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Abstract

Teaching sessions between humans and robots will need to be maximally
informative for optimal robot learning and to ease the human’s teaching
burden. However, the bulk of prior work considers one or two modalities
through which a human can convey information to a robot—namely,
kinesthetic demonstrations and preference queries. Moreover, people
will teach robots to perform tasks according to their own, individual
preferences; as such, robots need to represent the task in a way that
can handle this heterogeneity. This thesis addresses both needs. First,
we investigated how an agent can maximize its information gain by
actively selecting queries from a diverse set of interaction types (including
demonstrations, corrections, preference queries, and binary critiques).
Second, we explored three reward function structures that could be used
to model a human teacher’s preferences for how an agent should perform
a task. Our evaluations showed that 1.) actively selecting from among a
diverse set of interaction types yields faster, more robust learning, and 2.)
an agent typically learns best when its reward function structure matches
its teacher’s.
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Chapter 1

Introduction

As we envision robots that adapt to novel tasks and environments after deployment, it

is important to consider how they can efficiently obtain training data to address this

novelty. Research in Human Interactive Robot Learning (HIRL) has yielded many

effective methods for obtaining this training data via interaction between a robot and

a human teacher. For instance, in a demonstration, the teacher provides a trajectory

that the robot should follow starting from an initial state [26, 41]. In a preference

query, the teacher selects one trajectory from a set of candidates proposed by the

robot [10, 51]. In response to a single trajectory proposed by the robot, the teacher

can provide a correction [1, 21] or simply a binary reward [14]. These interaction types

differ according to how the robot queries the teacher, how the teacher is constrained in

providing feedback, how the robot should interpret the teacher’s feedback as training

data, and the physical and cognitive load imposed on the teacher [18].

Prior work in Active Learning has investigated how to formulate informative

queries by maximizing the expected information gain resulting from the teacher’s

feedback. However, barring a few exceptions ([9, 12, 43]), prior work typically assumes

that the robot uses a single interaction type for all queries. We expect that the

optimal interaction type depends on the robot’s task knowledge (which changes over

time), the robot’s query state (i.e., the state from which it queries the teacher),

and domain-specific considerations (e.g., the time or effort it takes a teacher to

respond to queries) [30]. Additionally, we suspect that the way a learning agent

models its teacher’s preferences can influence how it learns tasks when taught through
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1. Introduction

actively-selected interaction types and can even affect the active selection process

itself.

The first work of this thesis is motivated by this question: How can a robot

optimize both the type and content of its queries to a human teacher based on the

information it needs at any given moment? We introduce INQUIRE: a robot learning

system that performs this optimization by representing multiple interaction types in

a single unified framework, enabling the robot to directly estimate and compare the

expected information gain of its queries across multiple interaction types. We evaluate

INQUIRE against two state-of-the-art interactive learning methods that use a single

or fixed pattern of interaction types. We analyzed the effect of domain on INQUIRE’s

performance and selection of interaction types over time by simulating four domains

with unique reward-learning problems. We found that INQUIRE learned reward

functions that were more accurate and resulted in better task performance than either

baseline, with particular strength in accommodating low-information query states

(i.e., repeated states in which the robot has already received feedback). Furthermore,

we demonstrate how INQUIRE can incorporate cost metrics (representing physical or

cognitive load on the teacher), optimizing queries over both the informativeness and

ease of the teacher’s responses.

In the second work of this thesis, we explore how the choice of reward function

representation affects the agent’s ability to learn through multiple interaction types.

In particular, we explore three variants of a standard linear combination reward

representation with varied representational power and hence varied complexity. A

Comparative reward representation weighs the relative importances of task features.

Such a representation enables intuitive interpretation and is commonplace in the

literature [2, 6, 41, 45]. In contrast, our Comparative+Specific representation provides

superior representational power—that is, an ability to specify the desired param-

eters of a reward function—at the cost of learning both the comparative weights

and specific, desired parameter values instead of only learning weights. Finally, a

Grid representation is an attempt to capture the “middle ground” between the two

aforementioned representations by assigning comparative weights to a collection of

predefined candidate parameter values. As in our aforementioned work, we consider

corrections, critiques, demonstrations, and preference queries. We design the learner

using a particle-based belief model that is amenable to the different reward repre-

2



1. Introduction

sentations and active query selection from among multiple interaction types. We

also investigate how different reward representations affect an agent’s ability to learn

when querying with a single interaction type in comparison to when interaction types

are actively selected by the agent. Through teaching sessions with a simulated human

oracle, we found that (1.) reward representation affects the frequency with which an

agent actively selects each interaction types, and (2.) an agent learns best when its

reward representation matches that of its teacher’s.

The two works presented herein aim to contribute to the grand goal of enabling

robots to efficiently and conveniently learn tasks and behaviors directly from human

teachers and in accordance with those teachers’ preferences. Much work has yet to be

done to achieve such a vision, but hopefully this thesis can be recalled and built upon

in future efforts to understand how robots should learn from, and behave around,

long-term human partners.

3
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Chapter 2

Related Work

2.1 Reward Representations in HIRL

Prior work explores a plethora of reward representations for modeling humans and

their preferences. As is standard in many inverse reinforcement learning contexts,

much of that work assumes a reward function that is a linear combination of weights

and features [3, 4, 48]. In [11], the authors attempt to learn a user’s reward function

through preference queries and by modeling the function with a Gaussian Process,

and the work from [40] models reward for a task using a neural network amenable to

inputs from multiple interaction types.

The work in [32] models human ranking tendencies via the Boltzmann rational

model, but they model a prior over human policies instead of reward functions (as

we do in this thesis). Moreover, the authors’ model is a deep network (which includes

a transformer as a discriminator).

While the aforementioned works each explore reward representations implicitly,

they do not do so in an explicit manner as we do in our second project. At the same

time, our work does not explore the possible reward representations discussed herein;

future work which makes such comparisons would be worthwhile and informative for

deducing which reward representations are best for HIRL.
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2. Related Work

2.2 Approximating Human Models

Accurately modeling—and learning how to accurately model—the humans with which

robots interact remain crucial problems in HRI researchers still strive to solve. The

method presented in [46] learns skills from a human demonstrator while also learning

a model describing how that particular human is sub-optimal when providing those

demonstrations. Like us, the aim of [34] is to learn a human model, but we seek a

model of human preferences over tasks while they sought a model of what a human

learner thought of their AI teacher. Similarly, the agent in [53] learns a model of

strategies its human partners might employ when undertaking collaborative tasks.

Investigations into the functional underpinnings of learning from multiple interaction

types and how they might vary from person to person also have been made [23]. Our

underlying representation of the human teacher is rather simple, but as opposed to

the aforementioned work, our work explores what might be an ideal way to model

teachers’ task representations.

2.3 Active Learning and Learning from People

Learning from People typically refers to how robots interpret human-provided feedback

as training data. This interpretation arises in the forms of imitation learning [26] or

inverse reinforcement learning from demonstrations [41]. However, there are many

other forms that human feedback can take, including preferences [10, 51], labels [20],

and corrections [1, 21]. These approaches optimize queries within a single interaction

type, sometimes by maximizing volume removal [45], information gain derived from

the teacher’s response to the query [10], or by min-max regret optimization [50]. Prior

work also investigates the use of fixed strategies for selecting interaction types; for

example, requesting a fixed number of demonstrations before requesting preferences

for the remaining queries [27, 43]. As we do, [9] incorporates more interaction types

(demonstrations, labels, and feature queries) and contributes both rule-based and

decision-theoretic strategies for query selection. Other methods for learning from

multiple feedback types include combining preferences with ordinal labels [35] and

using both demonstrations and rankings [8]. Furthermore, [13] presents a software

library for combining different preference feedback types and demonstrations.

6



2. Related Work

Additionally, prior work investigates active selection of queries for a robot learner

to pose their human teachers [10, 45]. In particular, the authors of [5] incorporate

an active learning variant and learning from multiple interaction types to acquire

knowledge of spatial understanding for use in manipulation tasks. Other work

strives to unify the different interaction types that a robot could expect from a

human [19, 28]. Insofar as reward function learning is concerned, progress has

been made by learning from physical interactions between humans and robots—

via corrections in particular [1, 38, 39]. The methods in [15, 16, 29] learn from

demonstrations of trajectories that are sub-optimal. Like our work, the authors

consider more than one interaction type, yet they consider only two: demonstrations

and “negative” demonstrations (i.e., demonstrations of what not to do). Other work

exhibits an ability to learn and execute new manipulation skills after only a single

kinesthetic demonstration [49]. Finally, much prior work pertains to active learning

of manipulation skills through interaction with the environment [31, 37].

7
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Chapter 3

Actively Selecting Queries From a

Diverse Set of Interaction Types

Research in Human Interactive Robot Learning (HIRL) has yielded many effective

methods for obtaining training data via interaction between a robot and a human

teacher. In a demonstration, the teacher provides the trajectory that the robot should

take starting from a particular state [26, 41]. In a preference query, the teacher selects

one trajectory from a set of candidates proposed by the robot [10, 51]. In response to

a single trajectory proposed by the robot, the teacher can provide a correction [1, 21]

or simply a binary reward [14].

These interaction types differ according to how the robot queries the teacher, how

the teacher is constrained in providing feedback, how the robot should interpret the

teacher’s feedback as training data, and the physical and cognitive load imposed on

the teacher [18].

Prior work in Active Learning has investigated how to formulate informative

queries by maximizing the expected information gain resulting from the teacher’s

feedback. However, barring a few exceptions ([9, 12, 43]), prior work typically assumes

that the robot uses a single interaction type for all queries. We expect that the

optimal interaction type depends on the robot’s task knowledge (which changes over

time), the robot’s query state (i.e., the state from which it queries the teacher), and

domain-specific considerations (e.g., the time or effort it takes a teacher to respond

to queries) [30].

