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Abstract

Autonomous racing aims to replicate the human racecar driver with soft-
ware and sensors. As in traditional motorsports, Autonomous Racing
Vehicles (ARVs) are pushed to their dynamic limits in multi-agent sce-
narios at high speeds (≥ 100mph). This Operational Design Domain
(ODD) presents unique challenges across the autonomy stack. The Indy
Autonomous Challenge (IAC) is an international competition aiming to
advance autonomous vehicle development through ARV competitions. To
compete in the IAC, we developed a full autonomy stack from scratch.

We present our design philosophy and strategy when developing the stack
from scratch while under the constraints of the competition, including
the ODD, rules, timeline, and limited field testing time. In particular, we
present our contributions to the design, integration, and testing of the
Perception and State Estimation systems and lessons learned from testing
and deploying these systems on a real, full-sized system (the Dallara
AV-21 platform). Finally, we demonstrate how our design process enabled
rapid adaptation and development of the stack, which was shown capable
of overtaking an opponent ARV at speeds exceeding 150mph.
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Chapter 1

Introduction

Historically, motorsports have been a venue for advancing automotive technology in

the name of competition and brand recognition. Racing teams develop increasingly

sophisticated technologies to shave off seconds from lap times. Over time, technology

and lessons learned from car racing have been commercialized and adopted in stan-

dard passenger vehicles. With the advent of Autonomous Vehicle (AV) technology,

motorsports are poised to play a similar role in the development of autonomous

systems. Autonomous Racing Vehicle (ARV) leagues, such as the Indy Autonomous

Challenge (IAC) and others, are challenging software, not drivers, to operate a vehicle

at the performance limit. Autonomous racing provides an operational design domain

(ODD) that challenges conventional algorithms and systems.

In this work, we examine these challenges and present a design methodology for

developing an autonomy stack to address them. We then apply this methodology

specifically to the ego state estimation (i.e. knowing where the agent is in the world)

and opponent state estimation (i.e. detecting and estimating the state of other agents)

software modules. Finally, we present results and lessons learned from deploying

these modules, within a larger software stack, for the Indy Autonomous Challenge

(IAC) competition. All data and results are taken from competition runs during the

2022-2023 season of the IAC, where our ARV was capable of passing another ARC at

speeds in excess of 150 mph, achieving fourth place out of nine teams.

1



1. Introduction

1.1 Autonomous Racing

Formally, autonomous racing is when an autonomous agent’s (ground vehicles, drones,

etc.) primary purpose is to compete directly against other agents (human[19][57] or

other autonomous agents) in racing events, with the goal being to replicate human

racing ability. An autonomous racing vehicle (ARV) is a ground-based racing vehicle,

modified with sensors and drive-by-wire systems, and driven by software. The Dallara

AV21[38] is one such ARV, as it is a full-sized racecar specially built to race at high

speeds, autonomously. Smaller ARVs exist, such as in F1/10[13].

ARVs have a different objective than conventional autonomous vehicles (AV).

An AV company may want to prioritize rider comfort, safety, and “human-esque”

driving ability. Formally, this means that the AV does not act in a manner that is

strange or unusual to what human drivers would consider normal. Put another way,

an AV motion-control stack may have an objective like the following, presented as an

optimal control problem, where we are minimizing a cost function J , subject to a

dynamics function xn+1 = f(xn, un) and constraints C:

min
x,u

J = Jcomfort + Jsmooth + Jdestination + Jhumanness (1.1)

subject to xn+1 = f(xn, un),

Csafety, Crules

The optimization problem in equation 1.1 is minimizing the sum of four cost

functions J that penalize uncomfortable actions (i.e. sudden braking), encourage

smooth actions (i.e smooth steering inputs), getting to the desired destination,

and penalizes behavior that is not human-like. Finally, we want to constrain the

optimization against unsafe actions Csafety or actions that violate the rules of the

road Crules.

For autonomous racing, the objective looks very differently. Firstly, in racing,

safety and avoiding a DNF (did not finish) by not crashing are two very different

things. While driving on the road, drivers are usually careful to not risk the safety of

2



1. Introduction

others by engaging in potentially dangerous maneuvers, such as passing in front of

someone very suddenly, driving very close, and more. However, in racing, as long as

someone is being sportsman-like and is obeying the rules of the race, these behaviors

are acceptable, as long as a crash does not occur. As such, cost objectives for racing

may look like the following:

min
x,u

J = Jtime + Jpenalties + Jpassing + Jrisk

subject to xn+1 = f(xn, un),

Ccollisions, Crules

Where Jtime penalizes slower driving, Jpenalties penalizes committing infractions

that result in time penalties, Jpassing encourages passing, and Jrisk encourages the

vehicle to take some measured risks. This objective function would encourage an

autonomous agent to avoid collisions, adhere to rules, but try to pass other agents

and go as fast as possible and explore the state and action space to get closer to the

true limits of the vehicle.

1.2 Period vs Latency

Two concepts, period and latency, are often misconstrued for one another, so it is

important to first define and clarify what each means and why they are important

concepts. Period is defined as the time between outputs of a pipeline. In the context

of estimation, for example, this is the time between measurements. Latency refers to

time between an input being received and when an output is produced. For example,

this can be considered processing, in addition to the time to transport the data from

one process to another. Latency and period are depicted pictorially in Figure 1.1.

In the figure is a toy timeline, which depicts the LiDAR scan to action timeline,

with time snapshots that are not necessarily indicative of the real system. The

timeline starts with the very first LiDAR point being scanned. It takes approximately
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Figure 1.1: Visual depiction of latency vs period. The timeline depicts a toy LiDAR
scan to action timeline. The pipeline starts with the very first LiDAR point being
scanned. It takes approximately 50ms for the full scan to be completed, processed,
and passed along to the computer. Finally, a detection is produced another 50ms
later. As a result, it can be said that detections have a latency of up to 100ms, since
it takes about that long to take a measurement and produce a detection. While the
first scan is being processed, a second scan begins. This scan is also processed after
about 50ms and a detection is produced another 50ms later. This means that the
time between detections, or the period, is about 100ms.

50ms for the full scan to be completed, processed, and passed along to the computer.

Finally, a detection is produced another 50ms later. As a result, it can be said that

detections have a latency of up to 100ms, since it takes about that long to take a

measurement and produce a detection. While the first scan is being processed, a

second scan begins. This scan is also processed after about 50ms and a detection is

produced another 50ms later. This means that the time between detections, or the

period, is about 100ms.

For autonomous racing, both latency and period are important. Lower latency

improves the reaction time of the system, which is critical due to the high accelerations

and speeds that can be achieved by ARVs. Lower period means that more frequent

updates of the world is provided, which reduces the need on extrapolation or prediction,

thereby allowing for more accurate results. This is especially important because

ARVs are capable of accelerating rapidly and producing hard to predict, adversarial
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maneuvers.

1.3 Indy Autonomous Challenge

The Indy Autonomous Challenge (IAC) was started to foster autonomous vehicle

(AV) development through racing. From the competition website [37], the goal of

the IAC is to ”advance technology that can speed the commercialization of fully

autonomous vehicles and deployments of advanced driver-assistance systems (ADAS)”.

Additionally, the organizers[37] are seeking to address three main barriers to AV

commercialization:

1. Solving edge cases, which are difficult to handle or challenging scenarios that are

not typically seen. For example, an agent in the world behaving in unexpected,

uncommon ways.

2. Fostering new technologies and the next generation innovators

3. Public engagement and increase wide-spread acceptance of AV technology

The IAC addresses these barriers by hosting competitions for nine international

university teams, who develop software for a standardized ARV platform named

the Dallara AV-21. These competitions have involved both single-agent, fastest lap

style races, and events where two ARVs race against one another in a head to head

competition. Table 1.1 presents the previous events and the competition formats.

1.3.1 Competition Rule-Sets

There have been primarily two race formats: fastest laps and the passing competition.

The first event in Indianapolis took the average speed across two fast laps and had a

third lap with static obstacles to avoid. The most recent event in Monza was based

on the fastest time from three 15 minute runs. Finally, the passing competition was

created to encourage high-speed overtaking and avoidance between two ARVs. Events

in seasons one and two were held on oval super-speedways and season three has so far

been held on Monza, a road circuit. The track type plays a critical part in dictating

the strategies for stack development. Before the in-person installments, there were

multiple simulation practice events and a simulation competition, where the teams
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Indy Autonomous Challenge Events
Season One (2021-22)

Track Event Format
Indianapolis Motor Speedway (IMS) Fastest Lap with static avoidance
Las Vegas Motor Speedway (LVMS) Passing Competition

Season Two (2022-23)
Texas Motor Speedway (TMS) Passing Competition, relaxed racing lines
Las Vegas Motor Speedway (LVMS) Passing Competition, relaxed racing lines

Season Three (2023-24)
Autodromo Nazionale Monza (Monza) Fastest Lap

Table 1.1: The Indy Autonomous Challenge (IAC) has held five events thus far,
at four different tracks, with three formats. Season Two saw a continuation of the
passing competition introduced at the AC@CES2022 installment in Las Vegas. For
Season Two, the defender is given more freedom on the racing line they may take,
which makes passing more challenging.

verified their software in single and multi-agent scenarios. All instalments of the

competition have been supervised and executed by ”race control”, managed by the

IAC. During competition, the race flags and team roles are remotely controlled by

race control, allowing for minimal human intervention during the race.

1.3.2 The Passing Competition

The multi-agent passing competition [36] assigns one competitor the ”attacker” role

and the other the ”defender” role. During each lap, the defender is remotely assigned

a speed to hold while the attacker must pass the defender within two laps. If the

pass is successful, the roles are exchanged and the defender’s speed is incrementally

increased (125mph, 135mph, etc.). A pass is complete once the attacker gains its

position in front of the defender with a longitudinal gap of at least 30m. If an attacker

fails to pass at a certain speed, the roles are exchanged. The winner of the round is

determined once one of the attackers cannot complete a pass. If both teams cannot

complete the pass, the round ends in a draw. Figure 1.2 shows a breakdown of the

track and the possible paths to take into consideration.

There are two factors the attacker must consider while deciding to make a

pass: safety and dynamic limitations. The attacker must maintain safe lateral and
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Figure 1.2: Track lanes for the Passing Competition, held at the Las Vegas Motor
Speedway in January 2022 and 2023.

longitudinal separation from the defender at all times. Additionally, when considering

a pass, the attacker must ensure its trajectory will keep the car within the dynamic

limitations of the vehicle and not result in loss of control. Combining the two, the

attacker must ensure that the accelerations and decelerations are timed appropriately

to stay within the dynamic limits of the vehicle. As the passing competition progresses,

it becomes more difficult for the attacker to exceed the defender’s speed, particularly

in corners of the track.

