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Abstract

The goal of personal robotics is to have robots in homes performing everyday
tasks efficiently to improve our quality of life. Towards this end, manipulators are
needed which are low cost, safe around humans, and approach human-level dexterity.
However, existing off-the-shelf manipulators are expensive both in cost and manu-
facturing time, difficult to repair, and unsafe to operate with delicate objects due to
rigid components. Soft robotic manipulators, on the other hand, show great promise
as their compliance allows them to conform to objects, exhibit physical robustness,
and execute safe object interactions, while being low cost through the use of rapid
prototyping. However, designing soft robot manipulators is challenging due to their
high degrees of freedom and the inherent complexity of modeling soft materials in
simulation. This makes it difficult to iterate on the soft manipulator design prior to
manufacturing. To this end, this thesis explores a spectrum of approaches to quickly
iterate on the design and evaluation of soft hands, in a matter of days, to allow rapid
turnaround of real robot hand prototypes. This allows the designer to swiftly assess
the performance of the design for tasks in the real world, and inform future design
improvements using real-world measurable metrics. We explore various design iter-
ation approaches by designing and evaluating two different types of manipulators: a
parallel delta manipulator and a tendon-driven anthropomorphic (human-like) hand.

Delta manipulators have high precision and low inertia, which lend themselves
perfectly to performing fine-grained manipulations. However, 3D-printing these
manipulators with soft materials leads to non-ideal kinematic behavior. First, we
explore iterating on the design of 3D-printed parallelogram links, which are a key
component of the delta manipulator, using a human-in-the-loop approach towards
achieving close to ideal kinematic behavior. Then, we evaluate a two-fingered 6-DoF
delta manipulator, consisting of the designed parallelogram links, using teleopera-
tion in real-world tasks. We demonstrate the compliance and dexterity of our gripper
through six dexterous manipulation tasks involving small and delicate objects, such
as twisting a grape off a stem.

Subsequently, this thesis explores design iteration for anthropomorphic soft hands
to achieve contact-rich manipulation that enables a wider variety of tasks. Contrary
to first designing the manipulator and then evaluating it in the real world, we create
a unified design iteration and evaluation framework for a 3D-printed 16-DoF dexter-
ous anthropomorphic soft hand (DASH). We rapidly design and test five iterations
of DASH, in a matter of days, by leveraging 3D-printing for fabrication and utilizing
teleoperation for evaluation across 30 real-world manipulation tasks. The changes to
each successive iteration of DASH is informed by a human designer after observing
previous evaluation results. Our final iteration of DASH solves 19 of the 30 tasks
compared to Allegro, a popular rigid manipulator on the market, which can only
solve 7 tasks.

Finally, we automate the design iteration process, thereby taking the human out
of the loop, in order to explore a larger design space. To achieve this, we simulate
the soft hand as a rigid body and use hand evolution methods to transfer control



policies across a large set of generated hand designs. Subsequently, we evaluate the
optimized design as a soft tendon-driven hand and show that it solves 23 of the 30
tasks, outperforming our previously iterated hands designs.

This thesis explores techniques for iterative design including rapid prototyping,
teleoperation, and simulation to enable designers to tune kinematics and compliance
for dexterous tasks through real robot evaluation. We show that substantial improve-
ments can be made between design iterations and over state of the art dexterous
robotic hands on dexterity benchmarks. The key takeaway from our work is that
achieving robot hand dexterity requires detailed attention to hand kinematics and
compliance. We also observe that a rich suite of tasks involving a variety of ob-
jects and using non-binary evaluation metrics can better inform the design iteration
process. The thesis concludes by presenting several avenues for future work in the
design iteration space.
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Chapter 1

Introduction

1.1 Motivation

We envision the future of personal robotics to have robots in our homes helping us with everyday
tasks. Ideally, these tasks would involve working with and around humans and interacting with
delicate objects. Furthermore, to have these robots widely deployed we require these robots to
be accessible at a low-cost to the consumer. However, modern off-the-shelf robot manipulators
are expensive, difficult to manufacture and repair, and require extensive maintenance. As an
example, consider the Shadowhand in Figure 1.1(right) which costs around $50000 making it
inaccessible to the average user. Furthermore, these manipulators have rigid components that
limit their capability to work with delicate objects and around humans. For example, consider
the household task of opening a plastic bottle cap. Robot hands with rigid parts can easily exert
too much force, resulting in ejecting the bottle from the hand, and lack the dexterity required to
complete this task.

Soft robot manipulators, on the other hand, exhibit compliance due to the use of soft materials
which allows them to conform to objects and safely handle them. In addition, the high degrees
of freedom also allow these manipulators to perform dexterous manipulations that is required
in household tasks. Furthermore, rapid prototyping techniques like 3D-printing have made soft
robots accessible and can be fabricated at a low cost unlike their rigid counterparts. However,

Figure 1.1: Popular state-of-the-art (rigid) manipulators: (Left) two-finger gripper attached to a
Franka robot arm [1] (Middle) Allegro dexterous hand [2] and (Right) ShadowHand [3].
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current deployment of soft robot hands is limited as their design process is extremely challenging
and time-intensive. Modeling soft materials in simulation is computationally expensive as we
need to model how these materials deform when subject to forces, making the use of simulation
in design iteration difficult. Thus, it is challenging to iterate on the soft manipulator design prior
to manufacturing. A natural question that arises from this is: Can we improve the design iteration
process for soft robot hands in order to quickly create a design, fabricate it, and test it in the real
world to inform future iterations, all in a matter of days?

This question is especially relevant at this stage of development of low cost robotic hands,
because it allows the designer to quickly assess whether an iteration of the hand is going to be
successful for the tasks we want it to do in the real world. By fabricating a prototype and testing
it in the real world, the designer can use real-world measurable metrics to improve future soft
hand designs. This results in a rapid turnaround in the design iteration process, while consistently
improving the performance of the hand on real-world tasks.

This thesis takes an important step towards answering this question and explores various rapid
design iteration approaches by designing and evaluating two different types of manipulators in
the real world: a parallel delta manipulator and a tendon-driven anthropomorphic (human-like)
hand.

1.2 Thesis Goal and Contributions
Thesis statement: Achieving robot hand dexterity requires detailed attention to hand kinematics
and compliance.

This thesis explores techniques for iterative design including rapid prototyping, teleoperation,
and simulation to enable designers to tune kinematics and compliance for dexterous tasks through
real robot evaluation. We show that substantial improvements can be made between design
iterations and over state of the art dexterous robotic hands on dexterity benchmarks. We employ
3D-printing techniques for rapid turnaround on fabricating soft hand designs, and the ability to
quickly customize the design for future iterations. For evaluating our designs, we focus on real-
world tasks to ensure that the final design parameters are optimized for task success, as opposed
to task-agnostic metrics. By the end of the thesis, we describe the strengths and weaknesses
of our approaches in terms of effectiveness, the time taken to design a prototype with a set of
task goals in mind and to evaluate the prototype in the real world, ease of defining real-world
measurable task metrics, and overall insights into choosing design parameters and evaluating
tasks for hand design iteration.

In this thesis, we design and evaluate two manipulators, as shown in Figure 1.2: a 3D-printed
compliant delta manipulator and a Dexterous Anthropomorphic Soft Hand (DASH), a tendon-
driven hand. Delta manipulators are parallel manipulators that consist of links attached to the
end-effector in parallel. Figure 1.2 (left) shows the compliant links that are structured as paral-
lelograms that translate the end-effector platform in X, Y, and Z, giving each delta manipulator
finger 3 degrees-of-freedom (DoF). Delta robots have been shown to have high precision and
closed-form kinematic solutions, even at the millimeter-scale [6]. In addition to these advan-
tages, we leverage compliance to do fine-grained precise manipulations with our delta manipu-
lator. Figure 1.2 (right) shows our soft tendon-driven hand, DASH, which uses four tendons per



Figure 1.2: The two manipulators discussed in this thesis are (Left) Delta Robot Manipulators
and (Right) Tendon-Driven Anthropomorphic Soft Hand.

Type of manipulator Actuation Fingers DOF Material Cost

Delta Parallel manipulator Linear Actuators 2 6 TPU 95A $300

DASH Anthropomorphic Tendon-driven 4 16 TPE 83A $1000

Table 1.1: Delta gripper and Dexterous Anthropomorphic Soft Hand (DASH) are the two ma-
nipulators discussed in this thesis. This table depicts the differences and specifications of each
manipulator. Manipulator costs do not include the 3D printer’s cost.

finger to contract the finger to close the hand, similar to a human hand. We use DASH to achieve
more dexterous and contact-rich manipulations with all four fingers, and also to exert more force
than was possible with the delta robot manipulator. Both manipulators are 3D-printed from soft
materials and benefit from compliance to execute tasks safely with delicate objects. The specifi-
cations of each of the 3D-printed compliant manipulators are detailed in Table 1.1. We explore
different design iteration and evaluation methods for these manipulators as described in our con-
tributions below.

We summarize our thesis research in Figure 1.3 and list them below:

• Designing Delta: Designed compliant 3D-printed parallelogram links for delta robot ma-
nipulators, leading to the development of the first 3D-printable compliant delta robot using
soft materials. 24 designs evaluated in real world

• Evaluating Delta: Evaluated a novel gripper composed of two 3-DOF compliant delta
robots, which utilized the designed parallelogram links, using teleoperation in real-world
tasks. 1 design evaluated in real world

• Designing and Evaluating DASH: Developed a framework for designing anthropomorphic
soft hands using 3D printing-aided fast prototyping and teleoperation, which resulted in
the creation of the Dexterous Anthropomorphic Soft Hand (DASH). 5 designs evaluated
in real world

• Evaluating DASH: Learned policies from internet videos and online fine-tuning on dex-



Figure 1.3: Design iteration method versus evaluation method of compliant manipulators. Each
of the completed works and proposed works are placed with respect to both of these axes.

terous tasks, instead of teleoperation. 1 design evaluated in real world
• Design Automation for DASH: Co-optimizing design and control of dexterous hands for

automated design iteration of soft hands in simulation and using real-world teleoperation
evaluation, instead of manual design iteration. 2 designs evaluated in real world

1.3 Thesis Organization
In Chapters 3 and 4, we design and evaluate a compliant 3D-printed delta robot. First, we de-
sign the delta robot using keyframed poses in characterization experiments and subsequently,
evaluate the delta robots using a combination of keyframed poses and teleoperation, as shown in
Figure 1.3. The design process here is considered human-in-the-loop since it relies on adjusting
the design parameters using the expertise of the designer based on the performance during eval-
uation. Chapter 3 focuses on the characterization of the compliant parallelogram links used to
create the delta robots. Subsequently, Chapter 4 evaluates the design of these 3D-printed com-
pliant delta robots as fingers in a 2-finger robotic gripper to do low-inertia manipulations. While
our delta robot designs were able to achieve difficult tasks like rolling dough and picking a grape
off of a stem, we look to designing tendon-driven soft hands for compliance and dexterity, as
well as increased strength.

In Chapter 5, we describe a framework for rapid design iteration to build and iteratively test
soft robot hand designs on real-world manipulation experiments. Typically the process of build-
ing, testing, and re-designing robotic hands is costly and time-consuming [7]. Rapid prototyping
techniques such as 3D-printing and teleoperation are sufficiently advanced to support a process
of rapid design iteration. Our framework leverages these techniques to rapidly evaluate soft
hands on real-world manipulation tasks in order to inform subsequent hand designs. As shown
in Figure 1.3, we use human-in-the-loop design iteration and use teleoperation to evaluate the
hand’s performance on a real-world manipulation task suite named DASH-30. We create five



iterations of dexterous anthropomorphic soft hand (DASH), improving task performance incre-
mentally over each iteration. Two of our design iterations required only 3 and 5 days to design
and test, thereby showing that we can build, test, and improve on soft hand designs quickly.

In contrast to our keyframed and teleoperation approaches, in Chapter 6, we leverage both
human demonstration videos and online fine-tuning to learn policies that perform complex tasks
with DASH, such as flipping a bagel. The goal of this work is to demonstrate the capability
of DASH on complex dexterous tasks autonomously. Additionally, this opens a new modality
of evaluation in our framework, besides teleoperation. Our final DASH iteration in Chapter 7
focuses on automating the design iteration process, thereby taking the human out of the loop, in
order to explore a larger design space. To achieve this, we simulate the soft hand as a rigid body
and use hand evolution methods to transfer control policies across a large set of generated hand
designs to fabricate and determine the best design based on the success rate on simulated dex-
terous tasks. Subsequently, we fabricate the design and teleoperate it on real-world tasks to both
evaluate its performance. In Chapter 8, we test the optimized hand designs on our suite of tasks
DASH-30 to evaluate the generalization of their capabilities. Finally, Chapter 9 discusses the
findings from our design iteration approaches, and Chapter 10 concludes our work and considers
future extensions of our work.





Chapter 2

Related Work

In existing work, dexterous hands generally look like multi-fingered hands or anthropomorphic
morphologies. This alludes to human-like dexterity through biomimetic approaches or heuristic
approaches to achieve dexterous capabilities. Many of these hands are tested on a limited set of
tasks or experiments to demonstrate these capabilities. These benchmarks can look like suites
of tasks or taxonomies. During evaluation on these tasks, we can think about how to increase
dexterity. We can learn strategies to increase the capabilities of existing hands using concepts
such as extrinsic dexterity. Or we can improve intrinsic dexterity through improved hardware.
We focus on the latter in order to build a good foundation to build on using software. In this
thesis, we create hands efficiently with newer rapid prototyping techniques and evaluate them
faster than previously with faster simulations and real-world evaluation methods. Simulating
hand designs allows us to test designs before making them but advances in fabrication techniques
allow us to use both for a closed-loop design iteration method.

2.1 Robot hands

Robotic hands can be categorized as non-dexterous hands and dexterous hands, where dexterous
hands are mostly characterized by multi-fingered hands. Multiple fingers are required to have
the dexterity to do tasks such an rotating dice in-hand. However, related work shows that tasks

Figure 2.1: Diagram of topics covered in thesis related work. The works presented in this thesis
fall into the categories outlined in red.
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like bin picking (picking up a single object from a bin of many objects) can be done with suction
grippers and parallel jaw grippers [8]. Non-dexterous hands are also capable of doing dexterous
or complex manipulation tasks by taking advantage of extrinsic dexterity [9]. This concept re-
quires using external contacts such as grasping an object into a table or using the table to flip an
object, where the table acts as another contact instead of a finger. Extrinsic dexterity allows sim-
ple hands and grippers to achieve more complex tasks but they cannot efficiently solve tasks, e.g.,
rotating dice in-hand. Without extrinsic dexterity, the gripper would place the dice on a table and
pick up the dice in a new position (if that grasp is feasible). With extrinsic dexterity, this could
involve letting the dice make contact with a surface and allowing the dice to rotate while being
grasped. For a dexterous hand, this could be achieved by twisting the dice with the palm facing
up using the thumb and remaining fingers. Simple grippers can use reinforcement learning and
extrinsic dexterity to solve complex manipulation tasks including “occluded grasps” where the
desired grasp is not feasible [10]. However, dexterous hands can efficiently solve complex tasks
and human hands are an available heuristic for modeling dexterous hands.

In the last century, multi-fingered dexterous hands have seen a trend of moving from rigid
robot hands to using soft joints and materials [11]. Popular rigid dexterous hands include Shad-
owHand [3] and Allegro [2], which are commercial robot hands. Rigid dexterous hands from re-
search labs include D’Manus [12], LEAP [13], D’Claw [14], and many more. Similarly, existing
soft hands range from tendon-driven foam hands [15] to pneumatic soft hands [16] to prosthetic
hands [17]. In this thesis, we create compliant dexterous manipulators using soft materials and
soft joints due to their safety in interactions with objects and environments [18]. Compliance
allows for a different paradigm compared to rigid manipulation where we can opt for contact-
rich manipulations rather than avoiding contact [11]. For example, when picking up a cloth from
the table, a rigid manipulator would have to be careful not to jam into the table while grasping
whereas the soft manipulator can slide along the table without damaging the hand, the table, or
the object. We see that many of the existing dexterous hands are anthropomorphic (human-like)
which drives us to design hands closer to the human hand in hopes of reaching human-like dex-
terity and efficiency in solving manipulation tasks. Similarly, we look at a two-finger gripper and
then an anthropomorphic four-fingered robotic hand, both made from soft materials and joints.

2.2 Benchmarks
In addition to designing robot hands, designing benchmarks to compare and evaluate designs
is important to understand which tasks certain designs are better suited for. When looking at
dexterous manipulations, existing taxonomies try to categorize everyday grasps or correlations
to human hand poses. These taxonomies are not about performing specific manipulations on
different objects, but rather about capturing the limitations and capabilities of the hand itself by
observing static hand poses. The GRASP taxonomy [19] incorporates grasp classifications of
various objects sizes and shapes including power, intermediate, and precision grasps along with
even more granular subcategories. Another popular taxonomy is the Kapandji score [20] which
does not use any objects but focuses on thumb opposition and reachability to 10 locations on
remaining fingers and the palm. Grasp taxonomies can also be presented as task lists based on
everyday grasps studied from human participants [21], which can inform us on the variety of



tasks we would like robot hands to be able to perform.
While taxonomies can evaluate whether static hand poses are feasible, benchmarks such as

the Elliott and Connolly Benchmark [22] present a suite of dynamic manipulation patterns to
evaluate in-hand dexterity and ability to move between grasp poses of specific objects. Bench-
marks containing suites of tasks that involve various objects such as Purdue Pegboard Test [23],
Box and Blocks Test [24], Jebsen Taylor Hand Function Test [25], and SHAP Test [26] evaluate
the ability to complete daily activities or assess rehabilitation of manual dexterity. In additions
to suites of tasks, there are benchmarks of objects to test how a robot hand would grasp a va-
riety of shapes and sizes of objects (same grasping task but different objects). Datasets such as
YCB [27] allow many robot hand designs to attempt grasping the same object dataset to compare
hand design performances with existing hand designs. Similarly, suites of tasks and objects in
simulation, such as DAPG [28], provide benchmark environments and manipulation tasks such
as door opening, hammering a nail, pick and place, and in-hand pen reorientation to evaluate
manipulation learning methods. In this thesis, we take inspiration from everyday grasps [21] and
in-hand dexterity benchmarks [29, 30, 31] to curate our own suite of tasks with an intention to
evaluate beyond grasping or pick-and-place tasks.

2.3 Design Iteration

Design optimization and iteration involves testing different designs in either simulation or the
real world in order to find designs that can perform well in the real world. While simulating
robot designs can provide insights into robot performance without the time and effort of manu-
facturing and testing each design in the real world, the final designs are eventually tested in the
real world prior to deployment. Thus, it is imperative that design iteration be grounded in real
world performance. In locomotive robots, we see many designs tested in simulation and then
testing one or more designs in the real world for both rigid robots [32] and soft robots [33]. Eval-
uating top performing designs in simulation in the real world verifies the design performance in
simulation and reveals the sim to real gap. Domain randomization such as varying terrain for
locomotive robots can lessen the sim to real gap [34].

While manipulation does not have an equivalent of tough terrain to test many designs on,
existing work has explored computationally and heuristically. Heuristic approaches generally
involve kinematic testing prior to fabricating a single design in the real world [7, 35, 36, 37, 38].
On the other hand, computationally tested hands require optimization of design or co-optimizing
design and control for picking one design over many. Such approaches evaluate many designs
in simulation in order to search a larger design space than iterating in the real world, where
either one of the designs is replicated in the real world [15, 39, 40, 41] or results are purely in
simulation [42, 43, 44]. However, since making many designs in the real world to evaluate is
tedious and difficult, our work aims to fill this gap by rapidly iterate on designs in the real world
with rapid prototyping and teleoperation. Additionally, we use co-optimization of hand design
and control in simulation to evaluate designs, and then we fabricate multiple designs in the real
world to verify them.



2.4 Real World Evaluation
Hand designs must be fabricated and evaluated in the real world for downstream manipulation
task performance. In order to thoroughly evaluate a robot hand’s capabilities, evaluation methods
require both fabrication and control methods. Manufacturing methods for robot hands include
any combination of machining [2], casting [45], folding [6], 3D-printing [46], etc. Soft pneu-
matic hands like RBO Hand 3 [16] require casting and curing and can take five days to completely
build. However, recent advancements in 3D-printing technologies have made it an efficient rapid
prototyping technique even for soft robots [47]. Thus, we leverage 3D-printing in our works to
rapidly prototyping hand design iterations in the real world, sometimes designing, fabricating,
and evaluating hands in under five days.

Control methods can vary from curated hand poses or grasps to autonomous trajectories or
manipulation sequences. Keyframed poses can verify kinematic capabilities of the hand whether
that informs thumb placements for grasping [7] or showcases the soft dexterous hand design’s
capabilities through Kapandji and GRASP taxonomy scores [48]. RBO Hand 3 (2022) [16] im-
proves on both Kapandji and GRASP taxonomy scores compared to RBO Hand 2 (2016) [48].
Teleoperation can be used to learn mappings between human hand poses and robot hand poses [15]
or evaluate manipulation tasks a hand can do [13]. Reinforcement learning methods can help
create learned policies for manipulation tasks such as rotating a valve [49] or rotating objects in
hand [50]. All of these are valid methods to test real world hand design performance, however
autonomous policies are the end goal for robots to be deployed into shared environments with
people. We use combinations of keyframed poses, teleoperation, and learned policies to iterate
on the design of soft dexterous robot hands.



Chapter 3

Designing Delta Robot Manipulators

Paper: Mannam, P., Kroemer, O., & Temel, F. Z. (2021). Characterization of compliant paral-
lelogram links for 3D-printed delta manipulators. In Experimental Robotics (ISER): The 17th
International Symposium (pp. 75-84). Springer International Publishing.

3.1 Introduction
Personal care robots operating in homes require dexterous and compliant manipulators to ensure
that interactions with human and objects are performed reliably and safely. Delta robots, Fig-
ure 3.1(a), are ideal for these applications due to their low-inertia and high-precision [51]. The
dexterity and precision of these robots enable them to manipulate objects in unstructured home
environments. However, most delta robots are made from rigid materials [52] which precludes
them from interacting safely with humans. The compliance of soft materials, on the other hand,
can allow them to conform to objects, exhibit physical robustness, and execute safe human inter-
actions [18]. Furthermore, 3D-printing delta robots using soft materials reduces fabrication costs
and makes them accessible to a wider community. This paper presents the process of designing
the first 3D-printable compliant delta robot using soft materials. We characterize parallelograms,
an integral component of the delta robot, with varying dimensional parameters and materials to
study their behavior as part of a delta mechanism. More specifically, we focus on parallelogram
hinge and beam thicknesses, and material stiffness. These design choices can then be leveraged
to achieve desired end-effector behaviors of 3D-printed delta robots composed of compliant par-
allelogram links.

Printing compliant delta robots requires a departure from the classical delta design due to the
use of soft materials, especially with respect to the joints. Rigid universal joints are replaced by
two types of living hinges1, one in the compliant parallelogram links of the delta robot and the
other between the end-effector and the parallelogram links, as seen in Figure 3.1(a). Properties
inherent to soft materials like bending and hysteresis can alter the delta mechanism behavior. As
shown in Figure 3.1(a), we expect the end-effector (or platform) of the delta robot to always stay
parallel to its base as seen in the upright position; however, this orientation is not guaranteed

1A living hinge is an articulated joint created by locally reducing the width of the material to make it more
compliant in that region.
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Figure 3.1: (a) A delta robot with each arm consisting of a rigid portion and a flexible paral-
lelogram with living hinges that transfers motion from motors at base to end-effector. (b) Ideal
behavior of displaced tail of the parallelogram in characterization experiments testing different
hinge and beam thicknesses and materials.

in all configurations when using compliant materials. This deviation from the ideal kinematic
behavior can be measured by the end-effector rotation with respect to the base across the robot
configuration space. In this work, we study the characteristics of centimeter-scaled compliant
parallelograms with 12 varied combinations of hinge and beam thicknesses, and 2 materials by
displacing them incrementally and observing the force required and resulting rotation of the
parallelogram tail, as shown in Figure 3.1(b). Subsequently, we evaluate these parallelograms
by integrating them into the delta robot structure and measuring the end-effector rotation with
respect to the base in specific configurations of the robot. These experiments allow us to infer
the parameters of the compliant parallelogram link that achieve the ideal kinematic behavior,
bringing us one step closer to the goal of creating a 3D-printed compliant delta manipulator.

3.2 Related Work
Compliant robots have been used in biomedical applications and are built on micro or milli scale
using flexure-based mechanisms. Manufacturing compliant robots on such a small scale is dif-
ficult using traditional techniques and are typically built using either Micro Electro Mechanical
Systems (MEMS) [6, 53, 54], or Electro-Discharge Machining (EDM) [55, 56, 57, 58]. These
manufacturing techniques require sophisticated tools that are not accessible to the wider com-
munity. An alternative approach is to utilize origami-inspired self-folding robots [59, 60, 61] or
laminate robot mechanisms [6, 62, 63]. Our work is closest to the millimeter-scaled Delta robot
using laminate structures [6]. Unlike the manual assembly required for laminate robot mecha-
nisms, we look to successful prototyping of compliant mechanisms using 3D-printing [64]. Our
goal is to create a low-cost compliant delta manipulator without using complex manufacturing
techniques by relying on 3D-printing.

