Exploring Diverse Interaction Types for
Human-in-the-Loop Robot Learning

Patrick Callaghan
CMU-RI-TR-23-81
November 21, 2023

The Robotics Institute
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Henny Admoni, Co-Chair
Oliver Kroemer, Co-Chair

Reid Simmons
Gokul Swamy

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright (C) 2023 Patrick Callaghan. All rights reserved.






For my parents.



v



Abstract

Teaching sessions between humans and robots will need to be maximally
informative for optimal robot learning and to ease the human’s teaching
burden. However, the bulk of prior work considers one or two modalities
through which a human can convey information to a robot—mnamely,
kinesthetic demonstrations and preference queries. Moreover, people
will teach robots to perform tasks according to their own, individual
preferences; as such, robots need to represent the task in a way that
can handle this heterogeneity. This thesis addresses both needs. First,
we investigated how an agent can maximize its information gain by
actively selecting queries from a diverse set of interaction types (including
demonstrations, corrections, preference queries, and binary critiques).
Second, we explored three reward function structures that could be used
to model a human teacher’s preferences for how an agent should perform
a task. Our evaluations showed that 1.) actively selecting from among a
diverse set of interaction types yields faster, more robust learning, and 2.)
an agent typically learns best when its reward function structure matches
its teacher’s.



vi



Acknowledgments

Without the guidance of Henny Admoni and Oliver Kroemer, I'd be in a
much different place today. Thank you both so much for your unfailing

kindness, patience, and interest in me as a person and as a researcher.

Advisors have many roles, and I routinely feel the efforts you make to fill
them all. That effort is what makes all the difference.

Thanks too to my committee members Reid Simmons and Gokul Swamy:.

Gokul, your wise advice on how to approach my research will stay with
me during and beyond my PhD; I'm so grateful for our discussion and
look forward to the discussions we’ll have in the future. Reid, we’ve only
worked together for a short while, but I already feel excited about what’s
to come. Thank you for your guidance so far and your belief in me.

The intellectual discussions and the fun experiences are what made my
time as an MSR student as enjoyable as it ended up being, and those
words— “intellectual” and “fun”—are apt descriptors for the the people
I can so happily call my labmates. Thank you IAM Lab (Alex, Erin,
Jacky, Kevin, Mark, Mohit, Sarvesh, Saumya, Shivam, Tab, Xinyu, Yunus,
and Zilin), and HARP Lab (Abhijat, Ada, Ben, Maggie, Michelle, Mike,
Pallavi, Pranay, Reuben, Stephanie, Suresh, Tesca, and Zulekha) for being
the regular sources of wisdom, kindness, and laughter I imagine most
hope to have in life. Additionally, imposter syndrome has had its way
with me, but so many of you helped me quiet that voice and believe I am
capable as a researcher. Thank you for conversations which still help me
keep things in perspective.

I would be nowhere without the remarkable collection of people I can
so fortunately call my family. Mom, Dad, Katie, Dan, Thomas, Luke,
Maggie, and Aria—I am so enormously grateful that I never need doubt
the love you have for me; it is a gift I do not take for granted. I love you
all.

vii



viil



Contents

1 Introduction 1

2 Related Work 5
2.1 Reward Representations in HIRL . . . . . ... ... ... ... ... 5
2.2 Approximating Human Models . . . . . . ... ... ... ... ... 6
2.3 Active Learning and Learning from People . . . . . . ... ... ... 6

3 Actively Selecting Queries From a Diverse Set of Interaction Types 9

3.1 Approach . . . .. ... 10
3.1.1  Query Optimization . . .. .. ... ... ... ... ..... 11
3.1.2 Update Weights from Feedback . . . . ... ... ... .... 15
3.2 Results. . . . . . 15
3.2.1 INQUIRE Query Selection . . . . . . ... ... ... ..... 16
3.2.2 Learning Performance . . . ... .. ... ... ... ..... 17
3.3 Discussion . . . . . . ... 19
3.4 Limitations . . . . . . . . .. 21
3.5 Conclusion . . . . . . . ... 21

4 Exploring Reward Functions for Human Interactive Robot Learning 23

4.1 Problem Statement and Assumptions . . . . . . ... ... ... ... 25
4.2 Reward Function Representations . . . . . . . .. .. ... ... ... 27
4.2.1 Comparative Variant . . . . . .. ... ... L. 27
4.2.2 Comparative + Specific Variant . . . . . . .. ... ... ... 27
4.2.3 Grid Variant . . . . . . ... 28
4.3 Active Query Selection and Learner Belief Updates . . . . . .. ... 29
4.4 Simulation Experiments . . . . . .. ... 30
4.4.1 Evaluation Domains . . . . ... ... .. ... ... ... .. 30
4.4.2 Simulated Human Oracle . . . . . . .. ... ... ... .... 31
4.4.3 Variables and Metrics . . . . . .. .. ..o 32
444 Results. . . . . . . . 32
4.4.5 Discussion of Simulation Results . . . . . ... ... ... ... 36
4.5 User Study . . . . . . . 38
451 Results. . . . .. .. 40
4.5.2  Discussion of User Study Results . . . . ... ... ... ... 41

X



4.6 Conclusion . . . . . . . . 42

5 Conclusion 45
6 Appendix 47
6.1 INQUIRE: Approach Details . . . . . . ... ... ... ... ..... 47
6.1.1 Information Gain Derivation . . . . . . ... ... ... .... 47

6.1.2 KL Divergence Formulation . . . ... ... ... ... .... 49

6.1.3 Probability Tensor Derivations . . . . . .. ... .. ... ... 50

6.1.4 Gradient Derivation . . . . . . .. .. ... ... .. .. ... 52

6.1.5 Training Parameters . . . . . . .. . ... ... .. ... .. 53

6.2 INQUIRE: Evaluation Details . . . . . ... .. ... ... ...... 53
6.2.1 Domain Implementations . . . . . . . . ... ... ... ... 53

6.2.2 Oracle Implementation . . . . . . ... ... ... ....... 56

6.2.3 Evaluation Procedure . . . . . . . ... ... ... 58

6.3 AUC Figures . . . . . . . . . . . 59
6.4 Exploring Reward Functions: Filtering Reward Function Beliefs . . . 61
Bibliography 63

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.



Chapter 1

Introduction

As we envision robots that adapt to novel tasks and environments after deployment, it
is important to consider how they can efficiently obtain training data to address this
novelty. Research in Human Interactive Robot Learning (HIRL) has yielded many
effective methods for obtaining this training data via interaction between a robot and
a human teacher. For instance, in a demonstration, the teacher provides a trajectory
that the robot should follow starting from an initial state [26, 41]. In a preference
query, the teacher selects one trajectory from a set of candidates proposed by the
robot [10, 51]. In response to a single trajectory proposed by the robot, the teacher
can provide a correction [1, 21] or simply a binary reward [14]. These interaction types
differ according to how the robot queries the teacher, how the teacher is constrained in
providing feedback, how the robot should interpret the teacher’s feedback as training
data, and the physical and cognitive load imposed on the teacher [18].

Prior work in Active Learning has investigated how to formulate informative
queries by maximizing the expected information gain resulting from the teacher’s
feedback. However, barring a few exceptions ([9, 12, 43]), prior work typically assumes
that the robot uses a single interaction type for all queries. We expect that the
optimal interaction type depends on the robot’s task knowledge (which changes over
time), the robot’s query state (i.e., the state from which it queries the teacher),
and domain-specific considerations (e.g., the time or effort it takes a teacher to
respond to queries) [30]. Additionally, we suspect that the way a learning agent

models its teacher’s preferences can influence how it learns tasks when taught through



1. Introduction

actively-selected interaction types and can even affect the active selection process
itself.

The first work of this thesis is motivated by this question: How can a robot
optimize both the type and content of its queries to a human teacher based on the
information it needs at any given moment? We introduce INQUIRE: a robot learning
system that performs this optimization by representing multiple interaction types in
a single unified framework, enabling the robot to directly estimate and compare the
expected information gain of its queries across multiple interaction types. We evaluate
INQUIRE against two state-of-the-art interactive learning methods that use a single
or fixed pattern of interaction types. We analyzed the effect of domain on INQUIRE’s
performance and selection of interaction types over time by simulating four domains
with unique reward-learning problems. We found that INQUIRE learned reward
functions that were more accurate and resulted in better task performance than either
baseline, with particular strength in accommodating low-information query states
(i.e., repeated states in which the robot has already received feedback). Furthermore,
we demonstrate how INQUIRE can incorporate cost metrics (representing physical or
cognitive load on the teacher), optimizing queries over both the informativeness and

ease of the teacher’s responses.

In the second work of this thesis, we explore how the choice of reward function
representation affects the agent’s ability to learn through multiple interaction types.
In particular, we explore three variants of a standard linear combination reward
representation with varied representational power and hence varied complexity. A
Comparative reward representation weighs the relative importances of task features.
Such a representation enables intuitive interpretation and is commonplace in the
literature [2, 6, 41, 45]. In contrast, our Comparative+Specific representation provides
superior representational power—that is, an ability to specify the desired param-
eters of a reward function—at the cost of learning both the comparative weights
and specific, desired parameter values instead of only learning weights. Finally, a
Grid representation is an attempt to capture the “middle ground” between the two
aforementioned representations by assigning comparative weights to a collection of
predefined candidate parameter values. As in our aforementioned work, we consider
corrections, critiques, demonstrations, and preference queries. We design the learner

using a particle-based belief model that is amenable to the different reward repre-



1. Introduction

sentations and active query selection from among multiple interaction types. We
also investigate how different reward representations affect an agent’s ability to learn
when querying with a single interaction type in comparison to when interaction types
are actively selected by the agent. Through teaching sessions with a simulated human
oracle, we found that (1.) reward representation affects the frequency with which an
agent actively selects each interaction types, and (2.) an agent learns best when its
reward representation matches that of its teacher’s.

The two works presented herein aim to contribute to the grand goal of enabling
robots to efficiently and conveniently learn tasks and behaviors directly from human
teachers and in accordance with those teachers’ preferences. Much work has yet to be
done to achieve such a vision, but hopefully this thesis can be recalled and built upon
in future efforts to understand how robots should learn from, and behave around,

long-term human partners.



1. Introduction



Chapter 2

Related Work

2.1 Reward Representations in HIRL

Prior work explores a plethora of reward representations for modeling humans and
their preferences. As is standard in many inverse reinforcement learning contexts,
much of that work assumes a reward function that is a linear combination of weights
and features [3, 4, 48]. In [11], the authors attempt to learn a user’s reward function
through preference queries and by modeling the function with a Gaussian Process,
and the work from [40] models reward for a task using a neural network amenable to

inputs from multiple interaction types.

The work in [32] models human ranking tendencies via the Boltzmann rational
model, but they model a prior over human policies instead of reward functions (as
we do in this thesis). Moreover, the authors’” model is a deep network (which includes

a transformer as a discriminator).

While the aforementioned works each explore reward representations implicitly,
they do not do so in an explicit manner as we do in our second project. At the same
time, our work does not explore the possible reward representations discussed herein;
future work which makes such comparisons would be worthwhile and informative for

deducing which reward representations are best for HIRL.



2. Related Work

2.2 Approximating Human Models

Accurately modeling—and learning how to accurately model-—the humans with which
robots interact remain crucial problems in HRI researchers still strive to solve. The
method presented in [46] learns skills from a human demonstrator while also learning
a model describing how that particular human is sub-optimal when providing those
demonstrations. Like us, the aim of [34] is to learn a human model, but we seek a
model of human preferences over tasks while they sought a model of what a human
learner thought of their Al teacher. Similarly, the agent in [53] learns a model of
strategies its human partners might employ when undertaking collaborative tasks.
Investigations into the functional underpinnings of learning from multiple interaction
types and how they might vary from person to person also have been made [23]. Our
underlying representation of the human teacher is rather simple, but as opposed to
the aforementioned work, our work explores what might be an ideal way to model

teachers’ task representations.

2.3 Active Learning and Learning from People

Learning from People typically refers to how robots interpret human-provided feedback
as training data. This interpretation arises in the forms of imitation learning [26] or
inverse reinforcement learning from demonstrations [41]. However, there are many
other forms that human feedback can take, including preferences [10, 51|, labels [20],
and corrections [1, 21]. These approaches optimize queries within a single interaction
type, sometimes by maximizing volume removal [45], information gain derived from
the teacher’s response to the query [10], or by min-max regret optimization [50]. Prior
work also investigates the use of fixed strategies for selecting interaction types; for
example, requesting a fixed number of demonstrations before requesting preferences
for the remaining queries [27, 43]. As we do, [9] incorporates more interaction types
(demonstrations, labels, and feature queries) and contributes both rule-based and
decision-theoretic strategies for query selection. Other methods for learning from
multiple feedback types include combining preferences with ordinal labels [35] and
using both demonstrations and rankings [8]. Furthermore, [13] presents a software

library for combining different preference feedback types and demonstrations.



2. Related Work

Additionally, prior work investigates active selection of queries for a robot learner
to pose their human teachers [10, 45]. In particular, the authors of [5] incorporate
an active learning variant and learning from multiple interaction types to acquire
knowledge of spatial understanding for use in manipulation tasks. Other work
strives to unify the different interaction types that a robot could expect from a
human [19, 28]. Insofar as reward function learning is concerned, progress has
been made by learning from physical interactions between humans and robots—
via corrections in particular [1, 38, 39]. The methods in [15, 16, 29] learn from
demonstrations of trajectories that are sub-optimal. Like our work, the authors
consider more than one interaction type, yet they consider only two: demonstrations
and “negative” demonstrations (i.e., demonstrations of what not to do). Other work
exhibits an ability to learn and execute new manipulation skills after only a single
kinesthetic demonstration [49]. Finally, much prior work pertains to active learning

of manipulation skills through interaction with the environment [31, 37].



2. Related Work



Chapter 3

Actively Selecting Queries From a

Diverse Set of Interaction Types

Research in Human Interactive Robot Learning (HIRL) has yielded many effective
methods for obtaining training data via interaction between a robot and a human
teacher. In a demonstration, the teacher provides the trajectory that the robot should
take starting from a particular state [26, 41]. In a preference query, the teacher selects
one trajectory from a set of candidates proposed by the robot [10, 51]. In response to
a single trajectory proposed by the robot, the teacher can provide a correction [1, 21]
or simply a binary reward [14].

These interaction types differ according to how the robot queries the teacher, how
the teacher is constrained in providing feedback, how the robot should interpret the
teacher’s feedback as training data, and the physical and cognitive load imposed on
the teacher [18].

