning (CoRL). 2021.
url: https://openreview.net/forum?id=U0Q8CrtBJxJ.

121. M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg. “Making
sense of vision and touch: Self-supervised learning of multimodal representations for contact-
rich tasks”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019,
pp. 8943–8950.

122. S. Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-end training of deep visuomotor policies”.
The Journal of Machine Learning Research 17:1, 2016, pp. 1334–1373.

123. J. Li, R. Selvaraju, A. Gotmare, S. Joty, C. Xiong, and S. C. H. Hoi. “Align before fuse: Vision and
language representation learning with momentum distillation”. Advances in neural information
processing systems 34, 2021, pp. 9694–9705.

124. Q. Li, O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter. “A review of tactile information:
Perception and action through touch”. IEEE Transactions on Robotics 36:6, 2020, pp. 1619–1634.

125. T. Li, R. Calandra, D. Pathak, Y. Tian, F. Meier, and A. Rai. “Planning in learned latent action
spaces for generalizable legged locomotion”. IEEE Robotics and Automation Letters 6:2, 2021,
pp. 2682–2689.

126. W.-H. Li, X. Liu, and H. Bilen. “Cross-domain Few-shot Learning with Task-specific Adapters”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 7161–7170.

127. X. L. Li and P. Liang. “Prefix-tuning: Optimizing continuous prompts for generation”. arXiv
preprint arXiv:2101.00190, 2021.

128. J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. “Code as poli-
cies: Language model programs for embodied control”. arXiv preprint arXiv:2209.07753, 2022.

129. J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and D. Fox. “GPU-accelerated
robotic simulation for distributed reinforcement learning”. Conference on Robot Learning (CoRL),
2018.

130. J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer. “Search-based task plan-
ning with learned skill effect models for lifelong robotic manipulation”. In: 2022 International
Conference on Robotics and Automation (ICRA). IEEE. 2022, pp. 6351–6357.

131. R. Liaw, S. Krishnan, A. Garg, D. Crankshaw, J. E. Gonzalez, and K. Goldberg. Composing Meta-
Policies for Autonomous Driving Using Hierarchical Deep Reinforcement Learning. 2017. arXiv:
1711.01503 [cs.AI].

132. K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. “Text2motion: From natural language
instructions to feasible plans”. arXiv preprint arXiv:2303.12153, 2023.

133. X. Liu, K. Ji, Y. Fu, Z. Du, Z. Yang, and J. Tang. “P-tuning v2: Prompt tuning can be comparable
to fine-tuning universally across scales and tasks”. arXiv preprint arXiv:2110.07602, 2021.

134. K. Lu, A. Grover, P. Abbeel, and I. Mordatch. “Reset-Free Lifelong Learning with Skill-Space
Planning”. International Conference on Learning Representations (ICLR), 2021.

140

https://openreview.net/forum?id=U0Q8CrtBJxJ
https://arxiv.org/abs/1711.01503

Bibliography

135. M. C. Machado, M. G. Bellemare, and M. Bowling. “A laplacian framework for option discovery
in reinforcement learning”. arXiv preprint arXiv:1703.00956, 2017.

136. R. K. Mahabadi, S. Ruder, M. Dehghani, and J. Henderson. “Parameter-efficient multi-task fine-
tuning for transformers via shared hypernetworks”. arXiv preprint arXiv:2106.04489, 2021.

137. A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg, and D. Fox. “Iris: Implicit rein-
forcement without interaction at scale for learning control from offline robot manipulation data”.
In: 2020 IEEE International Conference on Robotics and Automation. IEEE. 2020, pp. 4414–
4420.

138. S. Manschitz, M. Gienger, J. Kober, and J. Peters. “Learning Sequential Force Interaction Skills”.
Robotics 9:2, 2020, p. 45.

139. S. Manschitz, J. Kober, M. Gienger, and J. Peters. “Learning to sequence movement primitives
from demonstrations”. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE. 2014, pp. 4414–4421.

140. L. Manuelli, W. Gao, P. Florence, and R. Tedrake. “kpam: Keypoint affordances for category-level
robotic manipulation”. arXiv preprint arXiv:1903.06684, 2019.

