
Thesis

Sample-Efficient Reinforcement Learning with
Applications in Nuclear Fusion

Viraj Mehta

CMU-RI-TR-23-86

December 7, 2023

Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jeff Schneider (chair)

David Held
Deepak Pathak

Stefano Ermon (Stanford University)
Mark D. Boyer (Commonwealth Fusion Systems)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2023 Viraj Mehta

This work was funded in part by DOE grant number DE-SC0021414.

Keywords: reinforcement learning, dynamical systems, experimental design, plasma control,
nuclear fusion, machine learning

Abstract
In many practical applications of reinforcement learning (RL), it is expensive to

observe state transitions from the environment. In the problem of plasma control for
nuclear fusion, the motivating example of this thesis, determining the next state for a
given state-action pair requires querying an expensive transition function which can lead
to many hours of computer simulation or dollars of scientific research. Such expensive
data collection prohibits application of standard RL algorithms which usually require a
large number of observations to learn. In this thesis, I address the problem of efficiently
learning a policy from a relatively modest number of observations, motivated by the
application of automated decision making and control to nuclear fusion. The first section
presents four approaches developed to evaluate the prospective value of data in learning
a good policy and discusses their performance, guarantees, and application. These
approaches address the problem through the lenses of information theory, decision
theory, the optimistic value gap, and learning from comparative feedback. We apply this
last method to reinforcement learning from human feedback for the alignment of large
language models. The second presents work which uses physical prior knowledge about
the dynamics to more quickly learn an accurate model. Finally, I give an introduction
to the problem setting of nuclear fusion, present recent work optimizing the design of
plasma current rampdowns at the DIII-Dtokamak, and discuss future applications of AI
in fusion.

iv

Acknowledgements

I started my research career inauspiciously. Starting with the wrong motivations
(getting into college), the wrong field for me (molecular biology), the wrong time
(summers in high school), I was asked to thaw frozen tubes of ICU patient urine with
my hands so that we could later centrifuge them and measure the melatonin levels
present. Luckily, I found another lab at which we grew plants, applied chemical
treatments of adenosine triphosphate and the like, and measured the effect of these
hormones on the aperture of stomata. The PI, Greg Clark, was generous with his time
and willing to help even very young students attempt to do science. I am grateful to
him for showing me that persistence is the key element in research and for his belief
that teenagers could be useful in a lab setting.

When I showed up as an undergrad to Stanford in the fall of 2014, I thought I would
be a physicist or a mechanical engineer. I had fallen out of love with mathematics
in high school and (besides a notable road trip spent learning to program a TI-73
calculator in BASIC) had never fallen in love with computers to start with. At the
same time, I’d fallen in love with physics due to a pair of fantastic physics teachers:
Mark and Nancy Misage. Though I only ever took one physics class (a fantastic course
on modern physics given by Carl Wieman) after high school, these two gave me the
fundamental understanding needed to have some intuition about the processes that drive
tokamak physics and plasma control. I sincerely thank them for this. Through quirks of
scheduling, social pressure, and some vague notion that I should start with broad and
foundational classes I started with the math and computer science curriculum instead
of those disciplines.

At Stanford, I learned the two foundational skills on which the bulk of my research
sits: to program and to prove. For that I thank many professors in the Mathematics and
Computer Science departments there. In particular my undergrad advisor Jan Vondrak
was extremely patient with the various startups and diversions I distracted myself with
while ultimately failing to write an honors thesis. In the summer of 2015, I interned
at Google and learned that I didn’t much like being told what to program outside of a
pedagogical setting. So, I decided to run around Google and learn how the folks with
jobs I thought were interesting got to those jobs. The common thread amongst the folks
was that they had all gotten PhDs. So, I decided to jump back into research.

I joined Silvio Savarese’s lab and came to the realization that drove me to this point:
you can never run out of research. Until that point I’d never entirely intellectually
engaged with the unbounded nature of the work but instead had been going through
the motions. By working with Silvio, Animesh Garg, Andrey Kurenkov, Kuan Fang,
JunYoung Gwak, Chris Choy, Yuke Zhu, Danfei Xu, and others at Stanford, I began
to understand some of the key truths I continue to work to grasp: that asking good
questions is at least as important as answering them, that it’s critical to know when to
kill a project, and that a cool method that doesn’t scale is probably going to be worse
than a simple method that does. I am deeply grateful for their mentorship and patience.
I can still recall repeatedly screwing up an implementation of a projection from a depth
image into a point cloud, only to learn in class the following semester that a projective
transformation explained all the odd deformations I was getting.

I arrived at Carnegie Mellon fresh off stints in private equity and startups. Probably
as a consequence of this, I was interested in working on something I could only ever

do in academia. Boy, did I find it. When I joined Jeff’s lab and the fusion project, we
did not know much about fusion. Over the following years, we slowly put together
that picture. I learned from Jeff to drive a research agenda grounded in a real-world
application, to reduce things to their essential components and solve the simplest
version of a problem, and to keep a portfolio of projects moving incrementally forward.
Jeff was flexible with me when I needed money for computers, willing to let me travel
around the world presenting research, and always willing to jump into a problem and
attack it from first principles. I will always cherish the hours spent going over RL
algorithms, experimental designs, and strategies for presenting our work in his office.
Jeff has been willing to entertain weird ideas, bad ideas, and the occasional good one.
As the world continues to grapple with the progress in natural language understanding
of recent years, Jeff prompted me to think about how this could be useful to us in fusion.
Though language was neither of our area, this prompt eventually pushed us to build a
copilot for nuclear reactors and to sketch out a program for AI augmented operation of
tokamaks that I would never have thought to consider without him. I spent months at a
time in LA, Truckee, New York City, Austin, and San Francisco during grad school.
Jeff took this in stride while insisting I still retain some connection to Pittsburgh and
the in-person life at CMU. In retrospect, I think this balance worked well for me and
I’m glad we landed at this compromise.

As an undergrad I took the course on graphical models given by Stefano Ermon
as my last machine learning course. He was able to install in me the coherent global
picture of machine learning that persists to this day through that course. As we’ve
worked together on subsequent research I’ve grown to appreciate how thoroughly he
knows the literature and his knack for asking the hardest questions before the reviewers
do.

Dan Boyer operated as a bridge for the CMU group as someone who was deeply
immersed in the plasma control world while also remaining up to date on the state of
the art in machine learning. He was quick to grok the physical prior knowledge I was
hoping to use for the NDS paper and invaluable in giving me the perfect physical model
to use for that work; I would have struggled mightily to find one without him. On our
more recent work optimizing rampdowns, his early involvement was foundational in
getting that project off on the right path.

I would also like to extend my gratitude to Deepak Pathak and David Held, members
of my thesis committee. Their willingness to lend their expertise and provide oversight
throughout this process has been invaluable. Their perspectives and insights during the
committee meetings contributed to the shaping of this research. I am grateful for their
time and commitment in reviewing and providing feedback on my work.

This thesis attempts to apply and extend machine learning techniques so that they
can be applied to the problems of plasma control for nuclear fusion. For this problem
setting to make sense at all, we needed a prime mover from the physics community.
For this I must thank Egemen Kolemen. He is fearless, hard-charging, and funny. He
doesn’t pull punches, but he also believes that his students can accomplish huge things.
He served as our host at Princeton on multiple occasions as well as our guide in San
Diego at DIII-Dand otherwise. The wealth of experience he has on fusion experimental
science is invaluable, and his leadership of our efforts has made much of this possible.

I benefited during my PhD from several other mentors who worked with me and

vi

from whom I learned a tremendous amount. I took Andrej Risteski’s class on deep
learning my first semester and immediately appreciated his ontology of the field and the
clarity of his presentation. I knew that I wanted to do theoretical research during grad
school and that it wasn’t part of our main research thrust. Andrej was willing to do a
terrific amount of work to get our two projects over the line. He helped me to find math
papers to read, proposed approaches, proved theorems himself, checked my proofs,
interrogated results I presented (even late at night), wrote papers, gave advice and was
in general a sincere and involved advisor as well as a fantastic research collaborator
even though there was barely a formal relationship between us. I am sincerely grateful
for his help and mentorship over the years. I’d also like to acknowledge and thank Fred
Koehler and Chenghui Zhou for their help and collegiality in working on these projects.

Since he was a postdoc at CMU, Willie Neiswanger has been a friend and mentor
over nearly all of my research. Several of my papers extend ideas of his to the control
setting, and I’ve benefited from his advice on essentially every project I’ve attempted in
grad school. Since I was young I’ve struggled with a tendency to produce work that
aesthetically leaves a bit to be desired and failed to hold myself to a high standard of
presentation. At this point the voice in my head that tells me to redo all the figures
because they are slightly misaligned may as well be named Willie. He was that
influential in my progress towards producing high-quality research outputs (the reader
can decide for themselves if this thesis qualifies). It has been a joy working with him
and I am deeply grateful for all his help.

Last year, Willie introduced me to a friend, Ilija Bogunovic, who was working on RL
settings that were quite similar to those I was interested in. We immediately got along,
and quickly collaborated on a paper. Since then, we’ve worked on several subsequent
projects and shared drinks on several continents. I appreciate his mentorship, leadership
of projects, and penetrating principled insights into decision making algorithms. I
equally appreciate his warmth and good spirits every time we meet no matter where in
the world it happens. I also thank his student, Xiang Li, and our collaborator Johannes
Kirschner for their help with our first project together.

Besides academic mentorship, I benefited from the support of several CMU staff
members who made my research possible. I must thank the longtime Auton cluster
administrator, Predrag Punosevac. Besides keeping the computing substrate up and
running, I always appreciated conversations about technologies in computing, program-
ming languages, and hearing about your daughters. Similarly, I appreciate the support
of Piotr Bartosiewicz who has succeeded him. From the very first day, Suzanne Lyons
Muth has been the person who had all the administrative answers. I didn’t have too
many questions but when I did I needed answers. Suzanne had them. For that sincerely
thank her. Finally, I spent a lot of Jeff’s money during my travels and my training runs.
Stephanie Matvey and Ashlyn Lacovara helped me out the dozens of times I needed
reimbursed for things and I thank them for this.

At several points, I ran experiments at the DIII-D National Fusion Facility in San
Diego. As I’ll discuss later, this is an extremely complicated machine and it is not
easy to effectively operate. Nevertheless, I was invited on several occasions to be a
session leader and conduct experiments on the device due to the generosity of DIII-D
management in specially allowing PhD students time to conduct research. I thank the
folks responsible for allocating me this time and for managing the schedule, including

vii

but not limited to Max Austin and Auna Moser for this. I thank them again for not
being mad when the vessel was breached during one notable experiment in March 2023
and for simply adjusting the operations envelope to rule out similar events happening
again. There was a large team of people responsible for the operations of the tokamak,
so I can’t list them all. However, I’d specifically like to acknowledge Jayson Barr for
his guidance and mentorship on my projects at DIII-D. He taught me physics, was
always willing to share time to make sure I understood why something was, and was
invaluable in helping clear obstacles in every project I attempted. I’d also like to thank
Al Hyatt, Nik Logan, Tyler Cote, James Yang, and many others on the operations teams
at DIII-Dfor their help in managing the systems of the device during run days. Finally,
I’d like to thank each of the session leaders who allowed us to piggyback rampdown
experiments during their primary experiments over the course of 2022.

I’d like to acknowledge the students at Princeton and in the fusion community
who were largely responsible for helping me learn what practically happens in fusion,
choose interesting problems to work on, and help get experiments proposed and set
up. I thank Rory Conlin, Andy Rothstein, Allen Wang, and Oak Nelson for their help
during this time. I will always be grateful to Joe Abbate for everything he’s done for us
at CMU over the years. For questions ranging from “what was the pointname for minor
radius again?” to “what’s really stopping us from getting fusion?” Joe was graceful
and generous with his time. We owe him a huge amount for building the infrastructural
code that allows us to do data-driven research using DIII-D shots. We owe him equally
for his patience in reading over our proposals and papers. Thanks, Joe, for being my
fusion Sherpa.

Most of my PhD was spent as part of a group of three students attempting to connect
the worlds of ML research and fusion. I worked with Ian Char and Youngseog Chung on
probably dozens of things ranging from presentations and proposals to utility codebases,
C and Fortran code, and eventually some of the work that appears in this thesis. They’ve
been my friends and confidants through this process but also varyingly my advisors,
instructors, assistants, QA folks and many other roles. Ian and I notably worked on a
project, BATS, not included in this thesis that drove us to the brink of sanity one spring.
I’m glad I was on that brink with him.

I worked with fantastic and hardworking master’s students: Vikramjeet Das and
Rohan Shah. They worked hard on projects that sometimes didn’t pan out and it was
extremely gratifying to see them grow as researchers.

To my officemates and labmates and occasional collaborators, Adam Villaflor, Brian
Yang, Yeeho Song, Conor Igoe, Biswajit Paria, Ben Freed, Swapnil Pande, Tejus Gupta,
and others, thank you for the intellectual sparring and the fun and the visits to trivia
night and the references to interesting work.

Though grad school has been a lot of work, I’ve benefited from an amazing col-
lection of friends who’ve supported me and cheered me on along the way. In the
CMU community I’d especially like to thank Theophile Gervet, Minji Yoon, and Ojash
Neopane (also a collaborator) for their friendship and support over all the years. Outside
the CMU community there are countless many friends who’ve been there for me. From
my time in Truckee (my favorite place I’ve ever lived) and otherwise I’d like to thank
Lewin Cary, Nick Bien, Conrad Sayer, and Nick Powell. From Austin: Lincoln Valdez,
Connor Gunn, Alma Florez-Perez, Jay Tyler, Keyur Mehta, Breck Spencer, and Jacob

viii

Zodikoff. From Pittsburgh, Tristan Cunha and Domi Vamossy. From SF, Martín Her-
nandez, Tyler Cloyd, Jack Pigott, Adam Mosharrafa, Angela Nguyen, and Upal Saha.
From New York, Connor and Maria Roberts, Aaron Polhamus, Blair Silverberg, Noah
Steinberg, and Jared Madfes. From Stanford, Tyler Dougan, Gabriel Bianconi, Alec
Villagomez, Sarah Radzihovsky, Meena Chetty, Wes Dixon, Sam Schwager, and so
many others. I’d like to thank my girlfriend, Sam Whitney. Her support and fascination
with my projects has been a tremendous bulwark when the going was tough. And the
delight she takes in the small things adds even more joy to the bright spots.

Finally, I’d like to thank my family: Ravij, Sarita, Mom, and Dad. Since the
earliest days our house has been one where academics have been prioritized but balance
maintained. My life sparkles thanks to the joy and good humor my siblings bring to
it. Since an early age my parents took care to enrich our lives and expose us to as
much information as possible. They sacrificed their personal lives to make sure that my
siblings and I were set up as well as possible to succeed in our lives. Thanks to them,
I’ve been free to work on precisely what I wanted and felt supported doing so. This has
been a long journey that’s taken consistent hard work. I’m only capable of that thanks
to my family.

ix

x

Contents

1 Introduction 1
1.1 Preliminaries . 3

1.1.1 Model-Predictive Control . 4
1.1.2 Value Functions and Model-Free RL . 5
1.1.3 Actor-Critic Methods . 6

I Sample Efficient Decision Making through Better Choice of Data 7
1.2 Prior Work on Sample-Efficient RL . 10

2 Information theoretic approaches: Can we measure what we might learn? 13
2.1 An Acquisition Function for Model-Based RL . 14

2.1.1 Estimating EIGτ∗ via Posterior Function Sampling 14
2.1.2 Bayesian Active Reinforcement Learning 15

2.2 Experiments for BARL . 16
2.3 Does BARL choose ‘meaningful’ datapoints? . 17
2.4 Trajectory Information Planning . 18

2.4.1 Preliminaries for TIP . 18
2.4.2 Model-Predictive Control in Bayesian Model-Based RL 19
2.4.3 A Task-Specific Cost Function based on Trajectory Information 20
2.4.4 Computational Cost and Implementation Details 22

2.5 Experiments for TIP . 23

3 Applying generalized decision-theoretic entropies to Bayesian RL 27
3.1 Related Work . 28
3.2 Problem Setting . 29
3.3 Bayes-Adaptive MDPs are ‘Fearful’ . 30
3.4 Fearless RL Through Hℓ,A-Information . 31

3.4.1 EHIG for MDPs . 32
3.4.2 Exactly Solving the EHIG-MDP in Tabular Cases 32
3.4.3 Empirical Performance of the Exact EHIG Policy 33

3.5 Scalable Approximation of the EHIG-MDP . 34
3.5.1 Experiments Using the EHIG Approximation 35

xi

4 Efficiently identifying the value function implies sample-efficient decision making 39
4.1 Related Work . 40
4.2 Problem Setting for AE-LSVI analysis . 41
4.3 AE-LSVI Algorithm . 41
4.4 Theoretical Results . 42
4.5 Application to Offline Contextual Bayesian Optimization 45
4.6 Experiments . 46

4.6.1 Reinforcement Learning Experiments . 46
4.6.2 Offline Contextual Bayesian Optimization Experiments 47

5 Efficiently learning policies from comparative feedback by choosing optimal data 49
5.1 Introduction . 49
5.2 Related Work . 50
5.3 Problem Setting . 51
5.4 Active Exploration in the Kernelized Setting . 51

5.4.1 Methods . 52
5.4.2 Analysis . 53
5.4.3 Experiments in the Kernelized setting . 54

5.5 Scaling Active Exploration to Large Language Models 55
5.5.1 Experiments using LLMs . 57

6 Exploration and Sample-Efficient RL: Takeaways 61

II Sample-Efficient Dynamics Modeling through Approximate Physical Knowl-
edge 63

7 Neural Dynamical Systems 65
7.1 Related Work . 66
7.2 Problem Setting . 67
7.3 Methods . 67
7.4 Experiments . 70

7.4.1 Synthetic Experiments . 71
7.4.2 Fusion Experiments . 72
7.4.3 Control Experiment . 73

7.5 Discussion and Future Work . 74

III Applications of learning in Plasma Control 75

8 Plasma Control in Tokamaks 77
8.1 Achieving Net Energy from Fusion . 78
8.2 Key Tokamak Control Problems . 82

8.2.1 Shape, Power, and Current Control . 82
8.2.2 3D Control . 83
8.2.3 Kinetic Control of Plasma . 83

8.3 Prior Work . 83

xii

9 Automated Experimental Design of Safe Rampdowns via Probabilistic Machine Learn-
ing 85
9.1 Introduction . 85

9.1.1 Related Work . 86
9.1.2 Contributions . 87

9.2 Method . 88
9.2.1 Problem Setting . 88
9.2.2 Offline then Online Data Processing . 91
9.2.3 Machine Learning Methods . 92
9.2.4 Piggyback Experiments . 93

9.3 Experiments . 94
9.3.1 Initial Modeling Results . 94
9.3.2 Real-World Performance of Online Bayesian Optimization 94

9.4 Analysis . 97
9.4.1 Analysis of Selected Shots . 97
9.4.2 Action Selection across Experimental Campaign 98

9.5 Discussion . 98

10 Future prospects for applications of AI to Fusion 101
10.1 Challenges in applying AI to fusion . 101
10.2 Gating challenges to fusion power . 102
10.3 How can AI make a real impact on this problem? 103

10.3.1 LLMs as operational copilots and research assistants 104
10.3.2 Actually Offline RL . 105

11 Conclusion 109

A Appendix for chapter 2 113
A.1 Related Work . 113
A.2 Training Details . 115

A.2.1 Comparison Methods. 115
A.2.2 Control Problems . 116
A.2.3 Runtime Details . 116

A.3 MPC Details . 116
A.3.1 Robustness of EIGτ∗ to a suboptimal controller 117

A.4 Description of Continuous Control Problems . 118
A.5 Implementation Details for TIP . 119

A.5.1 Derivation of Computational Cost . 119
A.5.2 Wall Times . 120
A.5.3 GP Model Details . 120
A.5.4 Cost Function Details . 121
A.5.5 Details on Planning Method . 121

A.6 Description of Comparison Methods . 121
A.7 Description of Control Problems . 122

A.7.1 Plasma Control Problems . 122
A.7.2 Robotics Problems . 123

A.8 Additional Results . 124

xiii

A.9 Additional Related Work . 124
A.9.1 Bayesian Exploration Techniques . 124
A.9.2 Gaussian Processes (GPs) in Reinforcement Learning 125

B Appendix for chapter 3 127
B.1 Proofs . 127

B.1.1 Proof of Theorem 1 . 127
B.1.2 Proof of Theorem 2 . 128

B.2 Exact Experiments . 128
B.3 Approximate Experiments . 129

C Appendix for chapter 4 131
C.1 Appendix . 131

C.1.1 Auxiliary Results . 131
C.1.2 Proof of theorem 3 . 132
C.1.3 Offline contextual Bayesian optimization 135

C.2 Additional Experimental Details . 136
C.2.1 Implementation . 136
C.2.2 Environments . 137
C.2.3 Exploring β values . 138

C.3 RKHS Regression . 139
C.4 Proof of Theorem 4 . 139
C.5 RKHS norms of r and fr . 141
C.6 Additional Experiments for Kernelized Setting . 142
C.7 The Jeopardy! preference dataset . 142
C.8 Related Work on Uncertainty Estimation in Large Language Models 144
C.9 Prompt templates . 144
C.10 Additional Experiment Details . 144
C.11 Experiment Runtimes . 146
C.12 Additional Experiments with LLM . 146

C.12.1 Evaluating dropout-based LLM uncertainty estimation 147

D Appendix for part II 149
D.1 Experiment Details . 149

D.1.1 Training Details . 149
D.1.2 Comparison Methods . 149

Bibliography 151

xiv

List of Figures

2.1 (a) A diagram of the BARL data-collection loop. (b) An illustration of the EIGτ∗

computation over several sample paths τ∗i (multi-colors) sampled from P (τ∗ | D)
for a dataset of past queries (grey points). The optimizer (in pink) is a point that
is maximally informative when learning a model for crossing the path between the
lava pools (orange rectangles) to the goal (green). 15

2.2 Learning Curves of RL methods, showing control performance averaged across 5
seeds. In each, the x-axis is on a logarithmic scale to account for widely varying
data requirements. We see that though most algorithms end up reaching roughly
the same performance on each task, BARL is substantially more efficient in most
cases. The shaded region is the standard error of the average performance across the
5 seeds. We additionally include a plot of the performance of the PILCO algorithm
[Deisenroth and Rasmussen, 2011] on Pendulum. PILCO makes assumptions about
the initial state distribution and suffers from numerical instability under long control
horizon so we were unable to reach representative performance on the other problems. 18

2.3 For a single run of BARL and of EIGT using the same prior model, we evaluate
control performance, as well as modeling error, on both the predictions used by the
MPC procedure and on a set of points uniformly sampled from the state-action space. 19

2.4 Our comparison methods can be broken down by the type of cost function used and how
the methods do or do not handle sequential acquisition of information. As Cg is a sum, it
naturally handles future timesteps jointly. For the other information quantities, it is possible
to upper-bound information acquired by summing each separate mutual information, or to
compute them jointly. 23

2.5 Control and Modeling Details for TIP and Ablations. Column 1: Learning curves for
our ablation methods, all of which use the same planner and model. Column 2: Dynamics
model accuracy on the points used by the planner to choose actions during MPC. Column 3:
Dynamics model accuracy on a uniformly random test set in S̃. Column 4: EIGτ∗ values
normalized by the number of actions planned. sTIP was truncated on Reacher as it exceeded
the wall time budget. 25

3.1 Left: An illustration of the X Games Snowboard MDP. If the Triple Cork trick is chosen,
there is uncertainty about which action leads to landing or failing the trick. Right: Illus-
tration of suboptimal exploration under the BAMDP, which aims to maximize cumulative
return (even during training episodes), and improved exploration under the EHIG-MDP,
which aims to maximize simple return (only during the competition episode). 29

xv

3.2 We plot the simple return of agents with BAMDP and EHIG exploration policies (exact
implementations without approximation) on two tabular MDP distributions. In the LavaRun
environment, the BAMDP agent fails to solve the problem with horizon 3 because it is
unwilling to ‘cross lava’ in order to obtain the necessary solution. In the SkateTrick
environment, even with a 5 step horizon, the BAMDP agent is not willing to try the
dangerous trick in order to learn how to ‘land it’ at test time. 34

3.3 Architecture for scalable EHIG-MDP. During a particular meta-RL trial, the recurrent
encoder q processes all previous training data into an up-to-date belief state bt, which is
passed to the policy π at train time, along with the current MDP state and the number
of exploration timesteps remaining. After H timesteps of exploration have elapsed, the
belief state is frozen and passed to the policy along with the MDP state and 0 (denoting
the exploration remaining). The rewards used for policy optimization are masked for data
collected during training but not for test-time data, though they are always visible to the
encoder and decoder. Our decoder and encoder architecture builds on Zintgraf et al. [2020]. 35

3.4 Simple returns of each meta-learning method over the course of meta-training. At each
evaluation, we plot the mean performance over 16 environment samples and 10 evaluation
episodes of the test policy after one exploration episode in each environment, and smooth
using a moving average. We shade error regions corresponding to the standard deviation of
our return estimates over 5 random seeds. 36

4.1 The maximum simple regret seen in any given context for the offline contextual
Bayesian optimization experiments. The shaded regions show the standard error
over 10 different seeds. 48

5.1 Illustration of the active contextual dueling bandit setting, and its application to sample-
efficient RLHF in large language models. 52

5.2 Performance of all methods across 10 random functions r with 1D Context and 1D action.
The top plot shows the median regret across contexts and the bottom shows the maximum.
Error bands show one standard error. 55

5.3 From left: the ground truth contextual Borda function fr (the red line is the optimal policy),
the mean of our posterior estimate of fr (the red line is the best policy estimate), the
uncertainty function σt, and the value function maxa f

t
r . In the middle two plots, red dots

are queries where wt = 0 and green are where wt = 1. We plot the value function with
confidence intervals in blue on right as well as the value function uncertainty from (5.3) in
orange. For a full version of this Figure, see Fig. C.6. 56

5.4 From left: smoothed win rates against preferred choices in dataset of samples generated
from each policy at end of RLHF training runs across the final four evaluations, and all
seeds, on the HH (first) and SHP (second) datasets. In the latter two plots, we force each
policy to generate a (non-null) answer, and then, conditional on the answer being correct
(fourth) or incorrect (third), plot the rate at which each policy abstains. 58

xvi

7.1 An example Neural Dynamical System. Here, blue boxes are fully connected
neural networks, gray boxes are problem data and output, the green box is the prior
knowledge dynamical system, the purple box is data output by ODE solver to query
derivatives, and the black box is an ODE solver. The ODEs and system parameters
are problem dependent, but here we consider the Lorenz system (defined in Example
1) as an example. Our notation for x is unfortunately overloaded by our method and
the Lorenz system—the x from our method is bolded in the figure. 68

7.2 L2 distance between ϕ and ϕ̂. As the NDS are trained under the usual L2 supervi-
sion, the parameters ϕ̂ of the system approach the correct values. 72

8.1 Characteristic Timescales of Phenomena in a Tokamak 80
8.2 A panorama of the DIII-D Tokamak with many diagnostic systems labeled. 81
8.3 Left: a schematic drawing of a tokamak and its major magnetic components. Right:

a typical plasma shape at equilibrium. The various boxes labeled with Fs are
magnetic coils tasked with attaining the desired plasma shape. 82

9.1 Diagram of overall method. Here, the process of executing the actions that optimize
the acquisition function and observing their results is shown. 89

9.2 Depiction of an example action in our piecewise linear parameterization for current,
elongation and injected power. This example is a stylized drawing of shot 188823. . 90

9.3 Optimization of a learned model using offline data only. This figure depicts a GBT
model mapping θ to the cost function to all high-quality examples available prior to
our experimental campaign and optimized it via grid search over θ. The plots show
the historical observations and the optimum found for 3 components of θ. 95

9.4 Performance of comparison sets of rampdowns on cost and current at disruption.
These are empirical cumulative distribution functions, so e.g. the median of the
observed samples will be the value on the horizontal axis where the curve crosses
0.5 on the vertical axis. 95

9.5 Costs and disruption current observed in test group experiments as trials were
conducted. 97

9.7 Rates of change chosen by models over time for current, elongation, and NBI power. 98
9.6 Selected paired shots from the test and control sets. Orange is test group and

blue/green are control. Shot numbers are given in the second row. 100

10.1 The DIII-D tokamak (left) and one of its 4 neutral beams (right) as of July 2022. . . 101
10.2 The control room at DIII-D. 103

A.1 Performance of BARL when MPC budget for posterior function samples is varied
while MPC test time budget is held constant. The error regions are the standard error
of the return seen across 5 trials of the policy. The dashed lines are the performances
that MPC with the equivalent hyperparameters achieves if executed at test time
given the ground truth dynamics. 118

A.2 Box plots showing sample complexity figures across the 5 random seeds run. Each
of these show for a given training run how many samples were needed to achieve
the performance of an MPC controller given ground truth dynamics averaged across
test episodes. We imputed the maximum number of samples for agents that failed to
ever solve the problem on a given run. 125

xvii

B.1 A depiction of the MDP distribution used in the construction for the proof of Theorem 1.
Edges with both numbers on them mean both actions lead along that edge and the edges
with question marks after state 4 mean that it’s not clear which action (out of 1 or 2) leads
to which state. 129

C.1 Progress of AE-Borda across 50, 150, and 600 datapoints. From the top downwards,
the charts show the ground truth function, the mean of the posterior estimate of fr,
the uncertainty function, the estimate of the value function as well as the acquisition
function given in (5.3), and the regret over time. 143

C.2 The prompt used to collect plausible wrong answers for Jeopardy! questions. . . . 144
C.3 The default prompt for pairwise comparison. 145
C.4 The default prompt for evaluating single Jeopardy! answer. 145
C.5 Rate of correct answers for Jeopardy! over time. 146
C.6 Density of σ(a | x) conditioned on correct, incorrect, and null values for a. The left

hand plot depicts the variance distributions conditional on the model outputing a
non-null completion, while the right hand is conditional on a null completion. . . . 148

xviii

List of Tables

2.1 Sample Complexity: Median number of samples across 5 seeds required to reach
‘solved’ performance, averaged across 5 trials. We determine ‘solved’ performance
by running an MPC policy (similar to the one used for evaluation) on the ground
truth dynamics to predict actions. We record ‘N/A’ when the median run is unable
to solve the problem by the end of training. 17

2.2 Sample Complexity: Median number of samples across five seeds required to reach ‘solved’
performance, averaged across five trials. We determine ‘solved’ performance by running an
MPC policy (similar to the one used for evaluation) on the ground truth dynamics to predict
actions. We record > n when the median run is unable to solve the problem by the end
of training after collecting n datapoints. The methods in the rightmost section operate in
the TQRL setting and therefore have more flexible access to the MDP dynamics for data
collection. The full set of methods are shown in Section A.8 as well as boxplots depicting
the data in Figure A.2. 24

2.3 Open Loop Sample Complexity: Median number of samples required to reach ‘solved’
performance, averaged across five trials. We determine ‘solved’ performance by running
an MPC policy on the ground truth dynamics to predict actions. We record > n when the
median run is unable to solve the problem by the end of training after collecting n datapoints. 26

4.1 Average Return ± standard error of executing the identified best policy on the MDP
starting from p0 over 5 seeds after collecting 1000 timesteps of data through the use
of a generative model (left of line) or episodes starting from p0 (right of line). . . . 47

4.2 Average Return ± standard error of executing the identified best policy on the
MDP starting from p′0 over 5 seeds after collecting 1000 timesteps of data through
the use of a generative model (left) and online RL methods (right). For online
methods, numbers without parentheses refer to training from episodes starting from
p0, whereas numbers in parentheses use the uniform distribution on the state space
as initial states during training. 47

7.1 Sample Complexity Results as discussed in Section 7.4.1. Here, the values are
normalized by the smallest reported value for comparison purposes. 72

7.2 The performance of our comparison models on the nuclear fusion problem, as
discussed in Section 7.4.2. We again normalize by the smallest value for ease of
comparison. 73

7.3 Modeling and Control on the EvilCartpole system. 74

9.1 Data acquisition functions and the corresponding uncertainty estimates required. . . 93

xix

9.2 Statistical Tests of Rampdown performance. We used the Mann-Whitney U-test
on the disruption currents and costs observed in our experiments to compute the p
values shown here. We report the modified Cohen’s d for effect sizes. 96

A.1 BARL hyperparameters used for each control problem. 115
A.2 Runtime in seconds for the phases of the BARL algorithm on all problems when

run on the author’s 24-core CPU machines. The ranges given show the runtime for
the operation at the beginning and at the end of training, as some operations run
longer as more data is added. 117

A.3 Hyperparameters used for optimization in MPC procedure for control problems. . . 117
A.4 Runtime in seconds for the phases of the TIP algorithm on all problems when run

on the authors’ CPU machines. The ranges given show the runtime for the operation
at the beginning and at the end of training, as some operations run longer as more
data is added. 120

A.5 Hyperparameters used for optimization in MPC procedure for closed-loop control
problems. 121

A.6 Hyperparameters used for optimization in MPC procedure for open-loop control
problems. 121

A.7 Sample Complexity Comparison of All Methods: Median number of samples across
5 seeds required to reach ‘solved’ performance, averaged across 5 trials. We determine
‘solved’ performance by running an MPC policy (similar to the one used for evaluation) on
the ground truth dynamics to predict actions. We record > n when the median run is unable
to solve the problem by the end of training after collecting n datapoints. The methods in the
rightmost section operate in the TQRL setting and therefore have more flexible access to
the MDP dynamics for data collection. 124

B.1 State and action dimensions of environments used for continuous experiments. . . . 130

C.1 Average Return ± standard error of executing the identified best policy on the
MDP starting from p′0 over 5 seeds after collecting 1000 timesteps of data using the
method with varying values of the exploration parameter β. 138

C.2 Comparison of RKHS norms of reward functions and associated Borda functions . 142
C.3 Runtimes (min | max) for each experiment rounded to nearest hour. Several exper-

iments require a significant amount of compute time to complete. Runtimes vary
depending on current loads on compute clusters. 146

xx

1 | Introduction

Since AlexNet [Krizhevsky et al., 2012] won the ImageNet competition [Russakovsky et al., 2014]
in 2012, machine learning has been in a state of near-constant acceleration. The numbers of papers,
dollars, startups, students, FLOPs, parameters, and datapoints have all been growing in a rapid and
accelerating manner. At the start of this wave, progress was driven by a belief “that general methods
that leverage computation are ultimately the most effective” [Sutton, 2019] and is now driven by a
sharper understanding that there are strong empirical relationships between scale and performance in
model training [Kaplan et al., 2020, Hoffmann et al., 2022]. We have seen the fruits of these efforts
in computer vision [He et al., 2016], natural language processing [Brown et al., 2020a, OpenAI,
2023], and image generation [Esser et al., 2021, Ramesh et al., 2022], where progress could scarcely
have been imaginable even a decade ago. Though the community of researchers and practitioners
is rightly energized by the benefits of scale, we inevitably desire to apply machine learning in
situations where collecting large amounts of data is infeasible. These situations arise in a variety of
contexts: data can be expensive to produce, arrive one-at-a-time, or be privacy-sensitive, requiring
constraints on data collection and storage. In these cases, one ought to be more thoughtful about the
methods used to collect data, train models, and make decisions downstream of those models.

This is further complicated in problems that involve decision making or control. Here, data
would ideally be collected online by a policy determined by the learning agent so that any errors
in the agent’s understanding of the problem could be corrected by experience. In reinforcement
learning (RL), we have seen greatest success in applications where samples are cheap, such as games
like Go or Atari [Silver et al., 2017, Mnih et al., 2015] or the Mujoco suite of tasks [Todorov et al.,
2012]. For these as well as real-world applications of RL such as ad targeting [Zhao et al., 2018]
where large numbers of samples are available, bandit (the single-step special case) and RL algorithms
are able to effectively improve decision making at scale. There have been few applications of RL
in domains where samples are expensive. Recently, reinforcement learning from human feedback
(RLHF) [Christiano et al., 2017] has been applied at substantial labeling expense to align large
language models (LLMs) to human preferences.

Reinforcement learning deals with fully- or partially-observable Markov decision processes
(MDPs), which are sequential decision making problems where the aim is to find a policy which
maximizes long-term rewards attained on a system with stationary dynamics. There are a wide
variety of real-world problems where strong learned control policies could be more effective than
existing algorithms or human processes. In robotics, RL has been demonstrated in the real world
at tremendous expense. The authors of Levine et al. [2018] were able to successfully learn a
visual grasping policy in the real world using over 800,000 grasp attempts using ∼10 robots at a
time over the course of two months of training. This cost is improving over time as pretraining
using foundation models [Bommasani et al., 2021] allows policies to start from a base of general
knowledge prior to the decision making problem at hand. Notwithstanding this, for many potential

1

applications of robotics, the high cost of data collection precludes the use of RL. Another application
of note for reinforcement learning is in autonomous vehicles, where RL could in principle be used
to train a driving policy. Here as with other applications, the cost and danger of allowing many
samples to be collected by an untrained policy precludes the use of RL to solve the core task.

There are also broader potential applications of RL in the control of complex systems beyond
those that are commonly seen as robotics. Potential military applications of reinforcement learning
include automated sensor control, resource allocation, and real-time mission planning [Yang et al.,
2019, Barde et al., 2019]. This will be increasingly important as war continues to incorporate more
technology and produce more data in real time [Brose, 2020]. The model-predictive control of a
wide variety of industrial systems has been commonplace for decades [Camacho and Alba, 2013],
and the use of learning has seen promising initial applications in cooling data centers [Lazic et al.,
2018]. Future developments in these areas could help by improving efficiency, incorporating a wider
range of objectives, or reducing safety risk.

RL is also beginning to be used in areas where feedback comes from humans in varying guises of
cost or personal relationship. The financial markets are an obvious example of this type of feedback.
Problems like automated market making, efficient arbitrage, or even the electricity futures markets
can be formulated as fully or partially observable MDPs where other participants transact or simply
use electricity[Henry and Ernst, 2021]. Perhaps the highest-profile application of this type is the use
of reinforcement learning to fine-tune large language models in order to accomplish a downstream
task [Ouyang et al., 2022, Christiano et al., 2017] like summarization or question answering. RL
can even be used to optimize educational strategies for optimal (human) learning [Bassen et al.,
2020]. As with many of the tasks involving physical systems, applications involving feedback from
humans also suffer from the large online sample collection requirements of reinforcement learning.

The work presented in this thesis has been broadly motivated by the specific goal of applying
learning-based decision making to plasma control for nuclear fusion. Fusion power has for decades
been a grand challenge of science and engineering [Barbarino, 2020]. Though humanity has been
attempting to build fusion reactors since the 1950s, we have yet to build one that produces more
energy than it consumes for longer than a few nanoseconds [Clery, 2022]. Using a similar mechanism
to the one that powers the sun, a working nuclear fusion reactor would be a highly desirable power
source with an essentially unlimited fuel supply in the ocean and our lithium reserves. In fact,
“the top two inches of Lake Erie contain 1.6 times more energy [for fusion] than all the world’s
oil supplies” [Broad, 1991]. Put in concrete terms, fossil fuel-based energy generation relies on
combustion while fusion exploits the ∼ 107 times more energy available per gram of fuel when
fused.

In order to achieve power production through fusion, deuterium and tritium need to be heated
to temperatures exceeding 100 million degrees Celsius, which is 10 times hotter than the core of
the sun. As no known materials can insulate effectively against these temperatures, the plasma is
suspended in a donut-shaped magnetic field produced by a device called a tokamak. This is an
exciting time in the study of fusion power: the International Thermonuclear Experimental Reactor
(ITER) has been under construction in France since the early 2000s and is nearing completion [Rebut,
1995] and several startups have raised billions in venture capital to test alternate approaches to the
problem. Besides its obvious implications for the future of human energy production, controlled
fusion also serves as a fascinating application area due to several constraints imposed by the unique
characteristics of the problem. These constraints appear in varying combinations in many of the
potential applications of RL described above.

Naively, one would expect the equations for fluid dynamics (Navier-Stokes) and the equations

2

for electromagnetism (Maxwell’s laws) to both apply to plasmas and in fact they do—the mag-
netohydrodynamic equations which govern plasma behavior are derived starting from these two
sources. Numerical solutions to plasma dynamics can be extremely slow, up to hundreds of seconds
of supercomputer time per ms of plasma time and approximations which make the computations
tractable on even long timescales may affect the results of simulation [Fahey and Candy, 2004]. So,
we must assume access only to an imperfect and computationally expensive simulator. Similarly
because of the computationally expensive underlying dynamics, any physical model of composite
quantities like total plasma current or stored energy will necessarily be a gross approximation to the
true solution. There is a substantial amount of logged fusion data from scientific experiments over
the past several years. However, most RL methods and similar require data to be collected during
the learning process, as the agent must be able to receive feedback for its mistakes and successes
in order to effectively learn. Throughout my PhD, I have been working with data taken from the
DIII-D device in San Diego, CA and conducted several experiments on the machine. DIII-D is one
of the world’s most advanced tokamaks and is the leading experimental fusion research facility in
the United States.

There are several high-level strategies that might be used to improve the data efficiency of
automated decision making systems. These include:

• Improved data collection strategies

• Transfer learning from simulators or meta-learning from similar problems

• Offline RL from existing data

• Incorporation of prior knowledge about the world

• Learning from expert demonstrations
In this thesis, we focus on improving data collection strategies in part I and on incorporating prior
knowledge in part II. However, some of our strategies apply to meta-reinforcement learning and to
the alignment of large language models, which touch some of the the other strategies mentioned
here. In part I, I will present several approaches which attempt to ameliorate the problem via a
prospective evaluation of the value of acquiring a particular observation and then choosing to acquire
those with maximal value, including an application of one particular method to the problem of
aligning language models to human preferences. Then, in part II I will present work in which we
leverage prior knowledge about a system in order to reduce the number of datapoints required to
identify and control it. Finally, in part III, I’ll discuss the application that motivated much of the
work in this thesis: plasma control for nuclear fusion. Then, I’ll discuss a successful series of
experiments applying Bayesian Optimization (BO) techniques to the problem of ramping down the
plasma current at the end of a shot. Finally, I’ll discuss the opportunities and challenges I see in
further applications of machine learning to the problems in fusion.

1.1 Preliminaries

In this thesis we deal with discrete- and continuous-time dynamical systems, Markov decision
processes, and contextual bandits and for consistency use common notation throughout. We define
a dynamical system as a subcomponent of a MDP, consisting of a state space S, an action space
A, a stochastic dynamics function T : S × A → ∆(S) that gives a distribution over the next
state ∆(S) = P (S) or the time derivative of the state ∆(S) = ds

dt for some s ∈ S. A Markov
decision process augments a dynamical system with a start state distribution p0, a reward function
r : S ×A → R, and either a time discounting factor γ or a horizon H . Assuming discrete time (as

3

we do in all but part II) and a list of policies π consisting of πt : S → P (A), the dynamics evolve
by first sampling s0 ∼ p0 then alternatively sampling at ∼ πt(st) and st+1 ∼ T (st, at).

The goal of an MDP is to choose actions via some decision making policy that maximize the
(possibly discounted) integral or sum of expected rewards over time. In the finite-horizon discrete
time setting as addressed in Chapter 2, the objective is

JT (π) = Eat∼πt(st),st+1∼T (st,at)

[
H−1∑
i=0

r(st, at, st+1)

]
. (1.1)

In the infinite-horizon discounted setting, the analogous objective is

J(π) = Eat∼πt(st),st+1∼T (st,at)

[∞∑
i=0

γir(st, at, st+1)

]
. (1.2)

Single-step decision making is a special case of the MDP where H = 1. Traditionally the general
single-step decision making problem is called a contextual multi-armed bandit, and when we make
a special assumption of a Gaussian process prior on the reward we call the problem contextual
Bayesian optimization. Out of tradition we call the context space X though it serves the same role
as the state space S . In either case, the objective is to find a policy π : X → A that maximizes

J(π) = Ex∼P (X) [r(x, π(x))] (1.3)

for some distribution over contexts P (X). The non-contextual variants are equivalent to a singleton
set X . This single-step setting also applies to the design of feedforward control trajectories if
we set A to be a sequence of controls and optimize over the entire feedforward sequence as was
demonstrated in Tesch et al. [2013]; we use this setup in chapter 2 and chapter 9. We also often
make RKHS assumptions on the reward, dynamics, or value functions. For a description of RKHS
basics, see Rasmussen and Williams [2008].

Access Models In this work we primarily address two scenarios in which the agent interacts with
the environment in order to collect data that can be used to infer a good policy. The more common
one, which we call online is where the agent is initialized at a state s0 ∼ p0 and for H steps executes
an action at and is presented with the next state st+1 ∼ T (st, at) and reward r(st, at, st+1) in order
to update its estimates. The other setting we cover is the active setting (which has variously been
called RL with a generative model or transition query RL), in which an agent chooses st and at and
recieves s′t ∼ T (st, at) and rt = r(st, at, s

′
t). Here, the difference is that the states can be disjoint

and the agent gets a choice of state.

1.1.1 Model-Predictive Control

Model-Predictive control (MPC) is a core technique used in the automatic control of dynamical
systems and in model-based reinforcement learning [Chua et al., 2018, Wang and Ba, 2020]. Using
an estimated dynamics model T̂ : S × A → S and an optimization algorithm, an MPC strategy
with a planning horizon h ∈ N choosing an action at a state s0 solves the planning problem

max
a0,...,ah∈A

Est+1∼T (st,at)

[
h∑

i=0

r(st, at, st+1)

]
. (1.4)

4

Planning is typically redone periodically, often every timestep, as actions are executed in the
real environment. The cross-entropy method (CEM) is often used to solve this optimization problem.
In these works, we often use an improved variant of CEM described in Pinneri et al. [2020]. We
will refer to πT as the stochastic policy obtained by running MPC over a dynamics function T .
In section 2.4.2, we give a Bayesian formulation of MPC which accounts for uncertainty in the
dynamics.

1.1.2 Value Functions and Model-Free RL

For a policy πt, t ∈ [H], s ∈ S, and a ∈ A, the value function V π
h : S → R and the Q-function

Qπ
h : S ×A → R are given by:

V π
h (s) = Eat∼πt(st),st+1∼T (st,at)

[H∑
t=h

r(st, at) | sh = s
]

(1.5)

Qπ
h(s, a) = Eat∼πt(st),st+1∼T (st,at)

[H∑
t=h

r(st, at) | sh = s, ah = a
]

(1.6)

Here, the hth value function denotes the return a policy might accumulate from the hth action onward.
We use π∗ to denote the optimal policy, and we abbreviate V π∗

h , Qπ∗
h as V ∗

h , Q
∗
h, respectively. We

also have V ∗
h (s) = supπ V

π
h (s) for all s ∈ S and h ∈ [H]. In cases where the state and action

spaces are finite, this is efficiently solvable using dynamic programming.

Bellman Operator The Bellman optimality equation [Bellman, 1966] plays a fundamental role in
defining the optimal policy in MDPs. In terms of the value function V ∗(s), the Bellman equation
for a discounted infinite-horizon MDP is

V ∗(s) = max
a∈A

Es′∼T (s,a)[r(s, a, s
′) + γV ∗(s′)], (1.7)

where γ is the discount factor, and the expectation is over s′.
The Bellman operator T , corresponding to this equation, operates on a value function V and is

defined as
(T V)(s) = max

a∈A
Es′∼T (s,a)[r(s, a, s

′) + γV (s′)]. (1.8)

Fixed points of this operator correspond to the optimal value function, i.e., V ∗ = T V ∗.

Policy Iteration Policy iteration [Sutton and Barto, 1998] is a classic algorithm for finding the
optimal policy in infinite horizon discrete-time MDPs. The algorithm alternates between policy
evaluation and policy improvement steps.

Given a policy π, policy evaluation computes the value function V π(s) for all states s ∈ S . The
value function satisfies the Bellman expectation equation:

V π(s) = Ea∼π,s′∼T (s,a)

[
r(s, a, s′) + γV π(s′)

]
, (1.9)

and can be computed iteratively until convergence.
Once the value function for a policy π has been computed, the policy can be improved by acting

greedily with respect to V π. Specifically, a new policy π′ is generated as follows:

π′(s) = argmaxa∈A Es′∼T (s,a)

[
r(s, a, s′) + γV π(s′)

]
. (1.10)

By alternating the policy evaluation and policy improvement steps we are guaranteed to find a
fixed point, which corresponds to V ∗.

5

1.1.3 Actor-Critic Methods

Actor-Critic algorithms consist of two main components: an actor that selects actions and a critic
that estimates the value function of those actions. The actor and critic are typically parameterized
by θ and ϕ, respectively. These methods often use neural networks as the parameterized function
approximators and therefore scale best out of the methods describe here.

Soft Actor-Critic (SAC) SAC [Haarnoja et al., 2018] aims to maximize the expected return while
also encouraging sufficient exploration, through the use of a maximum entropy framework. The
policy is usually stochastic, parameterized by θ, and aims to solve

max
θ

Eat∼πθ(st),st+1∼T (st,at)

[∞∑
i=0

γi(r(si, ai, si+1) + αH(π(·|si)))
]
, (1.11)

where α is a temperature parameter and H is the entropy.

Proximal Policy Optimization (PPO) PPO [Schulman et al., 2017] is another policy optimization
algorithm that aims to make the largest update possible to the policy in the direction of local
improvement without diverging too much from the policy that collected the data used to determine
that direction. The core idea is to apply an estimator of the policy gradient subject to a KL constraint
that ensures the new policy is not too different from the old policy:

max
θ

Eat∼πθ(st),st+1∼T (st,at)

[
πθ(a|s)
πref(a|s)

(Qπ
ref(s, a)− V π

ref(s, a))

]
, (1.12)

subject to ∣∣Eat∼πθ(st),st+1∼T (st,at) [πθ(a|s)/πref(a|s)− 1]
∣∣ ≤ ϵ, (1.13)

where πref is the old policy and ϵ is a hyperparameter.

6

Part I

Sample Efficient Decision Making
through Better Choice of Data

7

As discussed in the introduction, RL has suffered for years from a curse of poor sample complexity.
State-of-the-art model-free RL algorithms routinely take tens of thousands of sampled transitions
to solve very simple tasks and millions to solve moderately complex ones [Haarnoja et al., 2018,
Lillicrap et al., 2015]. The current best model-based reinforcement learning (MBRL) algorithms are
better, requiring thousands of samples for simple problems and hundreds of thousands of samples
for harder ones [Chua et al., 2018]. In settings like plasma control where each sample is expensive,
even this smaller cost can be prohibitive for the practical application of RL.

In general if the sample budget is limited and the learning mechanisms are fixed, one obvious
method by which to improve downstream policy performance is to be sure to collect the most useful
data in order to learn a good policy, or in other words, better exploration. There are a handful of
general strategies that are used in Bayesian optimization [Frazier, 2018, Shahriari et al., 2015] for
these purposes and have been well studied in that context. These include:

• Thompson sampling [Russo et al., 2018], where actions are played which optimize a posterior
sample of the model.

• information-based methods such as those proposed in Hennig and Schuler [2012] and
Hernández-Lobato et al. [2014], where actions are played which maximally gather information
about the optimum.

• upper-confidence bound based methods [Srinivas et al., 2009], where actions are selected
optimistically in order to rule out uncertain but promising areas.

• knowledge gradient [Frazier et al., 2008], which takes actions which are expected to lead to a
better eventual policy.

More generally, Bayesian optimal experimental design (BOED) aims to choose data to collect which
are maximally informative about the value of some derived quantity [Chaloner and Verdinelli, 1995].
We aim to leverage these ideas for data-efficiency in reinforcement learning.

One theme of this thesis is that by generalizing some of these ideas from the single-step
BO setting to the MDP setting, we can make better use of samples in reinforcement learning
problems. Along the way, we also contribute to the literature on contextual Bayesian optimization.
In this chapter, we present work that extends the information-based, confidence-bound-based, and
knowledge-gradient-based methods to the reinforcement learning setting. Each of these is suitable
to different types of problems and performs well under different assumptions. In chapter 2, we
present work from Mehta et al. [2022c] and Mehta et al. [2022a], where we develop an acquisition
function for model-based reinforcement learning that encourages information gain about the optimal
trajectory. Next, in chapter 3, we explore the relationship between the decision-theoretic H-
entropy and the Bayes-adaptive MDP. By maximizing this generalized information, we develop an
exploration strategy that we extend to the metalearning of policies for continuous control problems.

9

Finally, in Chapters 4 and 5, we present work from Li et al. [2023] and currently under submission,
where we develop a method that guarantees efficient near-optimal policy identification. Finally, we
extend that method to the case of comparative feedback, and apply the resulting method to 3 datasets
of human preferences in order to train and evaluate their alignment to the associated goals.

1.2 Prior Work on Sample-Efficient RL

Exploration in Reinforcement Learning The most common strategy for exploration in RL is to
execute a greedy policy with some form of added stochasticity. The simplest approach, ϵ-greedy
exploration as used in Mnih et al. [2013], takes the current action thought to be best with probability
1− ϵ and a random action with probability ϵ. Other methods use added Ornstein-Uhlenbeck action
noise [Lillicrap et al., 2015] to the greedy policy, or entropy bonuses [Haarnoja et al., 2018] to the
policy or value function objectives to add noise to a policy which is otherwise optimizing the RL
objective.

Tabular RL is often solved by choosing actions based on upper confidence bounds on the value
function [Chen et al., 2017b, Lee et al., 2021], but explicitly computing and optimizing these
bounds in the continuous setting is substantially more challenging. Recent work [Curi et al., 2020]
approximates this method by computing one-step confidence bounds on the dynamics and training
a ‘hallucinated’ policy which chooses perturbations within these bound to maximize expected
policy performance. Another recent work [Ash et al., 2022] uses anti-concentration inequalities to
approximate upper confidence bounds in MDPs with discrete actions.

Thompson sampling (TS) [Russo et al., 2018], which samples a realization of the MDP from the
posterior and acts optimally as if the realization was the true model, can be applied for exploration
in a model-free manner as in [Osband et al., 2016a] or in a model-based manner as in Strens [2000].
As the posterior over MDP dynamics or value functions can be high-dimensional and difficult to
represent, the performance of TS can be hindered by approximation errors using both Gaussian
processes and ensembles of neural networks. Curi et al. [2020] recently investigated this and found
that this was potentially due to an insufficiently expressive posterior over entire transition functions,
implying that it may be quite difficult to solve tasks using sampled models. Similarly, the posterior
over action-value functions in Osband et al. [2016a] is only roughly approximated by training a
bootstrapped ensemble of neural networks.