9



3. Actively Selecting Queries From a Diverse Set of Interaction Types

This project is motivated by this question: How can a robot optimize both the

type and content of its queries to a human teacher based on the information it

needs at any given moment? We introduce INQUIRE: a robot learning system that

performs this optimization by representing multiple interaction types in a single

unified framework, enabling the robot to directly estimate and compare the expected

information gain of its queries across multiple interaction types 1. We evaluated

INQUIRE against two state-of-the-art interactive learning methods that use a single

or fixed pattern of interaction types. We analyzed the effect of domain on INQUIRE’s

performance and selection of interaction types over time by simulating four domains

with unique reward-learning problems. We found that INQUIRE learned reward

functions that were more accurate and resulted in better task performance than either

baseline, with particular strength in accommodating low-information query states

(i.e., repeated states in which the robot has already received feedback). Furthermore,

we demonstrate how INQUIRE can incorporate cost metrics (representing physical or

cognitive load on the teacher), optimizing queries over both the informativeness and

ease of the teacher’s responses.

3.1 Approach

We define a query as a set of possible choices presented to the teacher, and feedback

as the teacher’s selected choice in response to a query. Our goal is to enable a robot

to (1) efficiently query a teacher using multiple interaction types, and (2) learn from

feedback obtained via these interactions. We ground this goal in the problem of

learning a distribution W over feature weight vectors ω ∈ W, each resulting in a

linear reward function r(t) = ϕ(t) ·ω, where ϕ(t) is the feature vector of a trajectory t.

Thus, our goal translates into (1) selecting queries and interaction types that minimize

uncertainty over W, and (2) updating W over feedback from multiple interaction

types.

We present INQUIRE (Alg. 1), an algorithm comprised of three key steps for each

query: (1) selecting the optimal interaction type i and corresponding query q∗i that

maximizes the information gain over the weight distribution W (approximated as the

1This work was conducted in collaboration [22].
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3. Actively Selecting Queries From a Diverse Set of Interaction Types

sample set Ω), (2) recording the teacher’s response to that query (i.e., feedback) in a

feedback set F, and (3) updating the weight distribution W such that it maximizes

the likelihood of all feedback in F. To generalize across multiple interaction types,

we must contend with the differing formulations of query and feedback corresponding

to each type. We follow the framing presented in [18], where each interaction type

consists of a query space Q(s) (the set of possible queries from state s) and a choice

space C(q) (the set of possible teacher feedback, i.e., the choices available to the

teacher in response to a query q ∈ Q(s)). We assume the robot must query from

whatever initial state s it is placed in, and cannot optimize the state s itself.

For a demonstration, let T (s) represent the set of all possible trajectories

originating from the initial state s. The robot (implicitly) enables the teacher to

demonstrate any trajectory in this set, and thus its query space is Q(s) = {T (s)}
(i.e., a single query consisting of the entire trajectory space). The teacher’s choice

space is C = T (s) (any trajectory within that space). For a preference, the robot

queries the teacher with two trajectories q = {t0, t1 | t0, t1 ∈ T (s)} who then chooses

either t0 or t1. The query space is Q(s) = T (s) x T (s) and the teacher’s choice space

is C(q) = {t0, t1}. For a correction, the robot executes one trajectory q ∈ T (s)
which the teacher then modifies to a preferable behavior. The agent’s query space is

Q(s) = T (s) and the teacher’s choice space is C(q) = T (s). For binary reward, the

robot executes a single trajectory q ∈ T (s), and the teacher indicates a positive or

negative reward. The agent’s query space is Q(s) = T (s) and the teacher’s choice

space is C(q) = {0, 1}.
The implication of the teacher’s choice c ∈ C(q) is a set of accepted trajectories

c+ and set of rejected trajectories c−, which we define in Table 3.1 and use later to

calculate information gain. Since the set of all possible trajectories originating from s

(represented by T (s)) is potentially infinite, we approximate it as the set T containing

N trajectory samples originating from the state s and consisting of randomly selected

actions.

3.1.1 Query Optimization

When optimizing the agent’s query, our goal is to greedily select one that maximizes

the agent’s expected information gain over W after receiving any feedback from

11



3. Actively Selecting Queries From a Diverse Set of Interaction Types

Algorithm 1 INQUIRE - Overview

Input: Set of query states S
Parameters: K (# of queries), I (interaction types)
Output: Weight vector ω∗

1: F← {}
2: Ω← M random initial weight vectors
3: for K iterations do
4: s← next query state in S
5: q∗i ← generate query(s, I,Ω) (Alg. 2)
6: F← F ∪ {query teacher(q∗i )}
7: Ω← update weights(F)
8: end for
9: ω∗ ← mean(Ω)

10: return ω∗

Algorithm 2 INQUIRE - Generate Query
Input: s (state), I (interaction types), Ω (weight samples)
Output: Query q∗

1: T← uniformly sample trajectories(s)
2: Compute E : {Et,t′,ω, ∀t, t′ ∈ T, ω ∈ Ω} (Eq. 3.4)
3: for each interaction type i ∈ I do
4: Q← Qi(s) (See Table 1)
5: C← {Ci(q), ∀q ∈ Q} (See Table 1)
6: Compute info gain matrix G(i) from E (Eq. 3.9)

7: q ← argmaxq′
∑

c∈Cq′ ,ω∈Ω
G

(i)
q′,c,ω

8: g ← 1
log(λi)

∑
c∈Cq ,ω∈ΩG

(i)
q,c,ω

9: if information gain g > g∗ then
10: g∗ ← g
11: q∗ ← q ▷ store query with highest info. gain
12: end if
13: end for
14: return q∗

12



3. Actively Selecting Queries From a Diverse Set of Interaction Types

Table 3.1: Each interaction involves separate query spaces, choice spaces, and choice
implications.

Query
Space
Qi(s)

Query
q ∈ Qi(s)

Choice
Space
Ci(q)

Choice Implication
c ∈ Ci(q) =⇒ (c+, c−)

Demo. {T} T T c+ : t ∈ T c− : T \ t

Pref. T x T {t0, t1}, t0, t1 ∈ T {t0, t1} c+ : t ∈ q c− : q \ c+

Corr. T t ∈ T T c+ : t′ ∈ T c− : q

Binary T t ∈ T {0, 1} c = 0 =⇒ c+ : T \ q c− : q
c = 1 =⇒ c+ : q c− : T \ q

the choice set (summarized in Alg. 2). Selecting a query involves optimizing over

information gain (IG) as follows:

q∗i = argmax
q∈Qi(s)

Ec|Ci(q) [IG(W | c)] (3.1)

= argmax
q∈Qi(s)

∑
c∈Ci(q)

∑
w∈Ω

[
P (c|w) · log M · P (c|w)∑

w′∈Ω P (c|w′)

]
(3.2)

where Ω contains M samples of the distribution W . The expansion from Eq. 3.1 to

3.2 follows the derivation presented in [10]; see Appendix 6.1.1 for intermediate steps.

We adopt the commonly-used Boltzmann-rational equation to define P (c|ω):

P (c|ω) =
∑

t∈c+ eβ·ϕ(t)·ω∑
t∈c+∪c− eβ·ϕ(t)·ω

(3.3)

where ϕ(t) returns the feature trace of the trajectory t; that is, the sum over the

feature vectors of all states visited in trajectory t.2 Note that Eq. 3 reduces to

Bayesian Inverse Reinforcement Learning [44] for each t ∈ c+. β is a parameter

representing the expected optimality of the teacher’s feedback with respect to ω.

We assign a value of β = 20 across all interaction types (selected through empirical

evaluation).

To minimize the computational complexity of solving for Eq. 3.2, we reformulate

it as a series of operations over a |Q| x |C| x |Ω| probability tensor P, where Pq,c,ω

2See Appendix 6.2.1 for each domain’s definition of ϕ.
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3. Actively Selecting Queries From a Diverse Set of Interaction Types

represents the probability (according to weight sample ω ∈ Ω) that the teacher will

select choice c in response to query q. To construct P, let E be a N x N x M (i.e.,

|T | x |T | x |Ω|) tensor representing exponentiated rewards:

Et,t′,ω = eβ·ϕ(t
′)·ω =⇒

[
E+ ET

]
t,t′,ω

= eβ·ϕ(t
′)·ω + eβ·ϕ(t)·ω (3.4)

All tensor transposes are performed over the first two axes. With E in hand, we

next define the probability tensors of each interaction type as follows:

P(demo)
q,c,ω =

[
E0 ⊘

∑
t∈T

ET
t

]
c,ω

(since |Q| = 1 for demonstrations) (3.5)

P(pref)
q,c,ω =

[(
E⊘ (E+ ET)

)T
,E⊘ (E+ ET)

]
c,q0,q1,ω

(c ∈ {0, 1} for prefs.) (3.6)

P(corr)
q,c,ω =

[
E⊘ (E+ ET)

]
q,c,ω

(3.7)

P(bnry)
q,c,ω =

[
1−

(
E0 ⊘ α

∑
t∈T

ET
t

)
,E0 ⊘ α

∑
t∈T

ET
t

]
c,q,ω

(c ∈ {0, 1} for binary rewards)

(3.8)

where ⊘ represents an element-wise division of two matrices (i.e., (A⊘B)ij = Aij/Bij)

and α is a normalization factor such that
∑

cP
(bnry)
q,c,ω = 1. For derivations, see

Appendix 6.1.3. The main effect of this formulation is that it enables

tractable optimization over multiple interaction types by sharing a common

representation E. To solve for the optimal query q∗i using interaction type i, we use

P(i) to construct a |Q| x |C| x |Ω| information gain tensor G(i):

G(i)
q,c,ω = P(i)

q,c,ω · log

(
M ·P(i)

q,c,ω∑
ω′∈Ω P

(i)
q,c,ω′

)
q∗i = argmax

q

∑
c,ω

G(i)
q,c,ω (3.9)

We then solve for the optimal interaction type itself. To optimize over both

informativeness and interaction cost, λi may be set according to domain-specific

cost factors (e.g., the time or mental load involved in answering a query) for each

interaction type.3 To perform an unweighted optimization and maximize solely over

3In our evaluations, we assign a cost of 20 to each demonstration, 15 to each correction, 10 to
each preference, and 5 to each binary query.
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the informativeness of each query, let λi be a constant value over all interaction types

i ∈ I.
i∗ = argmax

i∈I

1

log(λi)

∑
c,ω

G
(i)
q∗i ,c,ω

(3.10)

We summarize this process in Alg. 2.