141. R. Martín-Martín, M. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. “Variable Impedance
Control in End-Effector Space. An Action Space for Reinforcement Learning in Contact Rich
Tasks”. In: Proceedings of the International Conference of Intelligent Robots and Systems (IROS).
2019.

142. M. T. Mason. “Compliance and force control for computer controlled manipulators”. IEEE Trans-
actions on Systems, Man, and Cybernetics 11:6, 1981, pp. 418–432.

143. W. Masson, P. Ranchod, and G. Konidaris. “Reinforcement learning with parameterized actions”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. 1. 2016.

144. C. Matuszek, L. Bo, L. Zettlemoyer, and D. Fox. “Learning from unscripted deictic gesture and
language for human-robot interactions”. In: Proceedings of the AAAI Conference on Artificial In-
telligence. Vol. 28. 1. 2014.

145. D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and D. Wilkins.
PDDL-the planning domain definition language. 1998.

146. A. McGovern and A. G. Barto. “Automatic discovery of subgoals in reinforcement learning using
diverse density”, 2001.

147. O. Mees, N. Abdo, M. Mazuran, and W. Burgard. “Metric learning for generalizing spatial re-
lations to new objects”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2017, pp. 3175–3182.

148. O. Mees, L. Hermann, and W. Burgard. “What matters in language conditioned robotic imitation
learning over unstructured data”. IEEE Robotics and Automation Letters 7:4, 2022, pp. 11205–
11212.

149. O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. “Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks”. IEEE Robotics and Au-
tomation Letters 7:3, 2022, pp. 7327–7334.

150. L. Metz, J. Ibarz, N. Jaitly, and J. Davidson. “Discrete sequential prediction of continuous actions
for deep rl”. arXiv preprint arXiv:1705.05035, 2017.

151. T. Migimatsu and J. Bohg. “Object-Centric Task and Motion Planning in Dynamic Environ-
ments”. IEEE Robotics and Automation Letters 5:2, 2020, pp. 844–851.

141

Bibliography

152. A. S. Morgan, B. Wen, J. Liang, A. Boularias, A. M. Dollar, and K. Bekris. “Vision-driven compli-
ant manipulation for reliable, high-precision assembly tasks”. arXiv preprint arXiv:2106.14070,
2021.

153. J. D. Morrow and P. K. Khosla. “Manipulation task primitives for composing robot skills”. In:
Proceedings of International Conference on Robotics and Automation. Vol. 4. 1997, 3354–3359
vol.4. doi: 10.1109/ROBOT.1997.606800.

154. C. Mucchiani and M. Yim. “Dynamic grasping for object picking using passive zero-dof end-
effectors”. IEEE Robotics and Automation Letters 6:2, 2021, pp. 3089–3096.

155. M. Mühlig, M. Gienger, J. J. Steil, and C. Goerick. “Automatic selection of task spaces for im-
itation learning”. In: International Conference on Intelligent Robots and Systems. IEEE. 2009,
pp. 4996–5002.

156. P. Naderian, G. Loaiza-Ganem, H. J. Braviner, A. L. Caterini, J. C. Cresswell, T. Li, and A. Garg.
“C-Learning: Horizon-Aware Cumulative Accessibility Estimation”. International Conference on
Learning Representations (ICLR), 2021.

157. U. Nagarajan, G. Kantor, and R. Hollis. “The ballbot: An omnidirectional balancing mobile
robot”. The International Journal of Robotics Research 33:6, 2014, pp. 917–930.

158. S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. “R3m: A universal visual representa-
tion for robot manipulation”. arXiv preprint arXiv:2203.12601, 2022.

159. Y. Nakamura, H. Hanafusa, and T. Yoshikawa. “Task-priority based redundancy control of robot
manipulators”. The International Journal of Robotics Research 6:2, 1987, pp. 3–15.

160. T. Narita and O. Kroemer. “Policy blending and recombination for multimodal contact-rich tasks”.
IEEE Robotics and Automation Letters 6:2, 2021, pp. 2721–2728.

161. S. Nasiriany, V. H. Pong, S. Lin, and S. Levine. “Planning with goal-conditioned policies”. Ad-
vances in Neural Information Processing Systems, 2019.