A popular alternative parallel manipulator is the 6-DOF Stewart platform [65] that can trans-
late and tilt the end-effector unlike the delta robot which only allows the end-effector to translate
parallel to the base. Both of these manipulators can move at high speeds and accelerations with



low-inertia because their relatively heavy motors are stationary and at the base. Delta robots,
unlike Stewart platforms, have simple closed-form kinematic solutions [52]. The characteris-
tics improve as the mechanisms are scaled down, which is why delta robots like the mm-scaled
delta (milliDelta) can move with precision down to 5 micrometers in a 7mm3 workspace and
lend themselves to micromanipulation [6]. Previous mm-scaled delta robots required multi-step
processes or manual assembly which introduced irregularities in the final platforms [6][63]. In
contrast, we use 3D-printing to make repeatable and accessible delta robots.

3.3 Approach
The parallelogram structure plays an integral role in the delta robot’s functionality [51]. The
key components of the parallelogram are the beam and hinge thicknesses, as labeled in Figure
3.1(b). Hence, we start with characterizing the parallelograms with varying beam and hinge
thicknesses, as well as two different materials, by recording the effect on force and position when
displacing the tail of the parallelogram as shown in Figure 3.1(b). Subsequently, we study the
compounding effects of three parallelogram links in a delta robot structure on the resulting end-
effector orientation. This enables us to model the mechanical properties of different materials
and dimensional parameters of the compliant parallelogram that result in motions close to the
idealized delta mechanism.

We characterized and evaluated the parallelogram links over twelve combinations of dimen-
sional parameters: 3 beam thickness values of 2.5mm, 3.5mm and 4.5mm, and hinge thickness
values of 0.375mm, 0.5mm, 0.75mm, and 1mm to study deviations from the ideal delta kine-
matic model caused by different hinge and beam thicknesses. For our experiments, we used
Ultimaker S5 3D-printer and filaments. We chose the two most compliant Ultimaker filament
materials which are best suited to living hinge mechanisms, polypropylene (PP) and thermoplas-
tic polyurethane (TPU) 95A. For comparison, the tensile modulus is 220 MPa (using ISO 527)
and 26 MPa (using ASTM D638) for PP and TPU respectively. Additionally, the flexural strength
is 13 MPa and 4.3 MPa (both measured using ISO 178) for PP and TPU respectively. These val-
ues indicate that TPU is more compliant than PP, which is beneficial for the living hinges while
the stiffness of PP is useful to maintain rigidity of the parallelogram beams.

3.3.1 Characterization of Parallelogram
The two parameters for characterization experiments were the parallelogram beam and hinge
thicknesses (Figure 3.1(b)). The remaining dimensions were fixed, such as the length and depth
of the beams which were 27mm and 4mm respectively, and the length of the hinge was always
2mm. Compliant parallelograms were made from PP and TPU while supporting and mounting
materials were 3D-printed using rigid polylactic acid (PLA) material. Characterization experi-
ments involved mounting these parallelograms vertically and using a linear actuator to push the
parallelogram tails in 5mm increments to measure the exerted force, and resulting displacement
and orientation change of the tails. We vertically mounted parallelograms to reduce the effects of
gravity in pulling the parallelogram out of plane. As shown in Figure 3.2(a), an Actuonix L12-R
Micro Linear Servo is mounted with a Transducer Techniques GS0-150 load cell to measure the
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Figure 3.2: (a) Parallelogram characterization experiment setup: linear actuator mounted with
compression load sensor to displace the tail of a PP parallelogram with beam thickness = 2.5mm
and hinge thickness = 0.375mm. (b) Force-displacement plots for PP and (c) TPU for varying
beam thicknesses (shown with shapes) and hinge thicknesses (shown with colors). Each marker
represents the mean across five repetitions of the experiment.

force required to displace the parallelogram tail. For PP parallelograms with beam thickness
of 4.5mm, we used the GS0-500 load cell instead to measure the higher force values that were
required to displace these parallelograms. Three grey markers on the parallelogram are tracked
as a rigid body by an OptiTrack V120:Trio camera with submillimeter accuracy to record the
position and orientation of the parallelogram tail. The load stem was lubricated to overcome
frictional effects when pushing the parallelogram. Force measurements were recorded after a
six minute delay to allow for stabilization of any creep (deformation) effect. Additionally, rota-
tion data from the markers on the parallelogram indicate if the tail of the parallelogram rotated
out-of-plane or twisted in plane.

Using the same reference axes as shown in Figure 3.2(a), we observe in-plane and out-of-
plane rotations of the parallelogram tail. The force applied by the actuator causes the tail of the
parallelogram to move in an arc in the plane of the parallelogram. Under ideal conditions, the tail
would remain parallel to the base. However, due to non-ideal hinge and beam behaviors, the tail
exhibits additional rotations within the plane of movement, i.e., about the Z axis. Additionally,
the restorative force of the parallelogram (caused by gravity and joint stiffness) will push back
against the actuator. Misalignment between this restorative force and the actuator’s pushing force
can result in the parallelogram twisting (Y axis rotation) or bending out of plane (X axis rotation).
Thus, we only focus on the in-plane rotations to test whether the parallelogram tail stays parallel
to the mounted end of the parallelogram.

3.3.2 Evaluation of Delta Mechanism

Rotations of the compliant parallelogram links directly relate to the rotations of the delta robot
end-effector. Hence, using the same parallelograms tested in the characterization experiments,
we validated the results by integrating the parallelograms as links in an actuated delta robot as
shown in Figure 3.4. The parallelogram links have an added living hinge on each side, oriented
90 degrees apart from the compliant links’ revolute joint, to mimic one universal joint at each end



of the beams as shown in Figure 3.1(a). Three of these parallelograms are attached to a triangular
end-effector platform, all created with either PP or TPU throughout. Then, the compliant delta
tops are secured to 3D-printed rigid links made with Ultimaker Tough PLA (shown in red in
Figure 3.4) which are attached to servo motors.

To measure the end-effector rotation with respect to the base at different configurations of the
robot, we define two configurations for each of the arms, namely up and down, that are separated
by a 50 degrees offset. We consider two configurations of the robot, one in which two arms
are down and the other arm is up, and the other in which two arms are up and the other arm is
down. The three marker points on the end-effector are used to calculate the end-effector plane
and normal axis. The normal axis is computed at each position of the delta robot, such that the
angle between the normal vector and a reference base normal is used to compute the rotation of
the end-effector with respect to the base.

3.4 Experimental Results

3.4.1 Characterization experiments

We tested parallelograms of varying hinge thickness (0.375, 0.5, 0.75, and 1mm) with beam
thickness of 2.5mm, 3.5mm, and 4.5mm. The force values at the end of each 5mm increment
push until 20mm for both PP and TPU, averaged over five repetitions, are shown in Figure 3.2(b)
and (c) respectively. The circle, triangle, and square markers denote 2.5mm, 3.5mm, and 4.5mm
respectively, and each color denotes a difference hinge thickness between 0.375 and 1 mm. Five
repetitions were executed for a given set of dimensional parameters and material on a newly
printed parallelogram, resulting in a total of 120 characterization experiments. There is a clear
trend for both materials where displacing the parallelogram by a larger distance takes more force.
Overall, PP parallelograms require more force to displace than ones made from TPU, needing
almost 4N versus close to 1.5N for the stiffest (thickest) hinges at 20mm displacement.

Using OptiTrack markers, Z rotation angles of the parallelogram tail were recorded after
displacements of 5mm increments up to 20mm. In Figure 3.3, the mean and standard deviation
for Z rotation angles are shown for both PP and TPU at the largest (20mm) displacement. For
the same beam thickness, increasing the hinge thickness tends to result in larger Z rotations
across both materials implying that in-plane rotations are smaller for thinner hinges. We can
also observe that for a given beam and hinge thickness, TPU results in larger in-plane rotations
when compared to PP. This can be attributed to higher compliance of TPU when compared to PP.
Interestingly, for a fixed hinge thickness varying the beam thickness does not show consistent
behavior across materials and hinge thicknesses. We leave exploring the reasons to future work.

The X, Y, and Z rotation angles with mean and standard deviation at 20mm displacement
of the parallelogram can be found in the first three columns of Table 3.1. As expected from
our discussion in Section 3.3.1, X and Y rotations, corresponding to out-of-plane rotations, have
high standard deviations due to misaligned restorative and actuator pushing forces. We have
included these rotation values for completeness in Table 3.1. We can conclude that for both PP
and TPU materials, a hinge thickness of 0.375mm results in the least in-plane rotation. For beam
thickness, the table indicates that both 2.5mm and 4.5mm for PP material have small in-plane



Figure 3.3: Characterization experiment results for Z rotation angles (in degrees) of PP and TPU
parallelograms at the largest displacement (20mm). The mean and standard deviation shown
as error bars are taken over five repetitions of the experiment. The most compliant hinges
(0.375mm) and least compliant hinges (1.0mm) are grouped together, and the colors denote
different beam thicknesses of 2.5, 3.5, and 4.5 mm.

rotations. Similar to Figure 3.3, we can infer that PP material achieves smaller mean in-plane
rotation when compared to TPU material across all settings which can be again attributed to the
difference in stiffness between the materials.

3.4.2 Evaluation Experiments

We evaluated the effects of integrating parallelograms from the characterization experiments,
TPU and PP parallelograms with the most and least compliant hinges (0.375mm and 1.0mm),
into full delta mechanisms. Specifically, we studied the effect on the end-effector orientation,
relative to the base, when it is moved towards the edge of the configuration space, by lowering
or raising each arm by 50 degrees, as shown in Figure 3.4. Both configurations were repeated
three times with each of the three arms. We present the mean and standard deviation of the end-
effector rotation in Table 3.1 (last two columns.) For both PP and TPU materials, hinge thickness
of 0.375mm results in a smaller end-effector rotation when compared to a hinge thickness of
1.0mm across all settings. This highlights the importance of compliance in living hinges to
achieve delta behavior that is closer to ideal. With a thick hinge, parallelogram links are stiff and
unable to maintain the end-effector orientation to be parallel to the base. This is similar to the
conclusion drawn from our characterization experiments where we observed that smaller hinge
thicknesses are better for minimal in-plane rotations.

Among parallelograms with hinge thickness of 0.375mm, a beam thickness of 2.5mm works
best for PP while a beam thickness of 4.5mm works best for TPU. This can be attributed to the
stiffness of PP which requires thinner beam to be flexible enough to maintain the end-effector
orientation across different configurations. On the other hand, TPU is more compliant and re-
quires thicker beams to ensure that the beams stay parallel to each other which is important to
achieve an end-effector orientation that is parallel to the base.



(Beam th., Hinge th.) X-rotation Y-rotation Z-rotation 2 up, 1 down 2 down, 1 up

µ σ µ σ µ σ µ σ µ σ

PP (2.5, 0.375) 2.31 2.11 2.28 0.85 1.90 0.41 6.27 1.68 5.65 1.66

PP (3.5, 0.375) 1.03 0.38 2.35 1.85 2.78 0.74 8.12 3.80 5.87 1.49

PP (4.5, 0.375) 2.08 0.84 4.68 1.56 1.84 0.12 8.75 2.61 6.15 3.83

PP (2.5, 1.0) 1.20 1.11 3.10 2.65 3.90 0.64 20.08 5.91 17.01 3.31

PP (3.5, 1.0) 1.04 0.38 1.20 0.57 5.26 0.14 15.23 0.86 13.22 1.69

PP (4.5, 1.0) 3.87 1.62 9.32 3.37 4.01 0.16 15.01 0.72 11.57 4.04

TPU (2.5, 0.375) 2.26 1.39 2.06 1.70 2.97 0.61 7.84 3.51 7.69 2.23

TPU (3.5, 0.375) 1.21 1.03 1.41 0.72 2.87 0.17 5.5 0.24 5.44 1.48

TPU (4.5, 0.375) 1.06 1.42 1.60 0.95 2.58 0.30 4.72 1.42 5.00 2.09

TPU (2.5, 1.0) 0.62 0.24 5.86 3.82 5.56 0.48 17.18 4.83 13.55 2.00

TPU (3.5, 1.0) 0.73 0.59 2.03 1.83 5.63 0.45 18.54 5.95 15.35 4.36

TPU (4.5, 1.0) 0.93 0.26 2.50 1.96 5.14 0.90 20.49 9.99 14.67 2.08

Table 3.1: Characterization experiment results for X, Y, and Z rotation of parallelograms at
20mm displacement. The mean (µ) and standard deviation (σ) is taken over five repetitions of
the experiment. The last two columns consist of data from evaluation experiments integrating
parallelograms of varying beam and hinge thicknesses and calculating the rotation of end effector
(in degrees). The mean and standard deviation of three repetitions raising 2 arms and lowering
one arm (2 up, 1 down) as well as lowering 2 arms and raising 1 arm (2 down, 1 up) by 50 degrees
is listed in fourth and fifth columns respectively.

The amount of permissible rotation is dependent on the application, but for manipulating
large objects (centimeter scale or larger) 7 degrees of rotation or less is manageable. From a
visual perspective as well, about 7 degrees of rotation in Figure 3.4(b) still demonstrates near-
delta robot behavior.

3.5 Conclusion and Future Work

We tested 3D-printed parallelograms made with two materials of significantly varying stiffness,
PP and TPU. The characterization experiments presented in Section 3.4.1 studied the effects of
displacing the parallelogram tail. Due to the large variation in amount of force required for each
of the parallelogram dimensions and materials, the force profile can be chosen for a specific ap-
plication. For example, a delta robot that is interacting with humans for applications like assisted
feeding is expected to be more compliant and therefore require less force to be displaced. Thus,
we can tailor the parameters and material of the parallelogram links to the desired application



Figure 3.4: Evaluation experiment parallelograms with beam thickness 2.5mm and hinge thick-
ness of (a) 1mm and (b) 0.375mm are shown before and after lowering one arm (2 arms up, 1
down) by 50 degrees.

using the force profile. Our characterization experiments have also indicated that more compli-
ant hinges and PP material are better for achieving minimal in-plane rotations. Our evaluation
experiments in Section 3.4.2 also show that more compliant hinges result in end-effector orien-
tations that are closer to ideal delta behavior. In addition, our evaluation experiments have also
provided insight into the ideal beam thickness for PP and TPU materials that result in minimal
end-effector rotation.

Working with soft materials is challenging as their properties change over time and across
repetitions. In order to control the 3D-printed delta for manipulation, we will have to learn how
to accommodate for the material properties and adapt to changes. Our work is an initial step in
this direction and the experiments show the potential of a 3D-printed delta using soft materials.
Future extensions of this work involve manipulation tasks using opposing delta manipulators,
arrays of delta robots for distributed actuation platforms, and modeling compliant delta robots.
Modeling the delta robots also involves studying the error from rigid delta kinematic models and
how to compensate for the error using robust control and state estimation techniques.

Next, we use this characterization of parallelograms for delta robots to design two delta
manipulators opposing each other in a two-finger gripper configuration.



Chapter 4

Evaluating Delta Robot Manipulators

Paper: Mannam, P., Rudich, A., Zhang, K. L., Veloso, M., Kroemer, O., & Temel, Z. (2021, July).
A low-cost compliant gripper using cooperative mini-delta robots for dexterous manipulation. In
17th edition of Robotics: Science and Systems (RSS).

4.1 Introduction

In unstructured settings like hospitals and homes, robots require the ability to execute dexterous
manipulation tasks like handling delicate and small objects such as pills and coins. Many exist-
ing robotic end-effectors are designed for industrial applications where the focus is on repeatable
and robust manipulation of large and rigid objects. However, these end-effectors can exert sig-
nificant forces that can damage smaller, delicate, and nonrigid objects, like berries and playing
cards. Interest in soft manipulators has grown recently because of their advantages in safety and
compliance [18]. To leverage these desirable properties in dexterous manipulation, we propose a
novel compliant gripper composed of cooperative 3-DOF mini-delta robots that are made using
soft 3D-printed materials.

Delta robots are highly effective and accurate for pick and place tasks in a variety of indus-
trial manufacturing and packaging processes [66]. However, utilizing them for other purposes
has not been widely studied. In particular, many collaborative robot (cobot) arms used in both
academia and industry are outfitted with either two finger parallel jaw grippers or vacuum grip-
pers. Some labs and companies have used significantly expensive and complicated anthropo-
morphic (human-like) hands such as the shadow hand, which are typically difficult to control
autonomously due to their high degrees of freedom [67]. Other researchers have developed their
own hands such as soft pneumatic grippers [68] or jamming grippers [69], but they usually have
a smaller workspace and less accuracy.

Our gripper, presented in this paper, consists of an end-effector with two 3-DOF delta robot
modules as shown in Figure 4.1. In contrast to other grippers, our mini-delta robots use closed-
form inverse kinematic solutions and soft materials which achieve high accuracy while still pro-
viding compliance. Furthermore, our end-effector is accessible through the use of 3D-printing
and readily available off-the-shelf parts. The modular parts can be easily replaced and produced
at a low cost. The price for our delta gripper is approximately $300 ($150 per 3-DOF finger),
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Figure 4.1: Novel robotic gripper grasping a coin, a card, and a dough roll with two delta robots,
each with three degrees of freedom and made from 3D-printed soft material, polypropylene (PP).
The linear actuators, compliant delta links, and fingertips are shown for a pair of delta robots.
The delta robot’s links move up and down with the linear actuators fixed at the joints.

which is significantly cheaper than the cost of some off-the-shelf grippers. For instance, the
anthropomorphic Shadow Dexterous Hand starts from $50,000 [3] and Robotiq’s dexterous 3-
finger adaptive robot gripper is $18,000. Even a two-fingered gripper from Robotiq costs around
$5,000 [70]. The dexterous dynamixel claw from BAIR lab [49], which also has 3-DOF per fin-
ger, costs around $2500 for 3-fingered manipulation. From our total delta gripper cost of $300,
the cost of the actuators ($40 each) is the largest cost out of all the delta robot materials. We
therefore consider it a low-cost gripper when comparing the magnitude of cost with commercial
dexterous grippers. Unlike these grippers, the delta robot gripper with its parallel mechanism is
compliant, low-cost, easily manufactured, and modular.

Our main contribution in this paper is the design and modeling of a novel gripper composed
of 3-DOF compliant delta robots. We start by presenting a design of the gripper and learn its kine-
matic model using neural networks as the traditional rigid delta model is inaccurate for compliant
links. Subsequently, we construct a force profile of the compliant delta robot in various starting
configurations using a one-axis force sensor. Finally, we conclude by using the gripper with
the learned kinematic model on several dexterous manipulation tasks including manipulating a
grape, aligning a pile of coins, picking up one coin from a pile, picking up a card from a deck,
plucking a grape off of a stem, and rolling dough. Through these manipulation demonstrations,
we present a multi-fingered hand design that can execute precise and low-inertia manipulations.

4.2 Related Work
Delta robots are three translational degrees of freedom (DOF) parallel mechanisms that can be
used for manipulation. The advantage of such a robot compared to a serial manipulator is that
the inverse kinematics can be computed in closed-form, allowing for fast and easy control. Ad-



Figure 4.2: This diagram illustrates the two orthogonal axes of rotation that approximate a uni-
versal joint and the measurements of k, sp, and L. k is shown as the distance between the two
orthogonal axes of rotation, L is shown as the distance between the axes of rotation at the top and
bottom of a leg, and sp is shown as the distance between the the axes of rotation where the center
of the parallelogram links attach to the end-effector. Each measurement represents a distance
constraint between revolute joints in our simulation.

ditionally, the motors are stationed at the base of the delta robot, creating a light end-effector
that can move precisely with low inertia. Such low inertia mechanisms combined with compliant
materials have a lower chance of harming objects and humans upon interaction. These qualities
can be enhanced with the use of soft materials for a safe robotic gripper.

However, soft robots require a departure from classical methods for design, fabrication, and
control [71]. The design of our compliant delta robot is similar to the laminate millimeter-scaled
delta robot [6] [63] and compliant parallelogram links characterized in [72]. Unique from these
two approaches, we use 3D-printing for fabrication and linear actuators to create a prismatic delta
rather than rotary motors for a revolute delta. Thus, we use three linear actuators per 3-DOF delta
robot to move the end-effectors as shown in Figure 4.1 which behaves practically the same as the
revolute delta [73].

Actuation and control of soft robots is an ongoing challenge. Some relevant works have
tackled this by using learning-based methods. Truby et. al. [74] use deep learning to map
piezoresistive sensor readings to 3D configuration of a complex soft robot. Homeberg et. al.
[75] also use proprioceptive sensors but to distinguish objects in-hand. It is common to deduce
where the robot is in space through external or internal sensors and in some cases both [76]. In
our work, we exploit rigid delta kinematics to build a prior of where the delta end-effector is
in space. Then, using a neural network, we create a robust model relating actuator positions to
end-effector positions for delta robots of two different soft materials.

In our previous work on 3D-printed compliant delta manipulators [72], we characterized
thermoplastic polyurethane (TPU) and polypropylene (PP) parallelogram links for optimal de-
sign parameters. The main characteristic of a delta robot mechanism is that the end-effector stays
parallel to the base. In our work, we use the optimal dimensions found to maintain this parallel
relationship in [72] to design and fabricate a delta robot manipulator using the two materials,
TPU and PP.



4.3 Delta Manipulator Design
Using 3D-printing and soft materials significantly impacted our design of the delta robot gripper.
Our compliant delta links made from PP and TPU require a different design when compared
to rigid delta links. The delta design, as shown in Figure 4.2, is also dependent on the gripper
workspace and actuators. Additionally, fingertips made from PLA are mounted on the delta
robot’s end-effector, as shown in Figure 4.1. For comparison, out of the materials used, TPU is
the most compliant, followed by PP and then PLA with tensile moduli of 26 MPa (using ASTM
D638), 220 MPa (using ISO 527), and 2,346.5 MPa (using ISO 527), respectively [77]. We
used an Ultimaker S5 to create all of our 3D-printed parts, but similar fused deposition modeling
(FDM) printers are widely accessible, which greatly lowers the barrier of entry to make these
low-cost compliant delta robotic manipulators.

4.3.1 Setup
In this work, we test delta robots made from two soft materials, PP and TPU, so we design
two compliant delta links accordingly. We use compliant parallelogram links with living hinges
to 3D-print delta robots as characterized in previous work [72]. The two living hinges rotate
along orthogonal axes to approximate a universal joint in the delta links, as shown in Figure
4.2. Each leg is composed of two beams that move as a four bar parallel linkage mechanism,
which transfer the motion from the linear actuators to the end-effector, as shown in Figure 4.1.
These parallelograms have 0.375mm hinges, and 2.5mm and 4.5mm thick beams for PP and TPU
deltas, respectively. We use these values to ensure that the delta robot end-effector remains as
parallel to the base, throughout as much of the robot’s configuration space, as possible [72].

The delta links are attached to the ends of three ECO LLC Mini Electric Linear Actuators
with 76.2 mm stroke and 20 N maximum load. The actuators are controlled through ROS serial
with an Arduino Mega and L298N motor controllers. The total weight of the gripper with two
delta modules is 1.03kg. The gripper is mounted on a Franka Panda Robot Arm for additional
mobility during task executions. Further dimensions such as the length of the delta parallelogram
beams (as shown in Figure 4.2) and distance between the beams are chosen according to the
desired workspace of the delta gripper.

4.3.2 Delta Actuators and Workspace
The parallelogram links characterized in our previous work [72] were evaluated on revolute delta
robots while our delta gripper uses prismatic deltas actuated by linear actuators. While the delta
robot mechanism remains the same, the prismatic delta design allows more freedom in the pack-
ing of delta robots. Our gripper only features two delta robots as shown in Figure 4.1, although
the design framework can be easily extended to more delta robots adjacent to the existing ones.
Revolute delta robots would require more space around the rotary actuators, hence using lin-
ear actuators instead allows us to pack deltas closer together and enable cooperative capabilities
between the robots.

The prismatic delta workspace is generally close to a hemisphere shape as shown in Figure
4.3. The workspace shown only accounts for joint angles until the delta links are perpendicu-



Figure 4.3: The prismatic delta workspace, in centimeters, has a dome-like shape, where the
robot can reach any of the points in X, Y, and Z axes. The three vertical red lines represent the
position of the linear actuators. Colors are mapped to the height for a better visualization. The
actuator lengths are limited to 4 cm so that no actuator can be above the delta’s end-effector.
Higher z values can be reached by adding a constant offset to every actuator.

lar to the linear actuators, as significant deformation of the compliant links will occur after this
point. We design adjacent delta robots such that they share a section of their workspace to enable
cooperative manipulation of an object. Parameters such as the leg length L, distance between
actuators at the base sb, and distance between where the parallelogram links attach to the end-
effector sp are chosen to create overlapping workspaces between adjacent deltas while taking
into account the size of the linear actuators and how close we can pack them. Additionally, we
use similar delta structure dimensions characterized in related work [72] except that the paral-
lelogram beams were adjusted to be 6mm apart from each other and 37mm in length. These
changes allow for larger joint angles and overlapping workspaces.