In addition to these considerations for the attacker, the defender can make passing

more difficult for the attacker by adjusting their position within their lane, as long as

they maintain rule compliance. For example, if the defender moves outwards, the

attacker has to travel more distance to complete the pass. A winning strategy for an

attacker is to maintain the minimum allowed distance to the defender and to initiate

the pass whenever the attacker can maneuver it safely. Completing a pass is also

further complicated if the attacker starts the pass too late; they may get trapped too

far out on the outer lane into the corners, thereby increasing the distance they need

to cover. Prediction and motion forecasting of the opponent agent is imperative to

make intelligent strategic decisions.
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1.3.3 AV-21 platform

Figure 1.3: Sensors on the AV-21. Six cameras and three LiDARs provide redundant
360◦ coverage and over 200m of sensing range.

The Dallara AV-21 is the official vehicle of the Indy Autonomous Challenge (IAC).

Every competitor must use the same hardware, including vehicle setup, autonomy

sensors, and compute. The vehicle is a modified version of the Indy Lights IL-15

chassis, retrofitted with a package of automated vehicle sensors, drive by wire, and

compute. The engine is a 4 Piston Racing-built Honda K20C. Sensors onboard the

AV-21 include 3 Luminar Hydra LiDARs, 3 Aptiv Medium Range Radars, 2 NovAtel

PwrPak7D-E1 GNSS, and 6 Mako G-319 Cameras. In total, these sensors provide

redundant 360◦ coverage and over 200m of sensing range. Figure 1.3 shows the AV-21

platform and sensor locations.

Between Seasons One and Two of the IAC, the AV-21 underwent a hardware

refresh that included the addition of a VN-310 Vectornav GNSS system and an update

to the main compute platform. In Season One, the main compute was an ADLINK

AVA-3501 with an 8 core, 16 thread Intel Xeon CPU and an NVIDIA Quadro RTX

8000 GPU. In Season Two and Three, a dSPACE AUTERA AutoBox with a 12

core, 24 thread Intel Xeon CPU and an RTX A5000 NVIDIA GPU served as the

main compute platform. The AutoBox provided many advantages over the ADLINK,

including automotive-grade ruggedness, higher available networking bandwidth, and

CAN channels built into the computer. While the AutoBox provides automotive-

level reliability and integration, its slower per core clock speeds resulted in worse

single threaded performance. Since many critical core algorithms are fundamentally
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Figure 1.4: Main compute platforms. Specifications and images taken from respective
product websites[2][10].

single threaded (i.e. controller calculations, state estimation updates, etc.), careful

considerations were made into what ultimately ran on vehicle to ensure enough

capacity for the entire stack. A full breakdown of the compute platform differences

can be seen in Figure 1.4.

1.4 Our Approach

Our software architecture follows a typical, standard autonomy software design, with

localization, perception, tracking, prediction and motion planning, and controls. The

Robot Operating System (ROS), specifically ROS 2 Galactic, is used for communica-

tion between each process, or node. Various libraries and frameworks are utilized from

ROS for visualization, math utilities, communication, and more. Figure 1.5 shows

the data flow of the whole stack. All modules run asynchronously with one another,

usually on a preset frequency, except for perception and portions of localization,

which are driven by sensor data arrival.

The algorithms chosen are all standard and well-proven. For example, the lateral

controller is an LQR solver with pure-pursuit. This is a function of the limited

tested time, the competition ODD, and compute limitations. Through the process of

designing and integrating this stack, a design methodology naturally emerged, that

guided our process. In this work, we will present this methodology (see Ch. 2) and
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Figure 1.5: Overview of the full software stack.

show its application to the opponent agent estimation modules (i.e. Perception and

Tracking and Fusion in Figure 1.5). When our team did not follow a methodology, the

result was an incoherent set of software modules that were haphazardly developed and

that did not meet our needs. By using the methodology, we focused our development

on what was absolutely necessary and ended up with a system capable of meeting the

competition demands and able to pass another ARV while driving at over 150mph.

1.5 Related work

The call for advancing autonomous vehicle (AV) technology has been present since

the early twenty-first century when the Defense Advanced Research Projects Agency

(DARPA) launched the 2004 and 2005 DARPA Grand Challenges [4], [6]. These

challenges, shown in Figure 1.6, demonstrated some of the capabilities of AVs. The

teams in the Grand Challenge autonomously navigated across southern Nevada on

a 132-mile course of rugged desert terrain. Succeeding the Grand Challenges was

the 2007 DARPA Urban Challenge [7], which introduced a time-based competition

focused on city driving. This competition maintained the competitive nature of

completing a course, but focused on navigating an urban environment. Each team

needed to stop at stop signs, yield for oncoming traffic, complete U-turns, and obey

all other traffic laws. These challenges were the first full-scale autonomous racing
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competitions and laid the groundwork for future AV research and development.

Figure 1.6: DARPA Grand and Urban Challenges, two prize competitions for au-
tonomous vehicles. From [1][39].

Since then, there have been several autonomous racing competitions, such as

Formula Student [17], [52], Roborace [44], [5], and now the Indy Autonomous Chal-

lenge. Moreover, companies such as Argo AI, Motional, Waymo, and many more have

been publicizing and realizing AV development around the globe. These companies

have tasked themselves with challenges to motion plan in dynamic, unpredictable

environments and perceive in inclement conditions. The challenges ARVs face differ,

focusing on detecting vehicles, planning motion, and actuation while driving at speeds

over 150mph. Unlike AVs that operate in an open world, ARVs do not need to worry

about cyclists on the road [3] or pedestrians crossing a street; however, the issue of

making quick and accurate detections and actions remains a nontrivial problem still

under research.

1.5.1 Perception for Autonomous Racing Vehicles

Although there is substantial work demonstrating perception in conventional AVs,

less work has been published discussing the deployment of perception algorithms for

autonomous racing. In Formula Student Driverless, the ARV drives on the track

alone and is solely tasked with detecting white and blue cones [17], [52]. Currently,

there are few works that present full perception stacks for detecting other agents for

autonomous racing. One such work is [55], which presents a full perception stack

that utilizes camera, radar, and LiDAR sensors. Improving perception efficiency is
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an extensively researched topic in AV development. The point-cloud clustering-based

detection system in [51] is fast and efficient at detecting other actors. Works such as

[23] and [59] focus on Streaming Perception, which emphasizes combining latency and

accuracy when developing benchmarks for computer vision algorithms. Multi-modal

perception is also a very well-studied area of research. The work in [25] fuses LiDAR

and camera features with a learned cross-modal attention alignment. In [27], a

combined LiDAR-camera birds-eye-view (BEV) projection is generated efficiently and

can be used for downstream tasks such as object detection. In both works, multiple

sensor modalities are fused early in the detection pipeline.

1.5.2 Motion Planning for Autonomous Racing Vehicles

Motion planning involves determining the best sequence of actions to be taken and

generating a trajectory to execute those actions. For oval racing, it is possible

to distill the problem in a series of action primitives, including maintaining the

current trajectory behind an opponent, e.g., ”trailing” or passing. One way to

approach the passing problem is to treat it as a sequence of lane changes, where

the ego vehicle merges between several lanes of travel on the track. Lane merging

is a well-studied area, with previous work utilizing polynomials [26], splines [47],

[14], or Bézier curves to parameterize paths [62]. In [50], 5th order polynomials are

generated within a Darboux frame using a convex combination of the origin and target

paths. Heading and curvature continuity is guaranteed for any lane change maneuver

without numerical differentiation. In addition, compliance with track boundaries is

also guaranteed a priori.

1.5.3 Motion Control for Autonomous Racing Vehicles

While AVs cannot yet legally drive faster than 80 to 130mph, depending on locale

and road conditions [9], the operating domain for ARVs is typically 100 to 200+mph.

This sizeable difference dictates the differences in vehicle architectures, modeling, and

controller techniques. Additionally, at higher speeds, assumptions made in vehicle

dynamics models may not apply, necessitating better vehicle modeling. Some works

have explored addressing this problem by combining a model predictive controller

(MPC) with a deep-learning-based model [21], [60]. Other works, such as [15], look
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to estimate tire friction parameters online for use in an MPC controller. Finally, due

to model limitations at higher speeds, the controller must be robust and capable of

reasoning about potential bounds on actual dynamics. Works such as [56] address

this with a Tube-MPC controller that can reason about uncertainty in the dynamics.

Additional work, such as [42], layout a whole navigation stack for use in an ARV.

Finally, for our approach, we looked to robust and fast controllers, such as linear-

quadratic regulators (LQR) and iterative LQR control [29], [8].
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Chapter 2

Design Methodology

Designing a whole software stack from scratch for a new competition, on a new vehicle

capable of reaching speeds of over 180mph, in less than six months is a daunting task.

However, the pressures of the competition and our operational design domain did

not just challenge our software stack, but also the way we approached designing and

devloping the autonomy system. A design methodology emerged that enabled our

eventual success, after some initial failures.

2.1 Motivation

In the process of developing our software stack over two years, we recognized a marked

shift in our success once we started following to our design methodology. For example,

our the development of our perception stack (i.e. understanding the state of the

world around us, including where other agents are) was haphazard and struggling.

Algorithms were implemented and tested that were unfeasible due to computational

constraints, the lack of data, or were not absolutely necessary for the competition.

By January 2022, when qualifying for the first IAC@CES event (see Table 1.1 for

all events), the perception stack was barely functioning offline and was not capable of

working well on vehicle. Figure 2.1 depicts the period of the object detection stack in

January 2022 and January 2023. The time between each detection was on average

over 200ms, often reaching over a second. It is impossible to have a functioning

autonomy stack when detections of other vehicles are only produced every second
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Figure 2.1: Period of the object detection stack in January 2022 (left) and January
2023 (right). Period was calculated by taking the time difference between subsequent
detections. Part of the reason we failed to qualify in 2022 for the first passing
competition event was due to a breakdown in the perception and tracking stacks.
Fixing these issues over the ensuing year yielded invaluable experiences and learning’s
for system design, integration, and testing that motivated this thesis.

or only at most four times a second. As a result, we did not meet qualification

requirements to compete in the passing competition. One year later, the stack was

improved and able to reliably produce outputs 10-20 times per second, allowing the

ARV to overtake an opponent ARV traveling over 125mph, reaching over 150mph in

the process.

These successes are attributable to following a more disciplined design methodology

when developing the software stack. This methodology came out of the failures, refined

over time with experience.

2.2 The Four-Step Methodology

Our design methodology focuses on the following four steps:

1. Formalize the operational design domain (ODD)

2. Define the hardware constraints

3. Enumerate algorithmic and system approaches
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4. Construct a test plan

We found that by following this process, in a continuous fashion, we were able

to better define system requirements, narrow the space of feasible approaches, and

be more proactive in creating a system that can be effectively tested. The next few

sections will detail these steps in detail. Finally, subsequent chapters will present the

application of this methodology to the perception subsystem and show how better

development outcomes were realized.

