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Abstract
Building agents that can reason and plan at various levels of temporal abstraction

has long been a goal of artificial intelligence research. In the context of reinforce-
ment learning (RL), performing temporal abstraction typically implies the use of
behavioral primitives that are executed over extended periods of time. These be-
havioral primitives are sometimes known as options, but following more recent lit-
erature, we refer to them as skills. Many existing model-free and all model-based
methods for temporal abstraction in RL use skills that execute for a fixed length of
time, constraining an agent to a single level of temporal abstraction throughout the
entirety of a task. Variable-length skills allow an agent to flexibly change its level of
abstraction, which is desirable as many interesting tasks are composed of sub-tasks
that can take vastly different amounts of time. Furthermore, state-dependent termi-
nation conditions allow a skill to end exactly once its sub-task has been completed
and not simply after a predetermined amount of time.

This thesis presents a novel approach to temporal abstraction in model-based RL
that allows agents to learn a set of variable-length skills, state-dependent termination
conditions, and dynamics on the temporally coarsened timescale induced by those
skills. We demonstrate in long-horizon tasks from Datasets for Deep Data-Driven
Reinforcement Learning (D4RL) that variable-length skills induce more repeatable
state transitions, enabling higher downstream task performance compared to fixed-
length skills. Furthermore, our approach is competitive with existing offline RL
algorithms while naturally enabling knowledge transfer to novel goals.
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Chapter 1

Introduction

Temporal abstraction refers to the process of reasoning or decision-making on coarse-grained
timescales. Agents that can leverage temporal abstraction are better able to deal with long-
time-horizon tasks because they can more effectively capture long-time-horizon dependencies
and ignore irrelevant fine-grained details [30]. It has, therefore, long been a goal of artificial
intelligence research to build agents that can automatically learn and make effective use of their
own temporal abstractions when solving tasks [1, 2, 6, 7, 10, 24, 25, 27, 28, 30].

A key challenge when learning temporally abstract representations of a task is finding the
"correct" level of abstraction for a particular situation. We, as humans, are able to dynamically
vary the coarseness of the abstractions we use, allowing us to flexibly adjust the level of our
abstraction to suit our needs. For example, when planning a route for a road trip, we may ab-
stract away extended periods of monotonous highway driving where few decisions are necessary
while preserving detail during periods of rapid decision-making, such as when driving through a
busy city. The flexibility to dynamically alter our level of abstraction allows us to maximize task
performance while minimizing the cognitive load of planning. If we were instead constrained
to plan on one particular timescale, say 10-minute increments, we would waste huge amounts
of effort in constructing needlessly detailed plans while simultaneously failing to capture suf-
ficient detail when rapid decision-making is necessary. Despite the obvious suboptimality of
such a fixed-timescale approach, this is precisely what is done by many recent approaches to
temporal abstraction in reinforcement learning (RL). Here, we address this shortcoming by de-
veloping what is, to our knowledge, the first model-based temporal abstraction approach capable
of adjusting the level of abstraction in a reactive manner.

Many recent approaches to temporal abstraction in RL are built upon the options framework,
introduced in Sutton et al. 1999. Options are temporally extended behavioral primitives, often
referred to as skills, and are comprised of a policy, an initiation set, and a termination condi-
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tion. Here, a policy refers to a mapping from states to actions that is associated with a particular
skill, an initiation set is a set of states from which the corresponding skill can be activated, and
a termination condition indicates when the current skill should be terminated, given the current
state. Because options are temporally extended, agents that use options can model state transi-
tions and make decisions at a coarser time granularity [30]. Many recent temporally abstract RL
algorithms use some form of variational objective to discover options and then use either model-
free [1, 2, 6, 10] or model-based RL [7, 24, 25, 27] to select skills for a downstream task. In
this thesis, we focus on model-based temporal abstraction because models enable agents to plan
for counterfactual situations, making them more data efficient. Additionally, models naturally
enable knowledge transfer to novel tasks that share the same state-transition dynamics [7].