Prior work in Active Learning has investigated how to formulate informative
queries by maximizing the expected information gain resulting from the teacher’s
feedback. However, barring a few exceptions ([9, 12, 43]), prior work typically assumes
that the robot uses a single interaction type for all queries. We expect that the
optimal interaction type depends on the robot’s task knowledge (which changes over
time), the robot’s query state (i.e., the state from which it queries the teacher), and
domain-specific considerations (e.g., the time or effort it takes a teacher to respond

to queries) [30].



3. Actively Selecting Queries From a Diverse Set of Interaction Types

This project is motivated by this question: How can a robot optimize both the
type and content of its queries to a human teacher based on the information it
needs at any given moment? We introduce INQUIRE: a robot learning system that
performs this optimization by representing multiple interaction types in a single
unified framework, enabling the robot to directly estimate and compare the expected

L. We evaluated

information gain of its queries across multiple interaction types
INQUIRE against two state-of-the-art interactive learning methods that use a single
or fixed pattern of interaction types. We analyzed the effect of domain on INQUIRE’s
performance and selection of interaction types over time by simulating four domains
with unique reward-learning problems. We found that INQUIRE learned reward
functions that were more accurate and resulted in better task performance than either
baseline, with particular strength in accommodating low-information query states
(i.e., repeated states in which the robot has already received feedback). Furthermore,
we demonstrate how INQUIRE can incorporate cost metrics (representing physical or
cognitive load on the teacher), optimizing queries over both the informativeness and

ease of the teacher’s responses.

3.1 Approach

We define a query as a set of possible choices presented to the teacher, and feedback
as the teacher’s selected choice in response to a query. Our goal is to enable a robot
to (1) efficiently query a teacher using multiple interaction types, and (2) learn from
feedback obtained via these interactions. We ground this goal in the problem of
learning a distribution W over feature weight vectors w € W, each resulting in a
linear reward function r(t) = ¢(t) -w, where ¢(t) is the feature vector of a trajectory ¢.
Thus, our goal translates into (1) selecting queries and interaction types that minimize
uncertainty over W, and (2) updating W over feedback from multiple interaction
types.

We present INQUIRE (Alg. 1), an algorithm comprised of three key steps for each
query: (1) selecting the optimal interaction type ¢ and corresponding query ¢ that

maximizes the information gain over the weight distribution W (approximated as the

IThis work was conducted in collaboration [22].

10



3. Actively Selecting Queries From a Diverse Set of Interaction Types

sample set ), (2) recording the teacher’s response to that query (i.e., feedback) in a
feedback set F, and (3) updating the weight distribution W such that it maximizes
the likelihood of all feedback in F. To generalize across multiple interaction types,
we must contend with the differing formulations of query and feedback corresponding
to each type. We follow the framing presented in [18], where each interaction type
consists of a query space QQ(s) (the set of possible queries from state s) and a choice
space C(q) (the set of possible teacher feedback, i.e., the choices available to the
teacher in response to a query ¢ € Q(s)). We assume the robot must query from
whatever initial state s it is placed in, and cannot optimize the state s itself.

For a demonstration, let 7 (s) represent the set of all possible trajectories
originating from the initial state s. The robot (implicitly) enables the teacher to
demonstrate any trajectory in this set, and thus its query space is Q(s) = {T(s)}
(i.e., a single query consisting of the entire trajectory space). The teacher’s choice
space is C'= T (s) (any trajectory within that space). For a preference, the robot
queries the teacher with two trajectories ¢ = {to,t; | to,t1 € T(s)} who then chooses
either ¢y or ¢1. The query space is Q(s) = T (s) x T (s) and the teacher’s choice space
is C(q) = {to,t1}. For a correction, the robot executes one trajectory g € T (s)
which the teacher then modifies to a preferable behavior. The agent’s query space is
Q(s) = T (s) and the teacher’s choice space is C'(¢) = 7 (s). For binary reward, the
robot executes a single trajectory ¢ € 7 (s), and the teacher indicates a positive or
negative reward. The agent’s query space is Q(s) = 7 (s) and the teacher’s choice
space is C'(q) = {0, 1}.

The implication of the teacher’s choice ¢ € C(q) is a set of accepted trajectories
¢t and set of rejected trajectories ¢, which we define in Table 3.1 and use later to
calculate information gain. Since the set of all possible trajectories originating from s
(represented by 7T (s)) is potentially infinite, we approximate it as the set 7" containing
N trajectory samples originating from the state s and consisting of randomly selected

actions.

3.1.1 Query Optimization

When optimizing the agent’s query, our goal is to greedily select one that maximizes

the agent’s expected information gain over W after receiving any feedback from

11



3. Actively Selecting Queries From a Diverse Set of Interaction Types

Algorithm 1 INQUIRE - Overview
Input: Set of query states .S
Parameters: K (# of queries), Z (interaction types)
Output: Weight vector w*
: F +— {}
2 < M random initial weight vectors
for K iterations do
s < next query state in S
q; < generate_query(s,Z, Q) (Alg. 2)
F «+ F U {query_teacher(q;)}
Q + update_weights(F)
end for
w* <— mean(£2)
return w*

,_.
e

Algorithm 2 INQUIRE - Generate Query
Input: s (state), Z (interaction types), € (weight samples)
Output: Query ¢*

1: T < uniformly_sample_trajectories(s)

2: Compute E : {E; y ,,,Vt,t' € T,w € Q} (Eq. 3.4)
3: for each interaction type i € Z do

4: Q < Qil(s) (See Table 1)
5: C «+ {Ci(q9),Yq € Q} (See Table 1)
6: Compute info gain matrix G from E (Eq. 3.9)
7: q < argmax, Zcecq/ wen G((;,{c’w

8: g m ZCECq,wEQ G‘(Il,)cuw

9: if information gain g > ¢g* then
10: gty
11: ¢ +—q > store query with highest info. gain
12: end if
13: end for

14: return ¢*

12



3. Actively Selecting Queries From a Diverse Set of Interaction Types

Table 3.1: Each interaction involves separate query spaces, choice spaces, and choice
implications.

Query Query Choice Choice Implication

DI aeQl) P cedn) — ()

Qi(s) Z Ci(q) ' ’
Demo. {T} T T ctteT ¢ T\t
Pref. TxT {to,tl},to,tl eT {tg,tl} ct:te q c : (J\C+
Corr. T teT T ct:teT ¢ :q

c=0 = ¢":T\q ¢ :q

Binary T teT {0,1} =1 = ct:q ¢ :T\q

the choice set (summarized in Alg. 2). Selecting a query involves optimizing over

information gain (IG) as follows:

qf = argmax E ¢, IGW | ¢)] (3.1)
q€Qi(s)

= argmax Z Z{ (clw) - log M- Plefw) (3.2)

q€Q;q(s) c€Ci(q) weN Zw’eﬂ P(C|w/)

where ) contains M samples of the distribution WW. The expansion from Eq. 3.1 to
3.2 follows the derivation presented in [10]; see Appendix 6.1.1 for intermediate steps.

We adopt the commonly-used Boltzmann-rational equation to define P(c|w):

ZtEc“' eﬁ.d)(t)

ZtecﬂJe— efo(t)w

where ¢(t) returns the feature trace of the trajectory t; that is, the sum over the

P(c|w) = (3.3)

feature vectors of all states visited in trajectory t.2 Note that Eq. 3 reduces to
Bayesian Inverse Reinforcement Learning [44] for each t € ¢*. [ is a parameter
representing the expected optimality of the teacher’s feedback with respect to w.
We assign a value of § = 20 across all interaction types (selected through empirical
evaluation).

To minimize the computational complexity of solving for Eq. 3.2, we reformulate

it as a series of operations over a |@Q| x |C| x |€2] probability tensor P, where P, .,

2See Appendix 6.2.1 for each domain’s definition of ¢.

13



3. Actively Selecting Queries From a Diverse Set of Interaction Types

represents the probability (according to weight sample w € ) that the teacher will

select choice ¢ in response to query ¢q. To construct P, let Ebea N x N x M (i.e.,
|T| x |T'| x |€2]) tensor representing exponentiated rewards:

Eivw= e o) = [E + ETL tw et 4 efelt)w (3.4)

All tensor transposes are performed over the first two axes. With E in hand, we

next define the probability tensors of each interaction type as follows:

P((;,ice,ruljo) = |Eo @ Z ET, (since |@| =1 for demonstrations) (3.5)
L teT cw
P — (Eo (E+ET)" E0 (E + ET)] (c € {0,1} for prefs.) (3.6)
- ¢,40,91,wW
Py =[E0(E+ET)] (3.7)
P((JI,)CI?LY) =|1- <E0 axe Z ETt) yEo 0 «a Z ET, (c € {0,1} for binary rewards)
L teT teT

G,q,w

(3.8)

where @ represents an element-wise division of two matrices (i.e., (A©B);; = A;;/B;)

) = 1. For derivations, see

and «a is a normalization factor such that ), Pf;?; o
Appendix 6.1.3. The main effect of this formulation is that it enables
tractable optimization over multiple interaction types by sharing a common
representation E. To solve for the optimal query ¢ using interaction type i, we use

P to construct a |Q] x |C| x |2] information gain tensor G@:

(i (i M - Pioe . ()
G/, =P/, log O q = argmaxz Gylw (3.9)
ZMEQ Pq,c,w’ g cw

We then solve for the optimal interaction type itself. To optimize over both
informativeness and interaction cost, \; may be set according to domain-specific
cost factors (e.g., the time or mental load involved in answering a query) for each

interaction type.® To perform an unweighted optimization and maximize solely over

3In our evaluations, we assign a cost of 20 to each demonstration, 15 to each correction, 10 to
each preference, and 5 to each binary query.

14



3. Actively Selecting Queries From a Diverse Set of Interaction Types

the informativeness of each query, let \; be a constant value over all interaction types

1e L.

1* = argmax

1 .
GY 3.10
ez log(\) Z et (3.10)

c,w

We summarize this process in Alg. 2.

3.1.2 Update Weights from Feedback

After presenting the optimal query to the teacher, the agent receives feedback and
appends it to a feedback set F—a cumulative set that contains all feedback received
by the agent thus far. We then update the weight estimate such that it maximizes
the likelihood of all feedback in F:

C

— 5w (3.11)

w* = argmaXH P(clw) = argmaXH
“ ceF v ceF ZtEC+UC

We calculate the gradient over w by differentiating over its log-likelihood given F'

ol(w) _Zt@+ B pi(t) - efot)w D B ai(t) eBo(t)w

Ow CGZF L D tect eBo(t)w > et e eB-o(t)w

_ + ZtGC‘FUC* ,8 . ¢](t> . eﬁd’(t)w . .

= Z 6 . ¢j(co) - Z B o(t)w (lff |c | = 1) (3‘13)
tectUc™

ceF L

] (3.12)

See Appendix 6.1.4 for the full derivation. After receiving feedback from each query
and updating F, we approximate ) by randomly initializing and then performing

gradient ascent on each weight sample w € 2.

3.2 Results

We simulate four types of learning problems in robotics using an oracle teacher to
obtain controlled evaluations. The oracle teacher, similar to INQUIRE, requires
its own set of trajectory samples T”. It then selects a response to a query via one
of three mechanisms: returning the highest-reward trajectory from its choice space
(demonstrations/preferences), rejection sampling of trajectories followed by selection

of the trajectory with the highest reward-to-distance ratio from the queried trajectory

15



3. Actively Selecting Queries From a Diverse Set of Interaction Types

Param. Estimation Linear Dyn. System Linear Dyn. System Lunar Lander Lunar Lander Pizza Ar Pizza Ar
(ci ing State) (Static State) (ci ing State) (Static State) (Ci ing State) (Static State)

5 10 15 20 5 10 15 5 10 15 20 5 10 15 5 10 15 5 0 15 5 10 15 20
Query # Query # Query # Query # Query # Query # Query #

(a) Selected interaction types without cost-weighting

Param. Estimation Linear Dyn. System Linear Dyn. System Lunar Lander Lunar Lander Pizza Ar Pizza Ar
(Static State) (Cr ing State) (Static State) (Ch ing State) (Static State) (Changing State) (Static State)

5 10 15 5 0 15 20 5 10 1
Query # Query # Query #

15 20 5 5 10 15 5 10 15 5 10 15 20
Query # Query # Query #

10
Query #

(b) Selected interaction types with cost-weighting

Figure 3.1: Heatmaps illustrating how INQUIRE selects different interaction types as it
learns more over time. These selections differ when deriving unweighted (top) or cost-
weighted (bottom) information gain estimations. In the cost-weighted setting (bottom),
INQUIRE selects more low-cost binary queries than it does in the unweighted setting (top).

(corrections), and returning whether a query meets or exceeds a reward threshold
(binary reward). Implementation details can be found in Appendix 6.2.2.

The Parameter Estimation domain involves directly estimating a randomly-
initialized, ground truth weight vector w* containing 8 parameters. The Linear
Dynamical System domain, inspired by [10], simulates a controls problem and
involves learning 8 parameters. The Lunar Lander domain [7] simulates a controls
problem involving 4 parameters. The Pizza Topping Placement domain simulates
a preference-learning problem involving 4 parameters. Each domain (except for
Parameter Estimation) has a static-state and changing-state condition indicating
whether the robot must formulate all queries from the same query state or not,
respectively. For the full evaluation procedure and oracle implementation details for

each domain see Appendix 6.2.

3.2.1 INQUIRE Query Selection

We first analyze how INQUIRE selects queries. Figure 3.1 reflects the changes
in interaction types selected by INQUIRE over time. Figure 3.1a first reports
these interaction selections in an unweighted query optimization setting, where all

interaction types are assumed to be equally costly. In the parameter optimization

16



3. Actively Selecting Queries From a Diverse Set of Interaction Types

domain, INQUIRE requests corrections in the first 14-18 queries and then requests
preferences as the remaining queries. Demonstrations were not enabled in this domain.
In all other domains, INQUIRE requests a demonstration as its first query, then
immediately switches to requesting preferences for the remaining queries (occasionally
alternating between preferences and demonstrations in the Lunar Lander domain).
After assigning different cost values to each interaction type, INQUIRE chooses
more diverse interaction types in order to maximize its information-to-cost ratio. As
shown in Figure 3.1b, this typically results in INQUIRE posing more binary queries
due to their relatively low cost. This pivot toward binary queries may occur at the
start (as seen in the linear dynamical system), middle (as seen in the parameter
estimation domain), or interspersed throughout the learning process (as seen in the

lunar lander domain).

3.2.2 Learning Performance

We now analyze the effect of INQUIRE’s interaction type selections on its learning
performance and compare against two types of baselines. The first, DemPref [43],
learns from 3 demonstrations and then learns from preference queries by using a
volume removal objective function. As our second baseline, we compare INQUIRE
against agents that use only one form of interaction: demonstrations, preferences,
corrections, or binary reward. Note that the preference-only agent is formulated
according to [10] and thus represents this baseline method.