There is also a rich literature of Bayesian methods for exploration, which are typically computa-
tionally expensive and hard to use, though they have attractive theoretical properties. These methods
build upon the fundamental idea of the Bayes-adaptive MDP [Ross et al., 2007], which we detail in
section 3.3. Kolter and Ng [2009], Guez et al. [2012] show that even approximating these techniques
in the sequential setting can result in substantial theoretical reductions in sample complexity com-
pared to frequentist PAC-MDP bounds as in Kakade [2003]. Other methods stemming from Dearden
et al. [1998, 1999] address this by using the myopic value of perfect information as a heuristic for
similar Bayesian exploration. However, these methods don’t scale to continuous problems and don’t
provide a way to choose states to query. These methods were further extended with the development
of knowledge gradient policies [Ryzhov et al., 2019, Ryzhov and Powell, 2011], which approximate
the value function of the Bayes-adaptive MDP, and information-directed sampling (IDS) [Russo
and Van Roy, 2014], which takes actions based on minimizing the ratio between squared regret and
information gain over dynamics. This was extended to continuous-state finite-action settings in
Nikolov et al. [2019]. However, this work doesn’t yet solve fully continuous problems and computes
the information gain with respect to the dynamics rather than some notion of the optimal policy. In a

10

similar spirit, Arumugam and Van Roy [2021] provide a further generalization of IDS which can also
be applied to RL. One recent work very close to ours is Lindner et al. [2021], which actively queries
an expensive reward function (instead of dynamics as in this work) to learn a Bayesian model of
reward. Another very relevant recent paper [Ball et al., 2020] gives an acquisition strategy in policy
space that iteratively trains a data-collection policy in the model that trades off exploration against
exploitation using methods from active learning. Achterhold and Stueckler [2021] use techniques
from BOED to efficiently calibrate a Neural Process representation of a distribution of dynamics to
a particular instance, but this calibration doesn’t include information about the task. A tutorial on
Bayesian RL methods can be found in Ghavamzadeh et al. [2016] for further reference.

Separate from the techniques used in RL for a particular task, several methods tackle the problem
of unsupervised exploration [Schmidhuber, 1991], where the goal is to learn as much as possible
about the transition model without a task or reward function. One approach synthesizes a reward
from modeling errors [Pathak et al., 2017]. Another estimates learning progress by estimating model
accuracy [Lopes et al., 2012]. Others use an information gain-motivated formulation of model
disagreement [Pathak et al., 2019, Shyam et al., 2019] as a reward. Other methods incentivize the
policy to explore regions it hasn’t been before using hash-based counts [Tang et al., 2017], predictions
mimicking a randomly initialized network [Burda et al., 2019], a density estimate [Bellemare et al.,
2016], or predictive entropy [Buisson-Fenet et al., 2020]. Another work, Plan2Explore [Sekar et al.,
2020], prospectively plans to find areas of novelty where the dynamics are uncertain. However,
these methods all assume that there is no reward function and are inefficient for the setting of this
paper, as they spend time exploring areas of state space which can be quickly determined to be bad
for maximizing reward on a task.

11

12

2 | Information theoretic approaches:
Can we measure what we might learn?

Motivated by our opening questions, in this chapter we present work published in Mehta et al.
[2022c] and Mehta et al. [2022a] which presents and evaluates a novel objective for information-
based exploration in model-based reinforcement learning. We begin in the active setting where the
agent collects data by sequentially making queries to the transition function with free choice of both
the initial state and the action. Although this setting has been studied in the tabular case, to the best
of our knowledge it had not been studied in the continuous MDP literature.

The costly transition functions present in many applications we have discussed prompted
the question: “If we were to collect one additional datapoint from anywhere in the state-action
space to best improve our solution to the task, which one would it be?” An answer to this
question can be used to guide data collection in RL. As initial work in this direction [Mehta et al.,
2022c], we drew a connection between MBRL and the world of BOED by deriving an acquisition
function that quantifies how much information a state-action pair would provide about the optimal
solution to a MDP. Our acquisition function is able to determine which state-action pairs are worth
acquiring in a way which takes into account the reward function and the uncertainty in the dynamics.
It also leverages the current estimates of which states the optimal policy will visit and values
potential queries accordingly. Furthermore, our acquisition function is scalable enough to apply to
multidimensional continuous control problems. In particular, our acquisition function is the expected
information gain (EIG) about the trajectory taken by an optimal policy in the MDP that would be
achieved if we were to query the transition function at a given state-action pair. We assessed the
performance of our acquisition function as a data selection strategy in the active setting. Using
this method, which we call Bayesian active reinforcement learning (BARL), we are able to solve
several continuous reinforcement learning tasks (including a nuclear fusion example) using orders
of magnitude less data than a variety of competitor methods.

After this, we extend the data selection criterion to the standard MDP setting, where we are
able to use MPC with a modified cost function in order to explicitly plan for future information
gain about the optimal trajectory. In order to do so, we extend the cost function to jointly account
for the information gain of observing a set of random variables rather than a single observation.
This method, which we denote Trajectory Information Planning (TIP), also is able to improve in
sample complexity over a wide range of model-based and model-free RL methods on a handful of
continuous control problems up to a moderate number of dimensions.

13

2.1 An Acquisition Function for Model-Based RL

We draw inspiration from BO and BOED in constructing an acquisition function suitable for control
applications. For our purposes, an acquisition function is a computationally tractable function
S × A → R that describes the marginal improvement in the performance of the policy on the
MDP (conditioned on all previously observed data) when observing one additional state-action
pair (s, a) ∈ S × A. As acquisition functions are greedy, they aren’t necessarily optimal data-
selection strategies given a fixed budget, compared to non-myopic strategies such as solving the
Bayes-adaptive MDP. However, greedy strategies using mutual information are tractable and are
often effective due to the submodularity of the expected information gain. More specifically, our
acquisition function is an expected information gain (EIG) or equivalently the mutual information
(MI) between a query of our transition model and a representation of the optimal policy, as we
elaborate in this section.

A typical approach in a Bayesian setting might be to gather data such that the entropy H[π∗] of
the belief of the optimal policy π∗ is minimized. However, a full specification of π∗ includes the
behavior of the policy in all parts of the state space including states that are not visited at all, or
visited less often in rollouts of π∗ when the start state is sampled from p0. As a result, not all points
in the state space are equally important when learning an optimal policy aimed at maximizing the
expected reward. Optimizing the entropy of π∗ would lead to a uniform treatment of all the points
in the state space, and hence would be far from optimal for the standard goal in RL.

We instead propose to minimize the entropy of the optimal trajectory τ∗ = {si}Hi=1 defined as
a random vector of states generated by first sampling s0 ∼ p0 then sampling ai = π∗(si), si+1 ∼
T (si, ai) for H timesteps. The optimal trajectory is completely specified by π∗ and the randomness
arising from the MDP. Furthermore, τ∗ contains the necessary information needed about the
transition function T to solve the MDP, since any state that could ever be visited by π∗ is in the
support of τ∗. We empirically observe that this leads to an efficient strategy for active RL.

The randomness in τ∗ arises from three sources: the start state distribution p0, the dynamics T
constituting the aleatoric uncertainty, and the uncertainty in our estimate of the model T due to our
limited experience which constitutes the epistemic uncertainty. The first two sources of uncertainty
being aleatoric in nature cannot be reduced by experience. Our proposed acquisition function based
on information gain naturally leads to reduction in the epistemic uncertainty about τ∗ as desired.
Finally, our acquisition function for a given state-action pair (s, a) is given as

EIGτ∗(s, a) = Es′∼T (s,a|D)

[
H[τ∗ | D]−H[τ∗ | D ∪ {(s, a, s′)}]

]
= Es0∼p0

[
Es′∼T (s,a|D)

[
H[τ∗ | D, s0]−H

[
τ∗ | D ∪ {(s, a, s′)}, s0

]]]
.

(2.1)

Here we assume a posterior model of the dynamics T (s, a | D) for a dataset D we have observed.
The second equality is true because s0 ⊥ s′ | s, a. In this paper, we assume the MPC policy using
the ground truth transition function is approximately optimal, i.e. πT ≈ π∗, though in principle π∗

could be approximated using any method. Of course, our method never actually has access to πT or
π∗.

2.1.1 Estimating EIGτ∗ via Posterior Function Sampling

For EIGτ∗ to be of practical benefit, we must be able to tractably approximate it. Here we show
how to obtain such an approximation. By the symmetry of MI, we can rewrite Equation (2.1) as

EIGτ∗(s, a) = Es0∼p0

[
Eτ∗∼P (τ∗|D)

[
H[s′ | s, a,D, s0]−H[s′ | s, a, τ∗, D, s0]

]]
. (2.2)

14

Agent

Draw samples from
posterior of

Run RL on samples

Maximize EIG

Environment

Query

Observe

(a)
−20 −10 0 10 20

x

−20

−15

−10

−5

0

5

10

15

20

y

(b)

Figure 2.1: (a) A diagram of the BARL data-collection loop. (b) An illustration of the EIGτ∗

computation over several sample paths τ∗i (multi-colors) sampled from P (τ∗ | D) for a dataset of
past queries (grey points). The optimizer (in pink) is a point that is maximally informative when
learning a model for crossing the path between the lava pools (orange rectangles) to the goal (green).

Since H[s′ | s, a,D, s0] = H[s′ | s, a,D] doesn’t depend on τ∗ or s0, we can simply compute it
as the entropy of the posterior predictive distribution P (s′ | s, a,D) given by our posterior over
the transition function P (T | D). In order to compute the other term, we must take samples
τ∗ij ∼ P (τ∗ | D) . To do this, we first sample m start states si0 from p0 (we always set m = 1 in
experiments but derive the procedure in general) and for each start state independently sample n
posterior functions T ′

ij ∼ P (T ′ | D) from our posterior over dynamics models. We then run the
MPC procedure on each of the posterior functions from si0 using T ′

ij for T and πT ′
ij

for π∗ (using our
assumption that π∗ ≈ πT), giving our sampled τ∗ij . This is an expression of the generative process
for τ∗ as described in the previous section that accounts for the uncertainty in T . Formally, we can
approximate EIGτ∗ via Monte-Carlo as

EIGτ∗(s, a) ≈ H[s′ | s, a,D]− 1

mn

∑
i∈[m]

∑
j∈[n]

H[s′|s, a, τ∗ij , D]. (2.3)

Finally, we must calculate the entropy H[s′|s, a, τ∗i , D]. For this, we follow a similar strategy as
Neiswanger et al. [2021]. In particular, since τ∗i is a set of states output from the transition model,
we can treat them as additional noiseless datapoints for our dynamics model and condition on them.
In the following section we describe our instantiation of this EIG estimate, and how we can use
it in reinforcement learning procedures. Though inspired by the work cited here, we modify the
computation of the acquisition function to factor p0 as an irreducible source of uncertainty. We also
extend the function being queried to be vector-valued.

2.1.2 Bayesian Active Reinforcement Learning

In this work, we take a simple approach for nonlinear control in continuous spaces and assume
a Gaussian process (GP) prior P (T) to model the dynamics. Though computationally expensive,
this choice ensures that we can easily approximate all necessary quantities. However, we note that
the development of the acquisition function is general and any Bayesian model could be used in
principle.

15

The transition function T : S × A → p(S) (dynamics) can be modeled with a GP due to its
non-parametric nature and ability to capture uncertainties in T . The transition function takes a state
action pair (s, a) ∈ Rd+n as input, and produces a d-dimensional output denoting the next state. We
model each of the d dimensions of the output as independent GPs. More specifically, we model the
change in state ∆(s, a) = T (s, a) − s rather than the final state T (s, a) directly. This is helpful
for continuous control problems since the state often changes by only a small magnitude. Given
observations D = {(si, ai, s′i)}, our approach requires a posterior sample of the transition function
conditioned on D. We follow the approach of Wilson et al. [2020], based on sparse-GPs and random
Fourier approximations of kernels [Rahimi and Recht, 2007], allowing us to approximately but
efficiently sample from the GP posterior conditioned on the observations.

Assuming access to a generative model and an initial dataset D (for which, in practice, we use
one randomly sampled datapoint (s, a, s′)), we compute EIGτ∗ for D by running MPC on posterior
function samples and approximate argmaxs∈S,a∈A EIGτ∗(s, a) by zeroth order approximation.
Then we query s′ ∼ T (s, a) and add the subsequent triple to the dataset D and repeat the process.
To evaluate, we simply perform the MPC procedure in Equation (1.4) and execute πE[T |D] on the
real environment. We refer to this procedure as Bayesian active reinforcement learning (BARL).
Details are given in Algorithm 1 (here, U denotes the uniform distribution) and a schematic diagram
in Figure 2.1a. We discuss details of training hyperparameters and the GP model in Appendix A.2.

Algorithm 1 Bayesian active reinforcement learning (BARL) using EIGτ∗

Inputs: transition function query budget b, number of points for optimization k, number of
posterior function samples n.
Initialize (x0, y0) ∼ U(S ×A), x′0 ∼ T (x0, y0), and D ← {(x0, y0, x′0)}.
for i ∈ [b] do

Sample posterior functions {T ′
ℓ}nℓ=1 ∼ P (T ′ | D).

Sample start state s0 ∼ p0.
Compute {τ∗ℓ}nℓ=1 by executing MPC policy πT ′

ℓ
on the dynamics of T ′

ℓ starting from s0.
(x1, y1), . . . , (xk, yk) ∼ U(S ×A).
(x∗, y∗)← argmax{(xi,yi)}ki=1

EIGτ∗(xi, yi).
D ← D ∪ {(x∗, y∗, x′∗)} where x′∗ ∼ T (x∗, y∗).

end for
return πT̂ where T̂ (s, a) = ET∼P (T |D) [T (s, a)]

2.2 Experiments for BARL

The aim of our study of acquisition functions for RL is to reduce the sample complexity of
learning good policies in continuous spaces, under expensive dynamics. Here, we demonstrate
the effectiveness of using EIGτ∗ to leverage transition queries by comparing against a variety of
state-of-the-art RL algorithms. In particular, we compare the average return across five evaluation
episodes across five runs with differing random seeds of each algorithm on five continuous control
problems as data is collected. We also assess the amount of data taken by each algorithm to ‘solve’
the problem, which is taken to mean performing as well as our MPC procedure using the ground
truth dynamics. Our proposed method, BARL, greatly outperforms other methods across the board.
In particular, BARL uses 5 – 1, 000× less data to solve problems than state-of-the-art model-based
RL algorithms and 103 – 105× less data than model-free RL algorithms. In this section we primarily

16

Environment BARL MPC EIGT PETS SAC TD3 PPO

Lava Path 11 41 41 600 N/A N/A N/A
Pendulum 16 46 46 5200 6000 57000 13000
Cartpole 91 161 121 1625 31000 18000 N/A
Beta Tracking 96 36 N/A 300 9000 6000 16000
Reacher 251 751 N/A 700 23000 13000 N/A

Table 2.1: Sample Complexity: Median number of samples across 5 seeds required to reach ‘solved’
performance, averaged across 5 trials. We determine ‘solved’ performance by running an MPC
policy (similar to the one used for evaluation) on the ground truth dynamics to predict actions. We
record ‘N/A’ when the median run is unable to solve the problem by the end of training.

focus on the performance of the controller, and in section A.2.3 we also discuss the runtime of the
algorithm. We discuss comparison methods in section A.2.1 and the control problems we evaluated
them on in section A.2.2.

We see in both the sample complexity figures in Table 2.1 and the learning curves in Figure 2.2
that BARL leverages EIGτ∗ to significantly reduce the data requirements of learning controllers on
the problems presented. We’d like to additionally point out several failure cases of related algorithms
that BARL avoids. Though it performs well on the simplest environments (pendulum and cartpole),
EIGT suffers from an inability to focus on acquiring data relevant to the control problem and not
just learning dynamics as the state space becomes higher-dimensional in the reacher problem, or
less smooth as in the beta tracking problem. The MPC method performs reasonably well across the
board and is competitive with BARL on the plasma problem but requires relatively more samples
in smaller environments where the model uncertainty can point to meaningfully underexplored
areas. PETS is strong across the board but suffers from more required samples due to both its neural
network dynamics model and its inability to make transition queries.

All algorithms besides BARL suffer substantial instability on the lava path problem, which is
designed to be challenging to explore in a sequential fashion and require a precise understanding
of which areas are safe to enter. BARL manages to learn where it is safe to operate in a handful
of queries, which is an exciting result and will bear further investigation. Figure 2.1b gives some
intuition as to why: points are initially queried close to the start and as those dynamics are understood
they are subsequently queried farther and farther along the execution paths. This allows BARL to
use transition queries to avoid traversing well-understood areas of state space to reach the areas
which are worth learning. We see a speedup in sample complexity reminiscent of a move from
quadratic to linear, which mirrors some of the theoretical improvements given in the prior work
discussed on tabular methods.

2.3 Does BARL choose ‘meaningful’ datapoints?

We further support our assertion that BARL is picking ‘meaningful’ points to the control problem
by the evidence in Figure 2.3. Here, BARL is able to solve the reacher problem while EIGT is
not. However, BARL has much worse model predictions on random data than EIGT while doing a
much better job modeling data used by the MPC procedure. Clearly, the EIGτ∗ acquisition function
captures in some way which data would be valuable to acquire to not just learn about the transition
function but actually solve the control problem. We see this pattern across other tasks as well.
In section A.3.1, we study whether the acquisition function we see here is able to work with a

17

100 101 102 103 104 105

Environment Steps

−1400

−1200

−1000

−800

−600

−400

−200

0

R
et

u
rn

s

Control Performance on Pendulum

100 101 102 103 104 105 106

Environment Steps

−24

−22

−20

−18

−16

−14

−12

−10

R
et

u
rn

s

Control Performance on Cartpole

100 101 102 103 104 105

Environment Steps

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

R
et

u
rn

s

Control Performance on Reacher

100 101 102 103 104 105 106

Environment Steps

−3000

−2500

−2000

−1500

−1000

−500

0

500

R
et

u
rn

s

Control Performance on Lava Path

100 101 102 103 104 105

Environment Steps

−12

−10

−8

−6

−4

−2

R
et

u
rn

s

Control Performance on Beta Tracking

0 20000 40000 60000 80000 100000

Environment Steps

−1400

−1200

−1000

−800

−600

−400

−200

0

R
et

u
rn

s

Control Performance on Pendulum

BARL

MPC

EIGT

PETS

SAC

TD3

PPO

PILCO

πT

Figure 2.2: Learning Curves of RL methods, showing control performance averaged across 5 seeds.
In each, the x-axis is on a logarithmic scale to account for widely varying data requirements. We
see that though most algorithms end up reaching roughly the same performance on each task, BARL
is substantially more efficient in most cases. The shaded region is the standard error of the average
performance across the 5 seeds. We additionally include a plot of the performance of the PILCO
algorithm [Deisenroth and Rasmussen, 2011] on Pendulum. PILCO makes assumptions about the
initial state distribution and suffers from numerical instability under long control horizon so we
were unable to reach representative performance on the other problems.

suboptimal controller on posterior samples of the dynamics. Our experiments show that EIGτ∗

seems to work well even when the policy used to generate τ∗ is suboptimal.

2.4 Trajectory Information Planning

In this rest of this chapter, we extend the BARL method to the standard RL setting, where an agent
takes sequential actions in the environment up to some max trajectory length in order to collect
data that can be used to learn a policy. Our method consists of a generic framework for Bayesian
(or approximately Bayesian) model-predictive control and a novel cost function for planning that
allows us to explicitly plan to find the maximal amount of new information relevant to our task. In
Section 2.4.2, we describe the MPC framework and highlight that many prior methods approximate
this framework while using a greedy cost function that corresponds to the future negative expected
rewards or a pure exploration cost function that corresponds to future information about the dynamics.
Afterwards, in Section 2.4.3, we derive our new cost function and describe how it is computed. The
overall method we introduce simply applies this planning framework with our new cost function.

2.4.1 Preliminaries for TIP

We will denote trajectories as τ ∼ p(τ | π, T) where τ = [(s0, a0), . . . , (sH−1, aH−1), sH]
generated by s0 ∼ p0, ai ∼ π(si), and si+1 ∼ T (si, ai). We can write the return of a trajectory as
R(τ) =

∑H−1
i=0 r(si, ai, si+1) for the states and actions si, ai that make up τ . The MDP objective

18

0 500 1000 1500

Environment Steps

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

R
et

u
rn

s

BARL

EIGT

πT

0 500 1000 1500

Environment Steps

10−3

10−2

10−1

M
o
d

el
M

S
E

on
C

u
rr

en
t

M
P

C

0 500 1000 1500

Environment Steps

10−1

4× 10−2

6× 10−2

2× 10−1

M
o
d

el
M

S
E

on
R

a
n

d
om

S
et

Control and Modeling Performance on Reacher

Figure 2.3: For a single run of BARL and of EIGT using the same prior model, we evaluate control
performance, as well as modeling error, on both the predictions used by the MPC procedure and on
a set of points uniformly sampled from the state-action space.

can then be written as
JT (π) = Eτ∼p(τ |π,T) [R(τ)] . (2.4)

We aim to maximize this objective while minimizing the number of samples from the ground
truth transition function T that are required to reach good performance. We use τ∗ to denote optimal
trajectories, i.e. τ∗ ∼ p(τ | π∗, T).

For the open-loop setting, we assume a fixed start state s0 and aim to find an action sequence
a0, . . . , aH−1 that maximizes the sum of rewards in an episode. We will slightly abuse notation and
write τ ∼ p(τ | a0:H−1) and JT (a0:H−1) with these actions fixed in place of a reactive policy, and
again use τ∗ to refer to the trajectories generated by an optimal action sequence.

We assume in this work that applying planning algorithms like [Pinneri et al., 2020] to a
dynamics function T will result in a trajectory that approximates τ∗.

2.4.2 Model-Predictive Control in Bayesian Model-Based RL

In this section, we give a formulation of Bayesian planning for control that generalizes ideas from
methods such as PILCO [Deisenroth and Rasmussen, 2011] and PETS [Chua et al., 2018]. This
formulation highlights these methods’ inherently greedy nature and hints at a possible solution. The
objective of Bayesian planning is to find the h-step action sequence that maximizes the expected
future returns under model uncertainty. That is,

argmin
a0,...,ah−1

ET ′∼P (T |D),τe∼P (τ |s0=s,a0:h−1,T ′) [C(τe)] (2.5)

for some cost function C over trajectories and some start state s. If operating in the open-loop
control setting, the agent executes the sequence of actions found without replanning. This procedure
can also be extended to closed-loop control via model-predictive control (MPC), which involves
re-planning (2.5) at every state the agent visits and playing the first action from the optimal sequence.
Concretely, the MPC policy for our Bayesian setting is as follows:

πMPC(s) = argmin
a0

min
a1,...,ah−1

ET ′∼P (T |D),τe∼P (τ |s0=s,a0:h−1,T ′) [C(τe)] (2.6)

Whether we do open-loop control or closed-loop control via MPC, the cost function C, is
integral to how the agent will behave. Prior work has predominantly focused on two types of cost

19

function:

Cg(τ) = −R (τ)︸ ︷︷ ︸
Greedy Exploration

Ce(τ) = −
h∑

i=0

H [T (si, ai) | D]︸ ︷︷ ︸
Task-Agnostic Exploration

(2.7)

Previous works such as Kamthe and Deisenroth [2018] and PETS [Chua et al., 2018] use the greedy
exploration cost function, Cg. This cost function incentivizes trajectories that achieve high rewards
over the next h transitions on average. In works that focus on task-agnostic exploration such as
Sekar et al. [2020] and Shyam et al. [2019], the cost function Ce (or similar) is used to encourage
the agent to find areas of the state space in which the model is maximally uncertain. Note that we
use πg to refer to the greedy policy given by using (2.6) with Cg.

The optimization problem in (2.6) is typically approximately solved in one of three ways:
Deisenroth and Rasmussen [2011] and Curi et al. [2020] directly backpropagate through the
estimated dynamics and reward functions to find policy parameters that would generate good
actions, Janner et al. [2019b] use an actor-critic method trained via rollouts in the model alongside
the data collected to find a policy, and Chua et al. [2018] and Mehta et al. [2022c] use the cross-
entropy method [De Boer et al., 2005] to find action sequences which directly maximize the reward
over the estimated dynamics. In this work, we use a version of the last method given in Pinneri
et al. [2020], denoted iCEM, to directly find action sequences that optimize the cost function being
used. We approximate the expectation by playing the actions on multiple samples from the posterior
P (T | D). Algorithm 2 gives a formal description of the method and Section A.5.5 provides further
details.

Algorithm 2 Bayesian Model-Predictive Control with Cost Function C

Inputs: transition function episode query budget b, number of posterior function samples k,
planning horizon h.
Initialize D ← ∅.
for i ∈ [1, . . . , b] do

Sample start state s0 ∼ p0.
for t ∈ [0, . . . ,H − 1] do

Sample posterior functions {T ′
ℓ}kℓ=1 ∼ P (T ′ | D).

Approximately find argmina0,...,ah−1

∑k
ℓ=1 Eτℓ∼p(τ |T ′

ℓ ,a0,...,ah−1) [C(τℓ)] via iCEM.
Execute action a0 by sampling st+1 ∼ T (st, a0).
Update dataset D ← D ∪ {(st, a0, st+1}.

end for
end for
return πg for the posterior P (T ′ | D).

2.4.3 A Task-Specific Cost Function based on Trajectory Information

In this work, we aim to explore by choosing actions that maximize the conditional expected
information gain (EIG) about the optimal trajectory τ∗. This is the same overall goal as that
of Mehta et al. [2022c], where the EIGτ∗ acquisition function was introduced for this purpose.
However, in this paper we generalize this acquisition function in order to allow for sequential
information collection, and account for the redundant information that could be collected between

20

timesteps. As discussed at length in Osband et al. [2019], it is essential to reason about how an
action taken at the current timestep will affect the possibility of learning something useful in future
timesteps. In other words, exploration must be deep and not greedy. Explicit examples are given
in Osband et al. [2019] where the time to find an ϵ-optimal policy in a tabular MDP is exponential
in the state size unless exploration can be coordinated over large numbers of timesteps rather than
being conducted independently at each action. As the EIGτ∗ acquisition function is only defined
over a single state-action pair and mutual information is submodular, we cannot naively use the
acquisition function as is (or sum it over many datapoints) to choose actions that lead to good
long-term exploration. This is clear in e.g. navigation tasks, where the nearby points visited over
trajectories will provide redundant information about the local environment.

We therefore give a cost function that generalizes EIGτ∗ by taking a set of points to query
and computing the joint expected information gain from observing the set. Our cost function is
non-Markovian in the state space of the MDP, but it is Markovian in the dataset, which represents a
point in the belief space of the agent about the dynamics. Let X = {x : x ⊆ S ×A, |x| <∞} be
the set of finite subsets of the set of all state-action pairs. Our cost function Cτ∗ : X → R is defined
below to be the negative joint expected information gain about the optimal trajectory τ∗ for a subset
X ∈ X . In particular, assuming an existing dataset D, a set of h query points X = {(si, ai)}i∈[h],
and a random set of next states S′ = {s′i ∼ T (si, ai), i ∈ [h]},

Cτ∗(X) = ES′∼p(S′|X,D)

[
H
[
τ∗ | D ∪ S′]]−H [τ∗ | D] . (2.8)

This formulation of Cτ∗ forces our method to handle the redundant information among queries—it is
likely that I(s′1, τ

∗) + I(s′2, τ
∗) > I({s′1, s′2}, τ∗) and our method should avoid this overestimation.

However, as written, this function relies on computing entropies on high-dimensional trajectories
where the form of the joint distribution of the elements is unknown. To tractably estimate this
quantity, we use the fact that Cτ∗(X) = −I(S′, τ∗) = −I(τ∗, S′) for the mutual information I .
This allows us to exchange τ∗ and our set of queries so that τ∗ is giving information about the
posterior predictive distribution of our set. In other words,

Cτ∗(X) = Eτ∗∼p(τ∗|D)

[
H
[
S′ | D ∪ τ∗

]]
−H

[
S′ | D

]
. (2.9)

In order to compute the right-hand term, we must take samples τ∗ij ∼ P (τ∗ | D), i =

1, . . . ,m, j = 1, . . . , n. To do this, we first sample m start states s
(i)
0 from p0 (we always set

m = 1 in experiments but derive the procedure in general) and for each start state independently
sample n posterior functions T ′

ij ∼ P (T ′ | D) from our posterior over dynamics models. We
then run a planning procedure using iCEM [Pinneri et al., 2020] on each of the posterior functions
from s

(i)
0 using T ′

ij for T (using our assumption that planning can generate approximately optimal
trajectories given ground-truth dynamics), giving our sampled τ∗ij . Formally, we can approximate
Cτ∗ via Monte-Carlo as

Cτ∗(X) ≈ 1

mn

∑
i∈[m]

∑
j∈[n]

H[S′|D ∪ τ∗ij]

−H[S′ | D]. (2.10)

Assuming the dynamics are modelled with a Gaussian process, we can compute the joint Gaussian
probability of the next states S′ [Rasmussen and Williams, 2008]. As the entropy of a multivariate
Gaussian depends only on the log-determinant of the covariance, log |Σ|, we can tractably compute
the joint entropy of the model predictions H [S′ | D] and optimize it with a zeroth order optimization

21

algorithm. Finally, we must calculate the entropy H[S′|D ∪ τ∗ij]. For this, we follow a similar
strategy as Neiswanger et al. [2021]: since τ∗i is a set of states given by the transition model, we can
treat them as additional noiseless datapoints for our dynamics model and condition on them before
computing the joint covariance matrix for S′. Given this newly generalized acquisition function, we
can instantiate a method of planning in order to maximize future information gained. We give the
concrete procedure for computing our acquisition function in Algorithm 3, noting that trajectories
τ∗ij do not depend on the query set X and can be cached for various values of X as long as the
dataset D does not change.

Our ultimate procedure, which we name Trajectory Information Planning (TIP), is quite simple:
run model-based RL using MPC as in Algorithm 2, but set the cost function to be Cτ∗(τ) instead of
Cg or Ce, and compute this cost function using Algorithm 3. At test time, we return to planning with
Cg as the cost function and greedily attempt to maximize returns rather than performing exploration.
We can also formulate an open-loop variant of our method, oTIP, which involves planning once and
then executing the entire action sequence.

Algorithm 3 Computation of Cτ∗

Inputs: dataset D = {(sk, ak, s′k)}, query set X , number of start state samples m, number of
posterior function samples n.
Sample m start states {s(i)0 }mi=1 ∼ p0.
for i ∈ [m] do

Sample n posterior functions {T ′
j}nj=1 ∼ P (T ′ | D).

for j ∈ [n] do
Set π∗

j ← πMPC using Cg and a singleton posterior P (T | D) = δ(T ′
j) as in (2.6).

Compute τ∗ij by executing π∗
j on T ′

j starting from s
(i)
0 .

end for
end for
Compute the joint posterior covariance ΣS′ | D across all points in X .
Compute the joint posterior covariances ΣS′

ij | D ∪ τij ∀i ∈ [n], j ∈ [m] across all points in X .
return log |ΣS′ | − 1

nm

∑
i∈[n],j∈[m] log |ΣS′

ij |.

2.4.4 Computational Cost and Implementation Details

Though the TIP algorithm is designed for settings where samples are expensive, it is important to
understand, both theoretically and practically, the computational cost of this method. For ease of
notation, we make the simplifying assumption that the planning algorithm used (in this case, iCEM
from [Pinneri et al., 2020]) evaluates p action sequences consisting of h (the planning horizon)
actions and that our current dataset is of size N . In order to efficiently sample functions from the
posterior over dynamics functions, we use the method from Wilson et al. [2020]. This reduces the
naive complexity of querying these functions from O(N3) to a one-time O(N) cost and then O(1)
for additional queries. As we derive in Section A.5.1, the computational complexity of one TIP
planning iteration is O

(
nm

(
(N +H)3 + ph (N +H)2

))
. The two asymptotically expensive

operations are (1) computing the Cholesky decompositions of the nm kernel matrices for datasets
D ∪ τ∗ij and (2) solving the triangular systems using the cached Cholesky decompositions in order
to compute the covariance matrices ΣS′

ij | D ∪ τ∗ij for each of the p action sequences used by the
planning algorithm.

22

However, our implementation choices mean that in practice these operations are not the most
expensive step. The covariance matrix computations, which are the theoretical bottleneck, are
implemented in JAX [Bradbury et al., 2018], allowing them to be compiled to much faster machine
code and vectorized across large batches of queries. In fact, the most expensive operation in practice
is planning on the sampled transition functions T ′

i to sample optimal trajectories τ∗ij . This is due to
the fact that in practice p is large and we implemented the planner in NumPy [Harris et al., 2020]
so it cannot be compiled together with the Tensorflow [Abadi et al., 2015] code from Wilson et al.
[2020], which is used for predicting which states will be visited for the planner. We give further
information on the implementation in Section A.5.

2.5 Experiments for TIP

Rollout
(Joint)

TQRL

Rollout
(Sum)

Greedy (C
g)

w/ Stochasticity

Task-agnostic (C
e)

Exploration

Task-specific (Cτ*)

Exploration

N/A

MPC,
PETS,
BPTT,
PPO,
SAC,
TD3

EIGT

sDIP

DIP

BARL

sTIP

TIP,
TS,

HUCRL

Figure 2.4: Our comparison methods can be
broken down by the type of cost function used and
how the methods do or do not handle sequential
acquisition of information. As Cg is a sum, it
naturally handles future timesteps jointly. For
the other information quantities, it is possible to
upper-bound information acquired by summing
each separate mutual information, or to compute
them jointly.

The aim of our development of the TIP algorithm
and the Cτ∗ acquisition function for RL is to reduce
the sample complexity of learning effective policies
in continuous MDPs given limited access to expen-
sive dynamics. In this section we demonstrate the
effectiveness of TIP in quickly learning a good pol-
icy by comparing against a variety of state-of-the-art
reinforcement learning algorithms and strong base-
lines (including some that use the TQRL setting from
[Mehta et al., 2022c], which is also known as RL
with a generative model in Kakade [2003] and other
works [Azar et al., 2013, Agarwal et al., 2020]).

In particular, we compare the average return
across five evaluation episodes across five random
seeds of each algorithm on five closed-loop control
problems. For sample complexity we assess the
median amount of data taken by each algorithm to
‘solve’ the problem across five seeds with the thresh-
old performance given by an MPC controller using
the ground truth dynamics. We evaluate the open-
loop variant of our method, oTIP, against three com-
parison methods on three control problems suitable
for open-loop control. In particular, to be suitable
for open-loop control, the problem cannot be dynam-
ically unstable (as Pendulum and Cartpole famously are) and must have a relatively short control
horizon and fixed start state. Here too, we assess the average return as open-loop trials are conducted
as well as the number of timesteps required to achieve ‘solved’ performance.

Comparison Methods We use several model-based and model-free comparison methods in this
work. We compare to several published model-based methods. These include PETS [Chua et al.,
2018], as implemented by Pineda et al. [2021], which uses a probabilistic ensemble of neural
networks and CEM over particle samples to do MPC. We also compare against three model-based
techniques from the HUCRL [Curi et al., 2020] implementation: HUCRL itself, which relies
on hallucinating dynamics perturbations as a way of realizing an upper confidence bound on the
policy, model-based Thompson Sampling (TS), which samples from the posterior over models

23

Environment TIP sTIP DIP MPC PETS SAC FEEF RHC HUCRL TS BARL EIGT

Pendulum 21 36 36 46 5.6k 7k 800 >40k >50k >50k 21 56
Cartpole 131 141 161 201 1.63k 32k >2.5k >5k >6k >6k 111 121
β Tracking 46 76 276 76 330 12k 300 >3k 480 420 186 >1k
β + Rotation 201 >500 >500 >500 400 30k >2k >2k >5k >5k >500 >1k
Reacher 251 >400 >1k 751 700 23k >5k 1.5k 6.6k 4.5k 251 >1.5k

Table 2.2: Sample Complexity: Median number of samples across five seeds required to reach ‘solved’
performance, averaged across five trials. We determine ‘solved’ performance by running an MPC policy
(similar to the one used for evaluation) on the ground truth dynamics to predict actions. We record > n
when the median run is unable to solve the problem by the end of training after collecting n datapoints. The
methods in the rightmost section operate in the TQRL setting and therefore have more flexible access to the
MDP dynamics for data collection. The full set of methods are shown in Section A.8 as well as boxplots
depicting the data in Figure A.2.

and chooses optimal actions for that sample, and a greedy model-based neural network method
relying on backpropagation through time (BPTT). We also compare against the Free Energy of
the Expected Future method from Tschantz et al. [2020], which treats directed exploration as a
process of actively collecting information for inference on a reward-biased generative model. A
further comparison is with Receding Horizon Curiosity (RHC) [Schultheis et al., 2020], which does
online Bayesian system identification over a linear model in order to quickly find a model of the
environment dynamics. Our model-free comparison methods, Soft Actor-Critic (SAC) [Haarnoja
et al., 2018], an actor-critic method that uses an entropy bonus over the policy to encourage more
exploration, and two others (TD3 and PPO), are in the appendix.

Finally, we compare against various ablations of the proposed method. These vary across two
axes as described in Figure 2.4: the cost function they use and how they handle sequential queries.
Besides these differences, they use the same GP model and iCEM planning algorithm with the same
hyperparameters, so they are truly comparable methods. The three cost functions used are Cg, Cτ∗ ,
and Ce. DIP, oDIP, and EIGT all use Ce but compute, respectively, the expected joint entropy of
the action sequence, the sum of the pointwise entropies of the action sequence, and the individual
pointwise entropies in the TQRL setting. These methods are very similar in spirit to [Shyam et al.,
2019, Pathak et al., 2019] in that they plan for future information gain about the dynamics, but
we chose to compare in a way that controls for difference in the model and planning algorithm.
MPC uses Cg and is very close to the method in [Kamthe and Deisenroth, 2018]. Like TIP, BARL
[Mehta et al., 2022c] and sTIP use Cτ∗ . BARL operates in the TQRL setting and can therefore use
the simpler EIGτ∗ acquisition function. sTIP investigates the use of −∑si,ai∈S EIGτ∗(si, ai) as a
cost function for planning. This computes individual information gains for each future observation
without accounting for the information they may have in common and is therefore an overestimate
of the joint information gain. In the open-loop setting we compare against oDIP and oMPC, the
open-loop variants of DIP and MPC, and Bayesian optimization (BO) as implemented by Pedregosa
et al. [2011]. oDIP plans an action sequence to minimize the joint Ce and executes the actions found
for each open-loop trial, while oMPC does the same thing using Cg. We give additional details on
the comparison methods in Section A.6.

Control Problems Our closed loop control problems are the standard underactuated Pendulum
swing-up task (Pendulum-v0 from Brockman et al. [2016]) with 2D states and 1D actions, a
Cartpole swing-up task with a sparse reward function, 2D s, and 1D actions, a 2-DOF robot arm

24

0 100 200 300 400 500

Number of Queries

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

R
et

u
rn

s

0 100 200 300 400 500

Number of Queries

10−4

10−3

10−2

10−1

M
o
d

el
M

S
E

on
C

u
rr

en
t

M
P

C

0 100 200 300 400 500

Number of Queries

10−1

100

M
o
d

el
M

S
E

on
R

an
d

om
S

et

0 100 200 300 400 500

Number of Queries

10−1

100

101

E
IG

τ
∗

(b
it

s/
ac

ti
on

)

TIP

sTIP

BARL

DIP

sDIP

EIGT

MPC

Control Performance on β + Rotation

0 200 400 600 800 1000

Number of Queries

−14

−12

−10

−8

−6

−4

R
et

u
rn

s

0 200 400 600 800 1000

Number of Queries

10−4

10−3

10−2

10−1

100

101

102

M
o
d

el
M

S
E

on
C

u
rr

en
t

M
P

C

0 200 400 600 800 1000

Number of Queries

10−1

100

101

102

103

M
o
d

el
M

S
E

on
R

an
d

om
S

et

0 200 400 600 800 1000

Number of Queries

10−2

10−1

100

101

102

E
IG

τ
∗

(b
it

s/
ac

ti
on

)

TIP

sTIP

BARL

DIP

sDIP

EIGT

MPC

Control Performance on Reacher

0 25 50 75 100 125 150 175 200

Number of Queries

−1400

−1200

−1000

−800

−600

−400

−200

0

R
et

u
rn

s

0 25 50 75 100 125 150 175 200

Number of Queries

10−5

10−4

10−3

10−2

10−1

M
o
d

el
M

S
E

on
C

u
rr

en
t

M
P

C

0 25 50 75 100 125 150 175 200

Number of Queries

10−4

10−3

10−2

M
o
d

el
M

S
E

on
R

an
d

om
S

et

0 25 50 75 100 125 150 175 200

Number of Queries

10−1

100

101

E
IG

τ
∗

(b
it

s/
ac

ti
on

)

TIP

sTIP

BARL

DIP

sDIP

EIGT

MPC

Control Performance on Pendulum

Figure 2.5: Control and Modeling Details for TIP and Ablations. Column 1: Learning curves for our
ablation methods, all of which use the same planner and model. Column 2: Dynamics model accuracy on
the points used by the planner to choose actions during MPC. Column 3: Dynamics model accuracy on a
uniformly random test set in S̃ . Column 4: EIGτ∗ values normalized by the number of actions planned. sTIP
was truncated on Reacher as it exceeded the wall time budget.

control problem where the end effector is moved to a goal (Reacher-v2 from Brockman et al.
[2016]) with 10D states and 2D actions, a simplified β Tracking problem from plasma control
[Char et al., 2019, Mehta et al., 2021] (similar in design but not identical to the one from Mehta et al.
[2022c]) trained using with 4D states and 1D actions, and a more complicated problem in plasma
control where β + Rotation are tracked with 10D states and 2D actions. Our open loop control
problems are a navigation problem with hazards (Lava Path) from [Mehta et al., 2022c] and two
regulation problems with different Nonlinear Gain functions. The Lava Path problem has 4D states
and 2D actions and the nonlinear regulation problems have 2D states and 2D actions. Full details on
these problems are available in Section A.7.

Results As can be seen in Table 2.2, TIP is able to reach solved performance more quickly
across the board than the model-based and model-free external baselines, often using a fraction
or even orders of magnitude less data than other methods. For many of our ablation methods
we see failures to solve some of the problems even though the model is demonstrated by TIP
to be able to sufficiently predict the dynamics. This is especially apparent on the harder plasma
control environment, β+Rotation, where TIP is the only method using our GP which is able to
solve the problem. We believe that this is because the data acquired through exploration by the
ablation methods is less useful for control than the data TIP collects. This is underscored by the
second column of Figure 2.5, where it is clear that TIP achieves the lowest modeling error on
the points actually needed during the execution of the policy but not on the uniform test set. In

25

particular we find it interesting that TIP outperforms BARL on the β + Rotation environment, as
BARL should in principle have a strictly stronger access to the problem and is optimizing the
same quantity with fewer constraints. We hypothesis that this may be due to the fact that BARL
optimizes the acquisition function EIGτ∗ by simply uniformly sampling a set of points and choosing
the one that evaluates to the largest value. Our more sophisticated optimization algorithm and
forced initialization at the start state distribution seems to allow us to collect more information in
this case. This interpretation is bolstered by the fact that on the problems where TIP outperforms
BARL, we see that TIP is actually collecting more information per action than BARL as evidenced
by larger EIG values. We also see clearly that there is value in computing the Cτ∗ function
rather than summing over EIGτ∗ values, as TIP outperforms sTIP across the board. Additionally,
there is clear evidence for the value of task-specific exploration as the task-agnostic exploration
methods (EIGT , DIP, sDIP) underperform both in returns and model error on the trajectories visited.

Environment oTIP oMPC oDIP BO

Nonlinear Gain 1 41 91 51 210
Nonlinear Gain 2 51 61 >200 60
Lava Path 41 101 101 >2k

Table 2.3: Open Loop Sample Complexity: Me-
dian number of samples required to reach ‘solved’ per-
formance, averaged across five trials. We determine
‘solved’ performance by running an MPC policy on the
ground truth dynamics to predict actions. We record
> n when the median run is unable to solve the prob-
lem by the end of training after collecting n datapoints.

For the open-loop experiments (Table 2.3),
we also see strong performance from oTIP.
As the model-based methods benefit from ob-
serving many model transitions for each open-
loop trial, it is unsurprising that they are more
sample-efficient than the BO method. Within
the model-based techniques, oTIP is the most
sample efficient. We believe that this is for
much the same reasons as in the closed-loop
case—exciting evidence that the Cτ∗ cost func-
tion can be applied in a variety of settings.

26

3 | Applying generalized decision-theoretic
entropies to Bayesian RL

Given a prior on the dynamics of an MDP, the Bayes-optimal solution for minimizing cumulative
regret given infinite computational resources is to solve the Bayes-adaptive MDP (BAMDP) [Duff,
2002], which explicitly models the evolution of the belief states of the agent as the dynamics unroll.
That said, there are many real-world use cases where it is incorrect to optimize for cumulative
rewards. Concretely, in any use case where a final Markovian policy is deployed after a ‘practice’
phase where performance is unimportant, an agent should instead aim to maximize the expected
reward of the deployed policy. This is true in many competitions like chess or racing, as well
as many applications in science, where samples are costly but we ultimately only care about the
performance of the final method at test time rather than during training. Ideally, we’d like the agent
to do as well as possible with the limited amount of information received using the finite exploration
budget. Here, an agent ought to be motivated to take risks while exploring in order to learn vital
information to use when deployed. In this work, we make precise some of these shortcomings of the
BAMDP and present a closely related solution built from old ideas in Bayesian decision theory.

Over sixty years ago, DeGroot [1962] defined a generalization of entropy that applies to general
decision making problems, parameterized by a loss function ℓ and action-set A. “Hℓ,A-entropy” is
a measure of the information content of a probability distribution that is relevant for a particular
decision making problem. This captures the critical idea that uncertainty-reducing information is
valuable, but this uncertainty does not always affect the decision by an expectation-maximizing
agent. For example, in a game of blackjack—where a total over 21 busts—a player who is holding
15 and is told the next card is uniformly drawn between 7 and K needs no additional information
to make a decision (in this case, to stand) even though there is still uncertainty remaining in the
value of the card. Here, the Hℓ,A-entropy of the next card is zero although the Shannon entropy
would be ≈ 2. Recent work [Neiswanger et al., 2022] showed that the “Expected Hℓ,A-information
Gain” (EHIG) is a generalization of several acquisition strategies from BO. For example, under
straightforward choices for ℓ and A, choosing new data that maximizes the EHIG is equivalent to
expected improvement [Močkus, 1975] and knowledge gradient [Frazier et al., 2008]—two of the
most effective strategies for simple regret minimization in BO [Balandat et al., 2020].

In this chapter, we present an application of Hℓ,A-entropy to MDPs by presenting an exploration
strategy for sample-efficient RL that aims to maximize the EHIG. We show theoretically that under
our simple regret setting, solving this EHIG-MDP is the optimal way to explore, and that this
strategy can outperform the BAMDP solution by a substantial amount. To verify this, we compare
these two methods under an exact implementation on small tabular MDPs, and provide an empirical
confirmation of our theoretical results.

In order to apply our method to continuous and high-dimensional problems where a prior is

27

much harder to specify, we borrow ideas from meta-learning to synthesize an effective prior. In
particular, by learning from many environments drawn from a distribution, an agent can learn this
distribution as a prior and infer against it. Inspired by previous work that uses meta-reinforcement
learning for a scalable approximation to the BAMDP [Zintgraf et al., 2020], we develop a meta-RL
method for approximately solving the EHIG-MDP. We demonstrate on four meta-RL tasks that
these methods perform similarly when the exploration task is simple, and that our proposed method
outperforms existing baselines when the required exploration behavior is more complex.

The full contributions of this chapter are as follows: (1) We show theoretically and empirically
how the BAMDP, long viewed as the gold standard in Bayesian RL, is suboptimal for our simple
regret setting. (2) Using methods from Bayesian decision theory involving generalized entropies, we
derive a Bayes-optimal exploration algorithm for this setting and empirically demonstrate its benefits
on an exact implementation with tabular MDPs. (3) Using techniques from meta-RL we develop
a scalable method for higher-dimensional continuous spaces, and show its strong performance
empirically against other Bayesian RL and meta-learning methods on multiple benchmark problems.

3.1 Related Work

Hℓ,A-Entropy Motivated by decision problems in optimal experimental design, past work on
Bayesian decision theory has proposed a general family of of decision-theoretic entropy functions
[DeGroot, 1962, Rao, 1984, Grünwald and Dawid, 2004], each parameterized by a problem-specific
loss function ℓ and action set A. Methods in this area have aimed to maximally reduce this entropy
for a model parameter, in order to carry out Bayes-optimal experimental design for different types
of decision problems. In order to distinguish these entropy functions from the well-known Shannon
entropy (which is a special case of this family), previous works have used the notation Hℓ,A-entropy
which we also adopt in this paper.

In recent years, this family of Hℓ,A-entropy functions has been applied to estimating divergences
between distributions [Zhao et al., 2021], and in Bayesian optimization [Neiswanger et al., 2022]. In
the latter case, the Hℓ,A-entropy is used to define an expected information gain acquisition function
for BO, in which new data is collected that maximally reduces the Hℓ,A-entropy, in expectation.
By varying the loss and action set, this family can recover many common acquisition functions,
including expected improvement [Močkus, 1975], entropy search [Villemonteix et al., 2009, Hennig
and Schuler, 2012], and knowledge gradient [Frazier et al., 2008]. In this paper, we substantially
extend the use of Hℓ,A-entropy to the MDP setting. In particular, our action under this framework
is a choice of test-time policy and our loss is the negative expected return. In order to explore
optimally, we combine the original ideas from DeGroot [1962] for multistep exploration with the
expected MDP dynamics.

Meta-Reinforcement Learning As it is difficult to specify an accurate and tractable prior for
high-dimensional and complex environments, a typical approach is to learn the distribution of
possible MDPs by executing actions on many MDPs sampled from some distribution—in other
words, to carry out meta-reinforcement learning.

One of the foundational methods, model agnostic meta-learning (MAML) [Finn et al., 2017],
considers any model, parameterized by θ, trained to optimize for few-shot performance over a family
of tasks. The gradient descent step for θ seeks to minimize total loss incurred by the model over a
set of sampled tasks on a “look-forward” basis—as if the model has taken a single-task gradient

28

Cumulative
Return

Simple
Return

+2 +1

-20 +10

X Games Snowboard MDP Episode 1:
Training

Episode 2:
Competition

BAMDP

EHIG-MDP

+1 -30 +10

Start

Triple CorkFrontside 180

Action 1

+0 +0

Action 1 Action 2

+1 -30 +10

Start

Triple CorkFrontside 180

Action 1

+0 +0

Action ?

“Lands Frontside
180”

“Lands Triple
Cork”

“Fails Triple
Cork”

Action ?

+1 -30 +10

Start

Triple CorkFrontside 180

Action 1

+0 +0

Action ? Action ?

+1 -30 +10

Start

Triple CorkFrontside 180

Action 1

+0 +0

Action ? Action ?

+1 -30 +10

Start

Triple CorkFrontside 180

Action 1

+0 +0

Action 1 Action 2

Figure 3.1: Left: An illustration of the X Games Snowboard MDP. If the Triple Cork trick is chosen, there
is uncertainty about which action leads to landing or failing the trick. Right: Illustration of suboptimal
exploration under the BAMDP, which aims to maximize cumulative return (even during training episodes),
and improved exploration under the EHIG-MDP, which aims to maximize simple return (only during the
competition episode).

descent step to θi. This is a classical way of doing meta-learning and unfortunately suffers from low
sample efficiency.

Another method, RL2, [Duan et al., 2016] constructs the learning process over a sequence of
trials, each with a finite number of episodes of a task randomly drawn from a known task distribution.
The policy model is fed the standard state, action, reward triple along with a termination flag
signifying the end of a trial, and it’s trained to optimize the rewards over the entire trial (not just a
single episode). In this way, it pushes the model to optimize learning for a new task quickly within a
limited number of episodes.

A more sophisticated approach to meta-reinforcement learning is to cast the problem as a Bayes
Adaptive MDP [Duff, 2002], but this becomes computationally impossible for all but the smallest
scale problems. Previous methods to get around this, such as posterior sampling [Osband et al.,
2016b], often stray too far from Bayes optimal behavior. In VariBAD [Zintgraf et al., 2020], the
BAMDP is set up for meta-learning as a tractable approximate problem in two steps: (i) details
of an environment’s reward and transition functions are mapped to embeddings in latent space via
a learned model; (ii) the training objective for this model is also approximated by its evidence
lower-bound, which is much easier to compute. However, as we discuss in this paper, the BAMDP
solution attempts to trade off between exploration and exploitation. This can be suboptimal when
the primary goal is to find and deploy a good test policy.

3.2 Problem Setting
We consider the Bayesian RL setting where we have a distribution over MDPs ⟨S,A, T,R, p0, h⟩,
where S is the state space, A is the action space, T : S × A → P(S) is a stochastic transition
function, R : S ×A× S → R is a reward function, p0 ∈ P(S) is the initial state distribution, and
h ∈ N is the episode length. As we operate in the Bayesian setting, we assume that the transition
and reward function are distributed according to a prior belief b0 = p(R, T) in a belief space B.

We assume that the agent can perform inference and maintain beliefs bτ:t = P (R, T | τ:t), which
correspond to the posterior MDP given the agent’s experience τ:t = {(s0, a0, s′0, r0), . . . , (st, at, s′t, rt)}.
The agent collects experience by exploring for H timesteps in episodes of length h. A Bayesian
agent in this setting is specified by two policies: an exploration policy πx : S × B → A and an
exploitation (test) policy πe : S × B → A. The aim of an agent is to maximize the performance of
the exploitation policy when passed the belief obtained by executing the exploration policy on an

29

environment sampled from the prior. Formally, the goal is to maximize the simple return

J(πx, πe) = ER,T∼b0

[
Eτ:H |R,T,πx

[JR,T (πe(·, bτ:H))]
]

(3.1)

where trajectories τ:H are generated inductively by τ:t = {(st, at, s′t, rt)}∪τ:t−1, τ:0 = ∅, st = s′t−1

(or st ∼ p0 if t is a multiple of h), at = πx(st, bτ :t−1), s′t ∼ T (st, at), rt = R(st, at, s
′
t), and

JR,T (π) = Es0∼p0, τh|π,R,T,s0

[
h−1∑
t=0

rt

]
, (3.2)

where τh is a h-step trajectory induced by the policy π and an initial state s0, under a given (R, T),
and rt = R(st, at, st+1) is the reward collected at time step t. We also refer to the simple regret of
πx, πe to mean the exploration-aware optimality gap: maxπ1,π2 J(π1, π2)− J(πx, πe). Finally, we
refer to the cumulative return as the rewards obtained by the exploration policy over the course of
exploration. It is important to note that in this setup, no inference is performed at test time—in other
words, the test policy given the final belief state from exploration is Markovian.