Many of the model-free approaches to temporal abstraction in RL, and all model-based ap-
proaches that we are aware of, are constrained to learn skills that terminate after a fixed amount
of time. As mentioned earlier, this fixed-length skill constraint is problematic because it locks
the agent into a fixed level of temporal abstraction, which must be hand-selected by the algo-
rithm designer. Perhaps even more importantly, the fixed-length constraint does not allow skills
to terminate in a state-dependent manner. It is natural to assume that we may want to learn
skills that accomplish an intended goal in the environment, i.e., take the agent to a particular
region of the state space. Particularly in stochastic environments, the agent may have no way
of determining how much time the skill will require to accomplish its goal at its outset, causing
the agent to potentially overshoot or undershoot its goal. This is particularly detrimental in a
model-based setting, where the agent uses the skill-conditioned state-transition dynamics to plan
[7, 24, 25, 27]. Because fixed-length skills do not result in precise state transitions, the agent
cannot possibly learn a temporally abstract dynamics model that is both precise and accurate. If,
on the other hand, skills only terminate once the agent reaches a narrow region of the state space
G, it becomes possible to precisely predict state transitions, as the temporally abstract dynamics
model need only have support in G.

In this work we propose a novel method for performing model-based temporal abstraction
with variable-length skills from offline data. Our approach proceeds in three stages. First, a
novel attention-based segmentation model is learned, which segments state-action trajectories
such that the demonstrated behavior in each segment is well-described as belonging to a single
skill. Second, trajectory segments are used to train a VAE-based skill model, which contains
a low-level policy that maps the current state and skill to actions, an abstract dynamics model
that predicts the terminal state in a segment given the initial state and skill, and a state-dependent
termination condition, which specifies whether a skill should terminate at each timestep given the
current state. Unlike past approaches that sampled fixed-length trajectory segments uniformly at
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Figure 1.1: Overview of our approach to model-based temporal abstraction with variable-length skills.
Our approach proceeds in three stages: 1) a transformer-based segmentation model is learned using a
variational objective. The segmentation model splits trajectories into segments corresponding to single
skills. 2) Trajectory segments are fed into a skill model, which learns a low-level policy (action decoder),
a termination condition, and an abstract dynamics model. 3) The abstract dynamics model is used to plan
skill sequences in an online fashion to accomplish a downstream task.

random from the dataset, we train our skill model on variable-length segments, whose endpoints
were identified as corresponding to the endpoints of skills by the segmentation model. Finally,
we use our temporally abstract dynamics model to iteratively re-plan skill sequences in an online
fashion for downstream tasks.

We find that our trajectory segmentation model is capable of identifying semantically mean-
ingful skills in the D4RL kitchen tasks, which involve a simulated Franka robot arm tasked with
reconfiguring objects in a kitchen. Furthermore, we show that our skill model learns state transi-
tion dynamics that are more accurate, compared to a fixed skill-length approach such as OPOSM
[7]. Finally, we find that our approach is competitive with existing offline RL algorithms in the
Kitchen and Maze2d D4RL tasks, including other approaches that utilize temporal abstraction.

3
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Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is the process of an agent learning a mapping from situations to
actions in order to maximize cumulative rewards over time [29]. The agent does not have di-
rect access to the dynamics of the environment. Instead, the dynamics must be inferred from
trajectories of observations and actions generated through interaction with the environment.

Many variants of the RL problem exist. Some assume full observability of the environmental
state, while others do not. In some cases, the agent is required to learn from scratch; in others, ac-
cess to trajectories generated by a demonstrator is provided to the agent beforehand. This section
will provide background on all variants of the RL problem that are relevant for understanding the
work presented in this thesis.

2.1.1 Markov Decision Processes and Partial Observability

The simplest and most well-studied RL setting is the fully observable Markov Decision Process
(MDP). At every timestep, the agent takes as input the environment state st ∈ S and produces
a distribution over actions from which a particular action at ∈ A is sampled. Given at, the
environment samples the next state st+1 from the state transition distribution P (st+1|st, at) and
a scalar reward from the reward distribution rt ∼ R(rt|st, at, st+1).

The RL objective is to find the policy π∗ that maximizes the expected cumulative sum of
rewards

π∗ = argmax
π

Es⃗,⃗a,⃗r∼pπ(s⃗,⃗a,r⃗)

[
T∑
t=1

rt

]
(2.1)

where pπ(s⃗, a⃗, r⃗) is the distribution over sequences of states, actions, and rewards induced by the
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Figure 2.1: The probabilistic graphical models for the dynamics of a fully observable MDP (top) and a
POMDP (bottom). Shaded variables are observed, while white are unobserved.

interactions of policy π(at|st) with the environment.