We first consider the changing-state formulation of each domain, where the robot
is presented with a new state for each query. Since the Parameter Estimation domain
does not contain states, we exclude it from this first set of results. Figure 3.2 illustrates
this learning performance in the Linear Dynamical System and Lunar Lander domains
according to three key metrics. Distance measures the angular distance between the
ground truth feature weights (w*) and the algorithm’s estimated feature weight @
after each query. Performance measures the task reward achieved using a trajectory
optimized according to @ (the algorithm’s estimated feature weight after each query).
Performance is scaled between 0-1, with 0 and 1 representing the worst and best
possible task rewards according to w*, respectively. Note that INQUIRE’s distance and

performance metrics are achieved in the unweighted condition. Cost-vs-Distance

17



3. Actively Selecting Queries From a Diverse Set of Interaction Types

Distance - Linear Dynamical System

0.6

0.4

0.3

0.2

Distance from w*

0.1

[

0.6

05

0.4

03

0.2

Distance from w*

0.1

0.5

0.4

03

0.2

Distance from w*

0.1

05 |

(Changing State)

== Binary-Only

== Corrections-Only

==Demos-Only
==DemPref

Preferences-Only

INQUIRE

A —

5 10
# of Queries

15

Distance - Lunar Lander

(Changing State)

10
# of Queries

== Binary-Only

== Corrections-Only

==Demos-Only
==DemPref

Preferences-Only

INQUIRE

Distance - Pizza Arrangement

(Changing State)

10
# of Queries

== Binary-Only

== Corrections-Only

==Demos-Only
==DemPref

INQUIRE

15

20

Preferences-Only

20

Task Performance

Performance - Linear Dynamical System
1 (Changing State)

0.9
0.8

0.7

0 5

10 15 20
# of Queries

(a) Linear Dynamical System

Task Performance

Task Performance

Performance - Lunar Lander
1 (Changing State)
—

0 5 10 15 20
# of Queries

(b) Lunar Lander Task
Performance - Pizza Arrangement

| (Ghanging-State)

1

0.9

0.8

0.7

15 20

10
# of Queries

(c) Pizza Arrangement Task

Distance from w* Distance from w*

Distance from w*

Cost - Linear Dynamical System
(Changing State)

T~

0 50 100 150
Accumulated Query Cost

200

Cost - Lunar Lander
(Changing State)

ltgag

0 50 100 150
Accumulated Query Cost

200

Cost - Pizza Arrangement
(Changing State)

150

50 1 200
Accumulated Query Cost

Figure 3.2: Metrics for the changing state condition in which the robot’s initial state changes
with each query. Error bars/regions represent variance across multiple evaluation runs with
randomized query states and initial weights. Cost metrics are cut off after 20 queries for
the binary-only method in (c) due to extensive computation times.

18



3. Actively Selecting Queries From a Diverse Set of Interaction Types

measures the relationship between the cumulative cost of each query and the resulting
distance between w and w* after each query. INQUIRE’s metrics in this graph are
achieved in the cost-weighted condition.

Figure 3.3 presents the same three metrics for the static-state condition in which
all 20 queries must be selected from the same initial state. Finally, we quantify
these graphs by reporting the area-under-the-curve (AUC) metrics for the distance,
performance, and cost curves across all tasks. These metrics are available in Ap-
pendix 6.3. The AUC metrics indicate that, compared to the baseline methods,
INQUIRE results in the best average learning performance (measured both by the
distance and performance plots in Figures 3.2-3.3) across all domains and dominates
learning performance in the static-state domains. INQUIRE also results in the best

average distance-to-cost ratio across all domains.

3.3 Discussion

The results show the importance of dynamically selecting interaction types according
to the robot’s current state. For example, demonstrations can be highly informative
when provided in novel states, but when the robot may only query a teacher from a
single state, multiple demonstrations are likely to be very similar (if not identical).
As a result, receiving multiple demonstrations in a static query state is uninformative.
We see the benefits of dynamically selecting interaction types in Figure 3.3, where
INQUIRE outperforms all single-interaction methods by optimizing both query type
and content to maximize the informativeness of the query feedback.

INQUIRE selects the interaction type that, after receiving feedback, minimizes
the entropy over its distribution of weight estimates W. This distribution thus serves
as a representation of the robot’s current model of the task reward. Figure 3.1a
illustrates how INQUIRE changes the query type as it learns over time (represented
by # of queries). This is particularly evident in the Parameter Estimation task, where
the algorithm originally requests corrections until it has refined its model of the task
reward to a point where preferences become more informative (after 14-18 queries).
Overall, dynamically adapting to the robot’s model of the task reward results in
better performance than adopting a fixed strategy for selecting interaction types (i.e.,

DemPref, which always requests demonstrations before selecting preferences).

19



3. Actively Selecting Queries From a Diverse Set of Interaction Types

Distance from w* Distance from w* Distance from w*

Distance from w*

Distance - Parameter Estimation
(Static State)

0.6 == Binary-Only

== Corrections-Only
0.5 ==DemPref

Preferences-Only
0.4 INQUIRE
0.3
0.2
0.1 - u|
0 o 15 20

10
# of Queries

Distance - Linear Dynamical System
(Static State)

0.6 == Binary-Only
== Corrections-Only
0.5 ==Demos-Only
==DemPref
04 Preferences-Only
INQUIRE
0.3 Q
0.2
—_—
0.1
0 0 5 10 15 20
# of Queries
Distance - Lunar Lander
(Static State) :
0.6 == Binary-Only
== Corrections-Only
05 ==Demos-Only
P ==DemPref
04 Preferences-Only
INQUIRE
0.3 2
0.2
0.1
0 0 5 10 15 20

# of Queries

Distance - Pizza Arrangement
(Static State)

06 == Binary-Only
== Corrections-Only
0.5 ==Demos-Only
A ==DemPref
0.4 \' Preferences-Only
INQUIRE
0.3 \:\
02 | o= —
———
0.1
0 0 5 10 15 20

# of Queries

Task Performance

(a) Parameter Estimation Task

Task Performance

Performance - Parameter Estimation
1 (Static State)

0.9
0.8
0.7
0.6 /_v

0.5

10 15 20
# of Queries

Performance - Linear Dynamical System
1 (Static State)

0.9
0.8
0.7
0.6

05

04 0 5 10 15 20

# of Queries

(b) Linear Dynamical System

Task Performance

Task Performance

Performance - Lunar Lander
1 (Static State)

5 15 20

10
# of Queries

(¢) Lunar Lander Task

Performance - Pizza Arrangement

0 5 10 15 20
# of Queries

(d) Pizza Arrangement Task

Distance from w* Distance from w* Distance from w*

Distance from w*

0.4

03

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0 50

0 50
Accumulated Query Cost

Cost - Parameter Estimation
(Static State)

0 00 150 200
Accumulated Query Cost
Cost - Linear Dynamical System
(Static State)
i
L——-
0 50 100 150 200

Accumulated Query Cost

Cost - Lunar Lander
(Static State)

100 150
Accumulated Query Cost

200

Cost - Pizza Arrangement
(Static State)

100 150 200

Figure 3.3: Metrics for the static state condition in which the robot is presented with
the same state for all 20 queries. Error bars/regions represent variance across multiple
evaluation runs with randomized query states and initial weights. Cost metrics are cut off
after 20 queries for the binary-only method in (a) and (d) due to extensive computation
times.

20



3. Actively Selecting Queries From a Diverse Set of Interaction Types

An added benefit of INQUIRE is that it can incorporate a cost metric to identify
cost-aware, informative queries. The AUC metrics for the cost graphs indicates that
INQUIRE selects queries that, on average, minimize the cost-to-distance ratio across
all domains. We expect that this cost metric is domain-specific, and can represent a
number of human factors that the algorithm should take into account (e.g., the effort
involved for a human to respond to each query type [18]). The cost metric used in

our study thus serves as an example of how INQUIRE can factor in interaction costs.

3.4 Limitations

Our evaluation is performed using feedback from an optimal oracle. Real human
feedback, however, is likely to be at least somewhat sub-optimal, and its severity likely
depends on the interaction type. For example, a non-optimal demonstration may be
one that is sufficient but not ideal for completing the task. In contrast, binary rewards
offer only two feedback choices to the user, and thus a non-optimal binary reward
may indicate the opposite information from what the user intended to convey. These
examples illustrate how non-optimal feedback may need to be handled differently
depending on the interaction type, and thus, should affect INQUIRE’s estimation
of information gain. Future work should investigate setting separate values of
(see Eq. 3) for each interaction type, with the goal of reflecting interaction-specific
expectations for sub-optimal feedback.

Furthermore, INQUIRE does not yet have the ability to select the state in which
it queries the teacher. Prior work in Active Learning has shown that state selection
can improve the informativeness of resulting demonstrations [33], and we expect that
optimizing over the query state in addition to query type and content would improve
the performance of INQUIRE.

3.5 Conclusion

We introduced INQUIRE, an algorithm enabling a robot to dynamically optimize its
queries and interaction types according to its task knowledge and its state within

the environment. We showed that using information gain to select not just optimal

21



3. Actively Selecting Queries From a Diverse Set of Interaction Types

queries, but optimal interaction types, results in consistently high performance across
multiple tasks and state configurations. Future work will include formal user studies
to investigate our method’s efficacy with people of varied skillsets and comfort with
robots; incorporation of novel interaction types and other communication modalities;
and alternative representations of the reward function and feature spaces. Moreover,
we are excited at the possible extensions others might present by using our open-
source framework? for evaluating and comparing active-learning agents across multiple

environments and simulated teachers.

‘https://github.com/HARPLab/inquire

22


https://github.com/HARPLab/inquire

Chapter 4

Exploring Reward Functions for

Human Interactive Robot Learning

Personal robots should be able to learn the preferences of individual humans in
ways that are both efficient and convenient to the person. In the context of Human-
Interactive Robot Learning (HIRL), a human’s preferences can be captured as a
latent reward function, and to determine how to act in accordance with a human’s
preferences, a robot must learn a model that approximates this reward function.
While there are various approaches to approximating such a reward function—for
example, through large amounts of data or pre-engineered cost functions—we’re
interested in scenarios in which the model can be learned online through a series of
actively selected queries (e.g., requests for critiques, corrections, or demonstrations
of tasks) posed by an agent to a human teacher [17, 42]. Our work described in
Chapter 3 explored how a robot can select from multiple interaction types to maximize
information gain for improving the model. In contrast, the work described in this
chapter explores ways in which model representation might affect an agent’s ability
to learn human preferences when taught through a diverse selection of interaction
types.

We explore how the choice of reward function representation affects reward
learning. In particular, we explore Comparative, Comparative+Specific, and Grid
reward representations with the presumption that certain tradeoffs are made when

choosing to learn using each. Each representation is a variant of a linear combination

23



4. Exploring Reward Functions for Human Interactive Robot Learning

of parameter weights and features. Because we only learn the parameter weights, the
Comparative variant enables intuitive interpretation and computational simplicity. In
contrast, the Comparative+Specific representation provides superior representational
power—that is, an ability to specify the parameters of a reward function—at the
expense of learning both the parameter weights and the specific parameter values.
Finally, a Grid representation is an attempt to capture the “middle ground” between
the two aforementioned representations by assigning weights to a predefined set of
specific feature values.

Additionally, we are interested in the effects of reward representation upon an
agent’s ability to learn from multiple interaction types. More specifically—and as in
the work described in Chapter 3—we consider corrections, critiques, demonstrations,
and preference queries. By incorporating different interaction types, learners can
query teachers for information at different levels of granularity. Moreover, multiple
interaction types give people the opportunity to teach learners in different ways
that might be more intuitive or preferable. As such, we design the learner using a
particle-based belief model that is amenable to the different reward representations
and active query selection from among multiple interaction types. We also investigate
how reward representation affects an agent’s ability to learn when querying with
single interaction types in comparison to interaction types actively selected by the
agent.

We conduct our investigation in two task domains which differ in how task reward
is derived. In the first task, reward only derives from the final, discrete state of the
environment. In the second task, reward is accumulated over a sequence of time-
dependent state-action pairs that comprise a continuous trajectory. We investigate if
a learner’s reward representation has different effects depending on these two task
structures.

Through experiments in simulation, we find that an agent learns best when its
reward representation matches that of its teacher. Moreover, we find that an agent’s
reward representation directly affects the agent’s query selection when choosing from
among multiple interaction types; namely, agents who learn a Comparative+Specific
reward function tend to select a larger diversity of interaction types. Finally, we
investigate if our findings from simulation are pertinent to real-world interactions

between people and agents through an IRB-approved, in-person user study and

24



4. Exploring Reward Functions for Human Interactive Robot Learning

Agent (2) uery
(1) Select Query |—— Teacher
Updated
(5) Belief

/ Choose Response
Interpret Feedback [<— Response

(4) (3)

Figure 4.1: Teaching Session Pipeline: (1) Select a query by estimating which interaction
type provides the largest information gain given the current model of the teacher. (2) Pose
query to human/simulated teacher. (3) Receive response. (4) Assign probability mass to
particle models and update belief by resampling particles in proportion to probability mass.
(5) Use updated belief to repeat the querying process.

find that agent learning performance and active selection of interaction types when
learning from human teachers largely resembles our findings from simulated teaching
sessions.

In summation, this work contributes:

1. an investigation of three different reward representations in two different tasks

with simulated human models,

2. comparisons of these models’ learning performances across different interaction

types, and

3. an in-person user study to validate the results from simulation.

4.1 Problem Statement and Assumptions

We aim to estimate an individual’s reward function through feedback provided to a
learning agent during a single teaching session. To this end, we assume there are four
interaction types with which a robot can query a human: demonstrations, corrections,
binary critiques, and preference queries [30]. Let the interaction between human and

robot consist of a sequence of interaction instances in which each consists of a query

25



4. Exploring Reward Functions for Human Interactive Robot Learning

Query Choice Boltzmann
Space Space Representation
q€Qi(s) ¢ eCi(q) P(c";q)
— = xp(8-R(c*))
Demo. {E} et fceefp(ﬁ.R((:c))dc
- = exp(B-R(c*))
Pref. = X = 5 € {50751} %gxp(ﬁ-lg(c))
- = xp(B-R(c*))
Corr. = ¢ eE geexi(ﬂ-R(f:))dc
) = « _ _exp(e”-B-R(€))
Crit. = ce{-1,+1} %:exp(c-ﬁ-R(ﬁ))

Table 4.1: Each interaction type ¢ has a separate query space () from which the learner
generates [g]ueries, choice spaces C' from which the teacher [c]hooses responses, and Boltz-
mann likelihood representations. Here, ¢* denotes the teacher’s choice.

and response. While the ideal teaching interaction would enable reciprocal queries
prompted by both human and robot, we assume the robot leads the interaction and

always queries the human.
More formally, let each interaction instance consist of:

® g € Q, the query posed by the robot at time ¢ (selected from query types Q),

which itself consists of
e £ a trajectory of time-dependent states, and

e c*, the teacher’s chosen response during query q;.