162. S. Nasiriany, V. H. Pong, A. Nair, A. Khazatsky, G. Berseth, and S. Levine. “Disco rl: Distribution-
conditioned reinforcement learning for general-purpose policies”. International Conference on
Robotics and Automation, 2021.

163. B. J. Nelson, J. D. Morrow, and P. K. Khosla. “Improved force control through visual servoing”.
In: Proceedings of 1995 American Control Conference-ACC’95. Vol. 1. IEEE. 1995, pp. 380–386.

164. Nvidia. Isaac Gym. url: developer.nvidia.com/isaac-gym.
165. H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. “Deep metric learning via lifted structured fea-

ture embedding”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2016, pp. 4004–4012.

166. V. Pacelli and A. Majumdar. “Learning task-driven control policies via information bottlenecks”.
arXiv preprint arXiv:2002.01428, 2020.

167. A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh, A.
Brohan, et al. “Open x-embodiment: Robotic learning datasets and rt-x models”. arXiv preprint
arXiv:2310.08864, 2023.

168. Z. Pan and K. Hauser. “Decision Making in Joint Push-Grasp Action Space for Large-Scale Object
Sorting”. International Conference on Robotics and Automation, 2020.

169. A. Paraschos, C. Daniel, J. Peters, and G. Neumann. “Using probabilistic movement primitives
in robotics”. Autonomous Robots 42:3, 2018, pp. 529–551.

170. J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto. “The surprising effectiveness of repre-
sentation learning for visual imitation”. arXiv preprint arXiv:2112.01511, 2021.

142

http://dx.doi.org/10.1109/ROBOT.1997.606800
developer.nvidia.com/isaac-gym

Bibliography

171. S. Parisi, A. Rajeswaran, S. Purushwalkam, and A. Gupta. “The unsurprising effectiveness of pre-
trained vision models for control”. arXiv preprint arXiv:2203.03580, 2022.

172. H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling. “Learning symbolic models of stochastic do-
mains”. Journal of Artificial Intelligence Research 29, 2007, pp. 309–352.

173. D. Pathak, D. Gandhi, and A. Gupta. “Self-Supervised Exploration via Disagreement”. In: ICML.
2019.

174. C. Paxton, F. Jonathan, M. Kobilarov, and G. D. Hager. “Do what i want, not what i did: Imita-
tion of skills by planning sequences of actions”. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 3778–3785.

175. J. Pazis and M. G. Lagoudakis. “Reinforcement learning in multidimensional continuous action
spaces”. In: 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learn-
ing (ADPRL). IEEE. 2011, pp. 97–104.

176. E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. “Film: Visual reasoning with a gen-
eral conditioning layer”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32.
1. 2018.

177. L. Peternel, L. Rozo, D. Caldwell, and A. Ajoudani. “A method for derivation of robot task-frame
control authority from repeated sensory observations”. IEEE Robotics and Automation Letters
2:2, 2017, pp. 719–726.

178. M. Q. Pham, J.-M. Crego, F. Yvon, and J. Senellart. “A study of residual adapters for multi-domain
neural machine translation”. In: Conference on Machine Translation. 2020.

179. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. “Learning transferable visual models from natural language supervision”. In: Inter-
national Conference on Machine Learning. PMLR. 2021, pp. 8748–8763.

180. I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. “Real-World Robot Learning
with Masked Visual Pre-training”. arXiv preprint arXiv:2210.03109, 2022.

181. M. H. Raibert and J. J. Craig. “Hybrid position/force control of manipulators”, 1981.
182. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. “Hierarchical text-conditional image

generation with clip latents”. arXiv preprint arXiv:2204.06125, 2022.
183. A. Rannen, R. Aljundi, M. B. Blaschko, and T. Tuytelaars. “Encoder based lifelong learning”. In:

Proceedings of the IEEE International Conference on Computer Vision. 2017, pp. 1320–1328.
184. S.-A. Rebuffi, H. Bilen, and A. Vedaldi. “Learning multiple visual domains with residual adapters”.