Intuitively, we want an exploration policy that finds a belief such that the test policy has the
information it needs to perform well on expectation. In this work we note that, given a test-time
belief b, there exists an optimal exploitation policy π∗

e(·, b) = maxπ:S→A ER,T∼b [JR,T (π)] that
achieves an expected return equal to the Bayes return, BR(b) = ER,T∼b [JR,T (π

∗
e(· | b)]. Therefore,

the primary problem addressed in this paper is finding an exploration policy πx that reliably leads to
a belief with high Bayes return. Another important characteristic of objective (3.1) to note is that it
doesn’t directly involve the optimal policies for any particular R and T—it rather involves the limits
of the knowledge of an agent, given a prior distribution over MDPs and the ability to execute H
consecutive actions.

3.3 Bayes-Adaptive MDPs are ‘Fearful’
The Bayes-adaptive MDP is typically viewed as the optimal solution to a Bayesian RL problem
given unlimited computation. In this section, we define the BAMDP and discuss why it fails in
simple-regret settings where we have a practice or training regime, and give a theoretical statement
characterizing these failures. In the BAMDP, the belief state is modeled as evolving alongside the
environment state and the dynamics of the transition model are those consistent with the updated
posterior belief. In particular, the BAMDP is constructed by considering hyperstates s+t ∈ S+ =
st, bτ:t−1 ∈ S × B that evolve according to dynamics T+(s+t , at) = ET∼bτ:t−1

[T (st, at)] δ(bτ:t),

and rewards R+(s+t , at, s
′+
t) = ER∼bτ:t−1

[R(st, at, a
′
t)]. This augmented MDP is a well-formed

MDP, albeit exponentially large (O(H|S|H) for a generic Dirichlet-Multinomial prior), which in
finite settings can be solved exactly using methods like policy iteration [Sutton and Barto, 1998].

Specifically, the exploration policy πb
x for the BAMDP agent is the one that solves the BAMDP

over H timesteps. Intuitively, the optimal policy in the BAMDP will maximize the rewards expected
over the exploration budget of the agent. This is often the desired behavior, but in a simple regret
setting this can lead to pathologies. For example, if an agent needs to take a risky decision one time
in order to know the correct action, it may simply avoid the risk so as to avoid the probability of
a bad outcome. In general, when the goal is to identify a good policy with a limited number of
samples, we will show that the BAMDP strategy is suboptimal.

Consider the following toy example depicted in Figure 3.1: an agent is a snowboarder training
for the X Games. On each run, it can either attempt the Triple Cork (a big trick) or a Frontside 180

30

(a small trick). The big trick is potentially much more valuable, but, if it is chosen, the agent is
unsure which action (1 or 2) will lead to the large reward. If the agent chooses the wrong action,
it will fail to complete the trick, which incurs a large negative reward. A BAMDP agent given an
exploration budget of one episode prior to test time will choose the Frontside 180 twice as this
leads to a higher expected return over a window of 2 episodes (i.e., one for training, and one for
the X Games competition). Clearly, an optimal agent will attempt the Triple Cork in practice, find
out which action leads to the large reward, and execute the correct action on the Triple Cork at
the X Games. This conservatism is in fact an essential component of the BAMDP which makes it
unsuitable for the Bayesian simple regret setting, a fact that we capture in the following theorem.
Theorem 1. For every number of states |S| ≥ 7, exploration budget H > |S| − 2 and ϵ > 0 there
exists a distribution over MDPs with |S| states with rewards bounded in [0, 1] such that

max
πx

J(πx, π̂N)− J(πb
x, π̂N) ≥ 1

2⌊ H
|S|−2⌋

− ϵ.

Note that the optimality gap we are lower bounding here is between the BAMDP exploration
policy and the best possible exploration policy given the true prior and a particular budget, not that
between the BAMDP policy and the optimal policy for an MDP. We would ideally see no regret at
all in this comparison and in fact achieve this through our algorithm in the following section. Of
course, over a long horizon of data acquisition, the lower bound on simple regret will approach zero,
but in many settings where sample efficiency is paramount these asymptotic equivalences are not
helpful.

The proof of this theorem is in Section B.1.1. At a high level, we prove this by making the
notion of the X Games problem precise and showing that the Q values of the BAMDP policy will
force it to be conservative. The solution to this pathology of the BAMDP policy in the simple regret
setting is to adjust the reward function. As it turns out, the correct reward function can be derived
from the notion of the expected H-information gain.

3.4 Fearless RL Through Hℓ,A-Information

In order to generally solve the problems with the BAMDP, we take a step back and consider a
generic Bayesian decision making problem. Say we have a prior distribution b0 over functions
f : X → Y , an action space A, and a loss function ℓ : (X → Y)× A→ R. In general, the goal is
to acquire data that allows us to find an action a ∈ A that minimizes ℓ(f, a) for the true function f ,
which is a draw from our prior. Assuming no further data can be collected and the current belief
is b, a Bayesian agent would prefer the Bayes action, argmina∈A Ef∼b [ℓ(f, a)] which achieves on
expectation the Bayes Risk. As initially described in DeGroot [1962], the Bayes Risk can be viewed
as a generalized kind of entropy—the usual Shannon entropy is a special case (if A = P (X → Y)
and ℓ(f, a) = − log a(f), see Neiswanger et al. [2022] for details) and many important properties
of entropy (such as concavity and monotonic decrease as observations are made) are preserved
for other settings of ℓ and A. Suppose now that the agent is capable of making an observation
yx of the function value at a point x ∈ X of its choosing. From that observation, the agent can
infer an updated belief b′ = p(f | b, yx). As established in these prior works, an agent would be
well-justified in choosing to observe the point that maximizes the expected Hℓ,A-information gain
(EHIG), or equivalently, the point that maximally improves the Bayes risk. This can be written

EHIGℓ,A(x | b) = min
a∈A

Ef∼b [ℓ(f, a)]− Eyx∼p(yx|b)

[
min
a∈A

Ef∼b′ [ℓ(f, a)]

]
. (3.3)

31

Per DeGroot [1962], this quantity is nonnegative and directly captures the expected improvement
in the decision problem of interest. It can also be extended to address additional observations. In
the following section, we give an application of this general decision making objective to Bayesian
MDPs under the simple regret setting.

3.4.1 EHIG for MDPs

Suppose we are operating in the Bayesian RL setting presented in Section 3.2. What Bayesian
decision problem might this be? Ultimately, the decision to be made is a choice of policy for
the evaluation given the eventual belief. This decision will be evaluated on the expected return
of the policy choice. Put more formally, in our Bayesian decision problem, A is the set of all
policies π : S → A, f is the Cartesian product of functions R and T , and ℓ(R, T, π) = −JR,T (π).
Put in simple language, the Bayes risk here is the negative Bayes return from Section 3.2. The
H-information is measured by the improvement in the Bayes return as data are acquired from the
MDP.

In our simple regret setting, the goal is to take actions such that the eventual Bayes return is
large. With that in mind, we can construct an exploration MDP that takes into account both the
posterior dynamics of the MDP as well as the evolution of the belief as observations are made. This
will be similar to the BAMDP but instead will focus on the Bayes return of the test policy. We note
that this EHIG-MDP has the same state space, action space, and dynamics as the BAMDP. This is
the natural way to represent the multistep inference required for optimal exploration in our setting.

Since the Hℓ,A-information is equal to the negative Bayes return of the belief, and the initial
Bayes return is a constant, the Hℓ,A-information gain from exploration will be a constant offset
from the Bayes return of the final belief. Given this, in the EHIG-MDP, all rewards are zero with
the exception of the final timestep. For this final timestep, the reward will simply be the Bayes
return of the final belief; i.e., for the state s+ = [s; b] that the policy transitions to at the Hth
step, the reward is BR(b). This MDP encourages a Bayesian agent to maximize the joint expected
Hℓ,A-information gain of all observations during exploration. The EHIG-maximizing policy πh
that solves the EHIG-MDP has the desirable property that it is optimal according to objective (3.1).
We can formalize this intuition with the following theorem, showing that the EHIG-MDP rectifies
the problems with the BAMDP.
Theorem 2. For all distributions over MDPs b0 and exploration budgets H , J(πh, π̂N) = maxπx J(πx, π̂N).

The proof of this theorem is in Section B.1.2. At a high level we prove this result via induction
on the Qπh

H function through time and show that for any number of remaining timesteps, executing
πh will maximize the eventual test-time Bayes return.

3.4.2 Exactly Solving the EHIG-MDP in Tabular Cases
As we present in Algorithm 4, the overall process of exploration is simple. We compute or
approximate the EHIG policy πh and we execute it on the environment while performing (possibly
approximate) inference at every step. At test time we execute or approximate the Bayes policy given
the up-to-date belief. In this section we discuss the exact algorithm, which we empirically investigate
on a pair of distributions over finite MDPs that highlight the advantages of EHIG-based exploration.
When operating in a tabular setting, we can exactly compute the quantities involved in our EHIG-
MDP in order to explore optimally. However, this ends up being extremely computationally costly.
This method in its exact form is only practical to use on small finite MDPs as the computational
complexity makes even dozens of states or timesteps difficult to contemplate.

32

In particular, we represent a table of size O(H|S|H) for each state-belief pair possible in the
problem. We then can compute the Bayes return for every terminal belief (attainable after making
H observations) by performing policy iteration [Sutton and Barto, 1998] on the MDP implied by
the posterior predictive distribution [Ghavamzadeh et al., 2016]. From these Bayes returns and the
(known) dynamics of the EHIG-MDP, we can again use policy iteration to find the EHIG policy πh.
For the uncorrelated Dirichlet priors typically used in the tabular setting this will incur no error in
computing returns.

3.4.3 Empirical Performance of the Exact EHIG Policy

In order to investigate empirically the conclusions of Theorems 1 and 2, we implemented the exact
EHIG-MDP and the BAMDP algorithms and applied them to a pair of small tabular MDP priors.
Due to the heavy computational requirements of the exact implementation we implemented these
methods in Julia1 to take advantage of compilation and effective multithreading. In particular, we
explicitly represent the belief MDP and its value functions through large matrices and apply a
combinatorial indexing scheme to map rows of these matrices to particular states in the belief MDP.
We give details on this setup in Section B.2.

We execute the exact BAMDP and EHIG-MDP agents on two tabular distributions over envi-
ronments LavaRun and SkateTrick depicted in Figure 3.2 for five timesteps of exploration. Both of
these environments are accompanied by Dirichlet-Multinomial conjugate priors which provide a
distribution over the correct reward and dynamics with some uncertainty that requires exploration
to resolve. We evaluate the agents on the two environments supported by the belief distribution,
where a different action corresponds to each arrow on the graph and we plot the returns achieved
over varying exploration budgets. In both of these environments, there is a single bit of information
needed in order to be able to reliably achieve the highest returns. However there is some cost
associated with finding that information, which dissuades the BAMDP policy from finding it. In the
SkateTrick environments, the BAMDP agent chooses the conservative choice of the left branch in
order to avoid the uncertainty in the right branch, even though the return achievable by making the
correct decision is much greater. In the LavaRun environments there are two paths to an uncertain
decision with negative expected value; the BAMDP agent takes the longer path and even suffers the
negative reward in state 2 in order to avoid the difficult decision at state 4. This can be seen in the
fact that the BAMDP agent requires more exploration to solve the MDP.

Algorithm 4 Exploration via the EHIG-MDP

Inputs: Prior belief b0, exploration budget H .
Initialize b← b0, τ0 = ∅.
Compute πh for b and H . ▷ Compute the EHIG-maximizing policy πh
for t ∈ [1, . . . ,H] do

Let at = πh(st, b). ▷ Choose an action according to πh
Observe s′t ∼ T (st, at) and rt ∼ R(st, at, s

′
t). ▷ Take a step in the environment

Let τt = {(st, at, s′t, rt)} ∪ τt−1, b = bτt . ▷ Update the experience and beliefs
end for
return π̂N (·, b). ▷ Return the optimal exploitation policy

1https://julialang.org/

33

https://julialang.org/

1 2 3 4 5

Exploration Horizon

50

100

150

200

250

300

S
im

p
le

R
et

u
rn

EHIG-MDP

BAMDP

SkateTrick

1

2 3

4 5

1 2

1, 2

1, 2 1, 2

? ?

-1000 +100

+0+0

1 2 3 4 5

Exploration Horizon

−4000

−3000

−2000

−1000

0

1000

2000

S
im

p
le

R
et

u
rn

LavaRun

1

2 3

1 2

1, 2

5 4

6 7
1, 2 1, 2

? ?

-10000 +1000

1, 2

-100 +0

+0+0 1, 2

Figure 3.2: We plot the simple return of agents with BAMDP and EHIG exploration policies (exact
implementations without approximation) on two tabular MDP distributions. In the LavaRun environment, the
BAMDP agent fails to solve the problem with horizon 3 because it is unwilling to ‘cross lava’ in order to
obtain the necessary solution. In the SkateTrick environment, even with a 5 step horizon, the BAMDP agent
is not willing to try the dangerous trick in order to learn how to ‘land it’ at test time.

3.5 Scalable Approximation of the EHIG-MDP

In order to apply this EHIG strategy to MDPs of interest for many applications, we must be able to
scale these methods to problems with continuous and even high-dimensional state and action spaces
by approximating the various inference and policy optimization components of the EHIG-MDP
algorithm. At a high level, an EHIG agent needs to be able to approximately infer the current belief
bτ :t after observing a trajectory τ taken from a particular T,R ∼ b0. It then needs to estimate two
different policies: the EHIG policy πh and the Bayes policy π̂N that is able to perform optimally
given a particular belief. As with the finite setting, we take inspiration from the BAMDP in order to
design an implementation capable of satisfying these conditions.

For larger MDPs it is in general difficult to specify a quality prior for which inference is tractable
Fortuin [2022], Mehta et al. [2022b]. In order to have some source of data from which to learn the
prior distribution of possible MDPs, we use a Bayesian formulation of meta-learning, following
Zintgraf et al. [2020], for our continuous methods and experiments. In this setting, the agent is
able to collect trajectories from environments drawn from b0, in order to estimate beliefs over the
reward and transition functions. During this meta-training phase, the agent executes actions and
observes transitions and rewards with which to update its parameters for inference and decision
making. At meta-test time, a new environment is drawn from the prior and the agent executes H
actions while performing inference, and is then evaluated on the performance of its estimate of the
best policy given its current belief. At test time, this setting is identical to the one discussed above
where policies and beliefs can be exactly calculated, in that there is a short exploration phase of
H timesteps on a new environment prior to the estimated best Markovian policy being evaluated.
However, for continuous spaces we require the meta-training phase in order to learn to explore and
solve environments drawn from this distribution.

As discussed in Section 3.1, Zintgraf et al. [2020] introduced many of these ideas with the
VariBAD method. In this work, we modify the VariBAD approach so that it optimizes the EHIG
objective. As in VariBAD, we assume a normal prior on a latent variable m ∼ N (0, I) that is fed
into a multiheaded decoder with heads s′t ∼ pTθ (m, st, at) and r ∼ pRθ (m, st, at, s

′
t) and use a GRU

[Chung et al., 2014] based encoder qϕ(τ) that produces a variational belief b parameterizing the
posterior p(m | b) given a trajectory. The encoder is trained via maximization of the ELBO lower
bound on the likelihood as in Kingma and Welling [2013]. In the VariBAD method, the policy
is trained via PPO to maximize the discounted future returns over the course of exploration and
inference.

34

Policy

Encoder Decoder

π

m

st
st,
atst

st,
rtp

R

p
T

q
st

t

at
r

bt

at

~

π atst

Policy

st

r1
r2

rt

…
…

rH-1

rH

0
0

0

0

0

…
…

……

1 rH+h

1 rH+1

Mask

H-t

0

frozen

at

RewardTrain

Test

Figure 3.3: Architecture for scalable EHIG-MDP.
During a particular meta-RL trial, the recurrent encoder
q processes all previous training data into an up-to-
date belief state bt, which is passed to the policy π
at train time, along with the current MDP state and
the number of exploration timesteps remaining. After
H timesteps of exploration have elapsed, the belief
state is frozen and passed to the policy along with the
MDP state and 0 (denoting the exploration remaining).
The rewards used for policy optimization are masked
for data collected during training but not for test-time
data, though they are always visible to the encoder and
decoder. Our decoder and encoder architecture builds
on Zintgraf et al. [2020].

As we aim to address the simple regret setting with a reflex policy at test time, we only perform
inference during the exploration phase. In order to accomplish the EHIG objective, we train the
policy using PPO [Schulman et al., 2017] with a concatenated trajectory of exploration and test
data with the exploration rewards masked. In order to make the state space Markovian given this
change, we augment the state space with the number of remaining exploration timesteps counting
down from H to 0. We write this as πθ(s, b, t) for notational convenience. We illustrate our full
architecture in Figure 3.3.

This addition breaks the policy into essentially two functions: at test time (with t = 0) the
policy is passed the current state and a constant belief vector, and aims to maximize the returns of
the trajectory as is typical in PPO; while during exploration (with t > 0) the policy is incentivized
to find belief states b that will lead to good performance at test time. This can be easily seen
by considering the value function of πθ. As there are no rewards observed by πθ for t > 0, the
value function of the policy must depend on the expected returns after the exploration expires.
Since the first state of the test trajectory is sampled from p0, the final state of exploration will
not matter. Concretely, V (s, b, 1) = Es′,a,r|s,b,πh

[BR({(s, a, r, s′)} ∪ b)], exactly as desired for a
policy maximizing EHIG.

3.5.1 Experiments Using the EHIG Approximation

We execute the scalable approximation to the EHIG-MDP method on four meta-reinforcement
learning environments alongside three baselines in order to evaluate its performance on continuous
environments. Here we set H to be one episode. We executed all policies on meta-training episodes
consisting of one exploration and one test episode. At meta-test time we also execute one exploration
episode each across sixteen environment samples. After the exploration episode, we evaluate the
performance of the Markovian test-time policy from each method by executing it for 10 episodes and
averaging the performance. As meta-training progresses, we evaluated the policy with a meta-test
trial every 16,000 frames of experience. We provide additional details on experiments in Section B.3.

Environments We run our meta-RL algorithms on four environments: HalfCheetahVel, Sparse-
Point, LavaPoint, and BetaLimit. These are designed to test various aspects of exploration in
meta-RL. HalfCheetahVel and SparsePoint were borrowed from Zintgraf et al. [2020]. In particular,
HalfCheetahVel is the standard HalfCheetah task from Brockman et al. [2016] but with a reward

35

0.0 0.2 0.4 0.6 0.8 1.0

Frames of Experience ×108

−350

−300

−250

−200

−150

−100

−50

0

A
ve

ra
ge

T
es

t
R

et
u

rn
EHIG-MDP

VariBAD

Task-Agnostic PPO

RL2

MetaCURE

PEARL

HalfCheetahVel

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Frames of Experience ×107

0

20

40

60

80

A
ve

ra
ge

T
es

t
R

et
u

rn

SparsePoint

0 1 2 3 4 5

Frames of Experience ×107

−20

−10

0

10

20

30

40

A
ve

ra
ge

T
es

t
R

et
u

rn

LavaPoint

0.0 0.5 1.0 1.5 2.0

Frames of Experience ×107

0

10

20

30

40

50

60

A
ve

ra
ge

T
es

t
R

et
u

rn

BetaLimit

Figure 3.4: Simple returns of each meta-learning method over the course of meta-training. At each evaluation,
we plot the mean performance over 16 environment samples and 10 evaluation episodes of the test policy after
one exploration episode in each environment, and smooth using a moving average. We shade error regions
corresponding to the standard deviation of our return estimates over 5 random seeds.

function that penalizes the difference between the current velocity and a target velocity that is
uniformly sampled for each MDP sample. SparsePoint is a 2d position control problem with sparse
rewards where an agent is only rewarded in the immediate vicinity of the goal, which is randomly
sampled from a semicircle in the domain. LavaPoint is similar to SparsePoint, except that a portion
of the domain is ‘lava’ which severely penalizes the agent for entering it. BetaLimit is a nuclear
fusion environment similar to those used in Mehta et al. [2022a] in which the ‘β-limit’ varies across
episodes. β is a figure of plasma performance often used nuclear fusion. However an overly high β
can lead to instabilities and plasma disruptions. The maximal achievable β on a particular reactor
may vary between days or even shots based on factors about the machine that may or may not be
observable. In this environment, the agent aims to maximize β by controlling simulated plasma
actuators while not exceeding a randomly sampled β-limit for which it is penalized.

Baselines Besides the EHIG method, we compare against five other baselines. The most closely
related baseline is VariBAD [Zintgraf et al., 2020], which as discussed uses a similar inference
and policy optimization framework to approximate the BAMDP policy. We also compare against
RL2, a foundational meta-RL algorithm that uses a recurrent neural network to represent the policy
for a particular meta-RL trial and updates the weights using the TRPO algorithm [Schulman et al.,
2015]. Due to its high computational cost, we were not able to run RL2 for as many frames of
experience as other methods. We additionally compare against MetaCURE [Zhang et al., 2021],
which uses an exploration policy that maximizes mutual information between the trajectory and the
observed task to efficiently explore and a similar test policy to ours. Another baseline we include
is PEARL [Rakelly et al., 2019], which uses a similar variational model for task inference and
conducts approximate posterior (Thompson) sampling for exploration. Finally, we compare against
a task-agnostic implementation of PPO [Schulman et al., 2017] in order to ascertain whether our
meta-RL methods are doing anything more sophisticated than simply attempting to learn a generally
good policy.

Results We observe in Figure 3.4 that the EHIG-MDP policy generally performs well across
our environments. For the HalfCheetahVel problem where the exploration is extremely simple (a
subtraction suffices), all the meta-learning methods are able to quickly and effectively solve the
problem. For the SparsePoint environment, there is general difficulty in solving the environment but
we see that the most effective exploration is through the EHIG-MDP method and the MetaCURE
method which explicitly gathers information about the task during exploration. This is also true

36

for the LavaPoint environment, where VariBAD performs poorly. As this environment is similar
to the LavaRun environment in Section 3.4.3, it is unsurprising that this method is stymied here.
MetaCURE also fails here—we imagine that this could be due to the Shannon information over
the task identification being less robust than H-information, and warrants further study. The RL2

method also shows unstable performance on the LavaPoint environment, which may be due to
the stark differences in reward inside and outside of the lava region. Finally, on the BetaLimit
environment, we see that EHIG and VariBAD are both best able to handle the exploration and policy
learning to achieve a relatively high β value while remaining relatively stable and avoiding going
over the β limit.

In general, we see these results as encouraging that even when approximated, the EHIG-MDP
is able to explore efficiently and perform well in the simple regret setting. We include additional
information on experiments in Appendix Section B.3.

37

38

4 | Efficiently identifying the value func-
tion implies sample-efficient decision
making

Often, applications of reinforcement learning require algorithms that are capable of learning and
planning in large state spaces. Many existing approaches require a large amount of training data to
obtain good policies, and efficient active exploration in large state spaces is still an open problem.
Moreover, when deploying policies trained on simulators in real-world applications, a crucial
requirement is that the policy performs well in any state that it might encounter. In particular, at
training time, the learning approach has to sufficiently explore the state space. This is of particular
importance when at test time, the controller must be deployed in real-world settings where a
guarantee on policy performance would provide confidence.

In this chapter, we first formally study the active RL setting. Our objective is to learn a
near-optimal policy by actively querying the simulator with a state-action pair chosen by the
learning algorithm. Our method queries the state where uncertainty about the value function is
maximized. We prove that this method identifies a near-optimal policy efficiently and empirically
validate the performance of our algorithm in both the MDP and contextual BO settings, where it
outperforms a set of strong baseline methods in returns after a small number of samples. Inspired by
previous works, we make a structural assumption in the kernel setting, which states that the Bellman
operator maps any bounded value function to one with a bounded reproducing kernel Hilbert space
(RKHS) norm. In particular, this assumption implies that the reward and the optimal Q-function
can be represented by an RKHS function. We propose a novel approach based on least-squares
value iteration (LSVI). The algorithm is designed to actively explore uncertain states based on the
uncertainty in the Q-estimates, and makes use of optimism for action selection and pessimism for
estimating a near-optimal policy.

Next, we extend the selection rule of this method to the dueling contextual bandit setting by
incorporating ideas from Xu et al. [2020], where feedback is only available as a comparison between
two chosen actions. We are able to recover similar theoretical guarantees and demonstrate that they
hold in a synthetic setting.

Contributions We propose a novel kernelized algorithm for best policy identification in re-
inforcement learning with a generative model. Our sampling strategy actively explores (i) states for
which the best action is the most uncertain and (ii) the corresponding “optimistic” actions. We prove
sample complexity guarantees for finding an ϵ-optimal policy uniformly over any given initial state.
Our bounds scale with the maximum information gain of the corresponding reproducing kernel
Hilbert space but do not explicitly scale with the number of states or actions. When specialized to the
offline contextual Bayesian optimization (BO) setting [Char et al., 2019], we improve upon sample

39

complexity guarantees from prior work. Finally, we include experimental evaluations on several RL
and BO benchmark tasks. The former of these includes one of the first empirical evaluations of the
model-free optimistic value iteration algorithms with function approximation [Yang et al., 2020].

4.1 Related Work

Reinforcement learning with function approximation dates back to at least [Bellman et al., 1963,
Daniel, 1976, Schweitzer and Seidmann, 1985]. A majority of work is in the online setting where the
learning agent interacts with the environment while (typically) minimizing regret. Upper confidence
bound algorithms, originally developed in the bandit setting [Lattimore and Szepesvári, 2020]
(also, frequently used in the related setting of best-arm identification, e.g., [Gabillon et al., 2011,
Kalyanakrishnan et al., 2012, Soare et al., 2014]) , have been successfully applied to tabular Markov
decision processes (MDPs) [Auer and Ortner, 2006, Auer et al., 2008], and extended to RL with
function approximation. Jin et al. [2020] propose the LSVI-UCB algorithm in the linear MDP
setting that achieves a near-optimal regret bound. Yang et al. [2020], Domingues et al. [2021] extend
this work to the non-linear function approximation setting. These works are closely related to ours
in that we make use of LSVI and confidence bounds for the Q-function in the kernelized setting.
Unlike previous works, we consider the generative model setting and derive bounds on the sample
complexity that hold uniformly over the initial state. There are many more alternative parametric
models that admit sample efficient algorithms [e.g., Ayoub et al., 2020, Zhou et al., 2021, Du et al.,
2021, Zanette et al., 2020, Liu and Su, 2022].

In the generative model setting, the learner has access to a simulator that for any given state-
action pair returns a next-state sample from the transition kernel. This provides additional flexibility
to obtain data from states that are otherwise hard to reach in the environment. For the tabular
case, matching upper and lower bounds are shown by Azar et al. [2012, 2013]. In the generative
model setting with function approximation, Lattimore et al. [2020] show that policy iteration can
be used to compute a near-optimal policy given features such that the Q-function of any policy
can be approximated by a linear function. Their algorithm uses a D-experimental design to roll
out policies from a sufficiently diverse set of states. The POLITEX algorithm [Abbasi-Yadkori
et al., 2019, Szepesvári, 2022] can be used in lieu of policy iteration and leads to tighter bounds on
the approximation error. A similar approach based on LSVI is analyzed by Agarwal et al. [2019,
Chapter 3].

An important special case of the MDP setting is the contextual bandit setting. When combined
with linear function approximation, this recovers the contextual linear bandit setting [Abbasi-Yadkori
et al., 2011], and contextual Bayesian optimization when using kernel features [Srinivas et al., 2009,
Krause and Ong, 2011]. Various works consider the case where the learner has control over the
choice of context during training time. Char et al. [2019] propose a variant based on Thompson
sampling. Pearce and Branke [2018], Pearce et al. [2020] also propose variants that leverage ideas
from the knowledge gradient [Frazier et al., 2008]. The latter works lack theoretical guarantees, while
our result (from section 4.5) improves upon the sample complexity guarantee of Char et al. [2019].
The approach by Kirschner et al. [2020] for the distributionally robust setting can be specialized
to our setting, in which case they recover similar bounds but only for a fixed context distribution.

40

4.2 Problem Setting for AE-LSVI analysis

We consider a time-varying episodic MDP
(
S,A, H, (Th)h∈[H], (rh)h∈[H]

)
with state space S,

action space A, horizon H ∈ N, Markov transition kernel (Th)h∈[H] and deterministic reward
functions (rh : S × A → [0, 1])h∈[H]. In particular, for each h ∈ [H], we let Th(s, a) denote the
probability transition kernel when action a is taken at state s ∈ S in step h ∈ [H]. A policy consists
of H functions π = (πh)h∈[H] where for all h ∈ [H], πh(·|s) is a probability distribution over the
action set A. In particular, πh(a|s) is the probability that the agent takes action a in state s at step h.

We assume the active access model, in which the agent interacts with the environment in the
following way: Let N denote the number of episodes and H the horizon, i.e., the number of steps
in each episode. Then for each t ∈ [N], h ∈ [H], the agent chooses sth ∈ S, ath ∈ A, obtains the
reward rh(s

t
h, a

t
h) and observes the new state s′h,t ∼ Th(s

t
h, a

t
h).

The goal is to find an ϵ-optimal policy while minimizing the number of necessary episodes N .
More precisely, for a fixed precision ϵ > 0 and horizon H ∈ N, the goal of the learner is to output a
policy π̂N after a suitable number of episodes N > 0 such that ∥V ∗

1 − V π̂N
1 ∥ℓ∞(S) ≤ ϵ.

Finally, we also recall the Bellman equation that is associated to some policy π:

V π
H+1 = 0, Qπ

h(s, a) = rh(s, a) + Es′∼Th(·|s,a)[V
π
h+1(s

′)], V π
h (s) = Ea∼πh(a|s)[Q

π
h(s, a)],

(4.1)
and the Bellman optimality equation:

V ∗
H+1 = 0, Q∗

h(s, a) = rh(s, a) + Es′∼Th(·|s,a)[V
∗
h+1(s

′)], V ∗
h (s) = max

a∈A
Q∗

h(s, a). (4.2)

It follows that the optimal policy π∗ is the greedy policy with respect to {Q∗
h}h∈[H], a property that

is going to be useful later on when defining our active exploration strategy. We use the reproducing
kernel Hilbert space (RKHS) function class to represent functions such as the reward functions
{rh}h∈[H] and the optimal Q-functions {Q∗

h}h∈[H] (see the formal statement in Assumption 1).
In particular, we consider a space of well-behaved functions defined on X = S × A, where H
denotes an RKHS defined on X induced by some continuous, positive definite kernel function
k : X × X → R. We also assume that (i) X ⊂ Rd is a compact set, (ii) the kernel function is
bounded k(x, x′) ≤ 1 for all x, x′ ∈ X , and (iii) every f ∈ H has a bounded RKHS norm, i.e.,
∥f∥H ≤ BQH for some fixed positive constant BQ > 0.

4.3 AE-LSVI Algorithm

Our algorithm runs in episodes t ∈ [N] of horizon H . As in the kernel least-squares value iteration
[Yang et al., 2020], at the beginning of every episode t, it solves a sequence of kernel ridge regression
problems based on the data obtained in the previous t−1 episodes to obtain value function estimates
{Q̂t

h}Hh=1:

Q̂t
h ∈ argminf∈H

{ t−1∑
i=1

(
rh(s

i
h, a

i
h) + V t

h+1(s
′
h,i)− f(sih, a

i
h)
)2

+ λ∥f∥2H
}
, (4.3)

where λ is the regularization parameter. Recalling that x ∈ X := S ×A, the solution of the problem
in (4.3) can be written in closed form as follows:

Q̂t
h(x) := kth(x)

T (Kt
h + λI)−1Y t

h , (4.4)

41

where kth(x) ∈ Rt−1, the kernel matrix Kt
h ∈ R(t−1)×(t−1) and observations Y t

h ∈ Rt−1 are given
as follows:

kth(x) := [k(x1h, x), . . . , k(x
t−1
h , x)], Kt

h :=
[
k(xih, x

i′
h)
]
i,i′∈[t−1]

, [Y t
h]i := rh(s

i
h, a

i
h)+V t

h+1(s
′
h,i).

Next, we can also compute the uncertainty function σt
h(·, ·) in the closed form:

σt
h(s, a) =

1
λ1/2

(
k(x, x)− kth(x)

T (Kt
h + λI)−1kth(x)

)1/2
. (4.5)

We recall that each reward function is bounded in [0, 1]. We use [·]H−h+1
0 to denote the truncation

to the interval [0, H − h+ 1] and we define the optimistic Q
t
h and pessimistic Qt

h value estimates
(i.e., upper and lower confidence bound of Q∗

h; see lemma 1 and lemma 2):

Q
t
h(·, ·) :=

[
Q̂t

h(·, ·) + βσt
h(·, ·)

]H−h+1

0
, V

t
h(·) := max

a∈A
Q

t
h(·, a), (4.6)

Q̂t
h(·) := kth(·)T (Kt

h + λI)−1Y
t
h, [Y

t
h]i := rh(s

i
h, a

i
h) + V

t
h+1(s

′
h,i). (4.7)

Similarly, we have

Qt
h(·, ·) :=

[
Q̌t

h(·, ·)− βσt
h(·, ·)

]H−h+1

0
, V t

h(·) := max
a∈A

Qt
h(·, a), (4.8)

Q̌t
h(·) := kth(·)T (Kt

h + λI)−1Y t
h, [Y t

h]i := rh(s
i
h, a

i
h) + V t

h+1(s
′
h,i). (4.9)

Our proposed algorithm AE-LSVI is presented in algorithm 5. At each h, the algorithm uses
optimistic and pessimistic value estimates from (4.6) and (4.8) (computed based on the data collected
in previous episodes), and selects sth and ath as:

sth ∈ argmaxs∈S
[
max
a∈A

Q
t
h(s, a)−max

a∈A
Qt

h(s, a)
]
, (4.10)

ath ∈ argmaxa∈A Q
t
h(s

t
h, a). (4.11)

The main intuition behind the proposed sampling rules is as follows. Since the optimal policy π∗ is
the greedy policy with respect to {Q∗

h}h∈[H], we do not need to learn {Q∗
h}h∈[H] everywhere on

S × A. Hence, it is sufficient to focus on discovering the best actions for each state. Our active
exploration strategy is explicitly designed to focus on (i) states for which the best action is the most
uncertain (eq. (4.10)) and (ii) corresponding best “optimistic” actions (eq. (4.11)).

We use π̂N to denote the final reported policy returned by AE-LSVI (see 5). There are various
reasonable greedy-based choices for π̂N . The simplest one is to return π̂N,h(·) = argmaxa∈A Q̂N

h (·, a),
but in our theory and experiments, we focus on equating π̂N with the policy with the highest lower
confidence estimate Qt

h(s, a). Our sampling strategy combined with the proposed policy reporting
rule allows for discovering an ϵ-optimal policy uniformly over any given initial state as we formally
show in the next section.

4.4 Theoretical Results

We use the structural assumption for the kernel setting from Yang et al. [2020] which states that
the Bellman operator maps any bounded value function to a function with a bounded RKHS norm.

42

Algorithm 5 AE-LSVI (Active Exploration with Least-Squares Value Iteration)

Require: kernel function k(·, ·), exploration parameter β > 0, regularizer λ ≥ 1
1: for t = 1, . . . , N do
2: for h ∈ {1, . . . ,H} do
3: Set Qt

H+1, Q
t
H+1 as the zero functions

4: for h = H, . . . , 1 do
5: Obtain Q

t
h and Qt

h from (4.6) and (4.8)
6: end for
7: Choose sth ∈ argmaxs∈S

[
maxa∈AQ

t
h(s, a)−maxa∈AQt

h(s, a)
]

8: Choose ath ∈ argmaxa∈AQ
t
h(s

t
h, a)

9: Observe the reward rh(s
t
h, a

t
h) and the next state s′h,t ∼ Th

(
· |sth, ath

)
10: end for
11: end for
12: Output the policy estimate π̂N such that π̂N,h(·) = argmaxa∈Amaxt∈[N] Q

t
h(s, a)

Assumption 1. Let BQ > 0 be a fixed positive constant. Let k : (S × A)2 → R be a continuous
kernel function on a compact set S ×A ⊂ Rd such that supx,x′∈S×A k(x, x′) ≤ 1. We assume that
∥T ∗

h Q∥H ≤ BQH for all functions Q : S × A → [0, H] and all h ∈ [H], where T ∗
h denotes the

Bellman optimality operator, i.e.,

T ∗
h Q(s, a) = rh(s, a) + Es′∼Ph(·|s,a)

[
max
a′∈A

Q(s′, a′)
]
. (4.12)

Assumption 1 implies that for every h ∈ [H], both rh(·, ·) and Q∗
h(·, ·) are elements of the set

{f ∈ H : ∥f∥H ≤ BQH}. Conversely, a sufficient condition for Assumption 1 to be satisfied with
BQ = 2 is that {rh(·, ·), Th(s

′|·, ·)} ⊆ {f ∈ H : ∥f∥H ≤ 1} for all h ∈ [H] and s′ ∈ S [Yang
et al., 2020]. Moreover, only assuming Q∗

h ∈ H, ∥Q∗
h∥ ≤ BQH for all h ∈ [H] is not enough in

order to obtain sample size guarantees which are polynomial in H and d [Du et al., 2020].
The main quantity that characterizes the complexity of the RKHS function class in the kernelized

setting is the maximum information gain [Srinivas et al., 2009]

Γk(N,λ) := sup
D⊆S×A,|D|≤N

1
2 ln |I + λ−1KD,D|, (4.13)

where KD,D denotes the Gram matrix, | · | denotes the determinant, λ > 0 is a regularization
parameter, and the index k indicates the kernel. This quantity is known to be sublinear in N for
most of the popularly used kernels [Srinivas et al., 2009].

Further, we define the set of possible optimistic and pessimistic value functions

Q(N,h, b) =
{
Q(·, ·) =

[
Q̂(·, ·)± βσD(·, ·)

]H−h+1

0
:

Q̂ ∈ H, ∥Q̂∥H ≤ 2H
√
Γk(N,λ), β ∈ [0, b], D ⊆ S ×A, |D| ≤ N

}
, (4.14)

where b > 0 and σD(·, ·) is of the form (4.5) computed with a data set D ⊆ S × A, and denote
its ℓ∞-covering number as N∞(ϵ,N, h, b). 1 Our sample complexity bounds depend on bN > 0

1The results on bN hold despite Yang et al. [2020, Lemma D.1] being stated only in the case of the smaller class
obtained from only adding +βσD(·, ·) in the definition of Q(·, ·) in Q(N,h, b) in eq. (4.14).

43

defined as the smallest number that satisfies the following inequality:

8Γk

(
N, N+1

N

)
+ 8 logN∞(H/N,N, h, bN) + 16 log(2NH) + 22 + 2B2

Q

(
N+1
N

)
≤ (bN/H)2

(4.15)

For many kernel functions, bN has a sublinear dependence on N . For instance, bN = O(γH
√
log(γNH))

for bounded and continuously differentiable kernels with γ-finite spectrum and bN = O(H
√
NH log(N)1/γ)

for bounded and continuously differentiable kernels with γ-exponential decay. See [Yang et al.,
2020, Corollary 4.4] for more details.

We recall that the Bellman equation implies that Qt
h+1(·), Qt

h(·) are upper and lower confidence
bounds for Q∗

h for all h ∈ [H], respectively (see lemma 2), while the target functions of kernel ridge
regressions are T ∗

h Q
t
h+1(·) and T ∗

h Q
t
h+1(·). As a technical tool, we use the following concentration

result that follows from [Yang et al., 2020, Lemma 5.2].
Lemma 1. Consider the setup of Assumption 1, and Q

t
h+1(·), Qt

h(·) σt
h(·) from eqs. (4.5), (4.6)

and (4.8) computed with λ = 1 + 1/N and β = bN from eq. (4.15). Then with probability at least
1− (2N2H2)−1, the following holds for all t ∈ [N], h ∈ [H] and all (s, a) ∈ S ×A:

0 ≤ Q
t
h(s, a)− T ∗

h Q
t
h+1(s, a) ≤ 2βσt

h(s, a), (4.16)

0 ≤ T ∗
h Q

t
h+1(s, a)−Qt

h(s, a) ≤ 2βσt
h(s, a). (4.17)

With the previous confidence lemma in place, we state our main theorem that characterizes the
sample complexity of AE-LSVI . The proof is given in appendix C.1.2.
Theorem 3. Consider the setting of Lemma 1 and let H ∈ N be a fixed horizon. When running
algorithm 5 for N episodes, then with probability at least 1− (2N2H2)−1, the best-policy estimate
π̂N (Algorithm 5, Line 12) satisfies:

∥V ∗
1 − V π̂N

1 ∥ℓ∞(S) ≤ 2
√
3βH(H + 1)

√
Γk(N,λ)

N . (4.18)

In other words, for a given fixed precision ϵ > 0, after N = O
(
β2H4Γk(N,λ)

ϵ2

)
episodes (or

O
(
β2H5Γk(N,λ)

ϵ2

)
samples) ∥V ∗

1 − V π̂N
1 ∥ℓ∞(S) ≤ ϵ holds with probability at least 1− (2N2H2)−1.

The obtained result is general since it holds for any kernel function that satisfies Assumption 1.
To obtain concrete kernel-dependent regret bounds it remains to specify the kernel and the bounds
for the corresponding maximum information gain in eq. (4.15). These are summarized in Yang et al.
[2020] for the most widely used kernels (see Assumption 4.3 and its discussion).

In the special case of linear kernels with the feature dimension d, our sample complexity
guarantee reduces to Õ(d

3H7

ϵ2
). Better bounds (in terms of d) for this special case are known

Õ(d
2H7

ϵ2
), see, e.g., Agarwal et al. [2019, Theorem 3.3]. These bounds are obtained by the LSVI

algorithm with D-optimal design. Unlike this algorithm, AE-LSVI uses optimism for active
exploration and such a performance gap is present even in the simpler linear bandit setting where
optimistic algorithms are known to attain worse sample complexity guarantees [Lattimore and
Szepesvári, 2020, Chapter 22]. The special case also includes the linear MDP setting, which
assumes linear reward functions and linear transition kernels. For linear MDPs it is possible to find
a policy π satisfying V1(s1) − V π

1 (s1) ≤ ϵ using Õ(d2H3/ϵ2) samples [Hu et al., 2022]; in our
setting of Assumption 1, such a policy π can be found using O(H5β2Γk(N,λ)/ϵ2) samples [Yang
et al., 2020]. Both results hold with at least a constant probability. However, they require that the
initial state s1 is fixed for all episodes. In contrast, the result of theorem 3 holds uniformly over the
entire state space.

44

4.5 Application to Offline Contextual Bayesian Optimization

In this section, we specialize algorithm 5 to the offline contextual Bayesian optimization setting
[Char et al., 2019]. We show that in this setting the proposed active exploration scheme leads to new
sample complexity bounds that hold uniformly over the context space.

The offline contextual Bayesian optimization setting is similar to the one considered in Sec-
tion 4.2 when H = 1. In particular, instead of having H different functions to learn, we have a
single unknown objective Q∗ : S × A → R that we learn about (from noisy point evaluations).
Here, we refer to S as the context space, and assume that both S and A are compact sets. As before,
we use a shorthand notation X = S ×A. In each round t ∈ [T], the learner chooses a context-action
pair (st, at) ∈ S ×A and observes yt = Q∗(st, at) + ηt (with independent sub-Gaussian noise). To
choose (st, at) at each round t, we make use of the same active exploration strategy from eqs. (4.10)
and (4.11). Our complete algorithm for the offline BO setting can be found in Appendix C.1.3 (see
algorithm 8).

We define Q̂t : S × A → R (and σt : S × A → R) similarly as Q̂t
h (resp. σt

h) from eq. (4.4)
(resp. eq. (4.5)) but with the modification of ignoring the index h and defining Yt := (yi)

t−1
i=1 ∈ Rt−1.

We further define the upper and lower confidence bounds for Q∗ as:

Q
t
(·, ·) = Q̂t(·, ·) + βtσ

t(·, ·), Qt(·, ·) = Q̂t(·, ·)− βtσ
t(·, ·). (4.19)

When Q∗ ∈ H and ∥Q∗∥H ≤ B correspond to some known kernel (such that k(x, x′) ≤ 1 for
all x, x′ ∈ X), then (βt)t∈[T] is a non-decreasing sequence of parameters that can be chosen
according to Abbasi-Yadkori [2012, Theorem 3.11] to yield valid confidence bounds. Similarly, in
case of Q∗ ∼ GPX (0, k) (Bayesian setting), we can utilize Gaussian Process confidence bounds
[Srinivas et al., 2009] and use the corresponding (βt)t∈[T] sequence. In what follows, we assume
that (βt(δ))t∈[T] is a non-decreasing sequence such that with probability at least 1− δ,

Qt(s, a) ≤ Q∗(s, a) ≤ Q
t
(s, a) (4.20)

holds for all t ∈ [N] and (s, a) ∈ S ×A.
Corollary 1. Assume (βt(δ))t∈[T] is set to satisfy eq. (4.20). Fix ϵ ∈ (0, 1) and run Algorithm 8 for

N ≥ 12β2
NΓk(N,λ)

ϵ2
(4.21)

rounds. Then, for every s ∈ S, the reported policy π̂N (·) computed as in Line 6 (Algorithm 8)
satisfies Q∗(s, π̂N (s)) ≥ maxa∈AQ∗(s, a)− ϵ with probability at least 1− δ.

We briefly compare the result obtained in corollary 1 with related results from the literature.
In the Bayesian setting, Char et al. [2019, Theorem 1] obtain a sample complexity that scales as
E[N] = O

(
|S|3|A|Γk(N,λ)/ϵ2

)
in expectation for a given context distribution. In comparison, our

result obtained in eq. (4.21) holds in ℓ∞-norm over the context space (i.e., implies bounds for any
context distribution). When specialized to the finite set X = S ×A and when f ∼ GPX (0, k), the
result of corollary 1 holds with βN = O(log(|X |N2)) [Srinivas et al., 2009], which then results in
N = O

(log2(|X |N2)Γk(N,λ)
ϵ2

)
leading to a significant improvement for large discrete context spaces.

In the setting of distributionally robust Bayesian optimization (DRBO), Kirschner et al. [2020]
obtain a result with the same dependency as ours. However, their bound holds only for a fixed
contextual distribution and degenerates as a function of the distance between the training and test
distributions.

45

4.6 Experiments
4.6.1 Reinforcement Learning Experiments
In the previous sections we presented the AE-LSVI algorithm, which provably identifies a near-
optimal policy in polynomial time given access to a generative model of the MDP dynamics. Here,
we test the AE-LSVI algorithm empirically, and additionally provide one of the first empirical
evaluation of the LSVI-UCB method from Yang et al. [2020] on standard benchmarks. We evaluate
AE-LSVI and LSVI-UCB on four MDPs from the literature as well as four synthetic contextual
BO problems from Char et al. [2019]. We discuss details of our implementation in Appendix C.2.1.

Each environment has a discrete action space. For continuous environments, we discretize the
action space into 10 bins per dimension but model the value function in the original continuous state
and action space. All methods besides DDQN are initialized by executing a random policy for two
episodes. In between exploration episodes, the pessimistic policy π̂N is evaluated by executing it
for 10 episodes in the environment.

Initial State Distribution To evaluate the policies found by each method, we must initialize the
policy at initial states drawn from some distribution p0 at test time. As AE-LSVI does not explicitly
consider the initial state distribution, for each environment we choose both a standard p0 from the lit-
erature as well as a an alternate distribution p′0 that is translated in the state space, i.e., p′0(s) = p0(s−
∆s) for some ∆s. The alternate distribution allows us evaluate the best policy estimate in an area of
state space that is not explicitly given to agents. We evaluate each policy using initial states sampled
from p′0 as a proxy for understanding how well the optimal policy has been identified in regions of the
state space beyond where it was initialized. We give a complete description of the various p′0 for each
environment in Appendix C.2.2. In Table 4.1, we present results for each method and environment
when initialized on p0, which is the typical setup for training and evaluating RL algorithms in the lit-
erature. In Table 4.2 we present results for each method evaluated for the initial state distribution p′0.

Comparison Methods Besides AE-LSVI and LSVI-UCB , we compare against several
ablations and methods taken from the literature. As a naive baseline for performance in active
exploration, we randomly sample state-action pairs from the MDP, evaluate the next states and
rewards, and fit Q-functions to that data as in the other methods, executing the policy given by
the Q-function mean (Random). We also perform uncertainty sampling (US) on the Q-function,
choosing state-action pairs at each step that maximize σt

h(·, ·) as in eq. (4.5). Additionally, we
compare against three online RL baselines: the Double DQN algorithm [Van Hasselt et al., 2016]
where an epsilon-greedy approach is used for exploration (DDQN), the bootstrapped DQN [Osband
et al., 2016b] which keeps an ensemble of Q-functions and does exploration acting according
to a sampled Q-function each exploratory rollout (BDQN), and a greedy exploration algorithm
(Greedy) that chooses argmaxa Q̂

t
h(s, a) at every step h for a given state s but uses the same

value iteration procedure used in the main methods. The experiments are conducted with a default
exploration bonus β = 0.5, however, we also empirically analyze the performance for other β-values
in Appendix C.2.3.

Environments We evaluate all methods on four environments: a Cartpole swing-up problem
with dense rewards, a nonlinear Navigation problem, and two problems (β Tracking and β +
Rotation) in plasma control from Mehta et al. [2022a], in which plasma is driven to a desired target
state. We give further information on the environments used in Appendix C.2.2.

Results As our bound on the value function error uses the ℓ∞(§)-norm, our method provably
finds an approximately optimal policy regardless of the initial distribution. The LSVI-UCB method
is able to quickly learn a policy for the initial state distribution p0 given at training time, as it is
designed to minimize regret on the episodic MDP initialized at p0. This can be seen clearly in

46

Environment AE-LSVI Random US LSVI-UCB DDQN BDQN Greedy

Cartpole 15.2± 0.5 13.6± 0.5 13.6± 0.6 17.1± 0.7 19.3± 0.7 19.0± 0.8 17.2± 0.4
Navigation 6.0± 1.7 6.7± 1.4 8.9± 0.7 12.9± 0.2 7.3± 1.5 7.2± 0.9 10.9± 1.5
β Tracking 12.7± 0.3 11.6± 0.4 11.7± 0.2 13.8± 0.1 13.4± 0.2 13.9± 0.1 12.9± 0.3
β + Rotation 15.2± 0.6 15.2± 0.6 15.1± 0.4 17.8± 0.1 15.1± 0.4 14.2± 0.8 17.9± 0.1

Table 4.1: Average Return ± standard error of executing the identified best policy on the MDP
starting from p0 over 5 seeds after collecting 1000 timesteps of data through the use of a generative
model (left of line) or episodes starting from p0 (right of line).

Environment AE-LSVI Random US LSVI-UCB DDQN BDQN Greedy

Cartpole 16.8± 0.4 12.9± 0.4 14.5± 0.3
12.9± 0.3 15.3± 0.6 16.1± 0.5 13.3± 0.5

(14.2± 0.6) (13.7± 1.3) (13.0± 1.2) (16.7± 0.2)

Navigation 22.3± 0.4 15.3± 0.8 17.5± 1.3
13.6± 0.6 17.1± 2.4 21.4± 1.2 15.2± 1.6

(20.6± 1.1) (18.1± 2.6) (18.4± 2.1) (14.0± 0.8)

β Tracking 14.0± 0.4 9.2± 0.9 12.5± 0.1
13.3± 0.3 13.8± 0.1 14.0± 0.1 12.5± 0.4

(13.7± 0.2) (13.7± 0.2) (13.7± 0.1) (13.8± 0.1)

β + Rotation 14.3± 0.2 12.8± 1.4 13.3± 0.5
10.1± 0.4 12.9± 1.1 13.7± 0.8 12.8± 0.7

(12.7± 0.3) (13.4± 0.3) (12.7± 1.2) (7.5± 0.2)

Table 4.2: Average Return ± standard error of executing the identified best policy on the MDP
starting from p′0 over 5 seeds after collecting 1000 timesteps of data through the use of a generative
model (left) and online RL methods (right). For online methods, numbers without parentheses
refer to training from episodes starting from p0, whereas numbers in parentheses use the uniform
distribution on the state space as initial states during training.

Table 4.1, which shows that after 1000 samples, LSVI-UCB performs the best on nearly every
environment. In the online setting when the start state distribution is known, greedy and ϵ-greedy
methods like DDQN also perform relatively well. We also see in Table 4.1 that AE-LSVI does not
perform particularly well compared to the online methods given the 1,000-sample budget. This is to
be expected, as the online methods naturally collect data that is reachable from p0 and in particular
LSVI-UCB is designed to minimize regret on episodes beginning from p0. However, this focus on
performing well when starting from p0 comes at the expense of active exploration and identifying
the best policy uniformly across the state space.

As shown in Table 4.2, AE-LSVI outperforms the baselines when evaluated on a different
initial state distribution p′0, even when the online algorithms are initialized from a uniform initial
state distribution p0 during training. This is unsurprising, as AE-LSVI is precisely built for this
setting and identifies the best action uniformly across the state space, unlike LSVI-UCB which
aims to minimize regret starting from an initial state distribution. We see that uncertainty sampling
outperforms a random data selection strategy and is comparable to the online methods. However, as
we discuss above (in section 4.3), in general it is the uncertainty in the value of the best action at
a state and not the uncertainty in the value of a state-action pair that needs to be reduced in order
to more efficiently find the best policy. We see that, in general, the online methods perform better
on p′0 when they train on episodes uniformly initialized on the state space. This suggests that in
these cases, it is helpful to make sure that the evaluation distribution p′0 is supported by the training
distribution p0. We also note that (as we describe in Appendix C.2.2) the maximum possible score
on Navigation starting from p′0 is higher than that from p0 due to a starting distribution closer to the
goal. We believe that these results give empirical support to the theoretical claims of Section 4.4.