2.3 The Operational Design Domain

An operational design domain (ODD) is the set of conditions under which the system

is expected to operate. For example, one potential, high level ODD for the Indy

Autonomous Challenge (IAC), passing competition, can be defined as:

• Drive no slower 80mph on an oval super-speedway

• Pass another ARV that is driving no slower than 80mph

• Maintain a safe distance to the opponent ARV when not passing

• Maintain a raceline and set speed when acting as Defender

It is important to define the ODD because it explicitly lays out the requirements

of the system. This is useful for preventing “feature creep,” which is when a system

has too many unnecessary features, and for making critical decisions about the space

of feasible approaches. For example, in the passing competition, there is only one

other vehicle at a time, so this allows simplifications in the approach that would not

otherwise be possible. Sometimes, this can hurt long-term development, especially if

the solutions are too over-fit to the short-term requirements. As a result, important

considerations and thought should be put in balancing the current ODD and how

the ODD is expected to evolve over time and prioritize effort accordingly. In our

case, we recognized that someday we will be expected to race against more than one

other ARV, so the approaches taken are easily extended to handling more than one

opponent at a time.

Additionally, having an ODD also defines what the system must be capable of

achieving, which is useful for test planning. For example, in the passing competition,
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you must drive at least 80mph, so a test can be constructed to verify that this

requirement is met.

2.4 Define the Hardware Constraints

Defining the hardware constraints involves understanding the target hardware platform

and how to best exploit it. For example, in the IAC, teams are provided redundant

360◦ sensor coverage, with multiple GNSS units, LiDARs, cameras, and radars (see

Section 1.3.3 for more details). Teams are allowed to utilize how ever many or few of

these sensors as they wish. For example, TII Unimore Racing uses all of the available

sensors in their perception and localization pipeline, including utilizing a GPS-denied

localization pipeline for redundancy [43]. Ultimately, the space of possible solutions

are constrained by, but not limited to:

• Time synchronization (clock sync, synchronized triggering)

• Software driver and firmware versions and compatibility

• Sensor quality (noise), update rate, range, resolution, etc.

• CPU, GPU, memory, etc. features and limitations

• Memory, storage, communication bus (CAN, USB, wired and wireless network-

ing, etc.), etc. bandwidth

• Actuators and power unit characteristics

• Mechanical constraints

• Power consumption

Time synchronization, in particular, impacts the performance of perception algo-

rithms. For example, early-fusion works such as [25] develop a means to align sensor

features to improve object detection. However, it, and any method using sensor

fusion, rely on having synchronized sensor triggers, or measurements that can be

aligned through interpolation (i.e. motion compensation and deskewing with LiDAR

pointclouds). However, if the sensors are not on the same clocks or triggered in sync,

then temporal alignment is impossible. In our experience, time synchronization is

by far the most common issue seen with robotic systems, with sensor driver issues

typically coming second.
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Heterogeneous systems, or systems with a CPU and a dedicated accelerator, in-

cluding GPUs, FPGAs, etc., are increasingly popular and popular robotics frameworks

(i.e. the Robot Operating System (ROS) 2) are creating tools to better exploit such

systems [32]. The basic idea is that some workloads are better suited to dedicated

hardware or GPUs versus CPUs. Recent work [49], however, has shown that vector

instructions, when used properly, can also speed up computation on a CPU, negating

the need for a GPU. In [49] case, the overhead of copying back and forth to a GPU

could easily negate the parallelization gains, but, by utilizing vector instructions on a

CPU, no device to device copying had to occur and the parallelization gains could

be made, which was particularly useful for operations happening many thousands

or millions of times a second. Regardless, the trend has been to offload many tasks,

from perception to even controls and planning [54], to the GPU and other dedicated

hardware.

Ultimately, it is important to go back to the hardware constraints when making

decisions on potential approaches. Will these collision checks our planner is conducting

be able to run fast enough on a single CPU core or should they be parallelized?

Is there enough data bandwidth to save all the camera images at full rate to disk?

How much telemetry can be sent back to the remote operator? How fast does our

controller need to run to be able to react fast enough to disturbances? Oftentimes,

the biggest advancements come from trying to overcome these limitations.

2.5 Enumerate Approaches

Historically, roboticists have come to think of possible autonomy approaches on a

spectrum- how much learning is incorporated in a system. “Traditional” approaches

have come to mean ones that have separate modules for planning, controls, perception,

localization, etc. and “modern” approaches rely on machine learning and large data-

sets to replace rules-driven algorithms. However, in practice, we have found that it is

not helpful nor possible to think of approaches on a single axis scale. Rather, we have

found it most helpful to classify the state of approaches on a two axis spectrum: how

coupled the modules within the architecture are and how data driven the algorithms

used are.
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2.5.1 Modularity

Modularity refers to the dependence of one module on another module’s outputs,

assumptions, and intricacies. For example, a typical perception pipeline might have

an object detector and a tracker. The detector outputs candidate objects with some

class and three-dimensional pose. The particular track chosen might be setup in a way

where it can accept objects with this interface, but also needs velocity information.

The system designer either needs to estimate velocity from another source, change

the tracker, or change the object detector. There may be more subtle dependencies.

For example, in our stack, a bug occurred because the planner was expecting tracks

to be ordered by relative distance, but were actually ordered by age, so the planner

made assumptions that later broke.

Modularity can be thought of from an information theory perspective. Sensors

provide high resolution, noisy, and high dimensional temporal measurements of the

state of the world and the ego agent state. Turning this information into concrete

actions and decisions requires digesting and transforming it through multiple modules,

or a single module for end-to-end approaches. The assumptions, dependencies, and

information shared between modules ultimately makes up how modular an approach

is.

It is important to consider Modularity when designing a system because it impacts

performance, ease of testing, and code reuse. For example, when modules are

decoupled, it makes it easier to test them individually with integration tests. However,

in the tracker example, having velocity information may make the tracker more

accurate, but it requires a more sophisticated object detection module.

2.5.2 Data Driven vs Rules Based

Modern robotics development has been dominated by machine learning, particularly

deep neural networks that allow for learning from enormous amounts of data. Rules

based refers to methods where engineers endow the algorithm with some prior set of

rules or heuristics to guide decision making. For example, a reinforcement learning

algorithm will learn how to make a safe merge onto a highway, trained on thousands

or even millions of merges. An optimal control algorithm uses human-engineered cost

functions, constraints, and heuristics to optimize for the merging behavior. However,
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it is much harder to certify that the learned algorithm is safe because it is not clear

how it resulted in its decisions or actions. This problem does not exist with the

rules-based approach.

The problem, however, is that rules-based approaches have their limitations. It

is impossible to tune for every possible case an autonomous agent may experience,

but, with enough data, the odds are higher that it has seen a similar scenario before.

The caveat is having enough data to teach the agent the necessary skills. When

developing a system, data is not always immediately available or easy to collect, so

rules-based approaches provide a proven solution to get working.

2.5.3 Summary

To summarize, important questions to ask include:

• How easily can the ODD be addressed with hand-engineered rules?

• How readily available is quality data?

• Does the code need to be reused for other ODDs?

• How important is interpretability and the ability to isolate modules?

• Can you trade-off robustness for peak performance? Or vice versa?

The answers to these questions will clarify the feasibility of an approach and help

decide on if a data driven or rules based approach is better and if the system needs

to be modular or if assumptions can be made.

2.6 Test Planning

Real-world testing is expensive. For example, in the case of the IAC, to rent a single

day on the Las Vegas Motor Speedway cost over $50k. Additionally, crashes can cost

just as much, or more. Logistics for moving, maintaining, and operating autonomous

racing vehicles can be in the multiple tens or even hundreds of thousands of dollars

over a year. While the field of autonomous racing has this unique challenge, there

are logistical and other practical considerations that go into real world testing for

other systems.
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It is important to develop a plan for testing a systems because these challenges

will emerge and, if there is no way around it, then a different approach may need to

be taken. For example, when we were designing our initial object detection pipeline,

real-world data did not exist and the AV21s were not yet capable of sharing a track

together to collect data. As a result, we developed a clustering algorithm that was easy

to test in the garage. At the same time, we developed a simulation environment that

allowed us to collect ground truth labels very easily and train our initial data-driven

approach. However, with the clustering algorithm, we were able to safely run on

track, albeit with an inferior solution, and collect more data to refine our model.

Test planning should be continuous, meaning that, as approaches develop and

change, the tests need to evolve alongside it. It is also not always clear what should

be tested and whether that testing should occur offline (i.e. in development versus

on robot). Offline tests can include using simulation, prior data sets, and unit and

integration tests. If it is possible to replicate the real system conditions as closely as

possible in simulation testing, then that should be used. However, this is not always

possible, so careful consideration must be applied to ensure that when code is tested

on the real system, the results are close to what is expected.

It is also important to define what is considered a successful test and what

outcomes are expected. Defining the metrics, in concert with examining the ODD,

allows a clearer picture of where compromises on performance may be made. For

example, our LiDAR object detection pipeline does not do motion compensation, as

it did not meaningfully affect the accuracy in a way that negated the processing time

speedup. Additional discussions on this, and other points, are presented in Chapter

3.
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Chapter 3

Opponent Agent State Estimation

In this chapter, we will apply the design methodology presented in Chapter 2 to the

problem of opponent agent state estimation. This problem entails detecting, tracking,

and estimating the state of opponent autonomous racing vehicles (ARVs). Having

applied the design methodology, we will then detail our approach for object detection

and tracking and estimation of agent states.

3.1 Applying the Design Methodology

3.1.1 The Operational Design Domain

The passing competition (see Section 1.3.2) involves only two ARVs on track at a

time, passing one another at successively higher speeds. Initially, the track can be

assumed to be an oval super-speedway, an assumption that will not hold in future

events. Additionally, there are no other vehicles or objects on the track besides the

two ARVs that are to be detected. All interactions between the two vehicles will take

place on the track surface, not in the pit lane or any other places. Finally, the track

boundaries can be mapped and known a-priori.

The competition’s minimum speed is 80mph and can reach over 180mph[35].

The AV21 is capable of very high accelerations (greater than 20m/s2) and speeds

(greater than 180mph), meaning LiDAR or camera frame-to-frame movement can be

significant. Additionally, when the perception pipelines were first developed, there
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were no existing data sets for detecting AV21s and little data showing the performance

of sensors, such as LiDARs and cameras, at our target speeds. Finally, all ARVs

participating in the competition have identical hardware.

3.1.2 Hardware Constraints

More details on the AV21 hardware can be found in Section 1.3.3. Some details are

copied below for convenience. Onboard the AV21 are six cameras, three LiDARs, and

three radars, in addition to three GNSS systems, each connected to two antennas

and receiving RTK corrections.

Figure 3.1: Sensors on the AV-21. Six cameras and three LiDARs provide redundant
360◦ coverage and over 200m of sensing range.

The onboard compute is limited to a single computer, a dSPACE AUTERA

AutoBox with a 12 core, 24 thread Intel Xeon CPU and an RTX A5000 NVIDIA

GPU. All sensors, except for the RADARs, are connected via standard networking.

A Cisco IE5000 industrial switch acts as the main hub, connecting the AutoBox to

all of the sensors via two 10gigabit SFP+ connections.

Unfortunately, the onboard CPU is very slow when compared to more recent

hardware. Benchmarks put the CPU on par with a fourth generation Intel i7 desktop

processor, which is orders of magnitude slower than the latest twelfth or thirteenth

generation processors available today. The GPU, however, performs very well, being

from the latest generation of NVIDIA GPUs and having a lot of potential for

processing large amounts of data in parallel. However, the motherboard and CPU are

limited to PCIE Gen 3, which can limit the maximum memory bandwidth available.
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Figure 3.2: Main compute platforms. Specifications and images taken from respective
product websites[2][10].