Advances in neural information processing systems 30, 2017.
185. S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,

Y. Sulsky, J. Kay, J. T. Springenberg, et al. “A generalist agent”. arXiv preprint arXiv:2205.06175,
2022.

186. J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut, and D. Novotny. “Common
objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 10901–10911.

187. M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih, N. Heess, and
J. T. Springenberg. “Learning by playing solving sparse reward tasks from scratch”. In: Interna-
tional conference on machine learning. PMLR. 2018, pp. 4344–4353.

188. E. Rohmer, S. P. Singh, and M. Freese. “V-REP: A versatile and scalable robot simulation frame-
work”. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2013,
pp. 1321–1326.

143

Bibliography

189. A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone. “3D dynamic scene graphs: Actionable
spatial perception with places, objects, and humans”. arXiv preprint arXiv:2002.06289, 2020.

190. B. Rosman and S. Ramamoorthy. “Learning spatial relationships between objects”. The Interna-
tional Journal of Robotics Research 30:11, 2011, pp. 1328–1342.

191. B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin,
et al. “Code llama: Open foundation models for code”. arXiv preprint arXiv:2308.12950, 2023.

192. A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pas-
canu, and R. Hadsell. “Progressive neural networks”. arXiv preprint arXiv:1606.04671, 2016.

193. C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour, B. K. Ayan, S. S.
Mahdavi, R. G. Lopes, et al. “Photorealistic Text-to-Image diffusion models with deep language
understanding (2022)”. URL https://arxiv. org/abs/2205.11487.

194. A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap.
“A simple neural network module for relational reasoning”. In: Advances in neural information
processing systems. 2017, pp. 4967–4976.

195. S. Saxena, A. LaGrassa, and O. Kroemer. “Learning reactive and predictive differentiable con-
trollers for switching linear dynamical models”. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2021, pp. 7563–7569.

196. S. Saxena, M. Sharma, and O. Kroemer. “Multi-Resolution Sensing for Real-Time Control with
Vision-Language Models”. In: Conference on Robot Learning. PMLR. 2023, pp. 2210–2228.

197. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. “The graph neural net-
work model”. IEEE Transactions on Neural Networks 20:1, 2008, pp. 61–80.

198. T. Schaul, D. Horgan, K. Gregor, and D. Silver. “Universal value function approximators”. In:
International conference on machine learning. PMLR. 2015, pp. 1312–1320.

199. T. Schmidt, R. Newcombe, and D. Fox. “Self-supervised visual descriptor learning for dense cor-
respondence”. IEEE Robotics and Automation Letters 2:2, 2016, pp. 420–427.

200. F. Schroff, D. Kalenichenko, and J. Philbin. “Facenet: A unified embedding for face recognition
and clustering”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 815–823.

201. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy optimization
algorithms”. arXiv preprint arXiv:1707.06347, 2017.

202. J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and R. Had-
sell. “Progress & compress: A scalable framework for continual learning”. In: International Con-
ference on Machine Learning. PMLR. 2018, pp. 4528–4537.

203. L. Sciavicco and B. Siciliano. Modelling and control of robot manipulators. Springer Science &
Business Media, 2012.

204. M. Y. Seker, A. E. Tekden, and E. Ugur. “Deep effect trajectory prediction in robot manipulation”.
Robotics and Autonomous Systems 119, 2019, pp. 173–184.

205. R. Shah and V. Kumar. “RRL: Resnet as representation for Reinforcement Learning”. In: Inter-
national Conference on Machine Learning. PMLR. 2021.

206. A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. “Dynamics-aware unsupervised discov-
ery of skills”. International Conference on Learning Representations (ICLR), 2019.

207. M. Sharma, C. Fantacci, Y. Zhou, S. Koppula, N. Heess, J. Scholz, and Y. Aytar. “Lossless Adap-
tation of Pretrained Vision Models For Robotic Manipulation”. In: The Eleventh International
Conference on Learning Representations.

144

Bibliography

208. M. Sharma, C. Fantacci, Y. Zhou, S. Koppula, N. Heess, J. Scholz, and Y. Aytar. “Lossless adap-
tation of pretrained vision models for robotic manipulation”. arXiv preprint arXiv:2304.06600,
2023.