4.3.3 Fingertip design

For our delta gripper, we consider two types of fingertips 3D-printed with 10% infill. First, the
planar fingertips made from red Tough PLA shown in Figure 4.1 mimic a parallel jaw gripper in
that the contact surfaces are flat and opposable. The second fingertip is spherical in shape and
made from blue TPU as shown in Figure 4.7(d), making the compliance at the contact points
significantly higher at 10% infill. Additionally, the planar fingertips are padded with 2mm thick
foam and then electrical tape to increase friction and compliance between the fingertip and object.
The main compliance of the gripper comes from the soft delta links as the foam padded fingertips
are fully compressed after 1mm of deformation. We exploit the compliance of our delta robots
in conjunction with our fingertips to manipulate small and delicate objects dexterously.



Figure 4.4: Effects of varying the offset k on the mean error µ from the path of a standard delta.
The path of the delta with offsets is shown in red, and the path of a standard delta is shown in
blue. For k = .7 cm, some actuator inputs become infeasible and the path is cut short.

4.4 Delta Modeling

There is extensive literature analyzing rigid delta robots [78, 79], but the manufacturing of flexi-
ble delta robots through 3D printing introduces significant changes to the kinematics. We approx-
imate each universal joint in the delta with an orthogonal pair of revolute joints that are separated
by a small offset k as labelled in Figure 4.2. We analyzed the effect of the offset between revolute
joints on the delta workspace by modeling a rigid version of our delta in Simulink. To model the
compliant delta kinematics, we use the rigid model as a prior and learn the residual correction
using a distal learning approach with data obtained from a marker-based stereo visual tracker.

4.4.1 Offset between Revolute Joints

In order to approximate universal joints, our delta has orthogonal revolute joints that are separated
by a small offset. We studied the effect of these offsets on the workspace by simulating a rigid
version of our flexible delta robot. We measured four values from our delta robot to parameterize
the simulation: leg length L = 4.8 cm, distance between linear actuators sb = 4.3 cm, distance
between where the legs attach to the end-effector sp = 1.6 cm, and an offset k = .5 cm (see
Figure 4.2).

In Figure 4.4, we studied the effect of varying k by measuring the deviation from the kine-
matics of a standard delta robot on a test trajectory. The test trajectory is a spiral that moves from
the center of the workspace to its edge in the XY plane. The z coordinate is selected to maximize
the width of the workspace. This path is then representative of the workspace as a whole because
all points can be reached at other values of z by adding a constant offset to each of the three
linear actuators. Figure 4.4 shows that for a large k, some actuator inputs become infeasible



(a) (b) (c)

Figure 4.5: (a) Marker-based stereo perception system to track the delta end-effector position
using two orthogonal Logitech C920 cameras. The graphs compare measured and desired delta
positions on the (b) XY and (c) XZ plane when following a test path (shown in blue) with the
PP delta. The neural network trajectory prior to training is shown in red, and the trajectory after
training is shown in green.

when the delta is near the edge of the workspace. Our value of k = 0.5 warps the standard delta
workspace by an average of .16 cm on our test path, and does not cause any actuator inputs to
become infeasible.

The most significant source of error when compared to the standard rigid delta is the defor-
mation and twisting of the links. Each revolute joint in the delta applies a torque towards its
rest position when actuated. In a rigid delta, this force is counteracted by the actuators, but for
flexible deltas, equilibrium can be reached by changing the shape of the robot itself. Therefore,
deformation occurs as joint angles become large. There are multiple ways that the robot is able to
deform, and the type of deformation that occurs is determined by the robot’s design parameters.
Since we chose a high ratio of beam link width to joint hinge width in the parallelograms, the
links themselves do not bend significantly. Instead, the revolute joints are able to twist a small
amount, which can lead to large changes in the position of the end-effector.

4.4.2 Learning Delta Robot Kinematics

We used a marker-based stereo perception system to track the position of the real world delta
and collect data to learn the forward and inverse kinematic models for the flexible delta robots
as shown in Figure 4.5. To acquire the accurate kinematics, we trained a neural network that
was pretrained to match the kinematics for our rigid delta model. We trained two different neural
networks to model forward and inverse kinematics. Each network has 3 densely connected ReLU
layers with 256 hidden units each and linear activation at the output.

The networks were trained using a distal teacher approach [80] where the forward kinematic
model was trained to match input actuator positions with measured end-effector positions, and
the inverse kinematics model learned inputs to the forward network that would reduce the error
between its prediction and the measured position of the robot. This structure ensures consis-



(a) (b) (c)

Figure 4.6: (a) Force profile experiment setup consisting of a GSO-500 Transducer Techniques
Load Cell and TPU delta robot with planar fingertip. The delta robot pushes on the load cell with
a displacement of 5mm at various positions in the workspace, along X and Y axes. The mean
force exerted by the delta at different values of x and y, and standard deviation are shown for the
(b) PP deltas (c) TPU deltas.

tency between the network outputs, and it makes it easy to identify and target areas where the
kinematics are not well-known because the two networks will produce conflicting results. The
training data was also augmented using the symmetry of the delta robot. Observed end-effector
positions were copied and reflected over the y-axis, corresponding to switching the heights of the
two rightmost actuators in Figure 4.5. The actuator and end-effector positions for each observed
point were also rotated by ±120 degrees about the z-axis. Finally, each observed end-effector
position was given multiple z offsets, corresponding to adding a constant to the height of every
actuator. These changes ensured that the learned workspace would be symmetrical.

Separate models were trained for both the TPU and PP deltas. The pretrained rigid delta
model network had a mean error of 1.3cm and 0.72cm from the test path for TPU and PP deltas,
respectively. To improve our pretrained network, it was sufficient to teach the network the flex-
ible delta kinematics by running 100 trajectories that took approximately 20 seconds each. The
models were then evaluated based on accuracy and repeatability when following a test path 50
times, as shown for PP deltas in Figure 4.5(b)-(c). After training on the TPU delta data, the mean
error from the goal path was 0.33 cm, and the mean pairwise error over 50 trajectories was 0.13
cm. The mean error from the goal path for the PP delta was 0.28 cm, and the mean pairwise
error over 50 trajectories was 0.09 cm. By fitting models to each type of delta, we were able to
decrease the kinematics model error significantly for both deltas and confidently deployed them
during our robot experiments.

4.5 Force Profile

As discussed in Section 4.4, deformation of the delta links occurs as joint angles become large,
which happens towards the edges of the workspace. To determine whether this effect weakens
the payload capacity of the delta in certain configurations, we displace the end-effector by a fixed



Figure 4.7: Panels (a), (b), and (c) show the delta grippers with planar fingertips 3D-printed using
PLA grasping a grape, aligning a pile of coins, and taking a coin from that pile and rotating it
in hand, respectively. Panel (d) shows the deltas with spherical TPU fingertips picking a grape
from its stem.

distance along X and Y axes, and measure the resulting force to create a force profile of the delta.

For a given end-effector position (X, Y, Z1), another end-effector position (X, Y, Z2) may be
achieved by offsetting all three of the linear actuators, as shown in Figure 4.6(a), by Z2 − Z1.
We selected the Z value that maximized the width of the delta workspace and calculated the
force exerted by the delta gripper on the resulting XY plane. Any force measurement at a point
(X, Y, Z1) is representative of the delta’s force output at any other point (X, Y, Z2). We sampled
the x-axis in 4mm increments and the y-axis in 5mm increments from the point x = −1.5cm,
y = −3.6cm to the point x = 1.5cm, y = 3.6cm. Accounting for symmetry, only positive x-axis
values are taken into consideration for measurements.

To test the force at a certain position of the workspace, the delta robot end-effector with a
planar fingertip was moved to contact the load stem of a GSO-500 Transducer Techniques Load
Cell. Then, we recorded the blocked force exerted by pushing the delta at the center of the
fingertip surface 1, 2, 3, 4, and 5mm into the load cell, as shown in Figure 4.6(a). Testing both
TPU and PP delta robots, we observed that the force exerted grows linearly with the increased
displacement. To measure the linearity, we calculated the R2 value after linear regression for
the five force measurements at each coordinate. On the TPU delta, the mean R2 value across all
measured points was 0.9541, with a standard deviation of 0.1183. The mean R2 value for the
PP delta was 0.9730 with a standard deviation of 0.0393. This linear relationship allows us to
control the force exerted by the delta robot through its displacement.

We grouped the data based on the x and y coordinates, and reported the mean blocked force
when displacing the delta 5mm in the direction of the load cell. Figure 4.6(b)-(c) shows that
increasing the value of x (moving parallel to the plane of the fingertip away from the center
of the workspace) decreases the force output of the delta end-effector. There is no clear trend
between the y coordinate of the delta and the mean force that can be exerted. This may be due
to the orientation of the delta end-effector changing as it moves forward or backwards along the
y-axis.



4.6 Experiments
As a result of our work in Section 4.4, we are able to execute delta manipulator trajectories with
precision. To further test the manipulator, we evaluate the success of manipulating various small
objects with open loop control or human teleoperation using a PS4 Dualshock Controller. The
six tasks we executed are as follows, 1) in-hand manipulation of a single grape, 2) aligning a
pile of coins, 3) picking up a coin and rotating it in-hand, 4) slide-to-grasping a card from a
deck, 5) twisting a grape off of its stem, and 6) rolling up dough between the fingers on a table.
Unlike rigid manipulators, our soft delta gripper can exploit contacts, similar to a human hand,
to execute tasks precisely. We chose these tasks to demonstrate the compliance of the deltas and
their ability to manipulate delicate objects. While existing grippers may be able to execute these
tasks using additional DOFs, we present a unique gripper that can perform all six tasks as a proof
of concept. Due to our force profile experiments in Section 4.5, we used the PP delta in all of
our demos due to the higher force it can exert. All of the demos are shown in the accompanying
supplementary video1.

In Figure 4.7(a), we show the delta gripper using planar fingertips to grasp a grape. Even
when the delta robots use their maximum force to squish the grape, the compliance in the deltas
prevent it from being crushed. Instead, the delta fingertips twist, while still holding on to the
grape.

Next, in Figure 4.7(b), the deltas arrange a pile of coins by executing two parallel grasps that
are orthogonal to each other. While this demo could also be completed by a parallel jaw gripper,
there is a chance that the coins would fly out of the gripper if too much force was exerted on the
pile. Our deltas gently align the pile of coins in order to create the precisely aligned pile. After
the gripper aligns the coins in the pile, it grasps the top coin as in Figure 4.7(c) and is able to
rotate the coin in hand. This task illustrates the ability of our robot to move in an additional axis
that normal parallel jaw grippers cannot.

Using spherical TPU fingertips the delta gripper picks a grape off of a stem in Figure 4.7(d).
Taking a grape off a stem requires the robot to twist the grape in order to apply the necessary
pressure on the stem to get it to release without damaging the grape. The spherical fingertips
allowed the grape to roll in between the fingertips, resulting in a twisting motion. Afterwards,
the robot was able to remove the grape from the stem. This motion required human teleoperation
as it involved positioning the fingertips so as to not allow other neighboring grapes to impede the
motion of the deltas.

The final two tasks are illustrated in Figure 4.8. In the card pickup task, the top delta robot
uses a stroking motion in order to slide the top card from the rest of the deck. Afterwards, the
bottom delta lifts up and pinches the card together with the top delta to pick up a single card.
The slide-to-grasp motion is made possible by the gripper’s additional degrees of freedom and
compliance. The sliding motion was programmed to execute autonomously, although it heavily
depends on the initial positioning and orientation of the deltas relative to the cards.

The last task involved rolling a flat piece of dough into a spiral roll. This task also required
human teleoperation due to the inherent compliance of the dough itself. One fingertip was used
to mainly hold the dough in-place while the other was executing a scooping motion in order to

1https://youtu.be/yciJn3rgFHw

https://youtu.be/yciJn3rgFHw


Figure 4.8: Timelapse of the compliant delta gripper sliding the top card and picking it up from
the deck, and rolling a flat piece of dough into a spiral.

get under the dough and push it. Without the degrees of freedom provided by the deltas, this task
would likely be difficult for most grippers.

Throughout all of the demos, the compliance of the deltas and added degrees of freedom
enabled a wider range of motion that normal parallel jaw grippers would not afford. In addition,
as we had the inverse kinematics for the delta robots, we were able to quickly translate a desired
trajectory into commands to the linear actuators. This direct mapping allowed us to easily tele-
operate the robot with a PS4 Controller to complete tasks that would typically require a motion
tracking hand setup in order to give the robot demonstrations [81]. In the future, we plan to ex-
plore more delicate and dexterous tasks with added sensors to provide feedback when interacting
with objects.

4.7 Discussion and Conclusion

Through kinematic modeling, force profile characterization, and manipulation task executions,
we explored the capabilities of compliant delta grippers made from two soft materials, TPU and
PP. While the two materials vary significantly in compliance, the learned kinematic models for
the TPU and PP deltas did not differ significantly in performance. Additionally, the force profiles
were similar in their ability to exert maximum forces at the center of the workspace. We expect
similar trends to extend to delta robots made from materials similar to TPU and PP.

Our kinematic model learning error and force profile experiments show that the delta gripper
is easy to control. The robot experiments show that dexterous manipulation tasks such as rolling
dough and picking a grape off its stem can be executed with the degrees of freedom provided
by each delta. Additionally, the compliance of the delta robot avoids damaging items like the
grape. Thus, we can ensure that the delta robot can manipulate delicate objects and interact with
its environment safely.

We present the groundwork for creating multi-fingered hands that can execute precise and
low-inertia manipulations. Future extensions of this work can explore grasp planning and in-



creasing the number of cooperative deltas to handle larger objects. In addition, we plan on incor-
porating internal and external sensors to the deltas in order to use visual and haptic feedback for
more precise autonomous manipulation.

However, a limitation of our two finger gripper using delta robots was that manipulations
were restricted to two contact points. Many dexterous tasks require contact-rich manipulation,
which motivates our next work involving four-finger anthropomorphic hands to tackle a wider
variety of dexterous tasks.



Chapter 5

Designing and Evaluating Tendon-Driven
Soft Hands

Paper: Mannam, P., Shaw, K., Bauer, D., Oh, J., Pathak, D., & Pollard, N. (2023). Designing
anthropomorphic soft hands through interaction. In IEEE-RAS 22nd International Conference
on Humanoid Robots (Humanoids).

5.1 Introduction

Rapid prototyping technologies have advanced significantly, making way for designers to build
new systems at a fast pace. These techniques, such as 3D-printing, allow for quick turnaround
between design iterations to test and evaluate systems quickly. This is especially useful for
systems with dynamics that are difficult to predict or model, such as soft robot manipulators.

Iterating for dexterous soft hand designs is a laborious process. The complex design space
and the infinite degrees of freedom make it difficult to predict the effects of incremental design
changes. Unlike rigid robot hands, state-of-the-art soft body simulators are not able to provide
accurate, efficient, and robust evaluation of soft designs [82]. Hands such as the BRL/Pisa/IIT
SoftHand [83] or the RBO hand [35] have evolved over years to incorporate more adaptive syner-
gies and dexterity. To speed up development times and reduce fabrication overhead many works
have recently turned towards 3D-printing to either directly print soft hands [7] or to quickly
create complex molds [84]. While this has significantly reduced the cycle time for fabrication,
designing dexterous soft hands still requires a lot of expertise, and trial and error due to the
continuously deformable nature of soft robots. The lack of appropriate simulators means the
evaluation of soft hand designs has to be done on the real prototype by using hand-crafted poli-
cies [85] or sequential keyframed open-loop poses [7].

Our key insight is that we can evaluate these systems beyond hand-crafted policies or sequen-
tial keyframed open-loop poses using recent advancements in teleoperation systems. Improve-
ments in hand tracking and pose estimation [86] have led to the development of vision-based
teleoperation approaches including using a single RGB camera for real-time tracking of human
hand poses [87]. Teleoperation offers valuable insights into system performance and enables the
identification of robust strategies in real-world scenarios. Simulation often falls short in cap-
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Figure 5.1: Manipulation task performance over five iterations of DASH designed through rapid
prototyping and real-world evaluation on tasks alongside task performance of our baseline hand
Allegro.

turing system nuances, accurately modeling soft materials, and adapting strategies. Therefore,
tasks that succeed in simulation can still fail when observed and evaluated through teleoperation,
providing a clearer understanding of the system’s capabilities and limitations.

In this paper, we 3D-print soft robotic hands to test iteratively using teleoperation on a des-
ignated manipulation task set, modify the design, and repeat this process shown in Figure 5.2(a).
While manually testing and revising designs to improve systems is not a new concept [84], re-
cent technologies allow us to repeatedly iterate the entire framework of designing, fabricating,
and evaluating in a matter of days. This framework is versatile and can be implemented at any
stage of the design process. Its purpose is to bridge the gap between the real world and sim-
ulation by adjusting for discrepancies or expediting fine-tuning for real-world scenarios. We
envision this framework as a valuable augmentation to existing design frameworks, enhancing
the overall design process for soft anthropomorphic robotic hands.

Using our framework, we present a case study to design a 16-DoF tendon-driven 3D-printed
soft hand DASH, shown in Figure 5.1. This hand has a small form factor similar in size to a
human hand, 3D-printable parts that are easily replaceable, and a modular customizable design
that allows for easy iteration. Through teleoperation, we explore the capabilities of the soft
hand in order to inform our design iterations across five hands: DASH V1, V2, V3, V4, and
V5. In order to evaluate the dexterity of the hand, we designed a suite of 30 manipulation tasks
with varying grasp types and objects that are inspired by human hand capabilities, which allows
us to test the capabilities of our robot hand. Our hands show improvements across iterations,
albeit not monotonically, and each iteration, except V1, required less than 100 hours to design,
fabricate, and test. DASH V1, V2, V3, V4, and V5 succeed on 70%, 82%, 83%, 75%, and 87%
of executions across all tasks, respectively. We also outperform a commercial dexterous robotic
hand, Allegro [2], which has a success rate of 60% on the same 30 tasks.

The contributions of this paper are
• A detailed report of our process for designing soft hands that leverages rapid prototyping

techniques and uses a teleoperated real robot for evaluation, instead of simulation.
• The design of a state-of-the-art dexterous anthropomorphic soft hand using our framework,

that outperforms a commercial robotic hand on real world manipulation tasks.



• The release of open-source CAD models and data corresponding to 900 teleoperated hu-
man demonstrations to democratize access to low-cost dexterous hands.

Figure 5.2: (a) Our soft robotic hand design process involving rapid prototyping and real-world
evaluation (b) CAD models and differences across DASH iterations V1 through V5, as explained
in Section 5.4.

5.2 Related Work
Soft robotic hands such as RBO [35] utilize intrinsic compliance, rapid prototyping, and actuated
palms for a modular, highly compliant, high degree-of-freedom, and low cost manipulator in
order to perform a large variety of in-hand manipulation tasks and object grasps. However,
existing robotic hands are still far from achieving human-like dexterity for manipulation [88]. It
is necessary to continuously improve and refine the design of both existing and new robotic hands
in order to achieve greater dexterity and functionality for performing more complex manipulation
tasks.

Although there is currently no unified framework for designing iterations of soft anthropo-
morphic hands, design iteration methods for robotic systems have been explored. Typically,
Finite Element Method (FEM) is used to assess optimal geometries and morphologies before
fabricating the final design for real-world evaluation [89, 90]. For instance, the SOFA soft robot
simulator has been used to co-optimize control and design of soft hands [43]. However, these
approaches are primarily limited to simulated environments and do not address the sim-to-real
gap or real-world design iteration. A related framework in robotic fish design utilizes simulation-
based FEM testing, real-world design iteration, and proposes a modular design for easier itera-
tions [84]. Nevertheless, optimizing soft robots is challenging due to their complex geometries,
impeding the development of efficient optimization algorithms. Furthermore, the lack of efficient
simulation tools that can rapidly evaluate design candidates further compounds the challenge
[82].

Learning control policies for dexterous manipulation is challenging due to the high DoFs and
complex interactions [67, 91]. In contrast, teleoperation offers a swift and natural way to control
robot hands, beyond pick-and-place scenarios. It has been used for human demonstrations in
imitation learning [92, 93]. Teleoperation is particularly valuable during the design process of
dexterous hands, enabling quick evaluation of nuanced capabilities. Mapping human to robot
hand morphology can be categorized as Joint-to-Joint, Point-to-Point, or Pose-based [94]. For
our soft hand, we adopt a similar joint-to-joint mapping technique as Liarokapis et al. [95].



Our work extends the design and fabrication methodology presented by Bauer et al. [7],
consisting of simplifying the design complexity of soft hands by incorporating geometric features
such as bumps or creases to achieve ‘joint-like’ deformations. They perform kinematic testing
on designs before fabricating and evaluate a single design. Similar to Bauer et al. [7], we utilize
3D printing, creases for ‘joint-like’ deformations, and tendon-driven actuation to curl the soft
fingers. In addition to these features, DASH’s design incorporates three additional tendons in
all fingers, enabling adduction, abduction, and folding of the fingers towards the palm, thereby
enhancing dexterity.

5.3 Experiment Setup

5.3.1 Robot Hand design

Finger Joints

All iterations of DASH consist of four fingers: the thumb, index, middle, and ring fingers (see
Figure 5.3(a)). In order to achieve modularity, each finger, including the thumb, is designed
identically. Each finger has three joints (from the base of the finger to the fingertip): the metacar-
pophalangeal (MCP) joint, proximal interphalangeal (PIP) joint, and the distal interphalangeal
(DIP) joint. The joints for each finger are shown in Figure 5.3(b).

Tendons

Each finger is controlled by four tendons shown in Figure 5.3(b). Two tendons run along the sides
of the MCP joint, closest to the palm, for abduction and adduction, which allows the fingers to
move closer together and farther apart. These two tendons are controlled by a single motor, so
we refer to them as tendon 0. A single tendon, tendon 1, is used to flex the finger forward at
the MCP joint, orthogonally to the axis of motion of the abduction-adduction tendons. The last
tendon, tendon 2, runs through the entire length of the finger to enable completely curling into
itself.

5.3.2 Fabrication using 3D-printing

The hand assembly, shown in Figure 5.3(a), is the same for all hand iterations and consists of
4 soft fingers attached to the soft palm. The rigid components include a top plate below the
palm, 12 motors, a bottom plate which also houses the Dynamixel U2D2 motor controller, and a
xArm6 mount.

The soft dexterous hand’s mounts, motor housing, and motor pulleys are all 3D-printed from
PLA (rigid material depicted in black in Figure 5.3(a)) while the soft hand was printed with
Ninjaflex Edge (83A shore hardness) [96] using an Ender 3 S1 Plus. For all the robot experi-
ments, the hand was mounted onto a xArm6 [97] robot arm. DASH costs approximately $1500 to
build with the majority of the cost consisting of 3D-printer ($500) and the twelve motors ($1000)
required. For comparison, the Allegro hand is also 16-DoF and costs around $15000 [49].



Figure 5.3: (a) Assembly of DASH-V3 (top to bottom) including fingers, palm, top plate, mo-
tors, bottom plate, xArm6 mount. (b) Calibration procedure to map motor angles to finger joint
positions, where tendon 0 actuates MCP side-to-side, tendon 1 actuates MCP forward folding
motion, and tendon 2 curls the finger controlling both PIP and DIP joints.

5.3.3 Hand Evaluation using Teleoperation
Learning Kinematics

To approximate the kinematics of the finger joints without real-time feedback, we learn a model
from collecting offline paired motor and joint angle data from a single finger. Through small
increments of 3 degrees of actuation and joint angle tracking across 1000 finger configurations
using AR tags and RGB cameras, we obtain a collection of tuples (joint angles, motor angles)
that are normalized to [0, 1] for independent kinematic calibration, assuming fixed joint lengths
and bending at the creases.

A linear model is learned using the collected data to map finger joint angles to motor angle
outputs. We refer to the motors controlling tendons 0, 1, and 2, as shown in Figure 5.3(b), as
motors 0, 1, and 2, respectively. The equations for MCP, PIP, and DIP joint angles are shown
below. In equation 5.1, we learn the MCP joint angles θMCPside

, θMCPfwd
jointly since the amount

of side-to-side angle at the MCP joint can restrict the forward folding motion of the finger. In
equation 5.2, the Motor 2 angle θmotor2 is an average measure of the motor angle for the desired
PIP and DIP joint angles θPIP, θDIP since the same tendon controls both the PIP and DIP joints.
The weights in equations 5.1 and 5.2 are found by fitting our data using linear functions. We
collect training data for almost two hours for each iteration of the hand to calibrate new models,
using the weights shown in Table 5.1.

[
θmotor0

θmotor1

]
=

[
w1 w3

w2 w4

]
·
[
θMCPside

θMCPfwd

]
+

[
b1
b2

]
(5.1)



Hand Design v1 v2 v3 v4 v5

w1 −1.05 −0.43 −0.43 −0.59 −0.59
w2 0.01 0.2 0.2 −0.12 −0.19
w3 0.1 0.51 0.51 0.26 −0.32
w4 0.83 0.54 0.54 0.38 0.72
w5 0.67 0.6 0.6 0.62 0.63
w6 0.99 0.76 0.76 1.69 0.65
b1 0.47 0.38 0.38 0.45 0.58
b2 −0.07 0.01 0.01 0.44 −0.03
b3 0.03 −0.04 −0.04 −0.05 −0.09
b4 −0.01 −0.16 −0.16 −0.3 −0.07

Table 5.1: Calibration weights for all five iterations of DASH mapping from finger joint angles
to motor angles.

Figure 5.4: Manus Meta Quantum Metagloves used for tracking the hand for teleoperating the
robot arm and DASH.