Additionally, the slower single core CPU performance has also shown itself when

copying data to and from the GPU. For example, a bug in our perception pipeline

caused an up to 10-20% slowdown due to extra data copying.

3.1.3 Enumerate Potential Approaches

There are numerous potential approaches that could have been taken. With three

sensor modalities, there are early fusion (i.e. combining the raw sensor data) and late

fusion approaches (i.e. fusing the localized detections). Additionally, an approach

could have been taken that does not utilize a tracker at all and does object detection

and tracking in one. Finally, rules based approaches could be used for all three

modalities over a data driven approach. Ultimately, we chose to go with a late-stage

fusion with data driven methods, utilizing the LiDARs and cameras.

Due to the lack of training data, our initial LiDAR perception approach for Season

One utilized an unsupervised clustering algorithm. A Cloth Simulation Filter (CSF)

[61] was used to remove ground points and a density-based clustering technique,

DBSCAN [11], was used to identify obstacles of specific dimensions within the bounds

of the track. While seemingly viable, this approach proved to have many failure cases,

such as identifying dust above the track as an obstacle, shown in Figure 3.3. By

observing these failures and the potential to break down at higher vehicle speeds,
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Figure 3.3: Red bounding box is from PointPillars and blue is from clustering.
Clustering is susceptible to detecting dust and noise as other agents. Clustering is
unsupervised, but, as a result, is unable to differentiate between other agents and
dust and debris.

the need for a robust, efficient, learning-based perception approach was evident. No

rules-based approach was taken for camera object detection, as we did not feel it was

viable.

A late-stage fusion approach was taken because there was concern that the sensors

were not reliable and, while the clocks were synchronized between the sensors, the

shutters of the sensors are triggered at different moments. As a result, alignment

temporally is necessary to ensure the best result, which was potentially expensive,

prone to errors, and not guaranteed to be an improvement for our use case. As

our ODD highlighted, there is only one other car on track at a time, which makes

detection a lot simpler.

3.1.4 Test Planning

As previously stated, since there was a lack of prior training data, all of our early

work on clustering was tested on data-sets collected from working in the garage,

with other cars around us. We sat down and manually tuned the thresholds and

the algorithm’s heuristics and hyper-parameters until performance was acceptable.

However, we knew this was not viable long-term.

We developed a simulation environment, with sensors configured as closely as we
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could get to the real vehicle with the simulation model toolbox we had available. In

this environment, we could collect ground truth labels that then could be used to

train a model. By developing this model, we could generate nearly infinite amounts of

data to validate that our model was producing something close to what we expected.

However, this was not enough, as we needed to collect real-world data to test with.

Ultimately, our test plans for object detection looked like the following:

• Using simulation, generate a dataset to train a model and validate its perfor-

mance, in real time

• Using off-track real-world data, test and validate a rules-based clustering algo-

rithm.

• Validate performance and efficiency offline before deploying to vehicle

• While off-track, test and validate that both the rules-based clustering algorithm

and learned model are performing as expected on the vehicle.

• On track, collect more data to train and validate the learning based approach.

Finally, the unique aspect of this approach is that it resulted in an initial model

and clustering algorithm that can both be used to generate auto-labels on real world

data that can then be refined by a human labeler. In our experience, having an initial

guess speed up labeling significantly. This exercise was also useful for understanding

the existing model’s, and data-set’s, weaknesses. However, as we will cover later,

timelines make it difficult to always complete all test plan steps, which can hurt later

when the items that are tested are not necessarily the correct things to have tested.

3.2 Object Detection

In this section, we will detail our approach to the detection of other opponent ARVs,

which was derived and refined over time by applying the design methodology and

reasoning presented earlier. The input to this system is the raw sensor data (LiDARs,

cameras, etc.) and the output is a list of candidate detections of other agents, scored

by some confidence.
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Figure 3.4: Object Detection Stack Overview. Each sensor modality is processed in
its own independent pipeline and the resulting detections are associated and fused by
the Tracking stack, presented in Section 3.3.

3.2.1 Overview of Approach

Figure 3.4 shows our object detection stack’s. As inputs are the camera images and

LiDAR data and outputs are 3D object candidates. Each sensor has unique strengths

and weaknesses. For example, cameras alone do not give an accurate depth estimation

but can operate at a much higher frame rate (up to 75Hz) and resolution (2064×960)

than the LiDARs. A camera-based detection pipeline can provide a higher frequency

update on our belief of the world and has the potential to see other agents from

further away. Figure 3.5 shows some additional challenges faced with perception. To

best exploit the sensors’ strengths and for robustness and redundancy, our perception

stack uses each sensor independently and in parallel and feeds all localized detections

to our tracking stack.

3.2.2 Camera

For full coverage and maximum range, the two front-facing cameras utilize a narrow

lens to improve far-field resolution. The four remaining cameras use a wider field

of view (FOV) to provide 360◦ coverage around the vehicle. Due to the lower effort

required to label 2D bounding boxes, YOLO v5 [16] was chosen for our initial approach.

The model was trained on a custom, hand-labeled data set of other AV-21 vehicles,

with images taken from onboard our vehicle. Because the model outputs 2D bounding

boxes, other assumptions and processing is required to provide a 3D pose of the other
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Figure 3.5: Perception Stack Challenges. Lens flare, vibrations and motion blur, glare,
and other challenging light and environmental conditions make camera detection
challenging. Additionally, dust challenges simpler, unsupervised LiDAR detectors,
such as clustering, but requires robust data engineering to ensure a robust deep neural
network model. Note: Point cloud is colorized on the z-axis.

agents. By exploiting the fact that the size and shape of the vehicles are known,

we can estimate a depth from the 2D bounding boxes from the model by using a

standard pinhole optics model [12]:

Depth =
(Heightknown ∗ f)
Heightpixels

(3.1)

where f is the calibrated focal length of the camera, Heightknown is the known height

of the vehicle in meters, and Heightpixels is the detected height of the detected

vehicle in pixels. This monocular algorithm yields accurate results for mid/far-field

detections; however, the error increases proportionally with the real-world distance

between the camera and the other agent. While far-field detections (> 100m) tend

to be less accurate, the additional sensor modalities, including LiDAR, cannot see as

far as the camera with nearly the exact resolution and fidelity, so some measurement

is better than none. As the other agent gets into the LiDAR operating range, we

refine the estimates using these detections, and our confidence in the agent’s position

increases. The unique long-range capability of the camera perception pipeline can

provide motion planning more time to respond to agents in our path. Figure 3.6

shows the result of the camera detection pipeline.
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Figure 3.6: Camera Detection Results

3.2.3 PointPillars

The AV-21 platform has three Luminar Hydra LiDARs[28] positioned in a triangular

fashion. Each LiDAR has a field of view (FOV) of 120◦, together allowing for 360◦

coverage around the vehicle. Each LiDAR is capable of excellent coverage at over

100m, thereby providing an over 200m radius circle of coverage around the track.

Since the track is only so wide, this cloud is cropped further to being 200m× 40m.

An example cloud can be seen in Figure 3.7.

Figure 3.7: Pointcloud from all three Luminar LiDARs. Red points are from the left
LiDAR, blue are from the right, and the white are from the front. The LiDARs each
can see over 100 meters. The clouds are combined and cropped to provide coverage
of 200m× 40m.
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Numerous Deep Learning methods of object detection using LiDARs have shown

promising results, such as VoxelNet [63], PointRCNN [46], SECOND [58], and others.

Low-latency inference and accurate detections are of the utmost importance for our

use case of high-speed autonomous racing. For this reason, PointPillars [22] serves

as our primary detection method, capable of reliably detecting vehicles at ranges

up to 100m away. The birds-eye-view projection and 2D convolutions used within

PointPillars allow for the removal of computationally expensive and time-consuming

sparse 3D convolutions performed by other LiDAR networks.

Figure 3.8: The point cloud is cropped, within the LiDAR driver, to the region in
red, 200m× 40m in size.

To reduce processing time, our PointPillars implementation is single-sweep, mean-

ing we do not accumulate scans over time before running inference. Additionally, to

further simplify the pipeline, inference is done directly on the raw scans, after down-

sampling and applying a crop (Figure 3.8). We explicitly chose to not compensate

for distortion caused by the ego vehicle’s motion. Based on the data observed and

practical considerations within the larger stack, motion compensation was deemed

not worth the additionally complexity and processing time required. The scanning

rate (∼ 50ms from top to bottom) is faster than other LiDARs, which results in less

distortion. Additionally, the LiDAR data is only used for detection and the relative

speed between agents is low enough that the error due to motion distortion can be

ignored. The potential gains do not outweigh the additional latency. Finally, work

had been done to implement distortion correction, but was removed due to integration

and performance issues, which will be discussed further in Section 5.1.
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3.2.4 ROS 2 and DDS Transport

Figure 3.9: Breakdown of the processing time for the PointPillars pipeline in Septem-
ber, 2022. The red line depicts the time it takes from the very first LiDAR point
to be scanned to when the final cloud is completed, processed, and transported to
the computer via Ethernet, or about 56ms. Assuming no additional processing, this
becomes the ideal latency measurement. When taking the total pipeline latency
(right) and removing the contribution from running inference (middle), the transport
latency (left) can be seen. This transport latency is the time between the first LiDAR
point and the ROS message containing the cloud being received by the PointPillars
processing node. As you can see, this time is on average over 84ms, which means
about 28ms on top of the ideal latency, and is highly variable, with a standard
deviation of 14.6ms.

ROS 2 utilizes the Data Distribution Service (DDS) standard for communicating

between each ROS node[30]. ROS 2 utilizes what is called the ROS Middleware

(RMW) abstraction to separate the ROS API and the DDS implementations [30]. This

allows for changing DDS implementations easily between different vendors. However,

in our own testing, the RMW and ROS 2 client libraries provide significant overhead.

For example, the following figure shows the latency for the perception pipeline in

September 2022, when using ROS 2 for communication (Figure 3.9).

In Figure 3.9, the red line depicts the time it takes from the very first LiDAR

point to be scanned to when the final cloud is completed, processed, and transported
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Figure 3.10: Breakdown of the processing time for the PointPillars pipeline in January,
2023. The red line depicts the time it takes from the very first LiDAR point to be
scanned to when the final cloud is completed, processed, and transported to the
computer via Ethernet, or about 56ms. Assuming no additional processing, this
becomes the ideal latency measurement. When taking the total pipeline latency
(right) and removing the contribution from running inference (middle), the transport
latency (left) can be seen. This transport latency is the time between the first LiDAR
point and the ROS message containing the cloud being received by the PointPillars
processing node. As you can see, this time is on average 58ms, which means about
2ms on top of the ideal latency, and is very consistent, with a standard deviation of
1.7ms.

to the computer via Ethernet, or about 56ms. Assuming no additional processing,

this becomes the ideal latency measurement. When taking the total pipeline latency

(right) and removing the contribution from running inference (middle), the transport

latency (left) can be seen. This transport latency is the time between the first LiDAR

point and the ROS message containing the cloud being received by the PointPillars

processing node. As you can see, this time is on average over 84ms, which means

about 28ms on top of the ideal latency, and is highly variable, with a standard

deviation of 14.6ms.