209. M. Sharma and O. Kroemer. “Efficiently Learning Manipulations by Selecting Structured Skill
Representations”. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2022, pp. 1039–1046.

210. M. Sharma and O. Kroemer. “Generalizing Object-Centric Task-Axes Controllers using Key-
points”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021,
pp. 7548–7554.

211. M. Sharma and O. Kroemer. “Relational Learning for Skill Preconditions”. In: Conference on
Robot Learning. PMLR. 2021, pp. 845–861.

212. M. Sharma and O. Kroemer. “Relational learning for skill preconditions”. arXiv preprint arXiv:2012.01693,
2020.

213. M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O. Kroemer. “Learning to compose hierarchical
object-centric controllers for robotic manipulation”. arXiv preprint arXiv:2011.04627, 2020.

214. M. Sharma, A. Sharma, N. Rhinehart, and K. M. Kitani. “Directed-Info GAIL: Learning Hier-
archical Policies from Unsegmented Demonstrations using Directed Information”. In: Interna-
tional Conference on Learning Representations. 2019.

215. R. N. Shepard. “Perceptual-cognitive universals as reflections of the world”. Psychonomic Bulletin
& Review 1:1, 1994, pp. 2–28.

216. J. Shi, J. Z. Woodruff, P. B. Umbanhowar, and K. M. Lynch. “Dynamic in-hand sliding manipu-
lation”. IEEE Transactions on Robotics 33:4, 2017, pp. 778–795.

217. K. Shiarlis, M. Wulfmeier, S. Salter, S. Whiteson, and I. Posner. “Taco: Learning task decomposi-
tion via temporal alignment for control”. arXiv preprint arXiv:1803.01840, 2018.

218. H. Shin, J. K. Lee, J. Kim, and J. Kim. “Continual learning with deep generative replay”. Advances
in neural information processing systems 30, 2017.

219. M. Shridhar, L. Manuelli, and D. Fox. “Cliport: What and where pathways for robotic manipu-
lation”. In: Conference on Robot Learning. PMLR. 2022, pp. 894–906.

220. M. Shridhar, L. Manuelli, and D. Fox. “Perceiver-actor: A multi-task transformer for robotic ma-
nipulation”. arXiv preprint arXiv:2209.05451, 2022.

221. R. Shu and R. Hollis. “Momentum based Whole-Body Optimal Planning for a Single-Spherical-
Wheeled Balancing Mobile Manipulator”. In: 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE. 2021, pp. 3221–3226.

222. A. Simeonov, Y. Du, B. Kim, F. R. Hogan, J. Tenenbaum, P. Agrawal, and A. Rodriguez. “A Long
Horizon Planning Framework for Manipulating Rigid Pointcloud Objects”. Conference on Robot
Learning (CoRL), 2020.

223. K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale image recogni-
tion”. arXiv preprint arXiv:1409.1556, 2014.

224. Ö. Şimşek, A. P. Wolfe, and A. G. Barto. “Identifying useful subgoals in reinforcement learning by
local graph partitioning”. In: Proceedings of the 22nd international conference on Machine learn-
ing. 2005, pp. 816–823.

225. A. Singh, R. Hu, V. Goswami, G. Couairon, W. Galuba, M. Rohrbach, and D. Kiela. “Flava: A
foundational language and vision alignment model”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2022, pp. 15638–15650.

145

Bibliography

226. I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A.
Garg. “Progprompt: Generating situated robot task plans using large language models”. arXiv
preprint arXiv:2209.11302, 2022.

227. S. Singh, F. M. Ramirez, J. Varley, A. Zeng, and V. Sindhwani. “Multiscale sensor fusion and con-
tinuous control with neural CDEs”. In: 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2022, pp. 10897–10904.

228. L. Smith and M. Gasser. “The development of embodied cognition: Six lessons from babies”.
Artificial life 11:1-2, 2005, pp. 13–29.

229. N. Somavarapu, C.-Y. Ma, and Z. Kira. “Frustratingly simple domain generalization via image
stylization”. arXiv preprint arXiv:2006.11207, 2020.