As in prior work, we assume the learned reward function is a linear combination

of weights and features:
d
R() =w ®(§) = ) wix ¢i(€) (4.1)
i=1

where ® is a vector-valued feature-function comprising basis functions ¢; : £ - R; w
is a vector of real-valued, non-negative weights; and w; corresponds to feature ¢;(&).

We assume that all task-relevant features are captured by this reward function.

26



4. Exploring Reward Functions for Human Interactive Robot Learning

4.2 Reward Function Representations

Because particles can encode a reward function of arbitrary form, we use a particle
filter belief model to explore the effects of reward function representation on learning
performance. We examine three variants of the feature-function ® associated with the
oft-used linear combination reward function R(§) = w - ®(§) defined in Equation 4.1.
Intuitively, these variants tradeoff between simplicity and specificity.

Empirically, we observed learning performance improved when reward weights w
were constrained to be within (0, 1). This constraint affected how we implemented

the Comparative variant.

4.2.1 Comparative Variant

For tasks defined through the comparative preference representation, the learning
agent only seeks to learn the weights w over features of the state-space. In this
formulation, the features are simply the state-space parameterization of &; that is,
® : £ — ¢. Since w is constrained to be within (0, 1), the learned reward function
cannot down-weight features (as can be done when w resides within (—1,41)). To
address this shortcoming, the Comparative featurization includes both standard and
“negated” versions of each feature. For example, a car’s feature space includes velocity
and negated velocity. In this way, if the model should encode low velocity, it can
assign a large positive weight to “negated velocity” and a small positive weight to

“positive velocity.”

4.2.2 Comparative + Specific Variant

Tasks defined with a Comparative + Specific representation have two learnable sets:
the weights w and the desired state-space feature values. We use absolute exponential

features to model a reward function of the form:
d d
~(k (K ~(k
Ri(&) =Y o) = o exp [— 6" — 017|]. (4.2)
i=1 i=1

Here, qu(k) is the k-th particle’s approximation to the teacher’s i-th optimal feature

27



4. Exploring Reward Functions for Human Interactive Robot Learning

value from the set ¢ derived from &. Since the agent can model specific feature
values (i.c., @) along with specific feature weights (i.c., @) using this model, it is
possible that it could be able to capture a more precise representation of a human’s

preferences.

4.2.3 Grid Variant

The Grid reward function combines traits from the two aforementioned preference
representations. As is the case for the Comparative preferences, the learning agent
aims to learn only the set of weights w when operating with a Grid model. Additionally,
this representation’s featurization has the same structure as the Comparative+Specific
reward function, but in the Grid representation, each of a trajectory’s feature values
are compared to a predefined set of possible values that each feature could take. In
this work, we define those values by creating a “grid” with the minimum, middle,

and maximum values each ¢; could encode. The representation is thus:

d
Ri(&) =Y _Yi(8)
=1
d
~(k min
Ri(€) =Y ot exp [ o™ — ol%)]] (4.3)
=1
o vexp [ ™Y — o]
ol cexp [ — oM™ — 6]

4,max

Intuitively, the weights @® now can favor the minimum, middle, or maximum
values of each state-space parameter. Moreover, comparable weightings on two of
the features (e.g., equal weight placed on the minimum and middle feature values)
implicitly discretizes the space even further; such a weighting favors values between

the “grid-points.”

28



4. Exploring Reward Functions for Human Interactive Robot Learning

4.3 Active Query Selection and Learner Belief
Updates

To generate the queries posed by the agent, we follow the work discussed in Chapter 3
and choose the interaction type expected to maximize the information gain yielded
by the agent’s next query [10, 22]. While additional factors can be used to inform
query selection (e.g., the effort needed to provide each feedback type), our work only

accounts for expected information gain.

If we call @ the set of learnable parameters (e.g., reward function weights w, or
both w and ¢), to compute the expected information gain for each interaction type,
we find the KL-divergence between the agent’s prior belief P(8) and the expected
belief if that interaction type was used to query the human P(8;q;). The optimal

query at time ¢ can be represented as:

g; = argmax E [IG(qt)]

q:€Q

g; = argmax [DKL <£Etl [P(H; qt)] HP(O)) ]

€Q

(4.4)

Intuitively, Equation 4.4 seeks the query (among all interaction types) which is
most likely to maximize the agent’s information gain. When found, we then use that
interaction type to query the human. As in prior work and the work described in
Chapter 3, we base each representation off of the Boltzmann-rational distribution
which is principally featured by the parameter § and which makes this representation
an approximation of human rationality or confidence. Table 4.1 enumerates each
interaction type’s Boltzmann representation as we’ve implemented them in this work.

Note that we empirically selected 8 = 20.

Upon posing the query and receiving the teacher’s response, the agent updates
its belief over particle models in a Bayesian fashion. More specifically, if P(0);.;—;
is the agent’s prior belief over reward function parameters @ after ¢ — 1 interaction

instances, the agent’s updated belief after interaction instance t is:

P(0:.) = P(01.4-1;¢;) - P(01.4-1) (4.5)

29



4. Exploring Reward Functions for Human Interactive Robot Learning

Algorithm 3 The main teaching session loop

agent: Learns reward function

: teacher: Responds to agent queries

. Q + [Correction, Critique, Demonstration, Preference]
. for t in interaction_instance_count do

Q; = agent.select_query(Q)
end for

A

The general query-then-update procedure is outlined in Algorithm 3. Note that
interaction_instance_count is the number of interaction instances that take place
in a single teaching session. We preset this value to be 20 in our simulation evaluations

and 10 in our user study.

4.4 Simulation Experiments

We first evaluate the learning performance of the different reward function repre-
sentations across simulated teaching sessions. In this scenario, a learning agent is
taught by an optimal human oracle in the two task domains. To investigate each
reward representation’s ability to handle tasks of varied complexity, we evaluate each
task when defined with three and six state-space features. The task features are
enumerated in Table 4.2.

For each task simulation, a single teaching session consisted of a learning agent
which queried a simulated human oracle over 20 sequential interaction instances.

Results were computed as an average over 10 sessions.

4.4.1 Evaluation Domains

Pizza Topping Placement Task The goal of the Pizza Topping Placement task
is to teach an agent how to place toppings on a pizza according to the teacher’s
preference. Each interaction instance begins with a pizza void of toppings. Then,
either agent or oracle places toppings one at a time until the reward it receives from
the updated pizza configuration begins to decrease. Table 4.2 enumerates the task’s
feature space, and Section 4.4.2 provides details on how each interaction type is

carried out.

30



4. Exploring Reward Functions for Human Interactive Robot Learning

Lunar Lander Pizza Topping Placement
Distance from Landing Pad X-Centroid (all toppings)

Lander Angle Y-Centroid (all toppings)

Feet on Ground Surface Coverage

Velocity Min. Distance Between Toppings
Final Distance from Landing Pad X-Variance (all toppings)
Angular Velocity Y-Variance (all toppings)

Table 4.2: Features for each task domain. Experiments with lower task complexity use
the first three features only.

Lunar Lander Task The second task is to teach an agent how to land OpenAl’s
Lunar Lander [7]. The episode begins with the lander somewhere in the sky, and the
goal is to navigate the lander to the landing pad such that it lands in an upright pose.

See Table 4.2 for the Lunar Lander feature space.

4.4.2 Simulated Human Oracle

We design our human oracle as a greedily-optimal agent which, when presented with
any query q;, maximizes the immediate reward it can receive from that query. During
evaluations, the oracle is instantiated with one of the reward function representations
enumerated in Section 4.2 depending on the trial at hand.

When asked to provide a demonstration in the Pizza Topping Placement task, the
oracle generates an optimal example by running a stochastic hill climbing trajectory
optimization guided by its reward function. In the Lunar Lander domain, the oracle
optimizes a trajectory demonstration using the cross-entropy method [52].

When asked for a correction to a pizza, the oracle takes the demonstrated
topping arrangement and performs a stochastic hill climbing optimization constrained
by the toppings already on the pizza. That is, the oracle can only rearrange pizza
toppings; it cannot remove or add toppings to the state space.

When providing a correction in the Lunar Lander domain, the oracle uses dynamic
time warping to compare its optimal trajectory to that which was demonstrated [24].
The oracle begins its comparison from the start-state and accumulates the difference

in trajectories at each time-step. When that difference grows above some threshold,

31



4. Exploring Reward Functions for Human Interactive Robot Learning

it saves that point and then identifies the point between it and the start-state in
which the difference between the trajectories changes most drastically. This point
is now the “correction point,” and the oracle then optimizes a trajectory from that
correction point to the goal state using the cross-entropy method.

The oracle responds to preference queries by selecting the option from a pair
of trajectories which yielded the highest reward. Responses to critiques are similar;
the oracle has a predefined critique threshold defined by the midpoint between the
greatest and least reward it could receive from the task. If the reward earned by
the agent’s demonstration is above this threshold, the oracle positively rewards the
agent; otherwise, it provides negative reward. Moreover, we choose to model “relative”
critiques; that is, after the oracle observes agent demonstrations (provided during
corrections and critiques), the reward derived from those demonstrations becomes the
updated “minimum” reward it expects to earn during the teaching session. As such,
the critique threshold increases (decreases) when the agent’s performance improves

(degrades).

4.4.3 Variables and Metrics

We compare the learning performances of Comparative, Specific+Comparative, and
Grid reward function representations. Because we're interested in scenarios in which
robots learn from multiple interaction types, we first examine the learning performance
when each agent is taught by each oracle using a single interaction type. We then
examine learning performance when the agent actively selects its queries from among
all four interaction types to see how the learning performance of certain representations
might be affected. To measure performance, we compute reward as the similarity
between the oracle’s ideal trajectory &£* and a demonstration provided by the learner

after each belief update.

4.4.4 Results

Results in Table 4.3 illustrate how reward representation can influence learning
performance in Pizza Topping Placement. Note that because the Pizza Topping

Placement results present more variability than Lunar Lander, we analyze them more

32



4. Exploring Reward Functions for Human Interactive Robot Learning

Corrs. Crits. Demos. Prefs. Active
Oracle Agent Mean SD Mean SD Mean SD Mean SD Mean SD
Comp. Comp. 0.432 0.336 0.186 0.276 0.999 0.001 0.665 0.144 0.999 0.002
Grid 0.419 0.238 0.399 0.149 0.584 0.348 0.56 0.343 0.63 0.366
Comp.+Spec. 0.271 0.137 0.387 0.159 0.997 0.004 0.613 0.182 0.96 0.087
Grid Comp. 0.179 0.154 0.149 0.257 0.876 0.24 0.38 0.067 0.762 0.27
Grid 0.355 0.281 0.285 0.363 0.999 0.001 0.695 0.195 0.999 0.001
Comp.+Spec. 0.117 0.128 0.067 0.068 0.9 0.133 0.089 0.072 0.705 0.403
Comp.+Spec. Comp. 0.487 0.183 0.376 0.122 0961 0.035 0.756 0.069 0.952 0.06
Grid 0.683 0.162 0.775 0.125 0.85 0.158 0.834 0.117 0.803 0.152

Comp.+Spec. 0.72  0.153 0.591 0.217 0.998 0.001 0.839 0.085 0.926 0.126

Table 4.3: Mean reward earned for single and actively selected interaction types at the end
of the Pizza Topping Placement simulations with six state-space features. Bold numbers
indicate the agent which learned best from a particular oracle and interaction type. Typically,
the agent learns best when its reward representation matches its teacher’s. Moreover, no
matter the reward representation, querying with demonstrations alone yields highest final
reward.

closely. As can be seen, learning performance is typically best when the agent’s

representation matches that of its teacher.

Table 4.3 also depicts the effect that different interaction types have upon learning
performance. In most combinations of agent and teacher reward representations,
demonstrations yield the highest final reward when only one interaction type is used
to query the teacher. However, when interaction types are actively selected by the
agent, the Comparative agent outperforms the Comparative+Specific agent when

learning from both Comparative and Comparative+Specific oracles.

We also find that the agent’s model representation affects its active selection
of interaction types with which it prompts the teacher. Figure 4.2 illustrates the
distribution of interaction query types for Pizza Topping Placement!. When the
agent had a Grid representation, it typically chose to query using demonstrations
and sometimes corrections (Figure 4.2b). When the agent had a Comparative

representation, it mostly chose demonstration queries, though there were some

!'While we did collect results from Lunar Lander, demonstrations were almost always selected no
matter the model representation. We suspect the cause to be the massive trajectory space from
which demonstrations are generated online; when a cache is used instead, interaction type selection
is more diverse (yet performance degrades notably due to the relatively small space of trajectories).

33



4. Exploring Reward Functions for Human Interactive Robot Learning

Comp. Oracle Grid Oracle Comp.+Spec. Oracle
w  Prefs.] 1 1
p
jav]
£ Crits. 1 1
“ Corrs. 1 1
v  Prefs.] 1 1
p
av]
ﬁ Crits. 1 1
© Corrs. 1 1
& ] 2 N7 - ‘o > 7 7 ‘o [ N
Interaction instance Interaction instance Interaction instance
(a) Interactions chosen by agent with Comparative representation.
Comp. Oracle Grid Oracle Comp.+Spec. Oracle
w  Prefs.| 1 1
et
CS .
ﬁ Crils. 1 1
“ Corrs.! 1
w  Prefs.] 1 1
v
S o [N NN [ | OEENE
fa]
LE Crits. 1 1
© Corrs. 1 1 l . I
& ] Ay o - ‘o > 7] 7 7 r <&
Interaction instance Interaction instance Interaction instance

(b) Interactions chosen by agent with Grid representation.

Comp. Oracle Grid Oracle Comp.+Spec. Oracle

et

£ oo NN 1

N .

ﬁ Crits. 1 .

cn

Corrs. I I !

T — T T

w  Prefs | . I I

o

£ oo [N I

o]

£ Crits. 1 1

32 Corrs. |
T v b w o v b o o v b
Interaction instance Interaction instance Interaction instance

(c) Interactions chosen by agent with Comparative+Specific representation.
Figure 4.2: Learning agent’s chose interaction types when actively selected during Pizza

Topping Arrangement. Values accumulated across 10 teaching sessions.