To combat this issue, we made two big changes: 1) crop the point cloud in the

driver and 2) use DDS directly for communication. Inside the LiDAR driver, every
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point is checked to see if they are within the vehicle polygon or outside some max

range. Since each point is already being iterated over, it adds negligible overhead

to also crop the cloud to a fixed region around the vehicle, in our case 200m× 40m

(see Figure 3.8). This made the messages slightly smaller and reduced the amount of

work the python PointPillars node needed to do.

Figure 3.11: Breakdown of the processing time for the PointPillars pipeline in June,
2023, in Monza. The red line depicts the time it takes from the very first LiDAR
point to be scanned to when the final cloud is completed, processed, and transported
to the computer via Ethernet, or about 56ms. Assuming no additional processing,
this becomes the ideal latency measurement. When taking the total pipeline latency
(right) and removing the contribution from running inference (middle), the transport
latency (left) can be seen. This transport latency is the time between the first LiDAR
point and the ROS message containing the cloud being received by the PointPillars
processing node. Despite the point cloud being roughly twice as large, the transport
time is on average 59ms, which means about 3ms on top of the ideal latency, and is
very consistent, with a standard deviation of 1.1ms.

Bypassing ROS 2 involved using DDS libraries directly to access the underlying

DDS participant and topics. Besides bypassing the overhead of ROS 2 client libraries,

this approach also allowed for finer-grained control of the DDS quality of service

(QOS) settings, allowing for tuning of the underlying data buffers and transport. The

result is a significant reducing in the transport overhead and allowing for much more
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consistent message delivery:

By Monza (Figure 3.11), additional bugs in the inference node were refined and,

despite having roughly twice the number of points per point cloud, the transport

latency did not drastically increase and the total latency dropped to about 91ms,

or about 35ms of transport and processing, which is an almost three times speedup

when compared to the 96ms of transport and processing (see Figure 3.9).

3.2.5 Data Collection, Labeling, & Training

At the time of development, no data-sets existed that contained AV21s racing head-to-

head. Adequately training PointPillars required developing a large and robust dataset.

Initially, data was collected in simulation, which helped developed an initial model.

The first model dataset is broken down in Table 3.1. The simulation environment did

not match the vehicle setup perfectly. In particular, while the range and coverage

were similar, the point cloud was less dense than in real life. Interestingly, we found

that the initial model trained off of this data transferred to detecting AV21s on real

data, especially at longer ranges, where the cloud is less dense. Figure 3.12 shows a

comparison of PointPillars detections against the measured trajectory of an opponent

ARV.

Source Number of Labels Percent
Simulation 6744 92.2%
Real Vehicle 570 7.8%

Total 7314 100%

Table 3.1: Breakdown of label sources for training the initial PointPillars model.
Later iterations incorporated many more labels from the real vehicle. Having a
better model produces better auto-labels, thereby speeding up the data collection
and training process.

With an initial model, it was now possible to do “auto-labeling”, where the model

is used to generate new labels that are then hand-verified by a human annotator.

Because the model often provides a detection that is close to ground truth, the

workload on the human annotator is reduced. Additionally, by using the existing

model to label more data, labels can be focused on the areas where the model

performed most poorly.
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Figure 3.12: Comparison of PointPillars detections against the measured trajectory
of the opponent ARV in Season Two at Las Vegas. The ego and opponent ARV
positions are obtained using GPS with RTK corrections applied, which provides
centimeter-level accuracy. Also shown are the track bounds (black) and the ego
vehicle trajectory. Finally, this snapshot of the run was when the ego vehicle was
traveling at over 59m/s, completing a pass of the opponent vehicle.

3.2.6 Discussion: Strengths, Limitations, and Future Work

Given the prototypical nature of the AV-21 platform, the sensor plate must be

disassembled every time the autonomy components need servicing. As a result, the

extrinsic calibration between the cameras and the LiDARs changes frequently. This is

less of an issue with the LiDARs, as they are all firmly fastened to the same aluminum

plate. Additionally, the extreme operating conditions of the AV-21 platform (i.e. high

speeds and accelerations) also necessitate re-calibrating the sensors regularly, even if

the sensor plate has not been removed. Small extrinsic calibration errors can lead

to very large projection errors, especially for distant objects. This problem is not

exclusive to ARVs and is an active area of research [48][24]. Future work will center

on streamlining the calibration process and developing systems that are less brittle

to small errors.

Finally, due to a severe crash less than 72 hours before the competition in Season

Two at Las Vegas, the camera detection pipeline was disabled for the competition

events. An image from the footage of the crash, recorded by an onboard GoPro camera,

can be seen in Figure 3.13. With the focus being repairing the AV21 vehicle, no time
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Figure 3.13: Onboard image from the first known major autonomous, multi-agent,
head-to-head collision.

.

was available to properly calibrate the sensors and the potential for projection errors

outweighed the benefits of running the camera pipeline. Because of the late-stage

fusion and decoupled design choices, it was trivial to make such a drastic change. In a

fast-paced competition environment, this modularity and flexibility proved paramount

in allowing the vehicle to operate during the competition. While the redundancy and

peak performance of the stack was compromised, as shown later in Section 5.1, the

vehicle was still able to autonomously compete in three rounds, winning the first two,

and losing the third after running out of fuel after attempting an overtake at over

150mph.

3.3 Tracking

Tracking within an ARV software stack serves to provide downstream tasks with

a single belief of the states of other agents within the world. Different perception

modalities capture different portions of a given agent’s state space. For example, the

monocular camera perception provides a noisy estimate of an agent’s position, but

cannot accurately predict its orientation. Our LiDAR perception produces full pose

estimates of other agents, but currently does not infer the agent’s velocity. While
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using only one of these detection methods will yield a belief that is severely limited

by the outlined weaknesses, the effective fusion of both can result in each modality

compensating for the drawbacks of the other.

3.3.1 Challenges and Requirements

Our implementation allows for the fusion of multiple sensing modalities in a straight-

forward manner, and serves to provide downstream planning tasks with the state of

all perceived agents. Our decoupled approach to perception requires our tracking

stack to meet the following requirements:

1. Incorporate all modalities from perception, including LiDAR and monocular

camera detections

2. Estimate positions, velocities, and orientations in the world of all tracked agents

3. Provide a precise and accurate state estimate of the opponent agents

4. Provide a consistent measure of the uncertainty of the agents’ state estimates

5. Be robust to false positives, missed detections, and drop-outs from one or more

sensor modalities

Finally, tracking must perform all of the above while ensuring as little additional

latency as possible, handling measurements from perception asynchronously and out

of order, and compensating for any delay between sensor measurement and tracking.

3.3.2 Overview of Approach

Our approach consists of three main components: Filtering, Association, and Fusion.

Filtering removes outliers. Association determines whether or not a detection is of a

previously seen agent. Fusion is incorporating new measurements of agents’ states.

In order to minimize processing latency within the tracking stack, well-researched,

efficient algorithms are leveraged for each module. Figure 3.14 presents the Tracking

pipeline architecture.
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Figure 3.14: The Tracking pipeline architecture, from detection inputs to state
estimate for a single opponent ARV.

3.3.3 Filtering

Detections filtered by a confidence threshold, a hyper-parameter within our tracking

stack, tuned empirically by analyzing the false positives and associated confidence

produced by perception. Additionally, any detection that falls outside of the track

bounds is ignored. The combination of these two filtering steps helps to ensure that

only valid detections are processed and used to generate tracked agents.

3.3.4 Association

AB3DMOT [53] provides the data association module utilized by tracking stack.

By employing two computationally efficient algorithms, the Hungarian algorithm

for data matching [20] and the Kalman filter [18] for fusion and prediction, the

authors demonstrate strong results on multiple open-source data sets while also

providing high-frequency predictions. In practice, we observed that the Hungarian

algorithm with Euclidean distance often resulted in poor data association, especially

during temporary sensor drop-out. Therefore, our implementation uses simple greedy

matching with the Mahalanobis distance [31], which performed better in testing.

Track births and deaths: To reduce the probability of false positives becoming

valid tracks, a new potential track is instantiated (born) only after two detections

(from successive sweeps) are associated with it. This hyper-parameter provides a

means to balance between the quality and confidence of tracks and end to end
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latency in reacting to other agents. Finally, any tracks that have not had a detection

associated with it within the last five seconds are also removed (killed) to prevent

stale tracks from influencing future associations.

3.3.5 Fusion

Once detections have been associated with an existing tracked agent, or have been

repeatedly observed and classified as a new agent, we begin tracking the agent using

fused multi-modal perception outputs. Again, we utilize a modified version of [53] as

the Kalman filter for performing sensor fusion. Since incoming detections from the

camera perception pipeline have already been projected into a 3-dimensional position

and transformed into a common frame, both LiDAR and camera measurements can be

used to update the internal Kalman filter for a given tracked agent. In this way, sensor

fusion becomes a simple task that can be asynchronous across the two modalities,

and the states of tracked agents can be published at the receipt of each incoming

detection.

3.3.6 Discussion, Limitations, and Future Work

The tracking pipeline meets all requirements and is sufficiently accurately and perfor-

mant to handle the IAC Passing Competition. Our modular design was especially

important when the camera perception was disabled on race day, outlined in detail in

Section 3.2.6. Given these successes, however, our system has not been robustly tested

against multiple agents, specifically agents that are close together (i.e. ≤ 5m). In

traditional motorsports, humans drive aggressively in close proximity to one another.

While the competition format is far from this style of racing, future works will need

to handle such operating domains in order to challenge professional drivers. Multi-

ple agents in close proximity are more difficult to track, due to higher association

ambiguity and occlusions.

Finally, a Kalman filter will be replaced by an Extended Kalman filter (EKF)

to enable a non-linear motion model. With an EKF and a better motion model

(i.e. constant curvature), predictions of agent tracks will be more accurate, which is

especially important during periods of infrequent detections (i.e. the other agent is

in the blind-spot produced by the rear wing of the vehicle).
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Chapter 4

Ego State Estimation and

Localization

In this chapter, we will apply the design methodology presented in Chapter 2 to

the problem of ego vehicle state estimation and localization. This problem entails

estimating the state (i.e. position, heading, velocity, etc.) and localizing the ego

vehicle in the world and onto the racetrack. All other modules in the autonomy stack

consumes the odometry this module outputs, so it is imperative that estimation is

robust and accurate. After having applied the design methodology, we will then detail

our approach to solving these problems.

4.1 Applying the Design Methodology

4.1.1 The Operational Design Domain

In this section, the ODD is primarily focused on the IAC@MIMO event held in Monza

in Season Three (see Table 1.1). The competition had the following format:

• Each team gets three run attempts to post a fastest lap

• The winning team is whomever posts the fastest single lap out of three runs

• All laps start and end at the start-finish line

• The competition is held on the Autodromo Nazionale Monza (Figure 4.1).
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Figure 4.1: Autodromo Nazionale Monza, a famous Formula-One circuit in Monza,
Italy. The circuit is one of the fastest in Formula One, with its long front straight
and 11 turns, including the famous Parabolica (turn 11) and Ascari chicane (turns 9
and 10). Image from [40].