θmotor2 =
θPIPw5 + b3

2
+

θDIPw6 + b4
2

(5.2)

Teleoperation System

We use Manus Meta Quantum Metagloves [98] designed for VR tracking and Mocap Use, as
shown in Figure 5.4 (costs∼ $8000). The Manus glove is worn on the operator’s hand and tracks
fingertip positions within a 0.1-degree accuracy using hall effect sensors. Each finger returns 4
angles θMCPside

, θMCPfwd
, θPIP, θDIP in real time, which are mapped one-to-one to the robot hand.

Then, we convert to motor angles using our kinematics models.
To control the robot arm shown in Figure 5.4, we employ wearable SteamVR trackers [99],

utilizing time-of-flight lasers emitted from SteamVR Lighthouses positioned around and above
the operator. One tracker is worn on the glove, while another is placed around the waist. We
align the waist tracker’s rotation with the robot’s base frame and adjust the end-effector pose to
match the orientation of the human wrist. Then, the human wrist poses are scaled up to cover the
robot’s larger workspace, making necessary adjustments to ensure user comfort. Safety checks,



including dynamic force feedback on the arm, prevent accidental damage to the robot or its
surrounding environment.

5.3.4 Manipulation Tasks
Each DASH iteration is tested on a suite of tasks, named DASH-30, listed in Table 5.2 which
were inspired by the different types of grasps defined in Liu et al. [21] and tasks from previous
teleoperation works [87, 100]. These tasks are categorized by the type of grasp or force neces-
sary. Categories like Hold include a greater number of tasks aimed at testing different grasping
techniques and objects. On the other hand, skills like Lever or Twist involve fewer tasks specif-
ically designed to assess whether a particular hand design can successfully perform these skills.
Additionally, some tasks were hand-picked as tasks where compliance of the hand may be ad-
vantageous.

The feedback from the manipulation task evaluation combines observations from the follow-
ing metrics: task success, performance across five repetitions of the same task, trends in tasks the
hand fails to complete, type of grasps possible or used, opposability of fingers, and reachability
of fingertips.

Hold

1) Scissor, 2) Hammer, 3) Chopsticks (single), 4) Pen,
5) Wooden cylinder (using adduction/abduction),
6) Screwdriver, 7) Drill, 8) (Plastic) Egg*,
9) (Plastic) Chip*, 10) M&M*

Pick (and place)

11) Dry-Erase Board Eraser, 12) Tennis Ball,
13) Softball, 14) Cloth*, 15) Plush Broccoli,
16) Plush Dinosaur,17) Pringles Can, 18) Spam Box,
19) Mustard Bottle, 20) Wine Glass, 21) Bin picking

Lever

22) Cube flip, 23) Card pickup from deck

Twist

24) Dice rotation in-hand, 25) Grape off of stem*

Open

26) Plastic bag*, 27) Drawer

Put in/on

28) Cup Pouring (onto plate),
29) Cup Stacking & unstacking, 30) 1 inch Block stacking

Table 5.2: DASH-30: task set of 30 manipulation experiments. Tasks with the asterisk (*) were
hand-picked as tasks where compliance of the hand may be advantageous.



Figure 5.5: Subset of tasks with different performance success across V1 to V5 on specific tasks
used to inform design iteration. The top row of inset images shows representative tasks of suc-
cessful tasks for each hand.

5.4 DASH Iterative Design Studies

5.4.1 Iteration V1

DASH-V1 performs best on pick and place tasks and tasks using adduction-abduction such as
the grape task, shown in Figure 5.5 due to the larger hand size and space between fingers as
illustrated in Figure 5.2(b).

Design & Fabrication

We start by designing the shape of the finger to enable curling fully into itself, incorporating
four total tendons per finger, and redesigning the MCP joint as a multi-axis flexure for increased
dexterity in our desired hand. We iterated on the finger design for approximately four months
and use this design for all four fingers in DASH-V1.

Designing V1 included considerations such as tendon anchors, 3D-printing settings, and ma-
terial stiffness. For example, printing the hand with more infill makes it stiffer but requires more
torque than our motors can supply for the joint’s full range of motion. To better understand the
stiffness of the fingers, we test the finger strength by curling the finger completely and using
a force gauge to pull on the finger until it uncurls (see Table 5.3 for results). DASH-V1 hand
design is shown on the left in Figure 5.2(b). We designed the full hand assembly for V1 in 1
month.

Evaluation

We test DASH-V1 on the 30 manipulation tasks from Section 5.3.4, repeating each task five
times. Over 150 repetitions, DASH-V1 succeeded on all 5 repetitions for 10 of the 30 tasks,
as shown in Figure 5.6. For V1, these tasks were Scissors, Hammer, Wooden cylinder, Cloth,
Plush Broccoli, Plush Dinosaur, Pringles can, Mustard bottle, Wine glass, and Cup stacking. V1
struggled to grasp small objects such as the M&M, Pen, and Chip since the fingers were not able
to reach and properly oppose each other. For tasks involving precise motions such as picking the



Grape off a stem and opening the Plastic bag, V1 uses the abduction-adduction capability. The
abduction-adduction grip strength of V1 is high and enables picking up objects such as the grape
off the stem with ease, as shown in Figure 5.5 inset.

V1 succeeds on five out of five repetitions on 10 tasks but shows room for improvement.
Grasps that require all four fingers such as picking up a tennis ball would be more successful
if the thumb could reach and oppose the rest of the fingers. The best opposability to the thumb
was to the ring finger, hence pinch (or precision) grasps were easiest to execute with those two
fingers. Improving the reachability and opposability of the fingertips requires a smaller palm
or longer fingers. We explore these design options in V2 in order to have more overlap in the
workspace of the fingers.

5.4.2 Iteration V2
DASH-V2 performance improves on pick and place and hold tasks requiring power grasps.
Furthermore, V2 excels at the levering task of cube flip on table, shown in Figure 5.5 inset, due
to higher finger strength and fingertip reachability from a smaller palm and longer finger hand
design shown in Table 5.3 and Figure 5.2(b).

Design & Fabrication

The second iteration of DASH consists of changes to the size of the hand and the MCP joint of
the finger. To allow for more reachability among the fingers as well as opposability, the fingers
were made longer and the palm was made smaller as shown in Figure 5.2(b). For comparison,
DASH-V2 is similar in size to the average male hand which is 88.9mm wide and 193mm long
(wrist to fingertip) [5] . Compared to DASH-V1, there is more than a 25% reduction in area of
the palm and the finger length increased by 11% in V2 which is shown in Figure 5.2(b).

The MCP joint was improved to achieve a larger range of motion. The underlying structure
of the MCP joint is a cylinder to act as a multi-axis flexure, thus we increase the height of the
cylinder to increase the joint angle range for the side-to-side and forward motion of the fingers.
The design changes also resulted in a higher maximum load of a single finger as shown under
finger strength in Table 5.3. Thus, V2 achieves increased range of side-to-side and forward
motion for the fingers by redesigning the MCP joint, and has a larger overlap in the workspace
of the fingers solving the reachability and opposability issues in V1.

Designing, printing, and assembling V2 took 5, 83, and 6.5 hours, respectively. Printing
V2 required us to not only re-print the soft hand, but also the rigid motor housing as the motor
arrangement differs from V1. In total, making V2 from V1 took 94 hours.

Evaluation

With larger range of motion at the MCP joint and better reachability, we expect V2 to achieve
better performance on tasks involving smaller objects like M&M, Pen, and Chip. As shown in
Figure 5.5, V2 did improve performance on Pen and Chip. M&M and Card pickup were tasks
that did not improve from V1. Both of these tasks require fine manipulation which is still a limi-
tation in V2. Instead, our main improvement from V1 to V2 is in achieving better power grasps.



Hand design v1 v2 v3 v4 v5

Palm size 94x102 84x84 84x84 84x84 84x84
Finger length 90 100 100 100 100
MCP diameter 6 6 6 10 8
MCP height 6 8 8 8 8
DIP crease width 10.3 10.3 8.9 10.3 13.0
Thumb angle 45◦ 45◦ 0◦ 22.5◦ 22.5◦

Fingertip edge 3.5 3.5 1.73 3.5 3.5
Fingertip thickness 13.21 13.22 7.98 11.22 8.75
Finger strength 37.8 47.6 34.5 51.8 27.4

Table 5.3: Hand design parameters where finger length refers to the distances in millimeters
from the top of the MCP joint to the fingertip and finger strength (N) is measured by pulling on
a fully curled finger with a digital force gauge.

Tripod grasps or using more than two fingers was necessary to have stable grasps, especially for
the holding tasks such as Hammer, Screwdriver, and Chopstick. However, observations during
teleoperation included difficulty using precision grasps with two fingers.

V2 performs better than V1 in 14 tasks (refer to Figure 5.6), including tasks involving Soft
ball, Screw driver, Tennis ball, Dry-erase board eraser, and Spam box that all require power
grasps. As shown in Figure 5.5, the most significant improvements are seen for Pen, Chip,
Tennis ball and Cube Flip. The inset in Figure 5.5 shows V2 grasping Chip with the ring finger
and thumb finger, and V2 succeeding at all five repetitions of Cube Flip. These improvements
are possible with better reachability and opposability of the thumb with the rest of the fingertips.

Having more space between the fingers made abduction-adduction tasks such as picking
Grape off of a stem and Wooden cylinder easier for V1 compared to V2, but V2 still performs
reasonably well. Out of the 150 repetitions, V2 is successful in 123 repetitions, which is 18
more when compared to V1. Additionally, the number of tasks where all five repetitions were
successful increased from 10 tasks using V1 to 14 tasks using V2.

5.4.3 Iteration V3
DASH-V3 has the best thumb opposability and thinnest fingertip design out of all of our hand
iterations, yielding in the best score for Card Pickup as shown in Figure 5.5. Thinner fingertips,
however, led to weaker finger strength which decreased task success for tasks such as Dry-erase
Board Eraser and Grape off stem.

Design & Fabrication

The changes from DASH-V2 to V3 involve changing the thumb placement and fingertip shape.
In order to make grasps with only two or three fingers more stable, the thumb has to be directly
opposable to the rest of the fingers, most importantly the index finger. In V2, the thumb has a
45-degree angle to the palm which we change to be parallel to the index finger in V3, as shown



in the middle of Figure 5.2(b) and in Table 5.3. In addition to the thumb placement, the fingertip
shape was changed from a rounded surface to a thinner wedge-like surface (see Figure 5.2). The
rounded surface in V2 presented a point contact when interacting with objects. In contrast, the
wedge-like surface will have a larger contact area and thinner fingertip (similar to fingernail) in
order to get under objects to grasp. This results in a thin fingertip edge, almost half the size of V1
and V2’s fingertip edge (see Table 5.3). We also move the tendon routing farther away from the
center axis of the MCP joint so that we can exert more torque when folding the finger forward
about the MCP joint.

Designing, printing, and assembling V3 took 4, 67.25, and 4.25 hours, respectively. Similar
to V2, we reprinted the motor housing again due to the new thumb placement. In total, making
V3 took almost 83.75 hours.

Evaluation

As shown in Figure 5.6, DASH-V3 has more successful tasks than the previous hand iterations
and our baseline, completing 16 tasks successfully in all repetitions as opposed to the 14 tasks
V2 successfully executed. V3 succeeded on all repetitions of Wooden Cylinder, Card Pickup,
Cup Pouring, Drill, Plush Dinosaur, and Mustard Bottle, which are tasks V2 did not master. The
task improvement was due to better thumb opposability compared to V2. In total, V3 succeeded
on 124 repetitions which is 1 more than the number of repetitions V2 is successful at. With V3,
we observe higher grasp stability during power grasps and handling of delicate objects, during
teleoperation. Additionally, we find that the fingertip shape makes a large difference for specific
tasks. We clearly see this effect occurring in Cube flip and Card pickup (see inset images of V2
Cube Flip and V3 Card Pickup in Figure 5.5). The flat fingertips of V3 are ideal for thin delicate
card pickup but not for the cube flip. Reorienting the cube in-hand in Cube flip is better suited to
the rounded fingertip on V2, keeping a stable point contact while the object rotates on the table.

5.4.4 Iteration V4
DASH-V4 was optimized for strength as we found that lacking for tasks such as Cube Flip for
V3. This allowed for heavy objects like Soft Ball to have great success with V4 as shown in
Figure 5.5 but decreased finger folding motion resulted in decreased performance for tasks such
as Hammer, Screwdriver, and M&M.

Design & Fabrication

The fourth iteration of DASH was designed to optimize for strength. We focused on redesigning
the MCP joint to be thicker, providing increased stiffness for folding the fingers into the palm.
Achieving the right balance was challenging, as we aimed to maintain the range of motion for
MCP forward motion within the torque limits of our motors. While a simple solution would be
to use larger motors to increase force and stiffness at the MCP joint, this would result in a larger
and heavier hand.

Additionally, we made changes to the fingertips and thumb placement, creating a hybrid
design influenced by DASH-V2 and DASH-V3. Thicker fingertips proved useful for tasks in-



Figure 5.6: Task performance over 5 repetitions of each task across V1, V2, V3, V4, V5, and
Allegro as baseline. The tasks are ordered difficult to easy from left to right, according to task
performance of Allegro.

volving rotation, such as Cube flipping, while thinner fingertips were beneficial for pinch grasps
like Card pickup. The result was rounded edges with a flat surface in the center of the fingertip,
providing versatility for pinch to power grasps. Similarly, the thumb placement was positioned
between V2 at 45◦ and V3 at 0◦, settling at 22.5◦ relative to the palm. While V2 excelled in
power grasps and V3 in pinch grasps like Card pickup, we aimed for V4 to perform equally well
in both types of grasping.

Designing, printing, and assembling V4 took 8.5, 82, and 5 hours, respectively. Similar to
V3, we reprinted the motor housing to accommodate the new thumb placement.

Evaluation

DASH-V4 successfully completed all five repetitions of 17 tasks, surpassing the task perfor-
mance of V3. V4 maintained its performance in most of these tasks, with the exception of
Scissors, as shown in Figure 5.5. However, it outperformed V3 in tasks involving the Dry-erase
board eraser and performed better than any previous hand iteration in the Soft ball task. This
was attributed to the stronger MCP joint, which enhanced the finger strength, as indicated in
Table 5.3. Nevertheless, the limited range of motion in the MCP forward joint resulted in poor
reachability, causing objects like Scissors to slip between the fingertips.

Overall, the hybrid thumb position and fingertip shape, combining features from V2 and V3,
proved advantageous in achieving a greater number of tasks. However, the next iteration should
address the loss of range of forward folding motion to improve reachability. The limited reach-
ability of V4 also led to zero successes out of five repetitions in four tasks, including Hammer,



Screwdriver, M&M, and Grape off stem. All of these limitations can be attributed to the restricted
range of motion in the MCP forward joint.

5.4.5 Iteration V5

DASH-V5 aimed to be a combination of all previous hand design features with respect to joint
and fingertip thicknesses. V5 generally outperformed all previous design iterations and excelled
at the Screwdriver task as shown in Figure 5.1.

Design & Fabrication

The fifth iteration of DASH features a stiffer MCP joint compared to V3, but it is more compli-
ant than the MCP joint of V4. By increasing the compliance at the MCP joint, we were able to
achieve a greater range of motion at the joint compared to V4, which had limited folding capa-
bilities. Furthermore, we made the fingertip thinner than that of V4, and widened the DIP crease
(as shown in Table 5.3), in order to improve the curling of the finger. As a result, DASH-V5
exhibits the most extensive curling motion among all the previous iterations.

Designing, printing, and assembling V5 took 2, 24, and 2.75 hours, respectively. Unlike the
previous versions, we kept the motor assembly unchanged and only replaced the fingers of V4.
Consequently, the total time required for iteration was the lowest for V5, totaling 28.75 hours.

Evaluation

Among all the design iterations of DASH, DASH-V5 performed the best. V5 succeeded on five
out of five repetitions on 19 tasks and achieved a completion rate of 131 out of 150 total task
repetitions. In addition to the tasks that V4 succeeded on, V5 also completed five out of five
repetitions on the Hammer and Stacking cubes tasks. This improvement indicates that we have
made incremental progress on the hand design. V5 had the most curling range of motion than
previous hands which made picking objects easier for the teleoperating user due to stable grasps
enveloping objects into the palm.

As shown in Figure 5.5, V5 showed improved task performance for Hammer, Screwdriver,
Chip, M&M, Grape off stem, and Plastic Bag. However, it performed worse for the Chopsticks
and Egg tasks. Although V5 has the lowest finger strength among all DASH iterations due to
thinner joints and thinner fingertips (as shown in Table 5.3), its enhanced finger curling abilities
even enabled a single finger to hold objects. However, when completely curled, thin objects
such as the chopsticks were prone to falling between the thumb and fingers. This issue could
be addressed by introducing longer fingers to allow for more overlap between the fingertips.
Overall, V5 outperformed all previous iterations of DASH across all 30 tasks. However, it is
worth noting that certain hands may specialize in specific tasks. For instance, V5 excelled at
picking up Screwdriver, while V3 was the most suitable for Card pickup, as shown in Figure 5.5.
One interesting result involved the V5 screwdriver hold, which aligned perfectly in the groove
on the tool handle.



Figure 5.7: Task performance across V1, V2, V3, V4, V5, and Allegro as baseline on each
category of tasks from Table 5.2.

5.5 Baseline Study: Allegro Dexterous Hand
Allegro [2] is an off-the-shelf gripper that we use as a baseline. Allegro is a dexterous robotic
hand that has four fingers with motors at the joints, rigid structure, and large rubber spherical
fingertips. We perform the same 30 manipulation tasks from DASH-30 (Table 5.2) with Allegro
to compare the performance against all iterations of DASH.

Allegro succeeded on all five repetitions on 7 out of 30 tasks. These tasks included manipu-
lating the Drill, Dry-Erase board eraser, Plush broccoli, Plush Dinosaur, Spam box, Wine glass,
and Stacking cubes, as shown as the rightmost tasks in Figure 5.6. Allegro performed best on
pick and place tasks compared to other types of tasks as shown in Figure 5.7. However, all
iterations of DASH, except V1, were also successful at these tasks.

The Allegro robotic hand and fingers had difficulty with tasks such as picking up the Pen,
Card, Plastic bag, Scissors, and Hammer which required precision.While both DASH and Al-
legro hands lack sensing capabilities, this disproportionately affected Allegro because lack of
compliance made it easy to grasp too tightly or not enough, especially for rigid objects. Simi-
larly, the Cup pouring grasp was unstable due to the spherical fingertips rotating the cup in-hand
during the task. The side-to-side motion (or abduction-adduction) of the fingers was limited,
making Dice Rotation coarse and unpredictable. However, Allegro had stable grasps for larger
and softer objects such as the Drill, Softball, Plush Dinosaur, Plush Broccoli, and Wine Glass
(see rightmost tasks in Figure 5.6).

5.6 Discussion
Across the 30 tasks, we observe that V5 has the best performance solving 19 tasks successfully
completing all repetitions, while V4, V3, V2, V1, and Allegro solve 17, 16, 14, 10, and 7 tasks,
respectively. In Figure 5.7, we see that all iterations of DASH outperform the Allegro baseline
on most categories of tasks listed in Table 5.2 as well as steady improvement in DASH itera-
tions except for twisting and opening which are the most difficult categories of tasks. The two
twisting tasks were Dice Rotation and Grape which both more successful with the larger palm
and space between fingers for V1 compared to other iterations. For opening tasks, V2 had more
success on opening Plastic Bag due to its rounder fingertips and higher finger strength. Through
our suite of varied manipulation tasks and human-in-the-loop design iteration, we validate our



framework’s ability to use real world evaluation to iteratively design soft robot hands through
rapid prototyping and teleoperation.

From our case study in Section 5.4, we draw three crucial observations regarding our pro-
posed framework. Firstly, the direct feedback from the designer performing real world manipu-
lation tasks with DASH was crucial for us in informing the design changes required to improve
performance across iterations. In contrast, testing in simulation can result in design changes
that do not necessarily translate to performance improvement in the real world. Secondly, us-
ing teleoperation removed the necessity of designing different control policies for 30 various
tasks across six robot hand morphologies in our case study, and allowed us to adjust grasps in
real-time during task execution, which is often not feasible in simulation or by using keyframed
poses. Lastly, despite using real robot hands in the design iteration process, our framework has a
short iteration time, consisting mostly of printing time (about 80% of total time), by leveraging
3D-printing and the use of teleoperation to evaluate the design in the real world.

Our framework can extend to testing other soft robotic hands in the real world for rapid
design iteration. There are three stages of our framework, as shown in Figure 5.2(a), including
design, fabrication, and evaluation. Some best practices include incorporating a modular design
to facilitate easier iteration, adopting rapid prototyping methods for seamless fabrication, and
favoring incremental design changes to allow for targeted iteration on specific design features.
Our method of evaluating using teleoperation also allowed for minimal changes in control when
the hand design changed. Our framework can be used to test easily prototyped hands, such as
those by Bauer et al. [7] or RBO [35], using the same setup used for DASH iteration, similar
to our Manus [98] VR teleoperation system. Additionally, DASH-30, our suite of 30 varied
manipulation tasks can be used to benchmark other dexterous hands in the community.

Observing that our robot hand has similar structure and size to human hands, we note a crucial
limitation of our framework, shown in Figure 5.2(a), for robot hand morphologies that diverge
from human hand morphology as teleoperation might not be feasible in such cases. Additionally,
calibration or mapping of the teleoperator’s hand to the robot hand can have a significant impact
on the robot hand’s performance in real-world manipulation tasks. For example, an inaccurate
mapping from the teleoperator’s hand to the robot hand can incorrectly evaluate the robot hand
to be incapable of some tasks. Another limitation for this framework is that it can result in
longer turnover times for designs that cannot be made with rapid prototyping techniques such as
3D-printing. Lastly, monotonic improvement is difficult to guarantee due to the manual design
iteration process in our framework.

5.7 Conclusion and Future Work
This paper presents a design iteration process that can supplement existing design iteration tech-
niques by leveraging 3D-printing and teleoperation. We exhibit the potential of this framework
through a case study of designing a 16-DoF 3D-printed dexterous anthropomorphic soft hand
DASH. By 3D-printing the new design at each iteration, and evaluating it on real-world ma-
nipulation tasks using teleoperation to inform future hand designs, we consistently improve its
performance over the baseline Allegro hand and across successive iterations of DASH. We open-
sourced our DASH CAD models and teleoperated demonstration data at



https://dash-through-interaction.github.io.
Future directions include automatic design iteration by singling out features of the CAD

design and correlating them with capabilities of the hand. Further study would be required to
automate this process and use collected data to learn what properties of the hand should be
improved for better task performance. Currently, the process of design iteration in our case study
was manual in that we chose parameters to change based on task performance and observations
from real-world manipulation experiments.

https://dash-through-interaction.github.io


Chapter 6

Evaluating Soft Hands using Learned
Policies

Paper: Kannan, A., Shaw, K., Bahl, S., Mannam, P., & Pathak D. (2023). DEFT: dexterous
fine-tuning for hand policies. In 7th Annual Conference on Robot Learning (CORL).

6.1 Introduction

The longstanding goal of robot learning is to build robust agents that can perform long-horizon
tasks autonomously. This could for example mean a self-improving robot that can build furniture
or an agent that can cook for us. A key aspect of most tasks that humans would like to perform is
that they require complex motions that are often only achievable by hands, such as hammering a
nail or using a screwdriver. Therefore, we investigate dexterous manipulation and its challenges
in the real world.

A key challenge in deploying policies in the real world, especially with robotic hands, is that
there exist many failure modes. Controlling a dexterous hand is much harder than end-effectors
due to larger action spaces and complex dynamics. To address this, one option is to improve
directly in the real world via practice. Traditionally, reinforcement learning (RL) and imitation
learning (IL) techniques have been used to deploy hands-on tasks such as in-hand rotation or
grasping. This is the case as setups are often built so that it is either easy to simulate in the real
world or robust to practice. However, the real world contains tasks that one cannot simulate (such
as manipulation of soft objects like food) or difficult settings in which the robot cannot practice
(sparse long-horizon tasks like assembly). How can we build an approach that can scale to such
tasks?

There are several issues with current approaches for practice and improvement in the real
world. Robot hardware often breaks, especially with the amount of contact to learn dexterous
tasks like operating tools. We thus investigate using a soft anthropomorphic hand [101], which
can easily run in the real world without failures or breaking. This soft anthropomorphic hand is
well-suited to our approach as it is flexible and can gently handle object interactions. The hand
does not get damaged by the environment and is robust to continuous data collection. Due to its
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Figure 6.1: Left: DEFT consists of two phases: an affordance model that predicts grasp parameters
followed by online fine-tuning with CEM. Right: Our affordance prediction setup predicts grasp location
and pose.

human-like proportions and morphology, retargeting human hand grasps to robot hand grasps is
made simpler.