4. Exploring Reward Functions for Human Interactive Robot Learning

Comp. Oracle Grid Oracle Comp.+Spec. Oracle

i 1 —
0.8 1/ ﬂ;-\/s——w
0.6+ R
0.4+

3 Features

0.2+

0

=
=—r—

0.2 1 1
0

6 Features

8 2 75 30 8 % 75 30 & % 75 N

Q

Interaction instance Interaction instance Interaction instance

(a) Pizza Topping Placement.

Comp. Oracle Grid Oracle Comp.+Spec. Oracle

0.8+

3 Features

0.24

0.6 -

0.41 1

6 Features

0.21

0 . - - : . - T : - - T
& A Zp %0 & A Zp %0 kS % s %

M

Interaction instance Interaction instance Interaction instance

) (b) Lunar Lander. ) )
Figure 4.3: The reward earned by each agent when taught by a simulated oracle with a
particular reward representation. Brown lines the Comparative learner, blue lines represent

the Grid learner, and green lines the Comparative+Specific learner.

35



4. Exploring Reward Functions for Human Interactive Robot Learning

correction queries with a Comparative+Specific teacher (Figure 4.2a). When the agent
had a Comparative-+Specific representation, it typically selected demonstrations and
then switched to preferences—a behavior reminiscent of DemPref (Figure 4.2c) [43].

Finally, we find that reward representation affects an agent’s ability to learn from
the various oracles over time regardless of task complexity. Figure 4.3 depicts the
results from the Pizza Topping Placement and Lunar Lander task simulations. Because
we're primarily interested in active learning scenarios with multiple interaction types,
we discuss the simulations in which the agent actively selected its queries.

In Pizza Topping Placement (Figure 4.3a), the Comparative agent exhibits an
ability to learn well from a Comparative+Specific teacher; just the same, a Compara-
tive4-Specific agent learns well from a Comparative teacher, save for the 3-feature
task. When it comes to the Grid representation, the Grid agent learns well from a
Grid teacher, but it struggles to learn from both the Comparative and Compara-
tive+Specific teachers. Comparative and Comparative+Specific agents both struggle
to learn from a Grid teacher.

In Lunar Lander with three features (Figure 4.3b), we see strong learning perfor-
mance (i.e., convergence in less than five interaction instances and small error) no
matter the representation used by agent or teacher. When the task dimensionality
increases to six features, we start to see differences in performance—most notably in
the variance and rate of convergence. On average, each agent appears to demonstrate
strong learning performance with all three teachers. Interestingly, the Compara-
tive4+-Specific agent struggles early on when taught by a Comparative teacher but
eventually converges to about the same performance as the Comparative agent; the
inverse is true when the Comparative agent is taught by the Comparative4Specific
teacher. Surprisingly, the Grid agent demonstrates the same struggles early on when
taught by the Grid teacher.

4.4.5 Discussion of Simulation Results

While there are differences in each agent’s learning performance across different
teacher-learner combinations, the Lunar Lander results showcase that these differences
do not derive solely from the different model representations. Lunar Lander proves

to be a task domain in which all agents demonstrate strong learning performance

36



4. Exploring Reward Functions for Human Interactive Robot Learning

when taught by any teacher; clearly, model representation has small effect on learning
this task. More nuance is introduced in Pizza Topping Placement where we see the
Grid learner struggle to learn from Comparative and Comparative+Specific teachers
and we see the Comparative+Specific learner demonstrate comparable (but slightly
inferior) final performance as compared to the Comparative learner when taught by

either Comparative or Comparative+Specific teachers.

The finding that learning from demonstrations only yields superior learning
performance is consistent with the understanding that demonstrations are the most
informative of the studied interaction types. Even so, this result shouldn’t lead us to
design demonstration-only interactions; other human factors (e.g., human-required
effort, frustration, etc.) need to be accounted for when designing algorithms that

efficiently learn from people but in ways that are convenient to the human teacher.

While our primary performance metric is the distance between the teacher’s ideal
and the agent’s demonstration at the end of a teaching session, it is interesting
to consider the Comparative+Specific agent’s quick convergence to the optimum
when taught by a matching oracle. If quick teaching sessions are the goal, perhaps
Comparative+Specific is the model of choice given the quickness with which it reaches

optimal performance in both simulated tasks.

The results from Table 4.3 and Figure 4.3 suggest that if the teacher’s reward model
is known, the agent should model the task in a comparable manner. Teaching with
critiques only is an exception to this conclusion—the Comparative model performs
best for all teachers—although its markedly poor performance makes it undesirable
when teaching with a single interaction type. If the teacher’s reward model is not
known, as is the case with most human-agent interactions, a Comparative agent
generally matches or outperforms the Comparative+Specific agent, but the difference

is small.

As can be seen in Figure 4.2, model representation can affect an agent’s choices
when actively selecting its queries. If the goal is to have an agent which learns from a
variety of interaction types, then it would seem a Comparative+Specific representation

could be well suited.

37



4. Exploring Reward Functions for Human Interactive Robot Learning
Comparative Comparative+specific Comparative Comparativetspecific

0.8 rN\ /d—w Preference
0.6 Demonstration
0.4 Critique
0.2 Correction

o 2 4 6 8 10 0 2 4 6 8 10 T35 45 675 s 135456756 3w
Interaction Instance Interaction Instance Interaction instance Interaction instance

[

Inverse Distance

(a) Pizza Topping Placement.

8 1 Comparative Comparative+specific Comparative Comparativetspecific
= Preference
Sos
a Demonstration ‘
0.6
o ..
Z o4 Critique
= 02 Correction ‘
S o.
0 2 4 6 8 10 0 2 4 6 8 10 12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Interaction Instance Interaction Instance Interaction instance Interaction instance

(b) Lunar Lander.

Figure 4.4: User Study Results. Similarity metrics and the counts of interaction types
selected by each agent in the two task domains when conducted with human participants. In
Pizza Topping Placement, we observe strong, consistent learning performances of both Com-
parative and Comparative+Specific learners. In Lunar Lander, the Comparative+Specific
agent demonstrates superior learning performance and consistency; in fact, the Comparative
agent’s performance appears to degrade as teaching sessions proceed. While the Compar-
ative+Specific agent generally expects demonstrations and then preferences to yield the
most information when querying participants, the Comparative agent’s expectations appear
more domain-dependent.

4.5 User Study

To test if our results from simulation could be leveraged in real-world human-robot
interactions, we evaluate the performance of learning agents in an in-person user study
with human teachers. Because of resource limitations inherent to user studies, we
choose to assess an active learning agent using Comparative and Comparative+Specific
representations and omit the Grid representation due to its inferior performance on

the Pizza Topping Placement task simulation.

Study Details. We recruited eleven in-person participants (5 men, 6 women; mean
age: 23.9, SD: 4.9) and performed the study at Carnegie Mellon University. Par-
ticipants were recruited through the university’s pool of research participants. We

performed a within-subjects study (i.e., each participant experienced both experi-

38



4. Exploring Reward Functions for Human Interactive Robot Learning

mental conditions) and counterbalanced the order in which participants experienced
the conditions. Each participant taught both tasks to a simulated agent over 10
interaction instances, the types of which were actively selected by the agent from
the four interaction types described earlier. In the Lunar Lander task, corrections
and demonstrations were provided via keyboard inputs while preference and critique
feedback was provided via a basic terminal user interface. In the Pizza Topping
Placement task, mouse inputs were used to provide each type of feedback.

Running the Lunar Lander simulation to optimize trajectories takes a significant
amount of time—on the order of minutes for a single interaction instance. This
computation rendered online trajectory generation infeasible for our study. As such,

we approximated the space of trajectories using a cache of 2,200 trajectories.

Figure 4.5: Examples of goal topping placements given to participants during Pizza Topping
Placement user study.

The task goal in Lunar Lander was apparent: Land the spaceship on the landing
pad and in an upright pose. Less obvious was the task goal for Pizza Topping
Placement. As such, and to avoid erratic goal pizzas, we provided each participant
with a unique topping arrangement to teach the agent (examples shown in Figure 4.5).
Topping arrangements were chosen arbitrarily albeit with the objectives of being
learnable by the agent (i.e., goals could be captured by the feature space) and apparent
to the participant that the agent was (or was not) learning.

To evaluate how the Comparative and Comparative+Specific reward representa-

39



4. Exploring Reward Functions for Human Interactive Robot Learning

tions each affect learning performance, we asked each user to provide a demonstration
of their ideal trajectory before the teaching session began and then compared its
features with the agent’s attempted trajectory at each time step. To ensure fair
comparison, we computed all similarity metrics in the Comparative+Specific feature

space.

4.5.1 Results

Figure 4.4 depicts the performance of each agent averaged across all participants. Both
learners demonstrated an ability to learn participants’ reward functions in the Pizza
Topping Placement task. In Lunar Lander, however, the Comparative+Specific agent
performed better than the Comparative agent (Figure 4.4b). While the Comparative
agent demonstrated an ability to quickly improve its model, the agent’s performance
decreased as interactions proceeded. Note that the Comparative agent primarily
chose corrections as the first interaction type and then switched to preference queries
during Lunar Lander. Given that the Comparative+Specific agent’s performance
tends to stagnate in its own right after switching to preference queries, perhaps the
participants’ responses to the agents’ preference queries were difficult data points
from which the agent could learn no matter the representation.

Figure 4.4 also depicts the frequency with which the agent selected each interaction
type. As was the case in our simulation experiments (see Figure 4.2), the Comparative
agent primarily selects demonstrations over the course of Pizza Topping Placement
and the Comparative+Specific agent selects demonstrations early but then favors
preferences. This selection of interaction types for both agents in Pizza Topping
Placement aligns with our finding in simulation that the agent’s reward representation
influences the interaction types with which it will query a teacher. Even so, the
learner primarily selected demonstrations during Lunar Lander simulations yet display
a greater diversity of selection in the study. We attribute the tendency to pick a
diverse selection of interaction types to the pre-computed trajectory cache we employ
in our study rather than the online trajectory generation we employed in simulated
tasks. Indeed, when we rerun simulations using the trajectory cache, we observe that
interaction type selection approximately mirrors the patterns observed during the

study. This outcome suggests that both domain complexity and model representation

40



4. Exploring Reward Functions for Human Interactive Robot Learning

affect an agent’s interaction type selections.

We also gathered qualitative metrics from our participants. At the end of each
teaching session, participants were shown the evolution of the agent’s belief via
a sequence of demonstrations in which each demonstration ¢ corresponded to the
agent’s belief after receiving a query response at time t. After viewing this sequence,
participants reported how much they agreed with the statement: “The agent appeared
to learn the goal over time.” We collected responses on a 7-point Likert scale and
report them in Figure 4.6.

Participants perceived comparable learning performance between the two agents;
in both cases, 64% “Somewhat Agree” that the agent learned. Participants tended to
observe learning more readily after teaching a Comparative agent in Pizza Topping
Placement; 73% of participants at least “Somewhat Agree” that the Comparative
agent learned compared to the 55% of participants who felt the same about the
Comparative+Specific agent. While consistent with our results from simulation, this
result conflicts with our quantitative evaluations that show the Comparative+Specific

agent achieves superior learning performance.

Strongly Strongly

Disagree Agree
el 9% 182%  1e2%  273%  182% Bk
+Spec.

ool BAWOA%OA%OA%  ass%  9A%PA%
+Spec.
Figure 4.6: Participant responses on a 7-point Likert scale for the Pizza Topping Placement
(top two bars) and Lunar Lander (bottom two bars) tasks.

4.5.2 Discussion of User Study Results

We conducted our user study to see if the results corroborate those from simulation.

While our quantitative results suggest both agents learn the Pizza Topping Placement

41



4. Exploring Reward Functions for Human Interactive Robot Learning

task to a comparable degree (as our teaching simulations also show), the Compara-
tive-+Specific agent is the superior learner in Lunar Lander, a result which conflicts
with those from simulation. Even so, learning performance is notably inferior for
both agents when compared to their performance in simulation, likely due to our use
of the pre-computed trajectory cache?.

Interestingly, the agents’ interaction type selections when interacting with people
follow the patterns observed in Pizza Topping Placement. While interaction type
selection is not the same across Lunar Lander experiments (teaching simulations
primarily saw agents select demonstrations), when we rerun simulations with the
trajectory cache, the interaction type selections follow the same pattern as that from
the study.

Finally, the qualitative results suggest people may more readily perceive a Com-
parative agent’s learning. That perception, however, is hardly stronger than that
perceived of the Comparative+Specific agent. As such, it would be presumptive to
draw conclusions from this result. Indeed, this inconclusive result (which also conflicts
with the quantitative superiority of the Comparative+Specific agent) corroborates
the difficult task of designing methods which reliably capture human preferences.
Furthermore, it is evidence that we should be wary of relying too heavily upon
our objective evaluations when deeming certain approaches “good” or “bad” from

simulation or user study alone.

4.6 Conclusion

In this work, we take a step towards robots learning human rewards by exploring the
ways a robot learner should internally represent their human teacher’s preferences
over the way a robot executes tasks. Our experiments in simulation indicate that
robot learners being taught tasks would best be suited to match their reward function
representation with that of their teacher. Our user study corroborates these findings
and those that indicate a learner’s reward representation influences its selection
of interaction types when actively querying its teacher. Future research directions

could include further investigation into interaction types and their representations,

2When we rerun simulations with the cache, we see similar performance degradation.

42



4. Exploring Reward Functions for Human Interactive Robot Learning

incorporating more informed prior information about the human into the robot’s
querying process, interactions that include back-and-forth querying between learner
and teacher, and how to use different interaction types to learn long-term, transferable

human preferences.

43



4. Exploring Reward Functions for Human Interactive Robot Learning

44



Chapter 5

Conclusion

This thesis set out to address two needs: 1.) the need for robots to learn from
multiple interaction types, and 2.) the need for robots to have effective, efficient
internal representations of their human teachers. To address the first, we introduced
INQUIRE, an algorithm enabling a robot to dynamically optimize its queries and
interaction types according to its task knowledge and its state within the environment.
We showed that using information gain to select not just optimal queries, but optimal
interaction types, results in consistently high performance across multiple tasks and
state configurations.

To address the second need, we explored the ways a robot learner should internally
represent, their human teacher’s preferences over the way a robot executes tasks. Our
experiments in simulation indicate that robot learners being taught tasks would best
be suited to match their reward function representation with that of their teacher.
Our user study corroborates these findings and those that indicate a learner’s reward
representation influences its selection of interaction types when actively querying its
teacher.

Future work which builds off of the two projects presented in this thesis include
formal user studies to investigate INQUIRE'’s efficacy with people of varied skillsets and
comfort with robots, and alternative representations of the reward function and feature
spaces. Additionally, future research directions could include further investigation
into interaction types and their representations, incorporating more informed prior

information about the human into the robot’s querying process, interactions that

45



5. Conclusion

include back-and-forth querying between learner and teacher, and how to use different

interaction types to learn long-term, transferable human preferences.