4.6.2 Offline Contextual Bayesian Optimization Experiments
We test the performance of AE-LSVI (Algorithm 8 in Appendix C.1.3) in the offline contextual
Bayesian optimization setting. In particular, we test the algorithm on the optimization problems

47

0 25 50 75 100
t

10 2

10 1

100

101

M
ax

 S
im

pl
e

R
eg

re
t

Branin 11

AELSVI MTS MEI EI TS RAND REVI

0 25 50 75 100
t

10 2

10 1

100

Hartmann 22

0 25 50 75 100
t

10 3

10 2

10 1

Hartmann 31

0 200 400
t

10 2

10 1

Hartmann 42

Figure 4.1: The maximum simple regret seen in any given context for the offline contextual Bayesian
optimization experiments. The shaded regions show the standard error over 10 different seeds.

presented in Section 3 of Char et al. [2019], each having a discrete context space but continuous
action space. In all experiments, we average over 10 seeds. At the beginning of each experiment,
the values corresponding to five actions, chosen uniformly at random, are observed for each context.
Every time new data is observed, the hyperparameters of the GP are tuned according to the marginal
likelihood. We leverage the Dragonfly library for these experiments [Kandasamy et al., 2020].

Comparison Methods For baselines, we compare against the Multi-task Thompson Sampling
(MTS) method presented by Char et al. [2019], which picks context and action based on the largest
improvement over what has been seen according to samples from the posterior. In addition, we
compare to the strategy of picking the context with the greatest expected improvement. This method
was presented by Swersky et al. [2013], and we refer to it as Multi-task Expected Improvement
(MEI), following Char et al. [2019]. We also compare against the REVI algorithm [Pearce and
Branke, 2018], which picks contexts and actions that will increase the posterior mean the most
across all contexts. Additionally, we show the performance of naive Thompson sampling (TS) and
expected improvement (EI), where contexts are picked in a round robin fashion. Lastly, we show
the performance of randomly selecting contexts and actions at each time step (RAND).

Experiment Tasks To evaluate the method in the case where the objective function is cor-
related in context space, we take a higher dimensional function and assign some dimensions to
context space and the rest to action space. A single GP with a squared exponential kernel is then
used to model the objective function. In particular, the Branin-Hoo [Branin, 1972], Hartmann 4, and
Hartmann 6 [Picheny et al., 2013] functions are used to create Branin 1-1, Hartmann 2-2, Hartmann
3-1, and Hartmann 4-2, where the first number corresponds to the context dimension and the second
to the action dimension. These functions have 10, 9, 8, and 16 equispaced contexts, respectively.

Results Figure 4.1 shows the maximum simple regret seen in any given context as a function
of t values observed. As seen from these plots, AE-LSVI often is one of the best performing
methods. The only task that AE-LSVI struggles on is Hartmann 4-2. We believe that estimating the
amount of improvement to be gained at each context is difficult for this benchmark task. This is
supported by the fact none of the more sophisticated methods outperforms the baseline that applies
EI in a round-robin fashion. It is likely that improved modeling or hyperparameter selection is
needed in order for these methods to achieve the highest performance on this task.

48

5 | Efficiently learning policies from com-
parative feedback by choosing opti-
mal data

5.1 Introduction
The alignment of foundation models with user preferences has gained unprecedented importance
due to the widespread utilization of large language models (LLMs). The established pipeline for
alignment in LLMs, as outlined in Stiennon et al. [2020] and Ouyang et al. [2022], comprises two
essential steps given a pretrained LLM. First, in the Supervised Fine-Tuning (SFT) phase, the LLM
undergoes fine-tuning via supervised learning with examples demonstrating the desired behavior.
In the second step, Reinforcement Learning from Human Feedback (RLHF), a policy generates
multiple completions for each conversation prefix (prompt) in a training set; users then give ordinal
preferences amongst the set of completions for a particular prompt. These preferences are used
to train a ‘reward model’ via a ranking loss like the Bradley-Terry-Luce (BTL) model [Bradley
and Terry, 1952]. Finally, the policy is trained, typically via Proximal Policy Optimization (PPO)
[Schulman et al., 2017], to optimize the reward model while not moving too far from the SFT-trained
policy.

As these models continue to scale and their areas of application broaden, the number of roles
for which we need to align them increases as does the overall scale of human-generated training
data requirements. Data annotation for preference-based learning is already a substantial cost for
companies that train LLMs. This cost is likely to grow alongside the industry. This is especially
acute for LLMs in specialized areas, where the cost of expert feedback can be substantially higher.

In this work, we take advantage of the fact that we control which prompts and completions
we provide to human labelers in order to make efficient use of their efforts. Drawing on recent
advancements in active exploration for reinforcement learning [Li et al., 2023] and in black-
box optimization [Xu et al., 2020], we introduce a method for assessing the value of collecting
preferences on specific datapoints that is both prospective and task-focused. First, we formalize
this setting as a dueling contextual bandit problem and design an efficient algorithm that offers
polynomial worst-case sample complexity guarantees regarding the policy’s performance. Next,
we extend these ideas to a more real-world setting: choosing datapoints for the training of LLM
assistants. Here, we build atop recent work [Rafailov et al., 2023], which allows us to apply active
data selection to an RLHF process using a supervised objective and single model. We evaluate the
method on three datasets: the Stanford Human Preferences dataset [Ethayarajh et al., 2022], the
Anthropic Helpful-Harmless dataset [Bai et al., 2022], and a third dataset (which we contribute to the
literature) that extends an existing dataset of Jeopardy! questions and answers to evaluate the ability
of an alignment method to avoid hallucinations. We find that our algorithm can boost performance

49

by over 10% on the preference datasets when performing RLHF with a modest human-feedback
sample budget, and that our method is best at avoiding hallucinations on our Jeopardy! dataset.

5.2 Related Work
Learning from Comparative Feedback Reinforcement learning from comparative human feed-
back has been studied for more than a decade, including work by Fürnkranz et al. [2012], Akour
[2014] and, notably, Christiano et al. [2017], which enabled sample-efficient collection of human
feedback for deep reinforcement learning (RL) by training a reward model as the RL target. In the
Atari test case, where naive deep RL would have necessitated thousands of hours of gameplay, they
accomplished superior performance with just 5,500 or several hours of human queries.

Many recent approaches have demonstrated the effectiveness of using human feedback to
enhance stylistic continuation [Ziegler et al., 2019], text summarization [Stiennon et al., 2020],
translation [Kreutzer et al., 2018], semantic parsing [Lawrence and Riezler, 2018], review generation
[Cho et al., 2018], and evidence extraction [Perez et al., 2019]. In particular, the work by Bai
et al. [2022] places focus on improving model reliability and robustness by incorporating human
feedback to gauge the helpfulness or harmfulness of its responses. However, while effective, the
integration of human feedback comes with substantial costs. For example, Stiennon et al. [2020]
achieved substantial enhancements over baseline methods but required the generation of summaries
for 123,169 posts from the TL;DR dataset, a task performed by a large team of labelers from
crowdsourcing platforms. This heavy-resource requirement is reflected in state-of-the-art work.
Ouyang et al. [2022] emphasizes RLHF to improve alignment of the GPT-3 model across aspects
such as toxicity, hallucinations, moral opinion, and overall quality. Here, the team enlisted the efforts
of 40 labelers and worked with a dataset comprising over 100,000 examples labeled by humans.

Dueling Bandits The bandit literature has also explored the effectiveness of comparative feedback—
for example, in the “dueling bandit” setting—while considering the cost of acquiring such infor-
mation. This was first studied by Yue et al. [2012] in settings where comparative information
is relatively easy to extract but absolute rewards (i.e., direct queries) are ill-defined and have no
absolute scale. Later, Bengs et al. [2021] surveyed methods used in the online learning setting, where
the trade off with cost of information is most acute, including those used in the online contextual
dueling bandit setting by Dudík et al. [2015]. These constraints motivate a kernelized approach that
can incorporate the nonlinearities in the models used in practice.

Active Contextual Bandit Optimization When there exist distinct phases of learning and then
deployment, an agent can often take steps for improved sample efficiency. For example, in a
contextual bandit setting, Char et al. [2019] consider the problem where at test time the goal is
to perform well on average across a context distribution, while during the learning phase the goal
is to choose both contexts and actions for best performance at test-time. The authors proposed a
multi-task version of Thompson sampling during the training phase, which yields provable regret
bounds. We extend this setting from cardinal to ordinal rewards as is appropriate for comparative
feedback.

In Li et al. [2023], the agent queries contexts where the value function is most uncertain and
acts optimistically. Combined with least-squares value iteration, this method leads to provable
polynomial-sample convergence in the worst-case error of the value function estimate in reinforce-
ment learning in general, and as a corollary the setting from Char et al. [2019] as a special case.
This sets the foundation that we will adapt to the comparative feedback setting.

50

In the realm of ‚active contextual bandits that make use of kernels, previous research has explored
various aspects, including robust objectives [Bogunovic et al., 2018], distributional robustness
[Kirschner et al., 2020, Ramesh et al., 2023], multi-agent learning and mixed strategies [Sessa et al.,
2019, 2020]. However, to our knowledge, none of the methods proposed in these prior studies can
be directly employed in our specific dueling setting.

We also include related work on uncertainty estimation in large language models in Sec. C.8.

5.3 Problem Setting
In this paper, we consider a dueling variant of what we denote the active contextual bandit problem
introduced in Char et al. [2019] that we refer to as ACDB for short. An instance of this problem
is defined by a tuple (X ,A, f) where X denotes the context space, A denotes the action space and
f : X ×A×A → [0, 1] is a preference function so that f(x, a, a′) denotes the probability that the
action a is preferred to the action a′ when the underlying context is x. We also define a domain
D = X ×A. We will design algorithms that operate under the following interaction protocol, which
occurs for T time steps. During each time step t ∈ [T], the agent selects a context xt ∈ X and a
pair of actions at, a′t ∈ A and observes a binary random variable wt ∼ Bern(f(xt, at, a

′
t)) which

equals one if at is preferred to a′t and zero otherwise.
We assume that the preference function takes the following form,

f(x, a, a′) = ρ
(
r(x, a)− r(x, a′)

)
, (5.1)

where ρ : R→ [0, 1] is the link function and r : D → R is the unknown reward function. Common
link functions include the logistic function, which leads to the Bradley-Terry-Luce (BTL) model
[Bradley and Terry, 1952] as well as the Gaussian CDF [Thurstone, 1927]. We also place some
additional assumptions on the reward function for our theoretical analysis in the kernelized setting.

Our objective within this protocol is to design algorithms that are able to quickly identify policies
with a small suboptimality gap. We define the suboptimality gap of a learner’s policy π : X → A as

SubOpt(π) = sup
x∈X

(
sup
a∈A

r(x, a)− r(x, π(x))

)
. (5.2)

We remark that this notion of suboptimality (considered in Char et al. [2019] and Li et al. [2023])
is stronger than usual notions that look at the expected suboptimality of the final policy when the
contexts are sampled from some known distribution. In contrast, the form of suboptimality we
consider here looks at the worst-case context for each policy. For the kernelized and LLM settings
we address below, we will make explicit the instantiation of this problem setting.

5.4 Active Exploration in the Kernelized Setting
In this section, we describe our first contribution—a theoretically principled algorithm for the
ACDB problem—and provide formal guarantees on its performance. In order to provide such
guarantees, we must first instantiate our general problem setup by making assumptions on the
preference function f (from (5.1)). In particular, we need to specify a class of functions that contain
the true unknown reward function. This choice is subtle as we need to balance the trade-off between
the expressiveness of our function class with theoretical tractability. Motivated by its theoretical
popularity and empirical success, we choose this function class to be a Reproducing Kernel Hilbert
Space. While this choice of function class is common in the literature, we take a slight departure
from the standard assumptions in order to more appropriately accommodate our problem setting.

51

“Choose optimistically!”

(1) Select context x (2) Select actions a, aʼ (3) Human feedback

(4) Update dataset: D ← D ∪ {x, a, a ,̓ w}

“Maximize uncertainty!” Is a ≻ aʼ ?

e.g. a, aʼ are responses e.g. x is a prompt

w

Figure 5.1: Illustration of the active contextual dueling bandit setting, and its application to sample-efficient
RLHF in large language models.

The Contextual Borda Function Before going over our assumptions, we first introduce the
contextual Borda function fr, which is core to our algorithm. The contextual Borda function
generalizes the Borda function introduced in Xu et al. [2020] for dueling-choice optimization which
is defined as the probability that a particular action a will be preferred over a random action a′

uniformly sampled from the action space. We generalize this definition to the contextual setting
as follows, given as fr : D → [0, 1] where fr(x, a) = Ea′∼U(A) [f(x, a, a

′)], where U(A) is the
uniform measure over the action space. It is clear from the definition that fr and r will have the
same maximizers.

We now discuss the assumptions we make. Our first assumption restricts the reward and
contextual Borda functions to be ‘smooth’ in an underlying Reproducing Kernel Hilbert Space
(RKHS).
Assumption 2. Let κ : D × D → R denote a positive semi-definite kernel and let Hκ denote its
associated RKHS. We assume that ∥r∥κ , ∥fr∥κ ≤ B, where B is a known constant.

Note that this assumption is stronger than the standard assumption, which only requires that r
has a bounded RKHS norm. It is difficult to bound the norm of fr given a bound on the norm of r
due to the generality of our setting, which allows for different link functions. We investigate this
issue numerically in Appendix C.5 where we find that the norm of the Borda function is almost
always smaller than the norm of the reward function for samples drawn from the distribution of
basis functions used for experiments in Section 5.4.3.

Our second assumption relates the reward function to the contextual Borda function.
Assumption 3. Let f∗

r (x) = maxa fr(x, a) and r∗(x) = maxa r(x, a). There exists a constant L1

such that for every x ∈ X , a ∈ A we have 1
L1

(r∗(x)− r(x, a)) ≤ f∗
r (x)− fr(x, a).

This assumption implies that differences in r will cause a similar magnitude of difference in fr.
In fact, when the link function ρ(·) is Lipschitz continuous, it is sufficient for its Lipschitz constant
to be at least 1/L1 for this condition to hold. We note that this assumption holds for the two most
commonly used link functions, the logistic function [Bradley and Terry, 1952] and the Gaussian
CDF [Thurstone, 1927].

5.4.1 Methods

At a high level, our approach reduces the dueling feedback problem to contextual optimization over
a single action via the contextual Borda function introduced above. Once reduced appropriately,
we apply techniques adapted from recent work on active exploration in reinforcement learning to
construct a sampling rule and policy selection rule which allows us to output a policy with provably
low sub-optimality. Broadly, our sampling rule samples contexts at which there is maximum
uncertainty over the Borda ‘value function’ and then compares the optimistic action with an action
sampled uniformly from the action set.

52

Estimating the Contextual Borda Function By design, we can estimate the contextual Borda
function using preference data {xt, at, a′t, wt} by selecting xt, at in an arbitrary fashion and sam-
pling a′t uniformly at random. For low dimensional settings, our algorithm first estimates the
contextual Borda function using standard kernelized ridge regression (KRR) [Rasmussen and
Williams, 2008]—we refer the reader to Appendix C.3 for an explicit description of this regression
procedure. In Section 5.5, we explore modifications of our methods for higher-dimensional settings,
such as in the case of LLMs. One key feature of KRR is that it provides both an estimate of the
contextual Borda function after t observations, µt(x, a), as well as uncertainty quantification of the
predictions. Indeed, under Assumptions 2 and 3 we can show that |fr(x, a)− µt(x, a)| ≤ βσt(x, a)
for an appropriately chosen β and σt(x, a) (see Lemma 5).

Selecting Contexts and Actions Our sampling rule builds on top of the one established in Li et al.
[2023]—put simply, the rule is to sample the state with the maximum uncertainty over the value
function and then act optimistically. We now present our algorithm which shows how to extend
these ideas to the dueling setting via the contextual Borda function fr.

For now, we assume that there is a known bonus term β
(r)
t for all t. We can then define upper and

lower confidence bounds f t
r(x, a) = µt(x, a)+β

(r)
t σt(x, a) and f t

r(x, a) = µt(x, a)−β
(r)
t σt(x, a).

Our rule is to select a context

xt ∈ argmaxx∈X

(
max
a∈A

f t
r(x, a)−max

a∈A
f t
r(x, a)

)
. (5.3)

Here, we are choosing a context that maximizes the difference between the optimistic ‘value function’
and the pessimistic ‘value function’ (both of which require a maximization over actions to compute).
We then optimistically choose an action

at ∈ argmaxa∈A f t
r(xt, a). (5.4)

After repeating this process T times, we output a pessimistic policy against the tightest lower bound
we can find, which is the maximizer of all our lower bounds through the optimization process. Put
formally, we return π̂N : X → A such that

π̂N (x) ∈ argmaxa∈Amax
t≤T

f t
r(x, a). (5.5)

From these pieces we construct the full active exploration algorithm, AE-Borda, which we present
in Algorithm 6.

5.4.2 Analysis
Before proceeding with our algorithm’s formal guarantees, we first introduce the maximal-information
gain which plays an important role in our results. The maximum information gain over t rounds,
denoted Φt, is defined as

Φt = max
A⊂X×A:|A|=t

I(rA + ϵA; rA), (5.6)

where rA = [r(x)]x∈A , ϵA ∼ N(0, η2I), and I(X;Y) = H(X) − H(X|Y) is the mutual
information. With this definition, we are now ready to state our result.
Theorem 4. Suppose we run Algorithm 6 with

β
(r)
t = 2B +

√
2Φt + 1 + log

(
2

δ

)
, (5.7)

53

Algorithm 6 AE-Borda

1: Input: kernel function κ(·, ·), exploration parameters β(r)
t , number of initial data n0

2: Let Dn0 = {xi, ai, a′i, wi}n0
i=1 for xi, ai, a′i drawn uniformly at random.

3: for t = n0 + 1, . . . , T do
4: Compute µt(·, ·), σt(·, ·) using KRR.
5: Choose xt according to (5.3).
6: Choose at according to (5.4), draw a′t ∼ U(A), and draw wt ∼ Bern(f(xt, at, a

′
t)).

7: Let Dt = Dt−1 ∪ {(xt, at, a′t, wt)}.
8: end for
9: Output a final policy π̂N according to (5.5).

then, with probability at least 1− δ, we have that

SubOpt(π̂T) ≤ O

(
L1√
T

(
B +ΦT

√
log

1

δ

))
. (5.8)

Proof Sketch. At a high-level, the proof of this result is as follows. First, we use standard results
on KRR to show that our choice of β(r) guarantees that our confidence bands contain f r(x, a) with
high probability simultaneously for all t and x, a ∈ X ×A. Next, we use Assumption 3 to show that
the suboptimality of the pessimistic policy induced by our estimated contextual Borda function is
small whenever we are able to estimate the contextual Borda function well. Finally, we conclude the
proof by showing that our sampling rule indeed allows us to estimate the contextual Borda function
well. The full proof can be found in Appendix 4.

Concrete Performance Bounds. To more concretely understand the performance of our algorithm,
we instantiate our results for two commonly studied kernels: the linear and squared-exponential.
For both of these settings, the scaling of the information gain is well known (see for example
Srinivas et al. [2009]). In the linear setting, we have that ΦT = O(d log T) leading to a bound of
O
(

L1√
T
(d log T)

)
. For squared exponential kernels we have ΦT = O

(
log(T)d+1

)
leading to a

suboptimality bound of O
(

L1√
T

(
log(T)d+1

))
.

When compared to existing results for dueling bandits [Xu et al., 2020] as well as standard
bandits [Chowdhury and Gopalan, 2017], we see that our suboptimality bounds match, thus showing
that our algorithm is able to achieve the same performance under a stronger performance metric.

5.4.3 Experiments in the Kernelized setting

In order to assess the validity of our theory we have conducted synthetic experiments that al-
low us to come as close as possible to the theoretical setting and empirically confirm our results.
To do so, we implemented the regression using the BernoulliGP model provided by GPyTorch
[Gardner et al., 2018]. We use a Matérn kernel with automatic relevance detection with hyperpa-
rameters fit via maximum a posteriori optimized by the Adam algorithm [Kingma and Ba, 2014].
We tested on distributions of synthetic reward functions generated by sampling a random linear
combination of Random Fourier Features [Rahimi and Recht, 2007] derived from a squared ex-
ponential kernel. For each sampled reward function r, we used the Bradley-Terry model where
p(w = 1 | a, a′, x) = 1

1+exp(r(x,a′)−r(x,a)) to generate comparison data. For each trial we uniformly

54

sampled n0 = 25 datapoints and then selected data to observe until T = 500 total datapoints had
been collected according to one of three methods:

• AE-Borda: our method, as described in Section 5.4.1.
• Uniform-Borda: uniform sampling of both contexts and actions.
• UCB-Borda: uniform sampling of contexts, along with UCB actions as in AE-Borda.

0.2

0.4

0.6

0.8

1.0

1.2

M
ed

ia
n

R
eg

re
t

ac
ro

ss
C

on
te

x
ts AE-Borda

UCB-Borda

Uniform-Borda

100 200 300 400 500
Time

1.0

1.5

2.0

2.5

3.0

M
ax

R
eg

re
t

ac
ro

ss
C

on
te

x
ts

Figure 5.2: Performance of all methods
across 10 random functions r with 1D Con-
text and 1D action. The top plot shows the
median regret across contexts and the bot-
tom shows the maximum. Error bands show
one standard error.

This last method reduces to the method presented in
Xu et al. [2020] when naively generalized to the con-
textual setting. All methods have the same test-time be-
havior of executing the action found by optimizing the
pessimistic Borda function estimate for the test context.
By optimizing the ground-truth reward function we were
able to approximate the optimal policy and therefore es-
timate the regret of our policy against it. We give an
example of the progression of our method for 1D context
and 1D actions in Figure 5.3 as well as a comparison
against Uniform-Borda and UCB-Borda in Figure 5.2.
One can see that AE-Borda performs best both on median
regret and on the maximum regret, which was the metric
of interest in our theoretical analysis.

It is clear in Figure 5.3 that the method is quickly able
to concentrate samples in regions that could plausibly be
the optimum and it is similarly clear that the peaks in
the acquisition function over contexts are sensible given
the mean and uncertainty estimates of fr. We give a
set of results showing the progression of AE-Borda in
Section C.6.

5.5 Scaling Active Exploration to Large
Language Models
In order to adapt our method to the case where X and A
are both large spaces of sequences as is common in natural
language processing, we must address a few limitations
of the AE-Bordamethod presented in Section 5.4.1:

• The contextual Borda function fr as defined above is unsuitable for an action space that is
extremely large and where most actions are obviously bad (a uniformly sampled sequence of
tokens is trivially distinguishable from natural language).

• Neural network training proceeds in batches and it would be highly inefficient to label and train
on a single example at a time.

• The uncertainty estimation tools in sequence modeling are more limited than those for explicitly
kernelized models, especially due to the memory constraints in training LLMs.

We address these issues through a handful of modifications to our method as we specialize it to the
LLM case. Though these modifications mean that we lose the theoretical guarantees in the previous
section, we assert that given the rates of convergence associated with kernelized approximations
of neural net architectures, we are not giving up strong guarantees in this setting. In particular, we
modify the selection rule given in (5.3) to avoid having to use the Borda function, we naïvely do

55

1.0 0.5 0.0 0.5 1.0
Context

1.0

0.5

0.0

0.5

1.0

Ac
tio

n

Ground Truth Borda Function and Policy

1.0 0.5 0.0 0.5 1.0
Context

1.0

0.5

0.0

0.5

1.0

Ac
tio

n

Estimated Borda Function and Policy

1.0 0.5 0.0 0.5 1.0
Context

1.0

0.5

0.0

0.5

1.0

Ac
tio

n

Estimated Uncertainty Function

1.0 0.5 0.0 0.5 1.0
Context

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Estimated Borda Value Function

Value
Value Uncertainty
GT Value

Visualizing the Borda Function Estimate with 100 Datapoints

Figure 5.3: From left: the ground truth contextual Borda function fr (the red line is the optimal policy), the
mean of our posterior estimate of fr (the red line is the best policy estimate), the uncertainty function σt, and
the value function maxa f

t
r . In the middle two plots, red dots are queries where wt = 0 and green are where

wt = 1. We plot the value function with confidence intervals in blue on right as well as the value function
uncertainty from (5.3) in orange. For a full version of this Figure, see Fig. C.6.

batched subset selection for our training minibatches, and we estimate the uncertainty of our policy
using dropout for uncertainty estimation [Gal and Ghahramani, 2016]. In this section, we build atop
the foundation presented in Rafailov et al. [2023], which avoids training a separate reward model;
this is primarily due to the fact that we prefer to select datapoints based on the estimated uncertainty
of the model used for decision making rather than any proxy.

Direct Preference Optimization Direct Preference Optimization (DPO) [Rafailov et al., 2023]
avoids training a separate reward model based on preferences by instead training the policy directly
on pairwise comparison using a loss that optimizes an equivalent objective despite functionally
behaving like classification. As with PPO [Schulman et al., 2017], this loss depends on a reference
policy, which we take to be the policy derived from the supervised fine-tuning step, πSFT. The loss is
defined as LDPO(πθ;πSFT) = −E(x,a,a′,w)∼D

[
log ρ

(
γ(2w − 1)

(
log πθ(a|x)

πSFT(a|x) − log πθ(a
′|x)

πSFT(a′|x

))]
.

The derivation in Rafailov et al. [2023] also shows that optimizing this objective is equivalent to
training a PPO policy with reward function

r(x, a) = γ log
πr(a | x)
πSFT(a | x)

+ γ logZ(x), (5.9)

where γ is the hyperparameter of PPO scaling the KL penalty, Z(x) is a partition function, and πr
is the policy which optimizes the PPO objective.

An Acquisition Function for DPO We observe as in the original paper that πr is precisely the prob-
ability distribution which DPO is estimating. Therefore, the uncertainty estimates for our DPO policy
are uncertainty estimates for πr and we can use them to give an approximate confidence interval for
r (r and r). Concretely, we need to address the autoregressive nature of x and a in our case. We
will assume a consists of ordered tokens ti and that log π(a | x) =∑ti∈a log π(ti | x, t1, . . . , ti−1).
In our method, we employ dropout for uncertainty quantification. Specifically, the m dropout
masks dj are integrated into the function π(ti | x, t1, . . . , ti−1, dj). During inference, we perform
autoregressive Monte Carlo sampling with dropout enabled, resulting in an ensemble of predictions
with a mean µ(ti | x, t1, . . . , ti−1) =

1
m

∑
j∈[m] log π(ti | x, t1, . . . , ti−1, dj). The standard devia-

tion σ(ti | x, t1, . . . , ti−1) =
√

1
m−1

∑
j∈[m] (log π(ti | x, t1, . . . , ti−1, dj))

2 across this ensemble
serves as an approximation for the model’s epistemic uncertainty. This technique allows us to

56

Algorithm 7 AE-DPO
1: Input: Reference policy πSFT, exploration parameter β, policy constraint weight γ, batch size

b, number of iterations N
2: for t = n0 + 1, . . . , N do
3: Draw an unlabeled batch Bu = {(xi, ai, a′i)} ∼ D.
4: Evaluate α(xi) and let Bl be a batch of the top-b elements of Bu by α value.
5: Collect labels ri and add them to Bl.
6: Update the policy πθ (initialized from the ref.) using a gradient step against LDPO using Bl.
7: end for
8: Output πθ

capture uncertainty in a computation and memory efficient manner without compromising model
performance. Given these estimates, we can compute our upper and lower bounds as follows:

r(x, a) =
∑
ti∈a

µ(ti | x, t1, . . . , ti−1) + βσ(ti | x, t1, . . . , ti−1)− log πSFT(a | x), (5.10)

r(x, a) =
∑
ti∈a

µ(ti | x, t1, . . . , ti−1)− βσ(ti | x, t1, . . . , ti−1)− log πSFT(a | x), (5.11)

for an uncertainty parameter β > 0. In the previous section, we chose contexts according to (5.3).
Here, we define an acquisition function using a similar quantity:

α(x) = max
a∈A(x)

r(x, a)− max
a∈A(x)

r(x, a). (5.12)

In this equation, α(x) is the uncertainty of the state-value function according to x. In choosing the
states where the potential for error in the value achieved is largest, the agent can learn to behave well
in those places. This criterion is similar to that in Li et al. [2023] and provides similar guarantees to
ours for max-regret in the active contextual bandit setting. In situations like ours where we are using
fixed offline datasets, we set A(x) in (5.12) to the set of available responses for a particular action;
otherwise, we use A(x) = A.

An algorithm for active RLHF From here, we use the acquisition function in (5.12) in order to
choose points that are maximally informative. We must do this in batches in order to respect the
constraints of training large models. We address this in the naive fashion, pulling a larger batch of
some size, evaluating α and then choosing the top-b elements in order to address this criterion. We
refer to our full procedure as AE-DPO, and give a description in Algorithm 7.
5.5.1 Experiments using LLMs
In order to evaluate whether our method is able to improve the selection of datapoints in RLHF, we
conduct a set of experiments in which we train LLMs on three datasets using one of four methods.
The goal of our empirical study is to see whether improving the data selection strategy causes the
downstream policy to perform better on a given training task. In order to isolate the effect of the
data selection method, we vary the selection method while largely holding our model and training
procedure consistent. In all the experiments in this section, we compare four methods: DPOAE,
the method we presented in Section 5.5; USDPO, which chooses x that maximize variance of the
log probabilities of completions; DPO, the method from Rafailov et al. [2023], selecting batches
uniformly at random; and SFT, which continues supervised learning with uniformly selected batches.
In our training pipeline, we first train a baseline model with a Llama-7B [Touvron et al., 2023]

57

0 20000 40000 60000 80000 100000

Samples

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

A
ve

ra
ge

W
in

R
at

e
ov

er
C

h
os

en

Average Correct Rate vs. Step for HH

AE-DPO

US-DPO

SFT

DPO

0 20000 40000 60000 80000 100000

Samples

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

A
ve

ra
ge

W
in

R
at

e
ov

er
C

h
os

en

Average Correct Rate vs. Step for SHP

AE-DPO

US-DPO

SFT

DPO

0 20000 40000 60000 80000 100000

Samples

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
at

e
of

N
u

ll
s

G
iv

en
In

co
rr

ec
t

A
n

sw
er

Null Rates in Jeopardy (Incorrect Answer)

AE-DPO

US-DPO

DPO

SFT

0 20000 40000 60000 80000 100000

Samples

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
at

e
of

N
u

ll
s

G
iv

en
C

or
re

ct
A

n
sw

er

Null Rates in Jeopardy (Correct Answer)

Figure 5.4: From left: smoothed win rates against preferred choices in dataset of samples generated from
each policy at end of RLHF training runs across the final four evaluations, and all seeds, on the HH (first)
and SHP (second) datasets. In the latter two plots, we force each policy to generate a (non-null) answer, and
then, conditional on the answer being correct (fourth) or incorrect (third), plot the rate at which each policy
abstains.

architecture using supervised fine-tuning (SFT) on a 40% split of data. We add a dropout layer
before the penultimate linear layer for our uncertainty estimation mechanism and fine tune with
dropout active. Next, we train using each of the four methods for 30000 samples, evaluating every
2048 samples—each time using our initial SFT trained model as a starting point. We give additional
information on our experimental procedures in Section C.10.

We evaluate these methods on three different datasets. The first two, the Anthropic Helpful-
Harmless (HH) dataset [Bai et al., 2022] and the Stanford Human Preferences (SHP) dataset
[Ethayarajh et al., 2022], are taken from the literature. HH contains examples of two kinds:
situations where an assistant needs to be helpful to a user asking a reasonable question and situations
where an assistant should prioritize being harmless as the user is requesting a harmful action. All
completions in HH are machine-generated. SHP is a dataset of Reddit posts with comments in 18
different categories and therefore consists of a broader range of human-generated text, but doesn’t
have the inherent tradeoff of HH. We evaluate policies trained on both of these by checking the rate
at which the policy produces answers which are preferred to the chosen completion for the prompt
in the dataset.

For the completions generated from the HH and SHP prompts, we use GPT-3.5 [Brown et al.,
2020b] to generate winners amongst comparisons between the preferred choices given in the dataset.
We give the prompts we use for evaluation in Section C.9. In Figure 5.2, we see that for the
completions in the later part of our training run, AE-DPO performs best among the methods and
outperforms US-DPO as well as the other baselines that sample uniformly. We believe this to be due
to our acquisition function α, which accounts for the structure of the decision making problem in
choosing which point to query. We do find our results to be noisy—due to the computational expense
of these trials (which we elaborate on in Section C.11), we were not able to run each experimental
baseline for a large number of seeds to further reduce uncertainty in our results.

We also introduce a new Jeopardy! dataset that includes a preference structure that captures
some of the structure of the game while addressing the question of LLM hallucination. We augment
a dataset consisting of 217,000 Jeopardy! questions and answers from HuggingFace [Wolf et al.,
2023] with a plausible incorrect answer, using GPT-3.5. As in the game show, where points are
deducted for an incorrect response, we enforce during training that a correct answer is preferred to
an abstention (the empty string) and both of these should be preferred to the incorrect answer. We

58

found that our models do not learn to provide correct answers at a higher rate through a small amount
of DPO training or additional SFT beyond what is required for them to answer the questions. This is
unsurprising as trivia is intended not to generalize easily; in other words, it’s difficult to imagine
learning that the third US president was Jefferson given training examples of the first two. Instead,
we evaluate policies for this dataset on the rate at which they abstain for questions (“null rate”) where
they counterfactually would have been correct vs where they would have been incorrect. Ideally, the
policy learned would always abstain where it would have been incorrect and never abstain where it
would have been correct. Naturally, this is an important goal in the alignment of LLMs and we hope
to provide a straightforward benchmark for this effort. We include an additional exhibit where we
use the factual nature of this dataset to begin to evaluate the dropout-based uncertainty estimation
techniques we use in appendix C.12.1.

For the Jeopardy! dataset, we checked the probability of an empty generation and whether
it was the most likely token. We generated a nonempty sequence in order to see whether the
generated answer was correct, including as a counterfactual in the cases where the method would
have abstained. We plot this in Figure 5.4, where we see that the AE-DPO method is the only
method that learns to abstain from answering questions (modestly) more often when the model
would have given the incorrect answer. We also find that the standard DPO method quickly learns
not to abstain. No methods abstain more than a couple percent of the time in the case where they
would have been correct. We also plot the results for correctness in Section C.12, which shows that
no model substantially learns new factual information.

59

60

6 | Exploration and Sample-Efficient
RL: Takeaways

In this part, we discussed work done over the past few years exploring the question of how to
collect data that will be maximally valuable for learning good policies. Each of chapter 2, chapter 3,
chapter 4, and chapter 5 gives a method for prospectively evaluating data prior to collecting it and
then leverages that evaluation to make a good choice of what data to collect. These methods are
applicable to different instances of the problem and have different strengths and weaknesses. They
also are justified by somewhat different epistemic grounding. We conclude this part by discussing
these methods in juxtaposition to one another and speculating as to where this field will head.

We began this part with the information-based methods in chapter 2. There, we define a heuristic
acquisition function EIGτ* that estimates the expected information gain about the optimal trajectory
τ∗. This acquisition function is computable in model-based RL settings where the dynamics model is
a Gaussian process. Partly due to this restriction on the class of model and partly due to the superior
data efficiency of model-based methods generally, these methods are the most sample-efficient of
those discussed here. This method also relies on a model-predictive control strategy at deployment
time (and during exploration, for the online TIP variant), so is less suitable for applications where a
low latency is desired.

Next, we presented a strategy for exploration in Bayesian and meta-RL problems based on
the EHIG presented in Neiswanger et al. [2022]. This method is most applicable to metalearning
settings where you don’t mind if your agent attains bad returns during exploration as long as the
test-time policy is good. This is primarily accomplished by masking the returns of the policy
during exploration and instead relying on inference of the expected returns during test time to drive
exploration. We are able to give some simple theoretical arguments that justify the effect of this
change in the tabular setting, but the extension to continuous problems is a heuristic that seems to
work well in our theoretical setting.

In chapter 4, we illustrated the AE-LSVI method, which provably identifies a near-optimal
policy in MDPs and contextual bandits in the active setting. It relies on assumptions that the
value function is bounded in Reproducing Kernel Hilbert Space (RKHS) norm to give polynomial
guarantees on sample complexity. Since the bounds given in this section are of a worst-case nature,
this method is more suitable when it is not clear where in the state or context space the agent will be
initialized. This method also relies on a kernel assumption and a GP estimate (this time for the value
function), so doesn’t give good guarantees for the neural network models used in high-dimensional
spaces.

Finally, in chapter 5 we extended the AE-LSVI idea to bandit settings where comparative
feedback is available. To do this, we first constructed an equivalent of the value function for dueling
bandits. Next, we extended the arguments from the previous section to this case and showed that we

61

were able to attain similar guarantees even when the feedback was from a dueling problem. In order
to do so, we needed some mild assumptions on the form of the link function. To our knowledge,
this is the first efficient algorithm proposed for the offline contextual dueling bandit setting. As this
setting is critical in the alignment of LLMs we extended our algorithm to the case where the function
approximators are large neural network models. Though we abdicate our theoretical guarantees to
do so, we find empirically that these methods perform well in practice.

The works presented here along with the wide literature on exploration give a solid foundation
consisting of a variety of strategies that are suitable to different kinds of problems and come with
differing guarantees. I believe that in the future, exploration and the prospective evaluation of
decision making data will remain critical as AI systems become more sophisticated and integrated.
Special interest will likely be paid to the meta-RL exploration techniques and those for comparative
feedback. Though it is likely that future AI decision making systems have general world knowledge,
there will always be a need to quickly align them to the job to be done. Separately from this, there
will likely always be situations (such as in plasma control) where a policy must be found de novo as
transfer or meta-learning may not be possible. In all these cases, I hope that this work serves as an
inspiration and a tool to practitioners solving important problems.

62

Part II

Sample-Efficient Dynamics Modeling
through Approximate Physical

Knowledge

63

7 | Neural Dynamical Systems

The use of function approximators for dynamical system modeling has become increasingly common.
This has proven quite effective when a substantial amount of real data is available relative to the
complexity of the model being learned [Chua et al., 2018, Janner et al., 2019a, Chen et al., 1990].
These learned models are used for downstream applications such as model-based reinforcement
learning [Nagabandi et al., 2018, Ross and Bagnell, 2012] or model-predictive control (MPC) [Wang
and Ba, 2019]. As an alternative to data-hungry machine learning methods, there is also a long
history of fitting models to a system using techniques from system identification, some of which
include prior knowledge about the system drawn from human understanding [Nelles, 2013, Ljung
et al., 2009, Sohlberg and Jacobsen, 2008]. These models, especially in the gray-box setting, are
typically data-efficient and often contain interpretable model parameters. However, they are not
well suited for the situation where the given prior knowledge is approximate or incomplete in nature.
They also do not generally adapt to the situation where trajectories are drawn from a variety of
parameter settings at test time. This is an especially crucial point as many systems of interest exhibit
path-dependent dynamics which we aim to recover on the fly.

In total, system identification methods are sample efficient but inflexible given changing param-
eter settings and incomplete or approximate knowledge. Conversely, deep learning methods are
more flexible at the cost of many more samples. In work already completed [Mehta et al., 2021],
we make progress towards solving both of these problems by biasing the model class towards our
physical model of dynamics. Physical models of dynamics are often given in the form of systems
of ordinary differential equations (ODEs), which are ubiquitous and may have free parameters
that specialize them to a given physical system. We develop a model that uses neural networks
to predict the free parameters of an ODE system from the previous timesteps as well as residual
terms added to each component of the system. To train this model, we integrate over the ODE and
backpropagate gradients from the prediction error. This particular combination of prior knowledge
and deep learning components is effective in quickly learning the dynamics and allows us to adjust
system behavior in response to a wide variety of dynamic parameter settings. Even when the
dynamical system is partially understood and only a subset of the ODEs are known, we find that
our method still enjoys these benefits. We apply our algorithm to learning models in three synthetic
settings: a generic model of ballistics, the Lorenz system [Lorenz, 1963], and a generalized cartpole
problem, which we use for control as well. We also learn a high-level model of plasma dynamics for
a fusion tokamak from real data. We discuss the related work in section 7.1 and provide a precise
specification of the problem setting in section 7.2.

65

7.1 Related Work

There is a long tradition of forecasting physical dynamics with machine learning. Cressie and
Wikle [2015] lays out ideas from classical statistics for predicting spatiotemporal data. In the deep
learning world, recurrent neural networks and long short-term memory networks have been used for
a long time to address sequential problems Hochreiter and Schmidhuber [1997]. However, these
models struggle with continuous-time data and do not allow for the introduction of physical priors.
Recently, there has been work in learning provably stable dynamics models by constraining the
neural network to have a stable and jointly learned Lyapunov function Manek and Kolter [2020].
We see opportunities to use these techniques in follow up work.

Neural Ordinary Differential Equations As most numerical ODE solvers are algorithms involv-
ing differentiable operations, it has always been possible in principle to backpropagate through the
steps of these solvers dating back to at least Runge [1895]. However, since each step of the solver
involves calling the derivative function, naïve backpropagation incurs an O(n) memory cost in the
number of ODE solution steps, where n is the number of derivative calls made by the solver. Chen
et al. [2018] demonstrated that by computing gradients through the adjoint sensitivity method, the
memory complexity of backpropagating through a family of ODE solvers can be reduced to O(1)
for a fixed network, as opposed to the naive O(n). However, this work only used generic neural
networks as the derivative function and did not consider dynamics. They also provide a PyTorch
package which we have built off of in our work.

There has been some work using neural ordinary differential equations to solve physical prob-
lems. Portwood et al. [2019] used a fully-connected neural ODE with an RNN encoder and decoder
to model Navier-Stokes problems. Rudy et al. [2019] used a neural network integrated with a
Runge-Kutta method for noise reduction and irregularly sampled data. There has also been work
learning the structure of dynamical systems, first with a convolutional-deconvolutional warping
scheme inspired by the solutions to advection-diffusion PDEs [de Bezenac et al., 2018], then with a
Neural ODE which was forced to respect boundary conditions and a partial observation mechanism
[Ayed et al., 2019]. There was also work on constraining a neural network model to respect separa-
ble conservative Hamiltonian dynamics, but like all of the aforementioned methods, this does not
incorporate information about the dynamics of a particular system [Chen et al., 2019]. In general,
none of these methods incorporate prior knowledge as explicitly as including appropriate equations
in the statistical model. Furthermore, many of these methods focus on a specific problem, whereas
we give a way to apply specific knowledge about a variety of problems.

An interesting approach that builds on a previous version of this paper [Mehta et al., 2021] is
developed in Yin et al. [2021], where it is shown that iteratively solving a Lagrangian formulation
of the problem for a fixed set of parameters and varying Lagrange multiplier results in predictions
which maximally use the physical model. Our problem setting is a generalization of theirs in that
we allow the parameters to vary among rollouts and predict them on the fly.

A further generalization is Rackauckas et al. [2020], which treats the whole problem of dif-
ferential equations with missing components as a framework for modeling a very wide range of
settings. We give a more prescriptive architecture for our class of problems and extend the analysis
to a setting with real data as well as showing an application of our model for control.

Machine Learning for Nuclear Fusion: As far back as 1995, van Milligen et al. [1995] showed
that by approximating the differential operator with a (single-layer, in their case) neural network,

66

one could fit simple cases of the Grad-Shafranov equation for magnetohydrodynamic equilibria.
Recently, work has shown that plasma dynamics are amenable to neural network prediction. In
particular, Kates-Harbeck et al. [2019] used a convolutional and LSTM-based architecture to predict
possible plasma disruptions (when a plasma instability grows large and causes a loss of plasma
containment and pressure). There has also been work in the field of plasma control: a neural network
model of the neutral beam injection for the DIII-D tokamak has been deployed in order to diagnose
the effect of controls on shots conducted at the reactor [Boyer et al., 2019b]. Additionally, Boyer
et al. [2019a] used classic control techniques and a simpler model of the dynamics to develop a
controller that allows characteristics of the tokamak plasma to be held at desired levels.

7.2 Problem Setting

Here we deal in dynamical systems ṡ = fϕ(s, a, t) with some parameters ϕ, a conventional
model for system identification problems. The objective is to predict future states given past
states, past and future controls, and prior knowledge of the form of f . We denote s(ϕ, t,a, s0) =
s0 +

∫ t
0 fϕ(s, a, t)dt as the state obtained by integrating our dynamical system around f to time t.

We consider in this section a more general setting and address the problem of prediction and control
over a class of dynamical systems, which we define as the set {ṡ = fϕ(s, a, t) | ϕ ∈ Φ} , where Φ is
the space of parameters for the dynamical system (e.g. spring constant or terminal velocity). We can
generate a trajectory from a class by sampling a ϕ ∼ P (Φ) for some distribution P and choosing
initial conditions and controls. In real data, we can view nature as choosing, but not disclosing, ϕ.
For a particular example j, we sample ϕ ∼ P (Φ) and s0 ∼ p0 and are given controls a indexed as
a(t) and input data {s(ϕ, ti,a, s0)}Ti=0 during training. At test time, we give a shorter, prefix time
series {s(ϕ, ti,a, s0)}T ′

i=0 but assume access to future controls. Then the prediction objective for a
class of systems for N examples for timesteps {ti}TT ′+1 is

ŝ = argminŝ E
s0∼p0)
ϕ∼P (Φ)

[
T∑

i=T ′+1

||s(ϕ, ti,a, s0)− ŝti ||22

]
.

This objective differs from the traditional one in that implicitly, identifying ϕ for each trajectory
needs to be done from the problem data in order to be able to predict the data generated by fϕ.
Similarly, the control problem is

a = min
a

Eϕ∼P (Φ),s0∼p0

[∫ t

0
c(a(t), s(t))dt

]
,

s.t. s(t) = s0 +

∫ t

0
fϕ(s, a, t) dt

for some cost functional c. We will primarily explore the prediction problem in this setting, but as
secondary considerations, we explore robustness to noise, the ability to handle irregularly spaced
input data, and the ability to recover the parameters ϕ which generated the original trajectories. We
will also consider the control problem in a simple setting.

7.3 Methods

We build up the description of our proposed method by first describing the two methods that inspire
it: gray box system identification through optimization [Ljung et al., 2009], and using a Neural ODE

67

x1

⁞
xT′

u1

⁞
uT′

ODE
Solver

xT′

⁞
xT

+System
Parameter
Estimation

xt ut

Prior Knowledge ODEs

g(x) =

Residual Prediction

Figure 7.1: An example Neural Dynamical System. Here, blue boxes are fully connected neural
networks, gray boxes are problem data and output, the green box is the prior knowledge dynamical
system, the purple box is data output by ODE solver to query derivatives, and the black box is an
ODE solver. The ODEs and system parameters are problem dependent, but here we consider the
Lorenz system (defined in Example 1) as an example. Our notation for x is unfortunately overloaded
by our method and the Lorenz system—the x from our method is bolded in the figure.

[Chen et al., 2018] to predict future states in a dynamical system.
To apply grey box optimization [Ljung et al., 2009] to a dynamical system ẋ = fϕ(x, u, t) for

problem data {xti}T
′

t=0, we would use nonlinear least squares [Coleman and Li, 1996] to find

ϕ̂ = argminϕ̂

∑
i

∣∣∣∣∣∣∣∣∫ ti

0
fϕ(s, a(t), t) dt−

∫ ti

0
fϕ̂(s, a(t), t)dt

∣∣∣∣∣∣∣∣ . (7.1)

This makes good use of the prior knowledge component of our system but is prone to compounding
errors through integration and does not leverage data that may have come from alternate system
parameters.

A data driven approach would be to minimize the same objective with a fully connected neural
ODE [Chen et al., 2018] hθ in place of f . However, we find that this procedure requires large
amounts of training data and doesn’t leverage any prior knowledge we might have, though it is
flexible to classes of dynamical systems.

We define a Neural Dynamical System (NDS) by taking the advantages of both these methods in
the setting where we know the full and correct ODEs and then show how to generalize it to situations
where only some ODEs are known or they are approximate. Specifically, a Neural Dynamical System
(NDS) is a class of dynamical systems where a neural network predicts some part of fϕ(s, a, t),
usually parameters ϕ or a term which is added to f .

NDS with Full System Dynamics Consider a class of dynamical systems as defined in Section
7.2 where s ∈ Rn, a ∈ Rm, ϕ ∈ Rdp , dh, dc ∈ N and let θ, ϑ, τ be trainable neural network weights.
Let hθ(st1:T ′ , at1:T) be a neural net mapping state history and control sequence to the dp parameters
of the system ϕ̂ and an embedding bh ∈ Rdh . Also let cϑ(st, at) be a similar network taking a single
state and control that outputs an embedding bc ∈ Rdc . Finally, let dτ (bh, bc) be a network which
takes the two output embeddings from the previous network and outputs residual terms r̂. Intuitively,
we would like to use the observed history to estimate our system parameters, and some combination
of the observed history and current observation to estimate residuals, which influences the design of

68

our model, the neural dynamical system (a visualization of which is shown in Figure 7.1), written

ṡ = gϕ̂(st, at, t)︸ ︷︷ ︸
Prior knowledge

+r̂ ϕ̂, bh = hθ(st1:T ′ , at1:T)︸ ︷︷ ︸
History encoder

bc = cϑ(st, at)︸ ︷︷ ︸
Context encoder

r̂ = dτ (bh, bc)︸ ︷︷ ︸
Residual prediction

(7.2)

where g are domain-specific ODEs which are the input ‘domain knowledge’ about the system being
modeled. Note that if the prior knowledge g is identically zero, this method reduces to the Neural
ODE predictions we discussed at the beginning of this section. We also study an ablated model,
NDS0, which lacks the residual component r̂ and context encoder network dτ . We note here that
the context encoder is intended to potentially correct for model misspecification and noise but in the
noiseless case with a model which is perfect, it may not be necessary. We explore this throughout
Section 7.4.

Example 1: Lorenz system. To illustrate the full construction, we operate on the example of the
the Lorenz system: a chaotic dynamical system originally defined to model atmospheric processes
[Lorenz, 1963]. The system has 3-dimensional state (which we’ll denote by x, y, z), 3 parameters,
ρ, σ, and β, and no control input. The system is given by

ẋ = σ(y − x) ẏ = x(ρ− z)− y ż = xy − βz. (7.3)

For a given instantiation of the Lorenz system, we have values of ϕ = [β, σ, ρ] that are constant
across the trajectory. So, we can instantiate hθ which outputs ϕ̂ = [β̂, σ̂, ρ̂]. We use the DOPRI5
method [Dormand and Prince, 1980] to integrate the full neural dynamical system in Equation 7.2,
with g given by the system in Equation 7.3 using the adjoint method of Chen et al. [2018]. We use
the state xT ′ as the initial condition for this integration. This gives a sequence {ŝt}Tt=T ′ , which we
evaluate and supervise with a loss of the form

Lθ,ϑ,τ ({ŝti}Ti=T ′+1, {sti}Tt=T ′+1) =
T∑

t=T ′+1

||sti − ŝti ||22. (7.4)

Because of the way we generate our input data, this is equivalent to Equation 7.2. We assume in our
setting with full dynamics that the true dynamics lie in the function class established in Equation
7.2. By the method in Chen et al. [2018] we can backpropagate gradients through this loss into the
parameters of our NDS. Then algorithms in the SGD family will converge to a local minimum of
our loss function.

NDS with Partial System Dynamics Suppose we only had prior knowledge about some of the
components of our system and none about others. We can easily accommodate this incomplete
information by simply ‘zeroing out’ the function. This looks like

gϕ(s, a, t) =

[{
g
(i)
ϕ (s, a, t) if g(i)ϕ is known,

0 else.

]
(7.5)

substituted into equation 7.2. In this setup, the residual term essentially makes the unknown
dimensions unstructured Neural ODEs, which still can model time series well [Portwood et al.,
2019].

69

NDS with Approximate System Dynamics For Neural Dynamical Systems to be useful, they
must handle situations where the known model is approximate. This is transparently handled by
our formulation of Neural Dynamical Systems: the parameters of the approximate model ϕ̂ are
predicted by hθ(s1:T ′ , a1:T ′) and the residuals r̂ are predicted by dτ (bh, bc). This is the same as in
the case where we have the correct dynamics, but we remove the assumption of a perfect model.

Example 2: Nuclear Fusion System. In this paper, we apply this technique to plasma dynamics
in a tokamak. In a tokamak, two quantities of interest are the stored energy of the plasma, which
we denote E and its rotational frequency, ω. The neutral beams and microwave heating allow us
to add power (P) and torque (T) to the plasma. The plasma also dissipates energy and rotational
momentum via transport across the boundary of the plasma, radiative cooling, and other mechanisms.
While the detailed evolution of these quantities is described by turbulent transport equations, for
the purposes of control and design studies, physicists often use reduced, volume-averaged models.
The simple linear model (up to variable parameters) used for control development in Boyer et al.
[2019a] is used in this work.

Ė = P − E

τe
ω̇ =

T

nimiR0
− ω

τm
(7.6)

Here, ni is ion density, mi is ion mass, and R0 is the tokamak major radius. We use the constant
known values for these. τe and τm are the confinement times of the plasma energy and angular
momentum, which we treat as variable parameters (because they are!). These are predicted by the
neural network in our model. We again use the model in Equation 7.2 to give us a neural dynamical
system which can learn the real dynamics starting from this approximation in Section 7.4.2.

7.4 Experiments

In the following experiments, we aim to show that our methods improve predictions of physical
systems by including prior dynamical knowledge. These improvements hold even as we vary the
configurations between structured and fluid settings. We show that our models learn from less
data and are more accurate, that they handle irregularly spaced data well, and that they learn the
appropriate parameters of the prior knowledge systems even when they only ever see trajectories.

We use L2 error as our evaluation measure for predictive accuracy as given by Equation 7.4,
though in cases where the absolute errors aren’t very interpretable, we normalize for ease of
comparison. We also evaluate our model’s ability to predict the system parameters by computing
the L2 error, i.e.

∑n
i=1 ||ϕ̂i − ϕi||22. For synthetic examples, we consider the Lorenz system in

(7.3) and a simple Ballistic system modeling projectile motion under a variety of drag conditions.
We learn over trajectories {(sti , ati , ti)}Ti=1 where the sti are generated by numerically integrating
ṡϕ(s, a, t) using scipy’s odeint function [Virtanen et al., 2019], with s0 and ϕ uniformly sampled
from S and Φ, and ati given. Note that ϕ remains fixed throughout a single trajectory. Details
on the ranges of initial conditions and parameters sampled are in the appendix. We evaluate the
synthetic experiments on a test set of 20,000 trajectories that is fixed for a particular random seed
generated in the same way as the training data. We use a timestep of 0.5 seconds for the synthetic
trajectories. On the Ballistic system this allows us to see trajectories that do not reach their peak
and those that start to fall. Since the Lyapunov exponent of the Lorenz system is less than 3, in 16
predicted timesteps we get both predictable and unpredictable data [Frøyland and Alfsen, 1984].
We believe it is important to look at the progress of the system across this threshold to understand
whether the NDS model is robust to chaotic dynamics — since the Lorenz system used for structure
is itself chaotic, we want to make sure that the system does not blow up over longer timescales.