Another RL setting of interest is the Partially Observable MDP (POMDP). In a POMDP, the
agent does not get direct access to the environment state st ∈ S but rather receives a sample from
an observation distribution ot ∈ O generated by the environment state. The fully observable
MDP can be seen as a special case of a POMDP where O = S and p(ot|st) = δ(ot − st).
However, in general, the observation ot can contain less information about the environment than
the state st, which fully describes the environment at time t. Common examples of this include
the case where observations are noisy measurements of the true state and the case of image
observations, where the information contained in a single image may be sufficient to identify
the position of bodies of interest, but velocity information requires multiple frames to accurately
infer.
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2.1.2 Online and Offline Reinforcement Learning

In the original RL formulation, the agent begins with no information about the environment and
must improve its policy via its own interactions with the environment. This has since come to
be known as online reinforcement learning. In contrast, offline RL, a.k.a. batch RL, initially
gives the agent access to trajectories generated by a demonstrator but does not allow the agent to
improve via trial and error in the environment. A common example of an application for offline
RL is autonomous driving. In the autonomous driving domain, high-quality demonstration data
can be easily gathered from human drivers, whereas the actions of a partially trained agent could
have extremely costly consequences. There also exist hybrid variations on the spectrum between
strictly online RL and strictly offline RL, where both demonstration trajectories are provided,
and the agent is allowed to improve via online interaction with the environment. The work in
this thesis focuses on the strictly offline RL problem setting.

2.1.3 The Options Framework

The options framework [30] introduced a general formulation for temporally abstract subroutines
in MDPs. Dubbed options, these temporally abstract subroutines consist of three components: a
policy distribution over actions π(at|st), a Bernoulli termination distribution β(st), and a subset
of states that the option can be initiated from. When an option is initiated, its corresponding
policy executes in the environment until a termination event is sampled from the termination
distribution.

When agents have access to executing meaningful options, either alongside or instead of
base-level actions, planning can be greatly accelerated, especially on problems of long time hori-
zon [30]. More recently, OPAL [2] and OPOSM [7] have shown that semi-Markov, fixed-length
options learned from the demonstrations in an offline dataset can also improve performance in
offline policy learning and planning over a learned model, respectively.

2.2 Latent Variable Models

Latent variable models are a class of models that assume there exist hidden or unobserved vari-
ables that are related to the observable data of interest. The specific manner in which the joint
distribution over observed and unobserved variables is composed of simpler distributions char-
acterizes different families of latent variable models. This compositional probabilistic structure
can be represented as a probabilistic graphical model (PGM) such as those in Figure 2.2. La-
tent variable models aim to encode underlying sources of variation into the latent variables in a

7



Figure 2.2: The probabilistic graphical models that are assumed by the variational autoencoder (left),
an unforced sequential variational autoencoder (middle), and a forced sequential variational autoencoder
(left). Shaded variables are observed, while unshaded are unobserved.

manner consistent with the assumed probabilistic structure.

2.2.1 Variational Autoencoders

One of the simplest latent variable models is the variational autoencoder (VAE) [16]. The prob-
abilistic graphical model assumed by the VAE can be seen in the left side of Figure 2.2. A VAE
assumes that a sample of observed data x is sampled from a distribution conditioned on a cor-
responding latent random variable z. Assuming such a probabilistic structure allows us to write
the joint distribution as

p(z, x) = p(z)pθ(x|z) (2.2)

where pθ(x|z) is parameterized by a neural network with parameters θ. We want to learn the
parameters θ∗ under which the marginal probability of our data is maximized:

θ∗ = argmax
θ

p(x) = argmax
θ

∫
p(z)pθ(x|z)dz. (2.3)

However, the integration required to evaluate the marginal probability is typically intractable.
Therefore, Kingma and Welling adopt a variational approach and derive an evidence lower bound
(ELBO) on the marginal log probability of the observed data.

In order to do so, they introduce the approximate posterior qθ(z|x), which is also parameter-
ized by a neural network. We will group all optimizable neural network parameters into θ for
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simplicity. Then we can derive the ELBO as

log p(x) = log

∫
p(z)pθ(x|z)dz (2.4)

= log

∫
p(z)pθ(x|z)

qθ(z|x)
qθ(z|x)

dz (2.5)

= logEz∼qθ(z|x)

[
p(z)pθ(x|z)
qθ(z|x)

]
(2.6)

≥ Ez∼qθ(z|x)

[
log

p(z)pθ(x|z)
qθ(z|x)

]
(2.7)

= Ez∼qθ(z|x) [log pθ(x|z)]−DKL(qθ(z|x)||p(z)), (2.8)

where the inequality is due to the concavity of the log function and Jensen’s inequality. The
original VAE [16] used a standard normal distribution for p(z) and enforced that qθ(z|x) was
also a normal distribution whose parameters were output by a neural network. In order to make
the computation compatible with standard autodifferentiation software used to optimize neural
networks, the reparameterization trick for sampling normal random variables was used to turn
the expectation over z into an expectation over noise from a standard normal distribution. Noise
from a standard normal distribution can be seen as another input to the computation graph rather
than an intermediate node, as would be the case if z was sampled directly from the posterior.
This allows backpropagation to proceed without the need for any modifications for propagating
through a stochastic computation tree node.