46



Chapter 6

Appendix

6.1 INQUIRE: Approach Details

6.1.1 Information Gain Derivation

Information gain can be computed by calculating the change in entropy in a distribu-

tion X after receiving the datapoint y:

IG(X,y) (6.1)
= H(X) — H(X]y) (6.2)
= —EqxlogP () + EqxlogP(x]y) (6.3)
= P(zly) -logP(zly) — Y P(x) - logP(x) (6.4)

zeX zeX

We adapt this generic formulation to use our definitions of interaction types, query

space, and choice space, and aim to solve for the optimal query:

max Eeic,(q) [GOW, c)] (6.5)

We now solve for the expected information gain according to Egs. 6.1- 6.4 and

47



6. Appendix

following the derivation presented in [10]:

Eejciiq) IGOW, )] (6.6)
~ HOW) — B [HOV) 67)
= —BEyw [log POV)] + By cici () [log P(W]e)] (6.8)
= Ew ey logP(W|c) — logP(W)] (see proof in Sec. 6.1.1)  (6.9)
=Ewcio {bg P((VX\L))} (6.10)
=Ew.ici(o) [log—Png;\))] (by Bayes’ rule) (6.11)
=Y e Y [P(w\C) tog? Jg(';’)} (6.12)
ceCi(q) L weWw
=5 pp 5 [P@Pelw) | Plelw)
r P )z;v { P P ] (6.13)
P(clw
c€Ci(q) w Zw[ Plelw) los f(’(L))} (6.14)
P(c|lw)
= P(w) - P(clw) - lo - - (6.15)
ceCi(q) wew { ng’GW P<w ) ’ P<C|’UJ )1
1 M P()
M c€C;i(q) % { )1 gzw’eQ P(C|w/)} (6.16)

Where 2 contains M samples of the distribution W.

48



6. Appendix

Proof of Eq. 6.9

— Ew [logPOW)] + Ew cic,(q) [log P(W|c)] (6.17)
= Ew.cici(q) logPW|c)] — Ep [log P(W)] (6.18)
= | Y. P(w) > Plcw)-logP(wle)| — | > P(w)-logP(w) (6.19)
wew ceCil(q) wew
=) Pw)- > P(cw) - logP(wlc) | — logP(w) (6.20)
wew ceCi(q)

=Y P(w)- | Y Pclw)-logP(wlc) = > P(clw) - logP(w) (6.21)

weWw | ceCi(q) c€Ci(q)

=Y Pw)- Y Plcw)-[logP(wl|c) —logP(w)] (6.22)
wew ceCi(q)

= Ew qc;(q) [logP(W|c) — logP(W)] (6.23)

6.1.2 KL Divergence Formulation

We now show that we can alternatively derive Eq. 6.16 from the standard KL

divergence equation:

KL(PQ) = 3 {P(@ - logggﬂ (6.24)

Where P and @) represent the data distribution before and after receiving feedback,

respectively. We convert this formulation to our terminology as follows:
max E.jc, ) [KL(P(WI)| [ POV))] (6.25)

49



6. Appendix

We now solve for the optimal query:

Eecia) [KL_(P(W\C)HP(W))] ] (6.26)
~Ejey | 3 [Plule) log ] (6.27)
g -
= Eeciia) | Y [P(MIC)-IOgP}()C(g)] (6.28)
LweW d
- Z P(c) Z {P(w|c)-logpéc<|;])] (6.29)
ceCi(q) wWEW

Which is equivalent to Eq. 6.12, and thus results in Eq. 6.16.

6.1.3 Probability Tensor Derivations

See Table 3.1 for all definitions of ¢, ¢, ¢*, ¢~ for each interaction type. In the

demonstration case, we define P as follows:

P(demo) B Zt€c+ 66¢(t)w

w | = — (6.30)
e Ztecﬂm* efolt)
eBo(cg)w ' N L '
= W (since [¢"| =1 and ¢" Uc™ =T for demonstrations)
(6.31)
T
= % (6.32)
ZteT ETo
= |ET, 0 Z E, (since there is a 1-1 correlation between ¢ and ¢* in demos)
teT

c,w

(6.33)
where @ represents an element-wise division of two matrices (i.e., (A@B);; = A;;/Bi;).

20



6. Appendix

In the preference case:

P(pref) - Zt€c+ eﬁd)(t)w

e ZtECJFUc* el o)
eBo(cg)w .
= e g P (since |ct| =1 and ¢~ = ¢\ ¢ in preferences)
6.35)
Since cg = ¢ ={@}and c; = " ={q}: (6.36)
i eB-¢(q0)w eBo(qr)w
= [P 1 Pola)w o) 1 eﬁ-qs(ql)w} . (where ¢ € {0,1}) ~ (6.37)
— ETQO»quw EQO7Q17W (638)
L [E + ET]‘IO»QLW [E + ET]qo,qhw c
~[(Eo®E+E")" . Eo([E+ ET)} (6.39)
L €,q0,q1,w
In the corrections case:
B-p(t)-w
(C;)I:) _ Zt€c+ € (640)
e D et Ue ef oty
eBo(cg)w s
= 1 = 1 - = .
T T (since |cT| and || =1) (6.41)
ET
= 9% (due to 1-1 correlation between ¢ and ¢~ and between ¢ and ¢* in corrections)
[E + ET]q,c,w
(6.42)
=[E'0E+EY] (6.43)

In the binary reward case, we compare the likelihood of the teacher demonstrating

o1



6. Appendix

q to the average likelihood of demonstrating any other trajectory in 7"

P(bnry) B Ztech eBo(t)w

g,cw T Zte(ﬁUC* 66"15(75)'“’ (6.44)
Since cg = ¢ =T\q, ¢ =gq (6.45)
andc; = ct=¢q, ¢ =T\¢ (6.46)

T a||T\ql e eft0e S e

(since ¢ € {0,1} in binary rewards)

[

(6.47)
_1 _ P(demo) P(demo) ]
= 1o T|0f7w1) : 0’;’“’ (where « is a normalization factor s.t. ; pimy) = 1)
(6.48)
B P(()demo) P(()demo) ]
_ |- T0aw g : pboury) _ q 6.49
e Do ince P = (6.49)
= 1 — (ETO @OzZEt> ,ETO @OéZEt (650)
L teT teT qw

(demo)

_ 1"Pogw (demo)
Wherea—W+P,’

6.1.4 Gradient Derivation

Our goal is to update the weight estimate such that it maximizes the likelihood of all
feedback in F":

w* = argmax H P(c|w) (6.51)

w
> e eBo(t)w
C
eﬁ‘d’(t)‘w

ceF

= argmax | |
w c€F Zt€c+Uc—

(6.52)

52



6. Appendix

We calculate the gradient over w by differentiating over its log-likelihood given F'

B-p(t)-w
l(w) = logH 2rect © —— (6.53)

_ Zt + eBet)w
: o (6.54)
ceF | Y reetye €O
= log (Z eﬁ-qb(t).w) — log ( Z e,8~¢(t).w)] (6.55)
ceF L tect e

Ol(w) _ Ztedrﬁ ¢J() eﬂ'qb(t). Et€c+Uc B ¢J() ef oD
awj ceF Zt efol) Ztéc*Uc* el ot

Note that when ¢t contains a single trajectory (i.e., in all interaction types except

] (6.56)

for binary reward), this gradient simplifies to:

Ow; eF D tectue €70

y ) (1) - ol
‘%( )=Z[5-¢j<co> P L ] (6:5)

6.1.5 Training Parameters

We enforce Vw € W, ||w|| = 1. We set a high convergence threshold (1073) when
updating each weight sample in order to maintain sparsity within 2 (which becomes
less sparse as F grows with more queries), and then fully converge (convergence
threshold of 1079) for reporting the distance between w* and the weight estimate @
after each query. During gradient descent, we use a step size of 5x10~% for all tasks

except for the Pizza domain, where we use a step size of 1074

6.2 INQUIRE: Evaluation Details

6.2.1 Domain Implementations

Domain #1: Parameter Estimation This task involves directly estimating a
randomly-initialized, ground truth weight vector w* containing 8 parameters. This

formulation represents a generic learning problem relevant to many robotics tasks,

93



6. Appendix

such as learning the relative importance between task outcomes according to a user’s
preference. There is no “state” in this domain, and each “trajectory” consists of
a single sample of the weight vector. As a result, we do not enable demonstration
queries in this domain since the resulting feedback would be akin to directly providing
w* to the algorithm. The feature representation ¢ of a sample returns the sample itself.
Since ||w|| = ||w*|| = 1, the reward of any sampled weight vector directly reflects the

cosine similarity between it and the ground truth vector (r(w) = w - w* = cos(h)).

—— Ground Truth Weights (w*) —— Ground Truth Weights (") —— Ground Truth Weights (")
—— Leared Weights (w) —— Learned Weights (w) —— Learned Weights (w)

Figure 6.1: In the Parameter Estimation domain, the robot is tasked with estimating a
high-dimensional ground truth weight vector w* with its own set of learned weights w. To
visualize this concept, a simpler case is illustrated above in three dimensions. All weight
vectors (ground truth and learned weights) are unit vectors, and therefore lie on a unit
sphere. Over time, the robot updates w by interacting with a teacher to gain a better
estimate of w*.

Domain #2: Linear Dynamical System We consider a simple Linear Dynami-
cal System representing a robot that optimizes its controls according to a learned task
objective. We represent the dynamics of the robot’s state s as ds/dt = As(t) + Bu(t)
by using dynamics matrix A, input matrix B, and random controls u. An optimal
control vector is one that results in a trajectory of states maximizing ﬁ Y oser O(8)-wr
We define the feature representation ¢(s) of a state s as the concatenation of the
element-wise, absolute difference between the robot’s pose at time ¢ and the goal
pose, and the controls u(t). We experiment with an 8-dimensional feature-space (4
pose elements and 4 corresponding controls).

In a demonstration query, the oracle provides a trajectory (produced by simulating

a series of controls) from the initial state that maximizes the total reward. In a

o4



6. Appendix

preference query, the algorithm proposes two trajectories and the oracle selects the
option which yields higher reward. In a corrections query, the algorithm proposes a
trajectory and the oracle returns a trajectory that maximizes the reward-to-similarity
ratio. In a binary reward query, the algorithm proposes a trajectory and the oracle
indicates whether that trajectory results in reward that exceeds the agent’s internal
threshold.

Option A

jﬁ Option B
Rt = L:)t . (I)() /— Rt+l = (:/'t+1 . (I)()

Figure 6.2: An example of a preference query in the Linear Dynamical System domain. At
time = ¢, the learned reward function yields the red “trajectory.” After posing a preference
query (which consists of options A and B), the corresponding belief update yields the
approximated reward function at time = ¢ + 1.

Domain #3: Lunar Lander We define a w* that results in the agent efficiently
moving from its start state to an upright pose on the landing pad. We use the
same feature representation as in [43], consisting of four features: the lander’s angle,
velocity, distance from the landing pad, and final position with respect to the landing

pad. We implement each query type in the same manner as in the Linear Dynamical

Figure 6.3: The Lunar Lander domain involves having the robot pilot a lunar lander to
safely descend and arrive at a landing pad. The depicted preference query illustrates two
different trajectories that may be taken by the lander to reach the destination.

System.

95



6. Appendix

Domain #4: Pizza Topping Placement We approximate a preference-learning
task in which the robot learns to place toppings on only the left side of a pizza and
with uniform spacing between them. We define each “trajectory” as the next action
the robot should take from the current pizza state; thus, the trajectory is defined as
the (z,y)-coordinate of the next topping to be placed. The feature representation
consists of four features: the x and y position of the topping, its distance to its

nearest-neighboring topping, and the difference between that distance and 4cm.

Figure 6.4: The task in the Pizza Topping Placement domain is to learn how to place
toppings according to a human’s reward over topping positions. In the depicted preference
query, a human’s choice indicates their preference for the “next” topping’s position (choices
represented in blue).

6.2.2 Oracle Implementation

When responding to a query, the oracle requires its own set of trajectory samples.
Similar to INQUIRE, we derive this set by uniformly sampling N trajectories; however,
the two sample sets are kept separate, and so we distinguish the oracle’s trajectory
set as T" (resampled for each query state).

Demonstration/Preferences The oracle returns the highest-reward trajectory
(according to w*) from a uniformly-sampled trajectory set 7" (for demonstrations) or

from the pair of queried trajectories C'(q) (for preferences):

Oraclegemo(q) = argmax (¢(t) - w*) Oracleper(q) = argmax (¢(t) - w*)
teT’ teC(q)

(6.58)
Corrections The oracle produces 7" by performing rejection sampling; it uniformly

samples trajectories and accepts only those with a reward greater than or equal to

o6



6. Appendix
the queried trajectory ¢ until 7" contains N trajectories:
VEe T o(t) - w* = d(q) - w* (6.59)

After producing this trajectory set, the oracle selects the trajectory with the highest

ratio of reward-to-distance from the queried trajectory:

A(g,t)
Oracleg (¢) = argmax 6.60
(q> thT’ Ad(q7 t) ( )
B o(t) - w* — od(q) - w* )
Ar(g,t) = min o) o —olg) o Aalg,t) = min —7 (6.61)

The distance metric § between two trajectories is domain-specific. In the Parameter
Estimation domain, we define this as the angular distance between the two parameter
vectors. In the Linear Dynamical System and Lunar Lander domains, we define §
as the normalized distance between the two trajectories’ aligned x and y poses over
time. We use the DTW-Python package [24] to align trajectories via Dynamic Time
Warping and return their normalized distances. In the Pizza Topping Placement

domain, we define § as the Euclidean distance between two toppings.