70

We note that ReLU activations were chosen for all feedforward and recurrent architectures, while
in the Neural-ODE-based architectures, we follow the recommendations of Chen et al. [2018] and
use the Softplus. The sizes and depths of the baselines were chosen after moderate hyperparameter
search. We can view the Partial NDS and NODE as ablations of the Full NDS model which remove
some and all of the prior knowledge, respectively. We discuss the training details in section D.1.1
comparison methods in section D.1.2.

7.4.1 Synthetic Experiments

We first present results on a pair of synthetic physical systems where the data is generated in a
noiseless and regularly spaced setting.

Sample Complexity and Overall Accuracy In order to test sample complexity in learning or
fitting, we generated data for a full training dataset of 100,000 trajectories. We then fit our models
on different fractions of the training dataset: 1, 0.25, 0.05, 0.01. We repeated this process with 5
different random seeds and computed the L2 error of the model over a the various dataset splits
seen by the model in Table 7.1. The error regions are the standard error of the errors over the
various seeds. We also see that with small amounts of data, the NDS models greatly outperform
the Neural ODE, but with the full dataset, their performances get closer. This makes sense as the
Neural ODE is likely able to infer the structure of the system with large amounts of data. Also, the
Fully Connected Neural ODE outperforms the other baselines, which we posit is due to the fact
that it implicitly represents that this system as a continuous time dynamical process and should
change in a continuous fashion. From a sample-complexity perspective it makes sense that the
better initialization of NDS should matter most when data is limited. A table of the full results of all
experiments can be seen in Table 7.1.

We notice that the NDS0 slightly outperforms the NDS with higher variance on these systems.
Since it has a perfect model of the system, the residual components aren’t necessary for the model
to perform well, however, there is no way the network can ‘correct’ for a bad estimate.

Curiously, we see on the ballistic system that the partial NDS slightly outperforms the full
NDS in the small data setting, but they converge to similar performance with slightly more data.
A potential explanation for this is that errors propagate through the dynamical model when the
parameters are wrong, while the partial systems naturally dampen errors since, for example, ż only
depends on the other components through a neural network. Concretely this might look like a full
NDS predicting the wrong Rayleigh number σ which might give errors to y which would then
propagate to x and y. Conversely, this wouldn’t happen as easily in a partial NDS because there are
neural networks intermediating the components of the system. We also see APHYNITY (which
fits a min-error parameter and is otherwise very similar to NDS) performs worse than NDS in this
setting.

Parameter Learning without Explicit Supervision For experiments in Figure 2, we stored the
parameter estimates ϕ̂ for the NDS and gray box models and compared them to the true values
to see how they perform in identification rather than prediction. None of these models were ever
supervised with the true parameters. We see in Figure 7.2 that the NDS is better able to estimate the
parameter values than the gray-box method for both systems tested. We believe this is because our
method is able to leverage many trajectories to infer the parameters whereas the gray-box method
only uses the single trajectory.

71

System Lorenz Ballistic
Samples 100,000 25,000 5,000 1,000 100,000 25,000 5,000 1,000

FC 1.06± 0.002 1.39± 0.003 1.694± 0.002 4.692± 0.6 7.8± 1.4 8.3± 1.6 9.2± 2.5 13.4± 3.4
FC NODE 1.205± 0.01 1.233± 0.01 1.27± 0.01 1.917± 0.12 2.53± 0.2 2.6± 0.4 4.8± 0.7 9.7± 1.3
Full NDS 1.004± 0.06 1.087± 0.06 1.14± 0.05 1.42± .05 1.2± 0.1 1.4± 0.2 1.5± 0.2 4.23± 0.3

Partial NDS 1.036± 0.03 1.064± 0.1 1.12± 0.06 1.39± 0.04 1.05± 0.1 1± 0.03 1.48± 0.02 1.9± 0.15
NDS0 1± 0.03 1.075± 0.1 1.13± 0.11 1.36± 0.17 1.2± 0.06 1.35± 0.14 1.45± 0.18 4.3± 0.6

APHYNITY 1.08± 0.03 1.17± 0.05 1.23± 0.04 1.61± 0.07 1.7± 0.1 1.75± 0.13 1.94± 0.18 6.2± 0.4
LSTM 4.98± 0.01 5.98± 0.3 5.99± 0.3 6.13± 0.4 8.5± 1.6 9.2± 1.5 10.1± 2.1 14.9± 1.9

SR 2.3± 0.6 n/a n/a n/a 3.5± 0.3 n/a n/a n/a
GBO 2.8± 0.4 n/a n/a n/a 2.94± 0.3 n/a n/a n/a

Table 7.1: Sample Complexity Results as discussed in Section 7.4.1. Here, the values are normalized
by the smallest reported value for comparison purposes.

Figure 7.2: L2 distance between ϕ and ϕ̂. As the NDS are trained under the usual L2 supervision,
the parameters ϕ̂ of the system approach the correct values.

7.4.2 Fusion Experiments

We explored the concept of approximate system dynamics in a simplified fusion system. We predict
the state of the tokamak as summarized by its stored energy and rotational frequency given the time
series of control input in the form of injected power and torque. As mentioned in Section 7.3, we
have a simplified physical model given by Equation 7.6 that approximately gives the dynamics of
these quantities and how they relate to one another through time. Though there is a lot of remaining
work to apply this model in a real experiment, approaches merging theoretical models with data to
make useful predictions can be embedded into useful controller designs and improve the state of
fusion.

Our full dataset consisted of 17,686 trajectories, which we randomly partitioned into 1000 as a
test set and 16,686 as a training set.1 The data are measured from the DIII-D tokamak via magnetic
reconstruction [Ferron et al., 1998] and charge-exchange recombination spectroscopy [Haskey et al.,
2018]. Similar to our synthetic experiments, we cut each trajectory into overlapping 48 timestep
sections and train on 32 timesteps to predict 16 timesteps. We compare with the same models as in
the previous section, but using our Fusion Neural Dynamical System as described in Equation 7.2
with g given by Equation 7.6. As we discussed above, the dynamics in this equation are approximate.
To illustrate this, we have included the accuracy of the naive dynamics with no learning on our data
with fixed confinement times τe = τm = 0.1s as the Nominal Fusion Model in Table 7.2. We use a

1Data is loaded and partially processed within the OMFIT framework [Meneghini et al., 2015]. We used the
“SIGNAL_PROCESSING” module which has recently been developed for this task and is publicly available on the
“profile_prediction_data_processing” branch of the OMFIT source code. Details of the preprocessing are in the Appendix.

72

Model L2 Error on the Fusion Test Set
FC 4.02± 0.27

FC NODE 1.71± 0.11
Nominal Fusion Model 2.89

NDS with Approximate Dynamics 1± 0.06
NDS0 1.85± 0.09

APHYNITY 1.21± 0.15
LSTM 5.23± 0.43

SR 5.26± 0.35
GBO 2.98

Table 7.2: The performance of our comparison models on the nuclear fusion problem, as discussed
in Section 7.4.2. We again normalize by the smallest value for ease of comparison.

larger fully connected network with 6 layers with 512 hidden nodes to attempt to capture the added
complexity of the problem.

Sample Complexity and Overall Accuracy When comparing our NDS models, the machine
learning baselines, the system ID baselines, and a nominal model from Boyer et al. [2019b], we
see that the Fusion NDS model performs best by a large margin. Although the fully connected
neural ODE performs competitively, it fails to reach the same performance. We speculate that
the dynamical model helps with generalization whereas the fully connected network may overfit
the training data and fail to reach good performance on the test set. Here the NDS0 is unable to
perform well compared to the NDS, as the approximate dynamics mean that the model error is
somewhat catastrophic for predictions. We see however that the NDS0 outperforms the Nominal
Physics Model as it is able to estimate the parameters for each example rather than fixing values of
the parameters for the whole dataset. Similarly, APHYNITY outperforms the nominal model but
underperforms the NDS0, suggesting that the online parameter estimation component is necessary
for good performance.

We see these results as highly encouraging and will continue exploring uses of NDS in fusion
applications.

7.4.3 Control Experiment

We also explored the use of these models for control purposes using model-predictive control
[Camacho and Alba, 2013]. For this purpose, we modified the Cartpole problem from Brockman
et al. [2016] so that there are a variety of parameter values for the weight of the cart and pole as well
as pole length. Typically, a ‘solved’ cartpole environment would imply a consistent performance of
200 from a control algorithm. However, there are three factors that make this problem more difficult.
First, in order to allow each algorithm to identify the system in order to make appropriate control
decisions, we begin each rollout with 8 random actions. The control never fails at this point but
would certainly fail soon after if continued. Second, the randomly sampled parameters per rollout
make the actual control problem more difficult as the environment responds less consistently to
control. For example, MPC (as discussed in Section 1.1.1) using the typical Cartpole environment
as a model results in rewards of approximately 37. Third, all training data for these algorithms
uses random actions with no exploration, which has been seen to degrade the performance of most

73

MSE of Model MPC Returns
Train 5K 1K 5K 1K

FC 0.031± 0.009 0.058± 0.018 52± 3 41± 4
FC NODE 0.028± 0.011 0.049± 0.013 55± 4 46± 3

LSTM 0.081± 0.023 0.092± 0.025 23± 6 25± 8
Full NDS 0.020± 0.006 0.029± 0.007 72± 4 60± 3

Partial NDS 0.022± 0.009 0.033± 0.011 69± 8 55± 6
NDS0 0.023± 0.013 0.028± 0.014 71± 11 57± 8

SR 0.037± 0.023 0.041± 0.015 65± 4 56± 4
GBO 0.046± 0.019 n/a 49± 5 n/a

Table 7.3: Modeling and Control on the EvilCartpole system.

model-based RL or control algorithms [Mozer and Bachrach, 1990].
We then trained dynamics models on this ‘EvilCartpole’ enviroment for each of our comparison

algorithms on datasets of trajectories on the environment with random actions. At that point, we
rolled out trajectories on our EvilCartpole environment using MPC with control sequences and
random shooting with 1,000 samples and a horizon of 10 timesteps. The uncertainties are standard
errors over 5 separately trained models.

As shown in Table 7.3, the NDS algorithms outperform all baselines on the cartpole task for
both the modeling and control objectives. We see that all algorithms degrade in performance as
the amount of data is limited. We notice however that with larger amounts of data (we performed
other experiments with 25,000 and 100,000 samples) the Fully Connected and Neural ODE models
perform as well as the NDS models. We hypothesize that this is due to the fact that the cartpole
dynamics are ultimately not that complicated and with sufficient data unstructured machine learning
algorithms can learn the appropriate dynamics to reach a modestly performing controller as well as
NDS.

7.5 Discussion and Future Work

In conclusion, we give a framework that merges theoretical dynamical system models with deep
learning by backpropagating through a numerical ODE solver. This framework succeeds even when
there is a partial or approximate model of the system. We show there is an empirical reduction in
sample complexity and increase in accuracy on two synthetic systems and on a real nuclear fusion
dataset. In the years since this paper, the physically informed modeling of dynamical systems has
progressed substantially [Karniadakis et al., 2021, Yin et al., 2021]. We hope that this field continues
to improve our understanding of how to synthesize the advantages of first-principles modeling and
of data-driven estimation of complex systems.

74

Part III

Applications of learning in Plasma
Control

75

8 | Plasma Control in Tokamaks

As we mentioned in the introduction, nuclear fusion has extremely attractive properties due to
the energy density of fusion reactions. In this chapter we’ll begin by giving an overview of the
tokamak control problem as I understand it. Next in chapter 9 we discuss an application of BO-style
open loop control design to the design of the plasma current rampdown. We conclude this part
in chapter 10 by discussing some of the other experiments we attempted as well as giving some
broader commentary on applying machine learning to fusion.

We will begin here by motivating the plasma control problem by grounding it in quantities a
power plant operator might care about. Then we discuss the available sensors and actuators, the
concrete process of running a shot, and key limits and constraints of the system. The goal of this
section is that a reader with a background at the level of a typical computer science graduate student
should walk away with an idea of the ‘state of the game board’ in fusion and an idea of what
problems might be meaningful to work on. Much of this information is based on work in Freidberg
[2007], Smith and Cowley [2010], and Walker et al. [2020].

Global energy usage continues to grow rapidly [Jackson et al., 2018] into the present day. As use
of energy correlates with the level of human development [Yumashev et al., 2020], it is imperative
that we find sustainable ways to grow our civilizational ability to harness and direct energy to a wide
variety of ends. Of the technologies currently being contemplated for providing us with energy at
scale, nuclear fusion has a variety of attractive properties:

• Fusion has an extremely high energy density per gram of fuel and should scale to far larger
energy budgets than humanity currently desires.

• By itself, fusion uses no heavy radioactive elements that are needed for the proliferation of
nuclear weapons.

• Fusion is a ‘firm’ energy generation technology and in principle could be depended on
regardless of the weather or circumstances on the grid.

• The radioactive waste produced by a fusion plant would be relatively low-level and easy to
store.

• Fusion plants are passively stable; in the absence of active control input, the reaction will
subside and there is zero risk of a chain reaction.

This is also an exciting time in fusion. The ITER project [Holtkamp et al., 2007], a collaboration
of most major world governments to build a large tokamak in the south of France, is nearing the end
of its construction phase and aims for first plasma this decade and net energy gain from fusion in
the mid-2030s. Advances in plasma physics, computing, and material science have driven research
forward at the existing devices. There has been a substantial growth in private investment, with
a cumulative $6.21B invested in private companies attempting to bring fusion power to market
[Fusion Industry Association, 2023]. With this said, there are still substantial challenges remaining

77

before humanity is able to power substantial amounts of its activities with terrestrial fusion reactors.

8.1 Achieving Net Energy from Fusion

Fusion reactions produce energy because the strong nuclear force leads to an attraction between
nucleons (protons and neutrons) at very short distances that leads to more nuclear binding energy
for larger nuclei (up to iron) than the equivalent nucleons in a pair of smaller nuclei. The majority
of fusion efforts today focus on the D-T reaction between deuterium (hydrogen with a neutron) and
tritium (hydrogen with two neutrons). The D-T reaction proceeds as below:

D+T → 4He + n + 17.6MeV︸ ︷︷ ︸
D-T Fusion

(8.1)

However, it has thus far been extremely difficult to achieve the conditions required for fusion. The
primary difficulty in achieving fusion is that the protons in one nucleus repel the protons in another
nucleus via the Coulomb force, which acts at longer distances than the strong nuclear force. In
order to overcome this repulsion, the nuclei must be heated to very high temperatures exceeding the
ionization energy of the atoms they are part of. Therefore, as part of the process of heating, the gas is
ionized and becomes a plasma. Though a single particle pair will have some relative kinetic energy
and therefore some probability of a reaction upon collision, a volume containing particles will have
a distribution of energies and it is therefore convenient to discuss the volume averaged reactivity of
a plasma, which we write ⟨σv⟩. This quantity depends only on the species of nuclei reacting and
the the temperature. Then the fusion power per unit volume of plasma is PFusion = n1n2⟨σv⟩δW ,
where n1 and n2 are the densities of the 2 species reacting (in m−3) and δW is the energy released
by a single reaction (in the case of D-T it is 17.6 MeV as in eq. (8.1)). Practically, after some steps
of derivation and after substituting known constants for deuterium and tritium, we have that

PFusion ∼ 0.08P 2 MW
m3

, (8.2)

where P is the plasma pressure in atmospheres [Smith and Cowley, 2010].
As the temperatures required to achieve this (around 100M◦C) are too high for any material, the

plasma must be confined by magnetic fields. The most developed design for doing so is a twisted
toroidal shape known as a tokamak. In a tokamak, a plasma current in the toroidal direction is
driven by a central solenoid (CS) via transformer action. Alongside this solenoid, toroidal and
poloidal field coils are used to produce a magnetic field from the sum of these sources such that in a
toroidal volume all field lines eventually close on themselves. These can be seen in fig. 8.3. Since
all particles in the plasma are charged, the plasma organizes itself along these lines and is thereby
confined in the interior of the vessel.

Actuators The heat in the plasma comes from 4 sources:
• Ohmic heating: heat from the fact that the plasma is resistive and has current running through

it.

• Neutral beam injection (NBI): one of the major actuators available to tokamak controllers, the
neutral beams fire beams of high-energy deuterium ions and electrons into the plasma as a
heating source, a fueling source, and a source of torque.

78

• Electron cyclotron heating (ECH): microwaves are fired into the plasma and absorbed by the
electrons with the same resonance frequency. This allows heating to be precisely localized to
within a centimeter or so.

• Fusion reactions as in eq. (8.1) (in future devices).
Besides the currents in each coil, NBI, and ECH, controllers have the ability to control the density
by puffing gas or firing frozen pellets into the reactor. Together, the currents in all coils, the heating
powers, and the density injections comprise the set of actuators A available on a tokamak. The
key question of tokamak control is what to do with them. To date, most reinforcement learning
work Char et al. [2023], Abbate et al. [2021b], Seo et al. [2022] has focused on controlling the
neutral beams and shape parameters. For both of these actuators and each of the others, there are
substantial and varying limitations on usage due to safety and hardware constraints. For NBI, these
limitations include that intermediate beam powers are achieved by modulating the beam on and off
within constraints on the rate of switching, that beams often fail within a particular shot, and that
for various plasma configurations there are limitations on beam power due to safety considerations
[Logan et al., 2023]. There are often limits on the availability of gyrotrons to provide ECH. Similarly
all coils come with current limits and the overall system operates within power constraints.

Observations As a controller to decide what actions to take, it relies on state information recon-
structed from a variety of diagnostics. The state space includes 1-dimensional discretized profiles of
the pressure, temperature, current density, number density, and rotation of the plasma. In addition,
we recieve information on the shape and position of the last closed flux surface, the strength of the
toroidal magnetic field, the inductance, various magnetic measurements, and a wide range of other
physical phenomena. This information comes in at varying frequencies, with direct measurements
of physical phenomena (such as the current) arriving at a much higher frequency than reconstructed
values such as the 1D profiles.

There are a large number of diagnostics on the DIII-Ddevice, as depicted in fig. 8.2. These
include various RF scattering diagnostics, coils that sense changes in the external magnetic field,
diagnostics that vary the neutral beams to measure the radiation response, a motional Stark effect
diagnostic to measure current density, and many others. These give observations of the plasma that
can be used along with known physics to infer the internal quantities of the plasma.

In order to estimate the state (profiles, plasma boundary, etc) from the measurements, the
magnetohydrodynamic equilibrium of the plasma is reconstructed from the sensor measurements
above [Lao et al., 2005]. This is accomplished via an iterative linearization and solution of the
Grad-Shafranov equations subject to the constraints imposed by observed measurements. These
EFITs are computed at a rate of 20 kHz during shots and then at a rate of afterwards at a higher
fidelity. We typically use the outputs of these EFIT calculations for state variables for controllers;
however, one more recent thrust of work aims to directly model the future diagnostic measurements
from the history observed.

Timeline of a Shot In this section, we’ll follow Walker et al. [2020] through the timeline of a
typical shot at DIII-D as an example. A typical day at DIII-D is devoted to one or two experiments.
Experiments are allocated on long-term planning cycles based on a competitive research proposal
process to scientists. The schedule is globally optimized in order to account for the various
configurations needed to accommodate the research program. For example, the beams at DIII-D are
capable of rotating variously in the toroidal and poloidal planes, heating system availability varies
widely, and operations using other species are sometimes conducted.

79

ω−1
LH

τA

Electron Transit
Turbulence

Sawtooth Crash

Island Growth

Energy Confinement
Current Diffusion

10−10 10−8 10−6 10−4 10−2 100 102 (s)

Figure 8.1: Characteristic Timescales of Phenomena in a Tokamak

Once the tokamak is configured for operation in an experiment (a process which includes a
reorganization of the power supply systems of the tokamak to ensure appropriate electricity is
available to support the planned settings and manual adjustment of a high-current patch panel), shots
commence on a 10-15 minute cadence over the course of 4 hours. In that time, the operators orient
themselves to incoming data, debug software and hardware issues, consult with each other and
external resources, and ultimately adjust the settings of the plasma control system (PCS) in order to
pursue their experimental goals. The cognitive load on operators in the control room is high; later in
chapter 10, we discuss other work that takes first steps towards machine-learning driven tools to
assist operators in this environment.

Prior to the beginning of a shot, the toroidal field coil is brought to a constant level and deuterium
gas is puffed into the vessel. At t = 0, the current in the CS is rapidly driven down in order to
induce current in the torus and ionize D atoms via a generated electric field. At this point, the CS
drives the plasma current through transformer action in a linear ramp up to some flat-top level over
about 1s. The poloidal field coils concurrently control the plasma position and shape. The plasma
heats due to Ohm’s law. Additional heating is provided by NBI and ECH over up to 5 seconds of
flat top where the system is driven to and stabilized at experimental conditions. Finally, the current
is brought down by the CS and the shot concludes. The three periods described here are commonly
referred to as the ramp-up, flat-top, and ramp-down phases of the shot.

In this section, we gave a high level description of the timeline of a shot. However, as fig. 8.1
shows, the relevant phenomena for plasma control operate on a wide range of timescales; controllers
must be designed that operate in harmony over this wide range.

Objectives in Plasma Control At an extremely high level, magnetic confinement of plasma
depends on a magnetic force containing the plasma pressure. This ‘magnetic pressure’ is approxi-
mately proportional to B2 for a magnetic field of B Tesla. One measure of the efficiency of such
confinement is the ratio between the plasma pressure and this magnetic pressure, which we denote
β = P

B2/2µ0
for a plasma pressure P in atmospheres. Substituting this definition into eq. (8.2) gives

that PFusion ∝ β2B4. Since the magnetic field is essentially fixed once the tokamak is built, we often
choose to optimize β as our key measure of performance of a plasma, subject to several operating
limits derived from data, physical principles, and engineering design choices.

Limits on Plasma Operating Conditions There are a number of limits observed or derived on
the state of the plasma and therefore of controller designs. These include:

• the Troyon limit [Troyon et al., 1984], which tells us that in a conductive plasma the maximum
β is approximately Ip

aB , where Ip is the plasma current in MA< a is the minor radius in meters
and B the magnetic field in Tesla.

80

Figure 8.2: A panorama of the DIII-D Tokamak with many diagnostic systems labeled.

• the Greenwald limit [Greenwald et al., 1988], an empirically determined limit on the density
of a tokamak plasma. It says that the maximum density nG =

Ip
πa2

when measured in
1020m−3. We often speak of the Greenwald fraction fGW = n

nG
as shorthand to understand

how close the density is to this limit. The Greenwald limit is ‘soft’ and can be exceeded under
certain operating conditions.

• the safety factor limits, which limit how high we can drive current. At a high level, field lines
in a tokamak take a helical path around the major axis with the number of poloidal revolutions
per toroidal one inversely proportional to the plasma current enclosed by the poloidal orbit.
This ratio is known as the safety factor and denoted as the q-profile. Many of the instabilities
that plague tokamaks are due to low values of q. In particular, values below 1 and integral
numbers are particularly problematic.

• Flux consumption limits on steady-state operation: typically, the plasma current is driven
by the change in current in the CS of the tokamak via Faraday’s law. However, there is an
inevitable limit on the flux that can be produced via a change in current in a solenoid. If the
operating conditions of the tokamak require consistent current drive from the solenoid, they
must inevitably allow for operation to pause so that the solenoid can be recharged. This is
inconvenient for operating power plants, and one goal of plasma control is to find operating
regimes that don’t rely on this kind of current drive at steady state and instead achieve the
required current from other sources.

• Materials limits, most notably the heat flux tolerable by the divertor materials. As particles
are vented from the confinement area to an area of the tokamak called the divertor, it will be
exposed to radiation fluxes of the order of 10MWm−2 [Smith and Cowley, 2010]. Jointly
searching for control strategies to ameliorate this and for materials that are durably capable of
tolerating these conditions will be one of the key questions to be answered in future fusion
research.

Disruptions Disruptions, which are sudden and unplanned terminations of plasma confinement,
are the primary adverse event seen in tokamak operations. They can be detrimental to the structure
and operations of a tokamak and operators take care to avoid them. They are typically caused by
exceeding one of the first three limits above, a radiative collapse of the plasma due to impurities, or a

81

Figure 8.3: Left: a schematic drawing of a tokamak and its major magnetic components. Right: a
typical plasma shape at equilibrium. The various boxes labeled with Fs are magnetic coils tasked
with attaining the desired plasma shape.

loss of vertical position control (as we’ll discuss later). One further instability that must be addressed
by future fusion reactors is the neoclassical tearing mode (NTM), a “3D helical deformation of the
plasma around certain flux surfaces where the magnetic field closes on itself in a rational number
of turns around the torus,” [Walker et al., 2020] which can be addressed through effective control
of electron-cyclotron heating systems or avoided entirely through a choice of operating point. For
ITER and future fusion reactors geared towards power generation, disruptions pose a significant
concern. At ITER, the engineering constraints allow for a maximum of 3,000 major disruptions
(equating to 10% of the anticipated full-performance pulses) and 300 vertical displacement events
(VDEs) [Sannazzaro et al., 2009]. Therefore, identifying operating regimes and control strategies
that reduce disruption risk is vital in order to remain within these limits. The physics of disruptions
is poorly understood — most progress of physics during disruptions has been made by solving the
extended MHD equations with codes like NIMROD Sovinec et al. [2004]. But this is expensive and
still does not achieve quantitative accuracy. What’s more, as outlined by De Vries et al. [2011] and
Kates-Harbeck et al. [2019], disruption prediction is a harder task still due to the disparate disruption
causes, so empirical models are the state of the art and are far from perfect Fu et al. [2020b].

8.2 Key Tokamak Control Problems

8.2.1 Shape, Power, and Current Control

Perhaps the simplest control problems on the tokamak are of current, position, and shape. As the
closed-form dynamics of magnetic flux and plasmas are easily understood through the assumption
that the plasma is toroidally axisymmetric, linear controllers which attain the desired plasma shape
by varying the currents through the various coils (as seen in Figure 8.3) are available. The magnetic
controls are typically determined by a linearization of the Grad-Shafranov equation [Walker et al.,
2020]; this field is fairly mature [Pironti and Walker, 2005, Ariola et al., 2008] As we’ll discuss in
section 8.3, recent work shows that it is also possible to train policies via reinforcement learning to
solve this problem. In many other recent applications of machine learning [Char et al., 2019, Abbate
et al., 2021b, Seo et al., 2021], parameters of the target shape set for the low-level controller are

82

used as virtual actuators by the higher-level learning based control algorithm rather than directly
controlling coil currents.

8.2.2 3D Control

There are additional coils on a tokamak designed to address the fact that the magnetic fields and
plasma quantities are not perfectly axisymmetric. In particular, fabrication errors lead to small
deviations in the magnetic field that can be corrected by application of 3D magnetic flux [Reiman
and Monticello, 1991] and even in the absence of these, global 3D instabilities known as Resistive
Wall Modes can form and must be corrected by 3D magnetic control [Ariola et al., 2014]. To
my knowledge, there has not been reinforcement learning research addressing this problem, but it
could potentially be a fruitful application especially as ML work on the core problem of turbulence
progresses [Zhang and Duraisamy, 2015].

8.2.3 Kinetic Control of Plasma

The regulation of key properties of the plasma such as current, temperature, density, rotation, and
pressure is foundational to the eventual success of the fusion project. Improvements in confinement
and power density are driven by advanced modes of operation determined by these factors. The
dynamics of density, temperature, and rotation are determined by the solutions to transport equations
as given in John [2005]. These quantities are challenging to control as the actuation capabilities are
more limited. The story is similar for the control of the current and rotation profiles, where actuators
for both torque and current drive are sparse. Two additional observations add to the challenge of
kinetic control: the profiles are themselves nonlinearly coupled and often share the same actuators
that may need to be applied to multiple objectives in order to regulate the plasma. This suggests a
role for integrated controllers; reinforcement learning is a prime candidate for the development of
such controllers though it also brings difficulties.

8.3 Prior Work

Over the past 5 years, work has begun applying learning-based control to tokamaks. One early work
[Boyer et al., 2018] applies neural network modeling in order to accurately predict the deposition
profile of the neutral beams of the NSTX-U tokamaks in anticipation of control applications. Kates-
Harbeck et al. [2019] trained a very large Fusion Recurrent Neural network to predict instabilities
and disruptions in plasma so that they can be mitigated online. This method showed impressive
generalization to tokamaks that hadn’t been seen before. However, the work did not contain a
major control component itself. In a similar spirit Fu et al. [2020b] successfully trained a tree-based
predictor to notice when disruptions or NTMs were likely to happen in the near future. This work
used a very simple control strategy of decreasing the power when these predictions were made and
was able to avoid some tearing modes and disruptions. The method in Fu et al. [2020b] is able to
avoid some tearing modes and disruptions, but it is not clear how to extend this method to a more
general control strategy. There are several other works [Parsons, 2017, Rea et al., 2019, Boyer et al.,
2021] which apply machine learning to predict disruptions and then attempt control strategies to
avoid them.

One early work by Baltz et al. [2017] begins a line of work applying black-box optimization to
plasma control by using their optometrist algorithm to optimize the parameters of a field-reversed
configuration (a tokamak alternative). Another earlier work by Char et al. [2019] developed an

83

algorithm for contextual optimization of myopic controls for maximizing βN while maintaining
stability on the TRANSP simulator [Breslau et al., 2018]. In another foundational work [Abbate
et al., 2021b], DIII-Ddata was processed and used to train a dynamics model predicting profiles over
time. This model was used for a finite-set controller which drove temperature profiles to a desired
state.

One recent work by Degrave et al. [2022] was able to use a simulator of the magnetic control
problem (what currents to run through electromagnetic coils in order to achieve a desired plasma
shape) with randomized dynamic parameters as an environment in which to train a reinforcement
learning algorithm, MPO [Abdolmaleki et al., 2018], which was able to achieve relatively good
magnetic control in experiments on the TGV tokamak. Works like Seo et al. [2021, 2022], Char et al.
[2023] learn a policy from previously logged data collected by the experiments that have been run on
KSTAR and DIII-D, respectively. These latter works fall under the “offline reinforcement learning”
setting Levine et al. [2020]; there are inherent challenges associated with this setting such as the fact
that the training data was generated by some other policy (fusion scientists running experiments)
rather than the agent. As tokamak time is exceedingly limited, it is in general impossible to train
controllers in an online fashion (on the machine, with opportunity for the agent to learn from its
previous experiences) for fusion applications.

84

9 | Automated Experimental Design of
Safe Rampdowns via Probabilistic
Machine Learning

9.1 Introduction

The termination phase of a shot is an essential part of tokamak operations for all machines present
and future. In this phase, the plasma current is decreased as much as possible while attempting to
avoid disruptions until confinement is eventually lost. Currently, a large fraction of the disruptions
that occur during machine operations occur during this termination phase. For the current generation
of machines, disruptions are usually tolerable because they cause little damage. For ITER and
future fusion reactors geared towards power generation, disruptions pose a significant concern. At
ITER, the specified total number of major disruptions assumed for the design of ITER components
is 3000 (equating to 10% of the anticipated full-performance pulses) Sannazzaro et al. [2009].
Special emphasis is placed on avoiding vertical displacement events (VDEs). In an analysis of future
tokamak power plants Maris et al. [2023], it was found that “the disruption handling requirements
for achieving < $100/MWh LCOE are extreme”. Therefore, identifying operating regimes and
control strategies that reduce disruption risks is vital in order to remain within these limits. The
physics of disruptions is poorly understood — most progress of physics during disruptions has
been made by solving the extended MHD equations with codes like NIMROD Sovinec et al. [2004]
in order to explain observed phenomena. What’s more, as outlined by De Vries et al. [2011] and
Kates-Harbeck et al. [2019], disruption prediction is a harder task still due to the disparate disruption
causes, so empirical models are the state of the art and are far from perfect Fu et al. [2020b].

In the termination (or rampdown) phase, a number of concurrent changes must be made to
the plasma state: the plasma current must be decreased to zero, the auxiliary heating power must
be removed (which will precipitate the H to L-mode back transition and a consequent decrease
in kinetic energy if it has not already occured), and density must decay. While these changes are
occurring, a number of operating and stability limits of the plasma must be respected in order to
avoid disruption and consequent damage to the device. Of paramount importance is the maintenance
of vertical stability (VS), which is related to the inductance ℓi, βp, and the elongation κ as discussed
in de Vries et al. [2017]. The VS limit differs across machines, and at DIII-D benefits from
the presence of poloidal field coils located close to the plasma that can respond quickly. The
Greenwald density fraction fGW = nπa2

Ip
Greenwald et al. [1988] is another key quantity of interest

during the rampdown and can cause disruptions when it exceeds 1 as Ip decreases unless density
concurrently decreases. The Greenwald limit is an idealized quantity and work such as Giacomin
et al. [2022] continues to sharpen our understanding of density limits on different devices under

85

various conditions. Another potential concern during rampdown is the presence of a variety of
MHD instabilities in the plasma, which can cause the plasma to disrupt if they grow too large.
Finally, there is a possibility that the plasma undergoes a radiative collapse, where there is no longer
sufficient kinetic energy to maintain stability. One possible cause of this is excessive radiation due
to impurity accumulation. In this work we explore the optimization of rampdowns using a Bayesian
optimization strategy. Before further explaining the contributions of this paper, we first give some
background on Bayesian optimization in the context of machine learning.

9.1.1 Related Work

Rampdown Optimization Prior works de Vries et al. [2017], Teplukhina et al. [2017] have
addressed the termination phase through optimization and study via models derived from first
principles. In this work, we aim in contrast to address this problem through a machine-learning
based method for rampdown trajectory design. In de Vries et al. [2017], a large scale analysis of the
components of stability of rampdowns was conducted across many of the world’s tokamaks; here, the
goal was to describe and analyze the key physical phenomena that determine whether a rampdown
is successful or disrupts prematurely. The authors identify the relationships between the change in
elongation, decrease in power, and decrease in current that underlie the control developments in this
work. Another study was conducted in Teplukhina et al. [2017], where numerical optimization was
conducted over rampdown trajectories using the RAPTOR simulator. The plasma was successfully
ramped down using the design given from the optimization solution on both the TCV and ASDEX
Upgrade tokamaks. The key differences between that work and this one are that here there is a
data-based approach to rampdown design rather than a simulation-based and there was a large-scale
experimental campaign at DIII-D in contrast to study of a pair of shots on different machines. In Barr
et al. [2021], the authors develop an emergency shut-down procedure which involved transitioning
to a limited topology in order to maintain control down to a safe current level. Our work addresses
the nominal rampdown in a similar spirit, but we use a machine-learning based methodology to
design the trajectory. Finally, in Fu et al. [2020b], the authors propose a machine-learning-based
controller which predicts disruptivity. During the rampdown phase, future disruptivity is predicted in
real time. If at any point the disruptivity prediction exceeds a threshold, an Off-Normal Response is
triggered that begins a fast rampdown of the plasma current in order to disrupt at a safer level. This
feedback control mechanism is complementary to this work—we focus on the design of feedforward
trajectories which avoid disruptions in advance while this method reacts in a closed-loop fashion.

Bayesian Optimization There is a large literature focusing on optimization of black box functions
Frazier [2018]. The usual assumption in Bayesian Optimization (BO) is that the function of interest
f : A → R for some action space A is drawn from a Gaussian process prior or is bounded in the
relevant norm. A typical procedure for BO is to iteratively estimate the function of interest using all
observations, use the estimate to compute an acquisition function α : A → R that prospectively
evaluates the benefit of observing a new datapoint (a, f(a)) at some point in the domain, finding
the maximizer at = argmaxa∈A α(a), and querying the black box function f(at). This process is
repeated until the budget for queries is exhausted. Acquisition functions such as upper confidence
bound optimization Srinivas et al. [2009], Thompson sampling Russo et al. [2018], and expected
improvement Jones et al. [1998] have been developed and analyzed in the preceding decades.
These methods have been applied to optimize functions observed in real systems including in
the feedforward control of robots Tesch et al. [2013], hyperparameter tuning of machine learning
models Kandasamy et al. [2020], and even the design of recipes for chocolate chip cookies Solnik

86

et al. [2017]. This work uses approximate Bayesian optimization to find a feedforward rampdown
trajectory that avoids disruptions.

Many works address a generalization of this setting known as contextual Bayesian optimization
Char et al. [2019] wherein the domains of f and α are augmented with context x in some context
space X and the goal is to find a policy π : X → A that finds optimal actions for each context. This
work does not address the contextual setting though we believe it a promising direction for future
work.

Learning-based Control in Fusion Typically in learning-based control, an agent interacts with
an environment by alternately executing actions and receiving observations. The agent then adjusts
its decision-making policy based on the information it has collected in a way which aims to optimize
some objective. In this work we use ‘agent’ to refer to a generic decision making entity (as in Lu
et al. [2023]) though it is most often used to refer to the reinforcement learning setting. In the
broader machine learning world, the greatest successes of learning-based control methods have
inevitably come when the agent has the ability to collect a large number of samples using its current
policy in the ground-truth environment. This has happened most notably in games like Atari Mnih
et al. [2015], Go Silver et al. [2016], and Chess Silver et al. [2017] but also plays out in domains
where there is a fast and accurate simulator of the system. In Degrave et al. [2022], reinforcement
learning was applied to a simulator of current and shape dynamics in order to find a policy which
was successfully able to achieve a desired shape on the TCV tokamak. However, shape control
is typically achieved using hand-designed and more interpretable controllers Walker et al. [2020]
for the same reason that the simulation was accurate: the underlying dynamics of shape control
are relatively easy to model. For kinetic control or other more challenging problems, the direct
sim-to-real transfer approach may be more difficult. To address this, works like Seo et al. [2021]Char
et al. [2023] learn a policy from dynamics models trained on previously logged data collected by the
experiments that have been run on KSTAR and DIII-D, respectively. These works fall under the
so-called “offline reinforcement learning” setting Levine et al. [2020]; there are inherent challenges
associated with this setting such as the fact that the training data was generated by some other
policy (fusion scientists running experiments) rather than the agent. Another direction that has been
explored is that of finite-set control with a learned model as in Abbate et al. [2021b], where the
controller predicted future states for a finite set of actuator settings and chose the one which was
predicted to be closest to the target temperature profile. Yet another learning-based control method
was deployed in Fu et al. [2020b], where a decrease in injected power was precipitated by a learned
disruptivity model. In each of these works, a model was fit to a static dataset and used to make
control decisions for the tokamak. As tokamak time is exceedingly limited, it is often infeasible to
train controllers in an online fashion (on the machine, with opportunity for the agent to learn from
its previous experiences) for fusion applications.

9.1.2 Contributions

In this work, we took advantage of a rare exception to the preceding statement: during the 2022
operations on the DIII-D tokamak we undertook a (relatively) large-scale study of online data-driven
rampdown designs. This was made possible by our ‘piggyback’ experimental design in which
we were able to vary the parameters of rampdowns at the end of shots for which the primary
experimental data was to be collected during the flat-top phase. After choosing a parameterization
for a feedforward control trajectory and a cost function for the desired rampdown behavior, we
projected historical DIII-D data onto our action space and trained probabilistic models that predicted

87

the cost incurred by the rampdown from the action chosen. We first executed the optimal action
according to the model several times. Then, we began choosing actions according to a handful of
data acquisition functions taken from the Bayesian Optimization literature in order to efficiently
explore the design space of rampdowns. After running a few dozen trials in this way, we executed
the optimal action according to an updated model several times.

With the caveat that we could not control the initial conditions of the rampdowns in our tests, we
found that when compared against the other shots at DIII-D (either those from the same experiments
or the broader dataset) our rampdowns were significantly better at reaching low currents prior to
disruption with a mean current at disruption 2.5x lower than the DIII-D average. The rampdown
designs improved over the course of our experimentation as a general trend and that the final
optimum outperformed the initial optimum found, showing that the exploration was helpful in
improving our estimate of the optimal rampdown. Our methodology is fairly general and could in
principle be used for other feedforward trajectory design problems in plasma control in the future.

In Section 2, we present the rampdown optimization problem setting and discuss the assumptions
made in order to simplify our procedure. Section 3 describes the methods used, including data
processing, machine learning methods, and our experimental protocol. Section 4 presents the results
of our initial modeling exercise as well as a quantitative discussion of our experimental results. In
Section 5, we analyze pairs of shots from the test and control set in order to understand what might
be driving the observed differences in performance. In Section 6, we conclude by discussing the
work in a broader context and give an idea of future directions.

9.2 Method

At a high level, our approach is simple: given an action space A and a cost function C we aim
to find the action a = argmina∈AC(a) by making queries to C using various actions a. In order
to do so, we need to find actions which efficiently search the space of possibilities and take into
account the values of C obtained by executing various actions. At the ith trial, the action ai is
chosen by approximately maximizing some criterion αi(a) which we refer to as an acquisition
function that can be derived from a probabilistic estimate Ĉi of the cost function C. We execute ai
for 1 or more experiments. Then the we run a script to ingest the additional data from the tokamak,
process it so that it can be use to fit another machine learning model Ĉi+1, and generate a new
action by optimizing the acquisition function αi+1. By iterating this process for n iterations we
aim to discover an action â∗ = argmina∈A Ĉn(a) that is the “best guess” for the best action design.
Though this work focuses on the application of this general loop to the rampdown design problem,
it is in principle applicable to a much wider set of problems. There is a diagram of the overall loop
in Figure 9.1.

First in Section 9.2.1, we describe the choices for A and C. Next, in Section 9.2.2, we describe
how we acquire and process the data in order to input it into the machine learning model. Then,
in Section 9.2.3 we discuss the machine learning methods used to estimate C and the acquisition
functions used in the paper. Finally, in Section 9.2.4, we describe the protocol for executing actions
on the DIII-D tokamak in a series of piggyback experiments spanning most of 2022.

9.2.1 Problem Setting

We address the rampdown problem as a Bayesian optimization problem where the action space
A is the space of designs for rampdowns and the cost function aims to capture the damage that
might be done by a particular rampdown. In making this choice, we explicitly ignore the problem

88

Figure 9.1: Diagram of overall method. Here, the process of executing the actions that optimize the
acquisition function and observing their results is shown.

of context–that is, we mostly ignore the state of the plasma at the time the rampdown is initiated
and search for a specific rampdown design rather than a function mapping the plasma state to a
rampdown design. This choice was made for simplicity of modeling and optimization, but we
also note that it is not generally possible to know exactly the state of the plasma at the end of the
flat-top phase prior to the shot. It also was made in light of the fact that we would be running these
experiments in a piggyback capacity after other experiments at DIII-D and therefore we would have
very little control or even information about what the state of the plasma would be at the end of the
flat-top phase. We also are only addressing feedforward control and explicitly leaving the feedback
control to existing systems. This choice allows the flexibility to explicitly change the controller
behavior based on new information without recompiling the plasma control system. We give a
diagram of the overall loop in Figure 9.1.

In order to specify the optimization problem, we must define an action space and an objective
function.

Action Space Stemming from prior work Barr et al. [2021], we decided that it was most practical
to vary three actuators:

• power injected from the neutral beams (pinj)

• current (Ip)

• elongation of the plasma shape (κ)
As a rampdown design requires all of these to be varied in time, we needed a way to parameterize
the trajectory of each of these actuators over time starting from the programmed beginning of the
rampdown. As we aimed to conduct piggyback experiments, we explicitly do not consider any
changes to shot programming prior to the beginning of the rampdown phase. After considering

89

Figure 9.2: Depiction of an example action in our piecewise linear parameterization for current,
elongation and injected power. This example is a stylized drawing of shot 188823.

a handful of methods, we decided on a piecewise linear (PWL) function for each, which we
represented with three parameters: delay (t0), rate (r), and duration (∆t), which we collectively
call θ. We depict these in Figure 9.2. This parameterization also leaves as a free variable the initial
value x0 of each trajectory as these may vary depending on the design of the shot at rampdown.
When we execute a PWL action parameterized by θ in a piggyback, we use the value of x0 from
the beginning of the rampdown in the nominal shot trajectory in order to concretely generate the
feedforward rampdown trajectory. Then for a particular signal xθ(t) starting at time t = 0 with
initial value x0, delay t0, rate r and duration ∆t the value is given by

xθ(t) =

x0 t ≤ t0

x0 − r(t− t0) t0 < t ≤ t0 +∆t

x0 − r∆t t0 +∆t < t.

(9.1)

Since we need a PWL representation of the action for each of our three actuators, our action
representation a ∈ A has a total of nine parameters a = [θpinj, θIp, θκ] that represents the 3D time
series [xθpinj , xθIp , xθκ]

Objective Function The primary goal of a rampdown design is that it is safe against disruptions.
In particular, disruptions at high levels of current are of concern to operations at tokamaks as well
as the uncontrolled release of the various forms of electromagnetic and thermal energy stored in
the plasma. In all applications of machine learning, the design of the objective is especially critical.
One of the fundamental choices is whether to shape the objective function in order to encourage
behavior that is thought to lead to outcomes consistent with the ultimate goal. In other words, one
might add an instrumental goal to the objective function in the hopes of encouraging behavior that
leads to the ultimate goal. This is often done in AI research contexts Hu et al. [2020] by e.g. adding
a reward for advancing toward a target state even though the objective is actually only to attain it.
In this work, we used an objective function with some reward shaping with the ultimate goal of
reducing the current at disruption time. Our cost function for an action a as described above is

C(a) =

(
I
tcq
p

106a
tcq
minorB

)2

+ 10−6W
tcq
MHD + |q095 −min

t>0
qt95| (9.2)

90

where tcq is the time of disruption (as marked by the time at which the current quench occurs),
xθIp(tcq) is the plasma current at the time of disruption, atcqminor is the minor radius at the time of
disruption, B is the magnetic field, W tcq

MHD is the magnetohydrodynamic energy of the plasma at the
time of disruption, q095 is the safety factor 95% of the way to the edge at the beginning of rampdown,
and qt95 is the same safety factor at times during the rampdown.

The first two terms of the objective are the electrical and magnetohydrodynamic energies of the
plasma. These relate to the objective of controlling the plasma to as low of an energy content as
possible before a disruption. The third term penalizes any rampdown where the safety factor, q95,
drops below its initial value over the course of the rampdown. This term is an example of the reward
shaping mentioned earlier: as q95 is a key determinant of the stability of the plasma Chen et al.
[1984], we encourage our agent to keep it from decreasing. Additionally, this reward is roughly
unit-scale, which simplifies the modeling process.

9.2.2 Offline then Online Data Processing

In order to achieve an initial offline estimate of the objective function C, we fit a model to historical
data from DIII-D. The data processing consisted of 3 steps: collection, preprocessing, and featuriza-
tion. In the collection phase, we pulled data about historical DIII-D shots numbered 120000-188814,
which run from 2004 to April 2022. from the MDSPlus database as in Abbate et al. [2021b] in 50ms
windows. In particular, we collected the information about the action space: target plasma current,
injected power from the neutral beams, and elongation as well as for the cost function: safety factor
near the edge (q95), minor radius, and MHD energy as computed by EFIT01. For the cost function
we also collected the time of disruption (as marked by the current quench) and the plasma current at
that time. In order to do so, we used a technique developed in Barr et al. [2021]. The time of current
quench is determined by searching for dIp/dt passing a very high threshold (-14MA/s) for reduction
in plasma current after which the plasma current never recovers. The beginning of this very fast
final Ip drop is the time which the current quench begins, and is used for the current quench time in
this work. It then double checks that this drop was not programmed as part of the desired trajectory
of the shot. In some cases the plasma recovers after a very large transient event. The code ignores
this phenomenon and skips forward to the final (actual) disrupting event.

Finally, we also collected the times at which the rampdowns were programmed to start in order
to know at what time the agent could have begun to modify the controls.

In order to make sure that the data were usable for machine learning, it was preprocessed into
a form that made it suitable for featurization. Much of this involved removing shots which were
unsuitable for use in this study. We removed shots for which any of the following occurred:

• Shot disrupted prior to originally scheduled rampdown or within 50ms of rampdown begin-
ning.

• Shot data in relevant fields contained at least 4 consecutive NaNs (lasting 200ms).

• PWL action projection could not achieve sufficient accuracy (see below).
This left us with 1,173 shots in the original offline dataset from which to perform regression. This
data cleaning procedure was conservative and led to shots being excluded which otherwise could
have been used. This is important in the experimental section where certain experimental shots
did not pass data filtering checks and are therefore excluded as in Figure 9.5. As the experiments
progressed all subsequent shots were appended to the dataset including but not limited to those
where the rampdown was designed by the model.

91

Projecting Historical Data to the PWL action space For each shot retrieved from the DIII-D
database, actuator data is represented as a time series {ui}ki=0 with ut the scalar values of the
actuator every 50ms. For shots which disrupted during the rampdown the lengths for the action
representation were padded as if they had gone to their intended conclusion and disrupted at 50kA. In
order to use PWL representation for the action space, it was necessary to find some PWL parameters
that approximately corresponded to the time series retrieved for each actuator in each shot. Thus we
solved the following optimization problem with the curve fitting library taken from scipy Virtanen
et al. [2020], which uses the Trust Region Reflective algorithm Branch et al. [1999]:

argminθ ||xθ(t)− ut||22
subject to x0 = u0.

This optimization problem is a projection of the time series of each actuator onto the space of
piecewise linear functions. As these coefficients found were to be used as features for the subsequent
machine learning estimation, we discarded the shots for which the projection induced substantial
error. Concretely, these were shots for which ||xθ(t)−ut||22

||ut||22
> 0.1. This was the case for at least one

signal in 34% of the data. The dataset Dn = {(ai, ci)}i∈[n] consisted of the observed actions after
all preprocessing as well as the computed costs.

After performing this optimization and filtering, we fit a machine learning model for C and
choose an action as described below.

9.2.3 Machine Learning Methods

As discussed in Section 9.1.1, there has been a huge amount of work done in the machine learn-
ing community addressing the Bayesian optimization setting. The standard approaches involve
uncertainty-aware regression to learn the function C from observations (a,C(a)). The specific
types of uncertainty required are determined by the acquisition function αi(a) being used.

Uncertainty-Aware Regression Techniques There is a substantial literature of uncertainty-
aware regression techniques Abdar et al. [2021]Psaros et al. [2023]. This work relied on three
representations of predictive uncertainty: epistemic uncertainty, aleatoric uncertainty, and posterior
sampling. Epistemic uncertainty is the uncertainty in predictions that can be reduced by making
observations and performing inference. Aleatoric uncertainty is the irreducible uncertainty in a
prediction, often because the system is itself stochastic. Due to the many unobserved features of
the tokamak at rampdown time, there is substantial uncertainty that could be reduced given perfect
observations but is not captured in the data presented to our model. For modeling purposes, this
is treated this as irreducible given our assumptions. Posterior sampling is a bit different – given
some approximate prior belief over cost functions P (C), and a set of observations Dn, we can
update our beliefs to an approximate posterior P (C | Dn) and sample from it. This process can be
interpreted as choosing from the set of functions that are consistent with the observations Dn given
prior knowledge. Many of the tools developed in BO deal with settings where the black-box function
can be fit well by a Gaussian process regression with some kernel. Even when using empirical
techniques like maximum marginal likelihood kernel fitting, we were unable to find a kernel that
gave reasonable predictive accuracy on our data.

Instead, we used both multilayer perceptrons (MLPs) (following Paria et al. [2022]) implemented
in JAX Bradbury et al. [2018] and gradient boosted trees (GBTs) taken from the Catboost package
Dorogush et al. [2018] alongside probabilistic variations and ensembles composed of these units.

92

Acquisition Function Uncertainty Estimate Required Functional Form of α

Optimum None −Ĉ(a)
Thompson Sampling Posterior Sampling −f(a), f ∼ P (C | D)

LCB Epistemic Uncertainty −Ĉ(a) + βσe(a)

UCB-LCB Epistemic & Aleatoric Uncertainty −Ĉ(a) + β1σe(a)− β2σa(a)

Table 9.1: Data acquisition functions and the corresponding uncertainty estimates required.

In their standard forms, neither MLPs nor GBTs estimate uncertainty. However, this can be easily
solved for each by having the model output the mean (which we write Ĉ(a)) and standard deviation
σ̂(a) of the response variable and training them via maximum likelihood Malinin et al. [2021]. We
follow Chua et al. [2018] in using σ̂(a) for an estimate of the aleatoric uncertainty σa(a), while the
standard deviation of the mean predictions of ensemble members Ĉi(a) can be interpreted as an
estimate of the epistemic uncertainty σe(a). One also can sample a single ensemble member Ĉi(a)
as an estimate of a function sampled from the posterior. At every iteration, the model wa s trained
using all observations that were part of the dataset. Ensembles consisted of 10 members trained on
bootstrapped data sampled with replacement from the training set.

To address the lack of a clear hypothesis over the objective function C, we employed a rotational
strategy with different function approximators for each acquisition function. As discussed below,
this involved periodically switching between various approximators to align with the requirements
of each acquisition function. Concretely, we alternated between MLPs and GBTs and then choose
the probabilistic and / or ensemble variant that would provide the uncertainty estimate required by
the acquisition function being used (see Table 9.1 for these).

Acquisition Functions In order to acquire data that will facilitate black-box optimization, we
rely on probabilistic estimates of the cost function given by Besides choosing the optimum of the
estimated cost function, we used Thompson sampling Russo et al. [2018], lower confidence bounds
Srinivas et al. [2009], and upper / lower confidence bounds as acquisition functions. Thompson
sampling relies on the fact that choosing the optimum of a function sampled from the posterior
is equivalent from sampling from the posterior over optima. Lower confidence bounds use an
optimistic decision rule to choose points at which the model is either overconfident or correct in
its optimism, thereby ruling out parts of the design space which could potentially be good. Upper
/ lower confidence bounds additionally include a penalty for areas of the design space that are
estimated to be highly noisy. As shown in Table 9.1, each of these acquisition functions requires a
particular type of uncertainty estimate.

Each of these acquisition functions has shown state-of-the-art performance on some Bayesian
optimization problems. Given the uncertainty about which function would best suit this application,
we adopted a strategy inspired by Head et al. [2021]: cycling through these functions for each subse-
quent trial. This approach involves selecting a model which provides the appropriate uncertainty
estimate for the specific acquisition function in use at any given trial.