Unfortunately, this hand is difficult to simulate due to its softness. Directly learning from
scratch is also difficult as we would like to build generalizable policies, and not practice for
every new setting. To achieve efficient real-world learning, we must learn a prior for reasonable
behavior to explore using useful actions. Due to recent advances in computer vision, we propose
leveraging human data to learn priors for dexterous tasks, and improving on such priors in
the real world. We aim to use the vast corpus of internet data to define this prior. What is
the best way to combine human priors with online practice, especially for hand-based tasks?
When manipulating an object, the first thing one thinks about is where on the object to make
contact, and how to make this contact. Then, we think about how to move our hands after the
contact. In fact, this type of prior has been studied in computer vision and robotics literature
as visual affordances [102, 103, 104, 105, 106, 107, 108, 109]. Our approach, DEFT, builds
grasp affordances that predict the contact point, hand pose at contact, and post contact trajectory.
To improve upon these, we introduce a sampling-based approach similar to the Cross-Entropy
Method (CEM) to fine-tune the grasp parameters in the real world for a variety of tasks. By
learning a residual policy [110, 111], CEM enables iterative real-world improvement in less than
an hour.

In summary, our approach (DEFT) executes real-world learning on a soft robot hand with
only a few trials in the real world. To facilitate this efficiently, we train priors on human motion
from internet videos. We introduce 9 challenging tasks (as seen in Figure 7.1) that are difficult
even for trained operators to perform. While our method begins to show good success on these
tasks with real-world fine-tuning, more investigation is required to complete these tasks more
effectively.



6.2 Related Work
Real-world robot learning Real-world manipulation tasks can involve a blend of classical
and learning-based methods. Classical approaches like control methods or path planning often
use hand-crafted features or objectives and can often lack flexibility in unstructured settings
[112, 113, 114]. On the other hand, data-driven approaches such as deep reinforcement learning
(RL) can facilitate complex behaviors in various settings, but these methods frequently rely on
lots of data, privileged reward information and struggle with sample efficiency [115, 116, 117,
118, 119]. Efforts have been made to scale end-to-end RL [120, 121, 122, 123, 124, 125] to
the real world, but their approaches are not yet efficient enough for more complex tasks and
action spaces and are reduced to mostly simple tasks even after a lot of real-world learning.
Many approaches try to improve this efficiency such as by using different action spaces [126],
goal relabeling [127], trajectory guidance [128], visual imagined goals [121], or curiosity-driven
exploration [129]. Our work focuses on learning a prior from human videos in order to learn
efficiently in the real world.

Learning from Human Motion The field of computer vision has seen much recent success in
human and object interaction with deep neural networks. The human hand is often parametrized
with MANO, a 45-dimensional vector [130] of axes aligned with the wrist and a 10-dimensional
shape vector. MANOtorch from [131] aligns it with the anatomical joints. Many recent works
detect MANO in monocular video [86, 132, 133]. Some also detect objects as well as the hand
together [106, 134]. We use FrankMocap to detect the hand for this work. There are many
recent datasets including the CMU Mocap Database [135] and Human3.6M [136] for human
pose estimation, 100 Days of Hands [106] for hand-object interactions, FreiHand [137] for hand
poses, Something-Something [138] for semantic interactions. ActivityNet datasets [139], or
YouCook [140] are action-driven datasets that focus on dexterous manipulation. We use these
three datasets: [141] is a large-scale dataset with human-object interactions, [142] for curated
human-object interactions, and [143] which has many household kitchen tasks. In addition to
learning exact human motion, many others focus on learning priors from human motion. [144,
145] learn general priors using contrastive learning on human datasets.

Learning for Dexterous Manipulation With recent data-driven machine learning methods,
roboticists are now beginning to learn dexterous policies from human data as well. Using the
motion of a human can be directly used to control robots [87, 100, 146]. Moving further, human
motion in internet datasets can be retargeted and used directly to pre-train robotic policies [147,
148]. Additionally, using human motion as a prior for RL can help with learning skills that
are human-like [149, 150, 151]. Without using human data as priors, object reorientation using
RL has been recently successful in a variety of settings [67, 152]. Similar to work in robot dogs
which do not have an easy human analog to learn from, these methods rely on significant training
data from simulation with zero-shot transfer [153, 154].

Soft Object Manipulation Manipulating soft and delicate objects in a robot’s environment
has been a long-standing problem. Using the torque output on motors, either by measuring



Figure 6.2: We produce three priors from human videos: the contact location (top row) and grasp
pose (middle row) from the affordance prior; the post-grasp trajectory (bottom row) from a human
demonstration of the task.

current or through torque sensors, is useful feedback to find out how much force a robot is
applying [155, 156]. Coupled with dynamics controllers, these robots can learn not to apply
too much torque to the environment around them [157, 158, 159]. A variety of touch sensors
[160, 161, 162, 163] have also been developed to feel the environment around it and can be used
as control feedback. Our work does not rely on touch sensors. Instead, we practice in the real
world to learn stable and precise grasps.

6.3 Fine-Tuning Affordance for Dexterity
The goal of DEFT is to learn useful, dexterous manipulation in the real world that can generalize
to many objects and scenarios. DEFT learns in the real world and fine-tunes robot hand-to-object
interaction in the real world using only a few samples. However, without any priors on useful
behavior, the robot will explore inefficiently. Especially with a high-dimensional robotic hand,
we need a strong prior to effectively explore the real world. We thus train an affordance model
on human videos that leverages human behavior to learn reasonable behaviors the robot should
perform.

6.3.1 Learning grasping affordances
To learn from dexterous interaction in a sample efficient way, we use human hand motion as
a prior for robot hand motion. We aim to answer the following: (1) What useful, actionable
information can we extract from the human videos? (2) How can human motion be translated
to the robot embodiment to guide the robot? In internet videos, humans frequently interact
with a wide variety of objects. This data is especially useful in learning object affordances.
Furthermore, one of the major obstacles in manipulating objects with few samples is accurately



grasping the object. A model that can perform a strong grasp must learn where and how to grasp.
Additionally, the task objective is important in determining object affordances–humans often
grasp objects in different ways depending on their goal. Therefore, we extract three items from
human videos: the grasp location, human grasp pose, and task.

Given a video clip V = {v1, v2, . . . , vT}, the first frame vt where the hand touches the ob-
ject is found using an off-the-shelf hand-object detection model [106]. Similar to previous ap-
proaches [103, 104, 105, 107], a set of contact points are extracted to fit a Gaussian Mixture
Model (GMM) with centers µ = {µ1, µ2, . . . , µk}. Detic [164] is used to obtain a cropped image
v′1 containing just the object in the initial frame v1 to condition the model. We use Frankmocap
[86] to extract the hand grasp pose P in the contact frame vt as MANO parameters. We also
obtain the wrist orientation θwrist in the camera frame. This guides our prior to output wrist rota-
tions and hand joint angles that produce a stable grasp. Finally, we acquire a text description T
describing the action occurring in V .

We extract affordances from three large-scale, egocentric datasets: Ego4D [141] for its large
scale and the variety of different scenarios depicted, HOI4D [108] for high-quality human-object
interactions, and EPIC Kitchens [143] for its focus on kitchen tasks similar to our robot’s. We
learn a task-conditioned affordance model f that produces (µ̂, θ̂wrist, P̂ ) = f(v′1, T ). We predict
µ̂ in similar fashion to [103]. First, we use a pre-trained visual model [50] to encode v′1 into a
latent vector zv. Then we pass zv through a set of deconvolutional layers to get a heatmap and
use a spatial softmax to estimate µ̂.

Parameter Dimensions Description

µ 3 XYZ grasp location in workspace
θwrist 3 Wrist grasp rotation (euler angles)
P 16 Finger joint angles in soft hand

Table 6.1: Parameters that are fine-tuned in the real world. The affor-
dance model predicts a 45-dimensional hand joint pose for P , which is
retargeted to a 16-dimensional soft hand pose.

To determine θ̂wrist and P̂ ,
we use zv and an embedding
of the text description zT =
g(T ), where g is the CLIP
text encoder [165]. Because
transformers have seen suc-
cess in encoding various mul-
tiple modes of input, we use
a transformer encoder T to
predict θ̂wrist, P̂ = T (zv, zT ).
Overall, we train our model to
optimize

L = λµ||µ− µ̂||2 + λθ||θwrist − θ̂wrist||2 + λP ||P − P̂ ||2 (6.1)

At test time, we generate a crop of the object using Segment-Anything [166] and give our
model a task description. The model generates contact points on the object, and we take the
average as our contact point. Using a depth camera, we can determine the 3D contact point to
navigate to. While the model outputs MANO parameters [130] that are designed to describe
human hand joints, we retarget these values to produce similar grasping poses on our robot hand
in a similar manner to previous approaches [81, 87]. For more details, we refer readers to the
appendix.

In addition to these grasp priors, we need a task-specific post-contact trajectory to success-
fully execute a task. Because it is challenging to learn complex and high-frequency action in-
formation from purely offline videos, we collect one demo of the human doing the robot task



Figure 6.3: Left: Workspace Setup. We place an Intel RealSense camera above the robot to maintain an
egocentric viewpoint, consistent with the affordance model’s training data. Right: Thirteen objects used
in our experiments.

(Figure 6.2) separate from the affordance model f . We extract the task-specific wrist trajectory
after the grasp using [86]. We compute the change in wrist pose between adjacent timesteps for
the first 40 timesteps. When deployed for fine-tuning, we execute these displacements for the
post-grasp trajectory. Once we have this prior, how can the robot improve upon it?

6.3.2 Fine-tuning via Interaction

Algorithm 1 Fine-Tuning Procedure for DEFT
Require: Task-conditioned affordance model f , task descrip-

tion T , post-grasp trajectory τ , parameter distribution D,
residual cVAE policy π. E number of elites, M number of
warm-up episodes, N total iterations.
D ← N (0, σ2)
for k = 1 . . . N do

Ik,0 ← initial image
ξk ← f(Ik,0, T )
Sample ϵk ∼ D
Execute grasp from ξk + ϵk, then trajectory τ
Collect reward Rk; reset environment
if k > M then

Order traj indices i1, i2, . . . , ik based on rewards
Ω← {ϵi1 , ϵi2 , . . . , ϵiE}
Fit D to distribution of residuals in Ω

Fit π(.) as a VAE to Ω

The affordance prior allows the
robot to narrow down its learning
behavior to a small subset of all pos-
sible behaviors. However, these af-
fordances are not perfect and the
robot will oftentimes still not com-
plete the task. This is partially due
to morphology differences between
the human and robot hands, inaccu-
rate detections of the human hands,
or differences in the task setup. To
improve upon the prior, we prac-
tice learning a residual policy for the
grasp parameters in Table 6.1.

Residual policies have been used
previously to efficiently explore in
the real world [111, 167]. They use
the prior as a starting point and ex-
plore nearby. Let the grasp location,

wrist rotation, grasp pose, and trajectory from our affordance prior be ξ. During training we



Figure 6.4: Qualitative results showing the finetuning procedure for DEFT. The model learns to hold the
spatula and flip the bagel after 30 CEM iterations.

sample noise ϵ ∼ D where D is initialized to N (0, σ2) (for a small σ). We rollout a trajectory
parameterized by ξ + ϵ. We collect Ri, the reward for each ξi = f(vi) + ϵi where vi is the
image. First, we execute an initial number of M warmup episodes with actions sampled from
D, recording a reward Ri based on how well the trajectory completes the task. For each episode
afterward, we rank the prior episodes based on the reward Ri and extract the sampled noise from
the episodes with the highest reward (the ‘elites’ Ω). We fit D to the elite episodes to improve
the sampled noise. Then we sample actions from D, execute the episode, and record the reward.
By repeating this process we can gradually narrow the distribution around the desired values. In
practice, we use M = 10 warmup episodes and a total of N = 30 episodes total for each task.
This procedure is shown in Algorithm 1.

At test time, we could take the mean values of the top N trajectories for the rollout policy.
However, this does not account for the appearance of different objects, previously unseen object
configurations, or other properties in the environment. To generalize to different initializations,
we train a VAE [168, 169, 170, 171] to output residuals δj conditioned on an encoding of the
initial image ϕ(Ij,0) and affordance model outputs ξj from the top ten trajectories. We train
an encoder q(z|δj, cj) where cj = (ϕ(Ij,0), ξj), as well as a decoder p(δj|z, cj) that learns to
reconstruct residuals δj . At test time, our residual policy π(I0, ξ) samples the latent z ∼ N (0, I)

and predicts δ̂ = p(z, (I0, ξ)). Then we rollout the trajectory determined by the parameters ξ+ δ̂.
Because the VAE is conditioned on the initial image, we generalize to different locations and
configurations of the object.

6.4 Experiment Setup
We perform a variety of experiments to answer the following: 1) How well can DEFT learn and
improve in the real world? 2) How good is our affordance model? 3) How can the experience
collected by DEFT be distilled into a policy? 4) How can DEFT be used for complex, soft object
manipulation? Please see our website at http://dexterous-finetuning.github.io
for videos.

Task Setup We introduce 9 tabletop tasks, Pick Cup, Pour Cup, Open Drawer, Pick Spoon,
Scoop Grape, Stir Spoon, Pick Grape, Flip Bagel, Squeeze Lemon. Robotic hands are especially
well-suited for these tasks because most of them require holding curved objects or manipulat-

http://dexterous-finetuning.github.io


Method Pick cup Pour cup Open drawer Pick spoon Scoop Grape Stir Spoon
train test train test train test train test train test train test

Real-World Only 0.0 0.1 0.2 0.1 0.1 0.0 0.7 0.3 0.0 0.0 0.3 0.0
Affordance Model Only 0.1 0.4 0.5 0.5 0.0 0.3

DEFT 0.8 0.8 0.8 0.9 0.5 0.4 0.8 0.6 0.7 0.3 0.8 0.5

Table 6.2: We present the results of our method as well as compare them to other baselines: Real-world
learning without internet priors used as guidance and the affordance model outputs without real-world
learning.We evaluate the success of the methods on the tasks over 10 trials.

ing objects with tools to succeed. For all tasks, we randomize the position of the object on
the table, as well as use train and test objects with different shapes and appearances to test for
generalization. To achieve real-world learning with the soft robot hand, we pretrain an inter-
net affordance model as a prior for robot behavior. As explained in Section 6.3, we train one
language-conditioned model on all data. At test time, we use this as initialization for our real-
world fine-tuning. The fine-tuning is done purely in the real world. An operator runs 10 warmup
episodes of CEM, followed by 20 episodes that continually update the noise distribution, im-
proving the policy. After this stage, we train a residual VAE policy that trains on the top ten
CEM episodes to predict the noise given the image and affordance outputs. We evaluate how ef-
fectively the VAE predicts the residuals on each of the tasks by averaging over 10 trials. Because
it takes less than an hour to fine-tune for one task, we are able to thoroughly evaluate our method
on 9 tasks, involving over 100 hours of real-world data collection.

Hardware Setup We use a 6-DOF UFactory xArm6 robot arm for all our experiments. We
attach it to a 16-DOF Soft Hand using a custom, 3D-printed base. We use a single, egocentric
RGBD camera to capture the 3D location of the object in the camera frame. We calibrate the
camera so that the predictions of the affordance model can be converted to and executed in the
robot frame. The flexibility of the robot hand also makes it robust to collisions with objects
or unexpected contact with the environment. For the arm, we ensure that it stays above the
tabletop. The job will be terminated if the arm’s dynamics controller senses that the arm collided
aggressively with the environment.

6.5 Results
Effect of affordance model We investigate the role of the affordance model and real-world
fine-tuning (Table 6.2 and Figure 6.5). In the real-world only model, we provide a few heuristics
in place of the affordance prior. We detect the object in the scene using a popular object detection
model [166] and let the contact location prior be the center of the bounding box. We randomly
sample the rotation angle and use a half-closed hand as the grasp pose prior. With these manually
provided priors, the robot has difficulty finding stable grasps. The main challenge was finding the
correct rotation angle for the hand. Hand rotation is very important for many tool manipulation
tasks because it requires not only picking the tool but also grasping in a stable manner.
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Figure 6.5: Improvement results for 6 tasks: pick cup, pour, open drawer, pick spoon, scoop, and stir.
We see a steady improvement in our method as more CEM episodes are collected.

Zero-shot model execution We explore the zero-shot performance of our prior. Without ap-
plying any online fine-tuning to our affordance model, we rollout the trajectory parameterized by
the prior. While our model is decent on simpler tasks, the model struggles on tasks like stir and
scoop that require strong power grasps (shown in Table 6.2). In these tasks, the spoon collides
with other objects, so fine-tuning the prior to hold the back of the spoon is important in main-
taining a reliable grip throughout the post-grasp motion. Because DEFT incorporates real-world
experience with the prior, it is able to sample contact locations and grasp rotations that can better
execute the task.

Human and automated rewards We ablate the reward function used to evaluate episodes.
Our method queries the operator during the task reset process to assign a continuous score from
0 to 1 for the grasp. Because the reset process requires a human-in-the-loop regardless, this adds
little marginal cost for the operator. But what if we would like these rewards to be calculated
autonomously? We use the final image collected in the single post-grasp human demonstration
from Section 6.3 as the goal image. We define the reward to be the negative embedding distance
between the final image of the episode and the goal image with either an R3M [50] or a ResNet
[172] encoder. The model learned from ranking trajectories with R3M reward is competitive
with DEFT in all but one task, indicating that using a visual reward model can provide reasonable
results compared to human rewards.
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Figure 6.6: We evaluate DEFT on three difficult manipulation tasks.

Model Architecture We
investigate different mod-
els and training architec-
tures for the policy trained
on the rollouts (Table 6.3).



Method Pour Cup Open Drawer Pick Spoon
train test train test train test

Reward Function:
R3M Reward 0.0 0.0 0.4 0.5 0.5 0.4
Resnet18 Imagenet Reward 0.1 0.2 0.3 0.1 0.4 0.2

Policy Ablation:
DEFT w/ MLP 0.0 0.0 0.5 0.0 0.6 0.5
DEFT w/ Transformer 0.4 0.5 0.6 0.1 0.4 0.5
DEFT w/ Direct Parameter est. 0.1 0.1 0.1 0.0 0.3 0.0

DEFT 0.8 0.9 0.5 0.4 0.8 0.6

Table 6.3: Ablations for (1) reward function type, (2) model architecture, and (3) parameter estimation.

When we replace the con-
ditional VAE with an MLP
that predicts residuals, the
model has difficulty learn-
ing the grasp rotation to effectively pour a cup. We find that the MLP cannot learn the multi-
modality of the successful data properly. Our transformer ablation is an offline method similar
to [173] where in addition to the image and affordance model outputs, we condition on the re-
ward outputs and train a transformer to predict the residual. At test time the maximum reward
is queried and the output is used in the rollout. While this method performs well, we hypoth-
esize that the transformer needs more data to match DEFT. Finally, we train a VAE to directly
estimate ξ instead of the residual. This does not effectively distill the information from the affor-
dance prior without the training time allotted. As a result, it often makes predictions that are far
from the correct grasp pose.

Performance on complex tasks and soft object manipulation We investigate the perfor-
mance of DEFT on more challenging tasks. Tasks involving soft objects cannot be simulated
accurately, while our method is able to perform reasonably on food manipulation tasks as shown
in Figure 6.6.

Of the three tasks, our method has the most difficulty with the Pick Grape task. Because
grapes are small, the fingers must curl fully to maintain a stable grasp. A limitation of our hand is
that the range of its joints does not allow it to close the grasp fully and as a result, it has difficulty
in consistently picking small objects. This also makes it challenging to hold heavy objects like
the spatula in Flip Bagel, but with practice DEFT learns to maintain a stable grasp of the spatula.
For Squeeze Lemon, DEFT develops a grasp that allows it to apply sufficient pressure above the
juicer. Specifically, our method takes advantage of the additional fingers available for support in
hands.

6.6 Discussion and Limitations
In this paper, we investigate how to learn dexterous manipulation in complex setups. DEFT aims
to learn directly in the real world. In order to accelerate real-world fine-tuning, we build an
affordance prior learned from human videos. We are able to efficiently practice and improve in



the real world via our online fine-tuning approach with a soft anthropomorphic hand, performing
a variety of tasks (involving both rigid and soft objects). While our method shows some success
on these tasks, there are some limitations to DEFT that hinder its efficacy. Although we are
able to learn policies for the high-dimensional robot hand, the grasps learned are not very multi-
modal and do not capture all of the different grasps humans are able to perform. This is mainly
due to noisy hand detections in affordance pretraining. As detection models improve, we hope
to be able to learn a more diverse set of hand grasps. Second, during finetuning, resets require
human input and intervention. This limits the real-world learning we can do, as the human has
to be constantly in the loop to reset the objects. Lastly, the hand’s fingers cannot curl fully. This
physical limitation makes it difficult to hold thin objects tightly. Future iterations of the soft hand
can be designed to grip such objects strongly.





Chapter 7

Automating Design of Soft Hands

Paper (under review): Mannam, P., Liu, X., Zhao D., Oh, J., & Pollard, N. (2024). Automating
design iteration for dexterous anthropomorphic soft robotic hands. In 7th IEEE-RAS Interna-
tional Conference on Soft Robotics (RoboSoft).

7.1 Introduction

Humans have evolved to master manipulation of human-designed objects and tools. Similarly,
robot hands have been designed over many years to progress towards human-like dexterity and
manipulation skills [11]. While multi-fingered robotic hands can vary in degrees-of-freedom,
actuation, and more, evaluation criteria of hands has been limited to grasp taxonomies [19] and
manipulation task success [27, 29, 174]. While some suite of tasks aim to evaluate dexterous
manipulation [28, 175, 176], it is difficult to learn dexterous skills for new hand designs which
limits the utilization of dexterous skill benchmarks for evaluation. Thus, we want to efficiently
learn dexterous manipulation skills on new hand morphologies in order to evaluate numerous
designs rapidly for design iteration.

Testing robot hands on their downstream tasks, such as picking up a cellphone from the table,
can be difficult to execute for hundreds of designs since each design requires a different control
policy. However, recent works have shown that transferring control policies across evolutions of
robotic designs from a source to target robot improves efficiency for learning new policies [177,
178]. Continuous evolutionary models allow for transferring policies from expert policies on
source robots to intermediate robots instead of learning new policies for target robots. While
these approaches focus on policy optimization, we show that we can apply this framework to
design and policy co-optimization for automating design iteration of robotic hands.

Using genetic algorithms and robot interpolation, we can explore dexterous hand designs
for a set of manipulation tasks. Genetic algorithms have been used for optimization problems
including mobile robots and trajectory planning [179, 180, 181]. Robotic interpolation allows
for finding the morphology and kinematics of intermediate robots [177, 178]. We utilize both of
these concepts to generate new robotic hand designs and learn control policies for them in order
to find an optimized top-performing robotic hand design.

Through learning dexterous manipulation skills on hundreds of robotic hand designs in sim-
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Figure 7.1: Automated design iteration for dexterous soft hands: a) design optimization of
robotic hand designs in simulation using genetic algorithms and policy transfer, b) fabrication
of optimized hand that outperforms other hand designs in simulation, and c) design evaluation of
optimized hand in the real-world using teleoperation on the same set of manipulation tasks.

ulation, we can automate the design iteration of our robotic hands. As shown in Figure 7.1a,
we use genetic algorithms to start from a set of hand design candidates from prior work [101],
allowing for crossovers and mutations to exploit and explore design features, such as finger ar-
rangement and finger length, that allow for successful manipulation of six different objects in
pick up and reorient manipulation tasks. These dexterous manipulation tasks allow for differen-
tiating hand design performance among 396 anthropomorphic hand designs that were generated.
Subsequently, we fabricate the best-performing hand designs from simulation using 3D-printing
(Figure 7.1b). Using the same six objects in the real world, we use teleoperation to pick up and
reorient the objects in-hand, as depicted in Figure 7.1c, to evaluate whether the optimized hand
designs can succeed at the dexterous manipulation tasks.

Our hypothesis that the trend in performance of these hand designs in simulation resembles
real world performance is supported by our results from more than 900 real-world teleoperated
manipulation experiments. In addition, our design and policy co-optimization approach results
in two optimized soft robot hand designs, from simulation, that outperform existing soft hand
designs, from prior work [101], in real world evaluation, despite the considerable sim-to-real
gap. In summary, the contributions of this work include:

• An approach for design and policy co-optimization for soft robot hands using genetic al-
gorithm and policy transfer in simulation.

• Generation of new hand designs, using the above approach, in simulation that can be fab-
ricated in the real world as tendon-driven soft hands.

• Teleoperated evaluation of two optimized fabricated hand designs in the real-world to show
that they outperform existing soft hands from prior work [101].



7.2 Related Work

Design and control of a robot are intrinsically linked. Hence, jointly co-optimizing design and
control policies of robots can be done to avoid determining control policies for every single
design candidate. This idea has been explored in a wide range of areas extending from loco-
motion [32] to manipulation [182]. Recent work have leveraged data-driven and learning-based
approaches for co-optimization using concurrent networks [183]. Co-optimization can also be
posed as an optimal control problem and has been applied to both manipulation and locomotion
using this formulation [184]. Similarly, reinforcement learning can be used to evolve legged
robots and their gait towards an optimal design and control policy [185, 186]. Our approach also
uses a reinforcement learning based approach to co-optimize both the design of an anthropomor-
phic soft robot hand and a control policy for dexterous manipulation tasks.

For design and control co-optimization of robot hands, previous works have used gradient-
based approaches and evolutionary methods [182]. Xu et. al. [187] show that using gradient-
based optimization methods outperform both gradient-free methods and model-free reinforce-
ment learning approaches for co-optimization. On the other hand, evolutionary methods are a
scalable solution to reinforcement learning [188]. Continuous robot evolution and human demon-
strations can transfer control policies from a five-fingered dexterous robot hand to a two-finger
gripper [178]. Furthermore, evolutionary algorithms can be used to co-optimize hand design and
control for any manipulation task through optimization of joint limit parameters for increased
robustness [44]. While this approach aims to find the simplest hand design for the task, targeting
grasping strategies for specific manipulators,like a soft hand, can adapt existing control strategies
or invent new control strategies to co-optimize design and control [43]. In a similar fashion, our
approach uses genetic algorithm for exploring new hand designs and policy transfer to learn new
policies for hand designs efficiently in simulation.