2.2.2 Sequential Variational Autoencoders

The standard VAE can be extended to the sequential PGM depicted in the middle of Figure 2.2
to get a sequential VAE. In this PGM, the latent variable st both conditions the distribution from
which observation ot is sampled and also affects the distribution over the next latent variable
st+1. We can write the joint distribution over a length T sequence as

p(s⃗, o⃗) =
T∏
t=1

pθ(ot|st)pθ(st|st−1). (2.9)

Through a derivation similar to that of the standard VAE objective, we can derive an ELBO on
the log probability of our observed sequences of observations of the form

log p(o⃗) ≥
T∑
t=1

(
Est∼qθ(st|o≤t) [log pθ(ot|st)]−DKL(qθ(st|o≤t)||pθ(st|st−1))

)
. (2.10)
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The sequential latent variable setting can be further extended to the case where actions influ-
ence the evolution of st over time [11], as depicted in the right side of Figure 2.2. The modifica-
tion to the PGM results in the following ELBO on the conditional probability of the observations
given the actions taken:

log p(o⃗|⃗a) ≥
T∑
t=1

(
Est∼qθ(st|o≤t,a<t) [log pθ(ot|st)]−DKL(qθ(st|o≤t, a<t)||p(st|st−1, at−1))

)
.

(2.11)
Hafner et al. enforce that the dimensionality of the latent variables learned is far lower than
the dimensionality of the observation space, allowing for more efficient policy rollouts in latent
space.

Hafner et al. also introduce the RSSM which adds a deterministic, RNN-computed represen-
tation component to each latent variable. This can be thought of as simply enforcing the prior
assumption that some elements of the latent variable be computed deterministically (have a Dirac
delta distribution) with the added benefit that the deterministic pathway for gradient computa-
tion allows for long-term dependencies to be more easily learned than a purely stochastic model
would be. More recently, Yan et al. introduced a transformer-based [32] variant of the RSSM that
retains the same original benefits with the added computational and optimization improvements
that transformers provide.

10



Chapter 3

Learning Temporal Structure in Data

3.1 Previous Literature

Extracting temporal structure from sequential data in an unsupervised manner has long been
a topic of interest for its potential applications to reinforcement learning, long-sequence data
generation, and many other problems. As such, a number of prior works have proposed their
own solutions to this problem, the most relevant of which are detailed in this section. At a high
level, all of these approaches fundamentally aim to group consecutive data points together into
segments when they share similar latent generative factors.

Variational Temporal Abstraction (VTA) [15] combines a variational inference approach to
sequence modeling with a learnable, hierarchical temporal structure, enabling variable-length
temporal abstractions, or segments, to be learned. Learning Options Via Compression (LOVE)
[14] extends this approach to the RL setting by converting the evidence lower bound (ELBO)
used in VTA to an ELBO on selected actions present in an offline RL dataset of demonstrations,
given the states. LOVE also introduces a compression term that is added to the ELBO objective to
incentivize learning temporal abstractions that more effectively compress trajectories. These ap-
proaches are built on hierarchical variants of the RSSM introduced in [11]. Temporal Variational
Inference (TVI) [23] also takes a variational approach to the problem of discovering temporal
abstractions of demonstration data but assumes a fully observable environment and Markovian
demonstration policy. Our approach also takes a hierarchical variational inference approach to
the problem of discovering temporal abstractions from data.

Both VTA and LOVE rely on a variant of the straight-through estimator [5] in order to make
the process of sampling termination points of segments differentiable by standard autodifferenti-
ation libraries. In contrast to VTA and LOVE, Compositional Imitation Learning and Execution
(CompILE) [17] uses the Concrete random variable [20] to sample its termination points between
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segments. Because Concrete random variables take continuous values, this results in a continu-
ous relaxation to the problem of dividing a trajectory into discrete segments. Our method uses a
different continuous relaxation of the trajectory segmentation problem, which is made possible
by a novel, attention-based encoding method.

While all the previously discussed approaches separately predict termination events and skill
transitions, Directed-info GAIL [26] and Lee and Seo 2020 unify these operations by predicting
a skill, or segment, transition at every point.