9.2.4 Piggyback Experiments

Throughout the course of 2022, we conducted a campaign of piggyback experiments executing
various rampdown designs after the conclusion of the flat top phase. For experiments for which

93

the session leader (SL) was amenable to our work, the mainline experiment could tolerate some
disruptions, and the authors were available, we collected data based on executing actions chosen
according to an acquisition criterion with maximally up-to-date data. We also made sure to collect
data which used the default rampdown in order to be able to see a useful control set. At DIII-D the
nominal rampdown evolves over time as session leaders modify it, but the default strategy has been
a decrease in current at 1 MA/s and a complete shutdown of beam power very close to the start of
rampdown. The shape is changed to a low-elongation and limited plasma shape around 100ms into
the rampdown. There are often small changes in the vicinity of this design. Within an experiment,
we would first allow the SL to run with no modifications on our end until they were able to achieve
a plasma that lasted until the programmed time of rampdown. For several experiments, this proved
difficult and we were unable to run. Once several trials successfully reached the rampdown phase
we programmed in an action generated by optimizing an acquisition function and executed it several
times. Once it had executed several times, we ran our scripts for ingesting and preprocessing
additional data, generated another action, and executed it as well. This process proceeded across
several run days in 2022.

9.3 Experiments

9.3.1 Initial Modeling Results

The first step was to fit an estimate of our cost function Ĉ to the offline dataset D. We initially
considered models ranging among linear regression, k nearest neighbors, Gaussian processes, GBTs,
and traditional MLPs. Hyperparameter tuning and model selection was conducted using 5-fold cross
validation on a training set consisting of 80% of the training data. GBTs and MLPs performed best
on cross validation. The MLP with learning rate of 3× 10−4 worked well as did CatBoost Dorogush
et al. [2018] with out-of-the-box settings. GBTs achieved 74% explained variance on the test set and
the MLPs were slightly worse at 72%. As can be seen in Figure 9.3, the optimum found in the initial
model calls for a moderately aggressive current rampdown (close to 1.8 MA/s) along with modest
change in elongation and an aggressive decrease in beam power (80MW/s, an immediate shutdown).
The optimum is not as low-cost as the lowest-cost elements due to the fact that the model does not
predict extreme values as well. An analysis of the feature importances showed that the ramp rate
and duration for current were the most important features used to explain the cost function, a result
in line with expectations.

9.3.2 Real-World Performance of Online Bayesian Optimization

After our offline modeling we ran 41 piggyback shots with 16 different synthesized actions across
8 different run days at DIII-D in 2022. The actions were synthesized by optimizing acquisition
functions defined over the GBT and MLP models as described in Section 9.2.3. We aimed to answer
two questions: (1) did our model synthesize better rampdowns than the default at DIII-D? and (2)
could our exploration strategies cause the rampdown designs to improve over time through our
trials? In both cases, the answer was yes, with some complexity in the answer to (2).

To address the first question, we determined 2 potential control sets: all rampdowns on DIII-D
after 2015 (Wide Control) and all rampdowns taken from the same miniproposal (a document which
references a particular experimental allocation in the DIII-D procedures) as our test shots (Same-MP
Control). After removing all shots with missing data, the wide control set was 11,047 shots, the
Same-MP control set was 25 shots and the test set was 29 shots. The latter two covered a wide range

94

0 5000 10000 15000

Ramp Rate (A / ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
os

t

curr target (du/dt)

Data

Grid Search Optimum

0.000 0.002 0.004 0.006 0.008 0.010

Ramp Rate (/ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
os

t

kappa EFIT01 (du/dt)

0 100 200

Ramp Rate (kW/ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
os

t

bmspinj (du/dt)

Figure 9.3: Optimization of a learned model using offline data only. This figure depicts a GBT
model mapping θ to the cost function to all high-quality examples available prior to our experimental
campaign and optimized it via grid search over θ. The plots show the historical observations and the
optimum found for 3 components of θ.

0 2 4 6 8 10

Cost

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
D

en
si

ty
in

D
at

as
et

Distribution over Rampdown Performance

Same-MP Control

Wide Control

Test

0.0 0.5 1.0 1.5 2.0

Plasma Current at Disruption (A) ×106

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
D

en
si

ty
in

D
at

as
et

Distribution over Rampdown Performance

Same-MP Control

Wide Control

Test

Figure 9.4: Performance of comparison sets of rampdowns on cost and current at disruption. These
are empirical cumulative distribution functions, so e.g. the median of the observed samples will be
the value on the horizontal axis where the curve crosses 0.5 on the vertical axis.

95

p-value / Effect Size Same-MP Control Wide Control

Current at Disruption 0.027 / -2.77 1.7× 10−6 / -10.97
Cost 9.9× 10−5 / -2.72 0.018 / -2.79

Table 9.2: Statistical Tests of Rampdown performance. We used the Mann-Whitney U-test on the
disruption currents and costs observed in our experiments to compute the p values shown here. We
report the modified Cohen’s d for effect sizes.

of plasma conditions, with flat top current ranging between 0.6-1.6 MA in the test set and 0.55-1.8
MA in the Same-MP control set and βN ranging between 0.6-2.4 in the test set and 0.4-2.2 in the
control set. The observed currents at disruption as well as the computed costs for these three sets are
shown in Figure 9.4. It is clear by inspection that the shots in the Same-MP control disrupted at a
similar distribution of plasma currents to the broader baseline of DIII-D shots. However, in the test
shots, our method was able to perform significantly better than was observed in either control set.
The mean current at disruption in the test set, 134 kA, was 2.5x smaller than the mean current at
disruption in the control set (336 kA) and 2.9x smaller than that of the Same-MP control (389 kA).

After the conclusion of our experimental campaign, we performed statistical tests to assess
the possibility that our results were the result of random chance. Ideally, we would have chosen
a significance threshold for our statistical results prior to beginning our experimental campaign.
However, we did not do so and can only comment on results after the fact. Based on the p-values
observed in Table 9.2, which give the probability that differences of at least this magnitude could be
observed between samples generated from the same process, it is highly unlikely that our results
were generated by random variation. We also compute the modified Cohen’s d, a measure of the
effect size taken by normalizing the difference between means of two samples by the standard
deviations. Typically, 2 denotes a large effect size Sawilowsky [2009] and each of our comparisons
attains that threshold.

In particular, it was more clear for the Same-MP control that the cost attained by our method
was an improvement compared to the current, while the reverse was true for the wide control. This
might have been due to the fact that the Same-MP control contained more recent shots where the
rampdown has been optimized more for current but not the cost function, leading to improved
performance on the former metric but not the latter relative to the wider control set. It is again
important to note that these results come with the caveat that we could not control much of the
experimental process due to the piggyback experiment design.

Figure 9.5 shows the performance of the test actions over time. The results are mixed. There is
no clear trend in the series of costs (blue) and in fact the last datapoints that are not missing from
our time series have fairly high costs compared to the others (some investigation showed us that this
was due to a drop in q95 immediately at the beginning of the rampdowns). However, the currents
at disruption at the end of each rampdown (red) show a clear downward trend as the experiments
proceeded. This trend suggests that over time the model learned actions that were more reliably able
to bring the shot down to a very low current prior to disruption. One important caveat to note is that
these are modest sample sizes and we do not have perfectly controlled conditions so it is possible
that our results were the result of statistical fluctuations or unobserved factors.

96

0 5 10 15 20 25

Trial Number

0.00

0.25

0.50

0.75

1.00

1.25

C
os

t

0

100000

200000

300000

400000

P
la

sm
a

C
u

rr
en

t
at

D
is

ru
p

ti
on

(A
)

Performance of Rampdown Designs over Time

Figure 9.5: Costs and disruption current observed in test group experiments as trials were conducted.

9.4 Analysis

The previous section gave quantitative results of the rampdown experiments. This section presents
qualitative results and gesture at how the model may have modified the rampdowns in order to avoid
disrupting at high current.

9.4.1 Analysis of Selected Shots

Figure 9.6 shows 3 examples of shots from the test and same-MP control sets in our study that were
taken from the same experiment. The left example depicts a pair of shots (a control shot, 192252,
and a test shot, 192244) where the control shot disrupted at around 700 kA. Though they started
from similar initial conditions, the test shot had a slightly higher ramp rate on Ip and power than
the control shot. The control shot experienced a n = 2 mode that locks around 5200ms and led to
an early disruption. The test shot was able to last longer without such issues until the decreased
current caused the Greenwald fraction to increase and cause a disruption at a much safer current
level. Notably, the test shot 192244 is the shot with the highest current at disruption in our test set
and thus gives a mild failure case of our method.

The second example shows three shots: the control shot 191544 and the test shots 191547 and
191548. It seems likely that 191544 disrupted due to an already-existing n = 1 mode that was
not present in either test shot 191547 or 191548. This example highlights the difficulties in this
piggyback experimental setup: as we’re not controlling the conditions of the flat top we cannot
reproduce the conditions at the beginning of rampdown and reproduce the challenges encountered.
Though these two examples here of very similar rampdowns with slightly slower ramps show good
results it is impossible to know whether they would have survived if given the initial conditions of
191544.

The final example shows a combination of exogenous and endogenous factors causing the plasma
to safely ramp down. The control shot (192024) disrupts almost immediately upon beginning the
rampdown due to what appears to be a locked n = 1 mode. The time of the rampdown was slightly
moved up by the flat-top operators, and our method output a more gradual IP ramp rate. Together
these changes were sufficient to cause the shot to ramp down smoothly to minimal plasma current.

97

Trial Actions

−8

−6

−4

−2

0

dI
dt (MA/s)

dκ
dt (/s)

dP
dt (10MW/s)

Figure 9.7: Rates of change chosen by models
over time for current, elongation, and NBI power.

9.4.2 Action Selection across Experi-
mental Campaign

We also inspected the actions output by the ac-
quisition function optimization in order to un-
derstand whether there were any patterns ob-
servable from the data. Figure 9.7 shows some
components of the action space of particular
interest: the rates of change suggested by the
model for power, current, and elongation. From
this, it is clear that the model quickly gives up
on varying the elongation of the model. This
could be because DIII-D has vertical control
coils that are very capable and close to the
plasma and therefore the model doesn’t find
a decrease in elongation necessary to maintain
vertical stability. A similar study on a different
device with less vertical stability control (ITER,
for example) might therefore lead to a ramp-
down design that relies more heavily on elongation than ours. In many shots, there is an unactuated
decrease in elongation as current drops (see Figure 9.6 for examples) and perhaps the model was
able to infer the necessary relationships between the control requests and the eventual outcomes.
The model explores a range of aggressive Ip ramp rates prior to converging to a healthy but less
aggressive ramp rate around 1.2 MA/s. The model also widely explores various settings for the rate
of change of power. The model seems to be somewhat confounded by the range of initial power
settings at the start of rampdowns, which are part of the context for each shot that the model does not
recieve. If the context had been included in the model, we would expect to see a more convergent
process for injected power. This is a three-dimensional slice of a nine-dimensional action space so
there are six additional axes of exploration not shown here. In the future we hope to extend these
methods to include context and in fact to potentially move to closed-loop control in order to respond
to developments in real time. We’d also potentially attempt to control density in order to address an
unaddressed cause of disruptions (the Greenwald limit) from the current setup.

9.5 Discussion

We conclude with a discussion of piggyback experiments using machine learning more generally.
As ML methods are data-hungry and tokamak time is scarce, it is necessary to either use offline
data or to find applications like this one where nonstandard opportunities are available to run
experiments. We aimed to keep the experimental and machine learning protocol as constant as
possible as experiments progressed. As discussed in Section 9.3, reward shaping actually made
experiments and analysis more difficult to run. We encourage practitioners trying similar setups
in the future to keep things as simple as possible in all aspects, including the data used in decision
making and reward computation, the codebase for ingesting data and updating the models, and in
the success criteria. It was crucial to keep a fixed experimental protocol on our end in the face of the
variation inherent in tokamak operations. ML-driven control of tokamaks is a promising direction

98

and we hope that our study design is instructive alongside our results. In settings where protocols for
rampdowns are not available, as with new machines that don’t have these procedures, these methods
might prove particularly valuable in exploring possible trajectory designs.

In the previous section, we discussed the ‘convergence’ of certain components of the actions
chosen to some reference values. There is a large literature Srinivas et al. [2009], Chowdhury
and Gopalan [2017], Frazier [2018], Russo et al. [2018] discussing the rates of convergence of
the various data acquisition methods used here in formal settings. Many of them can be tuned in
order to achieve a desired confidence bound or even to work backward from a known horizon of
experimentation. Throughout our study, we were highly uncertain about the number of trials we
would be able to execute due to scheduling and machine operation questions that are familiar to all
tokamak experimentalists. This made the question of how to tune our acquisition strategy slightly
more difficult.

This work aimed to find a rampdown trajectory that improved the existing one at DIII-D by trial
and error using strategies from black-box optimization. In experiments over the course of 2022 we
conducted trial rampdowns as piggybacks and updated our model with new observations as they
came in. Our rampdowns were able to bring the plasma current down to an average value 2.5x
smaller than is typical at DIII-D and, based on our statistical tests, our results are unlikely to be due
to chance. However, as we could not control the plasma state at the beginning of rampdown it is
difficult to decouple disruptions due to physical phenomena present at this time from disruptions
due to poor control.

One exciting direction for future research is in attempting a similar experimental campaign
without the benefit of the existing DIII-D database but perhaps with the use of first-principles driven
simulators such as those being used for the development of ITER Kessel et al. [2007] and SPARC
Rodriguez-Fernandez et al. [2020]. Although the specific rampdown design we developed in this
work is unlikely to transfer to those devices, it is possible that a procedure like this one could be used
to support the commissioning of rampdowns at each. The efficient and robust commissioning of
rampdowns for these devices will be an important part of their successful operation within disruption
constraints. Simulating those conditions could help us understand the effectiveness of these methods
in a more realistic setting. With all this considered, we see ample opportunities for additional work
of this nature, both in continuing to optimize and better understand rampdowns on DIII-D and at
other machines and in applying active machine learning methods to other control tasks in fusion
research.

99

0.0

0.5

1.0

1.5

I p
(A

)

×106

Ip

Ip target

0.00

0.25

0.50

0.75

1.00

1.25

1.50

f G
W

192252

192244

191544

191547

191548

192024

192029

0

5

10

15

20
n1rms

n2rms

n3rms

onsbradial

0

1

2

3

4

5

6

li
κ

q95

4600 4800 5000 5200 5400

Time (ms)

0.0

0.5

1.0

1.5

P
ow

er
(W

)

×107

NB

Radiated

3500 4000 4500 5000 5500 6000

Time (ms)
4000 4500 5000 5500 6000

Time (ms)

Selected Paired Shots from Control and Test Group

Figure 9.6: Selected paired shots from the test and control sets. Orange is test group and blue/green
are control. Shot numbers are given in the second row.

100

10 | Future prospects for applications
of AI to Fusion

Over the past few years, we have seen initial applications of learning-based control to robotics
as discussed in section 8.3. Though a number of works have achieved results worth noting, in
general plasma control has not seen substantial utilization of these learning-based methods by fusion
practitioners and plasma physicists. In this part, I’ll give context on some of the underlying reasons
for this through a critical view of my own experiences in the hope that future researchers will benefit
from frank discussion of the challenges involved. In contrast to chapter 8, here I’ll focus on the
practical aspects of fusion research. As an illustrative example, I’ll give some color on an experiment
I ran in 2023 on DIII-D which was largely unsuccessful. Next, I’ll discuss what I think it will take
to really ‘move the needle’ in fusion; what are the key problems that are keeping us from a future
powered by magnetically confined fusion? Finally, I’ll synthesize these perspectives and give some
commentary on where AI (taken in a more general spirit) can be helpful to this process. Here, I’ll
discuss recent work we conducted as a first step to taking advantage of advances in NLP in order to
aid tokamak operators.

10.1 Challenges in applying AI to fusion

In this section I’ll give a description of the process of running an experiment at DIII-D and the
constraints that this process and the general operation of the machine impose on the application
of machine learning. Though things vary somewhat between devices, DIII-D serves as a good

Figure 10.1: The DIII-D tokamak (left) and one of its 4 neutral beams (right) as of July 2022.

101

example. At DIII-D, experiments are allocated on multi-year planning cycles. This is required due
to a number of constraints on materials, maintenance, human capital, and travel. The experiments
range from a half day to 2 days of tokamak time. Typically a ‘day’ of tokamak time is 8 hours of
operations, where the tokamak fires for ∼ 5 seconds and then takes about ten minutes until it is
ready to fire again. Data from the previous shot arrives intermittently over the first couple minutes
into a computer system [Stillerman et al., 1997] from which humans or scripts can pull it. A typical
experiment builds atop a ‘reference shot’ taken from a prior experiment. This is useful as there are
such a large number of options in tokamak configuration and trajectory design that could be explored
that scientists usually start from a known-good initialization and make incremental changes. Often
it takes several tries to reasonably reproduce the reference shot, a phenomenon that is obvious in
light of fig. 10.1, which highlights how many components are part of this system. Each of these can
fail; in fact, hardware failures happen during essentially every experiment.

In order to run a learned policy consisting of a machine learning model, the model must first be
integrated into the PCS [Humphreys et al., 2005]. At DIII-D, the PCS is written in a subset of C.
To solve the problem of compiling policies to this subset, Conlin et al. [2021] built the Keras2C
framework, which compiles a subset of Keras down to C that can be included in the PCS. However,
this process requires that the parameters of the network are given at compile time. Though it is in
principle possible to fix the network structure and load parameters from a file at runtime, to my
knowledge no experiments of this kind have been conducted on a tokamak. Experiments of this
kind would allow for closed-loop controllers that learn from each trial.

The PCS is configured between shots by operators to the specification of the experiment’s session
leader. This primarily consists of operators adjusting waveforms corresponding to the settings of
lower-level controllers that handle the neutral beams, the plasma shape, the current, and several
other quantities as was done in chapter 9, as well as adjusting gains of lower-level controllers for e.g.
the 3D coils. When running a machine learning experiment, substantial online debugging occurs as
there are often differences between the software testing and deployment settings. Tokamak dynamics
are also nonstationary: the wall conditions vary and affect plasma conditions and actuators and
diagnostics often fail. As DIII-D has been operating for decades now, there is a substantial amount
of logged data that can be used to train controllers via offline reinforcement learning methods.
Typical works that attempt this [Char et al., 2023, Seo et al., 2022] find about 15,000 usable shots
from the DIII-D database. However, the device has changed over the years as has the experimental
program. So, both the dynamical system and the set of behavior policies have drifted over time and
the latter may not correspond to the desired policy for a particular experimental goal. To summarize,
the experimental setup for testing learned policies on tokamaks is a far cry from the cheap, fast,
deterministic games where RL has been most successful.

10.2 Gating challenges to fusion power

It is often nonobvious to those new to fusion what challenges to fusion are ‘gating’, or in other
words, what the key problems are to solve so that we can have net energy from fusion and eventually
power plants. In this section, I’ll give a set of problems that stand out to me as particularly important
to the global research program. As we discussed in section 8.1, fusion power per unit volume scales
with β and the magnetic field strength. The magnet coils in fusion plants will be superconducting
electromagnets. Since superconductors typically come with limits on temperature, current, and field
strength [Tinkham, 2004], any research that improves these would alter the design space of reactors
we could build. Similarly for the materials that collect neutrons, provide structural stability, and

102

Figure 10.2: The control room at DIII-D.

handle high levels of heat flux: progress in materials science that leads to more performant materials
with which to build the neutron blanket, the reactor structure, and the divertor will allow us to relax
constraints on the reactor. As an example, the limits of the divertor dictate the goals of the divertor
control system which will help prevent it from melting; as the divertor is made more robust, the
difficulty of divertor control decreases.

There is a persistent search for new modes of tokamak operation; in fact, the H-mode which has
been widely studied in the past decades of fusion research [Wagner et al., 1982] was discovered
experimentally. Subsequently, other advanced modes of plasma confinement have been found.
Efficiently searching the space of these scenarios and using simulation, data, and device resources
effectively to find good plasma regimes is another key challenge in fusion.

Given a particular scenario, the key challenge in fusion is robustly achieving and maintaining
the plasma at those conditions. Here, the most critical problems are in fault response and disruption
avoidance [Hollmann et al., 2015]. Work by Boyer et al. [2021] and others has begun to address
these issues, but substantial further study is needed. Additionally, integrated control systems which
globally allocate actuation resources to objectives as needed will need to be developed for effective
tokamak control.

10.3 How can AI make a real impact on this problem?

Today, the international community of fusion researchers continues to address the existing issues
with fusion. As a machine learning researcher, I believe it is important to approach the problem
space with humility and not assume ML is a hammer that we should hit it with but rather think about
why an AI solution would be better than a human-designed one. Here, I’ll discuss four key ideas
that could help specify good areas to apply AI systems to fusion.

The simplest is in higher-frequency problems, such as the online actuation of 3D coils at
megahertz frequencies to control Alfvén eigenmodes [Garcia-Munoz et al., 2019]. When data comes
in at a much higher frequency it is more difficult to hand-design filtering and control techniques but

103

there is far more data with which to train ML systems. Addressing these with efficient architectures
for sequence modeling and prediction may be an area where ML can provide a lift in performance.

Another key area where ML could be helpful is in search problems. The work described in
chapter 9 was inspired by the revelation that researchers were manually searching through the space
of rampdown parameters in order to find good ones. Machine learning is often useful in these areas
due to its explicit representations of uncertainty as well as the principled strategies for searching for
the optima of a probabilistic estimate. We found initial success here in the rampdown setting, but
hope that this idea can be applied to further objectives in e.g. scenario design.

10.3.1 LLMs as operational copilots and research assistants

As mentioned in section 8.1, there is substantial cognitive load on operators of nuclear reactors
due to the tight timeline of each shot, the large number of incoming data sources, and dispersed
knowledge of the system and the relevant physics. There are rich sources of textual information
about this system: shot log notes from operators, proposals for experiments, papers, textbooks, PCS
source code, and conference proceedings. It is possible that an LLM with access to this information
may prove helpful to operators in answering their questions.

In Mehta et al. [2023], we made initial steps towards this goal by implementing a retrieval-
augmented generation system [Chen et al., 2017a, Lewis et al., 2020] that can answer questions
about the tokamak and its operations grounded in the shot log notes at the DIII-D and C-MOD
[Hutchinson et al., 1994] tokamaks. We made this system available through the Discord server
DIII-D operators use to communicate during experiments and hope that our system can be useful to
operators in the upcoming campaigns. However, there is substantial opportunity to extend our work.

While leveraging shot logs is a crucial first step for making a tokamak co-pilot, we would also
like to note that there are other data sources that one could incorporate to enhance the co-pilot
beyond this initial version. For example, we could also enable the source code in the Plasma Control
System (PCS) to be queried. Systems such as GitHub Copilot [Chen et al., 2021] have already
shown that pairing LLMs with code bases results in powerful tools. In our setting, access to source
code could enable operators to quickly diagnose and debug software problems during experiment
sessions should they arise.

We also could use more advanced schemes for combining LLM generation and information
retrieval. These include having the LLM generate SQL for queries, a map-reduce style architecture
for summarizing larger context, and self-introspection in order to determine whether an answer
has been found. When deployed on the Discord, 3 out of 7 questions inquired about quantitative
information that could have been answered by a reasonable SQL query.

Perhaps the richest source of information not being considered at the moment is the diagnostic
data measured for each shot. This data set includes rich, high-fidelity information about the plasma
(e.g. temperature, density, and rotation) Stillerman et al. [1997], and has already been leveraged by
prior works to predict the evolution [Char et al., 2023][Seo et al., 2023] and stability [Rea et al.,
2019][Fu et al., 2020b]. At the same time, previous works, such as CLIP [Radford et al., 2021],
have achieved impressive results by learning a mapping between the latent encodings for different
modalities of data. Building on both areas of works, we hope to incorporate diagnostic information
into our current system. Not only do we expect this to provide additional information and lead
to more intelligent answers, but doing so could potentially lead to valuable new use cases for our
system such as automatic shot log generation or predicting the evolution of the plasma from text
descriptions for scenario development. Any of these could prove valuable to operators and scientists
under the extreme attention demands of a tokamak experimental session.

104

10.3.2 Actually Offline RL

As discussed above, offline RL has gained significant attention in recent years [Levine et al., 2020].
However, offline RL research has broadly been been focused [Kumar et al., 2020, Kostrikov et al.,
2021] on the D4RL [Fu et al., 2020a] and RL-Unplugged [Gulcehre et al., 2020] datasets. These
datasets consist of logged transition data for training and MDPs for test-time evaluation. Inevitably,
researchers will evaluate their method on the MDP and then tweak it for better performance. This
is simply not possible in fusion, where you may only get a handful of trials in one afternoon a
year. Though offline RL is in some sense the ‘correct’ tool to use to learn controllers for fusion
systems, the field as currently conducted is not addressing the problem its full difficulty. I hope to
see held-out dynamical systems and ‘contests’ where policies are submitted for evaluation in order
to begin to address the correct problem and one day perhaps learn policies from logged fusion data.

105

106

107

11 | Conclusion

In this thesis, we embarked on a journey through the landscape of sample-efficient reinforcement
learning, the integration of prior knowledge in the identification of dynamical systems, and the novel
application of these techniques to plasma control for nuclear fusion. Our work represents progress
on understanding how agents ought to prospectively evaluate data, a demonstration of the value of
machine learning for search problems in fusion, and contributes to the synthesis of first principles
and data-driven thinking.

The methodologies and insights presented in part I augment our ability to build agents which
are able to reason about what they know and what they need to know. Through information theory,
decision theory, and a frequentist confidence-bound framework, we were able to give several
perspectives on how agents should value data. Furthermore, by extending one method to the
comparative feedback setting, we were able to apply these idea to the alignment of LLMs, a problem
of maximal salience to our field today.

In part II, we demonstrated the power of leveraging existing knowledge about systems to
optimize data usage. This approach significantly reduces the data requirements for identifying and
controlling complex systems. The line of work that has grown in this area since this work was
published has the potential to greatly improve our ability to model and control complex physical
systems.

The application of these methodologies to plasma control in nuclear fusion, as detailed in
part III, exemplifies the practical impact of our research. Our successful experiments using Bayesian
Optimization for plasma current ramp-down highlight the potential of machine learning in enhancing
the efficiency and safety of nuclear fusion processes.

I’d like to conclude by acknowledging that in both fields we address in this thesis we have a very
long way to go. In both reinforcement learning and nuclear fusion we are in a critical and exciting
period of progress and investment; it will take focused effort from smart and hardworking people to
continue to move forward. I hope that this work gives useful tools and knowledge as we continue to
press ahead.

109

110

Appendices

111

A | Appendix for chapter 2

A.1 Related Work

Transition Query Reinforcement Learning In the standard online RL setting, one assumes data
D = {(si, ai, s′i)}i∈[n] must be collected in length-H trajectories (rollouts) where the initial state
s0 ∼ p0, and after an action ai is chosen, the next state s′i = si+1 is sampled from T (si, ai) up to
i = H , at which point the process repeats. Kearns et al. [2002] introduced the setting where the agent
collects data by sequentially sampling transitions from the ground truth transition model by querying
at a state and action of its choice, which they refer to as RL with access to a generative model. We
refer to this setting for brevity as TQRL. The agent sequentially acquires data (si, ai, s′i) in arbitrary
order by querying a state action pair (si, ai) from S ×A and recieving a sample s′i ∼ T (s, a) from
the black-box transition function T [Kearns et al., 2002, Kakade, 2003, Azar et al., 2013]. The goal
in both settings is to find a policy which optimizes the objective in Equation (2.4). This setting is
relevant in a variety of real-world applications where there is a simulator of the transition model
available. In particular, we see the setting in nuclear fusion research, where plasma dynamics are
modeled by solving large partial differential equations where 200ms of plasma time can take up to
an hour in simulation [Breslau et al., 2018].

It has been shown for finite MDPs in [Azar et al., 2013] that the PAC sample complexity, which
is the number of samples required to identify with high probability a policy that achieves almost
optimal value, of this setting is Õ(|S||A|), ignoring the PAC factors. This is notably better than
the bound of Õ(|S|2|A|) in the online RL setting given in Section 8.3 of Kakade [2003]. This is
achieved simply by the naive algorithm of learning a transition model by uniformly sampling the
space and then performing value iteration on the estimate of the MDP for an optimal policy. More
recently, the bound for this setting was tightened to hold for smaller numbers of samples by Li et al.
[2020], meaning that for any dataset size in a continuous problem, the PAC performance can be
quantified. Finally, Agarwal et al. [2020] show that the naive ‘plug-in’ estimator used in the previous
works is minimax optimal for this setting. In summary, this setting is thoroughly understood for
finite MDPs and it gives a sample complexity reduction from quadratic to linear in the state space
size. The improvement shown in finite cases suggests that there could be similar reductions available
in a continuous setting. To our knowledge there do not exist works specifically solving the TQRL
setting for continuous MDPs. In this work, we give an algorithm specifically designed for this
setting, which shows sample complexity benefits reminiscent of those theoretically shown in the
tabular setting.

Exploration in Reinforcement Learning To encourage exploration in RL, agents often use
an ϵ-greedy approach [Mnih et al., 2013], upper confidence bounds (UCB) [Chen et al., 2017b],
Thompson sampling (TS) [Osband et al., 2016a], added Ornstein-Uhlenbeck action noise [Lillicrap

113

et al., 2015], or entropy bonuses [Haarnoja et al., 2018] to add noise to a policy which is otherwise
optimizing the RL objective. Although UCB, TS, and entropy bonuses all try to adapt the exploration
strategy to the problem, they all tackle which action to take from a predetermined state and don’t
explicitly consider which states would be best to acquire data from.

An ideal method of exploration would be to solve the intractable Bayes-adaptive MDP [Ross
et al., 2007], giving an optimal tradeoff between exploration and exploitation. Kolter and Ng [2009],
Guez et al. [2012] show that even approximating these techniques in the sequential setting can
result in substantial theoretical reductions in sample complexity compared to frequentist PAC-MDP
bounds as in Kakade [2003]. Other methods stemming from Dearden et al. [1998, 1999] address
this by using the myopic value of perfect information as a heuristic for similar Bayesian exploration.
However, these methods don’t scale to continuous problems and don’t provide a way to choose states
to query. These methods were further extended with the development of knowledge gradient policies
[Ryzhov et al., 2019, Ryzhov and Powell, 2011], which approximate the value function of the Bayes-
adaptive MDP, and information-directed sampling (IDS) [Russo and Van Roy, 2014], which takes
actions based on minimizing the ratio between squared regret and information gain over dynamics.
This was extended to continuous-state finite-action settings in Nikolov et al. [2019]. However, this
work doesn’t solve fully continuous problems, operates in the rollout setting rather than TQRL,
and computes the information gain with respect to the dynamics rather than some notion of the
optimal policy. In a similar spirit, Arumugam and Van Roy [2021] provide a further generalization
of IDS which can also be applied to RL. One recent work very close to ours is Lindner et al. [2021],
which actively queries an expensive reward function (instead of dynamics as in this work) to learn a
Bayesian model of reward. Another very relevant recent paper [Ball et al., 2020] gives an acquisition
strategy in policy space that iteratively trains a data-collection policy in the model that trades off
exploration against exploitation using methods from active learning. Achterhold and Stueckler
[2021] use techniques from BOED to efficiently calibrate a Neural Process representation of a
distribution of dynamics to a particular instance, but this calibration doesn’t include information
about the task. A tutorial on Bayesian RL methods can be found in Ghavamzadeh et al. [2016] for
further reference.

Separate from the techniques used in RL for a particular task, several methods tackle the problem
of unsupervised exploration [Schmidhuber, 1991], where the goal is to learn as much as possible
about the transition model without a task or reward function. One approach synthesizes a reward
from modeling errors [Pathak et al., 2017]. Another estimates learning progress by estimating model
accuracy [Lopes et al., 2012]. Others use an information gain-motivated formulation of model
disagreement [Pathak et al., 2019, Shyam et al., 2019] as a reward. Other methods incentivize
the policy to explore regions it hasn’t been before using hash-based counts [Tang et al., 2017],
predictions mimicking a randomly initialized network [Burda et al., 2019], a density estimate
[Bellemare et al., 2016], or predictive entropy [Buisson-Fenet et al., 2020]. However, these methods
all assume that there is no reward function and are inefficient for the setting of this paper, as they
spend time exploring areas of state space which can be quickly determined to be bad for maximizing
reward on a task.

Bayesian Algorithm Execution and BOED Recently, a flexible framework known as Bayesian
algorithm execution (BAX) [Neiswanger et al., 2021] has been proposed for efficiently estimating
properties of expensive black-box functions, which builds off of a large literature from Bayesian
Optimal Experiment Design [Chaloner and Verdinelli, 1995]. The BAX framework gives a general
procedure for sampling points which are informative about the future execution of an algorithm.

114

Control Problem Pendulum Cartpole Lava Path Reacher Beta Tracking

Budget b 200 300 100 1500 300
of points for optimization k 1000 1000 1000 1000 1000
of posterior function samples n 15 15 15 15 15

Table A.1: BARL hyperparameters used for each control problem.

In this paper, we extend this framework to the setting of model-predictive control, when we have
expensive dynamics (i.e. transition function) which we treat as a black-box function in the BAX
framework. Via this strategy, we are able to use similar techniques to develop acquisition functions
for data collection in reinforcement learning.

Gaussian Processes (GPs) in Reinforcement Learning There has been substantial prior work
using GPs in reinforcement learning. Most well-known is PILCO [Deisenroth and Rasmussen, 2011],
which computes approximate analytic gradients of policy parameters through the GP dynamics
model while accounting for uncertainty. Most related to our eventual MPC method is [Kamthe and
Deisenroth, 2018], which gives a principled probabilistic model-predictive control algorithm for
GPs.

A.2 Training Details

We vary our budget based on our understanding of how much data would be required to solve the
problem. The other hyperparameters of the BARL algorithm are constant but listed for completeness
in Table A.1.

For all of our experiments, we use a squared exponential kernel with automatic relevance
determination [MacKay et al., 1994, Neal, 1995]. The parameters of the kernel were estimated by
maximizing the likelihood of the parameters after marginalizing over the posterior GP [Williams
and Rasmussen, 1996].

To optimize the transition function, we simply sampled a set of points from the domain, evaluated
the acquisition function, and chose the maximum of the set. This set was chosed uniformly for every
problem but Reacher, for which we chose a random subset of ∪i ∪j Oij since the space of samples
is 10-dimensional and uniform random sampling will not get good coverage of interesting regions
of the state space.

A.2.1 Comparison Methods.

We use as our model-based comparison methods in this work PETS [Chua et al., 2018] as imple-
mented by Pineda et al. [2021], which does MPC using a probabilistic ensemble of neural networks
and particle sampling for stochastic dynamics and a similar MPC method using the mean of the same
GP model we use for BARL to execute πT̂ to collect data as in the standard RL setting. We also
compare against PILCO [Deisenroth and Rasmussen, 2011], which also leverages a GP to directly
optimize a policy that maximizes an uncertainty-aware long term reward. For model-free methods,
we use Soft Actor-Critic (SAC) [Haarnoja et al., 2018], which is an actor-critic method that uses an
entropy bonus for the policy to encourage evaluation, TD3 [Fujimoto et al., 2018] which addresses
the stability questions of actor-critic methods by including twin networks for value and several other

115

modifications, and Proximal Policy Optimization (PPO) [Schulman et al., 2017], which addresses
stability by forcing the policy to change slowly in KL so that the critic remains accurate. As a
baseline TQRL method and to better understand the GP performance, we use a method we denote
EIGT , which chooses points which maximize the predictive entropy of the transition model to
collect data. We believe that when given access to transition queries many unsupervised exploration
methods like Pathak et al. [2019], Shyam et al. [2019] or methods which value information gain
over the transtion function [Nikolov et al., 2019] would default to this behavior.

A.2.2 Control Problems

We tackle five control problems: the standard underactuated pendulum swing-up problem (Pendulum-
v0 from Brockman et al. [2016]), a cartpole swing-up problem, a 2D lava path navigation problem,
a 2-DOF robot arm reacher problem with 8-dimensional state (Reacher-v2 from Brockman et al.
[2016]), and a simplified beta tracking problem from plasma control [Char et al., 2019, Mehta et al.,
2021] where the controller must maintain a fixed normalized plasma pressure using as GT dynamics
a model learned similarly to Abbate et al. [2021a]. The lava path is intended to test stability and
exploration of algorithms. The goal is to reach a fixed goal state from a narrow uniform distribution
over start states. As shown in Figure 2.1b, the state space contains a ‘lava’ region which gives large
negative rewards for every timestep. When not in lava, the reward is simply the negative squared
distance to the goal, forcing the agent to navigate to the goal as quickly as possible. Since there is
a narrow path through the lava, we want to explore a policy which crosses efficiently and safely.
Agents who fail to find this solution will be forced to go around, incurring penalties.

A.2.3 Runtime Details

Based on these choices and the MPC hyperparameters below in Section A.3, each of these problems
results in a varying runtime for the BARL algorithm. In Table A.2, we report the time taken for an
iteration of BARL and how it breaks down by step. We give these as ranges, as the computational
time requires increases as the learning process continues since GP computational costs scale with
the size of the dataset. We also include for completeness the time taken to execute the MPC policy
on the ground truth problem, which is not strictly part of the BARL algorithm but still relevant to
practitioners.

Clearly, BARL is a relatively slow algorithm computationally. But in settings where samples are
scarce, BARL is much cheaper than alternative methods which might use less compute for the RL
algorthms but require many more samples. When compared to the costs of running an hour-long
simulation or running a costly experiments, spending a few minutes computing the acquisition
function seems like a good use of resources.

A.3 MPC Details

As we’ve discussed, we use model-predictive control in this work to choose actions which maximize
future reward given a model of the dynamics. In particular we use the improved Cross-Entropy
Method from Pinneri et al. [2020] to solve the optimization problem in Equation 1.4, which uses
several tricks including colored noise samples and caching to reduce the number of queries to the
planning model. There is a natural trade-off in any search method between computational cost
and quality of actions found in terms of predicted reward. In this work, we chose hyperparameters
for each task that were as computationally light as possible which attained a similar reward to

116

Control Problem Pendulum Cartpole Lava Path Reacher Beta Tracking

Sample O n times 20.7 - 18.5 38.7 - 33.9 33.4 - 35.8 216 - 276 7.5 - 4.9
Evaluate EIGO at k points 3.3 - 5.5 7.5 - 12.7 7.6 - 9.3 21.3 - 147 7.5 - 13.6
Total for BARL Iteration 24 - 24.04 46.2 - 46.5 40.1 - 45.1 237 - 423 15 - 18.5

Evaluation for one episode 7.2 - 21.5 2.5 - 10.3 18 - 47.9 26.2 - 913.7 0.9 - 3.5

Table A.2: Runtime in seconds for the phases of the BARL algorithm on all problems when run on
the author’s 24-core CPU machines. The ranges given show the runtime for the operation at the
beginning and at the end of training, as some operations run longer as more data is added.

Control Problem Pendulum Cartpole Lava Path Reacher Beta Tracking

Base number of samples 25 30 25 100 25
Number of elites 3 6 4 15 3
Planning horizon 20 15 20 15 5
Number of iCEM iterations 3 5 3 5 3
Replanning Period 6 1 6 1 2

Table A.3: Hyperparameters used for optimization in MPC procedure for control problems.

larger hyperparameters when executing MPC using the ground-truth model (πT , in our terms). As
recommended by the original paper, we use β = 3 for the scaling exponent of the power spectrum
density of sampled noise for action sequences, γ = 1.25 for the exponential decay of population
size, and ξ = 0.3 for the amount of caching.

We manually tuned the base number of samples, planning horizon, number of elites to take from
the sampled action sequences, number of iterations of planning, and the replanning period of the
model. Here we give the ultimate values for those parameters, which were used for all ablations
using our GP model and MPC. The values we used across all experiments for each problem are
given in Table A.3.

A.3.1 Robustness of EIGτ∗ to a suboptimal controller

In order to compute EIGτ∗ in this work, we perform model-predictive control on posterior transition
function samples (execute πT ′

ℓ
on T ′

ℓ , in our notation). We assume that πT ′
ℓ

is close to the optimal
policy for the MDP with transition function T ′

ℓ . However, this assumption could lead to pathologies in
the method if it doesn’t hold in practice. In this section, we emprically investigate the consequences
of using a suboptimal controller when finding samples of τ∗ on posterior samples of the transition
function.

In order to understand the sensitivity of EIGτ∗ to the MPC policy executed on posterior samples,
we ran experiments where we reduced the planning budget or horizon for the posterior function
policy in order to see whether the acquisition function fails. In particular, we ran the reacher and
cartpole experiments from the main paper with varying MPC budgets for the posterior function
policy πT ′

ℓ
and a fixed MPC budget at test time. This allows us to isolate the effect of a suboptimal

policy generating samples of τ∗.
On the reacher experiment, we vary the number of CEM iterations ranging from 1 to 5. This

is straightforwardly linked to the amount of search the policy conducts before executing an action.

117

0 100 200 300 400 500

Environment Steps

−24

−22

−20

−18

−16

−14

−12

−10

R
et

u
rn

s

Control Performance on Cartpole

h=3

πT h=3

h=6

πT h=6

h=9

πT h=9

h=12

πT h=12

h=15

πT h=15

h=18

πT h=18

0 100 200 300 400 500

Environment Steps

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

R
et

u
rn

s

Control Performance on Reacher

1 Iter

πT 1 Iter

2 Iters

πT 2 Iters

3 Iters

πT 3 Iters

4 Iters

πT 4 Iters

Figure A.1: Performance of BARL when MPC budget for posterior function samples is varied while
MPC test time budget is held constant. The error regions are the standard error of the return seen
across 5 trials of the policy. The dashed lines are the performances that MPC with the equivalent
hyperparameters achieves if executed at test time given the ground truth dynamics.

On the cartpole experiment, we varied the length of the planning horizon, which affects how far
in the future the policy will consider actions as it is deciding what is the good immediate next
action. In both cases, we see in Figure A.1 that performance hardly changes as the budget for
MPC is reduced. Only on the reacher problem when the number of CEM iterations is reduced to 1
(effectively reducing CEM to simple random search) do we see a significant drop in performance.
This supports the notion that the quality of the approximation of the optimal policy in EIGO is not
critical to the performance of the acquisition function as a data selection strategy. We also plot in
the figure the performance of an MPC controller on the ground truth dynamics with these reduced
MPC budgets. It is clear that if we were to execute these degraded policies at test time, they would
be much worse. We find it interesting and intend to further study the robustness of using cheaper
policies to decide where to acquire data.

A.4 Description of Continuous Control Problems

Lava Path. The lava path has 4-dimensional state (position and velocity) and 2-dimensional action
(an applied force in the plane). The goal is to reach a fixed goal state from a relatively narrow
uniform distribution over start states. As shown in Figure 2.1b, the state space contains a ‘lava’
region which gives very large negative rewards for every timestep. Other than when in lava, the
reward is simply the negative squared distance to the goal, forcing the agent to navigate to the goal
as quickly as possible. Since the lava has a narrow path through, the actor is forced to explore a
policy which will realize that it is safe and efficient to cross. Agents who fail to find this solution
will be forced to go around, incurring penalties.

Pendulum. The pendulum swing-up problem is the standard one found in the OpenAI gym
[Brockman et al., 2016]. The state space contains the angle of the pendulum and its first derivative
and action space simply the scalar torque applied by the motor on the pendulum. The challenge in
this problem is that the motor doesn’t have enough torque to simply rotate the pendulum up from all
positions and often requires a back-and-forth swing to achieve a vertically balanced position. The
reward function here penalizes deviation from an upright pole and squared torque.

118

Cartpole. The cartpole swing-up problem has 4-dimensional state (position of the cart and its
velocity, angle of the pole and its angular velocity) and a 1-dimensional action (horizontal force
applied to the cart). Here, the difficulty lies in translating the horizontal motion of the cart into
effective torque on the pole. The reward function here is a negative sigmoid function penalizing the
distance betweent the tip of the pole and a centered upright goal position.

Reacher. The reacher problem simulates a 2-DOF robot arm aiming to move the end effector to a
randomly resampled target provided. The problem requires joint angles and velocities as well as an
indication of the direction of the goal, giving an 8-dimensional state space with the mentioned 2-D
control. Our results on this problem are particularly encouraging as they show that BARL can scale
to some problems with higher dimensionalities.

Beta Tracking (Nuclear Fusion). Finally, the beta tracking problem has 4-dimensional state
consisting of the current normalized plasma performance βN in the DIII-D tokamak. βN is given by
an appropriately normalized ratio between the plasma pressure and the magnetic pressure and is a
common figure of merit in fusion energy research. In addition to βn the state space contains its most
recent change as well as the current power injection level and its most recent change. The action
is the next change in the power injection level. The “ground-truth” dynamics for this problem are
given by a neural network model learned from data processed as in Abbate et al. [2021a]. Control is
done at a timestep of 200ms and the reward function is the negative absolute deviation from βn = 2.
Reliably controlling plasmas to sustain high performance is a major goal of research efforts for
fusion energy, and though this is very much a simplification of the problem, we intend to extend and
apply BARL to more realistic settings in the immediate future.

A.5 Implementation Details for TIP

A.5.1 Derivation of Computational Cost

In this section, we derive the computational complexity of the TIP algorithm. For simplicity, we
focus on a single TIP planning iteration as might be done at each replanning in closed-loop control
or at the start of a trial in open-loop control. In order to keep the analysis general, we assume that
the chosen planning algorithm requires p accesses to the model where h actions are sequentially
executed, giving ph total queries per planner execution. We also assume that the numbers of
inducing points and basis functions used in our GP posterior function sampling are constant as are
the Monte Carlo hyperparameters m,n.

The TIP algorithm consists of the following major operations:
• Sample T ′

i for j ∈ [m]: O(nmN) total cost from sampling algorithm, where N is the dataset
size.

• Sample τ∗ij for i ∈ [n], j ∈ [m]: phHnm total cost from running the planner (ph posterior
function queries) H times for each sampled τ∗, where H is the MDP horizon.

• Compute Cholesky decomposition for each D ∪ τ∗ij . This takes a total of O(nm(N +H)3)

operations as the augmented dataset is of size N +H and Cholesky decompositions are O(d3)
in the matrix size d.

• Compute posterior covariance ΣS′ | D∪τij for all τij . This involves several matrix operations
but the most computationally intensive is solving h triangular systems of size (N+H)×(N+

119

Control Problem Pendulum Cartpole β Tracking β + Rotation Reacher

Sample τ∗ mn times 24 31 7 25 130
Plan actions that minimize Cτ∗ 16 15 15 50 295
Total for TIP Iteration 40 46 22 75 425

Evaluation for one episode 5-20 2-10 2-5 3 - 18 100-500

Table A.4: Runtime in seconds for the phases of the TIP algorithm on all problems when run on the
authors’ CPU machines. The ranges given show the runtime for the operation at the beginning and
at the end of training, as some operations run longer as more data is added.

H), which each take O((N+H)2) time. So the total computation here is O(pnmh(N+H)2).

• Compute determinants of covariance matrices for each of p queries and nm augmented
datasets D ∪ τij . Each of these operations is over a matrix of size h× h and therefore costs
O(h3). So the total cost is O(pnmh3).

Summing these costs gives O(nmN+phHnm+nm(N+H)3+pnmh(N+H)2+pnmh3). Clearly
the third term dominates the first, the fourth dominates the second, and since H > h, the fourth domi-
nates the fifth. So, the computational cost can be summarized as O

(
nm

(
(N +H)3 + ph(N +H)2

))
.

A.5.2 Wall Times

Though TIP and oTIP are designed for applications where samples are expensive and computation
is relatively inexpensive, we present in this section data on the running time of these methods. We
ran all experiments on a shared research cluster available to us on large machines with hundreds of
GB of memory and between 24 and 88 CPU cores. In general our implementation did not make
use of more than 20 CPU cores concurrently. In Table A.4, we give the running time of the phases
of the TIP algorithm. We note that the bulk of the computation in the planning procedure actually
goes towards the just-in-time compilation of the JAX code that computes the cost function Cτ∗

on sampled future trajectories. In order to allow for this compilation cost, we modified the iCEM
algorithm from [Pinneri et al., 2020] to take fixed batch sizes as the compilation (e.g. for the β
tracking problem) takes approximately 90% of the time required for planning. Unfortunately this
compilation process must be repeated at every iteration due to the limitations of the JAX compiler.
We believe that a similarly JIT-compiled implementation of the planning algorithm for sampling
τ∗ on posterior samples could lead to a substantial speedup and a more flexible compiler could do
more still.

A.5.3 GP Model Details

For all of our experiments, we use a squared exponential kernel with automatic relevance determina-
tion [MacKay et al., 1994, Neal, 1995]. The parameters of the kernel were estimated by maximizing
the likelihood of the parameters after marginalizing over the posterior GP [Williams and Rasmussen,
1996].

To optimize the transition function, we simply sampled a set of points from the domain, evaluated
the acquisition function, and chose the maximum of the set. This set was chosed uniformly for
every problem but β + Rotation and Reacher, for which we chose a random subset of ∪i ∪j τ∗ij
(the posterior samples of the optimal trajectory) since the space of samples is 10-dimensional and

120

Control Problem Pendulum Cartpole β Tracking β + Rotation Reacher

Number of samples 25 30 25 50 100
Number of elites 3 6 3 8 15
Planning horizon 20 15 5 5 15
Number of iCEM iterations 3 5 3 5 5
Replanning Period 6 1 2 1 1

Table A.5: Hyperparameters used for optimization in MPC procedure for closed-loop control
problems.

Control Problem Nonlinear Gain 1 Nonlinear Gain 2 Lava Path

Number of samples 50 50 25
Number of elites 6 6 4
Planning horizon 10 10 20
Number of iCEM iterations 6 8 6

Table A.6: Hyperparameters used for optimization in MPC procedure for open-loop control prob-
lems.

uniform random sampling will not get good coverage of interesting regions of the state space.

A.5.4 Cost Function Details

We set n = 15 and m = 1 for our Monte Carlo estimate of the cost function for each problem.

A.5.5 Details on Planning Method

As mentioned in the main text, we use the iCEM method from Pinneri et al. [2020] with one major
modification: a fixed sample batch size. This is in order to take advantage of the JIT compilation
features of JAX and avoid recompiling code for each new batch size.

In Tables A.5 and A.6, we present the hyperparameters used for the planning algorithm across
each problem. The same hyperparameters were used for the TIP, MPC, EIGT , DIP, sDIP, and sTIP
methods. As recommended by the original paper, we use β = 3 for the scaling exponent of the
power spectrum density of sampled noise for action sequences, γ = 1.25 for the exponential decay
of population size, and ξ = 0.3 for the amount of caching.

A.6 Description of Comparison Methods

We compare against 14 different methods across open and closed-loop problems. Of these, 7 used
the same model and planning algorithm (including hyperparameters) as TIP and oTIP. DIP and
oDIP use the cost function C(τ) = −H [T (S′) | D] and sDIP (summed DIP) uses the cost function
C(τ) = −∑h

i=0H [T (si, ai) | D]. These are all pure exploration methods, but DIP and oDIP are
more sophisticated in that they plan for future observations with a large amount of joint information
as opposed to sTIP which sums the individual information expected at each timestep. oDIP is simply

121

the open loop variant of DIP. EIGT uses the same objective as sDIP but operates in the TQRL
setting, querying points that approximately maximize the predictive entropy of the dynamics model.
BARL similarly operates in the TQRL setting but uses the EIGτ∗ acquisition function from Mehta
et al. [2022c]. We use the authors’ implementation of that work for comparison. MPC uses Cg from
(2.7) and plans to directly maximize expected rewards. This method can be seen as quite similar to
Kamthe and Deisenroth [2018] and a close cousin of Deisenroth and Rasmussen [2011] in that it
optimizes the same objective with a similar model. oMPC is simply the open loop variant of MPC.

Besides these methods which directly compare cost functions, we include 8 additional baselines
from published work. PETS is a method given in Chua et al. [2018] which uses a similar cross-
entropy based planner and a probabilistic ensemble of neural networks for an uncertainty-aware
estimate of the dynamics. PETS also plans to minimize Cg. HUCRL [Curi et al., 2020] learns
a policy via backpropagation through time using a hallucinated perturbation to the dynamics that
maximizes discounted rewards subject to the one-step confidence interval of the dynamics. HUCRL
also uses a probabilistic ensemble of neural networks. Using the same implementation we also
tested Thompson Sampling (TS), which acts optimally according to a network drawn from the
posterior over models, and BPTT which plans to minimize Cg using a neural network policy and
backpropagation through time. BPTT can also be viewed as a cousin of PILCO [Deisenroth and
Rasmussen, 2011] as it attempts to take stochastic gradients of the expected cost. We also compare
against SAC [Haarnoja et al., 2018], TD3 [Fujimoto et al., 2018], and PPO [Schulman et al., 2017].
SAC uses entropy bonuses to approximate Boltzmann exploration in an actor-critic framework. TD3
and PPO include various tricks for stable learning and add Ornstein-Uhlenbeck noise in order to
explore.

For our FEEF implementation, we took hyperparameters from the most similar comparison
environments in that paper and used them for our results. We tried several values for ‘expl_weight’
in order to se whether we were inadequately balancing exploration and exploitation. Ultimately we
saw an ‘expl_weight’ of 0.1 was the best value.

We used the author’s implementation of RHC. RHC makes strong assumptions on the form of
the reward function by assuming that all problems are regulation problems where the goal is to drive
the system to a given state and keep it there (with some cost for actuation). We were able to pass the
targets for all of our problems (which may change between episodes) to the RHC controller. We did
a light hyperparameter search tuning the number of random Fourier features used in the Bayesian
linear model in this method. Ultimately we were disappointed in the performance of RHC when
applied to our problems. We believe that this might be due to its undirected uncertainty sampling
objective and relatively constrained model of environment dynamics.

A.7 Description of Control Problems

A.7.1 Plasma Control Problems

The plasma control problems are based on controlling a tokamak, a toroidally shaped device for
confining a thermonuclear plasma using magnetic fields. Achieving net positive energy from fusion
requires confining a plasma at high enough temperature and density long enough for hydrogen
isotopes to collide and fuse. However, as the temperature and density are increased, a wide variety
of instabilities can occur which degrade confinement, leading to a loss of energy. Full physics
simulation of tokamak plasmas requires 10s-1000s of CPU hours to simulate a single trajectory, and
often require hand tuning of different parameters to achieve accurate results. Following the work of

122

Abbate et al. [2021b], each of our plasma control problems used neural networks trained on data
as the ground truth dynamics models. We used the MDSPlus tool [Stillerman et al., 1997] to fetch
historical discharges from the DIII-D tokamak in San Diego [Fenstermacher et al., 2022]. In total,
we trained our models on 1,479 historical discharges. The data was pre-processed following the
procedure outlined in Abbate et al. [2021b]. We describe how each environment was constructed in
more detail below.