Binary Reward The oracle produces T” by uniformly sampling N trajectories
and produces a cumulative distribution R over ground-truth rewards for 7”. It then
selects a positive or negative reward indicating whether the agent’s query ¢ meets or

exceeds a threshold percentile a:

R={w" ¢(t),VteT'} Oraclepn,y(q) = T RWelg) 2 a (6.62)

— otherwise
We set o = 0.75 in our experiments.

o7



6. Appendix

6.2.3 Evaluation Procedure

Algorithm 4 Evaluation Procedure
Input: generate_query and update weights methods according to algorithm being

tested
1: Generate ground truth reward function w*
2: Generate 10 test states
3: Compute optimal trajectory .., for each test case using w*
4: Compute least-optimal trajectory ¢, for each test case using w*
5: for each of 10 runs do
6: Generate 20 query states (if testing in the static condition, repeat the same
state 20 times)
7: for each of 20 queries do
8: s <= next query state
9: q* <+ generate_query(s,Z, Q)
10: F < F+ query_oracle(q*)
11: Q « update_weights(F)
12: @ < mean(€2)
13: Record distance: %@Jw)
14: for each of 10 test states do
15: Compute optimal trajectory ¢ from the test state according to w
16: Record performance: ¢>(f$:;wif(;a;):)jw
17: end for
18: end for
19: end for

o8



6. Appendix

6.3 AUC Figures

QUERIES vs DISTANCE Curve

Parameter Dynamical Dynamical Pizza Pizza cross Tasks:

E: t Lunar Lander  Lunar Lander Arrar Arrar Mean w*
Agent (Static State) (Statlc State) (Changmg State) (Static State) (Changing State) (Static State) (Changing State) Distance
DemPref 5.96 6.42 6.26 513 5.08 7.53 6.50 6.13
Binary-only 7.44 4.87 5.24 6.73 6.18 8.13 8.00 6.66
Corrections-only | 301 443 4.01 4.02 4.29 4.7 3.96

Demo-only n/a 4.26
4.30 4.34

5.09 3.99
Preferences-only
INQUIRE

Figure 6.5: AUC values for the distance plots in Figs 3.2-3.3. Darker cells indicate lower
(better) values.

Distance
10 = DEMPREF
- povs e s 1+ ® Binary-Only
= — S = N u Corr-Only
= Demo-Only

— 8 = Pref-Only
S = INQUIRE
<
]
3
O
“
(9]
2 .
=]
©
9]
“
<

| ‘

0 I

¢ e
tel‘/ /Oeers [;;tlc 3, %, (;;b /eea O[e y
'6 . 4 2%
RZS 086"6), s, e, 2
S,

Figure 6.6: Visualizing Fig. 6.5, with statistical significance noted. (*: p < 0.05, **:
p < 0.01, ***: p < 0.001)

29



6. Appendix

QUERIES vs PERFORMANCE Curve

Parameter Dynamical Dynamical Pizza Pizza cross Tasks:
Lunar Lander  Lunar Lander Arrar Arr Mean
Agent (Static State) (Statlc State) (Changmg State) (Static State) (Changing State) (Static State) (Changmg State) Performance
DemPref 13.95 14.69 14.47 17.22 17.37 14.03 15.53 15.32
Binary-only 15.01 16.54 16.85 17.37 14.29 14.65 16.15
Corrections-only _ 16.53
Demo-only n/a 16.76

16.55

Preferences-only
INQUIRE

Figure 6.7: AUC values for the performance plots in Figs 3.2-3.3. Darker cells indicate
higher (better) values.

Performance
e = DEMPREF
- — = Binary-Only
= = Corr-Only
20 = Demo-Only
O = Pref-Only
g = INQUIRE
<
N
o 15
c
3
@]
-
S
S 10
=)
18]
o
<<
5
0 A, S 4 N, A
K 7
erc, ™, tet,o 4 /’@e’s t‘e% od@ﬁ te%& 225 01‘5 y
R 85, Vs, b, 225

.

Figure 6.8: Visualizing Fig. 6.7, with statistical significance noted. (*: p < 0.05, **:
p < 0.01, ¥ p < 0.001)

COST vs DISTANCE Curve

Parameter Dynamical Dynamical Pizza Pizza Across Tasks:
Lunar Lander  Lunar Lander Arrar Arr Mean

Agent (Static State) (Statlc State) (Changlng State) (Static State) (Changing State) (Static State) (Changing State) | Cost/Distance
DemPref 68.26 71.59 70.52 59.16 58.41 82.21 74.20 69.19

Binary-only 64.15 . 1.85 61.30 49.84 78.62 79.20 60.16
Corrections-only
Demo-only
Preferences-only
INQUIRE

Figure 6.9: AUC values for the cost plots in Figs 3.2-3.3. Darker cells indicate lower (better)
values.

60



6. Appendix

Cost

100
= DEMPREF

— — ® Binary-Only
u Corr-Only

80 = Demo-Only

Pref-Only
= INQUIRE
60
0 ‘

P K
%o, re%

Area Under Curve (AUC)
o

N
o

St 4, St 2% %S
sbc %, W, R0 oy

“%,
O’er ]

4
e S
85, s,
-
Sy

Figure 6.10: Visualizing Fig 6.9, with statistical significance noted. (*: p < 0.05, **:
p < 0.01, ***: p < 0.001)

6.4 Exploring Reward Functions: Filtering
Reward Function Beliefs

To undertake this project’s learning task, we designed the agent’s belief model of
the reward function as a particle filter. Particle filters are probabilistic state models
which perform Bayesian inference through sequential, online updates to a belief
space [47]. Commonly used in robotics for state estimation, they’ve also been used to
approximate the motions of articulated objects and to track the poses of manipulated
objects [25, 36].

To formalize our particle filter representation, let:

°*p = 6 be a d-dimensional tuple of parameters that represents a discrete,

hypothesized reward function R(-);
e p*) € P be the k-th particle in the particle set P; and

* m; € m be the k-th particle’s importance weight, with m; € (0,1) and

d
=1

Intuitively, a particle filter’s importance weights m represent a probability dis-

61



6. Appendix

tribution over the filter’s particle set P. Thus, each importance weight my is an
approximation of the probability that p*) represents the “true” reward function of
the teacher. The filter’s primary function is to allocate greater weight to the more
likely particles by evaluating an observation and then performing a corresponding
Bayesian update over its importance weights.

It’s critical for the reader to grasp our formulation’s distinction between importance
weights m and parameter weights w. Each particle has its own importance weight
my, that represents how strongly the robot believes that particle is the human’s true
reward function. Distinct from this importance weight is its set of parameter weights
@®  which directly contribute to the value yielded by the k-th particle’s reward
function Rg(-).

Each filtering step produces a distribution of particle importance weights m;
conditioned on the teacher’s response ¢* to query gq; (see Equation 4.5). In our
formulation, the prior belief P(8) is approximated by the importance weights m,, and
the likelihood term depends upon the interaction type chosen by the robot for query
q;. See Table 4.1 for descriptions of the likelihood representations for the different
query interaction types.

The filtering process is depicted in Figure 4.1. First, the learner presents a query
to the teacher through the process described in Section 4.3. After receiving a response
c* to query gq;, the agent updates its belief using its prior and the likelihood term
P(c*|q;, m;) as in Equation 4.5. Finally, the filter resamples particles from the
posterior P(60y; c) to get the new approximation to the prior belief m, ;. After each
such interaction instance, the learner’s particle set should filter out unlikely particles

and continue homing in on the teacher’s reward function R*.

62



Bibliography

1]

Andrea Bajcsy, Dylan P. Losey, Marcia K. O’'Malley, and Anca D. Dragan. Learn-
ing from Physical Human Corrections, One Feature at a Time. In Proceedings
of the 2018 ACM/IEEE International Conference on Human-Robot Interaction,
pages 141-149, Chicago IL USA, February 2018. ACM. ISBN 978-1-4503-4953-
6. doi: 10.1145/3171221.3171267. URL https://dl.acm.org/doi/10.1145/
3171221.3171267. ZSCC: 0000059. 1, 2.3, 3

Chandrayee Basu, Mukesh Singhal, and Anca D. Dragan. Learning from
Richer Human Guidance: Augmenting Comparison-Based Learning with
Feature Queries. Proceedings of the 2018 ACM/IEEE International Con-
ference on Human-Robot Interaction, pages 132-140, February 2018. doi:
10.1145/3171221.3171284. URL http://arxiv.org/abs/1802.01604. ZSCC:
0000034 arXiv: 1802.01604. 1

Chandrayee Basu, Mukesh Singhal, and Anca D. Dragan. Learning from
Richer Human Guidance: Augmenting Comparison-Based Learning with Fea-
ture Queries. In Proceedings of the 2018 ACM/IEEE International Confer-
ence on Human-Robot Interaction, pages 132-140, Chicago IL USA, February
2018. ACM. ISBN 978-1-4503-4953-6. doi: 10.1145/3171221.3171284. URL
https://dl.acm.org/doi/10.1145/3171221.3171284. ZSCC: 0000034. 2.1

Andreea Bobu, Dexter R. R. Scobee, Jaime F. Fisac, S. Shankar Sastry, and
Anca D. Dragan. LESS is More: Rethinking Probabilistic Models of Human
Behavior. In Proceedings of the 2020 ACM/IEEE International Conference on
Human-Robot Interaction, pages 429-437, March 2020. doi: 10.1145/3319502.
3374811. URL http://arxiv.org/abs/2001.04465. arXiv:2001.04465 [cs, stat].
2.1

Andreea Bobu, Chris Paxton, Wei Yang, Balakumar Sundaralingam, Yu-Wei
Chao, Maya Cakmak, and Dieter Fox. Learning Perceptual Concepts by Boot-
strapping from Human Queries, July 2022. URL http://arxiv.org/abs/2111.
05251. arXiv:2111.05251 [cs]. 2.3

W. Bradley Knox and Peter Stone. TAMER: Training an Agent Manually
via Evaluative Reinforcement. In 2008 7th IEEE International Conference on

63


https://dl.acm.org/doi/10.1145/3171221.3171267
https://dl.acm.org/doi/10.1145/3171221.3171267
http://arxiv.org/abs/1802.01604
https://dl.acm.org/doi/10.1145/3171221.3171284
http://arxiv.org/abs/2001.04465
http://arxiv.org/abs/2111.05251
http://arxiv.org/abs/2111.05251

Bibliography

[11]

[12]

[15]

64

Development and Learning, pages 292-297, August 2008. doi: 10.1109/DEVLRN.
2008.4640845. ISSN: 2161-9476. 1

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAl Gym, June 2016. URL
http://arxiv.org/abs/1606.01540. arXiv:1606.01540 [cs]. 3.2, 4.4.1

Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Ex-
trapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement
Learning from Observations. arXiv:1904.06387 [cs, stat], July 2019. URL
http://arxiv.org/abs/1904.06387. arXiv: 1904.06387. 2.3

Kalesha Bullard, Andrea L. Thomaz, and Sonia Chernova. Towards Intelligent
Arbitration of Diverse Active Learning Queries. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6049-6056, Madrid,
October 2018. IEEE. ISBN 978-1-5386-8094-0. doi: 10.1109/TR0OS.2018.8594279.
URL https://ieeexplore.ieee.org/document/8594279/. 1, 2.3, 3

Erdem Biyik, Malayandi Palan, Nicholas C. Landolfi, Dylan P. Losey, and Dorsa
Sadigh. Asking Easy Questions: A User-Friendly Approach to Active Reward
Learning. arXiv:1910.04365 [cs], October 2019. URL http://arxiv.org/abs/
1910.04365. ZSCC: 0000042 arXiv: 1910.04365. 1, 2.3, 3, 3.1.1, 3.2, 3.2.2, 4.3,
6.1.1

Erdem Biyik, Nicolas Huynh, Mykel J. Kochenderfer, and Dorsa Sadigh.
Active Preference-Based Gaussian Process Regression for Reward Learning.
arXiv:2005.02575 [cs], June 2020. URL http://arxiv.org/abs/2005.02575.
ZSCC: 0000025 arXiv: 2005.02575. 2.1

Erdem Biyik, Dylan P. Losey, Malayandi Palan, Nicholas C. Landolfi, Gleb
Shevchuk, and Dorsa Sadigh. Learning Reward Functions from Diverse Sources
of Human Feedback: Optimally Integrating Demonstrations and Preferences.
arXiv:2006.14091 [cs], August 2021. URL http://arxiv.org/abs/2006.14091.
ZSCC: NoCitationData[s1] arXiv: 2006.14091. 1, 3

Erdem Buiyik, Aditi Talati, and Dorsa Sadigh. APRel: A Library for Active
Preference-based Reward Learning Algorithms, January 2022. URL http://
arxiv.org/abs/2108.07259. arXiv:2108.07259 [cs]. 2.3

Carlos Celemin, Rodrigo Pérez-Dattari, Eugenio Chisari, Giovanni Franzese,
Leandro de Souza Rosa, Ravi Prakash, Zlatan Ajanovi¢, Marta Ferraz, Abhinav
Valada, and Jens Kober. Interactive Imitation Learning in Robotics: A Survey,
October 2022. URL http://arxiv.org/abs/2211.00600. arXiv:2211.00600
[cs]. 1, 3

Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from Suboptimal
Demonstration via Self-Supervised Reward Regression. In Proceedings of the 2020


http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1904.06387
https://ieeexplore.ieee.org/document/8594279/
http://arxiv.org/abs/1910.04365
http://arxiv.org/abs/1910.04365
http://arxiv.org/abs/2005.02575
http://arxiv.org/abs/2006.14091
http://arxiv.org/abs/2108.07259
http://arxiv.org/abs/2108.07259
http://arxiv.org/abs/2211.00600

[16]

[17]

[18]

[20]

[21]

22]

[24]

Bibliography

Conference on Robot Learning, pages 1262-1277. PMLR, October 2021. URL
https://proceedings.mlr.press/v155/chen21b.html. ISSN: 2640-3498. 2.3

Letian Chen, Sravan Jayanthi, Rohan Paleja, Daniel Martin, Viacheslav Zakharov,
and Matthew Gombolay. Fast Lifelong Adaptive Inverse Reinforcement Learning
from Demonstrations, September 2022. URL http://arxiv.org/abs/2209.
11908. arXiv:2209.11908 [cs]. 2.3

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and
Dario Amodei. Deep reinforcement learning from human preferences, February
2023. URL http://arxiv.org/abs/1706.03741. arXiv:1706.03741 [cs, stat]. 4

Yuchen Cui, Pallavi Koppol, Henny Admoni, Scott Niekum, Reid Simmons,
Aaron Steinfeld, and Tesca Fitzgerald. ***Understanding the Relationship
between Interactions and Outcomes in Human-in-the-Loop Machine Learning.
page 10. ZSCC: 0000000. 1, 3, 3.1, 3.3

Yuchen Cui, Pallavi Koppol, Henny Admoni, Scott Niekum, Reid Simmons,
Aaron Steinfeld, and Tesca Fitzgerald. Understanding the Relationship between
Interactions and Outcomes in Human-in-the-Loop Machine Learning. volume 5,
pages 4382-4391, August 2021. doi: 10.24963/ijcai.2021/599. URL https:
//www.ijcai.org/proceedings/2021/599. ISSN: 1045-0823. 2.3

Christian Daniel, Malte Viering, Jan Metz, Oliver Kroemer, and Jan Peters.
Active Reward Learning. In Robotics: Science and Systems X. Robotics: Science
and Systems Foundation, July 2014. ISBN 978-0-9923747-0-9. doi: 10.15607/RSS.
2014.X.031. URL http://www.roboticsproceedings.org/rss10/p31.pdf. 2.3