To summarize, the ODD is to drive as fast as possible, with no need for any

perception or even online motion planning. This necessitates having a reliable, robust

controller and localization and an optimal racing line. However, Monza has tight

turns and chicanes that are more challenging to navigate than an oval super speedway.

Additionally, Monza also has dense tree coverage, several walking bridges, and an

overpass (see Figure 4.2), all of which obstruct direct view of the sky and negatively

impacting GPS performance. GPS-based localization is much more challenging on

Monza than the open sky, oval super speedways.

4.1.2 Hardware Constraints

Onboard the AV21 are six cameras, three LiDARs, and three radars, in addition to

three GNSS systems, each connected to two antennas and receiving RTK corrections.

The output of the GNSS systems can be seen in Table 4.1. The onboard compute

is limited to a single computer, a dSPACE AUTERA AutoBox with a 12 core, 24

thread Intel Xeon CPU and an RTX A5000 NVIDIA GPU. All sensors, except for

the RADARs, are connected via standard networking. A Cisco IE5000 industrial

switch acts as the main hub, connecting the AutoBox to all of the sensors via two

10gigabit SFP+ connections. For more details on the compute and its limitations,
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Figure 4.2: One section of the modern Monza track runs under the old track. GPS
reception is completely obstructed while in the tunnel. Additionally, the track leading
up to the tunnel has dense tree coverage, which creates multi-path interference
and obstructs reception. The result is a challenging environment for GPS-based
localization.

please see Sections 3.1.2 and 1.3.3.

Measurement Source State Update Rate
Novatel BESTGNSSPOS < x, y, z > 20Hz
Novatel BESTGNSSVEL < ẋ, ẏ, ż, ψ > 20Hz
Novatel HEADING2 < θ > 1Hz
Vectornav GPS Pose < x, y, z > 5Hz

IMU & Gyroscope < ẍ, ÿ, z̈, θ̇ > 125Hz
Wheel Speed (x4) < ẋ, ẏ > 100Hz

Table 4.1: Localization Measurement Sources. Each GPS unit provides GPS-based
solutions for pose, heading, and speed. Each vendor also provides their own inertial-
based fusion solutions; however, these solutions have been found to be sub-par to
our own fusion approach and are not well tuned for the AV21 platform and the high
vibrations.

4.1.3 Enumerate Potential Approaches

Localization is an open area in robotics. Conventional approaches rely on hand-tuned

EKF or other Kalman-filter based approaches [34]. Additionally, numerous GNSS
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Figure 4.3: GNSS sensors on the AV-21. Each unit (2x Novatel PwrPak7D-E1 and 1x
Vectornav VN-310) is connected to two antennas. One of the Novatels is connected
to the side pod pair of antennas and the other Novatel and Vectornav are connected
to the top antenna pair. Each sensor provides raw GPS positioning, as well as INS
fused solutions. However, INS fusion is disabled because the vendor-provided fusion
does not work well for the ODD and causes other issues.

hardware vendors all have their own fusion available; however, in practice, it was

found that the provided Inertial Navigation System (INS) fusion provided by the AV21

vendors was not reliable and could not be used in practice, due to high vibrations

from the chasis and engine.

Other localization approaches focus on GNSS-denied localization, relying heavily

on LiDARs and Cameras [41]. These approaches also include localizing in a prior

map or building one online (i.e. simulataneous localization and mapping (SLAM)).

Since the track is know beforehand, it is possible to create a prior map to localize

within. Finally, many of these approaches[45] also utilize inertial, and sometimes

GPS, data, along with LiDAR and/or camera data.

However, many GPS-denied approaches struggle in high speed, rapid motion

environments and do not provide good estimates of uncertainty or how good the

fused result is. For safety purposes, the localization result must be robust and it

must be known when there is a failure so that the vehicle can safely stop. Finally,
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due to the volume of data and the size of the environment, most approaches that

utilize LiDARs and cameras are not computationally efficient enough, especially when

running on top of a full autonomy stack, to fit within the constraints of the AV21

compute platform. As a result, it was ultimately chosen to stick to a rules-based

fusion of the three GNSS systems using an EKF.

4.1.4 Test Planning

Figure 4.4: Base station user interface. The AV21 has a cellular modem that allows
for the wireless transmission of telemetry from the autonomy stack and vehicle to be
transmitted to the base station operator. The operator can also send commands to
the vehicle, telling it to stop in the event of an issue or providing a speed limit. In
the interface, the operator can see at a glance if each of the GPS units is provided a
healthy measurement for position and heading and if the fused odometry is considered
healthy.

Before testing on Monza, one of the other teams was able to collect a dataset

from their own road vehicle driving on track. Initial integration and testing could be
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done with this dataset; however, it was not a perfect substitute. With the first track

days in Monza, data-sets could be collected that can then be used to test changes to

the localization pipeline. Additionally, due to extensive safety checks and telemetry,

it was possible to debug and make changes and tune the whole pipeline live, while

the vehicle was traveling around the track. All of this was monitored in real-time

from a passenger vehicle following the AV21 and from the race control room, seen in

Figure 4.4. Finally, between testing days, localization could be tested by manually

pushing the car in a parking lot with dense tree coverage.

4.2 Overview of Approach

The design process led us to pursue a rules-based filter, utilizing an EKF to fuse

GPS measurements from all three GNSS units. The resulting pipeline must be able

to handle degraded solutions from one or more, even all, GNSS units at once and

produce an accurate position, velocity, heading, and heading rate, all awhile running

onboard the AUTERA compute platform at 100Hz.

Figure 4.5: Overview of localization pipeline. All raw measurements are first pre-
processed by the Localization Executive. The transformed and filtered measurements
are then fused by an open-source Extended-Kalman Filter (EKF) package. Finally,
health status flags are communicated to the System Executive, which triggers a safety
response if needed.

The Localization module is split into two main components: the Localization
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Executive and the Robot Localization [33] EKF Filter node. Figure 4.5 shows an

overview of the localization stack. The GNSS units are configured to provide the best

position, velocity, and heading solutions, utilizing GNSS only, meaning any INS fusion

is disabled. These measurements, from the varying sources, undergo the following

transformations:

• Pose measurements are transformed from latitude-longitude coordinates into a

Local Tangent Plane (LTP) coordinate frame

• Solution status flags, the number of satellites in the solution, covariance mea-

surements, solution status, and other health indicators are tested against a set

of heuristics to verify that the measurement is good and worth fusing

• Finally, if the measurement meets quality checks, the measurement is converted

to a standard ROS message type and published to the filter for fusion

4.2.1 Localization Executive

The node responsible for all of the above is called the Localization Executive. When

building the Localization Executive, it was important to have a flexible, generic, and

modular framework for defining sources, safety thresholds, and defining safety checks

and heuristics. The Localization Executive’s modularity allows us to prioritize high

quality measurements and filter out bad measurements on a per-gps and per-source

(i.e. GPS N pose, heading, velocity) basis. In general, we found it better to remove

potentially erroneous measurements, or measurements with worse quality, from ever

being considered by the EKF filter. The consequence of this is that the filter would

often “dead-reckon” off of wheel speed and IMU measurements when position and

heading measurements are not provided for extended period of times. Figure 4.6

shows the filtered pose measurements from the Novatel and Vectornav GNSS systems

and the resulting fused odometry. As you can see in the combined plot, there are

extended outages, but the filter is able to extrapolate and produce a reasonable

estimate.
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Figure 4.6: The filtered pose measurements from the Novatel and Vectornav GNSS
systems and the resulting fused odometry. As you can see in the combined plot, there
are extended outages, but the filter is able to extrapolate and produce a reasonable
estimate.

4.2.2 Fusion: Extended Kalman Filter (EKF)

The EKF filter used is Robot Localization [33], an open-source filtering and fusion

package that provides a flexible and modular interface for fusing an arbitrary number

of sensor sources. Robot Localization was chosen because 1) it is very well tested

and maintained in the robotics and unmanned vehicles community, 2) its modular

design provides extreme flexibility during development and testing, and 3) it works

well and exposes several tuning parameters and control, while able to update its state

at 100Hz and fuse all incoming measurements asynchronously, including with the

ability to handle out of order measurements.

Finally, health status flags for the various sources and final odometry results are

communicated to the System Executive, the high-level arbiter of the stack. If any of

the following scenarios occur, the vehicle is brought to an immediate controlled stop:

• Total connection loss from all GPS units

• IMU measurement update rate drops

• Loss of a quality solution from all GPS units for an extended period of time

• Fused odometry covariance exceeds the safety threshold
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If one unit is healthy, or if a combination of pose, heading, and velocity can

be constructed from measurements from both units, then the stack will continue

operating normally. Additionally, all health status flags are also communicated to the

base station and presented in the interface (Figure 4.4). If partial, but not disastrous,

failures occur, it is the responsibility of the base station operator decide whether to

terminate the run or not.

4.2.3 Discussion: Strengths, Limitations, and Future Work

The localization pipeline was able to work successfully for the IAC@Mimo event in

2023. Moving forward, this approach may struggle if future competitions are held

on more challenging tracks, i.e. tracks with even longer GPS outages. So, while

this approach has worked well, significant future work will center on incorporating

a GPS-denied localization source that can be used in tandem with GPS. This new

approach will need to overcome the challenges presented earlier, namely be robust,

handle high speeds and dynamic movements, be efficient, and be safe and robust,

especially in the presence of other AV21s for multi-agent competitions.
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Chapter 5

Experiments and Results

5.1 Evaluation and Results

The aforementioned stack has been developed for and fielded on four different oval

raceways across two competition seasons and three years. Over that time, the AV21

ARV has seen hundreds of autonomous miles, in both single and multi-agent scenarios.

In this section, we present evaluations of several real-world runs that demonstrate

the stackś effectiveness and shortcomings.

Additionally, between Seasons One and Two, while the overall approach and

design of the stack had not changed materially, the execution and implementation

details have been improved based on lessons learned from the first season. These

insights are valuable for designing and fielding complex autonomous systems.

First, we present results and analysis from our failed qualification for the final

competition event for the IAC@CES Event on January 7th, 2022. We lay out what

failed and the key takeaways. Next, we present a similar analysis for runs from Season

Two, highlighting the key changes in the actualization of the stack that enabled

single-agent driving and head-to-head passing in speeds above 150mph.

5.1.1 Failed Qualification Run Evaluation

In this evaluation, we discuss the compounding issues that prevented the vehicle from

detecting and tracking an opponent vehicle, which ultimately led to the team being
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disqualified from participating in the multi-agent passing competition. Ultimately,

the issues were narrowed down to perception and tracking failures, which stemmed

from a multitude of causes.

Perception & Tracking Failures

In the run-up to competition day, several last-minute decisions and changes were

made to the software, vehicle and sensor configuration, and computer hardware. All

of these changes compounded and resulted in a total failure of our perception and

tracking stack on the last day to qualify for the head-to-head competition event.