3.1.2 Update Weights from Feedback

After presenting the optimal query to the teacher, the agent receives feedback and

appends it to a feedback set F—a cumulative set that contains all feedback received

by the agent thus far. We then update the weight estimate such that it maximizes

the likelihood of all feedback in F:

ω∗ = argmax
ω

∏
c∈F

P (c|ω) = argmax
ω

∏
c∈F

∑
t∈c+ eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω
(3.11)

We calculate the gradient over ω by differentiating over its log-likelihood given F:

∂ℓ(ω)

∂ωj

=
∑
c∈F

[∑
t∈c+ β · ϕj(t) · eβ·ϕ(t)·ω∑

t∈c+ eβ·ϕ(t)·ω
−
∑

t∈c+∪c− β · ϕj(t) · eβ·ϕ(t)·ω∑
t∈c+∪c− eβ·ϕ(t)·ω

]
(3.12)

=
∑
c∈F

[
β · ϕj(c

+
0 )−

∑
t∈c+∪c− β · ϕj(t) · eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω

]
(iff |c+| = 1) (3.13)

See Appendix 6.1.4 for the full derivation. After receiving feedback from each query

and updating F, we approximate Ω by randomly initializing and then performing

gradient ascent on each weight sample ω ∈ Ω.

3.2 Results

We simulate four types of learning problems in robotics using an oracle teacher to

obtain controlled evaluations. The oracle teacher, similar to INQUIRE, requires

its own set of trajectory samples T ′. It then selects a response to a query via one

of three mechanisms: returning the highest-reward trajectory from its choice space

(demonstrations/preferences), rejection sampling of trajectories followed by selection

of the trajectory with the highest reward-to-distance ratio from the queried trajectory
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(a) Selected interaction types without cost-weighting

(b) Selected interaction types with cost-weighting

Figure 3.1: Heatmaps illustrating how INQUIRE selects different interaction types as it
learns more over time. These selections differ when deriving unweighted (top) or cost-
weighted (bottom) information gain estimations. In the cost-weighted setting (bottom),
INQUIRE selects more low-cost binary queries than it does in the unweighted setting (top).

(corrections), and returning whether a query meets or exceeds a reward threshold

(binary reward). Implementation details can be found in Appendix 6.2.2.

The Parameter Estimation domain involves directly estimating a randomly-

initialized, ground truth weight vector ω∗ containing 8 parameters. The Linear

Dynamical System domain, inspired by [10], simulates a controls problem and

involves learning 8 parameters. The Lunar Lander domain [7] simulates a controls

problem involving 4 parameters. The Pizza Topping Placement domain simulates

a preference-learning problem involving 4 parameters. Each domain (except for

Parameter Estimation) has a static-state and changing-state condition indicating

whether the robot must formulate all queries from the same query state or not,

respectively. For the full evaluation procedure and oracle implementation details for

each domain see Appendix 6.2.

3.2.1 INQUIRE Query Selection

We first analyze how INQUIRE selects queries. Figure 3.1 reflects the changes

in interaction types selected by INQUIRE over time. Figure 3.1a first reports

these interaction selections in an unweighted query optimization setting, where all

interaction types are assumed to be equally costly. In the parameter optimization
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domain, INQUIRE requests corrections in the first 14-18 queries and then requests

preferences as the remaining queries. Demonstrations were not enabled in this domain.

In all other domains, INQUIRE requests a demonstration as its first query, then

immediately switches to requesting preferences for the remaining queries (occasionally

alternating between preferences and demonstrations in the Lunar Lander domain).

After assigning different cost values to each interaction type, INQUIRE chooses

more diverse interaction types in order to maximize its information-to-cost ratio. As

shown in Figure 3.1b, this typically results in INQUIRE posing more binary queries

due to their relatively low cost. This pivot toward binary queries may occur at the

start (as seen in the linear dynamical system), middle (as seen in the parameter

estimation domain), or interspersed throughout the learning process (as seen in the

lunar lander domain).

3.2.2 Learning Performance

We now analyze the effect of INQUIRE’s interaction type selections on its learning

performance and compare against two types of baselines. The first, DemPref [43],

learns from 3 demonstrations and then learns from preference queries by using a

volume removal objective function. As our second baseline, we compare INQUIRE

against agents that use only one form of interaction: demonstrations, preferences,

corrections, or binary reward. Note that the preference-only agent is formulated

according to [10] and thus represents this baseline method.

We first consider the changing-state formulation of each domain, where the robot

is presented with a new state for each query. Since the Parameter Estimation domain

does not contain states, we exclude it from this first set of results. Figure 3.2 illustrates

this learning performance in the Linear Dynamical System and Lunar Lander domains

according to three key metrics. Distance measures the angular distance between the

ground truth feature weights (ω∗) and the algorithm’s estimated feature weight ω̃

after each query. Performance measures the task reward achieved using a trajectory

optimized according to ω̃ (the algorithm’s estimated feature weight after each query).

Performance is scaled between 0-1, with 0 and 1 representing the worst and best

possible task rewards according to ω∗, respectively. Note that INQUIRE’s distance and

performance metrics are achieved in the unweighted condition. Cost-vs-Distance
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(a) Linear Dynamical System

(b) Lunar Lander Task

(c) Pizza Arrangement Task

Figure 3.2: Metrics for the changing state condition in which the robot’s initial state changes
with each query. Error bars/regions represent variance across multiple evaluation runs with
randomized query states and initial weights. Cost metrics are cut off after 20 queries for
the binary-only method in (c) due to extensive computation times.
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measures the relationship between the cumulative cost of each query and the resulting

distance between ω̃ and ω∗ after each query. INQUIRE’s metrics in this graph are

achieved in the cost-weighted condition.

Figure 3.3 presents the same three metrics for the static-state condition in which

all 20 queries must be selected from the same initial state. Finally, we quantify

these graphs by reporting the area-under-the-curve (AUC) metrics for the distance,

performance, and cost curves across all tasks. These metrics are available in Ap-

pendix 6.3. The AUC metrics indicate that, compared to the baseline methods,

INQUIRE results in the best average learning performance (measured both by the

distance and performance plots in Figures 3.2-3.3) across all domains and dominates

learning performance in the static-state domains. INQUIRE also results in the best

average distance-to-cost ratio across all domains.

3.3 Discussion

The results show the importance of dynamically selecting interaction types according

to the robot’s current state. For example, demonstrations can be highly informative

when provided in novel states, but when the robot may only query a teacher from a

single state, multiple demonstrations are likely to be very similar (if not identical).

As a result, receiving multiple demonstrations in a static query state is uninformative.

We see the benefits of dynamically selecting interaction types in Figure 3.3, where

INQUIRE outperforms all single-interaction methods by optimizing both query type

and content to maximize the informativeness of the query feedback.

INQUIRE selects the interaction type that, after receiving feedback, minimizes

the entropy over its distribution of weight estimates W . This distribution thus serves

as a representation of the robot’s current model of the task reward. Figure 3.1a

illustrates how INQUIRE changes the query type as it learns over time (represented

by # of queries). This is particularly evident in the Parameter Estimation task, where

the algorithm originally requests corrections until it has refined its model of the task

reward to a point where preferences become more informative (after 14-18 queries).

Overall, dynamically adapting to the robot’s model of the task reward results in

better performance than adopting a fixed strategy for selecting interaction types (i.e.,

DemPref, which always requests demonstrations before selecting preferences).
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(a) Parameter Estimation Task

(b) Linear Dynamical System

(c) Lunar Lander Task

(d) Pizza Arrangement Task

Figure 3.3: Metrics for the static state condition in which the robot is presented with
the same state for all 20 queries. Error bars/regions represent variance across multiple
evaluation runs with randomized query states and initial weights. Cost metrics are cut off
after 20 queries for the binary-only method in (a) and (d) due to extensive computation
times.
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An added benefit of INQUIRE is that it can incorporate a cost metric to identify

cost-aware, informative queries. The AUC metrics for the cost graphs indicates that

INQUIRE selects queries that, on average, minimize the cost-to-distance ratio across

all domains. We expect that this cost metric is domain-specific, and can represent a

number of human factors that the algorithm should take into account (e.g., the effort

involved for a human to respond to each query type [18]). The cost metric used in

our study thus serves as an example of how INQUIRE can factor in interaction costs.

3.4 Limitations

Our evaluation is performed using feedback from an optimal oracle. Real human

feedback, however, is likely to be at least somewhat sub-optimal, and its severity likely

depends on the interaction type. For example, a non-optimal demonstration may be

one that is sufficient but not ideal for completing the task. In contrast, binary rewards

offer only two feedback choices to the user, and thus a non-optimal binary reward

may indicate the opposite information from what the user intended to convey. These

examples illustrate how non-optimal feedback may need to be handled differently

depending on the interaction type, and thus, should affect INQUIRE’s estimation

of information gain. Future work should investigate setting separate values of β

(see Eq. 3) for each interaction type, with the goal of reflecting interaction-specific

expectations for sub-optimal feedback.

Furthermore, INQUIRE does not yet have the ability to select the state in which

it queries the teacher. Prior work in Active Learning has shown that state selection

can improve the informativeness of resulting demonstrations [33], and we expect that

optimizing over the query state in addition to query type and content would improve

the performance of INQUIRE.

3.5 Conclusion

We introduced INQUIRE, an algorithm enabling a robot to dynamically optimize its

queries and interaction types according to its task knowledge and its state within

the environment. We showed that using information gain to select not just optimal
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queries, but optimal interaction types, results in consistently high performance across

multiple tasks and state configurations. Future work will include formal user studies

to investigate our method’s efficacy with people of varied skillsets and comfort with

robots; incorporation of novel interaction types and other communication modalities;

and alternative representations of the reward function and feature spaces. Moreover,

we are excited at the possible extensions others might present by using our open-

source framework4 for evaluating and comparing active-learning agents across multiple

environments and simulated teachers.

4https://github.com/HARPLab/inquire
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Chapter 4

Exploring Reward Functions for

Human Interactive Robot Learning

Personal robots should be able to learn the preferences of individual humans in

ways that are both efficient and convenient to the person. In the context of Human-

Interactive Robot Learning (HIRL), a human’s preferences can be captured as a

latent reward function, and to determine how to act in accordance with a human’s

preferences, a robot must learn a model that approximates this reward function.