Optimizing on robotic hand designs in simulation can pose difficulties for sim-to-real trans-
fer when executing the control policies in the real world. Instead, we use teleoperation setups
similar to those previously used for imitation learning data collection [92, 93]. Our real world
evaluation setup is similar to our previous work [101], where we use teleoperation to evaluate
the capabilities and limitations of our soft robot hands and their designs. However, our prior
work used manual design iteration and did not leverage simulation to optimize hand designs.
Our manipulation task setup is similar to the tool positioning task used for chaining multiple
dexterous tasks for long-horizon task goals [189], where an object is first grasped from the table
and then reoriented in-hand to a final desired pose. Contrary to [189], we evaluate the same
task in the real-world using teleoperation for our generated hand designs. Finally, our approach
uses a qualitiative metric, similar to one used in [190], that captures the quality of the grasp for
evaluating the teleoperated manipulation tasks for each of the optimized hand designs in the real
world.

7.3 Dexterous Anthropomorphic Soft Hand

Our robotic hand designs are simulated as rigid robotic hands but fabricated as soft tendon-
driven hands using 3D-printing. We implement the robotic hand designs as soft robots for safety
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Figure 7.2: a) CAD of top-performing optimized hand V7 shown with DIP, PIP, and MCP joints
labelled, as well as hand design parameters shown with green arrows. Tendon placements along
finger are shown in blue where each controls MCP adduction-abduction movement, MCP for-
ward flexion, and curling the finger inwards through DIP and PIP flexion. The distal, middle,
and proximal phalanges are also labelled in green to show some of the hand design parameters.
b) Visualization of simulated top-performing hand design V7

during interactions with objects and the environment as well as robustness to error due to com-
pliance [191]. Bauer et al. [7] show that crease-like deformations in soft robotic hands can be
kinematically approximated as rigid joints for design validation. Similarly, we use DASH, a
Dexterous Anthropomorphic Soft Hand [101] with joint-like creases that is customizable, low-
cost, easy to rapidly prototype and evaluate in the real world using teleoperation.

DASH Morphology

From previous work [101], we use five existing design iterations of DASH, named V1, V2,
V3. V4, and V5 to start our design optimization process. Each version of DASH incorporates
four fingers: the thumb, index, middle, and ring fingers. To ensure modularity, every finger,
including the thumb, shares an identical design. Each of these fingers consists of three joints
along its length, moving from the base towards the fingertip: the metacarpophalangeal (MCP)
joint, proximal interphalangeal (PIP) joint, and distal interphalangeal (DIP) joint. The joints for
each individual finger are illustrated in Figure 7.2.

Each finger has four tendons (as shown in Figure 7.2), two are situated along the sides of the
MCP joint, near the palm, responsible for abduction and adduction—permitting the fingers to
move both closer together and farther apart. These two tendons are attached to a bi-directional
pulley actuated by a single motor, collectively referred to as the adduction-abduction tendon. The
MCP flexion tendon is used for the forward folding of the finger at the MCP joint, perpendicular
to the abduction-adduction tendon’s motion. Lastly, the DIP PIP flexion tendon extends through
the entire length of the finger in order to fully curl the finger inwards.



Design Params Min Max V3 V5 V6* V7*

Palm width 69 99 84 84 92 92

Palm height 69 99 84 84 74 74

Position
ff (8, 64) (48, 84) (28, 84) (28, 84) (28, 84) (29, 83)
mf (-20, 64) (20, 84) (0, 84) (0, 84) (0, 84) (0, 84)
rf (-56, 64) (-16, 84) (-28, 84) (-28, 84) (-36, 84) (-36, 83)

Orientation
ff 0 45 0 0 0 2.9
mf -35 35 0 0 0 0
rf -45 0 0 0 0 -2.9

Proximal length 35 55 45 45 45 45

Middle length 8 28 20 20 18 18

Distal length 25 45 35 35 35 35

Table 7.1: Hand design parameter ranges tested in simulation to find the optimized robotic hand
design where ff, mf, and rf refer to first (index) finger, middle finger, and ring finger, respectively.
Unit is millimeter for lengths and degree for angles. Designs with * are optimized hand designs.

Fabrication and Customization

In Figure 7.1(c), the fingers and palm were 3D-printed from Ninjaflex Edge (83A shore hard-
ness) [96] using a FlashForge Creator Pro 2 printer. Tendon routing and finger morphology
can be easily changed to 3D-print a new robotic hand design, facilitating rapid prototyping and
evaluating. We use 12 Dynamixel XC330-M288-T motors [192] in the motor housing which is
3D-printed from PLA and shown below the palm in Figure 7.1(b). Our real robot experiments
used the robot hand mounted to an xArm7 robotic arm [193].

Design Parameters

While 3D-printing our soft dexterous hands allows us endless possibilities in terms of design, we
constrain the design parameters to ones that allow for significant manipulation behavior changes.
In prior work [101], the design changes among DASH V1 to V5 included parameters such as
palm size, finger length, joint height and width, thumb arrangement, and fingertip shape.

For our simulated design optimization, we restrict the design changes to the following pa-
rameters illustrated in Figure 7.2a: palm size, finger links lengths (proximal, middle, distal pha-
langes’ lengths), finger width, finger thickness, finger position, and finger orientation. The ranges
of these parameter values are detailed in Table 7.1. Figure 7.2b shows the visualization of the
same hand CAD shown in Figure 7.2a in simulation where the hand parameters match for both
hands. However, features like finger surface geometry were not varied during optimization. Ten-
don arrangements and actuation were integrated into the design after determining the optimized
hand design in simulation.



7.4 Design and Policy Co-Optimization
We assume the hand robot can be defined and represented by its design parameters. This as-
sumption is true for the design space of our DASH hand where we fix the topology of kinematic
connections of bodies and joints. In this section, we describe our proposed method for automatic
optimization of the DASH hand design parameters.

7.4.1 Problem Definition and Preliminaries
We formulate the robotic manipulation task as a Markov Decision Process (MDP) specified by a
tuple (S,A, T , R, γ), where S ⊆ RS is the state space,A ⊆ RA is the action space, T : S×A →
S is the transition function, R : S ×A → R is the reward function, and γ ∈ [0, 1] is the discount
factor. A policy π : S → A maps a state to an action where π(a|s) is the probability of choosing
action a at state s. We assume that all possible robot designs share the same state space S and
action spaceA. We assume a robot can be defined by D independent design parameters that only
impact the transition dynamics T . Suppose ρπ,θ =

∑∞
t=0 γ

tR(st, at) is the episode discounted
reward when a robot with design parameters θ ∈ RD executes policy π. The optimal policy
π∗
θ = argmaxπ E[ρπ,θ] on robot θ is the one that maximizes the expected value of ρπ,θ.

Given the MDP for a certain manipulation task, the goal of our problem is to find the optimal
design parameters of the robot design defined as

θ∗ = argmax
θ

ρπ
∗
θ ,θ (7.1)

This means robot designs should be compared by the performance of their respective well-trained
expert policy. The difficulty of this optimization problem stems from two aspects. First, finding
the expert policy π∗

θ by training each policy from scratch for each robot design θ is computation-
ally expensive. Second, the robot design space is vast and has an exponential complexity with
respect to the number of design parameters D.

To address these challenges in robot design optimization, we aim to improve policy opti-
mization efficiency while allowing global search of robot design parameters. Recent advances
in interpolation-based policy transfer [177, 178] inspire us to address this problem from the per-
spective of policy transfer. The intuition is that, if two robots are similar in their hardware con-
figuration, their optimal policy should also be similar. Therefore, given a robot θsource ∈ RD with
an expert policy π∗

θsource
and another significantly different robot θtarget ∈ RD, it may be possible

to interpolate the two robots by producing a sequence of intermediate robots θ1, θ2, . . . , θK−1, θK
that continuously changes from θ1 = θsource to θK = θtarget. These intermediate robots act as
the stepping stones for transferring the policy. It takes K training phases to transfer the policy
where in i-th phase, the policy is fine-tuned on θi until convergence. Since the difference between
any two consecutive robots θi and θi+1 in the sequence is sufficiently small, the overall training
overhead for transferring of policy is much smaller than training the policy on θtarget from scratch.

7.4.2 Genetic Algorithm and Policy Transfer for Design Optimization
Our method leverages the above idea to efficiently transfer the expert policies on existing robot
designs to multiple robot design candidates that are iteratively searched and trained.



Specifically, given the pool of C existing robot designs De = {θi ∈ RD | i = 1, 2, . . . , C}
and their respective well-trained expert policy π∗

θi
, we randomly generate a new robot design

candidate θnew ∈ RD. To obtain the optimal policy on the new design candidate, it is natural to
find the closest existing robot design with expert policy as the starting point for policy transfer to
reduce the overall computational cost. Suppose θs = argminθ∈De

||θ−θnew|| is the robot with the
smallest hardware difference to θnew in De. Then the next robot stepping stone can be obtained
by moving the design parameter θs towards θnew. We employ a small step size ξ ∈ R+ for each
step of design parameter change.

How can we randomly generate new hand design candidates? Given large D, it is compu-
tationally intractable to iterate all possible design candidates. Our intuition is that good robot
designs are usually superior due to certain “traits”, e.g. long fingers, wide motion ranges. It
makes sense to share the good traits with other designs to search potentially better designs. Ge-
netic algorithm is an optimization scheme that is capable of achieving this. It contains two parts:
crossover and mutation. In every design exploration phase, we randomly sample two existing
robot design candidates θ1, θ2 from De. We perform element-wise random crossover on θ1 and
θ2 to generate a new θnew. Then we mutate θnew by adding a noise term that is uniformly sampled
from [−θM , θM ], where θM ∈ R+D. In this way, we ensure θnew can inherit the good traits from
existing good designs while allowing exploration in the design space for potential improvement
over the current state of the art.

Note that the robot design pool De is not static. To fully re-use the previously searched good
designs, apart from initial designs, De is dynamically populated with newly found designs as
well, including the designs acting as policy transfer stepping stones. However, in order for the
genetic algorithm to find better designs,De should only contain the most elite population of robot
designs. Therefore, we set a threshold of robot policy performance q for deciding whether a robot
design is good enough to be added to the poolDe. Our overall design and policy co-optimization
method is illustrated in Algorithm 2.

7.4.3 Remarks

Our robot design optimization scheme does not guarantee convergence as genetic algorithms are
not guaranteed to converge to a global optima. However, with sufficient amount of computation,
our method can cover enough space of possible good designs to result in optimized designs,
which can serve as good candidates for real-world fabrication of our DASH hand.

Note that it is possible that in some iterations the randomly generated new design candidate
θnew is a bad one with low expected episode reward. In this case, during policy transfer, upon
reaching a certain intermediate robot θ along the path, the well-trained expert policy π∗

θ will no
longer reach the performance threshold q. Though the generated bad design will not provide new
member for De, it can still provide valuable information on what design parameter changes are
not useful.



Algorithm 2 Design and Policy Co-Optimization

1: Notation Summary: θi ∈ RD, i = 1, 2, . . . , C: design parameter of i-th candidate robot; π∗
θi

: expert
policy on i-th candidate robot; ξ ∈ R+: evolution step size; q ∈ R: reward threshold; De: the set
of robots with expert policy; θM ∈ RD: element-wise mutation range. θU , θL ∈ RD: element-wise
upper and lower bounds of design parameter.

2: De ← {θ1, θ2, . . . , θC};
3: for i in 1, 2, . . . , N do
4: // sample new robot design candidate
5: Sample θ1, θ2 ∼ De, mutation noise n ∼ U([−θM , θM ]);
6: θnew ← random crossover(θ1, θ2) + n;
7: θnew ← MAX(MIN(θnew, θU ), θL); // stay in bound
8: // find closest source robot to transfer policy from
9: θs ← argminθ∈De

||θ − θnew||;
10: θ ← θs, π∗ ← π∗

θs
;

11: // transfer the policy by robot interpolation
12: while ||θ − θnew|| < ε do
13: θ ← θ + ξ · (θnew − θ)/||θnew − θ||;
14: train expert policy π∗

θ ← argmaxπ E[ρπ,θ] by initializing policy with π∗;
15: π∗ ← π∗

θ

16: if E[ρπ∗
θ ,θ] > q then

17: De ← De ∪ {θ}; // only keep elite robot candidates
18: return {(θ, π∗

θ) | θ ∈ De};

7.5 Simulation Benchmark and Evaluation

7.5.1 Benchmark Definition

Using simulation to optimize the hand design requires designing a benchmark suite whose ma-
nipulation task and evaluation metrics can distinguish between similar hands. In this section, we
propose a benchmark task suite for evaluating dexterous hands. In contrast to previous works
that separate object relocation and in-hand reorientation [28], we combine object relocation and
reorientation into one task where the goal is to pick up the object and then reorientate the object
in-hand to desired relative 6D pose between hand and object. In this way, both object grasp
ability and hand dexterity can be fully evaluated in a single task.

To evaluate the full potential of the hand designs, we include six objects with diverse geome-
try in our benchmark suite. The six objects include barbell, board, cross3d, pen, ring
and sphere as illustrated in Figure 7.1. The objects are chosen such that the their geometry is
diverse enough to evaluate different taxonomy of hand grasping and reorientation. For example,
sphere can help evaluate spherical grasp while board focuses more on power grasp. Each
object is instantiated with three different uniform scales: 0.75×, 1×, and 1.25×, resulting in 18
object instances in total. The hand will be evaluated on manipulation tasks using all 18 object
instances.



Figure 7.3: Top three optimized hands. From left to right, the success rate AUC (%) of the hands
are 53.32%, 53.07% and 52.47% respectively.

7.5.2 Evaluation Metrics

Defining an episode success condition and using the success rate as the evaluation metric has
been a popular approach in previous works. However, using a discrete signal of episode success
or failure cannot sufficiently distinguish subtle difference in hand designs. On the other hand,
defining dense and continuous evaluation metrics cannot easily generalize to other tasks and is
not straightforward to define for our object relocation and reorientation task.

We propose a new evaluation metric to address the above problem. During evaluation, we
apply an unknown external force F to the object in simulation. The direction of the external
force is random and stays the same throughout the episode. Due to unknown external force
being applied, achieving high success rate is difficult. We then measure the average success rate
under different external force magnitudes. Formally, let S(π, θ, F ) be the average success rate of
executing policy π on robot θ with unknown external force of magnitude F . Then our evaluation
metric of robot θ is defined as

M(θ) =
1

Fmax

∫ Fmax

0

S(π∗
θ , θ, F )dF (7.2)

where Fmax = 1N. M(θ) is essentially the area-under-curve (AUC) of success rate − external
force curve. In our experiments, we found that M(θ) is a more distinguishable metric than
naively using success rate S(π∗

θ , θ, 0). In practice, the integral in Equation (7.2) is approximated
by discretized summation.

7.5.3 Other Implementation Details

To evaluate a large number of hand designs on a variety of tasks, it is imperative to perform
large-scale simulation. We use Issac Gym [194], a GPU-empowered parallel simulator as the
physics simulation engine. For each object instance, we launch 256 simulation environments,
resulting in 4,608 environments running in parallel.

Given 18 different object instances, a naive solution is to train 18 independent policies for
each object instance. This solution does not fully exploit the potential of parallelism of GPU.
Instead, we train a single control policy to manipulate all 18 object instances. The policy is
conditioned on the object ID, so that one policy can control the manipulation of all 18 object
instances. The object ID is represented as a one-hot vector and sent into the policy neural network
together with original state vector. We illustrate three of the top searched hands in Figure 7.3.



7.6 Real-World Design Evaluation
A subset of the simulated hand designs were tested in the real-world using teleoperation. All six
objects, barbell, board, cross3d, pen, ring and sphere, were tested in the real-world
at a single scale (1×). While 256 randomized goal poses were tested in simulation, we limit our
real-world robotic hand design evaluation to 6 goal poses from randomized initial positions for
the pick up and reorient manipulation task. We fabricated two optimized hands from simulation
from the top 25 hands, where the first ranked hand is the leftmost design shown in Figure 7.3.
The tested hands include DASH V3, DASH V5, the 18th best ranking hand, and the 1st ranking
hand in simulation. We refer to the 18th and 1st best ranking simulation hands as V6 and V7,
respectively.

The hand design parameter values of V3, V5, V6, and V7 are listed in Table 7.1. DASH
V3 and V5 are from previous work [101] where V3 has the thumb arranged directly opposing
the index finger and V5 has the thumb rotated by 22.5◦ towards the ring finger. Both of these
hands have the thumb placed in the bottom right corner of the palm, much like the human hand.
The optimized hands, V6 and V7, have thumbs in the bottom middle of the palm, as shown in
Figure 7.2. These hand designs have a wider but shorter palm with the ring finger offset farther
away from the middle finger than the index finger. Unlike V6, V7 also has the index and ring
finger turned toward the middle finger by 3◦. While our optimization did not include fingertip
shape, V3 and V5 had a wedge-like and flat fingerpad-like fingertip, respectively. Meanwhile,
V6 and V7 had rounded spherical fingertip shapes (as shown in Figure 7.1b).

Experiment Setup

Previous work [101] has shown that teleoperation removes the necessity to learn control policies
for new soft hand designs for quick evaluations of the hand’s capabilities in real-world experi-
ments. We use Manus [98] VR gloves to teleoperate a 7-DOF robotic arm and the fabricated soft
hand for various manipulation tasks to evaluate the hand designs in the real-world. Each of the
hand designs is calibrated individually to map joint-to-joint control of DASH as well as scaling
motions such as adduction-abduction motions to be exaggerated from human hand motion for
easier teleoperation. Further calibration and teleoperation implementation details can be found
in previous work [101].

Our real-world teleoperation evaluation setup involves two people. First, we use an expe-
rienced teleoperator to perform manipulation tasks with each tested hand for the 6 objects and
repeat each goal pose three times. Once a goal pose is achieved, the second person will interac-
tively score the goal pose on a scale of 0 to 1 based on grasp stability. Scores are decided by both
people and discussed upon disagreement. These qualitative metrics are similar to related work
that interactively tested grasp quality [190]:

• 1 - stable grasp (unmovable by small disturbance force)
• 0.75 - object moves by disturbance force but will not drop
• 0.5 - object can be moved and dropped by disturbance force
• 0.25 - grasp fragile and will not be able to carry object
• 0 - grasping or achieving goal pose failed
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Figure 7.4: The 6 goal poses (shown for pen object) used for real world teleoperated manipula-
tion tasks.

The teleoperator tested V3, V5, V6, and V7 sequentially in one order and repeated each hand
in the reverse order to remove the effects of learning through experience teleoperating DASH
for these tasks. Each hand was tested twice on each object and scores are averaged. The average
and maximum scores across the two repetitions of each hand are reported in Tables 7.2- 7.3. The
objects are augmented with grip tape and foam tape in order to increase friction and gripability
of the smooth 3D-printed objects. White tape is used to mark the orientation of the object due to
symmetry, as shown in Figure 7.4. For each object, the six goal poses are referred to as horizontal
(Figure 7.4a), tilt 45 deg (Figure 7.4b), cigarette grasp (Figure 7.4c), vertical (Figure 7.4d), table
to precision grasp to power grasp (Figure 7.4e), and power grasp to precision grasp to table
(Figure 7.4f).

These goal poses are shown for the object pen in Figure 7.4. The last goal pose starts with
the object in-hand in a power grasp and requires the object to be gently placed on the table. The
quality metrics for goal pose 6 uses a different scoring metric:

• 1 - graceful placement of object on table within 3cm drop height
• 0.5 - object initially contacts table and falls greater than 3cm
• 0 - object falls from hand greater than 3cm height with no initial contact with table

Teleoperation Evaluation Results

As shown in Table 7.2, the averages and maximum scores for each object show that on average
the optimized hands V6 and V7 performed the best. From Table 7.3, we see that V7 struggled
with pose 6 the most compared to other goal poses and hand designs. With two fingers rotated
inwards towards the middle finger, we observe that V7 can cause unexpected rotations of the
object during manipulation. This made V7 easier for power grasps rather than precision grasps.
cross3d is our smallest tested object and required precision, which V5 performed the best on.

V5 has a larger palm and longer fingers than the optimized hands, which performed best on



Objects V3 V5 V6 V7

avg max avg max avg max avg max

barbell 0.81 0.86 0.92 0.99 0.95 0.96 0.95 0.99
board 0.78 0.83 0.94 0.99 0.97 1.00 0.92 0.99

pen 0.78 0.79 0.79 0.89 0.92 0.96 0.91 0.94
ring 0.85 0.94 0.83 0.85 0.92 0.96 0.90 0.90

cross3d 0.87 0.90 0.88 0.99 0.88 0.93 0.94 0.94
sphere 0.67 0.78 0.83 0.92 0.96 1.00 0.83 0.85

avg 0.79 0.85 0.87 0.94 0.93 0.97 0.91 0.94

Table 7.2: Teleoperation evaluation results for pick up and reorient tasks for each of the six
objects on all goal poses using different hand designs. The above table shows both the average
and max grasp quality score achieved.

Goal Pose V3 V5 V6 V7

avg max avg max avg max avg max

pose 1 0.86 0.93 0.94 1.00 0.98 0.99 0.97 0.99
pose 2 0.80 0.88 0.92 0.99 0.91 0.92 0.88 0.94
pose 3 0.85 0.86 0.80 0.89 0.89 0.99 0.94 0.96
pose 4 0.80 0.86 0.79 0.81 0.91 0.96 0.93 0.94
pose 5 0.73 0.83 0.92 0.99 0.95 1.00 0.97 0.99
pose 6 0.72 0.78 0.81 0.94 0.96 1.00 0.76 0.78

avg 0.79 0.86 0.86 0.94 0.93 0.98 0.91 0.93

Table 7.3: Teleoperation evaluation results for pick up and reorient tasks for each of the goal
poses on all six objects using different hand designs. The above table shows both the average
and max grasp quality score achieved.

the barbell and board objects as well as outperforming V6 on the tilt goal pose 2. Since
goal pose 2 requires the object to be at a 45 degree angle, having the thumb on the bottom right
corner of the palm was helpful for V5. Between V6 and V7, they both performed similarly on
barbell and board. V6 did the best on pen and ring, and V5 did the best on cross3d.
However, V5, V6, and V7 excelled similarly at the power grasp from the table (goal pose 5).

Across objects and goal poses, V3 scored lower than other hands. We observed that the
combined effect of not being able to fully curl the fingers and its wedge-like fingertips caused
V3 to have more unstable grasps compared to the other hands. In previous work [101], finger
curling ability was improved for V5, so we see that the scores for V5 are better than V3 for each
goal pose in Table 7.3. The easiest goal pose for all hands was the horizontal goal pose 1 and
the most difficult pose was starting from power grasp and placing the object on the table using a
precision grasp.



Simulation V3 V5 V6 V7 V7-wedge

barbell 0.28 0.37 0.30 0.32 0.23
board 0.87 0.90 0.92 0.90 0.89
pen 0.72 0.72 0.74 0.79 0.67
ring 0.09 0.09 0.09 0.08 0.09
cross3d 0.06 0.06 0.07 0.07 0.07
sphere 0.54 0.35 0.53 0.60 0.42

avg 0.43 0.42 0.44 0.46 0.40

Table 7.4: Simulation evaluation results for pick up and reorient tasks for each of the six ob-
jects at scale 1× on randomized goal poses using different hand designs. V7-wedge is V7 with
a wedge-like fingertip shape. The above table shows AUC of success rate as given by equa-
tion (7.2).

Simulation vs. Real Results

If we look at the performance by object, simulation and teleoperation results follow a similar
trend. V6 performs best on most objects in simulation including board, pen, and cross3d as
shown in Table 7.4. Simulation results also show that V3 and V5 tied for best score on sphere,
and V5 performed best on barbell. While real-world experiments showed comparable scores
on all six objects, simulation results have a high variation depending on objects. ring and
cross3d have the lowest scores and board and pen have the highest scores. In teleoperation
experiments, pen and sphere have the lowest scores and barbell and board have the
highest scores, but by a small margin. This correlates with our observation that the compliance
of our soft hands helped most with ring and cross3d objects for conforming to the object
for stable grasps. Overall, the performance of hand designs simulated as rigid bodies correlate
with the performance of our teleoperation evaluation results with V6 performing best on most
test objects.

Preliminary Evaluation with Varying Fingertip Shape

We also tested V7 with a different fingertip shape in simulation and using teleoperation. As
shown in Table 7.4, V7 with a rounded fingertip shape generally performed better than V7 with a
wedge-like fingertip shape. When tested on the real robot, we found that the wedge-like fingertip
for board, cross3d, sphere scored 0.89, 0.99, and 0.96, respectively. This shows that fin-
gertip shape results do not follow the trend of simulation results. Teleoperation results showed
that V7 with a wedge-like fingertip performed better than or as good as V7 with rounded finger-
tips for cross3d and sphere. We observed that V7’s difficulty with precision was remedied
with thinner fingertips but made stability worse for board.