While disappointing, the lessons learned reached far beyond software design and

development.

Figure 5.1: Examples camera images from the failed qualification run.

Camera Hardware & Driver Changes

Due to issues with the network connections on the vehicle, the cameras had to

be reconfigured to reduce their network bandwidth. However, due to the way the

driver configured the cameras, the network settings were not always properly set.

Additionally, since the network settings were wrong, all six cameras were trying to use

a single network link’s bandwidth, which was not nearly enough for the full bandwidth.

This meant that any attempts to reset the picture settings, such as crops or exposure

parameters, were not set properly, resulting in the streaming of wrongly-cropped or

poor quality images. These images, examples shown in Figure 5.1, on top of a lack of

training data from the LVMS track, resulted in a higher-than-expected false positive
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rate from the few images that were actually received over the congested network link.

Since we did not have adequate checks at the time, this issue was not caught until

after the failed run.

Failed Motion Compensation Changes

Figure 5.2: Frequency of LiDAR detections during the failed qualification run in
January, 2022. The time period between detections was calculated by taking the
time delta between sequential LiDAR detections. With the LiDAR streaming at
20Hz, the expected frame-to-frame period is 50ms, assuming processing every frame
sequentially.

Since the LiDAR is not scanning every point instantaneously, it can be important

to account for the ego vehicle’s motion during the LiDAR scan for the highest-accuracy

result. However, leading up to the competition, the motion compensation solution

developed was not thoroughly validated on the vehicle while it was under full system

load. On the AV21, there are three LiDARs, each scanning at 20Hz. The motion

distortion node needed to combine all three clouds, project each point into the world

to correct the distortion, and, optionally, project the cloud back into a local frame of

reference. ROS 2 provides a message synchronization library that gives a convenient

interface to subscribe to multiple topics and have all three topics delivered at the

same time, in the same callback.
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Figure 5.3: Frequency of LiDAR detections during the semi-finals match in January,
2023. The time period between detections was calculated by taking the time delta
between sequential LiDAR detections. With the LiDAR streaming at 20Hz, the
expected frame-to-frame period is 50ms, assuming processing every frame sequentially.

When under full system load, the DDS middleware and synchronization library

was not delivering every LiDAR measurement from all three LiDARs. Messages were

frequently being dropped. However, because the issue only showed up when the

system was under load, it was not discovered until deployed and run on the vehicle

during the qualification run.

Due to the dropped messages, the effective LiDAR frame rate received by Point-

Pillars dropped to below 5Hz. This corresponds to an average period of roughly

200ms. Assuming sensor processing is keeping up with the sensor frame rates, the

expected period is 50ms, as the LiDAR is scanning at 20Hz. In actuality, the period

between LiDAR measurements was very inconsistent, often spiking over half a second

(see Figure 5.2). This inconsistent and slow update rate compounded with other

issues with the tracker that resulted in very poor perception performance overall.

Poorly Tuned & Flawed Outlier-Rejection

With the camera pipeline producing false positives, albeit at a low rate due to network

bandwidth issues, and LiDAR running at a much lower frequency than what was
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expected, the tracker’s fusion module relied primarily on the Radar for tracks. It

must be noted that the tracker in use at the time is very different than the approach

discussed in Chapter 3. The issues experienced with this tracker is what necessitated

a complete redevelopment and redesign.

Ultimately, last-minute code changes and tuning resulted in poor outlier rejection,

which is especially important due to the high noise in radar tracks. While some good

tracks surfaced and were followed, tracking failed to prune too many false positives.

Additionally, the radar can only see in front of the vehicle, which is insufficient on its

own for passing.

Lessons Learned

All three issues quickly compounded and it was clear to the base station operator

that there were too many false positives from the perception and tracking stack. As

a result, a strategic decision was made to terminate the run and have the vehicle

return safely home. While a disappointing result, the run provided invaluable data

and insights into testing and deploying a full, complicated system onto real hardware.

Most importantly, this failure highlighted the importance of proper integration testing

to identify unexpected issues sooner. Additionally, the next section will address

the solutions that were developed and tested over Season Two and the resulting

performance on track in competition.

5.1.2 Season Two: IAC@CES 2023 Competition

Performance

Six out of nine total teams qualified to participate in the passing competition at

CES in Las Vegas. In total, MIT-Pitt-RW (MPRW) had two single-agent runs,

three successful multi-agent events, and one multi-agent run where the primary

communication radio on the vehicle failed, rendering the car unable to compete. A

full breakdown of every run, peak speed, and the result is presented in Table 5.1. The

following evaluations will focus on Runs 2 and 6 from the table above.
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Run Format Peak Speed Competing Result
[mph] Team

1 Single-Agent 145 mph —– Time Trial, Run One
2 Single-Agent 150 mph —– Time Trial, Run Two
3 Multi-Agent 115 mph KAIST Quarter-Final, Win
4 Multi-Agent 146 mph KAIST Re-Run Run 3, Win
5 Multi-Agent —– Polimove Radio Died, Disqualified
6 Multi-Agent 153 mph AI Racing Fuel Depleted, Loss

Table 5.1: Competition Day Runs. Formats consisted of single-agent time trials and
the Passing Competition multi-agent events. The peak speed reached by the vehicle
during the run is presented.

Ranking Team Name Average Speed [mph]
1 PoliMove 168.2
2 TUM 164.9
3 TII Euroracing 144.4
4 MIT-Pitt-RW 143.8
5 KAIST 138.2
6 AI Racing Tech 65.9

Table 5.2: Final Time Trial rankings and the average of the fastest laps from two
runs. To determine the starting brackets and run order, a time trial was held on the
morning of the event. Each team had two single-agent runs, each consisting of up to
ten laps. The fastest lap time from each run was averaged to determine the team’s
overall score and ranking.

5.1.3 Season Two: Time Trial, Single-Agent Performance

To determine the starting brackets and run order, a time trial was held on the morning

of the event. Each team received two, single-agent runs, each consisting of up to ten

laps. Then, the speed from fastest lap time from each run was averaged to determine

the team’s overall score and ranking. MPRW finished fourth, coming within 0.6mph

of the third-ranking team, TII Euroracing. The full rankings are presented in Table

5.2.

Overall, the controller was stable and able to navigate at high speeds. As shown

in Figure 5.4, the LQR controller balanced performance (maintaining ≤ 1.5meter

cross-track error (CTE)) while navigating turns with over 24m/s2 of acceleration.

The speed controller exhibited low-frequency oscillations in tracking the desired speed,
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Figure 5.4: (Top Left) Cross-track error. (Bottom Left) Commanded and actual
vehicle speed. (Right) G-G diagram showing the vehicle acceleration, in m/s2.
The vehicle reached a peak speed of over 67m/s, which equates to 150mph. The
cross-track error peaked at approximately 1.4meters. Lateral acceleration reached
over 24m/s2, or almost 2.5g′s of acceleration.

centered around the desired speed. Part of this failure is believed to be a result of

changed power train dynamics after the engine was repaired and the vehicle was

reassembled. Future work includes better power train modeling and improving the

tuning of the throttle controller. The data from this run in particular is instrumental

for that future work.

Discussion and Lessons Learned

The first time trial run (at 145mph) broke the team’s speed record from the previous

year (141mph). The second run quickly broke the team’s record again, finally pushing

through the 150mph barrier after more than three years of development. These

milestones boosted team morale, in preparation for the passing competition. It also

set the team up for the quarterfinal match-up against the KAIST team.
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This run also validated that simple, feedback-based controllers could navigate

an ARV at high speeds on an oval race track. It is still unknown what issues will

happen on more complicated circuits, i.e. ones with sharp left and right turns. In

particular, LQR on its own does not reason about control limits, outside of a naive

clamp. Additionally, because it is only ever trying to drive the current state error

to zero, LQR can be myopic. On an oval track, this behavior does not cause issues,

as the vehicle rarely needs full control bandwidth. However, on more complicated

circuits, it is not uncommon to hit the steering limits. Future work is two-pronged:

adding a feed forward component to the control produced by LQR and developing a

model predictive controller that explicitly considers the maximum control constraints.

5.1.4 Season Two: Passing Competition, Multi-Agent

Performance

After the radio failure in Run 55.1, MPRW was disqualified and was not able to

compete in the finals. AI Racing Tech also experienced hardware issues earlier in the

day, which prevented them from a second time trial run, thus impacting their overall

score seen in Table 5.2. As a consolation for the hardware failures, the competition

organizers had the two teams compete in a match for 3rd place.

In the match, both teams passed back and forth at the 80, 100, 115, and 125 mph

speed brackets. The majority of the event was flawless, with only two minor issues,

neither of which were the fault of either team’s autonomy software. First, early in

the run, communication was delayed with the vehicle, so a warning was sent to Race

Control as the behavior was similar to what was experienced when the radio had

died in the previous match. Race Control preemptively slowed down the AI Racing

Tech vehicle, but that was not needed as communication restored itself without any

further issues. The second issue was after the 115mph bracket was successfully passed.

Instead of maintaining the round speed at 115mph for AI Racing Tech, Race Control

set the speed to 125mph prematurely. This was quickly communicated over the radio

and Race Control remedied the issue by setting the correct speed and allowing AI

Racing Tech an extra lap before considering the round started.

In Figure 5.5, it is possible to see when the vehicle is “trailing” the opponent

versus Defending. Periods of a flat, constant commanded speed are when the vehicle
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Figure 5.5: (Top Left) Cross-track error. (Bottom Left) Commanded and actual
vehicle speed. (Right) G-G diagram showing the vehicle acceleration, in m/s2.
The vehicle reached a peak speed of over 68m/s, which equates to 153mph. The
cross-track error peaked at approximately 1.4meters. Lateral acceleration reached
over 20m/s2, or over 2g′s of acceleration.

is Defending. Periods of varying commanded speed, followed by large spikes, are

when the vehicle is trailing and then passing the other vehicle. In total, four passes

were completed, and a fifth was initiated but not completed. When attempting the

final pass, a bug with the planner caused a drop in the requested speed. The planner

would oscillate between identifying the agent as being in front or behind the ego

vehicle, which resulted in an oscillating speed command. At the same time, the

vehicle was also running out of fuel. Immediately after falling back behind AI Racing

Tech, the planner commanded a higher speed to catch up; however, the vehicle ran

out of fuel and could not maintain speed. It is unknown exactly when the engine

started experiencing a drop in fuel, as it could have been during the initiation of the

pass or after. Additionally, there is a possibility that if more fuel had been in the

vehicle, the vehicle would have been slower (due to increased mass), thereby changing

the entire dynamics up to this moment. Finally, this occurred in lap one of two, so
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Figure 5.6: Sequence 1 from Defending at 125mph. Each sequence is 7 seconds long.
The opponent AV-21 starts from behind the vehicle, moves to the outside lane, and
accelerates and maintains a clear inside lane for our vehicle while completing the pass.
Our AV-21 is able to detect and track the opponent during the entire sequence, even
when they accelerate to pass while our vehicle is maintaining a speed of 125mph.