While there are various approaches to approximating such a reward function—for

example, through large amounts of data or pre-engineered cost functions—we’re

interested in scenarios in which the model can be learned online through a series of

actively selected queries (e.g., requests for critiques, corrections, or demonstrations

of tasks) posed by an agent to a human teacher [17, 42]. Our work described in

Chapter 3 explored how a robot can select from multiple interaction types to maximize

information gain for improving the model. In contrast, the work described in this

chapter explores ways in which model representation might affect an agent’s ability

to learn human preferences when taught through a diverse selection of interaction

types.

We explore how the choice of reward function representation affects reward

learning. In particular, we explore Comparative, Comparative+Specific, and Grid

reward representations with the presumption that certain tradeoffs are made when

choosing to learn using each. Each representation is a variant of a linear combination
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of parameter weights and features. Because we only learn the parameter weights, the

Comparative variant enables intuitive interpretation and computational simplicity. In

contrast, the Comparative+Specific representation provides superior representational

power—that is, an ability to specify the parameters of a reward function—at the

expense of learning both the parameter weights and the specific parameter values.

Finally, a Grid representation is an attempt to capture the “middle ground” between

the two aforementioned representations by assigning weights to a predefined set of

specific feature values.

Additionally, we are interested in the effects of reward representation upon an

agent’s ability to learn from multiple interaction types. More specifically—and as in

the work described in Chapter 3—we consider corrections, critiques, demonstrations,

and preference queries. By incorporating different interaction types, learners can

query teachers for information at different levels of granularity. Moreover, multiple

interaction types give people the opportunity to teach learners in different ways

that might be more intuitive or preferable. As such, we design the learner using a

particle-based belief model that is amenable to the different reward representations

and active query selection from among multiple interaction types. We also investigate

how reward representation affects an agent’s ability to learn when querying with

single interaction types in comparison to interaction types actively selected by the

agent.

We conduct our investigation in two task domains which differ in how task reward

is derived. In the first task, reward only derives from the final, discrete state of the

environment. In the second task, reward is accumulated over a sequence of time-

dependent state-action pairs that comprise a continuous trajectory. We investigate if

a learner’s reward representation has different effects depending on these two task

structures.

Through experiments in simulation, we find that an agent learns best when its

reward representation matches that of its teacher. Moreover, we find that an agent’s

reward representation directly affects the agent’s query selection when choosing from

among multiple interaction types; namely, agents who learn a Comparative+Specific

reward function tend to select a larger diversity of interaction types. Finally, we

investigate if our findings from simulation are pertinent to real-world interactions

between people and agents through an IRB-approved, in-person user study and
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Figure 4.1: Teaching Session Pipeline: (1) Select a query by estimating which interaction
type provides the largest information gain given the current model of the teacher. (2) Pose
query to human/simulated teacher. (3) Receive response. (4) Assign probability mass to
particle models and update belief by resampling particles in proportion to probability mass.
(5) Use updated belief to repeat the querying process.

find that agent learning performance and active selection of interaction types when

learning from human teachers largely resembles our findings from simulated teaching

sessions.

In summation, this work contributes:

1. an investigation of three different reward representations in two different tasks

with simulated human models,

2. comparisons of these models’ learning performances across different interaction

types, and

3. an in-person user study to validate the results from simulation.

4.1 Problem Statement and Assumptions

We aim to estimate an individual’s reward function through feedback provided to a

learning agent during a single teaching session. To this end, we assume there are four

interaction types with which a robot can query a human: demonstrations, corrections,

binary critiques, and preference queries [30]. Let the interaction between human and

robot consist of a sequence of interaction instances in which each consists of a query
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Query
Space

q ∈ Qi(s)

Choice
Space

c∗ ∈ Ci(q)

Boltzmann
Representation

P (c∗; q)

Demo. {Ξ} ξ ∈ Ξ exp(β·R(c∗))∫
C exp(β·R(c))dc

Pref. Ξ× Ξ ξ ∈ {ξ0, ξ1} exp(β·R(c∗))∑
C

exp(β·R(c))

Corr. Ξ ξ′ ∈ Ξ exp(β·R(c∗))∫
C

exp(β·R(c))dc

Crit. Ξ c∗ ∈ {−1,+1} exp(c∗·β·R(ξ))∑
C

exp(c·β·R(ξ))

Table 4.1: Each interaction type i has a separate query space Q from which the learner
generates [q]ueries, choice spaces C from which the teacher [c]hooses responses, and Boltz-
mann likelihood representations. Here, c∗ denotes the teacher’s choice.

and response. While the ideal teaching interaction would enable reciprocal queries

prompted by both human and robot, we assume the robot leads the interaction and

always queries the human.

More formally, let each interaction instance consist of:

• qt ∈ Q, the query posed by the robot at time t (selected from query types Q),

which itself consists of

• ξ, a trajectory of time-dependent states, and

• c∗, the teacher’s chosen response during query qt.

As in prior work, we assume the learned reward function is a linear combination

of weights and features:

R(ξ) = ω ·Φ(ξ) =
d∑

i=1

ωi × ϕi(ξ) (4.1)

where Φ is a vector-valued feature-function comprising basis functions ϕi : ξ → R; ω
is a vector of real-valued, non-negative weights; and ωi corresponds to feature ϕi(ξ).

We assume that all task-relevant features are captured by this reward function.

26



4. Exploring Reward Functions for Human Interactive Robot Learning

4.2 Reward Function Representations

Because particles can encode a reward function of arbitrary form, we use a particle

filter belief model to explore the effects of reward function representation on learning

performance. We examine three variants of the feature-function Φ associated with the

oft-used linear combination reward function R(ξ) = ω ·Φ(ξ) defined in Equation 4.1.

Intuitively, these variants tradeoff between simplicity and specificity.

Empirically, we observed learning performance improved when reward weights ω

were constrained to be within (0, 1). This constraint affected how we implemented

the Comparative variant.

4.2.1 Comparative Variant

For tasks defined through the comparative preference representation, the learning

agent only seeks to learn the weights ω over features of the state-space. In this

formulation, the features are simply the state-space parameterization of ξ; that is,

Φ : ξ → ϕ. Since ω is constrained to be within (0, 1), the learned reward function

cannot down-weight features (as can be done when ω resides within (−1,+1)). To

address this shortcoming, the Comparative featurization includes both standard and

“negated” versions of each feature. For example, a car’s feature space includes velocity

and negated velocity. In this way, if the model should encode low velocity, it can

assign a large positive weight to “negated velocity” and a small positive weight to

“positive velocity.”

4.2.2 Comparative + Specific Variant

Tasks defined with a Comparative + Specific representation have two learnable sets:

the weights ω and the desired state-space feature values. We use absolute exponential

features to model a reward function of the form:

Rk(ξ) =
d∑

i=1

ω̂
(k)
i ϕi(ξ) =

d∑
i=1

ω̂
(k)
i exp

[
− |ϕ̂(k)

i − ϕ
(ξ)
i |
]
. (4.2)

Here, ϕ̂
(k)
i is the k-th particle’s approximation to the teacher’s i-th optimal feature
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value from the set ϕ derived from ξ. Since the agent can model specific feature

values (i.e., ϕ̂) along with specific feature weights (i.e., ω̂) using this model, it is

possible that it could be able to capture a more precise representation of a human’s

preferences.

4.2.3 Grid Variant

The Grid reward function combines traits from the two aforementioned preference

representations. As is the case for the Comparative preferences, the learning agent

aims to learn only the set of weights ω when operating with a Grid model. Additionally,

this representation’s featurization has the same structure as the Comparative+Specific

reward function, but in the Grid representation, each of a trajectory’s feature values

are compared to a predefined set of possible values that each feature could take. In

this work, we define those values by creating a “grid” with the minimum, middle,

and maximum values each ϕi could encode. The representation is thus:

Rk(ξ) =
d∑

i=1

ω̂
(k)
i ϕi(ξ)

Rk(ξ) =
d∑

i=1

ω̂
(k)
i,min exp

[
− |ϕ(min)

i − ϕ
(ξ)
i |
]

+ω̂
(k)
i,mid exp

[
− |ϕ(mid)

i − ϕ
(ξ)
i |
]

+ω̂
(k)
i,max exp

[
− |ϕ(max)

i − ϕ
(ξ)
i |
]
.

(4.3)

Intuitively, the weights ω̂(k) now can favor the minimum, middle, or maximum

values of each state-space parameter. Moreover, comparable weightings on two of

the features (e.g., equal weight placed on the minimum and middle feature values)

implicitly discretizes the space even further; such a weighting favors values between

the “grid-points.”
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4.3 Active Query Selection and Learner Belief

Updates

To generate the queries posed by the agent, we follow the work discussed in Chapter 3

and choose the interaction type expected to maximize the information gain yielded

by the agent’s next query [10, 22]. While additional factors can be used to inform

query selection (e.g., the effort needed to provide each feedback type), our work only

accounts for expected information gain.

If we call θ the set of learnable parameters (e.g., reward function weights ω, or

both ω and ϕ), to compute the expected information gain for each interaction type,

we find the KL-divergence between the agent’s prior belief P (θ) and the expected

belief if that interaction type was used to query the human P (θ; qt). The optimal

query at time t can be represented as:

q∗
t = argmax

qt∈Q
E
[
IG(qt)

]
q∗
t = argmax

qt∈Q

[
DKL

(
E
qt

[
P (θ; qt)

]
||P (θ)

)]
.

(4.4)

Intuitively, Equation 4.4 seeks the query (among all interaction types) which is

most likely to maximize the agent’s information gain. When found, we then use that

interaction type to query the human. As in prior work and the work described in

Chapter 3, we base each representation off of the Boltzmann-rational distribution

which is principally featured by the parameter β and which makes this representation

an approximation of human rationality or confidence. Table 4.1 enumerates each

interaction type’s Boltzmann representation as we’ve implemented them in this work.

Note that we empirically selected β = 20.

Upon posing the query and receiving the teacher’s response, the agent updates

its belief over particle models in a Bayesian fashion. More specifically, if P (θ)1:t−1

is the agent’s prior belief over reward function parameters θ after t− 1 interaction

instances, the agent’s updated belief after interaction instance t is:

P (θ1:t) = P (θ1:t−t; c
∗
t ) · P (θ1:t−1) (4.5)
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Algorithm 3 The main teaching session loop

1: agent: Learns reward function
2: teacher: Responds to agent queries
3: Q← [Correction, Critique, Demonstration, Preference]
4: for t in interaction instance count do
5: Q∗

t = agent.select query(Q)
6: end for

The general query-then-update procedure is outlined in Algorithm 3. Note that

interaction instance count is the number of interaction instances that take place

in a single teaching session. We preset this value to be 20 in our simulation evaluations

and 10 in our user study.