Preliminary Evaluation with other Teleoperators

In addition to our experienced teleoperator experiments shown in Tables 7.2-7.3, preliminary
results with two non-expert teleoperators on V3, V5, and V7 corroborate our findings. The two



operators tested only the board object on the three hands in a random order and repeated the
reverse order. We then aggregated across repetitions and found that V7 performed best based on
maximum scores and V5 performed best based on averaged scores. This is similar to Table 7.2
finding that showed similar performance with V5 and V7 on board.

7.7 Discussion & Conclusion
Using genetic algorithms and policy transfer, we were able to optimize on the design of a 16-DoF
anthropomorphic soft robotic hand. While simulation used trained expert policies to manipulate
the objects, teleoperated experiments used potentially suboptimal policies to achieve the goal
pose. This is a limitation of our evaluation as teleoperators are not able to find the best policy for
each hand which can artificially assign lower scores to a design. We compensated for this limi-
tation by allowing the teleoperator to practice each task for every goal pose and object, allowing
them to learn a near-optimal policy. Interactive grasp quality testing during teleoperation exper-
iments provided finer insights into the limitations and advantages of each hand design. Using
only task success in both simulation and real-world experiments would have made it difficult to
differentiate between hand designs.

Despite the sim-to-real gap arising from modeling the hand as a rigid body, we saw the same
trends in performance across both simulation and real world evaluations, with V6 scoring higher
on most objects. Both optimized designs V6 and V7 outperformed existing designs, V3 and V5
from prior work [101], which were a result of manual design iteration in the real-world. While
smaller scale features like finger geometry were not optimized, larger scale features like finger
arrangement and palm size were successfully guided by simulation results. In contrast, features
like fingertip shape did not show positive correlation across simulation and real world. A po-
tential future direction would be to investigate the design parameters that are suitable for design
optimization in simulation. Another direction for future work involves directly deploying learned
policies to evaluate hand designs in the real world to mitigate the limitations of teleoperation.



Chapter 8

Evaluating Automated Hand Design on
DASH-30 Tasks

8.1 Automated hand design performance
In Chapter 7, we automated design iteration of DASH and found an optimized design, V7 using
simulation. The tasks we optimized for in simulation as well as tested in the real-world include
picking up and reorienting six objects in-hand (barbell, ring, board, cross3D, pen, and sphere).
While these tasks test dexterity and manipulator capabilities, we wish to see how well the op-
timized hand generalizes to tasks we did not evaluate during optimization. In Chapter 5, we
manually designed and iterated on five versions of DASH using an human-in-the-loop approach
and the DASH-30 tasks for evaluation. In this chapter, we aim to answer two questions, 1) how
well does V7 generalize beyond the tasks used during optimization, and 2) does our optimized
design V7 perform better than our manually iterated hand designs V1 to V5. To answer these
questions, we focus on the DASH-30 tasks introduced in Chapter 5.

8.2 DASH-30 Tasks
In Chapter 7, Table 7.3 and Table 7.2 show that on most tasks, V7 scores similarly or better
than V5, and V7 outperforms V3. These results are based on approximately 324 teleoperation
experiments to show real-world hand design performance on 6 objects and 6 goal poses per object
(each goal pose repeated three times). To further understand the capabilities and limitations of
V7, we evaluate V7 on DASH-30 tasks. Thus, we perform 150 teleoperation experiments to
compare against the V1 through V5 data (including Allegro dexterous hand results as baseline)
discussed in Chapter 5.

8.2.1 DASH V7 results on DASH-30 tasks
DASH V7 has a smaller palm, round fingertips, a centered thumb, a gap between the middle
and index fingers, and an index and ring finger rotated in towards the middle finger. This hand
design performs better than Allegro and previous iterations of DASH, as shown in Figure 8.1,
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Figure 8.1: Tasks succeeded (out of 30 total) for V1, V2, V3, V4, V5, and V7, where the task
succeeded for all five repetitions of the task. Each hand design iteration improved with the
automated design iteration using simulation, V7 outperforming the previous designs and our
baseline Allegro hand. Each hand did best on different tasks, as shown in the insets above the
graph.

Figure 8.2: Task success on DASH-30 suite of tasks for 6 iterations of DASH including the
baseline Allegro hand. Our automated hand design iteration, V7, improves on our manually
designed iterations V1 to V5 and outperforms Allegro.

according to the number of tasks where all five out of five repetitions were successful. Allegro,
V1, V2, V3, V4, V5, and V7 succeeded on all five repetitions of 7, 10, 14, 16, 17, 19, and 23
tasks, respectively. The increase of 4 tasks between V1 and V2 is similar to that between V5 and
V7. Based on overall task success (over all 150 experiments per hand), Figure 8.3 shows that V7
succeeded on 95% of tasks, which is higher than the other design iterations.

Similar to the task specialization we saw with V1 to V5, V7 did best on the Pen object, as
shown in the top right of Figure 8.1. The task performance of all hands including V7 is shown
in Figure 8.3. V7 succeeded on all five repetitions of all tasks except for seven tasks. The seven
tasks are Egg, Chip, M&M, Card Pickup, Dice Rotation, Grape, Plastic Bag. V7 succeeded on
four out of five repetitions for all of these tasks except for twisting the grape off of the stem,
which was successful for three repetitions of the task. We represent these tasks as categories
from Table 5.2 in Figure 8.4, where V7 does better or the same as previous iterations except for
the Twist category.



Figure 8.3: Task performance over 6 iterations of DASH on all DASH-30 tasks. The tasks are
ordered difficult to easy from left to right, according to task performance of Allegro.

Figure 8.4: Task performance across DASH V1, V2, V3, V4, V5, V7, and Allegro as baseline on
each category of tasks from Table 5.2.

There are two tasks where V7 performs better than all previous design iterations. Figure 8.5
shows tasks with hand performance differences across iterations, including V7. V7 does better
than V1 to V5 on Pen and M&M objects. These are both small objects that require precision. The
smaller palm and round fingertips were useful for these tasks. On the other hand, V7 performed
worse or the same as previous iterations of DASH (V1 and V2) for Grape. This is interesting
as V1, V2, and V7 all have the same fingertip shape that might have had a disadvantage toward
having more contact with the grape while twisting it off of the stem.

8.2.2 DASH-V3 results repeated

Due to the learning effects we observed in Chapter 7, we wanted to understand how a previously
evaluated hand would perform after evaluating V7. The results of the DASH-30 tasks for re-
peating V3 as well as previously evaluated scores are shown in Table 8.1. Overall, V3 previously
succeeded 124 tasks out of 150 and V3-repeat succeeded on 123 tasks. However, V3 succeeded
on all five repetitions of 18 tasks which is two more than previously observed and failed on
2 tasks (zero successes) which is two more than before. Some of differences from the previ-



Figure 8.5: Subset of tasks with different performance across DASH V1 to V7 on specific tasks.
The top row of inset images shows representative tasks of successful tasks for each hand.

ous evaluation of V3 include Hammer (improved from 4 repetitions to 5 repetitions) and Cube
Stacking (decreased from 5 repetitions to 4 repetitions). Bigger changes in performance include
performing worse on small objects such as Chopstick (dropped from 5 to 2 reps), Pen (dropped
from 3 to 0 reps), M&M (dropped from 1 to 0 reps) due to the difficulty in accomplishing these
tasks in comparison to V7’s stability with thinner objects. Learning effects is an open challenge
for teleoperation evaluation but we see that repeating V3 evaluation showed relatively the same
performance for DASH-30 tasks.

8.3 Discussion
Our experimental results evaluating DASH V7 on the DASH-30 tasks shows that V7 outper-
forms V1 to V5 on tasks that were not seen during optimization, thus generalizing to tasks in-
volving capabilities such as lever, twist, open, etc. During automated design iteration of V7, we
only tested and evaluated tasks involving picking up and reorienting objects such as pens, rings,
spheres, etc. However, our optimization and evaluation criteria using external disturbances re-
sulted in a hand design that favored stable and robust grasps, which corresponds to our high
performance results on DASH-30 with V7. Thus, we show that our optimized hand design V7
performs well on a different set of tasks, DASH-30, and performs better than our manually
iterated hand designs V1 to V5 on these tasks.



Task Success Allegro V1 V2 V3 V4 V5 V7 V3-repeat

5/5 7 10 14 16 17 19 23 18
4/5 11 18 22 23 21 26 29 23
3/5 20 22 28 27 24 27 30 26
2/5 25 27 29 28 24 29 30 28
1/5 27 28 30 30 26 30 30 28
0/5 3 2 0 0 4 0 0 2

Table 8.1: Results of experiments. Task success measures the cumulative number of tasks where
the hand succeeded. For example, 4/5 means at least four out of five repetitions of the task were
successfully completed and 0/5 means none of the repetitions were successful.





Chapter 9

Discussion

In Chapters 3- 4, we looked at the design and evaluation of compliant 3-DOF delta manipulators.
Chapters 5- 6 design and evaluate DASH, a tendon-driven anthropomorphic 16-DOF soft hand.
After we’ve looked at the design iteration and evaluation of these two different manipulators,
we investigated an automated design iteration approach in Chapter 7 to see if simulated hand
designs could inform soft robot hand design in the real world. We find that our top simulated
hand designs perform well in the real world, and as discussed in Chapter 8, our simulation
optimized hand design outperforms our manually iterated hand designs.

9.1 Research Questions
After investing design iteration of compliant manipulators in manual and automated design pro-
cesses as well as simulated and real-world environments, we distill our findings into four research
questions:

1. What design parameters affect dexterity in multi-fingered hands?

2. What tasks can guide the design iteration of dexterous hands?

3. Can rapid prototyping and teleoperation evaluation enable design iteration in the real
world?

4. How can simulating hand designs help with design iteration?

9.1.1 Design Parameters
Increasing dexterity does not necessarily require adding motors or fingers.

We investigated design parameters for DASH while automated design iteration using simulation
and manual design iteration in the real world. For each of these scenarios, we focused on dif-
ferent sets of design parameters and evaluated how the resulting designs performed on dexterous
manipulation tasks. Thus, we can heuristically show which design parameters affected dexterity
in our implementation of 16-DOF dexterous anthropomorphic tendon-driven soft hands.

First and foremost, all of our DASH hand designs have the same number of fingers, degrees
of freedom, modularity of the fingers (all fingers are identical to each other), fabrication tech-
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nique, material properties, actuation, motor specifications, and number of motors. Increasing
dexterity in a multi-fingered hand does not necessarily require adding more motors or fingers in
the hand. Our findings indicate that enhanced dexterity and capabilities can be achieved without
such additions in our DASH setup.

Advancing dexterity requires attention to hand kinematics and compliance.

In Chapter 5, the hand design parameters that change between V1 and V5 are palm size, finger
length, MCP diameter, MCP height, DIP crease width, thumb angle, fingertip edge, and fingertip
thickness (as shown in Table 5.3), where five dash iterations are designed manually using teleop-
eration evaluation in the real world. In Chapter 7, the hand design parameters that were changed
across automated design space search included palm width, palm height, finger position, finger
orientation, proximal phalanges’ height, middle phalanges’ length, and distal phalanges’ length.
Our automated design iteration hand parameters are a subset of the ones we searched in manual
design iteration in the real world. Parameters such as MCP diameter and MCP height affected the
finger stiffness at the MCP joint which affected the finger’s ability to fold into the palm. For ex-
ample, the stiffness was too high for V4 which resulted in poor performance on tasks like picking
up the Screwdriver object. Our automated design iteration parameters did not include finger ge-
ometry which was covered by MCP diameter, MCP height, DIP crease width, fingertip edge, and
fingertip thickness. DIP crease width resulted in different finger curling abilities, where V5 had
the largest DIP crease width and the best curling ability out of our DASH design iterations. Sim-
ilarly, fingertip shape was affected by fingertip edge and fingertip thickness parameters, where
we varied the shape from rounded fingertips to flatter wedge-like fingertip shapes. Hands like V3
benefitted from flatter fingertips on tasks like picking up a single card from a deck of cards.

Our manual design iteration led to various hand designs from V1 to V5. While we have made
fine steps within the search space with our manual design iteration, we could have made coarser
steps by overcorrecting more between iterations to understand larger tradeoffs in hand designs
(i.e. anthropomorphic vs. claw-like hand structures). Some tradeoffs such as good power grasps
with V2 and good precision grasps with V3 resulted in the average of the two thumb placements
for V5. Our findings focused on purely arranging fingers and changing finger geometry in a
way that makes the tasks easier to perform with a specific hand design. However, if we had a
morphology degree of freedom, we could attempt something like a moving thumb placement for
specific tasks.

Overall, we can say that our manual design iteration investigated palm size, finger arrange-
ment, finger length, and finger geometry, while our automated design iteration tested the effects
of palm size, finger arrangement, and finger length. The key deficit of our automated design
iteration design parameters compared to our manual design iteration process includes the lack
of finger geometry tested in simulation. Furthermore, in Section 7.6, we show that simulated
results and real-world results on testing fingertip shape did not correlate with each other. Thus,
we leave it to future work to adjust simulated results to accurately model object interactions and
hand contact models for automated hand design iteration involving parameters such as finger
geometry.



The three main categories of hand design parameters we tested are palm size, finger length,
and finger arrangement.

Even within the three main categories of hand design parameters, we tested in simulation and
the real world, we have some insights into how to think about these design parameters and what
their effects look like. While smaller palm sizes generally fared better on both our DASH-30 and
pickup and reorient in-hand tasks tested in simulation, we found that palm width is not as impor-
tant as palm height. Palm height dictates the distance between the thumb and non-thumb fingers.
Shortening this distance and lengthening the fingers creates more overlap in the fingers’ overlap-
ping workspace for better fingertip reachability and increases dexterous manipulation skills. We
especially saw this with the comparison of V3 and V5 compared to V6 and V7. Similarly, finger
length is around the same for all of our DASH iterations with the earliest versions having the
shortest fingers and worst finger reachability and opposability. However, our design automation
process shortened the middle phalanges’ length for our optimized hands V6 and V7. This is
similar to the finger curling process that involves increasing the DIP crease width and decreasing
the length of the middle phalanges. We found that to be optimal for our tendon-driven soft hand
finger sizes. Lastly, finger arrangement mainly impacts thumb opposability and the robustness
of precision grasps. Thumb opposability is most important for reorientation tasks that require
opposing forces to stably rotate objects in hand, where the best opposability came from the cen-
tered thumb design in optimized hand designs V6 and V7. This allowed for the optimized hands
to perform best on pick-up and reorientation tasks in Chapter 7. While the finger spread was
tested coarsely in manual design iteration in the real world, we found that all hands except for
V1 had tight packing of non-thumb fingers with different thumb placements. This results in a
22.5-degree thumb orientation placed at the bottom right-hand corner of the palm for our final
design iteration in the real world. In our automated design search, we found the best design to
have a centered thumb along the bottom of the palm, with a larger gap between the middle and
ring finger than between the middle and index finger. However, the middle finger and thumb were
directly opposite each other with no rotation of the thumb for both V6 and V7. This resulted in
great thumb opposability and reachability to the other fingers (due to shorter palm height).

A natural question is are we converging towards human hands during optimization and how
do our DASH hand designs compare to human hand morphology. After Chapter 7, we tested
more hands, almost doubling the number of searched hands from around 400 to 821 hands
searched. The top 25 resulting hands are shown in Figure 9.1, where V7 is the top 23rd hand
(score 53.32). As we can see, V7 is one of the few hand designs that seem human-like where
most of the hands lack symmetry or alignment of fingers along the edges of the palm. Our
DASH hands compare similarly to human hands in terms of palm size but vary when it comes to
phalanx proportions. Table 9.1 compares the DASH design parameters to human hand measure-
ments where hand length measures the distance between the crease below the palm to the tip of
the middle finger. We find palm measurements [5] and hand index (palm width divided by hand
length as a percentage) to be similar between our hand designs and human hand proportions.
While proximal phalanx lengths are similar, human hands have longer middle phalanges than
distal phalanges [4] while DASH has shorter middle phalanges. This trend shows that our hand
designs do not converge towards human-like hands and also show divergence from human hand
finger arrangement with V7’s thumb centered on the palm directly across from the middle finger.



Figure 9.1: Top 25 optimized hands among 821 searched hands using design automation pipeline
in Chapter 7.

Human Hand Comparison V1 V2 V3 V4 V5 V6 V7 Human

Palm width (w) 102 84 84 84 84 92 92 90

Hand length (l) 186 208 208 208 208 204 204 193

Hand index (w/l*100) 55 40 40 40 40 45 45 46

Proximal length 45 45 45 45 45 45 45 45

Middle length 20 20 20 20 20 18 18 26

Distal length 30 35 35 35 35 35 35 21

Table 9.1: DASH hand design parameters compared to human hand proportions, where prox-
imal, middle, and distal phalanx lengths were taken from middle finger measurements [4] and
hand index is the palm width [5] divided by hand length as a percentage. All measurements are
in millimeters.

9.1.2 Choosing Tasks

Testing numerous hand designs requires suites of tasks or benchmarks that can properly evaluate
these designs. The tasks should provide enough signal to distinguish hand designs in terms of
task performance, which depends on the types of tasks we choose and the way we evaluate the
task performance.



Choosing a variety of tasks and objects allows differentiation in hand design performance.

Our first suite of tasks includes DASH-30, which we hand-curated. DASH-30 includes 30
different objects and tasks. The tasks are broken down into categories, shown in Figure 9.2,
with an emphasis on manipulation skills, i.e. hold, pick-and-place, lever, twist, open, and put
in/on. The tasks vary in size, weight, and material which helped us evaluate and differentiate
hand designs. Objects such as Chopstick, Pen, Egg, Chip, M&M, Card, and Grape are small
and require fine precise motions of the fingers. Large objects include Wine Glass, Pringles Can,
Mustard Bottle, Cup, Tennis Ball and Spam Box. Some objects are large and heavy such as the
Drill, Hammer, Soft Ball, and Cube which require strong grip. The pouring, stacking, opening
drawer, and Pringles Can reorientation tasks required strong enough grasps that moving the arm
to finish the task post-grasp would not disturb the grasp. This requires both precision from the
arm control to complete the task and the hand control during execution. Deformable objects such
as Plush Broccoli, Plush Dinosaur, and Cloth were some of the easiest objects to grasp, even
for our baseline hand Allegro. These tasks along with the lighter large objects (such as Wine
Glass) were not informative tasks in terms of differentiating hand performance across iterations.
As shown in Figure 9.2, most capabilities were retained through DASH iterations, except for
precision tasks involving small objects. The tasks even V7 was not able to master included Egg,
Chip, M&M, Card Pickup, Dice Rotation, Grape, and Plastic Bag. These were the most difficult
tasks that require fine precision manipulation that would benefit from sensing in order to execute
the tasks reliably. All of our experiments were done through teleoperation using solely visual
feedback which was insufficient for such fine motor skills.

Most of the 30 tasks fall into the hold and pick-and-place categories since grasping different
types of objects (i.e. rigid vs soft) can result in different grasping strategies. However, if we
were to expand on the DASH-30 suite of tasks, adding more objects or tasks into each of the
categories would give a more well-rounded picture of manipulation capabilities for hand designs.
For instance, each category in Figure 8.4 would be based on the hand’s performance on the same
number of tasks. While the DASH-30 tasks span a large variety of objects, object types, and task
setups, some of the tasks such as open and put in/on rely on grasping and reliable arm motion.
This can be comparable to hold and pick-and-place performance as long as the arm motion is
sufficiently reliable. For instance, opening the drawer requires grasping the drawer and then
moving the arm away from the drawer. The entire task does not rely on the hand’s abilities.

Meanwhile, our second task set involving picking and reorienting six objects in hand relies
only on the hand’s dexterity and capabilities. When formulating the second set of tasks, we
considered tasks like the door opening task from related work [28]. However, we realized that
grasping a door handle is trivial and the rest of the task required stable arm motion while con-
tinuing to grasp the handle. Furthermore, the grasp did not even require the thumb (and would
be possible without multi-fingered hands). This insight showed us that simulating many hand
designs requires tasks that focus on hand dexterity. Picking up and reorienting objects in hand
tests the hand’s dexterity and choosing a variety of objects tests different types of grasps. The
ring, barbell, sphere, cross3D, pen, and board required significantly different strategies from
each other. Furthermore, testing these objects at different scales in simulation tested different
strategies even on the same object.

Since our second set of tasks involving picking up and reorienting objects in-hand focused



Figure 9.2: Hand performance results on DASH-30 suite of tasks for Allegro baseline hand, V1,
V2, V3, V4, V5, and V7 across manipulation categories hold, pick and place, lever, twist, open,
and put in/on. Each task result is shown as the number of repetitions succeeded (legend in top
right corner) out of five total repetitions of each task for each hand.



specifically on dexterity and is a superset of the picking up tasks in DASH-30, we find that
V1 through V5 were tested on an easier set of tasks in real-world design iteration. Then, we
optimized hand designs automatically in simulation on the second harder task set and found
optimized hand designs V6 and V7. Thus, in Chapter 8, we found that our best-ranking hand
design in simulation V7 outperforms our manually designed hands V1 through V5. This is due
to the way we chose tasks and evolved our task set to create a more difficult task set for design
automation. We learned that creating tasks with a spectrum of difficulty in DASH-30 was useful
for differentiating hand performance and even further design iteration was evaluated on a more
difficult task set focused on dexterity to help guide a new successful hand design iteration. In
order to improve the hand’s capabilities beyond our existing two task suites, we could consider
a new task set involving tool manipulation that would focus on the hand’s ability to pick up and
use objects like Hammer, Screwdriver, Drill, etc, and would most likely require stronger motors
for DASH.

Non-binary evaluation metrics that include qualitative data increases differentiation among
hand design results.

In addition to the type of tasks we evaluated, the evaluation metric was important for differen-
tiating hand performance. For DASH-30, we had binary values of success and failure such as
dropping the object instead of picking up and holding the object firmly. Meanwhile, the pickup
and reorient tasks were graded on a scale of 0 to 1 based on the goal poses the objects were
evaluated on. The latter provided greater granularity which we learned from the qualitative data
provided by the observations from our DASH-30 evaluations. While the quantitative data we
collected from DASH-30 experiments included task success per repetition of each task, aggre-
gate data and observations helped inform successive design iterations. The types of trends and
observations that were most helpful for design iteration in the real world included performance
across repetitions of the same task to showcase reliability, trends in tasks the hands failed on to
highlight areas for improvement, types of grasps possible or used to understand differences in
grasping strategies used, and opposability and reachability of fingertips to identify limitations
during task execution. We focused on grasp stability when creating evaluation metrics for pick-
ing up and reorienting objects in hand. This task suite included 6 goal poses per object where 5
of the goal poses were scored with 0, 0.25, 0.5, 0.75, or 1 where 0 is a failed grasp and 1 is a very
stable grasp that is not movable with external disturbance. The last goal pose which requires
setting the object down on the table is scored with 0, 0.5, or 1 where 0 is when the object is
dropped onto the table from a large height and 1 is a graceful release of the object with contact
with the table. Having granularity in evaluation metrics enabled differences in grasp qualities
and therefore hand designs.

9.1.3 Rapid Prototyping and Teleoperation Evaluation
Rapid prototyping and teleoperation evaluation together enabled us to quickly iterate on hand
designs in the real world, as well as verify simulated hand designs in the real world. Rapid
prototyping enabled quick fabrication while teleoperation evaluated hand designs in the real-
world for instant feedback to the designer. Both of these methods allowed for design iteration in



the real world, allowing us to design, evaluate, and re-design hands in a matter of days.

Rapid prototyping can enable fast design iteration in the real world.

Fabricating dexterous hands using rapid prototyping techniques is a well-explored field, as dis-
cussed in Chapter 2. However, quickly iterating on the design of dexterous hands in the real
world is difficult without a way to rapidly prototype hands reliably. DASH was designed in a
specific way that enabled fast assessment and fabrication for design iteration in the real world.
Firstly, we made DASH as a soft tendon-driven multi-fingered hand. This led to a design with
all of the motors below the palm, removing any need for motors at each of the joints due to
tendon-driven actuation, and modularity. All of the fingers are identical and both soft and rigid
parts were 3D-printed. This allowed for less human intervention and assembly, and enabled parts
to be swapped out as needed. For example, V4 and V5 were identical other than finger geom-
etry so the fingers can be replaced to change between the two designs. Similarly, V6 and V7
share similar CAD models except for the palm and top plate. This way the fingers and remaining
parts can be reused and reassembled to switch between the hand designs. While this added extra
convenience, we found that printing time was the biggest delay in our designing, printing, and
assembling pipeline for manufacturing. Parallelization in print jobs allowed us to create V2 and
V3 in 3 and 5 days respectively, including teleoperation evaluation, redesigning, and manufactur-
ing time. Rapid prototyping significantly sped up manufacturing time to enable our fast design
iteration process in the real world.

Teleoperation evaluation can give designers instant feedback about a hand design’s limita-
tions.

We use teleoperation as our evaluation method in many of our experiments including Chap-
ters 4, 5, 7, and 8. Teleoperation allows for quick assessment of a manipulator’s capabilities
that does not require hand-picking trajectories or key-framed poses. Design limitations due to
hand kinematics and compliance are very apparent with teleoperating the fabricated hand. The
poor fingertip reachability of V1 and high finger stiffness (of MCP joints) of V4 were immediate
observations from the teleoperator even before performing the benchmark manipulation experi-
ments. Similarly, the teleoperator is the designer for the robotic hands, which adds the designer
into the design iteration feedback loop. The designer is able to collect observations and insights
into each design that can inform future design iterations. Additionally, teleoperation allows us
to use similar control for new hand designs rather than learning new control policies similar to
what we did for simulation.