Figure 5.7: Sequence 2 from Defending at 125mph. Each sequence is 7 seconds.
The opponent AV-21 starts from behind the vehicle, moves to the outside lane, and
accelerates and maintains a clear inside lane for our vehicle while completing the pass.
Our AV-21 is able to detect and track the opponent during the entire sequence, even
when they accelerate to pass while our vehicle is maintaining a speed of 125mph.

the vehicle would have had a second chance at completing the pass, but did not due

to running out of fuel.

Figures 5.8, 5.10, and 5.12 show 7 second long sequences from each of the speed

rounds during the match. The RTK GPS measurements from both ego and opponent

60



5. Experiments and Results

Figure 5.8: Sequence 3 from Defending at 125mph. Each sequence is 7 seconds. The
opponent AV-21 is completing the pass, all awhile maintaining a clear inside lane for
the ego vehicle. Our AV-21 is able to detect and track the opponent during the entire
sequence, even when they accelerate to pass while our vehicle is maintaining a speed
of 125mph.

Figure 5.9: Sequence 1 from Attacking at the 125mph speed. Each sequence is 7
seconds long. During the pass, the vehicle reached a peak speed of almost 150mph.
The vehicle is preparing for the pass by choosing to maintain the inside lane. During
the entire sequence, the stack is able to detect and track the other agent, providing
the planner a reliable belief of where the other agent is, allowing for a safe pass, even
at such high speeds.

vehicles are plotted, with the LiDAR detections overlaid. The starts of the sequences

are denoted by the vehicle graphics. The ego vehicle is red and the opponent is green.
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Figure 5.10: Sequence 2 from Attacking at the 125mph speed. Each sequence is 7
seconds long. During the pass, the vehicle reached a peak speed of almost 150mph.
By the time the vehicles enter the turn, our vehicle has completed the pass and begins
to drop back to the round speed. During the entire sequence, the stack is able to
detect and track the other agent, providing the planner a reliable belief of where the
other agent is, allowing for a safe pass, even at such high speeds.

Figure 5.8 shows the performance of the vehicle while maintaining the Defender

role. As Defender, the vehicle must maintain a set speed and follow right of way,

which depends on roles, relative distances between cars, and where the cars are on

the track. While in this role, our planner meets these requirements. Additionally,

the perception stack is able to reliably detect and track the other agent, even during

a pass. Figure 5.10 shows the vehicle passing another AV21, reaching a top speed

of over 150mph. During the sequence, the stack is again able to detect and track

the opponent and complete the pass safely. Finally, Figure 5.12 shows another pass

sequence, but, in this attempt, a combination of a planner bug and the vehicle running

out of fuel, the pass is not completed. During all of the sequences, the full stack is

working well, able to complete all requirements of the competition and pass another

vehicle while traveling at very high speeds.

Discussion and Lessons Learned

In this run, the vehicle achieved a new personal record for its highest peak speed,

and it was also the only time the vehicle passed another car going over 125mph. In
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Figure 5.11: Sequence 1 from Attacking at the 135mph speed. Each sequence is 7
seconds long. Even at over 60m/s, the vehicle continued to track the other agent
very well. Not long after these sequences, the final pass failed and the vehicle ran out
of fuel, rendering the match over.

Figure 5.12: Sequence 2 from Attacking at the 135mph speed. Each sequence is 7
seconds long. Even at over 60m/s, the vehicle continued to track the other agent
very well. Not long after these sequences, the final pass failed and the vehicle ran out
of fuel, rendering the match over.

the testing leading up to race day, the fastest defender ever passed was maintaining

80mph. Additionally, before race day, only five passes were ever achieved, due in part

to lost testing time from the crash a few days earlier. On race day, we achieved the

following:

1. Three passes at 80mph bracket

2. Two passes at 100mph bracket
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3. Two passes at 115mph bracket

4. One pass at 125mph bracket

In the end, an operational mishap was the deciding factor in finishing in fourth

place. While it is likely that the planner’s indecisiveness may have surfaced again, we

will never know how the vehicle would have performed if it had more fuel. However,

in the end, the software stack demonstrated strong performance in executing the IAC

Passing Competition.

In the future, fuel consumption will be more carefully monitored and accounted for.

Additionally, further testing and focus will be on path planning, to help determine

the root cause of the behavior seen in the final pass attempt. As the IAC evolves and

tackles more complicated operational design domains (OODs), it is also important

for the software stack to evolve as well. Future work will dismantle the assumptions

and simplifications to unlock more general, robust performance.
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Chapter 6

Conclusions and Future Work

6.1 Lessons Learned

Keep it Simple At many critical points in the project, a decision had to be made

on what direction to pursue for specific portions of the stack. What kind of controller

do we implement? How should we do camera detection? What methods should we

pursue for localization? The tendency was to pursue a complicated solution; however,

we recognized that identifying a functional solution was more critical than identifying

the best possible solution from the outset. In doing so, we chose to focus on simple

solutions and build out complexity when necessary.

One example of this struggle was LiDAR object detection. This proved to

be challenging, as we recognized that clustering could be applied as a temporary

solution, but was not intended to be a long-term solution. We also recognized that

by implementing clustering while simultaneously building a parallel solution, we had

a solution to fall back to. Eventually, with enough maturity, a more complicated

solution (PointPillars) was produced that met our requirements and was orders of

magnitude better than clustering. Additionally, this more complicated solution will

scale better as the competition travels to new circuits and incorporates more agents.

The Smallest Issues have the Largest Consequences Issues with time

synchronization, balancing Ethernet network load across multiple links, cable and

connector integrity, and more can severely diminish system performance. For example,

the first week of testing with our recently assembled vehicle was progressing as planned,
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with quick integration and with the absence of major issues. However, the very next

week, when testing on the Indianapolis Motor Speedway for the first time, the RTK

GPS did not function properly. An entire test day, less than three weeks from the

first IAC event, was lost. Eventually, the root cause was traced to our RTK login

being used by a competitor’s unit, causing a conflict with the RTK service. This

issue was not caught the week prior due to our teams’ testing schedules being on

alternating days.

In Field Robotics, deploying a system requires understanding how each component

interacts and what failures may occur. When many complicated pieces are combined

into one package, it is easy to overlook the tiniest details. How does the RTK service

handle two units trying to communicate to the server with the same license at the

same time? How does DDS handle message delivery if a ROS 2 node cannot keep

up with the message rate? How does that library being called decide how many

parallel threads to use for processing and what are the downstream effects on other

software components running on the same system? All of these issues can destroy the

performance of a whole system, which is why testing and validation are so critical.

Know What to Test and Actually Do It Due to the complexity of the

systems being built, it is important to have a rigorous and principled testing regime.

The size, speed, and operating costs associated with testing full-sized ARVs, such

as the AV-21, make testing arduous, expensive, and rare. Offline testing, such as in

simulation or off of collected data-sets, is critical to catching issues. While the time

pressures of a high-paced competition and the need to develop an entire ARV stack

can make thorough validation difficult, our experience has shown that it is imperative

to successful deployments. Balancing development and testing is non-trivial when

working with limited resources.

Between Seasons One and Two, the team focused on identifying the software

failures, and also determining why our development practices failed. In particular,

the testing of the perception stack was completely revamped. Data-sets were created

by merging our log collections with logs from other teams so that the perception

detections could be compared against the RTK GPS of both vehicles at any instant.

Any perception code change was validated on this dataset and run on hardware

that matched the performance of the ADLINK from Season One (see Figure 1.4). A

simulator was developed to simulate the object detection pipelines, with customizable
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levels of noise, false positive rate, and output “detection” rate, to aid the development

and testing of the tracker pipeline. These practices, and more, allowed the team to

more thoroughly evaluate performance and prepare for the Season Two events.

Autonomous Racing Demands Strong Algorithms and Systems With

this work, we are beginning to address some of the largest challenges in Autonomous

Racing. We recognize that there are many failure modes with our approach and

assumptions that it makes that only apply under our Operational Design Domain

(ODD). What has been achieved is a full, baseline stack that is capable of participating

in the Indy Autonomous Challenge head-to-head Passing Competition.

However, in designing and building this software stack, it is clear that no one

algorithm can meet every requirement. For example, Model Predictive Control (MPC)

is a state-of-the-art control approach; but, a complex numerical optimization approach

carries the risk of ill-conditioning or high computation time. A potential solution

is to use LQR as a fallback for MPC. For both LQR and MPC, there still exists

the potential for model mismatch, such as when driving at very high speeds, or at

the traction limits of the tires. Solving these problems requires exploring multiple

solutions, including designing better algorithms (i.e. robust MPC) and building better

systems (i.e. safety monitoring and response).

Designing the software stack requires a holistic approach. Individual components

depend on a set of assumptions about their inputs, the problem, and what their

output should be. A misalignment in assumptions between two successive components

can lead to degraded performance. For example, a planner may assume an upper

bound on the quality of the incoming agent beliefs and a certain level of performance

from the trajectory tracking controller. If the planner is too optimistic, it may guide

the vehicle too close to other agents. A better algorithm at one level (i.e. using

PointPillars over clustering) allows dependent tasks to be more optimistic. Finding a

good balance of performance and understanding how to set assumptions is a nontrivial

task in systems-level engineering.

6.2 Conclusion and Future Work

We have presented a modular and fast software stack for an Autonomous Racing

Vehicle (ARV) capable of navigating at high speeds with minimal lateral deviations,
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reliably detecting vehicles and tracking an opponent ARV at over 100m away, even

at high speeds, and safely trailing and passing opponent ARVs. Modularity, speed,

and efficiency permeate the entire stack through our choices of algorithms and the

systems built around them.

With our approach, we have competed in the Indy Autonomous Challenge events

in Indianapolis, Las Vegas, and Texas, which will serve as the base for our entry into

future competitions. As MIT-Pitt-RW’s approach has evolved, the team’s performance

has become increasingly competitive. The results for the competition are as follows:

Did Not Finish (DNF), Did Not Qualify (DNQ), Quarter-Finalist, and Semi-Finalist.

The testing, lessons learned, and data gleaned over this series of events, especially in

Las Vegas, are informing future developments of the stack.

Moving forward, we intend to continue to validate our tracking and fusion stack

and improve its performance. Additionally, we will build new models with data

collected from tooling for auto-labeling; and evaluation metrics built from opponent

GPS data will increase our stack’s ability to detect competitor ARVs. With a more

robust data set, we can explore alternative approaches to improve performance,

particularly for long-range detection and velocity estimation. Finally, with a more

intelligent controller and the introduction of online vehicle model estimation, we can

improve our ability to navigate highly dynamic scenarios at even higher speeds.

Our current software stack addresses many of the challenges laid out previously

but notably does not address adversarial agents. Several research directions stem

from interactions between ARVs; including motion prediction and forecasting in

highly dynamic scenarios, planning under uncertainty in racing scenarios, planning to

maximize the reward to the agent while minimizing the risk of collision or instability

at high speeds, and more. We hope to explore several of these directions in the future

to meet the challenges needed to solve full head-to-head autonomous racing.
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