4.4 Simulation Experiments

We first evaluate the learning performance of the different reward function repre-

sentations across simulated teaching sessions. In this scenario, a learning agent is

taught by an optimal human oracle in the two task domains. To investigate each

reward representation’s ability to handle tasks of varied complexity, we evaluate each

task when defined with three and six state-space features. The task features are

enumerated in Table 4.2.

For each task simulation, a single teaching session consisted of a learning agent

which queried a simulated human oracle over 20 sequential interaction instances.

Results were computed as an average over 10 sessions.

4.4.1 Evaluation Domains

Pizza Topping Placement Task The goal of the Pizza Topping Placement task

is to teach an agent how to place toppings on a pizza according to the teacher’s

preference. Each interaction instance begins with a pizza void of toppings. Then,

either agent or oracle places toppings one at a time until the reward it receives from

the updated pizza configuration begins to decrease. Table 4.2 enumerates the task’s

feature space, and Section 4.4.2 provides details on how each interaction type is

carried out.
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Lunar Lander Pizza Topping Placement

Distance from Landing Pad X-Centroid (all toppings)
Lander Angle Y-Centroid (all toppings)
Feet on Ground Surface Coverage
Velocity Min. Distance Between Toppings
Final Distance from Landing Pad X-Variance (all toppings)
Angular Velocity Y-Variance (all toppings)

Table 4.2: Features for each task domain. Experiments with lower task complexity use
the first three features only.

Lunar Lander Task The second task is to teach an agent how to land OpenAI’s

Lunar Lander [7]. The episode begins with the lander somewhere in the sky, and the

goal is to navigate the lander to the landing pad such that it lands in an upright pose.

See Table 4.2 for the Lunar Lander feature space.

4.4.2 Simulated Human Oracle

We design our human oracle as a greedily-optimal agent which, when presented with

any query qt, maximizes the immediate reward it can receive from that query. During

evaluations, the oracle is instantiated with one of the reward function representations

enumerated in Section 4.2 depending on the trial at hand.

When asked to provide a demonstration in the Pizza Topping Placement task, the

oracle generates an optimal example by running a stochastic hill climbing trajectory

optimization guided by its reward function. In the Lunar Lander domain, the oracle

optimizes a trajectory demonstration using the cross-entropy method [52].

When asked for a correction to a pizza, the oracle takes the demonstrated

topping arrangement and performs a stochastic hill climbing optimization constrained

by the toppings already on the pizza. That is, the oracle can only rearrange pizza

toppings; it cannot remove or add toppings to the state space.

When providing a correction in the Lunar Lander domain, the oracle uses dynamic

time warping to compare its optimal trajectory to that which was demonstrated [24].

The oracle begins its comparison from the start-state and accumulates the difference

in trajectories at each time-step. When that difference grows above some threshold,
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it saves that point and then identifies the point between it and the start-state in

which the difference between the trajectories changes most drastically. This point

is now the “correction point,” and the oracle then optimizes a trajectory from that

correction point to the goal state using the cross-entropy method.

The oracle responds to preference queries by selecting the option from a pair

of trajectories which yielded the highest reward. Responses to critiques are similar;

the oracle has a predefined critique threshold defined by the midpoint between the

greatest and least reward it could receive from the task. If the reward earned by

the agent’s demonstration is above this threshold, the oracle positively rewards the

agent; otherwise, it provides negative reward. Moreover, we choose to model “relative”

critiques; that is, after the oracle observes agent demonstrations (provided during

corrections and critiques), the reward derived from those demonstrations becomes the

updated “minimum” reward it expects to earn during the teaching session. As such,

the critique threshold increases (decreases) when the agent’s performance improves

(degrades).

4.4.3 Variables and Metrics

We compare the learning performances of Comparative, Specific+Comparative, and

Grid reward function representations. Because we’re interested in scenarios in which

robots learn from multiple interaction types, we first examine the learning performance

when each agent is taught by each oracle using a single interaction type. We then

examine learning performance when the agent actively selects its queries from among

all four interaction types to see how the learning performance of certain representations

might be affected. To measure performance, we compute reward as the similarity

between the oracle’s ideal trajectory ξ∗ and a demonstration provided by the learner

after each belief update.

4.4.4 Results

Results in Table 4.3 illustrate how reward representation can influence learning

performance in Pizza Topping Placement. Note that because the Pizza Topping

Placement results present more variability than Lunar Lander, we analyze them more
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Corrs. Crits. Demos. Prefs. Active

Oracle Agent Mean SD Mean SD Mean SD Mean SD Mean SD

Comp. Comp. 0.432 0.336 0.186 0.276 0.999 0.001 0.665 0.144 0.999 0.002
Grid 0.419 0.238 0.399 0.149 0.584 0.348 0.56 0.343 0.63 0.366
Comp.+Spec. 0.271 0.137 0.387 0.159 0.997 0.004 0.613 0.182 0.96 0.087

Grid Comp. 0.179 0.154 0.149 0.257 0.876 0.24 0.38 0.067 0.762 0.27
Grid 0.355 0.281 0.285 0.363 0.999 0.001 0.695 0.195 0.999 0.001
Comp.+Spec. 0.117 0.128 0.067 0.068 0.9 0.133 0.089 0.072 0.705 0.403

Comp.+Spec. Comp. 0.487 0.183 0.376 0.122 0.961 0.035 0.756 0.069 0.952 0.06
Grid 0.683 0.162 0.775 0.125 0.85 0.158 0.834 0.117 0.803 0.152
Comp.+Spec. 0.72 0.153 0.591 0.217 0.998 0.001 0.839 0.085 0.926 0.126

Table 4.3: Mean reward earned for single and actively selected interaction types at the end
of the Pizza Topping Placement simulations with six state-space features. Bold numbers
indicate the agent which learned best from a particular oracle and interaction type. Typically,
the agent learns best when its reward representation matches its teacher’s. Moreover, no
matter the reward representation, querying with demonstrations alone yields highest final
reward.

closely. As can be seen, learning performance is typically best when the agent’s

representation matches that of its teacher.

Table 4.3 also depicts the effect that different interaction types have upon learning

performance. In most combinations of agent and teacher reward representations,

demonstrations yield the highest final reward when only one interaction type is used

to query the teacher. However, when interaction types are actively selected by the

agent, the Comparative agent outperforms the Comparative+Specific agent when

learning from both Comparative and Comparative+Specific oracles.

We also find that the agent’s model representation affects its active selection

of interaction types with which it prompts the teacher. Figure 4.2 illustrates the

distribution of interaction query types for Pizza Topping Placement1. When the

agent had a Grid representation, it typically chose to query using demonstrations

and sometimes corrections (Figure 4.2b). When the agent had a Comparative

representation, it mostly chose demonstration queries, though there were some

1While we did collect results from Lunar Lander, demonstrations were almost always selected no
matter the model representation. We suspect the cause to be the massive trajectory space from
which demonstrations are generated online; when a cache is used instead, interaction type selection
is more diverse (yet performance degrades notably due to the relatively small space of trajectories).
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(a) Interactions chosen by agent with Comparative representation.

(b) Interactions chosen by agent with Grid representation.

(c) Interactions chosen by agent with Comparative+Specific representation.
Figure 4.2: Learning agent’s chose interaction types when actively selected during Pizza
Topping Arrangement. Values accumulated across 10 teaching sessions.
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(a) Pizza Topping Placement.

(b) Lunar Lander.
Figure 4.3: The reward earned by each agent when taught by a simulated oracle with a
particular reward representation. Brown lines the Comparative learner, blue lines represent
the Grid learner, and green lines the Comparative+Specific learner.
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correction queries with a Comparative+Specific teacher (Figure 4.2a). When the agent

had a Comparative+Specific representation, it typically selected demonstrations and

then switched to preferences—a behavior reminiscent of DemPref (Figure 4.2c) [43].

Finally, we find that reward representation affects an agent’s ability to learn from

the various oracles over time regardless of task complexity. Figure 4.3 depicts the

results from the Pizza Topping Placement and Lunar Lander task simulations. Because

we’re primarily interested in active learning scenarios with multiple interaction types,

we discuss the simulations in which the agent actively selected its queries.

In Pizza Topping Placement (Figure 4.3a), the Comparative agent exhibits an

ability to learn well from a Comparative+Specific teacher; just the same, a Compara-

tive+Specific agent learns well from a Comparative teacher, save for the 3-feature

task. When it comes to the Grid representation, the Grid agent learns well from a

Grid teacher, but it struggles to learn from both the Comparative and Compara-

tive+Specific teachers. Comparative and Comparative+Specific agents both struggle

to learn from a Grid teacher.

In Lunar Lander with three features (Figure 4.3b), we see strong learning perfor-

mance (i.e., convergence in less than five interaction instances and small error) no

matter the representation used by agent or teacher. When the task dimensionality

increases to six features, we start to see differences in performance—most notably in

the variance and rate of convergence. On average, each agent appears to demonstrate

strong learning performance with all three teachers. Interestingly, the Compara-

tive+Specific agent struggles early on when taught by a Comparative teacher but

eventually converges to about the same performance as the Comparative agent; the

inverse is true when the Comparative agent is taught by the Comparative+Specific

teacher. Surprisingly, the Grid agent demonstrates the same struggles early on when

taught by the Grid teacher.

4.4.5 Discussion of Simulation Results

While there are differences in each agent’s learning performance across different

teacher-learner combinations, the Lunar Lander results showcase that these differences

do not derive solely from the different model representations. Lunar Lander proves

to be a task domain in which all agents demonstrate strong learning performance
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when taught by any teacher; clearly, model representation has small effect on learning

this task. More nuance is introduced in Pizza Topping Placement where we see the

Grid learner struggle to learn from Comparative and Comparative+Specific teachers

and we see the Comparative+Specific learner demonstrate comparable (but slightly

inferior) final performance as compared to the Comparative learner when taught by

either Comparative or Comparative+Specific teachers.