In our experiments, we found that teleoperation was able to perform complex manipulation
tasks with our hand designs, possibly even better than autonomous policies. One of the main
insights is that human intuition plays a large role in being able to adjust grasps and try many
grasping strategies that would be difficult for autonomous policy learning. This points to a new
exciting direction where teleoperated demonstrations could help us learn better autonomous con-
trol policies for manipulation. However, this technique may not have been possible before newly
developed VR technologies like Manus, which can achieve 0.1-degree accuracy to allow for
complex teleoperated manipulations.



Teleoperation limitations include human bias and learning effects.

Relying on human operators can result in certain biases and limitations in terms of manipula-
tion task performance. We rely on the teleoperator’s ability to compensate for the robotic hand
designs flaws. For example, if picking up an object with the index and thumb fingers is not pos-
sible, the teleoperator is allowed to complete the task using a cigarette grasp (between the index
and middle finger). Any way to solve the task is acceptable. We are mainly concerned about
the hand design’s ability to complete the task at all, where observations or experiment results
will show the trends of failed tasks or types of grasps possible. The teleoperator could find a
single way to solve the task and repeat it exactly the same way across repetitions or try different
strategies across repetitions. This is one limitation of teleoperation evaluation. Furthermore, the
designer in the loop will be geared towards human-like features or designs due to the hand being
controlled by their own hand. It is natural to aim for the human hand as the ideal design for easier
teleoperation.

As with any skill, practice makes perfect. While we allowed teleoperators to take one hour
for practice to adjust to a new hand design, this time shortens across iterations as knowledge
is transferrable to similar designs (due to learning bias). When designs diverge too much from
human hands, the learning time will increase. The DASH-30 task suite mainly consisted of pick
and place tasks which did not show large learning bias when repeating V3 experiments after eval-
uating all five design iterations V1 to V5 (see Chapter 8). However, with our second task suite
of picking up and reorienting objects in-hand, we observed that the teleoperators required more
practice and expertise to perform these tasks. To avoid the learning bias as the teleoperator gains
experience across hand iteration experiments, we repeat the hands in the reverse order and aver-
age results. We found that our pick up and reorient tasks performed in the reverse direction did
indeed perform better. Taking the average and maximum of these scores was useful to understand
the peak performance of these hands as well as their relative performance to other hand designs.
In addition, our preliminary results with two other users performing the pick up and reorient
task showed that the average and maximum scores corresponded to our intuitions. The more
human-like hand had the best average score due to ease of teleoperation and the optimized hand
had the best maximum score due to enhanced capabilities. We note that new operators are ideal
teleoperators if the goal is to find the easiest hand design to operate by non-experts. However, in
our case, having the same expert teleoperator perform all of our manipulation experiments was
key to fully evaluating the hand designs capabilities.

9.1.4 Simulated Hand Designs

Simulating hand designs can explore a much larger design space than manual design iteration.
We were able to test only five design iterations manually but hundreds in simulation. Hand de-
sign parameter ranges were still influenced from designer intuition from manual design iteration
which was a local design space search that provided intuition for our larger automated design
iteration. In our work, simulating hands expedited design iteration by testing many hands, some
of which we verify in the real world.



Policy transfer and genetic algorithms can enable learning dexterous skills for many new
hand designs.

The main barrier to testing many designs in simulation is learning dexterous skills for each new
hand design out of many designs in a large parameter search space. We found that policy transfer
and genetic algorithms can be used to both learn policies for hand designs and generate new hand
designs from existing ones. Robot interpolation enables us to sample intermediate hand design
candidates between a source and target robot. We begin by learning the expert policy for the
manipulation task suite on a ShadowHand-like structure (without the pinky). Then, we transfer
the expert policy on that source hand to a target hand like V1. Intermediate hand designs are
morphed versions of the source hand on the evolution to become the target hand. These are also
considered valid robot hand designs. This allows us to incrementally transfer control policies
to nearby designs and eventually to the target robot hand. Genetic algorithms enable crossovers
and mutations of hand designs to generate new designs on top of existing candidates such as V1
to V5. Transferring policies is an efficient way to learn new policies for our new hand designs,
especially since we are searching hand designs that are relatively close to each other (they all
have four fingers and a palm).

Simulated hand design results can resemble real world hand design performance in terms
of relative ranking.

While we simulated our hand designs as rigid bodies and fabricated them as soft robotic hands,
we were curious whether our simulated hand performance would resemble real world hand per-
formance. We found that the general ranking of hand performance was similar, such as V6
performing better than V7 on most of the pick up and reorient tasks. The optimized hands, V6
and V7, performed similarly with respect to each other and the manually iterated hand designs V1
through V5. We restricted the hand design parameter search to be feasible designs we could pro-
duce, limited torque limits, and added friction tape to real world objects. Our simulated object
interactions assumed point contacts but the compliance of our soft hands enabled contact-rich
manipulations. Simulating hand designs resulted in our optimized hand design V7 which out-
performed our manually iterated hand design V5 by mastering four more tasks (see Figure 8.1).
This jump in capabilities did not happen across V2 to V5. V1 to V2 performance was similar in
adding four new capabilities but the manual design iteration started to plateau in improvement.
Simulating hand designs expedited our design iteration process.

While we tested simulated hand designs using teleoperation on the same tasks, we could use
teleoperation demonstrations of tasks in order to learn expert policies (instead of learning from
scratch). This could also help close the gap between sim and real when transferring policies from
simulation to the real robot.

Testing simulated hand designs in the real world is useful to close the gap and understand
simulation limitations.

The sim to real gap from automating design iteration required real world evaluation to deter-
mine whether the optimized designs’ performance in simulation transferred to real-world hand
performance. We observed that features like fingertip shape did not resemble real-world hand



performance. We also added elements like friction tape and foam to our objects for real-world
manipulation experiments even though we 3D-printed the six objects from the same simula-
tion specifications. Despite gaps between simulated and real world hand performance, such
as simulated rigid bodies and fabricated soft hands, we found similarities in our teleoperated
manipulation experiments and simulated hand design performance. Related work shows that
FEA is tedious and slow but can be replaced by simulating key-framed poses to inform design
choices [7]. We take this a step further by showing that simulating learned manipulation policies
can inform design choices in the real world. And teleoperation evaluation allowed us to assess
these designs in the real world without transferring the exact policies to the real world and relying
on human operators to learn the best policy for each hand for each object tested.





Chapter 10

Conclusion and Future Work

10.1 Conclusions
This thesis explores techniques for iterative design including rapid prototyping, teleoperation,
and simulation to enable designers to tune kinematics and compliance for dexterous tasks through
real robot evaluation. We show that substantial improvements can be made between design iter-
ations and over state of the art dexterous robotic hands on dexterity benchmarks. Our insights
about design parameters reveal that hand kinematics and compliance alone can improve dex-
terity rather than adding motors or fingers. We found that a variety of tasks and objects as
well as non-binary evaluation metrics help difference hand design performance. All of our real
world evaluation and iteration was possible through rapid prototyping and quick teleoperation
assessment of the hand designs’ capabilities. Lastly, we efficiently learn new dexterous skills
in simulation through policy transfer and find ranked hand performance in simulation correlates
with real world performance.

10.2 Future Work
In this section, we cover future extensions of our work in the following areas: design parameters,
tasks, teleoperation evaluation, rapid prototyping, and simulation.

10.2.1 Design Parameters
The design parameter features we tested in simulation include palm size, finger placement (po-
sition and orientation), and finger length. In addition to these features, manual design iteration
also included finger geometry such as joint stiffness, crease width, and fingertip shape. Finger
geometry is a high-dimensional parameter space that was not thoroughly explored in this work
and had significant effects on task performance even between thin wedge-like versus rounded
spherical fingertips. While our automated design iteration tested hundreds of designs in simula-
tion, we did not study the relationship between the parameter space and hand performance. For
instance, understanding whether designs between V1 and V2 perform within the range of the two
hands’ scores or sensitivity experiments where changing the designs by small amounts results
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in similar or different results. This could help us understand if our evaluation metric is good
and whether there is an inductive bias. Generally, we found that thumb placement is the most
sensitive, followed by fingertip shape, and that length of finger was least sensitive (within some
range). We leave it to future work to corroborate this in simulation.

10.2.2 Tasks

Experiments in this thesis were limited to our manipulation task suites such as DASH-30 and
in-hand reorientation of specific objects. While our curated tasks were useful to differentiate our
hand designs for iteration, further work can be done to find a minimal set of tasks that provides
good signal for design iteration without drastically increasing evaluation time. Additionally,
each category of tasks can be balanced with the same number of tasks to demonstrate a well-
rounded picture of the hand’s capabilities. The axes we explored include object size, weight,
and material as well as categories of task such as pick-and-place, hold, lever, etc. Within a
minimal set of tasks, we can cover more types of tasks and objects efficiently to better cover
grasp taxonomies [19] or everyday taxonomies [21] to further evaluate the capabilities of our
hands.

10.2.3 Rapid Prototyping

The designs of our manipulators presented in this thesis are prototypes that can redesigned for
easier fabrication and use. Specifically, DASH uses tendon-driven actuation which can be dif-
ficult to replace without disassembling at least parts of the hand. Improving the modularity
and replaceability of tendons would greatly improve the user experience of DASH. The tendon
routing is an S-shape through the top plate but would be easier to assemble with straight lines.
Replacing tendons without disassembling would be possible by improving the tendon routing in
the top plate. Furthermore, the amount of payload and finger pullout strength is strictly dependent
on the motors we use. We did not change the motors at all during design iteration but increasing
the motor stall torque would improve the payload of the hand and could even enable forceful
manipulations such as tool-based tasks. Our main bottleneck for fabricating DASH hands was
printing time, reducing this time or parallelizing prints efficiently is left to future work.

10.2.4 Teleoperation Evaluation

Teleoperation evaluation has some open challenges, such as overcoming human bias and learn-
ing effects. Firstly, human bias can lead teleoperators to perform poorly on hands that are not
as human-like or intuitive to control which can artificially lower scores on potentially good hand
designs. In this work, we use joint-to-joint mapping between the teleoperator’s glove and the
robot hand, but using pose-to-pose mapping could alleviate these issues by allowing the teleop-
erator to pose in the same manner that is expected of the teleoperated robot hand. Furthermore,
teleoperators are allowed to try different grasping strategies across repetitions of the same task.
This can add human error in terms of trying a bad strategy instead of repeating a good known
strategy. However, this allowed us to have variety in our evaluation scores rather than always



failing or always succeeding on a task across repetitions. Secondly, learning effects dispropor-
tionately affected the in-hand reorientation tasks rather than the DASH-30 tasks which mostly
involved grasping. Learning effects are most significant for difficult tasks that require lots of
practice (such as in-hand reorientation). Future work on mitigating human bias and learning
effects can include replaying teleoperated trajectories to evaluate task robustness. This can lever-
age human intuition and exploration to find the best policy for a given hand and task but removes
human intervention. Eventually, teleoperation demonstrations or trajectories can inform learned
policies which is our end goal for autonomously controlling dexterous hands. Additionally, our
teleoperation evaluations were open-loop in that teleoperators only had visual feedback to op-
erate the robotic hand. Future work incorporating sensing in the hands will enable closed-loop
manipulation for tasks like M&M and Chip which were difficult for our optimized hand designs
but could bridge the gap between achieving 23 versus all of the DASH-30 tasks.

10.2.5 Simulation
The sim to real gap is incredibly challenging and we only explored a small part of it. Our
simulated hand designs interacted with smooth rigid objects in simulation and the real world.
However, our real world 3D-printed objects from the same simulated object specifications were
too difficult to manipulation as is. We used friction tape and foam in order to increase the ability
to grasp and reorient the objects in-hand. In the future, we would like to have contact-rich ma-
nipulations in simulation to better bridge the gap between sim and real environments. Especially
with soft robotic hands, we were able to make contact with the table and perform difficult tasks
such as picking up a pen from the table in the real world. Furthermore, design features such
as fingertip shape did not accurately correlate with real world results which could be due to the
fast that object interactions were not realistic. Contact information can also improve optimiza-
tion criteria such as evaluating power grasps and precision grasps in simulation as well as the
real world (we only evaluated these grasps in the real world). Incorporating contact information
into our automated design iteration method would allow for more complex tasks such as tool
manipulation as well.

Furthermore, we approached the design morphology and control problems individually in
our co-design optimization approach. In the future, we would like to integrate both of them more
closely to efficiently optimize towards new designs.
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[23] Johanne Desrosiers, Réjean Hébert, Gina Bravo, and Elisabeth Dutil. The purdue peg-
board test: normative data for people aged 60 and over. Disability and rehabilitation, 17
(5):217–224, 1995. 2.2



[24] Virgil Mathiowetz, Gloria Volland, Nancy Kashman, and Karen Weber. Adult norms for
the box and block test of manual dexterity. The American journal of occupational therapy,
39(6):386–391, 1985. 2.2

[25] Erika Davis Sears and Kevin C Chung. Validity and responsiveness of the jebsen–taylor
hand function test. The Journal of hand surgery, 35(1):30–37, 2010. 2.2

[26] Jo Adams, Kate Hodges, Joanna Kujawa, and Cheryl Metcalf. Test-retest reliability of
the southampton hand assessment procedure. International Journal of Rehabilitation Re-
search, 32:S18, 2009. 2.2

[27] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige, Siddhartha S
Srinivasa, Pieter Abeel, and Aaron M Dollar. Ycb benchmarking project: Object set, data
set and their applications. Journal of The Society of Instrument and Control Engineers, 56
(10):792–797, 2017. 2.2, 7.1

[28] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman,
Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.
2.2, 7.1, 7.5.1, 9.1.2

[29] Boling Yang, Patrick E. Lancaster, Siddhartha S. Srinivasa, and Joshua R. Smith. Bench-
marking robot manipulation with the rubik’s cube. IEEE Robotics and Automation Letters,
5(2):2094–2099, 2020. doi: 10.1109/LRA.2020.2969912. 2.2, 7.1

[30] Silvia Cruciani, Balakumar Sundaralingam, Kaiyu Hang, Vikash Kumar, Tucker Hermans,
and Danica Kragic. Benchmarking in-hand manipulation. IEEE Robotics and Automation
Letters, 5(2):588–595, 2020. 2.2

[31] Joseph Falco, Karl Van Wyk, and Elena Messina. Performance metrics and test methods
for robotic hands. DRAFT NIST Special Publication, 1227, 2018. 2.2

[32] Julian Whitman, Matthew Travers, and Howie Choset. Modular mobile robot design se-
lection with deep reinforcement learning. In NeurIPS Workshop on ML for engineering
modeling, simulation and design, 2020. 2.3, 7.2

[33] Charles Schaff, Audrey Sedal, and Matthew R Walter. Soft robots learn to crawl: Jointly
optimizing design and control with sim-to-real transfer. arXiv preprint arXiv:2202.04575,
2022. 2.3

[34] Melissa Mozian, Juan Camilo Gamboa Higuera, David Meger, and Gregory Dudek.
Learning domain randomization distributions for training robust locomotion policies. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
6112–6117. IEEE, 2020. 2.3

[35] Steffen Puhlmann, Jason Harris, and Oliver Brock. Rbo hand 3: A platform for soft
dexterous manipulation. IEEE Transactions on Robotics, 38(6):3434–3449, dec 2022.
2.3, 5.1, 5.2, 5.6

[36] Yong-Jae Kim, Younbaek Lee, Jiyoung Kim, Ja-Woo Lee, Kang-Min Park, Kyung-Sik
Roh, and Jung-Yun Choi. Roboray hand: A highly backdrivable robotic hand with sen-
sorless contact force measurements. In 2014 IEEE International Conference on Robotics



and Automation (ICRA), pages 6712–6718. IEEE, 2014. 2.3

[37] John Amend and Hod Lipson. The jamhand: dexterous manipulation with minimal actu-
ation. Soft robotics, 4(1):70–80, 2017. 2.3

[38] Walter G Bircher, Andrew S Morgan, and Aaron M Dollar. Complex manipulation with
a simple robotic hand through contact breaking and caging. Science Robotics, 6(54):
eabd2666, 2021. 2.3

[39] Christopher Hazard, Nancy Pollard, and Stelian Coros. Automated design of robotic hands
for in-hand manipulation tasks. International Journal of Humanoid Robotics, 17(01):
1950029, 2020. 2.3

[40] Zhong Zhang, Yu Zheng, Zhe Hu, Lezhang Liu, Xuan Zhao, Xiong Li, and Jia Pan.
A computational framework for robot hand design via reinforcement learning. In 2021
IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 7216–
7222. IEEE, 2021. 2.3

[41] Tianjian Chen, Zhanpeng He, and Matei Ciocarlie. Hardware as policy: Mechanical
and computational co-optimization using deep reinforcement learning. arXiv preprint
arXiv:2008.04460, 2020. 2.3

[42] Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shinjiro Sueda, and
Pulkit Agrawal. An end-to-end differentiable framework for contact-aware robot design.
arXiv preprint arXiv:2107.07501, 2021. 2.3

[43] Raphael Deimel, Patrick Irmisch, Vincent Wall, and Oliver Brock. Automated co-design
of soft hand morphology and control strategy for grasping. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 1213–1218. IEEE,
2017. 2.3, 5.2, 7.2

[44] Andre Meixner, Christopher Hazard, and Nancy Pollard. Automated design of sim-
ple and robust manipulators for dexterous in-hand manipulation tasks using evolutionary
strategies. In 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Hu-
manoids), pages 281–288. IEEE, 2019. 2.3, 7.2

[45] Raphael Deimel and Oliver Brock. A compliant hand based on a novel pneumatic actuator.
In 2013 IEEE International Conference on Robotics and Automation, pages 2047–2053.
IEEE, 2013. 2.4

[46] Raymond R Ma, Lael U Odhner, and Aaron M Dollar. A modular, open-source 3d printed
underactuated hand. In 2013 IEEE International Conference on Robotics and Automation,
pages 2737–2743. IEEE, 2013. 2.4

[47] Jahan Zeb Gul, Memoon Sajid, Muhammad Muqeet Rehman, Ghayas Uddin Siddiqui,
Imran Shah, Kyung-Hwan Kim, Jae-Wook Lee, and Kyung Hyun Choi. 3d printing for
soft robotics–a review. Science and technology of advanced materials, 19(1):243–262,
2018. 2.4

[48] Raphael Deimel and Oliver Brock. A novel type of compliant and underactuated robotic
hand for dexterous grasping. The International Journal of Robotics Research, 35(1-3):
161–185, 2016. doi: 10.1177/0278364915592961. URL https://doi.org/10.

https://doi.org/10.1177/0278364915592961
https://doi.org/10.1177/0278364915592961


1177/0278364915592961. 2.4

[49] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar.
Dexterous manipulation with deep reinforcement learning: Efficient, general, and low-
cost. In 2019 International Conference on Robotics and Automation (ICRA), pages 3651–
3657. IEEE, 2019. 2.4, 4.1, 5.3.2

[50] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta.
R3m: A universal visual representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022. 2.4, 6.3.1, 6.5

[51] L Rey and R Clavel. The delta parallel robot. In Parallel Kinematic Machines: Theoretical
Aspects and Industrial Requirements, pages 401–417. Springer, 1999. 3.1, 3.3

[52] Lung-Wen Tsai. Robot analysis: the mechanics of serial and parallel manipulators. John
Wiley & Sons, 1999. 3.1, 3.2

[53] Nicola Pio Belfiore and Pasquale Simeone. Inverse kinetostatic analysis of compliant
four-bar linkages. Mechanism and Machine Theory, 69:350–372, 2013. 3.2

[54] Marco Balucani, Nicola Pio Belfiore, Rocco Crescenzi, and Matteo Verotti. The develop-
ment of a mems/nems-based 3 dof compliant micro robot. In 19th International Workshop
on Robotics in Alpe-Adria-Danube Region (RAAD 2010), pages 173–179. IEEE, 2010. 3.2

[55] Yanling Tian, Bijan Shirinzadeh, Dawei Zhang, Xianping Liu, and D Chetwynd. De-
sign and forward kinematics of the compliant micro-manipulator with lever mechanisms.
Precision Engineering, 33(4):466–475, 2009. 3.2

[56] Umesh Bhagat, Bijan Shirinzadeh, Leon Clark, Peter Chea, Yanding Qin, Yanling Tian,
and Dawei Zhang. Design and analysis of a novel flexure-based 3-dof mechanism. Mech-
anism and Machine Theory, 74:173–187, 2014. 3.2

[57] Martin L Culpepper and Gordon Anderson. Design of a low-cost nano-manipulator which
utilizes a monolithic, spatial compliant mechanism. Precision engineering, 28(4):469–
482, 2004. 3.2

[58] Byung-Ju Yi, Goo Bong Chung, Heung Yeol Na, Whee Kuk Kim, and Il Hong Suh. De-
sign and experiment of a 3-dof parallel micromechanism utilizing flexure hinges. IEEE
Transactions on robotics and automation, 19(4):604–612, 2003. 3.2

[59] Ankur Mehta, Joseph DelPreto, and Daniela Rus. Integrated codesign of printable robots.
Journal of Mechanisms and Robotics, 7(2):021015, 2015. 3.2

[60] Suk-Jun Kim, Dae-Young Lee, Gwang-Pil Jung, and Kyu-Jin Cho. An origami-inspired,
self-locking robotic arm that can be folded flat. Science Robotics, 3(16):eaar2915, 2018.
3.2

[61] ByungHyun Shin, Samuel M Felton, Michael T Tolley, and Robert J Wood. Self-
assembling sensors for printable machines. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 4417–4422. IEEE, 2014. 3.2

[62] Je-sung Koh, Daniel M Aukes, Brandon Araki, Sarah Pohorecky, Yash Mulgaonkar,
Michael T Tolley, Vijay Kumar, Daniela Rus, and Robert J Wood. A modular folded
laminate robot capable of multi modal locomotion. In 2016 International Symposium on

https://doi.org/10.1177/0278364915592961
https://doi.org/10.1177/0278364915592961
https://doi.org/10.1177/0278364915592961


Experimental Robotics, pages 59–70. Springer, 2017. 3.2

[63] Jorge E Correa, Joseph Toombs, Nicholas Toombs, and Placid M Ferreira. Laminated
micro-machine: Design and fabrication of a flexure-based delta robot. Journal of Manu-
facturing Processes, 24:370–375, 2016. 3.2, 4.2

[64] Ryan St Pierre, Noah Paul, and Sarah Bergbreiter. 3dflex: A rapid prototyping approach
for multi-material compliant mechanisms in millirobots. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 3068–3073. IEEE, 2017. 3.2

[65] Doug Stewart. A platform with six degrees of freedom. Proceedings of the institution of
mechanical engineers, 180(1):371–386, 1965. 3.2

[66] Jean-Pierre Merlet. Parallel robots, volume 128. Springer Science & Business Media,
2005. 4.1

[67] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob
McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,
et al. Learning dexterous in-hand manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020. 4.1, 5.2, 6.2

[68] Josie Hughes, Utku Culha, Fabio Giardina, Fabian Guenther, Andre Rosendo, and Fumiya
Iida. Soft manipulators and grippers: a review. Frontiers in Robotics and AI, 3:69, 2016.
4.1

[69] John R Amend, Eric Brown, Nicholas Rodenberg, Heinrich M Jaeger, and Hod Lipson.
A positive pressure universal gripper based on the jamming of granular material. IEEE
transactions on robotics, 28(2):341–350, 2012. 4.1

[70] Robotiq. https://thinkbotsolutions.com/collections/robotiq. Ac-
cessed: 2021-04-21. 4.1

[71] Daniela Rus and Michael T Tolley. Design, fabrication and control of soft robots. Nature,
521(7553):467–475, 2015. 4.2

[72] Pragna Mannam, Oliver Kroemer, and F. Zeynep Temel. Characterization of compliant
parallelogram links for 3d-printed delta manipulators. Proceedings of International Sym-
posium on Experimental Robotics (ISER ’20), March 2021. 4.2, 4.3.1, 4.3.2

[73] Mohamed Bouri and Reymond Clavel. The linear delta: Developments and applications.
In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th Ger-
man Conference on Robotics), pages 1–8. VDE, 2010. 4.2

[74] Ryan L Truby, Cosimo Della Santina, and Daniela Rus. Distributed proprioception of 3d
configuration in soft, sensorized robots via deep learning. IEEE Robotics and Automation
Letters, 5(2):3299–3306, 2020. 4.2

[75] Bianca S Homberg, Robert K Katzschmann, Mehmet R Dogar, and Daniela Rus. Haptic
identification of objects using a modular soft robotic gripper. pages 1698–1705, 2015. 4.2

[76] Gabor Soter, Andrew Conn, Helmut Hauser, and Jonathan Rossiter. Bodily aware soft
robots: integration of proprioceptive and exteroceptive sensors. pages 2448–2453, 2018.
4.2

https://thinkbotsolutions.com/collections/robotiq


[77] Ultimaker: Materials. https://ultimaker.com/materials. Accessed: 2021-
02-27. 4.3
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