230. H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic, and J. A. Stork. “Multi-Object
Rearrangement with Monte Carlo Tree Search: A Case Study on Planar Nonprehensile Sorting”.
International Conference on Intelligent Robots and Systems (IROS), 2019.

231. O. Spector and D. Di Castro. “Insertionnet-a scalable solution for insertion”. IEEE Robotics and
Automation Letters 6:3, 2021, pp. 5509–5516.

232. A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn. “Universal planning networks: Learning
generalizable representations for visuomotor control”. In: International Conference on Machine
Learning. PMLR. 2018, pp. 4732–4741.

233. M. Stolle and D. Precup. “Learning options in reinforcement learning”. In: International Sympo-
sium on abstraction, reformulation, and approximation. Springer. 2002, pp. 212–223.

234. A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong, P. Wohlhart, B. Zitkovich,
F. Xia, C. Finn, and K. Hausman. “Open-World Object Manipulation using Pre-Trained Vision-
Language Model”. In: arXiv preprint. 2023.

235. A. Suárez-Hernández, T. Gaugry, J. Segovia-Aguas, A. Bernardin, C. Torras, M. Marchal, and G.
Alenyà. “Leveraging Multiple Environments for Learning and Decision Making: a Dismantling
Use Case”. IEEE International Conference on Intelligent Robots and Systems, 2020.

236. Y.-L. Sung, J. Cho, and M. Bansal. “Lst: Ladder side-tuning for parameter and memory efficient
transfer learning”. arXiv preprint arXiv:2206.06522, 2022.

237. M. Suomalainen, Y. Karayiannidis, and V. Kyrki. “A Survey of Robot Manipulation in Contact”.
arXiv preprint arXiv:2112.01942, 2021.

238. R. S. Sutton, D. Precup, and S. Singh. “Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning”. Artificial intelligence 112:1-2, 1999, pp. 181–211.

239. A. E. Tekden, A. Erdem, E. Erdem, T. Asfour, and E. Ugur. “Object and Relation Centric Rep-
resentations for Push Effect Prediction”. arXiv preprint arXiv:2102.02100, 2021.

240. S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy. “Understanding
natural language commands for robotic navigation and mobile manipulation”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 25. 1. 2011, pp. 1507–1514.

241. S. Thrun and T. M. Mitchell. “Lifelong robot learning”. Robotics and autonomous systems 15:1-2,
1995, pp. 25–46.

242. E. Ugur and J. Piater. “Bottom-up learning of object categories, action effects and logical rules:
From continuous manipulative exploration to symbolic planning”. In: 2015 IEEE International
Conference on Robotics and Automation. IEEE. 2015, pp. 2627–2633.

243. A. L. P. Ureche, K. Umezawa, Y. Nakamura, and A. Billard. “Task parameterization using con-
tinuous constraints extracted from human demonstrations”. IEEE Transactions on Robotics 31:6,
2015, pp. 1458–1471.

146

Bibliography

244. M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,
and M. Riedmiller. “Leveraging demonstrations for deep reinforcement learning on robotics prob-
lems with sparse rewards”. arXiv preprint arXiv:1707.08817, 2017.

245. Y. Vinker, E. Pajouheshgar, J. Y. Bo, R. C. Bachmann, A. H. Bermano, D. Cohen-Or, A. Zamir,
and A. Shamir. CLIPasso: Semantically-Aware Object Sketching. 2022. arXiv: 2202.05822 [cs.GR].

246. M. R. Walter, S. M. Hemachandra, B. S. Homberg, S. Tellex, and S. Teller. “Learning semantic
maps from natural language descriptions”. In: Robotics: Science and Systems. 2013.

247. Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Perez. “Learning compositional models of
robot skills for task and motion planning”. The International Journal of Robotics Research 40:6-7,
2021, pp. 866–894.

248. M. A. Wilson and B. L. McNaughton. “Reactivation of hippocampal ensemble memories during
sleep”. Science 265:5172, 1994, pp. 676–679.

249. M. Wortsman, G. Ilharco, J. W. Kim, M. Li, S. Kornblith, R. Roelofs, R. G. Lopes, H. Hajishirzi,
A. Farhadi, H. Namkoong, et al. “Robust fine-tuning of zero-shot models”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 7959–7971.