The finding that learning from demonstrations only yields superior learning

performance is consistent with the understanding that demonstrations are the most

informative of the studied interaction types. Even so, this result shouldn’t lead us to

design demonstration-only interactions; other human factors (e.g., human-required

effort, frustration, etc.) need to be accounted for when designing algorithms that

efficiently learn from people but in ways that are convenient to the human teacher.

While our primary performance metric is the distance between the teacher’s ideal

and the agent’s demonstration at the end of a teaching session, it is interesting

to consider the Comparative+Specific agent’s quick convergence to the optimum

when taught by a matching oracle. If quick teaching sessions are the goal, perhaps

Comparative+Specific is the model of choice given the quickness with which it reaches

optimal performance in both simulated tasks.

The results from Table 4.3 and Figure 4.3 suggest that if the teacher’s reward model

is known, the agent should model the task in a comparable manner. Teaching with

critiques only is an exception to this conclusion—the Comparative model performs

best for all teachers—although its markedly poor performance makes it undesirable

when teaching with a single interaction type. If the teacher’s reward model is not

known, as is the case with most human-agent interactions, a Comparative agent

generally matches or outperforms the Comparative+Specific agent, but the difference

is small.

As can be seen in Figure 4.2, model representation can affect an agent’s choices

when actively selecting its queries. If the goal is to have an agent which learns from a

variety of interaction types, then it would seem a Comparative+Specific representation

could be well suited.
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(a) Pizza Topping Placement.

(b) Lunar Lander.

Figure 4.4: User Study Results. Similarity metrics and the counts of interaction types
selected by each agent in the two task domains when conducted with human participants. In
Pizza Topping Placement, we observe strong, consistent learning performances of both Com-
parative and Comparative+Specific learners. In Lunar Lander, the Comparative+Specific
agent demonstrates superior learning performance and consistency; in fact, the Comparative
agent’s performance appears to degrade as teaching sessions proceed. While the Compar-
ative+Specific agent generally expects demonstrations and then preferences to yield the
most information when querying participants, the Comparative agent’s expectations appear
more domain-dependent.

4.5 User Study

To test if our results from simulation could be leveraged in real-world human-robot

interactions, we evaluate the performance of learning agents in an in-person user study

with human teachers. Because of resource limitations inherent to user studies, we

choose to assess an active learning agent using Comparative and Comparative+Specific

representations and omit the Grid representation due to its inferior performance on

the Pizza Topping Placement task simulation.

Study Details. We recruited eleven in-person participants (5 men, 6 women; mean

age: 23.9, SD: 4.9) and performed the study at Carnegie Mellon University. Par-

ticipants were recruited through the university’s pool of research participants. We

performed a within-subjects study (i.e., each participant experienced both experi-
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mental conditions) and counterbalanced the order in which participants experienced

the conditions. Each participant taught both tasks to a simulated agent over 10

interaction instances, the types of which were actively selected by the agent from

the four interaction types described earlier. In the Lunar Lander task, corrections

and demonstrations were provided via keyboard inputs while preference and critique

feedback was provided via a basic terminal user interface. In the Pizza Topping

Placement task, mouse inputs were used to provide each type of feedback.

Running the Lunar Lander simulation to optimize trajectories takes a significant

amount of time—on the order of minutes for a single interaction instance. This

computation rendered online trajectory generation infeasible for our study. As such,

we approximated the space of trajectories using a cache of 2,200 trajectories.

Figure 4.5: Examples of goal topping placements given to participants during Pizza Topping
Placement user study.

The task goal in Lunar Lander was apparent: Land the spaceship on the landing

pad and in an upright pose. Less obvious was the task goal for Pizza Topping

Placement. As such, and to avoid erratic goal pizzas, we provided each participant

with a unique topping arrangement to teach the agent (examples shown in Figure 4.5).

Topping arrangements were chosen arbitrarily albeit with the objectives of being

learnable by the agent (i.e., goals could be captured by the feature space) and apparent

to the participant that the agent was (or was not) learning.

To evaluate how the Comparative and Comparative+Specific reward representa-

39



4. Exploring Reward Functions for Human Interactive Robot Learning

tions each affect learning performance, we asked each user to provide a demonstration

of their ideal trajectory before the teaching session began and then compared its

features with the agent’s attempted trajectory at each time step. To ensure fair

comparison, we computed all similarity metrics in the Comparative+Specific feature

space.

4.5.1 Results

Figure 4.4 depicts the performance of each agent averaged across all participants. Both

learners demonstrated an ability to learn participants’ reward functions in the Pizza

Topping Placement task. In Lunar Lander, however, the Comparative+Specific agent

performed better than the Comparative agent (Figure 4.4b). While the Comparative

agent demonstrated an ability to quickly improve its model, the agent’s performance

decreased as interactions proceeded. Note that the Comparative agent primarily

chose corrections as the first interaction type and then switched to preference queries

during Lunar Lander. Given that the Comparative+Specific agent’s performance

tends to stagnate in its own right after switching to preference queries, perhaps the

participants’ responses to the agents’ preference queries were difficult data points

from which the agent could learn no matter the representation.

Figure 4.4 also depicts the frequency with which the agent selected each interaction

type. As was the case in our simulation experiments (see Figure 4.2), the Comparative

agent primarily selects demonstrations over the course of Pizza Topping Placement

and the Comparative+Specific agent selects demonstrations early but then favors

preferences. This selection of interaction types for both agents in Pizza Topping

Placement aligns with our finding in simulation that the agent’s reward representation

influences the interaction types with which it will query a teacher. Even so, the

learner primarily selected demonstrations during Lunar Lander simulations yet display

a greater diversity of selection in the study. We attribute the tendency to pick a

diverse selection of interaction types to the pre-computed trajectory cache we employ

in our study rather than the online trajectory generation we employed in simulated

tasks. Indeed, when we rerun simulations using the trajectory cache, we observe that

interaction type selection approximately mirrors the patterns observed during the

study. This outcome suggests that both domain complexity and model representation
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affect an agent’s interaction type selections.

We also gathered qualitative metrics from our participants. At the end of each

teaching session, participants were shown the evolution of the agent’s belief via

a sequence of demonstrations in which each demonstration t corresponded to the

agent’s belief after receiving a query response at time t. After viewing this sequence,

participants reported how much they agreed with the statement: “The agent appeared

to learn the goal over time.” We collected responses on a 7-point Likert scale and

report them in Figure 4.6.

Participants perceived comparable learning performance between the two agents;

in both cases, 64% “Somewhat Agree” that the agent learned. Participants tended to

observe learning more readily after teaching a Comparative agent in Pizza Topping

Placement; 73% of participants at least “Somewhat Agree” that the Comparative

agent learned compared to the 55% of participants who felt the same about the

Comparative+Specific agent. While consistent with our results from simulation, this

result conflicts with our quantitative evaluations that show the Comparative+Specific

agent achieves superior learning performance.

Figure 4.6: Participant responses on a 7-point Likert scale for the Pizza Topping Placement
(top two bars) and Lunar Lander (bottom two bars) tasks.

4.5.2 Discussion of User Study Results

We conducted our user study to see if the results corroborate those from simulation.

While our quantitative results suggest both agents learn the Pizza Topping Placement
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task to a comparable degree (as our teaching simulations also show), the Compara-

tive+Specific agent is the superior learner in Lunar Lander, a result which conflicts

with those from simulation. Even so, learning performance is notably inferior for

both agents when compared to their performance in simulation, likely due to our use

of the pre-computed trajectory cache2.

Interestingly, the agents’ interaction type selections when interacting with people

follow the patterns observed in Pizza Topping Placement. While interaction type

selection is not the same across Lunar Lander experiments (teaching simulations

primarily saw agents select demonstrations), when we rerun simulations with the

trajectory cache, the interaction type selections follow the same pattern as that from

the study.

Finally, the qualitative results suggest people may more readily perceive a Com-

parative agent’s learning. That perception, however, is hardly stronger than that

perceived of the Comparative+Specific agent. As such, it would be presumptive to

draw conclusions from this result. Indeed, this inconclusive result (which also conflicts

with the quantitative superiority of the Comparative+Specific agent) corroborates

the difficult task of designing methods which reliably capture human preferences.

Furthermore, it is evidence that we should be wary of relying too heavily upon

our objective evaluations when deeming certain approaches “good” or “bad” from

simulation or user study alone.

4.6 Conclusion

In this work, we take a step towards robots learning human rewards by exploring the

ways a robot learner should internally represent their human teacher’s preferences

over the way a robot executes tasks. Our experiments in simulation indicate that

robot learners being taught tasks would best be suited to match their reward function

representation with that of their teacher. Our user study corroborates these findings

and those that indicate a learner’s reward representation influences its selection

of interaction types when actively querying its teacher. Future research directions

could include further investigation into interaction types and their representations,

2When we rerun simulations with the cache, we see similar performance degradation.
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incorporating more informed prior information about the human into the robot’s

querying process, interactions that include back-and-forth querying between learner

and teacher, and how to use different interaction types to learn long-term, transferable

human preferences.
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Chapter 5

Conclusion

This thesis set out to address two needs: 1.) the need for robots to learn from

multiple interaction types, and 2.) the need for robots to have effective, efficient

internal representations of their human teachers. To address the first, we introduced

INQUIRE, an algorithm enabling a robot to dynamically optimize its queries and

interaction types according to its task knowledge and its state within the environment.

We showed that using information gain to select not just optimal queries, but optimal

interaction types, results in consistently high performance across multiple tasks and

state configurations.

To address the second need, we explored the ways a robot learner should internally

represent their human teacher’s preferences over the way a robot executes tasks. Our

experiments in simulation indicate that robot learners being taught tasks would best

be suited to match their reward function representation with that of their teacher.

Our user study corroborates these findings and those that indicate a learner’s reward

representation influences its selection of interaction types when actively querying its

teacher.