β Tracking In this environment the goal is to adjust the total injected power (PINJ) of the neutral
beams so that the normalized plasma pressure, βN (defined as the ratio of thermal energy in the
plasma to energy in the confining magnetic fields), reaches a target value of 2%. Reliably controlling
plasmas to sustain high performance is a major goal of research efforts for fusion energy, so even
this simple scenario is of interest. The ground-truth dynamics model takes in the current βN and
PINJ, the βN and PINJ at some ∆t time in the past, and the PINJ at some ∆t time in the future (we
assume that we have complete control over the values of PINJ at all times). Given these inputs, the
model was trained to output what βN will be ∆t time into the future. In total, the state space is 4D
and the action space is 1D. For this environment, we set ∆t = 200ms, and we specify the reward
function to be the negative absolute difference between the next βN and the target βN = 2%.

β + Rotation Tracking This environment is a more complicated version of the β tracking
environment in several ways. First of all, the controller now must simultaneously track both βN
and the core toroidal rotation of the plasma. To do so, the controller is also allowed to set the total
torque injected (TINJ) of the neutral beams (DIII-D has eight neutral beam injectors at different
positions around the tokamak, so it is generally possible to control both total power and total torque
independently). Controlling both of these quantities simultaneously is of interest since rotation shear
often results in better confinement and less chance of instabilities in the plasma [Bondeson and
Ward, 1994, Groebner et al., 1990]. In addition, we assume a multi-task setting where the requested
targets for βN and rotation can be set every trajectory. Specifically, the βN target is drawn from
U(1.5%, 2.5%) and the rotation target is drawn from U(25, 125) krad/s every trajectory. These
targets are appended to the state space.

The learned, ground-truth dynamics model is also more sophisticated here. In addition to the
inputs and outputs used by the β tracking environment model, the inputs for this model also include
rotation and TINJ at times t, t − ∆t, and t + ∆t for TINJ only. This model receives additional
information about the plasma (e.g. the shape of the plasma); however, we have assumed these inputs
are fixed to reasonable values in order to avoid partial observability problems. In total, the state
space of this problem is 10D (targets plus current and past observations for βN , rotation, PINJ, and
TINJ) and the action space is 2D (next PINJ and TINJ settings).

A.7.2 Robotics Problems

Pendulum The pendulum swing-up problem is the standard one found in the OpenAI gym
[Brockman et al., 2016]. The state space contains the angle of the pendulum and its first derivative
and action space simply the scalar torque applied by the motor on the pendulum. The challenge in
this problem is that the motor doesn’t have enough torque to simply rotate the pendulum up from all
positions and often requires a back-and-forth swing to achieve a vertically balanced position. The
reward function here penalizes deviation from an upright pole and squared torque.

123

Environment TIP sTIP DIP sDIP MPC PETS SAC TD3 PPO FEEF HUCRL TS BPTT BARL EIGT

Pendulum 21 36 36 46 46 5.6k 7k 26k 14k 800 >50k >50k >50k 21 56
Cartpole 131 141 161 141 201 1.63k 32k 18k >1M >2.5k >6k >6k >6k 111 121
β Tracking 46 76 276 131 76 330 12k 17k 39k 300 480 420 450 186 >1k
β + Rotation 201 >500 >500 >500 >500 400 30k >50k >50k >2k >5k >5k >5k >500 >1k
Reacher 251 >400 >1k >1k 751 700 23k 13k >100k >5k 6.6k 4.5k 3.7k 251 >1.5k

Table A.7: Sample Complexity Comparison of All Methods: Median number of samples across 5 seeds
required to reach ‘solved’ performance, averaged across 5 trials. We determine ‘solved’ performance by
running an MPC policy (similar to the one used for evaluation) on the ground truth dynamics to predict
actions. We record > n when the median run is unable to solve the problem by the end of training after
collecting n datapoints. The methods in the rightmost section operate in the TQRL setting and therefore have
more flexible access to the MDP dynamics for data collection.

Cartpole The cartpole swing-up problem has 4-dimensional state (position of the cart and its
velocity, angle of the pole and its angular velocity) and a 1-dimensional action (horizontal force
applied to the cart). Here, the difficulty lies in translating the horizontal motion of the cart into
effective torque on the pole. The reward function is a negative sigmoid function penalizing the
distance betweent the tip of the pole and a centered upright goal position.

Reacher The reacher problem simulates a 2-DOF robot arm aiming to move the end effector to
a randomly resampled target provided. The problem requires joint angles and velocities as well
as an indication of the direction of the goal, giving an 8-dimensional state space along with the
2-dimensional control space.

A.8 Additional Results

Due to space constraints in the main paper, we omitted results for the methods sDIP and BPTT. The
are included alongside the rest in Table A.7. They are outperformed across the board by TIP.

A.9 Additional Related Work

A.9.1 Bayesian Exploration Techniques

Given unlimited computation and an accurate prior, solving the Bayes-adaptive MDP [Ross et al.,
2007] gives an optimal tradeoff between exploration and exploitation by explicitly accounting for
the updated beliefs that would result from future observations and planning to find actions that
result in high rewards as quickly as can be managed given the current posterior. However, this is
computationally expensive even in small finite MDPs and totally intractable in continuous settings.
Kolter and Ng [2009] and Guez et al. [2012] show that even approximating these techniques can
result in substantial theoretical reductions in sample complexity compared to frequentist PAC-MDP
bounds as in Kakade [2003]. Another line of work [Dearden et al., 1998, 1999] uses the myopic
value of perfect information as a heuristic for similar Bayesian exploration in the tabular MDP
setting. Further techniques for exploration include knowledge gradient policies [Ryzhov et al., 2019,
Ryzhov and Powell, 2011], which approximate the value function of the Bayes-adaptive MDP and
information-directed sampling (IDS) [Russo and Van Roy, 2014], which takes actions based on
minimizing the ratio between squared regret and information gain over dynamics. This was extended
to continuous-state finite-action settings using neural networks in Nikolov et al. [2019]. Another

124

TIP sTIP BARL DIP EIGT MPC
0

25

50

75

100

125

150

175

Sample Complexity on Pendulum

TIP sTIP BARL DIP EIGT MPC
50

100

150

200

250

300

Sample Complexity on Cartpole

TIP sTIP BARL DIP EIGT MPC

200

400

600

800

1000

1200

1400

Sample Complexity on Reacher

TIP sTIP BARL DIP EIGT MPC
0

200

400

600

800

Sample Complexity on β Tracking

TIP sTIP BARL DIP EIGT MPC

200

400

600

800

1000

Sample Complexity on β + Rotation

Figure A.2: Box plots showing sample complexity figures across the 5 random seeds run. Each of
these show for a given training run how many samples were needed to achieve the performance
of an MPC controller given ground truth dynamics averaged across test episodes. We imputed the
maximum number of samples for agents that failed to ever solve the problem on a given run.

very relevant recent paper [Ball et al., 2020] gives an acquisition strategy in policy space that
iteratively trains a data-collection policy in the model that trades off exploration against exploitation
using methods from active learning. Achterhold and Stueckler [2021] use techniques from BOED
to efficiently calibrate a Neural Process representation of a distribution of dynamics to a particular
instance, but this calibration doesn’t include information about the task. A tutorial on Bayesian RL
methods can be found in Ghavamzadeh et al. [2016] for further reference.

A.9.2 Gaussian Processes (GPs) in Reinforcement Learning

There has been substantial prior work using GPs [Rasmussen and Williams, 2008] in reinforcement
learning. Most well-known is PILCO [Deisenroth and Rasmussen, 2011], which computes approxi-
mate analytic gradients of policy parameters through the GP dynamics model while accounting for
uncertainty. The original work is able to propagate the first 2 moments of the occupancy distribution
through time using the GP dynamics and backpropagate gradients of the rewards to policy parame-
ters. In Wilson et al. [2020], a method is developed for efficiently sampling functions from a GP
posterior with high accuracy. One application show in their work is a method of using these samples
to backpropagate gradients of rewards through time to policy paramters, which can be interpreted
as a different sort of PILCO implementation. Most related to our eventual MPC-based method is
[Kamthe and Deisenroth, 2018], which gives a principled probabilistic model-predictive control
algorithm for GPs. We combine ideas from this paper, PETS [Chua et al., 2018], and the ability to
sample posterior functions discussed above to give our eventual MPC component as discussed in
Section 2.4.2.

125

126

B | Appendix for chapter 3

B.1 Proofs

B.1.1 Proof of Theorem 1

Proof. We will prove this theorem by construction. The intuition behind this construction is simple:
We create 2 paths for the agent to take. The value maximizing path includes an unknown transition
dynamic that can be learned upon a single traversal. However, because of the expected loss from
that first traversal down this path, the Q-function favors an exploration policy that always takes the
suboptimal path and the algorithm never learns the necessary variable to identify the optimal path
during test time.

Fix some H > 7, |S| = N ≥ 7, ϵ > 0. Consider a distribution over MDPs with states numbered
1-N and 2 actions as depicted in Figure B.1. The transition function is known for state 1, where
action 1 transitions to state 2 and action 2 transitions to state 4. At state 2, either action transitions to
state 3. At state 3 every action returns the agent to state 7. In state 4, there are two possible options,
each with prior probability 0.5. Either action 1 will lead to state 5 and action 2 to state 6 or vice
versa. At both states 5 and 6, any action will cause agent to visit state 7. States 7-(N-1) all transition
from n to n+1 under any action and state N transitions to state 1 under any action. Given this design,
we set the episode length to h = |S| − 2.

The reward function of all MDPs is the same: 0 for all states besides 3 and 6, 1 for 6, and c (a
parameter we’ll discuss later) for 3.

At a high level, the design of the MDP is to make sure that πb
x chooses action 1 at state 1 instead

of exploring the risky option of action 2 that would lead to improved test-time performance. To
ensure this, it is sufficient to show that Qπb

x(1, 1) > Qπb
x(1, 2). We know that for a horizon H

there will be ⌊ H
|S|−2⌋ episodes completed (with the reward obtained at the last timestep). Once an

action is attempted at state 4, the agent can infer based on the transition which of the 2 MDPs it is
operating in and make the correct choice and attain return 1 in the episode. The first time an action
is attempted in state 4, the expected value of the action is 0.5. If state 3 is visited by taking action 1
at state 1, the return of an episode will be c.

From these facts, we can see that Qπb
x(1, 1) = c⌊ H

|S|−2⌋ and Qπb
x(1, 2) = ⌊ H

|S|−2⌋ − 0.5. So, for

Qπb
x(1, 1) > Qπb

x(1, 2) to hold, c must be greater than
⌊ H
|S|−2

⌋−0.5

⌊ H
|S|−2

⌋ .

An agent that behaves optimally in the MDP according to our objective will take action 2 at
state 1 on the first try as it results in the maximum test time performance. The test-time policy of an
agent that never takes action 2 at state 1 will take action 1 at state 1 as c > 0.5. So the simple regret
of such an agent will be 1− c.

127

We choose a value c =
⌊ H
|S|−2

⌋−0.5

⌊ H
|S|−2

⌋ + ϵ
2 . Then the regret will be

1− c =
1

2⌊ H
|S|−2⌋

− ϵ

2
.

B.1.2 Proof of Theorem 2

This proof is fairly straightforward. We show by induction over the number of remaining timesteps
that at any point πh will choose the action that will on average lead to the best performance on the
objective J . We can accomplish this via arguing that the Qπh function will be maximized by this
action.

Proof. First consider the case where there is a single timestep remaining in exploration, the agent is
at state s and maintains an updated and accurate belief bτ . Here the state-action value function Qπh

t

(here, the subscript is for timesteps remaining in exploration) can be written as

Qπh
1 (s, bτ , a) = ET,R∼bτ ,s′∼T (s,a),r=R(s,a,s′)

[
BR(b[st,at,s′t,rt]||τ)

]
.

πh by definition will choose the action argmaxaQ
πh
1 (s, bτ , a) in this situation. Here, a is precisely

the action that will lead on expectation to the best performance measured by J as it is the action
such that on average over the belief it will lead to a transition that will allow the belief to be updated
in the way that leads to the best Bayes return. Therefore πh is optimal for single-step exploration
under J .

Next assume for the sake of induction that for all s ∈ S, b ∈ B, H = N − 1, executing πh
with initial belief b starting from state s for H steps will lead to an optimal value of J and that πh
is executing starting from state s and accurate and updated belief bτ with N steps of exploration
remaining. In this situation,

Qπh
N (s, bτ , a) = ET,R∼bτ ,s′∼T (s,a),r=R(s,a,s′)

[
Qπh

N−1(s
′, b{(st,at,s′t,rt)}∪τ , πh(s

′, b{(st,at,s′t,rt)}∪τ))
]
.

Since by the inductive hypothesis πh is optimal for H = N − 1, we know that Qπh
N−1 will be the

maximal attainable value for any particular state-belief-action triple with N − 1 steps of exploration
remaining. As Qπh

N gives the expected observed transition given the belief for a particular action, we
would expect that on average the action that maximizes Qπh

N to lead to the largest eventual Bayes
Return when πh is executed afterwards. Since πh with N steps remaining will choose the action
given s, bτ that maximizes Qπh

N , it must be optimal when acting with N steps remaining.
Therefore, by induction, this must hold for all N and we can conclude that πh is optimal or in

other words that J(πh, π̂N) = maxπx J(πx, π̂N).

B.2 Exact Experiments

Implementation Details We implemented the exact EHIG-MDP and BAMDP methods in Julia
and executed them for up to 5 timesteps of exploration. We executed all experiments using

128

1

2 4

5 6

1 2

1, 2

1, 2

? ?

+13

7

1, 21, 2

+0+c

1, 2

Figure B.1: A depiction of the MDP distribution used in the construction for the proof of Theorem 1. Edges
with both numbers on them mean both actions lead along that edge and the edges with question marks after
state 4 mean that it’s not clear which action (out of 1 or 2) leads to which state.

multithreading on 12 CPUs at a time. Each environment was represented by a generic Dirichlet-
Multinomial prior through which we were able to hardcode representations of the prior knowledge
about both LavaRun and SkateTrick. We gave the agents perfect knowledge of the reward functions
but not the dynamics, as described in Section 3.4.3. To evaluate the performance, we simply
computed the true value function for the optimal policy according to the BAMDP and EHIG-MDP
agents under the real dynamics after exploration had concluded.

Indexing Scheme for Belief MDP In order to solve the EHIG-MDP and BAMDP we needed to
construct a table that contained the entire S × B domain of the Bayesian agents. As the support
of a multinomial distribution over S × A × S is the set of all whole number-valued vectors of
length k = |S × A × S| that sum to the number of observations, we needed to construct quite a
large table. In particular, if n observations have been made, there are

(
n+k−1
k−1

)
possible distinct

observation vectors. We chose an indexing scheme where we first incremented n = 0, 1, . . . ,H ,
and then for each setting of n had a segment of the table corresponding to beliefs with a total number
of obeservations n. Within each segment, we indexed the beliefs of size n in lexical order and then
finally by the factor of |S| corresponding to the actual MDP state of the agent. This setup allowed
for a maximally memory-efficient storage arrangement for an admittedly computationally inefficient
method of solving these MDPs.

B.3 Approximate Experiments

Implementation Details We ran all experiments three-at-a-time on A60 GPUs rented from a
cloud computing service. Besides RL2, each experiment lasted around 15 hours with a few hours’
variation.

We provide the state and action dimensions for each environment in Table B.1. However, note
that the dimensionalities listed do not include the additional time dimension added by the algorithm.

We did not spend a large amount of effort on hyperparameter tuning on this project; in fact, we
used the default hyperparameters from the implementation of Varibad included with Zintgraf et al.
[2020].

129

Environment State Dim Action Dim
HalfCheetahVel 18 6

SparsePoint 2 2
LavaPoint 2 2
BetaLimit 4 1

Table B.1: State and action dimensions of environments used for continuous experiments.

130

C | Appendix for chapter 4

C.1 Appendix

C.1.1 Auxiliary Results

Lemma 2. Let t ∈ [N]. Then, for every (s, a) ∈ S ×A,
1. If Qt

h(s, a) ≥ T ∗
h Q

t
h+1(s, a) holds for all h ∈ [H], then Q

t
h(s, a) ≥ Q∗

h(s, a) is true for all
h ∈ [H].

2. If Qt
h(s, a) ≤ T ∗

h Q
t
h+1(s, a) holds for all h ∈ [H], then Q∗

h(s, a) ≥ Qt
h(s, a) is true for all

h ∈ [H].

Proof. In order to prove part 1., let s ∈ S and a ∈ A and assume Q
t
h(s, a) ≥ T ∗

h Q
t
h+1(s, a) for

all h ∈ [H] and t ∈ [T]. We prove ∀h ∈ [H], Qt
h(s, a) ≥ Q∗

h(s, a) by induction on h =
H,H − 1, . . . , 1. For the initial case h = H , we have

Q
t
H(s, a)

assumption
≥ T ∗

h Q
t
H+1(s, a) (C.1)

Def. of T ∗
h= rH(s, a) + Es′∼PH(·|s,a)

[
max
a′∈A

Q
t
H+1(s

′, a′)
]

(C.2)

= rH(s, a) (C.3)

= Q∗
H(s, a). (C.4)

For the inductive step, we assume that Q∗
h+1(s, a) ≤ Q

t
h+1(s, a). Then,

Q∗
h(s, a) = T ∗

h Q
∗
h+1(s, a) (C.5)

Def. of T ∗
h= rh(s, a) + Es′∼Ph(·|s,a)Big[max

a′∈A
Q∗

h+1(s
′, a′)

]
(C.6)

inductive hypothesis
≤ rh(s, a) + Es′∼Ph(·|s,a)

[
max
a′∈A

Q
t
h+1(s

′, a′)
]

(C.7)

Def. of T ∗
h= T ∗

h Q
t
h+1(s, a) (C.8)

assumption
≤ Q

t
h(s, a). (C.9)

This shows Qt
h(s, a) ≥ Q∗

h(s, a) for all h ∈ [H] and thus concludes the proof of the first claim. The
second part can be shown analogously.

The following is a standard result that can be found in multiple works.

131

Lemma 3. Consider a kernel k : X × X → R such that k(x, x) ≤ 1 for every x ∈ X . Then for all
h ∈ [H] and λ ≥ 1 we have

N∑
t=1

σt
h(s

t
h, a

t
h) ≤

√
3Γk(N,λ)N. (C.10)

Proof. We can for example invoke the result of Lemma 3 in Bogunovic and Krause [2021] that in
our notation reads as:

N∑
t=1

σt
h(s

t
h, a

t
h) ≤

√
λ−1(2λ+ 1)Γk(N,λ)N, (C.11)

for λ > 0. Setting λ ≥ 1, we obtain

N∑
t=1

σt
h(s

t
h, a

t
h) ≤

√
3Γk(N,λ)N. (C.12)

C.1.2 Proof of theorem 3

Let π̂N be the best-policy estimate returned by the algorithm. Recall the definition of

π∗≥h
T :=

(
π∗≥h
T,h′

)H
h′=1

:=

{
π̂N,h′ for h′ = 1, . . . , h− 1

π∗
h′ for h′ = h, . . . ,H

(C.13)

as the policy that equals our best-policy estimate π̂N until step h− 1 and then equals the optimal
policy π∗.

We start the proof with the following useful lemma.
Lemma 4. Let π̂N be a best-policy estimate, let s ∈ S be an initial state, and let h ∈ [H]. Using
the notation from eq. (C.13), we obtain

V
π∗≥h
T

1 (s)− V
π∗≥h+1
T

1 (s) = Ea1,...,sh following π̂N

[
Q∗

h

(
sh, π

∗
h(sh)

)
−Q∗

h

(
sh, π̂N,h(sh)

)∣∣s1 = s

]
.

Proof. To formally prove the lemma, we first explicitly express V π∗≥h
T

1 (s) and V
π∗≥h+1
T

1 (s) for an
arbitrary initial state s ∈ S as

V
π∗≥h
T

1 (s) (C.14)

= E
a1,...,sH following π∗≥h

T |s1=s

[H∑
h′=1

rh′(sh′ , ah′)
]

(C.15)

= Ea1,...,sh following π̂N |s1=s

[
Eah,...,sH following π∗|sh

[H∑
h′=1

rh′(sh′ , ah′)

]]
(C.16)

= Ea1,...,sh following π̂N |s1=s

[
h∑

h′=1

rh′(sh′ , ah′) + Eah,...,sH following π∗|sh

[H∑
h′=h+1

rh′(sh′ , ah′)

]]
,

(C.17)

132

and

V
π∗≥h+1
T

1 (s1) (C.18)

= E
a1,...,sH following π∗≥h+1

T |s1=s

[H∑
h′=1

rh′(sh′ , ah′)
]

(C.19)

= Ea1,...,sh following π̂N |s1=s

[
Eah,sh+1 following π̂N |sh

[
Eah+1,...,sH following π∗|sh+1

[h∑
h′=1

rh′(sh′ , ah′) +

H∑
h′=h+1

rh′(sh′ , ah′)
]]]

(C.20)

= Ea1,...,sh following π̂N |s1=s

[
h∑

h′=1

rh′(sh′ , ah′)

+ Eah,sh+1 following π̂N |sh

[
Eah+1,...,sH following π∗|sh+1

[H∑
h′=h+1

rh′(sh′ , ah′)
]]]

. (C.21)

eqs. (C.15) and (C.19) use the definition of V π
1 , eqs. (C.16) and (C.20) use the definition of π∗≥h

T

and π∗≥h+1
T from eq. (C.13), and eqs. (C.17) and (C.21) use the property that integration is a linear

operator.
Lemma 4 then follows from eqs. (C.17) and (C.21) as well as the definition of Q∗

h:

V
π∗≥h
T

1 (s1)− V
π∗≥h+1
T

1 (s1) = Ea1,...,sh following πN |s1=s

[
h∑

h′=1

rh′(sh′ , ah′)−
h∑

h′=1

rh′(sh′ , ah′)

+ Eah,...,sH following π∗|sh

[H∑
h′=h+1

rh′(sh′ , ah′)

]

− Eah,sh+1 following π̂N |sh

[
Eah+1,...,sH following π∗|sh+1

[H∑
h′=h+1

rh′(sh′ , ah′)
]]]

(C.22)

= Ea1,...,sh following π̂N |s1=s

[
Q∗

h

(
sh, π

∗
h(sh)

)
−Q∗

h

(
sh, π̂N,h(sh)

)]
. (C.23)

We proceed with the proof by using the notation from eq. (C.13). We can decompose the
instantaneous regret for an arbitrary initial state s ∈ S as follows:

V ∗
1 (s)− V π̂N

1 (s) = V
π∗≥1
T

1 (s)− V
π∗≥H+1
T

1 (s) (C.24)

=

H∑
h=1

(
V

π∗≥h
T

1 (s)− V
π∗≥h+1
T

1 (s)
)

(C.25)

Lemma 4
=

H∑
h=1

Es1,a1,...,shfollowing π̂N

[
Q∗

h

(
sh, π

∗
h(sh)

)
−Q∗

h

(
sh, π̂N,h(sh)

)∣∣s1 = s
]
.

(C.26)

133

The intuition behind lemma 4 used in eq. (C.26) is as follows. Both V
π∗≥h
T

1 (s) and V
π∗≥h+1
T

1 (s)
refer to the same random trajectory segment (s1, a1, . . . , sh) until step h (i.e., the same initial state
and policy are used), which is captured as Es1,a1,...,sh following π̂N

[·]. For the remaining steps h, . . . ,H ,
the policies only differ at step h, a property which is captured in the difference Q∗

h

(
sh, π

∗
h(sh)

)
−

Q∗
h

(
sh, π̂N,h(sh)

)
.

Conditioning on the event in Lemma 1 holding true and by invoking lemma 2, we have that:

Qt
h(s, a) ≤ Q∗

h(s, a) ≤ Q
t
h(s, a), (C.27)

holds for every h ∈ [H], t ∈ [T], and (s, a) ∈ S ×A. Next, we proceed to bound Q∗
h

(
·, π∗

h(·)
)
−

Q∗
h

(
·, π̂N,h(·)) from eq. (C.26) uniformly on S. We have:

Q∗
h(s, π

∗
h(s))−Q∗

h(s, π̂N,h(s))
eq. (C.27)
≤ Q∗

h(s, π
∗
h(s))− max

t∈[N]
Qt

h(s, π̂N,h(s)) (C.28)

Def. of π̂N,h
= Q∗

h(s, π
∗
h(s))−max

a∈A
max
t∈[N]

Qt
h(s, a) (C.29)

= min
t∈[T]

(
Q∗

h(s, π
∗
h(s))−max

a∈A
Qt

h(s, a)
)

(C.30)

Def. of π∗
h= min
t∈[T]

(
max
a∈A

Q∗
h(s, a)−max

a∈A
Qt

h(s, a)
)

(C.31)

eq. (C.27)
≤ min

t∈[T]

(
max
a∈A

Q
t
h(s, a)−max

a∈A
Qt

h(s, a)
)

(C.32)

eq. (4.10)
≤ min

t∈[T]

(
max
a∈A

Q
t
h(s

t
h, a)−max

a∈A
Qt

h(s
t
h, a)

)
(C.33)

eq. (4.11)
≤ min

t∈[T]

(
Q

t
h(s

t
h, a

t
h)− Qt

h(s
t
h, a

t
h)
)

(C.34)

≤ 1

N

N∑
t=1

(
Q

t
h(s

t
h, a

t
h)− Qt

h(s
t
h, a

t
h)
)
. (C.35)

Next, for convenience we introduce the notation

dth :=
(
Q

t
h(s

t
h, a

t
h)− T ∗

h Q
t
h+1(s

t
h, a

t
h)
)
+
(
T ∗
h Q

t
h+1(s

t
h, a

t
h)−Qt

h(s
t
h, a

t
h)
)
, (C.36)

and obtain the following upper bound on Q
t
h(s

t
h, a

t
h) − Qt

h(s
t
h, a

t
h) (from eq. (C.35)) for every

h ∈ [H], t ∈ [T]:

Q
t
h(s

t
h, a

t
h)−Qt

h(s
t
h, a

t
h)

eq. (C.36)
= dth + T ∗

h Q
t
h+1(s

t
h, a

t
h)− T ∗

h Q
t
h+1(s

t
h, a

t
h) (C.37)

Def. of T ∗
h= dth + Es′∼Ph(·|sth,ath)

(
max
a∈A

Q
t
h+1(s

′, a)−max
a∈A

Qt
h+1(s

′, a)
)

(C.38)

≤ dth +max
s′∈S

(
max
a∈A

Q
t
h+1(s

′, a)−max
a∈A

Qt
h+1(s

′, a)
)

(C.39)

eq. (4.10)
= dth +

(
max
a∈A

Q
t
h+1(s

t
h+1, a)−max

a∈A
Qt

h+1(s
t
h+1, a)

)
(C.40)

eq. (4.11)
≤ dth +

(
Q

t
h+1(s

t
h+1, a

t
h+1)−Qt

h+1(s
t
h+1, a

t
h+1)

)
. (C.41)

134

Using the definition of Qt
H+1 and Q

t
H+1 as the zero functions, we can unroll the recursive

inequality from eq. (C.41) and upper bound Q
t
h(s

t
h, a

t
h)− Qt

h(s
t
h, a

t
h) for every h ∈ [H], t ∈ [T]

as follows:

Q
t
h(s

t
h, a

t
h)−Qt

h(s
t
h, a

t
h) ≤

H∑
h′=h

dth′ . (C.42)

Q
t
h(s

t
h, a

t
h)−Qt

h(s
t
h, a

t
h) (C.43)

≤
H∑

h′=h

[(
Q

t
h′(sth′ , ath′)− T ∗

h′Q
t
h′+1(s

t
h′ , ath′)

)
+
(
T ∗
h′Qt

h′+1(s
t
h′ , ath′)−Qt

h′(sth′ , ath′)
)]
(C.44)

Lemma 1
≤

H∑
h′=h

4βσt
h′(sth′ , ath′). (C.45)

By substituting the bound from eq. (C.45) in eq. (C.35), and then in eq. (C.26), we arrive at:

V ∗
1 (s)− V π̂N

1 (s) ≤ 4β
H∑

h=1

H∑
h′=h

1

N

N∑
t=1

σt
h′(sth′ , ath′) ≤ 2

√
3βH(H + 1)

√
Γk(N,λ)

N , (C.46)

where the last inequality follows from lemma 3. Since eq. (C.46) holds for any s ∈ S, we arrive at
our main result:

∥V ∗
1 − V π̂N

1 ∥ℓ∞(S) ≤ 2
√
3βH(H + 1)

√
Γk(N,λ)

N . (C.47)

C.1.3 Offline contextual Bayesian optimization

Algorithm 8 AE-LSVI for offline contextual Bayesian optimization

Require: kernel function k(·, ·), exploration parameter β > 0, regularization parameter λ,
1: for t = 1, . . . , N do
2: Obtain Q

t and Qt from Equation (4.19)
3: Choose st ∈ argmaxs∈S

[
maxa∈AQ

t
(s, a)−maxa∈AQt(s, a)

]
4: Choose at ∈ argmaxa∈AQ

t
(st, a)

5: Observe the reward yt = Q∗(st, at) + ηt
6: end for
7: Output the policy estimate π̂N such that π̂N (·) = argmaxa∈Amaxt∈[N] Q

t(s, a)

Our algorithm for the offline contextual Bayesian optimization is presented in Algorithm 8. As
a side observation, we note that similarly to Char et al. [2019], we can also simply incorporate
context weights (i.e., given ω(s) that represents some weighting of context s that may depend on
the probability of seeing s at evaluation time or the importance of s), in case they are available, into
the proposed acquisition function, i.e.,

st ∈ argmaxs∈S
[(

max
a∈A

Q
t
(s, a)−max

a∈A
Qt(s, a)

)
w(s)

]
. (C.48)

135

Proof of Corollary 1

Proof. In this proof, we condition on the event in eq. (4.20) holding true. Similar arguments to the
ones in eq. (C.37) – eq. (C.41) lead to the following for every s ∈ S:

max
a∈A

Q∗(s, a)−Q∗(s, π̂N (s))
eq. (4.20)
≤ max

a∈A
Q∗(s, a)− max

t∈[N]
Qt(s, π̂N (s)) (C.49)

Def. of π̂N= max
a∈A

Q∗(s, a)−max
a∈A

max
t∈[N]

Qt(s, a) (C.50)

= min
t∈[T]

(
max
a∈A

Q∗(s, a)−max
a∈A

Qt(s, a)
)

(C.51)

eq. (4.20)
≤ min

t∈[T]

(
max
a∈A

Q
t
(s, a)−max

a∈A
Qt(s, a)

)
(C.52)

Def. of st
≤ min

t∈[T]

(
max
a∈A

Q
t
(st, a)−max

a∈A
Qt(st, a)

)
(C.53)

Def. of at
≤ min

t∈[T]

(
Q

t
(st, at)− Qt(st, at)

)
(C.54)

≤ 1

N

N∑
t=1

(
Q

t
(st, at)− Qt(st, at)

)
(C.55)

eq. (4.19)
=

1

N

N∑
t=1

(
2βtσ

t(st, at)
)

(C.56)

≤ 2βN
N

N∑
t=1

σt(st, at) (C.57)

Lemma 3
≤ 2βN

√
3Γk(N,λ)√
N

. (C.58)

Finally, by setting ϵ ≥ 2βN

√
3Γk(N,λ)√
N

and expressing it in terms of N , we arrive at the main
result.

C.2 Additional Experimental Details

C.2.1 Implementation

We use an exact Gaussian Process with a squared exponential kernel with learned scale parameters
in each dimension for the value function regression in eq. (4.3). We fit the kernel hyperparameters
at each iteration using 1000 iterations of Adam [Kingma and Ba, 2014], maximizing the marginal
log likelihood of the training data. We used the TinyGP package [Foreman-Mackey, 2021] built on
top of JAX [Bradbury et al., 2018] in order to take advantage of JIT compilation. All experiments
are conducted with a fixed bonus β = 0.5. We have empirically evaluated various settings of β in
Appendix C.2.3. We uniformly sample 1,000 points from the state space and evaluate them to find
an approximate maximizer to the objective in eq. (4.10).

136

DDQN and BDQN. For both of these methods we use networks with two hidden layers, each with
256 units. For the bootstrapped DQN, we use a network with 10 different heads, each representing a
different Q function. For each step collected during exploration, a corresponding mask is generated
and added to the replay buffer that signifies which heads will train on this sample. Each Q function
has a probability of 0.5 of being trained on each transition.

C.2.2 Environments

Each environment is defined with a native reward function taken from the literature. We established
upper and lower bounds on the reward function value and used them to scale the reward function
values to [0, 1] so that our environments would match the theoretical results in this paper.

Cartpole We use a modified version of the cartpole environment from Mehta et al. [2022a] that
has dense rewards as implemented in Wang et al. [2019]. The state space is 4D and consists of the
horizontal position and velocity of the cart as well as the angular position and velocity of the pole.
p0 in this environment is a normal distribution centered with the cart below the goal horizontally
with the pole hanging down with very small variance. p′0 is the same distribution displaced 5 meters
to the right.

Navigation This is a 2D navigation problem with dynamics of the form st+1 = st + B(st)at,

where B(t) =

[
sin(x2/10) + 4 0

0 1.5 cos(x1/10)− 2

]
. The goal is fixed at

[
6
9

]
. We define p0 to

be the uniform distribution over the axis-aligned rectangle given by corners
[
−8
−9

]
and

[
−6
−6

]
. We

define p′0 to be the uniform distribution over the axis-aligned rectangle given by corners
[
1
4

]
and[

3
7

]
. The reward function at every timestep is simply the negative ℓ1-distance between the agent

and the goal.

β Tracking and β + Rotation Our two simulated plasma control problems are taken from Mehta
et al. [2022a], which gives a thorough description of their relevance to the problem of nuclear fusion.
At a high level, βN is a normalized plasma pressure ratio that is correlated with the economic output
of a fusion reactor. Our β Tracking environment aims to adjust the injected power in the reactions
in order to achieve a target value of βN = 2%. The initial state distribution p0 is taken from a
set of real datapoints from shots on the DIII-D tokamak in San Diego. Our alternate initial state
distribution p′0 consists of simply adding 0.4 to each component of a vector sampled from p0. The
reward function is the negative ℓ1-distance between the βN value and 2%. The dynamics are given
by a learned model of the plasma state as introduced in Char et al. [2023].

The β + Rotation environment is a more complex plasma control problem, introducing an
additional actuator (injected torque) and an additional control objective (controlling plasma rotation).
Control of plasma rotation is key to plasma stability and this is a reduced version of the realistic
problem. This environment also uses a model from Char et al. [2023] for the dynamics, real
plasma states for the initial state distribution p0, and a fixed translation for the alternate initial state
distribution p′0. We also include a randomly drawn target for βN and rotation in the state space for
every episode.

137

Environment β = 0.25 β = 0.5 β = 1 β = 2

Cartpole 17.2± 0.3 16.8± 0.4 16.3± 0.5 15.1± 0.4
Navigation 22.3± 0.5 22.3± 0.4 22.2± 1.4 20.6± 1.3
β Tracking 13.9± 0.3 14.0± 0.4 13.2± 1.3 13.4± 0.7
β + Rotation 14.8± 0.3 14.3± 0.2 14.1± 0.9 13.3± 0.9

Table C.1: Average Return ± standard error of executing the identified best policy on the MDP
starting from p′0 over 5 seeds after collecting 1000 timesteps of data using the method with varying
values of the exploration parameter β.

C.2.3 Exploring β values

In the main paper, we report experiments with the exploration parameter β = 0.5 for all t. In
this work, we do not explore principled methods of choosing β and welcome future work in the
area. In lieu of this, we provide an empirical analysis of the sensitivity of AE-LSVI to varying
settings of β. We ran the AE-LSVI method on our evaluation environments as in the experiments
in Table 4.2, where we allowed each method to collect 1,000 timesteps of data and evaluated the
identified policies on the environments starting from a evaluation initial distribution p′0 distinct from
the initial distribution p0. In Table C.1 we observe that lower values of β perform better because the
confidence bounds seem too wide at higher settings, where the performance becomes similar to that
of uncertainty sampling. Therefore, we recommend initially trying β-values around 0.2− 0.5 when
applying .

138

C.3 RKHS Regression

At step t, we have data {(x1, a1, a′1, w1), . . . , (xt, at, a
′
t, wt)}. The kernel ridge regression estimate

is defined by,

µt = argminf∈H

t∑
i=1

(f(xi, ai)− wi)
2 + λ∥f∥2H . (C.59)

Denote by wt = [w1, . . . , wt]
T the vector of observations, (Kt)i,j=1,...,t = k(xi, ai, xj , aj) the data

kernel matrix, and kt(x, a) = [k(x, a, x1, a1), . . . , k(x, a, xt, at)]
T the data kernel features. We

then have

µt(x, a) = kt(x, a)
T (Kt + λ1t)

−1wt . (C.60)

We further have the posterior variance σt(x, a)2 that determines the width of the confidence intervals,

σt(x, a)
2 = k(x, a, x, a)− kt(x, a)

T (Kt + λ1t)
−1kt(x, a) . (C.61)

C.4 Proof of Theorem 4

In this section we will prove our main Theorem, 4. The overall strategy of the proof is to use our
Lipschitz assumption on the link function (more precisely, the relative Lipschitzness of the reward r
and the Borda function fr) in order to go to the Borda function, which we can directly model from
data. Then, we use our selection criteria as well as confidence bounds taken from Chowdhury and
Gopalan [2017] and convergence rates taken from Kandasamy et al. [2019] in order to complete the
argument. We give these cited results as lemmas in what follows.

In order to attain a particular policy performance with probability 1 − δ, we must bound the
error of the estimates given by our KRR process for a particular confidence level. In order to do so,
we adapt the result from Chowdhury and Gopalan [2017], Theorem 2.
Lemma 5. Let β(r)

t = 2||fr||κ +
√

2(Φt−1(X ×A) + 1 + log(2/δ)). Then with probability 1− δ
we have for all time t and any point (x, a) ∈ X ×A,

|µt−1(x, a)− fr(x, a)| ≤ β
(r)
t σt−1(x, a).

Proof. To prove this result, we will verify that all the conditions from Theorem 2 of Chowdhury
and Gopalan [2017] hold. Recall Assumption 2 which states that ∥fr∥κ ≤ B. Next, we observe that
since a′t ∼ U (A) (independent of everything else), we have that E [wt | Ft−1] = fr(xt, at), where
Ft = ρ

(
{(xs, as, a′s, ws)}ts=1

)
is the filtration generated by the past observations. Additionally,

since wt ∈ {0, 1} and xt, at are both Ft−1 measurable, we see that wt can be written as

wt = fr(xt, at) + ηt,

where ηt is Ft−1-conditionally subGaussian. Therefore, we have met all the necessary conditions,
and we can apply Theorem 2 of Chowdhury and Gopalan [2017] which gives us the desired
result.

This lemma jointly bounds the modeling error over the Borda function for all time t though it
introduces a dependence on the RKHS norm of fr. This dependence is inherited from prior work,

139

but we empirically study the relationship between the RKHS norm of a particular reward function
and that of the associated Borda function in Section C.5.

We also adapt a result from Lemma 8 of Kandasamy et al. [2019] in order to understand the
convergence of our uncertainty function σt.

Lemma 6. Suppose we have n queries (qt)nt=1 taken from X ×A. Then the posterior σt satisfies

∑
qt

σ2
t−1(qt) ≤

2

log(1 + η−2)
Φn(X ×A).

Lemma 6 gives us a handle on how quickly we can expect the uncertainty function to shrink as
additional datapoints are observed.

Now that we have lemmas 5 and 6 in place, we can proceed to the proof of the main result.

Proof. In this proof, we condition on the event in Lemma 5 holding true. Given that occurence, we

140

can say the following for every x ∈ X .

max
a∈A

r(x, a)− r(x, π̂N (s))
Assumption 3
≤ L1

(
max
a∈A

fr(x, a)− fr(x, π̂N (x))

)
(C.62)

Lemma 5
≤ L1

(
max
a∈A

fr(x, a)−max
t∈[T]

f t
r(x, π̂N (x))

)
(C.63)

Def. of π̂N= L1

(
max
a∈A

fr(x, a)−max
a∈A

max
t∈[T]

f t
r(x, a)

)
(C.64)

= L1 min
t∈[T]

(
max
a∈A

fr(x, a)−max
a∈A

f t
r(x, a)

)
(C.65)

Lemma 5
≤ L1 min

t∈[T]

(
max
a∈A

f t
r(x, a)−max

a∈A
f t
r(x, a)

)
(C.66)

Def. of xt

≤ L1 min
t∈[T]

(
max
a∈A

f t
r(x

t, a)−max
a∈A

f t
r(x

t, a)

)
(C.67)

Def. of at
≤ L1 min

t∈[T]

(
f t
r(x

t, at)− f t
r(x

t, at)
)

(C.68)

≤ L1

T

T∑
t=1

(
f t
r(x

t, at)− f t
r(x

t, at)
)

(C.69)

=
L1

T

T∑
t=1

2β
(r)
t σt(x

t, at) (C.70)

β
(r)
t is increasing
≤ 2L1β

(r)
T

T

√√√√(T∑
t=1

σt(xt, at)

)2

(C.71)

Cauchy-Schwarz
≤ 2L1β

(r)
T

T

√√√√T
T∑
t=1

σ2
t (x

t, at) (C.72)

Lemma 6
≤ 2L1β

(r)
T√
T

√
C1ΦT (C.73)

def of β(r)
T=

2L1√
T
(2B +

√
2(Φt−1 + 1 + log(2/δ)))

√
C1ΦT (C.74)

= O

(
L1√
T

(
B +ΦT

√
log

1

δ

))
. (C.75)

C.5 RKHS norms of r and fr

In order to understand the dependence of our estimation bound on the RKHS norm ||fr||κ, we ran
numerical experiments on sampled reward functions. For a variety of context and action dimensions,
we sampled 1000 reward functions as in Section 5.4.3 and numerically approximated their RKHS
norms. We also made a Monte-Carlo estimate of the Borda function fr for each of the reward
functions sampled and numerically approximated its RKHS norm. To do this, we uniformly sample

141

Context Dimension Action Dimension Win Rate Win Margin

0 1 0.16 -6.3
1 1 0.89 5.1
1 3 1 21.4
3 1 1 21.5
3 3 1 38.7
10 10 1 19.6

Table C.2: Comparison of RKHS norms of reward functions and associated Borda functions

1,000 points xi from the input space, compute the regularized kernel matrix K for this set xi, solve
the KRR problem Kα = f(x) for α. Then we compute the quadratic form

√
αTKα as an estimate

of the RKHS norm.

In Table C.2, we present the results of comparing the RKHS norms of 1000 reward functions
and their associated Borda functions sampled as in Section 5.4.3. A ‘win’ was counted when the
Borda function had smaller RKHS norm and a ‘loss’ otherwise. The win margin is the average
difference in RKHS norms of the reward and Borda functions, with a positive value when the Borda
function was of smaller norm. It is clear here that in general (though not always) the RKHS norm
of the Borda function fr for a particular reward function r is smaller than the RKHS norm of the
reward function r itself. This relationship seems to grow stronger as the input dimensionality of the
reward function grows larger.

C.6 Additional Experiments for Kernelized Setting

In Figure C.1, we depict the progress of the AE-Bordamethod as it continually acquires data. One
can see that the estimated optimal policy (red, second row) converges to a function quite similar to
the ground truth (red, first row) as more data is collected. In addition, it is clear that the selection
criterion targets parts of the domain which are relevant to policy learning while avoiding obviously
bad regions. We also see in the fourth row that the uncertainty over the value function decreases
relatively smoothly across the context space, supporting the idea that our method controls max-regret
effectively.

C.7 The Jeopardy! preference dataset

We generated a set of plausible wrong answers for the Jeopardy! dataset from Huggingface [Wolf
et al., 2023] by asking GPT-3.5 for a plausible wrong answer given the question, category, and
answer. We found that both the category and correct answer were necessary to include to direct
GPT-3.5 to generate an answer which was appropriate for the category and to prevent it from
accidentally generating a correct answer. We give the prompt used for this process in Figure C.2.

142

Time = 50 Time = 150 Time = 600

Figure C.1: Progress of AE-Borda across 50, 150, and 600 datapoints. From the top downwards,
the charts show the ground truth function, the mean of the posterior estimate of fr, the uncertainty
function, the estimate of the value function as well as the acquisition function given in (5.3), and the
regret over time.

143

[System]
You are an assistant coming up with plausible but incorrect answers to
Jeopardy questions (just the answer, no "what is"). Here’s an example:\n
Q: ’For the last 8 years of his life, Galileo was under house arrest for
espousing this man’s theory’
Category: HISTORY
Correct Answer: Copernicus\n
Response: Brahe
[User]
Q: {question}
Category: {category}
Correct Answer: {answer}
Response:

Figure C.2: The prompt used to collect plausible wrong answers for Jeopardy! questions.

C.8 Related Work on Uncertainty Estimation in Large Language
Models

Estimating the epistemic uncertainty in large language models is still an active area of research and
there are few prior works on this topic. For example, Osband et al. [2022] augment existing models
with additional layers to model randomness, and subsequently the uncertainty. However performing
uncertainty quantification in a parallelized fashion requires a significant memory overhead. To be
more amenable to larger models, we instead use a dropout-augmented model to estimate uncertainty,
as detailed in Section 5.5.

C.9 Prompt templates

The prompt templates for GPT-4 as the pairwise comparison evaluation judge and GPT-3.5 as the
Jeopardy! single answer correctness judge are listed in Figures C.3 and C.4. We maintain the
standardized prompts proved to be effective by Zheng et al. [2023].

C.10 Additional Experiment Details

We train our initial SFT models for 1 epoch on the SHP and HH dataset and 2 epochs on the new
Jeopardy! dataset. We select the initial training period based on the amount of training after which
we obtained a validation loss which had plateaued. We also find it reasonable to add a dropout layer
before the penultimate linear layer since we find that adding a dropout layer not to negatively affect
the performance in the SFT phase. To aid in fitting the model on our GPUs, we use QLoRa [Hu et al.,
2021, Dettmers et al., 2023] with 4bit quantization for model weights and optimize using the 8-bit
Lion optimizer [Chen et al., 2023]. For the methods with a reference model, we put the policy and
the reference model on two separate GPUs. Further, we use dropout probability of p = 0.05, policy
constraint weight γ = 0.1, an uncertainty bonus β = 4, a learning rate of 5× 10−7, an unlabeled
batch size of 128, and a training batch size b of 32. We run all experiments with 3 random seeds.
Our implementation was built atop the one provided by the authors of the DPO paper [Rafailov

144

[System]
Please act as an impartial judge and evaluate the quality of the
responses provided by two AI assistants to the user question displayed
below. You should choose the assistant that follows the user’s
instructions and answers the user’s question better. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of their responses. Avoid any
position biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the length of
the responses to influence your evaluation. Do not favor certain names of
the assistants. Be as objective as possible. Output your final verdict

by strictly following this format: ’A’ if assistant A is better, ’B’ if
assistant B is better, and ’C’ for a tie. Output only that character and
do not include any other characters or spaces.

[User Question]
{question}

[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]

Figure C.3: The default prompt for pairwise comparison.

[System]
You are a judge on whether a contestant answer to Jeopardy is correct
given a correct answer. If you don’t see the correct answer it is not
correct. Answer ’Yes’ or ’No’ is sufficient. Please don’t use any other
words.

[The Start of Correct Answer]
{correct_answer}
[The End of Correct Answer]

[The Start of Contestant Answer]
{contestant_answer}
[The End of Contestant Answer]

Figure C.4: The default prompt for evaluating single Jeopardy! answer.

145

0 5000 10000 15000 20000 25000 30000
Samples

0.34

0.36

0.38

0.40

0.42

0.44

A
ve

ra
ge

R
at

e
of

C
or

re
ct

A
n

sw
er

s

Average Correct Rate vs. Step

AE-DPO

US-DPO

DPO

SFT

Figure C.5: Rate of correct answers for Jeopardy! over time.

et al., 2023].

C.11 Experiment Runtimes

Jeopardy! SHP HH
Further SFT 2 | 3 4 | 4 3 | 7
DPO 7.5 | 25 10 | 14 10 | 15
US-DPO 8 | 12 79 | 85 31 | 85
AE-DPO 9 | 12 44 | 45 18 | 53

Table C.3: Runtimes (min | max) for each experiment rounded to nearest hour. Several experiments
require a significant amount of compute time to complete. Runtimes vary depending on current
loads on compute clusters.

C.12 Additional Experiments with LLM

Here, we plot the training curves for the Jeopardy! dataset below. For Jeopardy!, we plot the
correctness of the policy over time in Figure C.5. Though this is part of the goal of the agent in
the Jeopardy! dataset, note that it is not the entire optimization objective, as we show in Figure 5.4.
Here, it is clear that no policy is able to improve at predicting correct answers on the test set. This is
unsurprising as trivia is a difficult generalization problem.

146

C.12.1 Evaluating dropout-based LLM uncertainty estimation

We believe that in general the estimation of uncertainty for LLMs is an important topic of research
and progress there will facilitate a more efficient and informed use of this technology. As we
discussed in appendix C.8 and section 5.5, we use a dropout-based uncertainty estimation technique
to inform the active exploration in this work. Over the course of this study, we considered ensembles
and epistemic networks [Osband et al., 2022] as alternative methods for estimating the uncertainty
of LLMs. However, each of these methods comes with some additional GPU memory requirement.
For epistemic networks, the additional network parameters take GPU memory, while for ensembles,
the memory is required to store multiple copies of a network or at least mutiple LoRAs. In our
initial studies we found epistemic networks and dropout to perform comparably well and therefore
chose dropout due to its smaller memory consumption and good performance. In this section, we
explore whether the uncertainties predicted by our estimates differ when the model predicts the
correct, incorrect, or null answer and whether these predictions differ in the cases when the model
decides to predict null. To do this, we evaluated the log probabilities predicted by πSFT on a test
set of 20,560 Jeopardy! clues for the correct, incorrect, and null answer. We computed the sample
variances over the log probabilities σ2(a | x) =

∑
ti∈a σ

2(ti | x, t1, . . . , ti−1) and plotted their
densities in fig. C.6.

We see that the model predicts the highest variances for the log probabilities of incorrect answers.
We also see that the the model seems to predict especially low variances for the null token when it
decides to output it. The correct answer seems to have a lower variance when the model is willing to
predict an answer. We see that the log probabilities of incorrect answers always have a high variance,
indicating high uncertainty. We also see that the null token has a low variance when the model has
a non-null output indicating certainty that it should not abstain. The variance further drops when
it outputs null, indicating certainty about not knowing an answer. The correct answer has a lower
variance than the incorrect answer when the model does not abstain. The relative variances of these
two curves support that the model provides meaningful indications of uncertainty. Additionally, in
the case where the model abstains, even the correct answer has a high variance, indicating a high
uncertainty. We believe that these results support that the uncertainty function is at least correlated
with the model’s knowledge about the input. This offers support to the hypothesis that our estimates
of the variance are somewhat meaningful. However, we believe that this is an important research
topic and warrants substantial further study under a variety of lenses. We hope that this work will
encourage further research in this area.

147

0.0 0.2 0.4 0.6 0.8 1.0
Variance

0

1

2

3

4

5

6

7

D
en

si
ty

Variance when model outputs a non-null answer

Correct

Incorrect

Null

0.0 0.2 0.4 0.6 0.8 1.0
Variance

0

1

2

3

4

5

6

7

D
en

si
ty

Variance when model outputs null

Correct

Incorrect

Null

Figure C.6: Density of σ(a | x) conditioned on correct, incorrect, and null values for a. The
left hand plot depicts the variance distributions conditional on the model outputing a non-null
completion, while the right hand is conditional on a null completion.

148

D | Appendix for part II

D.1 Experiment Details

D.1.1 Training Details

Each model takes 32 timesteps of state and control information as input and are trained on predictions
for the following 16 timesteps. The ODE-based models are integrated from the initial conditions
of the last given state. All neural networks are all trained with a learning rate of 3× 10−3, which
was seen to work well across models. We generated a training set of 100,000 trajectories, test set of
20,000 trajectories, and validation set of 10,000 trajectories. Training was halted if validation error
did not improve for 3 consecutive epochs.

D.1.2 Comparison Methods

We compare our models with other choices along the spectrum of structured to flexible models from
both machine learning and system identification. In our paper, we compared the following methods
in our experiments:

• Full NDS: A Neural Dynamical System with the full system dynamics for the problem being
analyzed. The full construction of this model is given by Equation 7.2. For the functions
hθ, cϑ, dτ , we use fully connected networks with 2 layers, Softplus activations, 64 hidden
nodes in each layer, and batch normalization.

• Partial NDS: A Neural Dynamical System with partial system dynamics for the problem
being analyzed. These follow Equation 7.5 as applied to Equation 7.2. For the Ballistic
system, we only provide equations for ẋ and ẍ, excluding the information about vertical
motion from our network. For the Lorenz system, we only provide equations for ẋ and ẏ,
excluding information about motion in the z direction. For the Cartpole system, we only
provide information about θ̇ and θ̈. These equations were chosen somewhat arbitrarily to
illustrate the partial NDS effectiveness. We use similar neural networks here as for the Full
NDS.

• NDS0: A Full NDS with residual terms removed. This serves as an ablation which shows the
use of the residual terms.

• Fully Connected (FC): A Fully-Connected Neural Network with 4 hidden layers containing
128 nodes with ReLU activations and batch normalization.

• Fully Connected Neural ODE (FC NODE): A larger version of the Neural ODE as given
in Chen et al. [2018], we use 3 hidden layers with 128 nodes, batch norm, and Softplus
activations for ṡ. This can be interpreted as a version of our NDS with no prior knowledge,
i.e. g(s) = 0.

149

• LSTM: A stacked LSTM with 8 layers as in Graves [2013]. The data is fed in sequentially
and we regress the outputs of the LSTM against the true values of the trajectory.

• Gray Box Optimization (GBO): We use MATLAB’s gray-box system identification toolbox
[Ljung et al., 2009] along with the prior knowledge ODEs to fit the parameters ϕ̂ as an
alternative to using neural networks. This algorithm uses trust-region reflective nonlinear least
squares with finite differencing [Coleman and Li, 1996] to find the parameter values which
minimize the error of the model rollouts over the observed data.

• Sparse Identification of Nonlinear Systems (SR): We use the method from Brunton et al.
[2015] to identify the dynamical systems of interest. This method uses sparse symbolic
regression to learn a linear mapping from basis functions of the state xt and control ut to the
derivatives ẋt computed by finite differences. Our synthetic systems are in the span of the
polynomial basis that we used.