Tesca Fitzgerald, Elaine Short, Ashok Goel, and Andrea Thomaz. Human-guided
Trajectory Adaptation for Tool Transfer. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 19, pages
1350-1358, Richland, SC, May 2019. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 978-1-4503-6309-9. 1, 2.3, 3

Tesca Fitzgerald, Pallavi Koppol, Patrick Callaghan, Russell Quinlan Jun Hei
Wong, Reid Simmons, Oliver Kroemer, and Henny Admoni. INQUIRE: INter-
active Querying for User-aware Informative REasoning. November 2022. URL
https://openreview.net/forum?id=3CQ3Vt0Ov99. 1, 4.3

Gaurav R. Ghosal, Matthew Zurek, Daniel S. Brown, and Anca D. Dragan.
The Effect of Modeling Human Rationality Level on Learning Rewards from
Multiple Feedback Types, August 2022. URL http://arxiv.org/abs/2208.
10687. arXiv:2208.10687 [cs|. 2.2

Toni Giorgino. Computing and Visualizing Dynamic Time Warping Alignments
in R: The dtw Package. Journal of Statistical Software, 31:1-24, August 2009.
ISSN 1548-7660. doi: 10.18637/jss.v031.i107. URL https://doi.org/10.18637/

65


https://proceedings.mlr.press/v155/chen21b.html
http://arxiv.org/abs/2209.11908
http://arxiv.org/abs/2209.11908
http://arxiv.org/abs/1706.03741
https://www.ijcai.org/proceedings/2021/599
https://www.ijcai.org/proceedings/2021/599
http://www.roboticsproceedings.org/rss10/p31.pdf
https://openreview.net/forum?id=3CQ3Vt0v99
http://arxiv.org/abs/2208.10687
http://arxiv.org/abs/2208.10687
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.18637/jss.v031.i07

Bibliography

[25]

[26]

28]

[30]

[31]

[32]

66

jss.v031.107. 4.4.2, 6.2.2

Karol Hausman, Scott Niekum, Sarah Osentoski, and Gaurav S. Sukhatme.
Active articulation model estimation through interactive perception. In 2015
IEEE International Conference on Robotics and Automation (ICRA), pages
3305-3312, Seattle, WA, USA, May 2015. IEEE. ISBN 978-1-4799-6923-4. doi:
10.1109/ICRA.2015.7139655. URL http://ieeexplore.ieee.org/document/
7139655/. ZSCC: 0000063. 6.4

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne.
Imitation Learning: A Survey of Learning Methods. ACM Computing Surveys,
50(2):21:1-21:35, April 2017. ISSN 0360-0300. doi: 10.1145/3054912. URL
https://dl.acm.org/doi/10.1145/3054912. 1, 2.3, 3

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario
Amodei. Reward learning from human preferences and demonstrations in Atari,
November 2018. URL http://arxiv.org/abs/1811.06521. arXiv:1811.06521
[cs, stat]. 2.3

Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit)
choice: A unifying formalism for reward learning. In Advances in Neural
Information Processing Systems, volume 33, pages 4415-4426. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
2£10c1578a0706e06b6d7db6f0b4abaf-Abstract.html. 2.3

Aleksandra Kalinowska, Ahalya Prabhakar, Kathleen Fitzsimons, and Todd
Murphey. Ergodic imitation: Learning from what to do and what not to do. In
2021 IEEFE International Conference on Robotics and Automation (ICRA), pages
3648-3654, May 2021. doi: 10.1109/ICRA48506.2021.9561746. ISSN: 2577-087X.
2.3

Pallavi Koppol, Henny Admoni, and Reid Simmons. Interaction Considerations
in Learning from Humans. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, pages 283-291, Montreal, Canada, August
2021. International Joint Conferences on Artificial Intelligence Organization.
ISBN 978-0-9992411-9-6. doi: 10.24963/ijcai.2021/40. URL https://www.ijcai.
org/proceedings/2021/40. ZSCC: 0000000. 1, 3, 4.1

Oliver Kroemer and Gaurav S. Sukhatme. Learning spatial preconditions of
manipulation skills using random forests. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pages 676-683, Cancun, Mexico,
November 2016. IEEE. ISBN 978-1-5090-4718-5. doi: 10.1109/HUMANOIDS.
2016.7803347. URL http://ieeexplore.ieee.org/document/7803347/. 2.3

Cassidy Laidlaw and Anca Dragan. The Boltzmann Policy Distribution: Ac-
counting for Systematic Suboptimality in Human Models. page 21, 2022. ZSCC:


https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.18637/jss.v031.i07
http://ieeexplore.ieee.org/document/7139655/
http://ieeexplore.ieee.org/document/7139655/
https://dl.acm.org/doi/10.1145/3054912
http://arxiv.org/abs/1811.06521
https://proceedings.neurips.cc/paper/2020/hash/2f10c1578a0706e06b6d7db6f0b4a6af-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2f10c1578a0706e06b6d7db6f0b4a6af-Abstract.html
https://www.ijcai.org/proceedings/2021/40
https://www.ijcai.org/proceedings/2021/40
http://ieeexplore.ieee.org/document/7803347/

[33]

[34]

[35]

[38]

[39]

[40]

[41]
[42]

Bibliography

NoCitationData[s0]. 2.1

Michael S. Lee, Henny Admoni, and Reid Simmons. Machine Teaching for Human
Inverse Reinforcement Learning. Frontiers in Robotics and Al 8, 2021. ISSN
2296-9144. URL https://www.frontiersin.org/articles/10.3389/frobt.
2021.693050. 3.4

Michael S. Lee, Henny Admoni, and Reid Simmons. Reasoning about Counter-
factuals to Improve Human Inverse Reinforcement Learning. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
9140-9147, Kyoto, Japan, October 2022. IEEE. ISBN 978-1-66547-927-1.
doi: 10.1109/TROS47612.2022.9982062. URL https://ieeexplore.ieee.org/
document/9982062/. 2.2

Kejun Li, Maegan Tucker, Erdem Biyik, Ellen Novoseller, Joel W. Burdick, Yanan
Sui, Dorsa Sadigh, Yisong Yue, and Aaron D. Ames. ROIAL: Region of Interest
Active Learning for Characterizing Exoskeleton Gait Preference Landscapes.
In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 3212-3218, May 2021. doi: 10.1109/ICRA48506.2021.9560840. URL
http://arxiv.org/abs/2011.04812. arXiv:2011.04812 [cs]. 2.3

Jacky Liang, Ankur Handa, Karl Van Wyk, Viktor Makoviychuk, Oliver Kroemer,
and Dieter Fox. In-Hand Object Pose Tracking via Contact Feedback and GPU-
Accelerated Robotic Simulation, November 2020. URL http://arxiv.org/abs/
2002.12160. arXiv:2002.12160 [cs|. 6.4

Jacky Liang, Saumya Saxena, and Oliver Kroemer. Learning Active
Task-Oriented Exploration Policies for Bridging the Sim-to-Real Gap.
arXiv:2006.01952 [cs], November 2020. URL http://arxiv.org/abs/2006.
01952. ZSCC: 0000005 arXiv: 2006.01952. 2.3

Dylan P. Losey and Marcia K. O’Malley. Learning the Correct Robot Trajectory
in Real-Time from Physical Human Interactions. ACM Transactions on Human-
Robot Interaction, 9(1):1:1-1:19, December 2019. doi: 10.1145/3354139. URL
https://doi.org/10.1145/3354139. ZSCC: 0000010. 2.3

Dylan P. Losey, Andrea Bajcsy, Marcia K. O’Malley, and Anca D. Dragan.
Physical Interaction as Communication: Learning Robot Objectives Online
from Human Corrections, July 2021. URL http://arxiv.org/abs/2107.02349.
arXiv:2107.02349 [cs, eess|. 2.3

Shaunak A Mehta and Dylan P Losey. Unified Learning from Demonstrations,
Corrections, and Preferences during Physical Human-Robot Interaction. page 21.
2.1

Andrew Y. Ng. Algorithms for Inverse Reinforcement Learning. 1, 2.3, 3
Gennaro Notomista, Siddharth Mayya, Mario Selvaggio, Maria Santos, and

67


https://www.frontiersin.org/articles/10.3389/frobt.2021.693050
https://www.frontiersin.org/articles/10.3389/frobt.2021.693050
https://ieeexplore.ieee.org/document/9982062/
https://ieeexplore.ieee.org/document/9982062/
http://arxiv.org/abs/2011.04812
http://arxiv.org/abs/2002.12160
http://arxiv.org/abs/2002.12160
http://arxiv.org/abs/2006.01952
http://arxiv.org/abs/2006.01952
https://doi.org/10.1145/3354139
http://arxiv.org/abs/2107.02349

Bibliography

[43]

[46]

[50]

[51]

[52]

68

Cristian Secchi. A Set-Theoretic Approach to Multi-Task Execution and
Prioritization. arXiv:2003.02968 [cs, eess, math], March 2020. URL http:
//arxiv.org/abs/2003.02968. ZSCC: 0000004 arXiv: 2003.02968. 4

Malayandi Palan, Nicholas C. Landolfi, Gleb Shevchuk, and Dorsa Sadigh. Learn-
ing Reward Functions by Integrating Human Demonstrations and Preferences.
arXiv:1906.08928 [cs], June 2019. URL http://arxiv.org/abs/1906.08928.
ZSCC: 0000054 arXiv: 1906.08928. 1, 2.3, 3, 3.2.2, 4.4.4, 6.2.1

Deepak Ramachandran. Bayesian Inverse Reinforcement Learning. page 6. 3.1.1

Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active Preference-
Based Learning of Reward Functions. In Robotics: Science and Systems XIII.
Robotics: Science and Systems Foundation, July 2017. ISBN 978-0-9923747-3-0.
doi: 10.15607/RSS.2017.XII1.053. URL http://www.roboticsproceedings.
org/rss13/p53.pdf. ZSCC: 0000180. 1, 2.3

Mariah L. Schrum, Erin Hedlund-Botti, and Matthew Gombolay. Reciprocal
MIND MELD: Improving Learning From Demonstration via Personalized, Re-
ciprocal Teaching. November 2022. URL https://openreview.net/forum?id=
f_XmiyZcsjL. 2.2

Maarten Speekenbrink. A tutorial on particle filters. ZSCC: 0000053. 6.4

Halit Bener Suay and Tim Brys. Learning from Demonstration for Shaping
through Inverse Reinforcement Learning. 2.1

Eugene Valassakis, Georgios Papagiannis, Norman Di Palo, and Edward Johns.
Demonstrate Once, Imitate Immediately (DOME): Learning Visual Servoing for
One-Shot Imitation Learning, July 2022. URL http://arxiv.org/abs/2204.
02863. arXiv:2204.02863 [cs]. 2.3

Nils Wilde, Alexandru Blidaru, Stephen L. Smith, and Dana Kuli¢. Improv-
ing User Specifications for Robot Behavior through Active Preference Learn-
ing: Framework and Evaluation. The International Journal of Robotics Re-
search, 39(6):651-667, May 2020. ISSN 0278-3649, 1741-3176. doi: 10.1177/
0278364920910802. URL http://arxiv.org/abs/1907.10412. ZSCC: 0000013
arXiv: 1907.10412. 2.3

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Flirnkranz. A
Survey of Preference-Based Reinforcement Learning Methods. 1, 2.3, 3

Y Xiang, D. Y Sun, W Fan, and X. G Gong. Generalized simulated
annealing algorithm and its application to the Thomson model. Physics
Letters A, 233(3):216-220, August 1997. ISSN 0375-9601. doi: 10.1016/
S0375-9601(97)00474-X. URL https://www.sciencedirect.com/science/
article/pii/S037596019700474X. 4.4.2


http://arxiv.org/abs/2003.02968
http://arxiv.org/abs/2003.02968
http://arxiv.org/abs/1906.08928
http://www.roboticsproceedings.org/rss13/p53.pdf
http://www.roboticsproceedings.org/rss13/p53.pdf
https://openreview.net/forum?id=f_XmiyZcsjL
https://openreview.net/forum?id=f_XmiyZcsjL
http://arxiv.org/abs/2204.02863
http://arxiv.org/abs/2204.02863
http://arxiv.org/abs/1907.10412
https://www.sciencedirect.com/science/article/pii/S037596019700474X
https://www.sciencedirect.com/science/article/pii/S037596019700474X

Bibliography

[53] Michelle Zhao, Reid Simmons, and Henny Admoni. Coordination With Humans
Via Strategy Matching. In 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 9116-9123, Kyoto, Japan, October 2022.
IEEE. ISBN 978-1-66547-927-1. doi: 10.1109/IROS47612.2022.9982277. URL
https://ieeexplore.ieee.org/document/9982277/. 2.2

69


https://ieeexplore.ieee.org/document/9982277/

	1 Introduction
	2 Related Work
	2.1 Reward Representations in HIRL
	2.2 Approximating Human Models
	2.3 Active Learning and Learning from People

	3 Actively Selecting Queries From a Diverse Set of Interaction Types
	3.1 Approach
	3.1.1 Query Optimization
	3.1.2 Update Weights from Feedback

	3.2 Results
	3.2.1 INQUIRE Query Selection
	3.2.2 Learning Performance

	3.3 Discussion
	3.4 Limitations
	3.5 Conclusion

	4 Exploring Reward Functions for Human Interactive Robot Learning
	4.1 Problem Statement and Assumptions
	4.2 Reward Function Representations
	4.2.1 Comparative Variant
	4.2.2 Comparative + Specific Variant
	4.2.3 Grid Variant

	4.3 Active Query Selection and Learner Belief Updates
	4.4 Simulation Experiments
	4.4.1 Evaluation Domains
	4.4.2 Simulated Human Oracle
	4.4.3 Variables and Metrics
	4.4.4 Results
	4.4.5 Discussion of Simulation Results

	4.5 User Study
	4.5.1 Results
	4.5.2 Discussion of User Study Results

	4.6 Conclusion

	5 Conclusion
	6 Appendix
	6.1 INQUIRE: Approach Details
	6.1.1 Information Gain Derivation
	6.1.2 KL Divergence Formulation
	6.1.3 Probability Tensor Derivations
	6.1.4 Gradient Derivation
	6.1.5 Training Parameters

	6.2 INQUIRE: Evaluation Details
	6.2.1 Domain Implementations
	6.2.2 Oracle Implementation
	6.2.3 Evaluation Procedure

	6.3 AUC Figures
	6.4 Exploring Reward Functions: Filtering Reward Function Beliefs

	Bibliography