Future work which builds off of the two projects presented in this thesis include

formal user studies to investigate INQUIRE’s efficacy with people of varied skillsets and

comfort with robots, and alternative representations of the reward function and feature

spaces. Additionally, future research directions could include further investigation

into interaction types and their representations, incorporating more informed prior

information about the human into the robot’s querying process, interactions that
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include back-and-forth querying between learner and teacher, and how to use different

interaction types to learn long-term, transferable human preferences.
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Appendix

6.1 INQUIRE: Approach Details

6.1.1 Information Gain Derivation

Information gain can be computed by calculating the change in entropy in a distribu-

tion X after receiving the datapoint y:

IG(X, y) (6.1)

= H(X)−H(X|y) (6.2)

= −Ex|X logP (x) + Ex|X,ylogP (x|y) (6.3)

=
∑
x∈X

P (x|y) · logP (x|y)−
∑
x∈X

P (x) · logP (x) (6.4)

We adapt this generic formulation to use our definitions of interaction types, query

space, and choice space, and aim to solve for the optimal query:

max
q∈Q

Ec|Ci(q) [IG(W , c)] (6.5)

We now solve for the expected information gain according to Eqs. 6.1- 6.4 and
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following the derivation presented in [10]:

Ec|Ci(q) [IG(W , c)] (6.6)

= H(W)− Ec|Ci(q) [H(W|c)] (6.7)

= −EW [logP (W)] + EW,c|Ci(q) [logP (W|c)] (6.8)

= EW,c|Ci(q) [logP (W|c)− logP (W)] (see proof in Sec. 6.1.1) (6.9)

= EW,c|Ci(q)

[
log

P (W|c)
P (W)

]
(6.10)

= EW,c|Ci(q)

[
log

P (c|W)

P (c)

]
(by Bayes’ rule) (6.11)

=
∑

c∈Ci(q)

[
P (c)

∑
w∈W

[
P (w|c) · logP (c|w)

P (c)

]]
(6.12)

=
∑

c∈Ci(q)

[
P (c)

∑
w∈W

[
P (w)P (c|w)

P (c)
· logP (c|w)

P (c)

]]
(6.13)

=
∑

c∈Ci(q)

∑
w∈W

[
P (w) · P (c|w) · logP (c|w)

P (c)

]
(6.14)

=
∑

c∈Ci(q)

∑
w∈W

[
P (w) · P (c|w) · log P (c|w)∑

w′∈W P (w′) · P (c|w′)

]
(6.15)

≈ 1

M

∑
c∈Ci(q)

∑
w∈Ω

[
P (c|w) · log M · P (c|w)∑

w′∈Ω P (c|w′)

]
(6.16)

Where Ω contains M samples of the distribution W .
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Proof of Eq. 6.9

− EW [logP (W)] + EW,c|Ci(q) [logP (W|c)] (6.17)

= EW,c|Ci(q) [logP (W|c)]− EW [logP (W)] (6.18)

=

∑
w∈W

P (w)
∑

c∈Ci(q)

P (c|w) · logP (w|c)

− [∑
w∈W

P (w) · logP (w)

]
(6.19)

=
∑
w∈W

P (w) ·

 ∑
c∈Ci(q)

P (c|w) · logP (w|c)

− logP (w)

 (6.20)

=
∑
w∈W

P (w) ·

 ∑
c∈Ci(q)

P (c|w) · logP (w|c)−
∑

c∈Ci(q)

P (c|w) · logP (w)

 (6.21)

=
∑
w∈W

P (w) ·
∑

c∈Ci(q)

P (c|w) · [logP (w|c)− logP (w)] (6.22)

= EW,c|Ci(q) [logP (W|c)− logP (W)] (6.23)

6.1.2 KL Divergence Formulation

We now show that we can alternatively derive Eq. 6.16 from the standard KL

divergence equation:

KL(P ||Q) =
∑
x∈X

[
P (x) · logP (x)

Q(x)

]
(6.24)

Where P and Q represent the data distribution before and after receiving feedback,

respectively. We convert this formulation to our terminology as follows:

max
q∈Q

Ec|Ci(q) [KL(P (W|c)||P (W))] (6.25)
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We now solve for the optimal query:

Ec|Ci(q) [KL(P (W|c)||P (W))] (6.26)

= Ec|Ci(q)

[∑
w∈W

[
P (w|c) · logP (w|c)

P (w)

]]
(6.27)

= Ec|Ci(q)

[∑
w∈W

[
P (w|c) · logP (c|w)

P (c)

]]
(6.28)

=
∑

c∈Ci(q)

[
P (c)

∑
w∈W

[
P (w|c) · logP (c|w)

P (c)

]]
(6.29)

Which is equivalent to Eq. 6.12, and thus results in Eq. 6.16.

6.1.3 Probability Tensor Derivations

See Table 3.1 for all definitions of q, c, c+, c− for each interaction type. In the

demonstration case, we define P as follows:

P(demo)
q,c,ω =

∑
t∈c+ eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω
(6.30)

=
eβ·ϕ(c

+
0 )·ω∑

t∈T eβ·ϕ(t)·ω
(since |c+| = 1 and c+ ∪ c− = T for demonstrations)

(6.31)

=
ET

0,c+0 ,ω∑
t∈T ET

0,t,ω

(6.32)

=

[
ET

0 ⊘
∑
t∈T

Et

]
c,ω

(since there is a 1-1 correlation between c and c+ in demos)

(6.33)

where⊘ represents an element-wise division of two matrices (i.e., (A⊘B)ij = Aij/Bij).
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In the preference case:

P(pref)
q,c,ω =

∑
t∈c+ eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω
(6.34)

=
eβ·ϕ(c

+
0 )·ω

eβ·ϕ(q0)·ω + eβ·ϕ(q1)·ω
(since |c+| = 1 and c− = q \ c+ in preferences)

(6.35)

Since c0 =⇒ c+ = {q0} and c1 =⇒ c+ = {q1}: (6.36)

=

[
eβ·ϕ(q0)·ω

eβ·ϕ(q0)·ω + eβ·ϕ(q1)·ω
,

eβ·ϕ(q1)·ω

eβ·ϕ(q0)·ω + eβ·ϕ(q1)·ω

]
c

(where c ∈ {0, 1}) (6.37)

=

[
ET

q0,q1,ω

[E+ ET]q0,q1,ω
,

Eq0,q1,ω

[E+ ET]q0,q1,ω

]
c

(6.38)

=
[(
E⊘ (E+ ET)

)T
,E⊘ (E+ ET)

]
c,q0,q1,ω

(6.39)

In the corrections case:

P(corr)
q,c,ω =

∑
t∈c+ eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω
(6.40)

=
eβ·ϕ(c

+
0 )·ω

eβ·ϕ(c
+
0 )·ω + eβ·ϕ(c

−
0 )·ω

(since |c+| = 1 and |c−| = 1) (6.41)

=
ET

q,c,ω

[E+ ET]q,c,ω
(due to 1-1 correlation between q and c− and between c and c+ in corrections)

(6.42)

=
[
ET ⊘ (E+ ET)

]
q,c,ω

(6.43)

In the binary reward case, we compare the likelihood of the teacher demonstrating
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q to the average likelihood of demonstrating any other trajectory in T :

P(bnry)
q,c,ω =

∑
t∈c+ eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω
(6.44)

Since c0 =⇒ c+ = T \ q, c− = q (6.45)

and c1 =⇒ c+ = q, c− = T \ q: (6.46)

=
1

α

[
1

|T \ q|
·
∑

t∈T\q e
β·ϕ(t)·ω∑

t∈T eβ·ϕ(t)·ω
,

eβ·ϕ(q)·ω∑
t∈T eβ·ϕ(t)·ω

]
c

(since c ∈ {0, 1} in binary rewards)

(6.47)

=

[
1−P

(demo)
0,q,ω

α (|T | − 1)
,
P

(demo)
0,q,ω

α

]
c

(where α is a normalization factor s.t.
∑
c

P(bnry)
q,c,ω = 1)

(6.48)

=

[
1−

P
(demo)
0,q,ω

α
,
P

(demo)
0,q,ω

α

]
c

(since
∑
c

P(bnry)
q,c,ω = 1) (6.49)

=

[
1−

(
ET

0 ⊘ α
∑
t∈T

Et

)
,ET

0 ⊘ α
∑
t∈T

Et

]
c,q,ω

(6.50)

where α =
1−P

(demo)
0,q,ω

|T |−1
+P

(demo)
0,q,ω

6.1.4 Gradient Derivation

Our goal is to update the weight estimate such that it maximizes the likelihood of all

feedback in F:

ω∗ = argmax
ω

∏
c∈F

P (c|ω) (6.51)

= argmax
ω

∏
c∈F

∑
t∈c+ eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω
(6.52)
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We calculate the gradient over ω by differentiating over its log-likelihood given F:

ℓ(ω) = log
∏
c∈F

∑
t∈c+ eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω
(6.53)

=
∑
c∈F

[
log

∑
t∈c+ eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω

]
(6.54)

=
∑
c∈F

[
log

(∑
t∈c+

eβ·ϕ(t)·ω

)
− log

( ∑
t∈c+∪c−

eβ·ϕ(t)·ω

)]
(6.55)

∂ℓ(ω)

∂ωj

=
∑
c∈F

[∑
t∈c+ β · ϕj(t) · eβ·ϕ(t)·ω∑

t∈c+ eβ·ϕ(t)·ω
−
∑

t∈c+∪c− β · ϕj(t) · eβ·ϕ(t)·ω∑
t∈c+∪c− eβ·ϕ(t)·ω

]
(6.56)

Note that when c+ contains a single trajectory (i.e., in all interaction types except

for binary reward), this gradient simplifies to:

∂ℓ(ω)

∂ωj

=
∑
c∈F

[
β · ϕj(c

+
0 )−

∑
t∈c+∪c− β · ϕj(t) · eβ·ϕ(t)·ω∑

t∈c+∪c− eβ·ϕ(t)·ω

]
(6.57)

6.1.5 Training Parameters

We enforce ∀ω ∈ W , ||ω|| = 1. We set a high convergence threshold (10−3) when

updating each weight sample in order to maintain sparsity within Ω (which becomes

less sparse as F grows with more queries), and then fully converge (convergence

threshold of 10−6) for reporting the distance between ω∗ and the weight estimate ω̃

after each query. During gradient descent, we use a step size of 5x10−4 for all tasks

except for the Pizza domain, where we use a step size of 10−4.

6.2 INQUIRE: Evaluation Details

6.2.1 Domain Implementations

Domain #1: Parameter Estimation This task involves directly estimating a

randomly-initialized, ground truth weight vector ω∗ containing 8 parameters. This

formulation represents a generic learning problem relevant to many robotics tasks,
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such as learning the relative importance between task outcomes according to a user’s

preference. There is no “state” in this domain, and each “trajectory” consists of

a single sample of the weight vector. As a result, we do not enable demonstration

queries in this domain since the resulting feedback would be akin to directly providing

ω∗ to the algorithm. The feature representation ϕ of a sample returns the sample itself.