• APHYNITY: We use the method from Yin et al. [2021], which fits a min-error parameter but
then has an additional neural network component to model unknown dynamics.

150

Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale ma-
chine learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

Yasin Abbasi-Yadkori. Online learning for linearly parametrized control problems. 2012.

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért
Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning, pages 3692–3702. PMLR, 2019.

J. Abbate, R. Conlin, and E. Kolemen. Data-driven profile prediction for diii-d. Nuclear Fusion,
61(4):046027, mar 2021a. doi: 10.1088/1741-4326/abe08d. URL https://doi.org/10.
1088/1741-4326/abe08d.

Joseph Abbate, R Conlin, and E Kolemen. Data-driven profile prediction for diii-d. Nuclear Fusion,
61(4):046027, 2021b.

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=S1ANxQW0b.

Jan Achterhold and Joerg Stueckler. Explore the context: Optimal data collection for context-
conditional dynamics models. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings
of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 3529–3537. PMLR, 13–15 Apr 2021. URL
https://proceedings.mlr.press/v130/achterhold21a.html.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. 2019.

151

https://www.tensorflow.org/
https://doi.org/10.1088/1741-4326/abe08d
https://doi.org/10.1088/1741-4326/abe08d
https://openreview.net/forum?id=S1ANxQW0b
https://proceedings.mlr.press/v130/achterhold21a.html

Alekh Agarwal, Sham Kakade, and Lin F. Yang. Model-based reinforcement learning with
a generative model is minimax optimal. In Jacob Abernethy and Shivani Agarwal, edi-
tors, Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceed-
ings of Machine Learning Research, pages 67–83. PMLR, 09–12 Jul 2020. URL https:
//proceedings.mlr.press/v125/agarwal20b.html.

Riad Akour. Robust preference learning-based reinforcement learning. 2014.

M. Ariola, G. De Tommasi, A. Pironti, and F. Villone. Control of resistive wall modes in tokamak
plasmas. Control Engineering Practice, 24:15–24, 2014. ISSN 0967-0661. doi: https://doi.org/10.
1016/j.conengprac.2013.11.009. URL https://www.sciencedirect.com/science/
article/pii/S096706611300213X.

Marco Ariola, Alfredo Pironti, et al. Magnetic control of tokamak plasmas, volume 187. Springer,
2008.

Dilip Arumugam and Benjamin Van Roy. The value of information when deciding what to learn,
2021.

Jordan T. Ash, Cyril Zhang, Surbhi Goel, Akshay Krishnamurthy, and Sham M. Kakade.
Anti-concentrated confidence bonuses for scalable exploration. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=
RXQ-FPbQYVn.

Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted reinforcement
learning. Advances in neural information processing systems, 19, 2006.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in neural information processing systems, 21, 2008.

I. Ayed, E. de Bézenac, A. Pajot, J. Brajard, and P. Gallinari. Learning dynamical systems from
partial observations. arXiv:1902.11136 [physics], February 2019.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pages
463–474. PMLR, 2020.

Mohammad Gheshlaghi Azar, Rémi Munos, and Bert Kappen. On the sample complexity of
reinforcement learning with a generative model. arXiv preprint arXiv:1206.6461, 2012.

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax pac bounds on the
sample complexity of reinforcement learning with a generative model. Machine learning, 91(3):
325–349, 2013.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson,
and Eytan Bakshy. Botorch: a framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020.

Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts.
Ready policy one: World building through active learning. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119

152

https://proceedings.mlr.press/v125/agarwal20b.html
https://proceedings.mlr.press/v125/agarwal20b.html
https://www.sciencedirect.com/science/article/pii/S096706611300213X
https://www.sciencedirect.com/science/article/pii/S096706611300213X
https://openreview.net/forum?id=RXQ-FPbQYVn
https://openreview.net/forum?id=RXQ-FPbQYVn

of Proceedings of Machine Learning Research, pages 591–601. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/ball20a.html.

E. A. Baltz, E. Trask, M. Binderbauer, M. Dikovsky, H. Gota, R. Mendoza, J. C. Platt, and
P. F. Riley. Achievement of sustained net plasma heating in a fusion experiment with
the optometrist algorithm. Scientific Reports, 7(1):6425, December 2017. ISSN 2045-
2322. doi: 10.1038/s41598-017-06645-7. URL http://www.nature.com/articles/
s41598-017-06645-7.

Matteo Barbarino. A brief history of nuclear fusion. Nature Physics, 16(9):890–893, 2020.

Stephane RA Barde, Soumaya Yacout, and Hayong Shin. Optimal preventive maintenance policy
based on reinforcement learning of a fleet of military trucks. Journal of Intelligent Manufacturing,
30(1):147–161, 2019.

Jayson Barr, Brian Sammuli, Dave A Humphreys, E Olofsson, XD Du, Cristina Rea, Will P Wehner,
Mark D Boyer, Nicholas W Eidietis, Robert Granetz, et al. Development and experimental
qualification of novel disruption prevention techniques on diii-d. Nuclear Fusion, 61(12):126019,
2021.

Jonathan Bassen, Bharathan Balaji, Michael Schaarschmidt, Candace Thille, Jay Painter, Dawn
Zimmaro, Alex Games, Ethan Fast, and John C Mitchell. Reinforcement learning for the adaptive
scheduling of educational activities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1–12, 2020.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi
Munos. Unifying count-based exploration and intrinsic motivation. CoRR, abs/1606.01868, 2016.
URL http://arxiv.org/abs/1606.01868.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Richard Bellman, Robert Kalaba, and Bella Kotkin. Polynomial approximation–a new computational
technique in dynamic programming: Allocation processes. Mathematics of Computation, 17(82):
155–161, 1963.

Viktor Bengs, Robert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hüllermeier. Preference-based
online learning with dueling bandits: A survey, 2021.

Ilija Bogunovic and Andreas Krause. Misspecified gaussian process bandit optimization. Advances
in Neural Information Processing Systems, 34:3004–3015, 2021.

Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, and Volkan Cevher. Adversarially robust
optimization with gaussian processes. In Conference on Neural Information Processing Systems
(NeurIPS), 2018.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

A. Bondeson and D.J. Ward. Stabilization of external modes in tokamaks by resistive walls and
plasma rotation. Physical Review Letters, 72(17):2709–2712, 1994.

Dan Boyer, Keith Erickson, Stanley Kaye, Vaish Gajaraj, Justin Kunimune, and Michael Zarnstorff.
Nubeamnet: Accelerated predictive modeling of nstx-u beam deposition for optimization and
control. In APS Division of Plasma Physics Meeting Abstracts, volume 2018, pages TP11–102,
2018.

153

https://proceedings.mlr.press/v119/ball20a.html
http://www.nature.com/articles/s41598-017-06645-7
http://www.nature.com/articles/s41598-017-06645-7
http://arxiv.org/abs/1606.01868

M. D. Boyer, K. G. Erickson, B. A. Grierson, D. C. Pace, J. T. Scoville, J. Rauch, B. J. Crowley,
J. R. Ferron, S. R. Haskey, D. A. Humphreys, R. Johnson, R. Nazikian, and C. Pawley. Feedback
control of stored energy and rotation with variable beam energy and perveance on diii-d. Nuclear
Fusion, 59(7):076004, May 2019a. ISSN 0029-5515.

M. D. Boyer, S. Kaye, and K. Erickson. Real-time capable modeling of neutral beam injection on
nstx-u using neural networks. Nuclear Fusion, 59(5):056008, March 2019b. ISSN 0029-5515.

MD Boyer, C Rea, and M Clement. Toward active disruption avoidance via real-time estimation of
the safe operating region and disruption proximity in tokamaks. Nuclear Fusion, 62(2):026005,
2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Mary Ann Branch, Thomas F Coleman, and Yuying Li. A subspace, interior, and conjugate gradient
method for large-scale bound-constrained minimization problems. SIAM Journal on Scientific
Computing, 21(1):1–23, 1999.

Franklin H Branin. Widely convergent method for finding multiple solutions of simultaneous
nonlinear equations. IBM Journal of Research and Development, 16(5):504–522, 1972.

Joshua Breslau, Marina Gorelenkova, Francesca Poli, Jai Sachdev, Alexei Pankin, Gopan Perumpilly,
and USDOE Office of Science. Transp, 6 2018. URL https://www.osti.gov/biblio/
1489900.

William J Broad. Breakthrough in nuclear fusion offers hope for power of future. The New York
Times, page 1, Nov 1991.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

C. Brose. The Kill Chain: Defending America in the Future of High-Tech Warfare. Hachette
Books, 2020. ISBN 9780316533362. URL https://books.google.com/books?id=
CW-nDwAAQBAJ.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Asso-
ciates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020b.

154

http://github.com/google/jax
http://github.com/google/jax
https://www.osti.gov/biblio/1489900
https://www.osti.gov/biblio/1489900
https://books.google.com/books?id=CW-nDwAAQBAJ
https://books.google.com/books?id=CW-nDwAAQBAJ
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data: Sparse
identification of nonlinear dynamical systems. September 2015. doi: 10.1073/pnas.1517384113.

Mona Buisson-Fenet, Friedrich Solowjow, and Sebastian Trimpe. Actively learning gaussian process
dynamics. In Alexandre M. Bayen, Ali Jadbabaie, George Pappas, Pablo A. Parrilo, Benjamin
Recht, Claire Tomlin, and Melanie Zeilinger, editors, Proceedings of the 2nd Conference on
Learning for Dynamics and Control, volume 120 of Proceedings of Machine Learning Research,
pages 5–15. PMLR, 10–11 Jun 2020. URL https://proceedings.mlr.press/v120/
buisson-fenet20a.html.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

E. F. Camacho and C. B. Alba. Model predictive control. Springer Science & Business Media, 2013.

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statistical
Science, pages 273–304, 1995.

Ian Char, Youngseog Chung, Willie Neiswanger, Kirthevasan Kandasamy, Andrew Oakleigh
Nelson, Mark Boyer, Egemen Kolemen, and Jeff Schneider. Offline contextual bayesian
optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/7876acb66640bad41f1e1371ef30c180-Paper.pdf.

Ian Char, Joseph Abbate, László Bardóczi, Mark D Boyer, Youngseog Chung, Rory Conlin, Keith
Erickson, Viraj Mehta, Nathan Richner, Egemen Kolemen, and Jeff Schneider. Offline model-
based reinforcement learning for tokamak control. In Learning for Dynamics and Control, pages
1–16. PMLR, 2023.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. arXiv preprint arXiv:1704.00051, 2017a.

Francis F Chen et al. Introduction to plasma physics and controlled fusion, volume 1. Springer,
1984.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

R. T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. Neurips, 2018. arXiv: 1806.07366.

Richard Y. Chen, Szymon Sidor, Pieter Abbeel, and John Schulman. Ucb and infogain exploration
via q-ensembles. CoRR, abs/1706.01502, 2017b. URL http://arxiv.org/abs/1706.
01502.

S. Chen, S. A. Billings, and P. M. Grant. Non-linear system identification using neural networks.
International Journal of Control, 51(6):1191–1214, January 1990. ISSN 0020-7179. doi:
10.1080/00207179008934126.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms.
arXiv preprint arXiv:2302.06675, 2023.

155

https://proceedings.mlr.press/v120/buisson-fenet20a.html
https://proceedings.mlr.press/v120/buisson-fenet20a.html
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://proceedings.neurips.cc/paper_files/paper/2019/file/7876acb66640bad41f1e1371ef30c180-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/7876acb66640bad41f1e1371ef30c180-Paper.pdf
http://arxiv.org/abs/1706.01502
http://arxiv.org/abs/1706.01502

Z. Chen, J. Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural networks.
arXiv:1909.13334 [cs, stat], September 2019. arXiv: 1909.13334.

W. S. Cho, P. Zhang, Y. Zhang, X. Li, M. Galley, C. Brockett, M. Wang, and J. Gao. Towards
coherent and cohesive long-form text generation. 2018.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pages 844–853. PMLR, 2017.

Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinformcement learning from human preferences. In Advances in Neural Information Process-
ing Systems 30 (NIPS 2017), 2017. URL https://papers.nips.cc/paper_files/
paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
3de568f8597b94bda53149c7d7f5958c-Paper.pdf.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Daniel Clery. Explosion marks laser fusion breakthrough. Science, 378(6625):1154, 2022.

T. F. Coleman and Y. Li. An interior trust region approach for nonlinear minimization subject to
bounds. SIAM Journal on Optimization, 6(2):418–445, May 1996.

Rory Conlin, Keith Erickson, Joseph Abbate, and Egemen Kolemen. Keras2c: A library for
converting keras neural networks to real-time compatible c. Engineering Applications of Artificial
Intelligence, 100:104182, 2021.

N. Cressie and C. K. Wikle. Statistics for Spatio-Temporal Data. John Wiley & Sons, November
2015. ISBN 978-1-119-24304-5.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based re-
inforcement learning through optimistic policy search and planning. In NeurIPS,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
a36b598abb934e4528412e5a2127b931-Abstract.html.

James W Daniel. Splines and efficiency in dynamic programming. Journal of Mathematical Analysis
and Applications, 54(2):402–407, 1976.

E. de Bezenac, A. Pajot, and P. Gallinari. Deep learning for physical processes: Incorporating prior
scientific knowledge. arXiv:1711.07970 [cs, stat], January 2018. arXiv: 1711.07970.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

PC De Vries, MF Johnson, B Alper, P Buratti, TC Hender, HR Koslowski, V Riccardo, JET-EFDA
Contributors, et al. Survey of disruption causes at jet. Nuclear fusion, 51(5):053018, 2011.

Peter C de Vries, Timothy C Luce, YS Bae, S Gerhardt, Xianzu Gong, Yuri Gribov, D Humphreys,
A Kavin, RR Khayrutdinov, C Kessel, et al. Multi-machine analysis of termination scenarios
with comparison to simulations of controlled shutdown of iter discharges. Nuclear Fusion, 58(2):
026019, 2017.

156

https://papers.nips.cc/paper_files/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/hash/a36b598abb934e4528412e5a2127b931-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a36b598abb934e4528412e5a2127b931-Abstract.html

Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. In Aaai/iaai, pages
761–768, 1998.

Richard Dearden, Nir Friedman, and David Andre. Model-based bayesian exploration. CoRR,
abs/1301.6690, 1999. URL http://arxiv.org/abs/1301.6690.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Mag-
netic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):
414–419, 2022.

Morris H DeGroot. Uncertainty, information, and sequential experiments. The Annals of Mathemat-
ical Statistics, 33(2):404–419, 1962.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, page 465–472, Madison, WI, USA, 2011. Omnipress.
ISBN 9781450306195.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023.

Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko.
Kernel-based reinforcement learning: A finite-time analysis. In International Conference on
Machine Learning, pages 2783–2792. PMLR, 2021.

J. R. Dormand and P. J. Prince. A family of embedded runge-kutta formulae. Journal of Computa-
tional and Applied Mathematics, 6(1):19–26, March 1980.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support. arXiv preprint arXiv:1810.11363, 2018.

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in rl. In International
Conference on Machine Learning, pages 2826–2836. PMLR, 2021.

Simon Shaolei Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. Is a good representation
sufficient for sample efficient reinforcement learning? International Conference on Learning
Representations, 2020.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, and Masrour Zoghi.
Contextual dueling bandits, 2015.

Michael O’Gordon Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. University of Massachusetts Amherst, 2002.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution im-
age synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12873–12883, 2021.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with V-
usable information. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 5988–6008. PMLR,

157

http://arxiv.org/abs/1301.6690

17–23 Jul 2022.

Mark R Fahey and Jeff Candy. Gyro: A 5-d gyrokinetic-maxwell solver. In SC’04: Proceedings of
the 2004 ACM/IEEE Conference on Supercomputing, pages 26–26. IEEE, 2004.

Max E Fenstermacher, J Abbate, S Abe, T Abrams, M Adams, B Adamson, N Aiba, T Akiyama,
P Aleynikov, E Allen, et al. Diii-d research advancing the physics basis for optimizing the
tokamak approach to fusion energy. Nuclear Fusion, 62(4):042024, 2022.

J. R. Ferron, M. L. Walker, L. L. Lao, H. E. St John, D. A. Humphreys, and J. A. Leuer. Real time
equilibrium reconstruction for tokamak discharge control. Nuclear Fusion, 38(7):1055–1066,
July 1998.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pages 1126–1135. PMLR,
2017.

Dan Foreman-Mackey. Tinygp, 2021. URL https://tinygp.readthedocs.io.

Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical Review, 90(3):
563–591, 2022.

Peter I. Frazier. A tutorial on bayesian optimization. arXiv:1807.02811 [cs, math, stat], July 2018.
URL http://arxiv.org/abs/1807.02811. arXiv: 1807.02811.

Peter I Frazier, Warren B Powell, and Savas Dayanik. A knowledge-gradient policy for sequential
information collection. SIAM Journal on Control and Optimization, 47(5):2410–2439, 2008.

Jeffrey P. Freidberg. Plasma Physics and Fusion Energy. Cambridge University Press, 2007. doi:
10.1017/CBO9780511755705.

J. Frøyland and K. H. Alfsen. Lyapunov-exponent spectra for the lorenz model. Physical Review A,
29(5):2928–2931, May 1984.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020a.

Yichen Fu, David Eldon, Keith Erickson, Kornee Kleijwegt, Leonard Lupin-Jimenez, Mark D.
Boyer, Nick Eidietis, Nathaniel Barbour, Olivier Izacard, and Egemen Kolemen. Machine
learning control for disruption and tearing mode avoidance. Physics of Plasmas, 27(2):022501,
February 2020b. ISSN 1070-664X. doi: 10.1063/1.5125581. URL http://aip.scitation.
org/doi/full/10.1063/1.5125581. Publisher: American Institute of Physics.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1587–1596. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/fujimoto18a.html.

Fusion Industry Association. The global fusion industry in 2023. Fusion Industry Association, July
2023.

Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. Preference-based
reinforcement learning: a formal framework and a policy iteration algorithm. Mach Learn, 2012.

Victor Gabillon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Sébastien Bubeck. Multi-
bandit best arm identification. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 24. Curran As-

158

https://tinygp.readthedocs.io
http://arxiv.org/abs/1807.02811
http://aip.scitation.org/doi/full/10.1063/1.5125581
http://aip.scitation.org/doi/full/10.1063/1.5125581
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html

sociates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/
c4851e8e264415c4094e4e85b0baa7cc-Paper.pdf.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

Manuel Garcia-Munoz, SE Sharapov, MA Van Zeeland, Enrique Ascasibar, A Cappa, L Chen,
J Ferreira, Joaquin Galdon-Quiroga, Benedikt Geiger, J Gonzalez-Martin, et al. Active control of
alfvén eigenmodes in magnetically confined toroidal plasmas. Plasma Physics and Controlled
Fusion, 61(5):054007, 2019.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson.
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances
in Neural Information Processing Systems, 2018.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforcement
learning: A survey. CoRR, abs/1609.04436, 2016. URL http://arxiv.org/abs/1609.
04436.

M Giacomin, A Pau, P Ricci, O Sauter, T Eich, JET Contributors, ASDEX Upgrade Team, et al. First-
principles density limit scaling in tokamaks based on edge turbulent transport and implications
for iter. Physical Review Letters, 128(18):185003, 2022.

A. Graves. Generating sequences with recurrent neural networks. August 2013. URL https:
//arxiv.org/abs/1308.0850v5.

Martin Greenwald, JL Terry, SM Wolfe, S Ejima, MG Bell, SM Kaye, and GH Neilson. A new look
at density limits in tokamaks. Nuclear Fusion, 28(12):2199, 1988.

R. J. Groebner, K. H. Burrell, and R. P. Seraydarian. Role of edge electric field and poloidal rotation
in the l-h transition. Physical Review Letters, 64(25):3015–3018, 1990. ISSN 00319007. doi:
10.1103/PhysRevLett.64.3015.

Peter D Grünwald and A Philip Dawid. Game theory, maximum entropy, minimum discrepancy and
robust bayesian decision theory. Ann. Stat., 32(4):1367–1433, August 2004.

Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement learning using
sample-based search. In Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’12, pages 1025–1033, Red Hook, NY, USA, 2012. Curran
Associates Inc.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
A suite of benchmarks for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33:7248–7259, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.

159

https://proceedings.neurips.cc/paper/2011/file/c4851e8e264415c4094e4e85b0baa7cc-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/c4851e8e264415c4094e4e85b0baa7cc-Paper.pdf
http://arxiv.org/abs/1609.04436
http://arxiv.org/abs/1609.04436
https://arxiv.org/abs/1308.0850v5
https://arxiv.org/abs/1308.0850v5

Array programming with numpy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/
s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

S. R. Haskey, B. A. Grierson, L. Stagner, C. Chrystal, A. Ashourvan, A. Bortolon, M. D. Boyer,
K. H. Burrell, C. Collins, R. J. Groebner, D. H. Kaplan, and N. A. Pablant. Active spectroscopy
measurements of the deuterium temperature, rotation, and density from the core to scrape off
layer on the diii-d tokamak (invited). Review of Scientific Instruments, 89(10):10D110, August
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and Iaroslav Shcherbatyi. scikit-
optimize/scikit-optimize, October 2021. URL https://doi.org/10.5281/zenodo.
5565057.

Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global optimization.
J. Mach. Learn. Res., 13(57):1809–1837, 2012.

Robin Henry and Damien Ernst. Gym-anm: Reinforcement learning environments for active
network management tasks in electricity distribution systems. Energy and AI, 5:100092, 2021.
ISSN 2666-5468. doi: https://doi.org/10.1016/j.egyai.2021.100092. URL https://www.
sciencedirect.com/science/article/pii/S266654682100046X.

José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
search for efficient global optimization of black-box functions. Advances in neural information
processing systems, 27, 2014.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, November 1997.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and
Laurent Sifre. An empirical analysis of compute-optimal large language model training. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=iBBcRUlOAPR.

EM Hollmann, PB Aleynikov, Tünde Fülöp, DA Humphreys, VA Izzo, M Lehnen, VE Lukash,
Gergely Papp, G Pautasso, F Saint-Laurent, et al. Status of research toward the iter disruption
mitigation system. Physics of Plasmas, 22(2), 2015.

Norbert Holtkamp, ITER Project Team, et al. An overview of the iter project. Fusion Engineering
and Design, 82(5-14):427–434, 2007.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Pihe Hu, Yu Chen, and Longbo Huang. Nearly minimax optimal reinforcement learning with linear
function approximation. In ICML, 2022.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping. Advances
in Neural Information Processing Systems, 33:15931–15941, 2020.

160

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.5565057
https://doi.org/10.5281/zenodo.5565057
https://www.sciencedirect.com/science/article/pii/S266654682100046X
https://www.sciencedirect.com/science/article/pii/S266654682100046X
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR

DA Humphreys, RD Deranian, JR Ferron, AW Hyatt, RD Johnson, RR Khayrutdinov, RJ La Haye,
JA Leuer, BG Penaflor, JT Scoville, et al. Integrated plasma control in diii-d. Fusion science and
technology, 48(2):1249–1263, 2005.

IH Hutchinson, R Boivin, F Bombarda, P Bonoli, S Fairfax, C Fiore, J Goetz, S Golovato, R Granetz,
M Greenwald, et al. First results from alcator-c-mod. Physics of Plasmas, 1(5):1511–1518, 1994.

Robert B Jackson, Corinne Le Quéré, RM Andrew, Josep G Canadell, Jan Ivar Korsbakken, Zhu Liu,
Glen P Peters, and Bo Zheng. Global energy growth is outpacing decarbonization. Environmental
Research Letters, 13(12):120401, 2018.

M. Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Neurips, 2019a. arXiv: 1906.08253.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in Neural Information Processing Systems, 32, 2019b.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–2143.
PMLR, 2020.

H.ST. John. Equations and associated definitions used in onetwo, 2005.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455, 1998.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of
London, University College London (United Kingdom), 2003.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selection in
stochastic multi-armed bandits. In Proceedings of the 29th International Coference on Interna-
tional Conference on Machine Learning, ICML’12, page 227–234, Madison, WI, USA, 2012.
Omnipress. ISBN 9781450312851.

Sanket Kamthe and Marc Deisenroth. Data-efficient reinforcement learning with probabilistic
model predictive control. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of
the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of
Proceedings of Machine Learning Research, pages 1701–1710. PMLR, 09–11 Apr 2018. URL
https://proceedings.mlr.press/v84/kamthe18a.html.

Kirthevasan Kandasamy, Gautam Dasarathy, Junier Oliva, Jeff Schneider, and Barnabas Poczos.
Multi-fidelity gaussian process bandit optimisation. Journal of Artificial Intelligence Research,
66:151–196, 2019.

Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R
Collins, Jeff Schneider, Barnabas Poczos, and Eric P Xing. Tuning hyperparameters without grad
students: Scalable and robust bayesian optimisation with dragonfly. The Journal of Machine
Learning Research, 21(1):3098–3124, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

J. Kates-Harbeck, A. Svyatkovskiy, and W. Tang. Predicting disruptive instabilities in controlled

161

https://proceedings.mlr.press/v84/kamthe18a.html

fusion plasmas through deep learning. Nature, 568(7753):526–531, April 2019. ISSN 1476-4687.

Michael Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling algorithm for near-optimal
planning in large markov decision processes. Machine learning, 49(2):193–208, 2002.

CE Kessel, G Giruzzi, ACC Sips, RV Budny, JF Artaud, V Basiuk, F Imbeaux, E Joffrin, M Schnei-
der, M Murakami, et al. Simulation of the hybrid and steady state advanced operating modes in
iter. Nuclear Fusion, 47(9):1274, 2007.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, and Andreas Krause. Distributionally robust
bayesian optimization. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pages 2174–2184. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/kirschner20a.html.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Proceedings of
the 26th annual international conference on machine learning, pages 513–520, 2009.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Andreas Krause and Cheng Ong. Contextual gaussian process bandit optimization. Advances in
neural information processing systems, 24, 2011.

J. Kreutzer, S. Khadivi, E. Matusov, and S Riezler. Can neural machine translation be improved
with user feedback? 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

LL Lao, HE St John, Q Peng, JR Ferron, EJ Strait, TS Taylor, WH Meyer, C Zhang, and KI You.
Mhd equilibrium reconstruction in the diii-d tokamak. Fusion science and technology, 48(2):
968–977, 2005.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations
in bandits and in rl with a generative model. In International Conference on Machine Learning,
pages 5662–5670. PMLR, 2020.

C. Lawrence and S. Riezler. Improving a neural semantic parser by counterfactual learning from
human bandit feedback. 2018.

Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, and Greg Imwalle. Data
center cooling using model-predictive control. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.
cc/paper/2018/file/059fdcd96baeb75112f09fa1dcc740cc-Paper.pdf.

162

https://proceedings.mlr.press/v108/kirschner20a.html
https://proceedings.neurips.cc/paper/2018/file/059fdcd96baeb75112f09fa1dcc740cc-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/059fdcd96baeb75112f09fa1dcc740cc-Paper.pdf

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International Conference on
Machine Learning, pages 6131–6141. PMLR, 2021.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data collection. The
International journal of robotics research, 37(4-5):421–436, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems, 33:9459–9474, 2020.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Breaking the sam-
ple size barrier in model-based reinforcement learning with a generative model. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 12861–12872. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
96ea64f3a1aa2fd00c72faacf0cb8ac9-Paper.pdf.

Xiang Li, Viraj Mehta, Johannes Kirschner, Ian Char, Willie Neiswanger, Jeff Schneider, Andreas
Krause, and Ilija Bogunovic. Near-optimal policy identification in active reinforcement learning.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=3OR2tbtnYC-.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

David Lindner, Matteo Turchetta, Sebastian Tschiatschek, Kamil Ciosek, and Andreas Krause.
Information directed reward learning for reinforcement learning. 35, 2021.

Shuang Liu and Hao Su. Provably efficient kernelized q-learning. arXiv preprint arXiv:2204.10349,
2022.

Lennart Ljung, Rajiv Singh, Qinghua Zhang, Peter Lindskog, and Anatoli Iouditski. Developments
in the mathworks system identification toolbox. IFAC Proceedings Volumes, 42(10):522–527,
2009. ISSN 14746670.

N.C. Logan, T.M. Wilks, and the DIII-D NBI Operators. Diii-d nbi opera-
tor handbook, 2023. URL https://docs.google.com/document/d/
1FMhkQraW0jc0HSzzQrmkk587ajEB6U19rUo3GJvc5BM/edit. Accessed online
2023-11-15.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-yves Oudeyer. Exploration in model-based
reinforcement learning by empirically estimating learning progress. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/
paper/2012/file/a0a080f42e6f13b3a2df133f073095dd-Paper.pdf.

E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):130–141,
March 1963.

163

https://proceedings.neurips.cc/paper/2020/file/96ea64f3a1aa2fd00c72faacf0cb8ac9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/96ea64f3a1aa2fd00c72faacf0cb8ac9-Paper.pdf
https://openreview.net/forum?id=3OR2tbtnYC-
https://openreview.net/forum?id=3OR2tbtnYC-
https://docs.google.com/document/d/1FMhkQraW0jc0HSzzQrmkk587ajEB6U19rUo3GJvc5BM/edit
https://docs.google.com/document/d/1FMhkQraW0jc0HSzzQrmkk587ajEB6U19rUo3GJvc5BM/edit
https://proceedings.neurips.cc/paper/2012/file/a0a080f42e6f13b3a2df133f073095dd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/a0a080f42e6f13b3a2df133f073095dd-Paper.pdf

Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Osband, Zheng Wen,
et al. Reinforcement learning, bit by bit. Foundations and Trends® in Machine Learning, 16(6):
733–865, 2023.

David JC MacKay et al. Bayesian nonlinear modeling for the prediction competition. ASHRAE
transactions, 100(2):1053–1062, 1994.

Andrey Malinin, Liudmila Prokhorenkova, and Aleksei Ustimenko. Uncertainty in gradient boosting
via ensembles. International Conference on Learning Representations, 2021.

G. Manek and J. Z. Kolter. Learning stable deep dynamics models. January 2020.

Andrew D Maris, Allen Wang, Cristina Rea, Robert Granetz, and Earl Marmar. The impact of
disruptions on the economics of a tokamak power plant. Fusion Science and Technology, pages
1–17, 2023.

Viraj Mehta, Ian Char, Willie Neiswanger, Youngseog Chung, Andrew Nelson, Mark Boyer, Egemen
Kolemen, and Jeff Schneider. Neural dynamical systems: Balancing structure and flexibility
in physical prediction. In 2021 60th IEEE Conference on Decision and Control (CDC), pages
3735–3742. IEEE, 2021.

Viraj Mehta, Ian Char, Joseph Abbate, Rory Conlin, Mark D Boyer, Stefan Ermon, Jeff Schneider,
and Willie Neiswanger. Exploration via planning for information about the optimal trajectory. In
Advances in Neural Information Processing Systems, volume 35, 2022a.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Stefano Ermon, and Willie Neiswanger. An experimental
design perspective on model-based reinforcement learning. In International Conference on
Learning Representations, 2022b.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Stefano Ermon, and Willie Neiswanger. An experimental
design perspective on model-based reinforcement learning. In International Conference on
Learning Representations, 2022c.

Viraj Mehta, Joseph Abbate, Allen Wang, Andrew Rothstein, Ian Char, Jeff Schneider, Egemen
Kolemen, Cristina Rea, and Darren Garnier. Towards LLMs as operational copilots for fusion
reactors. In NeurIPS 2023 AI for Science Workshop, 2023. URL https://openreview.
net/forum?id=yGVChrbJ4E.

O. Meneghini, S. P. Smith, L. L. Lao, O. Izacard, Q. Ren, J. M. Park, J. Candy, Z. Wang, C. J. Luna,
V. A. Izzo, B. A. Grierson, P. B. Snyder, C. Holland, J. Penna, G. Lu, P. Raum, A. McCubbin,
D. M. Orlov, E. A. Belli, N. M. Ferraro, R. Prater, T. H. Osborne, A. D. Turnbull, and G. M.
Staebler. Integrated modeling applications for tokamak experiments with omfit. Nuclear Fusion,
55(8):083008, July 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

M. C. Mozer and J. Bachrach. Discovering the structure of a reactive environment by exploration.
In Advances in Neural Information Processing Systems 2, pages 439–446. 1990.

Jonas Močkus. On bayesian methods for seeking the extremum. In Optimization techniques IFIP

164

https://openreview.net/forum?id=yGVChrbJ4E
https://openreview.net/forum?id=yGVChrbJ4E

technical conference, pages 400–404. Springer, 1975.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
international conference on robotics and automation (ICRA), pages 7559–7566. IEEE, 2018.

Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995.

Willie Neiswanger, Ke Alexander Wang, and Stefano Ermon. Bayesian algorithm execution: Esti-
mating computable properties of black-box functions using mutual information. In International
Conference on Machine Learning, pages 8005–8015. PMLR, 2021.

Willie Neiswanger, Lantao Yu, Shengjia Zhao, Chenlin Meng, and Stefano Ermon. Generalizing
bayesian optimization with decision-theoretic entropies. In Advances in Neural Information
Processing Systems, volume 36, 2022.

O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural Networks and
Fuzzy Models. Springer Science & Business Media, March 2013. ISBN 978-3-662-04323-3.

Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-
directed exploration for deep reinforcement learning. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=Byx83s09Km.

OpenAI. GPT-4 technical report. abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774. URL
https://doi.org/10.48550/arXiv.2303.08774.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped dqn. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016a. URL https://proceedings.neurips.cc/paper/2016/file/
8d8818c8e140c64c743113f563cf750f-Paper.pdf.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016b.

Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019. URL http:
//jmlr.org/papers/v20/18-339.html.

Ian Osband, Seyed Mohammad Asghari, Benjamin Van Roy, Nat McAleese, John Aslanides, and
Geoffrey Irving. Fine-tuning language models via epistemic neural networks. arXiv preprint
arXiv:2211.01568, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Biswajit Paria, Barnabàs Pòczos, Pradeep Ravikumar, Jeff Schneider, and Arun Sai Suggala. Be
greedy–a simple algorithm for blackbox optimization using neural networks. In ICML2022
Workshop on Adaptive Experimental Design and Active Learning in the Real World, 2022.

Matthew S Parsons. Interpretation of machine-learning-based disruption models for plasma control.
Plasma Physics and Controlled Fusion, 59(8):085001, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International conference on machine learning, pages 2778–2787.

165

https://openreview.net/forum?id=Byx83s09Km
https://doi.org/10.48550/arXiv.2303.08774
https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
http://jmlr.org/papers/v20/18-339.html
http://jmlr.org/papers/v20/18-339.html

PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5062–5071. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/
v97/pathak19a.html.

Michael Pearce and Juergen Branke. Continuous multi-task bayesian optimisation with correlation.
European Journal of Operational Research, 270(3):1074–1085, 2018.

Michael Pearce, Janis Klaise, and Matthew Groves. Practical bayesian optimization of objectives
with conditioning variables. arXiv preprint arXiv:2002.09996, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research,
12:2825–2830, 2011.

E. Perez, S. Karamcheti, R. Fergus, J. Weston, D. Kiela, and K Cho. Finding generalizable evidence
by learning to convince q&a models. 2019.

Victor Picheny, Tobias Wagner, and David Ginsbourger. A benchmark of kriging-based infill criteria
for noisy optimization. Structural and multidisciplinary optimization, 48(3):607–626, 2013.

Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, and Roberto Calandra. Mbrl-
lib: A modular library for model-based reinforcement learning. Arxiv, 2021. URL https:
//arxiv.org/abs/2104.10159.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler, Michal
Rolinek, and Georg Martius. Sample-efficient cross-entropy method for real-time planning. arXiv
preprint arXiv:2008.06389, 2020.

Alfredo Pironti and Michael Walker. Fusion, tokamaks, and plasma control: an introduction and
tutorial. IEEE Control Systems Magazine, 25(5):30–43, 2005.

G. D. Portwood, Peetak P. Mitra, Mateus Dias Ribeiro, Tan Minh Nguyen, Balasubramanya T.
Nadiga, Juan A. Saenz, Michael Chertkov, Animesh Garg, Anima Anandkumar, Andreas
Dengel, Richard Baraniuk, and David P. Schmidt. Turbulence forecasting via neural ode.
arXiv:1911.05180 [physics], November 2019. arXiv: 1911.05180.

Apostolos F Psaros, Xuhui Meng, Zongren Zou, Ling Guo, and George Em Karniadakis. Uncertainty
quantification in scientific machine learning: Methods, metrics, and comparisons. Journal of
Computational Physics, 477:111902, 2023.

C. Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic
Skinner, and Ali Jasim Ramadhan. Universal differential equations for scientific machine learning.
CoRR, abs/2001.04385, 2020. URL https://arxiv.org/abs/2001.04385.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,

166

https://proceedings.mlr.press/v97/pathak19a.html
https://proceedings.mlr.press/v97/pathak19a.html
https://arxiv.org/abs/2104.10159
https://arxiv.org/abs/2104.10159
https://arxiv.org/abs/2001.04385

2023.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS,
volume 3, page 5. Citeseer, 2007.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 5331–5340. PMLR, 09–
15 Jun 2019. URL https://proceedings.mlr.press/v97/rakelly19a.html.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/
2204.06125.

Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, and Ilija Bogunovic.
Distributionally robust model-based reinforcement learning with large state spaces. arXiv preprint
arXiv:2309.02236, 2023.

C Radhakrishna Rao. Convexity properties of entropy functions and analysis of diversity. Lecture
Notes-Monograph Series, pages 68–77, 1984.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, Cambridge, Mass., 3. print edition, 2008.
ISBN 978-0-262-18253-9. OCLC: 552376743.

Christina Rea, KJ Montes, KG Erickson, RS Granetz, and RA Tinguely. A real-time machine
learning-based disruption predictor in diii-d. Nuclear Fusion, 59(9):096016, 2019.

P.-H Rebut. Iter: the first experimental fusion reactor. Fusion Engineering and Design, 27:3–16,
1995. ISSN 0920-3796. doi: https://doi.org/10.1016/0920-3796(95)90113-2. URL https:
//www.sciencedirect.com/science/article/pii/0920379695901132. Pro-
ceedings of the Third International Symposium on Fusion Nuclear Technology.

A. Reiman and D. Monticello. Tokamak error fields and locked modes. Physics of Fluids B:
Plasma Physics, 3(8):2230–2235, 1991. doi: 10.1063/1.859640. URL https://doi.org/
10.1063/1.859640.

Pablo Rodriguez-Fernandez, NT Howard, MJ Greenwald, AJ Creely, JW Hughes, JC Wright,
C Holland, Y Lin, F Sciortino, Sparc Team, et al. Predictions of core plasma performance for the
sparc tokamak. Journal of Plasma Physics, 86(5):865860503, 2020.

S. Ross and J. A. Bagnell. Agnostic system identification for model-based reinforcement learning.
arXiv:1203.1007 [cs, stat], July 2012.

Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayes-adaptive pomdps. In NIPS, pages
1225–1232, 2007.

S. H. Rudy, J. Nathan Kutz, and S. L. Brunton. Deep learning of dynamics and signal-noise
decomposition with time-stepping constraints. Journal of Computational Physics, 396:483–506,
November 2019.

C. Runge. Ueber die numerische auflösung von differentialgleichungen. Mathematische Annalen,
46(2):167–178, June 1895.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-

167

https://proceedings.mlr.press/v97/rakelly19a.html
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://www.sciencedirect.com/science/article/pii/0920379695901132
https://www.sciencedirect.com/science/article/pii/0920379695901132
https://doi.org/10.1063/1.859640
https://doi.org/10.1063/1.859640

Fei. Imagenet large scale visual recognition challenge. CoRR, abs/1409.0575, 2014. URL
http://arxiv.org/abs/1409.0575.

Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sam-
pling. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
301ad0e3bd5cb1627a2044908a42fdc2-Paper.pdf.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Ilya O Ryzhov and Warren B Powell. Information collection on a graph. Operations Research, 59
(1):188–201, 2011.

Ilya O Ryzhov, Martijn RK Mes, Warren B Powell, and Gerald van den Berg. Bayesian exploration
for approximate dynamic programming. Operations research, 67(1):198–214, 2019.

G Sannazzaro, C Bachmann, DJ Campbell, S Chiocchio, JP Girard, Y Gribov, S Reyes, M Sugihara,
E Tada, and N Taylor. Structural load specification for iter tokamak components. In 2009 23rd
IEEE/NPSS Symposium on Fusion Engineering, pages 1–4. IEEE, 2009.

Shlomo S Sawilowsky. New effect size rules of thumb. Journal of modern applied statistical
methods, 8(2):26, 2009.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building
neural controllers. In Proc. of the international conference on simulation of adaptive behavior:
From animals to animats, pages 222–227, 1991.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Matthias Schultheis, Boris Belousov, Hany Abdulsamad, and Jan Peters. Receding horizon curiosity.
In Conference on robot learning, pages 1278–1288. PMLR, 2020.

Paul J Schweitzer and Abraham Seidmann. Generalized polynomial approximations in markovian
decision processes. Journal of mathematical analysis and applications, 110(2):568–582, 1985.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pages 8583–8592. PMLR, 2020.

J Seo, Y-S Na, B Kim, CY Lee, MS Park, SJ Park, and YH Lee. Development of an operation
trajectory design algorithm for control of multiple 0d parameters using deep reinforcement
learning in kstar. Nuclear Fusion, 62(8):086049, 2022.

Jaemin Seo, Y-S Na, B Kim, CY Lee, MS Park, SJ Park, and YH Lee. Feedforward beta control in
the kstar tokamak by deep reinforcement learning. Nuclear Fusion, 61(10):106010, 2021.

Jaemin Seo, Rory Conlin, Andrew Rothstein, SangKyeun Kim, Joseph Abbate, Azarakhsh Jalalvand,
and Egemen Kolemen. Multimodal prediction of tearing instabilities in a tokamak. In 2023
International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2023.

Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, and Andreas Krause. No-regret learning

168

http://arxiv.org/abs/1409.0575
https://proceedings.neurips.cc/paper/2014/file/301ad0e3bd5cb1627a2044908a42fdc2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/301ad0e3bd5cb1627a2044908a42fdc2-Paper.pdf

in unknown games with correlated payoffs. In Conference on Neural Information Processing
Systems (NeurIPS), 2019.

Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, and Andreas Krause. Mixed strategies
for robust optimization of unknown objectives. In Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5779–5788. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/
v97/shyam19a.html.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Chris Llewellyn Smith and Steve Cowley. The path to fusion power. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1914):1091–1108,
2010.

Marta Soare, Alessandro Lazaric, and Remi Munos. Best-arm identification in linear ban-
dits. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
f387624df552cea2f369918c5e1e12bc-Paper.pdf.

B. Sohlberg and E. W. Jacobsen. Grey box modelling – branches and experiences. IFAC Proceedings
Volumes, 41(2):11415–11420, January 2008.

Benjamin Solnik, Daniel Golovin, Greg Kochanski, John Elliot Karro, Subhodeep Moitra, and
D Sculley. Bayesian optimization for a better dessert. 2017.

Carl R Sovinec, AH Glasser, TA Gianakon, DC Barnes, RA Nebel, SE Kruger, DD Schnack,
SJ Plimpton, A Tarditi, MS Chu, et al. Nonlinear magnetohydrodynamics simulation using
high-order finite elements. Journal of Computational Physics, 195(1):355–386, 2004.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995,
2009.

N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and
P. Christiano. Learning to summarize from human feedback. 2020.

JA Stillerman, TW Fredian, KA Klare, and G Manduchi. Mdsplus data acquisition system. Review
of Scientific Instruments, 68(1):939–942, 1997.

169

https://proceedings.mlr.press/v97/shyam19a.html
https://proceedings.mlr.press/v97/shyam19a.html
https://proceedings.neurips.cc/paper/2014/file/f387624df552cea2f369918c5e1e12bc-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/f387624df552cea2f369918c5e1e12bc-Paper.pdf

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000, pages
943–950, 2000.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1), 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, USA, 1998. ISBN 0-262-19398-1. URL http://www.cs.ualberta.
ca/%7Esutton/book/ebook/the-book.html.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. Advances in
neural information processing systems, 26, 2013.

Csaba Szepesvári. Lecture notes in reinforcement learning theory, Aug 2022. URL https:
//rltheory.github.io/lecture-notes/planning-in-mdps/lec13/.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schul-
man, Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based exploration
for deep reinforcement learning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
2753–2762, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3a20f62a0af1aa152670bab3c602feed-Abstract.html.

AA Teplukhina, O Sauter, F Felici, A Merle, D Kim, TCV Team, ASDEX Upgrade Team, EU-
ROfusion MST1 Team, et al. Simulation of profile evolution from ramp-up to ramp-down and
optimization of tokamak plasma termination with the raptor code. Plasma Physics and Controlled
Fusion, 59(12):124004, 2017.

Matthew Tesch, Jeff Schneider, and Howie Choset. Expensive function optimization with stochastic
binary outcomes. In International Conference on Machine Learning, pages 1283–1291. PMLR,
2013.

Louis L Thurstone. The method of paired comparisons for social values. The Journal of Abnormal
and Social Psychology, 21(4):384, 1927.

Michael Tinkham. Introduction to superconductivity. Courier Corporation, 2004.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Francis Troyon, R Gruber, H Saurenmann, S Semenzato, and S Succi. Mhd-limits to plasma
confinement. Plasma physics and controlled fusion, 26(1A):209, 1984.

Alexander Tschantz, Beren Millidge, Anil K Seth, and Christopher L Buckley. Reinforcement
learning through active inference. arXiv preprint arXiv:2002.12636, 2020.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

B. Ph. van Milligen, V. Tribaldos, and J. A. Jiménez. Neural network differential equation and

170

http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
https://rltheory.github.io/lecture-notes/planning-in-mdps/lec13/
https://rltheory.github.io/lecture-notes/planning-in-mdps/lec13/
https://proceedings.neurips.cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html

plasma equilibrium solver. Physical Review Letters, 75(20):3594–3597, November 1995.

Julien Villemonteix, Emmanuel Vazquez, and Eric Walter. An informational approach to the global
optimization of expensive-to-evaluate functions. Journal of Global Optimization, 44:509–534,
2009.

P. Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1 0 Contributors. Scipy 1.0–fundamental algorithms for scientific computing in python.
arXiv:1907.10121 [physics], July 2019. arXiv: 1907.10121.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. Scipy 1.0: Fundamental algorithms for scientific computing in python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Fritz Wagner, G Becker, K Behringer, D Campbell, A Eberhagen, W Engelhardt, G Fussmann,
O Gehre, J Gernhardt, G v Gierke, et al. Regime of improved confinement and high beta in
neutral-beam-heated divertor discharges of the asdex tokamak. Physical Review Letters, 49(19):
1408, 1982.

Michael L Walker, Peter De Vries, Federico Felici, and Eugenio Schuster. Introduction to tokamak
plasma control. In 2020 American Control Conference (ACC), pages 2901–2918. IEEE, 2020.

T. Wang and J. Ba. Exploring model-based planning with policy networks. arXiv:1906.08649 [cs,
stat], June 2019.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=H1exf64KwH.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning. arXiv preprint arXiv:1907.02057, 2019.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for regression. 1996.

James Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Deisenroth.
Efficiently sampling functions from gaussian process posteriors. In International Conference on
Machine Learning, pages 10292–10302. PMLR, 2020.

Thomas Wolf, Lewis Tunstall, and Patrick von Platen. Jeopardy dataset, 2023.

Yichong Xu, Aparna Joshi, Aarti Singh, and Artur Dubrawski. Zeroth order non-convex optimization
with dueling-choice bandits. In Conference on Uncertainty in Artificial Intelligence, pages 899–
908. PMLR, 2020.

Jun Yang, Xinghui You, Gaoxiang Wu, Mohammad Mehedi Hassan, Ahmad Almogren, and Joze

171

https://openreview.net/forum?id=H1exf64KwH
https://openreview.net/forum?id=H1exf64KwH

Guna. Application of reinforcement learning in uav cluster task scheduling. Future generation
computer systems, 95:140–148, 2019.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. On function approx-
imation in reinforcement learning: Optimism in the face of large state spaces. arXiv preprint
arXiv:2011.04622, 2020.

Yuan Yin, Vincent Le Guen, Jérémie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome,
and Patrick Gallinari. Augmenting physical models with deep networks for complex dynamics
forecasting. Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124012, 2021.

Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The k-armed dueling bandits problem. 2012.

Alexei Yumashev, Beata Ślusarczyk, Sergey Kondrashev, and Alexey Mikhaylov. Global indicators
of sustainable development: Evaluation of the influence of the human development index on
consumption and quality of energy. Energies, 13(11):2768, 2020.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near
optimal policies with low inherent bellman error. In International Conference on Machine
Learning, pages 10978–10989. PMLR, 2020.

Jin Zhang, Jianhao Wang, Hao Hu, Tong Chen, Yingfeng Chen, Changjie Fan, and Chongjie Zhang.
Metacure: Meta reinforcement learning with empowerment-driven exploration. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 12600–12610. PMLR, 18–24
Jul 2021. URL https://proceedings.mlr.press/v139/zhang21w.html.

Ze Jia Zhang and Karthikeyan Duraisamy. Machine learning methods for data-driven turbulence
modeling. In 22nd AIAA computational fluid dynamics conference, page 2460, 2015.

Jun Zhao, Guang Qiu, Ziyu Guan, Wei Zhao, and Xiaofei He. Deep reinforcement learning for
sponsored search real-time bidding. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 1021–1030, 2018.

Shengjia Zhao, Abhishek Sinha, Yutong He, Aidan Perreault, Jiaming Song, and Stefano Ermon.
Comparing distributions by measuring differences that affect decision making. In International
Conference on Learning Representations, 2021.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement
learning for linear mixture markov decision processes. In Conference on Learning Theory, pages
4532–4576. PMLR, 2021.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

L Zintgraf, K Shiarlis, M Igl, S Schulze, Y Gal, K Hofmann, and S Whiteson. Varibad: a very good
method for bayes-adaptive deep rl via meta-learning. Proceedings of ICLR 2020, 2020.

172

https://proceedings.mlr.press/v139/zhang21w.html

	Introduction
	Preliminaries
	Model-Predictive Control
	Value Functions and Model-Free RL
	Actor-Critic Methods

	I Sample Efficient Decision Making through Better Choice of Data
	Prior Work on Sample-Efficient RL
	Information theoretic approaches: Can we measure what we might learn?
	An Acquisition Function for Model-Based RL
	Estimating `3́9`42`"̇613A``45`47`"603AEIG* via Posterior Function Sampling
	Bayesian Active Reinforcement Learning

	Experiments for BARL
	Does BARL choose `meaningful' datapoints?
	Trajectory Information Planning
	Preliminaries for TIP
	Model-Predictive Control in Bayesian Model-Based RL
	A Task-Specific Cost Function based on Trajectory Information
	Computational Cost and Implementation Details

	Experiments for TIP

	Applying generalized decision-theoretic entropies to Bayesian RL
	Related Work
	Problem Setting
	Bayes-Adaptive MDPs are `Fearful'
	Fearless RL Through H, A-Information
	`3́9`42`"̇613A``45`47`"603AEHIG for MDPs
	Exactly Solving the EHIG-MDP in Tabular Cases
	Empirical Performance of the Exact `3́9`42`"̇613A``45`47`"603AEHIG Policy

	Scalable Approximation of the EHIG-MDP
	Experiments Using the `3́9`42`"̇613A``45`47`"603AEHIG Approximation

	Efficiently identifying the value function implies sample-efficient decision making
	Related Work
	Problem Setting for AE-LSVI analysis
	AE-LSVI Algorithm
	Theoretical Results
	Application to Offline Contextual Bayesian Optimization
	Experiments
	Reinforcement Learning Experiments
	Offline Contextual Bayesian Optimization Experiments

	Efficiently learning policies from comparative feedback by choosing optimal data
	Introduction
	Related Work
	Problem Setting
	Active Exploration in the Kernelized Setting
	Methods
	Analysis
	Experiments in the Kernelized setting

	Scaling Active Exploration to Large Language Models
	Experiments using LLMs

	Exploration and Sample-Efficient RL: Takeaways

	II Sample-Efficient Dynamics Modeling through Approximate Physical Knowledge
	Neural Dynamical Systems
	Related Work
	Problem Setting
	Methods
	Experiments
	Synthetic Experiments
	Fusion Experiments
	Control Experiment

	Discussion and Future Work

	III Applications of learning in Plasma Control
	Plasma Control in Tokamaks
	Achieving Net Energy from Fusion
	Key Tokamak Control Problems
	Shape, Power, and Current Control
	3D Control
	Kinetic Control of Plasma

	Prior Work

	Automated Experimental Design of Safe Rampdowns via Probabilistic Machine Learning
	Introduction
	Related Work
	Contributions

	Method
	Problem Setting
	Offline then Online Data Processing
	Machine Learning Methods
	Piggyback Experiments

	Experiments
	Initial Modeling Results
	Real-World Performance of Online Bayesian Optimization

	Analysis
	Analysis of Selected Shots
	Action Selection across Experimental Campaign

	Discussion

	Future prospects for applications of AI to Fusion
	Challenges in applying AI to fusion
	Gating challenges to fusion power
	How can AI make a real impact on this problem?
	LLMs as operational copilots and research assistants
	Actually Offline RL

	Conclusion
	Appendix for c:info
	Related Work
	Training Details
	Comparison Methods.
	Control Problems
	Runtime Details

	MPC Details
	Robustness of `3́9`42`"̇613A``45`47`"603AEIG* to a suboptimal controller

	Description of Continuous Control Problems
	Implementation Details for TIP
	Derivation of Computational Cost
	Wall Times
	GP Model Details
	Cost Function Details
	Details on Planning Method

	Description of Comparison Methods
	Description of Control Problems
	Plasma Control Problems
	Robotics Problems

	Additional Results
	Additional Related Work
	Bayesian Exploration Techniques
	Gaussian Processes (GPs) in Reinforcement Learning

	Appendix for c:ehig
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Exact Experiments
	Approximate Experiments

	Appendix for c:ae
	Appendix
	Auxiliary Results
	Proof of thm:mainthm
	Offline contextual Bayesian optimization

	Additional Experimental Details
	Implementation
	Environments
	Exploring values

	RKHS Regression
	Proof of Theorem 4
	RKHS norms of r and fr
	Additional Experiments for Kernelized Setting
	The Jeopardy! preference dataset
	Related Work on Uncertainty Estimation in Large Language Models
	Prompt templates
	Additional Experiment Details
	Experiment Runtimes
	Additional Experiments with LLM
	Evaluating dropout-based LLM uncertainty estimation

	Appendix for c:nds
	Experiment Details
	Training Details
	Comparison Methods

	Bibliography