250. T. Xiao, H. Chan, P. Sermanet, A. Wahid, A. Brohan, K. Hausman, S. Levine, and J. Tompson.
“Robotic Skill Acquisition via Instruction Augmentation with Vision-Language Models”. arXiv
preprint arXiv:2211.11736, 2022.

251. T. Xiao, I. Radosavovic, T. Darrell, and J. Malik. “Masked visual pre-training for motor control”.
arXiv preprint arXiv:2203.06173, 2022.

252. K. Xie, H. Bharadhwaj, D. Hafner, A. Garg, and F. Shkurti. “Skill Transfer via Partially Amortized
Hierarchical Planning”. International Conference on Learning Representations (ICLR), 2021.

253. J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu, T. Zhang, J. Liu, and H. Liu.
“Parametrized deep q-networks learning: Reinforcement learning with discrete-continuous hy-
brid action space”. arXiv preprint arXiv:1810.06394, 2018.

254. D. Xu, A. Mandlekar, R. Martın-Martın, Y. Zhu, S. Savarese, and L. Fei-Fei. “Deep Affordance
Foresight: Planning Through What Can Be Done in the Future”. arXiv preprint arXiv:2011.08424,
2020.

255. A. Yamaguchi and C. G. Atkeson. “Combining finger vision and optical tactile sensing: Reducing
and handling errors while cutting vegetables”. In: 2016 IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids). IEEE. 2016, pp. 1045–1051.

256. J. Yoon, E. Yang, J. Lee, and S. J. Hwang. “Lifelong learning with dynamically expandable net-
works”. arXiv preprint arXiv:1708.01547, 2017.

257. B. H. Yoshimi and P. K. Allen. “Active, uncalibrated visual servoing”. In: Proceedings of the 1994
IEEE International Conference on Robotics and Automation. IEEE. 1994, pp. 156–161.

258. T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. “Meta-world: A bench-
mark and evaluation for multi-task and meta reinforcement learning”. In: Conference on robot
learning. PMLR. 2020, pp. 1094–1100.

259. L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao, H. Hu, X. Huang, B. Li, C. Li, et al.
“Florence: A new foundation model for computer vision”. arXiv preprint arXiv:2111.11432, 2021.

260. W. Yuan, S. Dong, and E. H. Adelson. “Gelsight: High-resolution robot tactile sensors for esti-
mating geometry and force”. Sensors 17:12, 2017, p. 2762.

261. K. Zampogiannis, Y. Yang, C. Fermüller, and Y. Aloimonos. “Learning the spatial semantics of
manipulation actions through preposition grounding”. In: 2015 IEEE international conference
on robotics and automation (ICRA). IEEE. 2015, pp. 1389–1396.

147

https://arxiv.org/abs/2202.05822

Bibliography

262. M. D. Zeiler and R. Fergus. “Visualizing and understanding convolutional networks”. In: Euro-
pean conference on computer vision. Springer. 2014, pp. 818–833.

263. K. Zhang, M. Sharma, J. Liang, and O. Kroemer. “A modular robotic arm control stack for re-
search: Franka-interface and frankapy”. arXiv preprint arXiv:2011.02398, 2020.

264. K. Zhang, M. Sharma, M. Veloso, and O. Kroemer. “Leveraging multimodal haptic sensory data
for robust cutting”. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Hu-
manoids). IEEE. 2019, pp. 409–416.

265. R. Zhang, Y. Zheng, X. Mao, and M. Huang. “Unsupervised Domain Adaptation with Adapter”.
arXiv preprint arXiv:2111.00667, 2021.

266. K. Zheng, X. Chen, O. C. Jenkins, and X. E. Wang. “Vlmbench: A compositional benchmark for
vision-and-language manipulation”. arXiv preprint arXiv:2206.08522, 2022.

267. Y. Zhou, S. Sonawani, M. Phielipp, S. Stepputtis, and H. B. Amor. “Modularity through At-
tention: Efficient Training and Transfer of Language-Conditioned Policies for Robot Manipu-
lation”. arXiv preprint arXiv:2212.04573, 2022.