Since ||ω|| = ||ω∗|| = 1, the reward of any sampled weight vector directly reflects the

cosine similarity between it and the ground truth vector (r(ω) = ω · ω∗ = cos(θ)).

Figure 6.1: In the Parameter Estimation domain, the robot is tasked with estimating a
high-dimensional ground truth weight vector w∗ with its own set of learned weights w. To
visualize this concept, a simpler case is illustrated above in three dimensions. All weight
vectors (ground truth and learned weights) are unit vectors, and therefore lie on a unit
sphere. Over time, the robot updates w by interacting with a teacher to gain a better
estimate of w∗.

Domain #2: Linear Dynamical System We consider a simple Linear Dynami-

cal System representing a robot that optimizes its controls according to a learned task

objective. We represent the dynamics of the robot’s state s as ds/dt = As(t) +Bu(t)

by using dynamics matrix A, input matrix B, and random controls u. An optimal

control vector is one that results in a trajectory of states maximizing 1
|T |
∑

s∈T ϕ(s) ·ω∗.

We define the feature representation ϕ(s) of a state s as the concatenation of the

element-wise, absolute difference between the robot’s pose at time t and the goal

pose, and the controls u(t). We experiment with an 8-dimensional feature-space (4

pose elements and 4 corresponding controls).

In a demonstration query, the oracle provides a trajectory (produced by simulating

a series of controls) from the initial state that maximizes the total reward. In a
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preference query, the algorithm proposes two trajectories and the oracle selects the

option which yields higher reward. In a corrections query, the algorithm proposes a

trajectory and the oracle returns a trajectory that maximizes the reward-to-similarity

ratio. In a binary reward query, the algorithm proposes a trajectory and the oracle

indicates whether that trajectory results in reward that exceeds the agent’s internal

threshold.

Figure 6.2: An example of a preference query in the Linear Dynamical System domain. At
time = t, the learned reward function yields the red “trajectory.” After posing a preference
query (which consists of options A and B), the corresponding belief update yields the
approximated reward function at time = t+ 1.

Domain #3: Lunar Lander We define a ω∗ that results in the agent efficiently

moving from its start state to an upright pose on the landing pad. We use the

same feature representation as in [43], consisting of four features: the lander’s angle,

velocity, distance from the landing pad, and final position with respect to the landing

pad. We implement each query type in the same manner as in the Linear Dynamical

System.

Figure 6.3: The Lunar Lander domain involves having the robot pilot a lunar lander to
safely descend and arrive at a landing pad. The depicted preference query illustrates two
different trajectories that may be taken by the lander to reach the destination.
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Domain #4: Pizza Topping Placement We approximate a preference-learning

task in which the robot learns to place toppings on only the left side of a pizza and

with uniform spacing between them. We define each “trajectory” as the next action

the robot should take from the current pizza state; thus, the trajectory is defined as

the (x, y)-coordinate of the next topping to be placed. The feature representation

consists of four features: the x and y position of the topping, its distance to its

nearest-neighboring topping, and the difference between that distance and 4cm.

Figure 6.4: The task in the Pizza Topping Placement domain is to learn how to place
toppings according to a human’s reward over topping positions. In the depicted preference
query, a human’s choice indicates their preference for the “next” topping’s position (choices
represented in blue).

6.2.2 Oracle Implementation

When responding to a query, the oracle requires its own set of trajectory samples.

Similar to INQUIRE, we derive this set by uniformly sampling N trajectories; however,

the two sample sets are kept separate, and so we distinguish the oracle’s trajectory

set as T ′ (resampled for each query state).

Demonstration/Preferences The oracle returns the highest-reward trajectory

(according to ω∗) from a uniformly-sampled trajectory set T ′ (for demonstrations) or

from the pair of queried trajectories C(q) (for preferences):

Oracledemo(q) = argmax
t∈T ′

(ϕ(t) · ω∗) Oraclepref(q) = argmax
t∈C(q)

(ϕ(t) · ω∗)

(6.58)

Corrections The oracle produces T ′ by performing rejection sampling; it uniformly

samples trajectories and accepts only those with a reward greater than or equal to
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the queried trajectory q until T ′ contains N trajectories:

∀t ∈ T ′, ϕ(t) · ω∗ ≥ ϕ(q) · ω∗ (6.59)

After producing this trajectory set, the oracle selects the trajectory with the highest

ratio of reward-to-distance from the queried trajectory:

Oraclecorr(q) = argmax
t∈T ′

∆r(q, t)

∆d(q, t)
(6.60)

∆r(q, t) = min
t′∈T ′

ϕ(t) · ω∗ − ϕ(q) · ω∗

ϕ(t′) · ω∗ − ϕ(q) · ω∗ ∆d(q, t) = min
t′∈T ′

eδ(t,q)

eδ(t′,q)
(6.61)

The distance metric δ between two trajectories is domain-specific. In the Parameter

Estimation domain, we define this as the angular distance between the two parameter

vectors. In the Linear Dynamical System and Lunar Lander domains, we define δ

as the normalized distance between the two trajectories’ aligned x and y poses over

time. We use the DTW-Python package [24] to align trajectories via Dynamic Time

Warping and return their normalized distances. In the Pizza Topping Placement

domain, we define δ as the Euclidean distance between two toppings.

Binary Reward The oracle produces T ′ by uniformly sampling N trajectories

and produces a cumulative distribution R over ground-truth rewards for T ′. It then

selects a positive or negative reward indicating whether the agent’s query q meets or

exceeds a threshold percentile α:

R = {ω∗ · ϕ(t),∀t ∈ T ′} Oraclebnry(q) =

+ R(ω∗ · ϕ(q)) ≥ α

− otherwise
(6.62)

We set α = 0.75 in our experiments.
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6.2.3 Evaluation Procedure

Algorithm 4 Evaluation Procedure

Input: generate query and update weights methods according to algorithm being

tested

1: Generate ground truth reward function ω∗

2: Generate 10 test states

3: Compute optimal trajectory tmax for each test case using ω∗

4: Compute least-optimal trajectory tmin for each test case using ω∗

5: for each of 10 runs do

6: Generate 20 query states (if testing in the static condition, repeat the same

state 20 times)

7: for each of 20 queries do

8: s← next query state

9: q∗ ← generate query(s, I,Ω)

10: F← F+ query oracle(q∗)

11: Ω← update weights(F)

12: ω̃ ← mean(Ω)

13: Record distance: arcccos(ω̃·ω∗)
π

14: for each of 10 test states do

15: Compute optimal trajectory t from the test state according to ω̃

16: Record performance: ϕ(t)·ω∗−ϕ(tmin)·ω∗

ϕ(tmax)·ω∗−ϕ(tmin)·ω∗

17: end for

18: end for

19: end for
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6.3 AUC Figures

Figure 6.5: AUC values for the distance plots in Figs 3.2-3.3. Darker cells indicate lower
(better) values.

Figure 6.6: Visualizing Fig. 6.5, with statistical significance noted. (*: p < 0.05, **:
p < 0.01, ***: p < 0.001)
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Figure 6.7: AUC values for the performance plots in Figs 3.2-3.3. Darker cells indicate
higher (better) values.

Figure 6.8: Visualizing Fig. 6.7, with statistical significance noted. (*: p < 0.05, **:
p < 0.01, ***: p < 0.001)

Figure 6.9: AUC values for the cost plots in Figs 3.2-3.3. Darker cells indicate lower (better)
values.
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Figure 6.10: Visualizing Fig 6.9, with statistical significance noted. (*: p < 0.05, **:
p < 0.01, ***: p < 0.001)

6.4 Exploring Reward Functions: Filtering

Reward Function Beliefs

To undertake this project’s learning task, we designed the agent’s belief model of

the reward function as a particle filter. Particle filters are probabilistic state models

which perform Bayesian inference through sequential, online updates to a belief

space [47]. Commonly used in robotics for state estimation, they’ve also been used to

approximate the motions of articulated objects and to track the poses of manipulated

objects [25, 36].

To formalize our particle filter representation, let:

• p = θ̂ be a d-dimensional tuple of parameters that represents a discrete,

hypothesized reward function R̂(·);

• p(k) ∈ P be the k-th particle in the particle set P ; and

• mk ∈ m be the k-th particle’s importance weight, with mk ∈ (0, 1) and
d∑

i=1

mi = 1.

Intuitively, a particle filter’s importance weights m represent a probability dis-
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tribution over the filter’s particle set P. Thus, each importance weight mk is an

approximation of the probability that p(k) represents the “true” reward function of

the teacher. The filter’s primary function is to allocate greater weight to the more

likely particles by evaluating an observation and then performing a corresponding

Bayesian update over its importance weights.

It’s critical for the reader to grasp our formulation’s distinction between importance

weights m and parameter weights ω. Each particle has its own importance weight

mk that represents how strongly the robot believes that particle is the human’s true

reward function. Distinct from this importance weight is its set of parameter weights

ω̂(k), which directly contribute to the value yielded by the k-th particle’s reward

function Rk(·).
Each filtering step produces a distribution of particle importance weights mt

conditioned on the teacher’s response c∗ to query qt (see Equation 4.5). In our

formulation, the prior belief P (θ) is approximated by the importance weights mt, and

the likelihood term depends upon the interaction type chosen by the robot for query

qt. See Table 4.1 for descriptions of the likelihood representations for the different

query interaction types.

The filtering process is depicted in Figure 4.1. First, the learner presents a query

to the teacher through the process described in Section 4.3. After receiving a response

c∗ to query qt, the agent updates its belief using its prior and the likelihood term

P (c∗|qt,mt) as in Equation 4.5. Finally, the filter resamples particles from the

posterior P (θt; c) to get the new approximation to the prior belief mt+1. After each

such interaction instance, the learner’s particle set should filter out unlikely particles

and continue homing in on the teacher’s reward function R∗.
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[14] Carlos Celemin, Rodrigo Pérez-Dattari, Eugenio Chisari, Giovanni Franzese,
Leandro de Souza Rosa, Ravi Prakash, Zlatan Ajanović, Marta Ferraz, Abhinav
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