268. Y. Zhou, Y. Aytar, and K. Bousmalis. “Manipulator-Independent Representations for Visual Im-
itation”. arXiv preprint arXiv:2103.09016, 2021.

269. Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín. “robosuite: A Modular Simulation Frame-
work and Benchmark for Robot Learning”. In: arXiv preprint arXiv:2009.12293. 2020.

148

	Beginnings
	Introduction
	Role of Structure in Robot Manipulation
	Why Lifelong learning?
	Thesis Contributions
	List of Publications
	Open-Source Contributions

	Reusing Policy Representations
	Object-Centric Task-Axes Controllers for Manipulation
	Introduction
	Related Works
	Learning Hierarchical Compositions of Object-Centric Controllers
	Controller Types
	Controller Composition
	RL with Object-Axis Controllers

	Experiment Tasks and Setup
	Experiment Results and Discussion
	Conclusion and Future Work

	Efficiently Learning Generalizable Manipulations using Task-Axes Controllers
	Introduction
	Related Work
	Preliminaries: Skill Fundamentals
	Object and End-Effector Keypoints
	Task Axes
	Controller Types and Parameters

	Learning Visual Controller Parameters
	Keypoint Parameters
	Axes Parameters

	Learning and Selecting Skills using Demonstrations
	Task Segmentation
	Computing Posteriors over Skill Representations
	Controller Selection and Learning

	Experimental Setup
	Tasks
	Compared Approaches
	Metrics and Training

	Results
	Learning Visual Controller Parameters
	Results - Efficiently Learning Skill Representations using Demonstrations
	Real World Results

	Conclusion

	Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation
	Introduction
	Related Works
	Task Planning with Learned Skill Effect Models
	Skill Planning Problem Formulation
	Learning Skill Effect Models (SEMs)
	Search-based Task Planning

	Experiments
	Task Domain
	Lifelong Task Planning Results

	Conclusion

	Reusing Visual Representations
	Relational Learning for Skill Preconditions
	Introduction
	Related Works
	Approach
	Generating Pairwise Interactions In Simulation
	Learning Object Relations
	Learning Precondition Models

	Experiments
	Sweeping Objects in Line
	Food Cutting
	Block Unstacking

	Ablation Study
	Conclusion

	RoboAdapters: Adapting Pretrained Vision Models For Robotic Manipulation
	Introduction
	Related Works
	Approach
	Adapter Modules
	Visual Adapters for Control

	Experimental Setup
	Manipulation Tasks
	Network Architectures

	Results
	Fixed Pretrained Features vs Adapter Representations
	Effects of Adapter Locations & Different Pretrained Representations
	Sim2Real Results

	Conclusion

	Multi-Resolution Sensing for Real-Time Control with Vision-Language Models
	Introduction
	Related work
	Proposed Approach
	Multi-Resolution Architecture

	Experimental Setup
	Environments
	Baselines

	Experimental Results
	Comparison to Multi-Task Baselines
	Additional Baseline Comparisons
	Ablations

	Conclusion and Limitations

	Conclusion and Future Work
	Conclusion
	Future Outlook
	Benchmarking Policy Representations via Generative Simulations
	Scaling Data for Robotics
	Fast Real-World Adaptation

	Appendices
	Appendices
	Appendix - Relational Learning for Skill Preconditions
	Generating Pairwise Interactions in Simulation
	Experimental Setup
	Real2Sim Baseline
	Architecture Details
	Training Details
	Task Setup
	Additional Results

	Appendix - Hiearchical Object-Centric Controllers for Robotic Manipulation
	Controller Implementation Details
	Task Details
	Franka Hex Screw
	RL Training Details
	Detailed Experiment Results
	Controller Selection Analyses

	Appendix - Planning with Learned Skill Effect Models for Lifelong Robotic Manipulation
	Related Works
	SEM Implementation
	Guarantees on the Constructed Graph
	Task Domain Skill Details
	Additional Results - Qualitative Planning Results
	Failure Modes

	Appendix - Adapting Pretrained Vision Models For Robotic Manipulation
	Experimental Setup
	Training Details
	Additional Results
	Discussion

	Bibliography