3.2 Preliminaries

In this section, we review attention, transformers, and Concrete random variables. Together,
along with sequential variational autoencoders detailed in Chapter 2, these form the building
blocks of the unsupervised learning algorithm that allows us to discover temporal structure in
data.

3.2.1 Attention and Transformers

Attention [4] is a method of aggregating multiple potential input vectors into a single output vec-
tor. The amount each input vector contributes to the composition depends on some importance to,
or alignment with, a given context vector. More formally, given input vectors h1, . . . , hn ∈ Rd,
context vector g, and alignment function f , the aggregated input vector a is computed as

a =
n∑
i=1

αihi, (3.1)

where αi are weights normalized via the softmax operation

αi =
exp (f (hi, g))∑n
j=1 exp (f (hj, g))

. (3.2)

The alignment function f is usually parameterized as a neural network whose weights can be
jointly learned with other components of a larger model via backpropagation.

The Transformer [32] is a sequence processing model that uses attention as its primary mode
of computation. The type of attention used in a Transformer is self-attention, which uses a
mapping of hi, usually linear, as the context vector (also known as the query vector) to produce
aggregated output ai. This process is performed simultaneously for every i via the following
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matrix operations:

A = (W VH) softmax

(
(WKH)T (WQH)√

d

)
(3.3)

where A is the matrix formed by column vectors
[
a1 . . . an

]
and H is the matrix formed by[

h1 . . . hn

]
. WQ,WK ,W V are d× d learnable parameter matrices and the softmax operation

is performed column-wise. As seen above, the attention affinity function in the transformer has
been chosen to be linear mappings followed by a scaled dot product. Transformers also employ
several of these self-attention mechanisms in parallel, the results of which are aggregated by a
subsequent linear map.

3.2.2 Concrete (Gumbel-Softmax) Random Variables

Concrete random variables [20], concurrently discovered under the name Gumbel-Softmax ran-
dom variables [13], are continuous relaxations of discrete random variables that can be sam-
pled via the reparameterization trick. This is important because it allows for gradients to be
backpropagated through discrete stochastic nodes in a computation tree via standard automatic
differentiation techniques.

The n-way concrete random variable is parameterized by a location vector α ∈ (0,∞)n and
temperature λ ∈ (0,∞). It has a density over the n− 1 simplex of the form

pα,λ(x) = (n− 1)!λn−1

n∏
k=1

(
αkx

−λ−1
k∑n

i=1 αix
−λ
i

)
. (3.4)

As alluded to, a random variable X distributed according to Concrete(α, λ) can be sampled via
the reparameterization trick

Xk =
exp ((logαk +Gk) /λ)∑n
i=1 exp ((logαi +Gi) /λ)

(3.5)

where Gk are i.i.d according to Gumbel(0, 1).

Though the Concrete distribution has non-zero density in the interior of the simplex and thus
produces continuous rather than discrete samples, with a sufficiently low temperature parameter
λ there are guaranteed not to be any modes in the interior of the simplex [20]. This leads models
with Concrete latent random variables to concentrate mass near the vertices of the simplex rather
than in the interior.

A fully discrete variant of the Concrete random variable was also introduced in [13]. In this
variant, an argmax is taken over a vector sampled from the Concrete distribution to get a discrete
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value. Then in the backward pass, the gradient computation proceeds as if the differentiable,
continuous sample was used instead, similar to the straight-through estimator [5].

3.3 Method

In this section, we describe our novel approach to learning variable-length temporal abstractions
in an unsupervised manner. In particular, we seek to learn a decomposition of demonstration tra-
jectories from an offline RL dataset into segments where each segment represents the execution
of a single skill. Note that although we apply this approach to discover skills for use in the offline
RL setting, the ideas presented in this section could easily be applied to other problems where
temporal abstraction is desirable, such as the generation of long-form text or video.

A primary challenge to learning segmentations is the fact that assigning individual timesteps
to segments is a combinatorial optimization problem. Combinatorial optimization problems have
discrete solution sets and, as such, are not naturally compatible with deep learning approaches.
Therefore, we instead optimize a continuous relaxation of the problem, using Concrete random
variables [13, 20]. Our architecture relies heavily on an attention mechanism [4] for encoding
segments and transformers [32] for decoding, the latter being chosen due to their compatibility
with soft masks produced by the former.

In the next section, we describe how we model the data-generation processes and the evidence
lower bound that we use to train our segmentation model. Subsequently, we describe in detail
our segmentation model architecture and the continuous relaxation that allows it to be effectively
trained.

3.3.1 Temporally Abstract Data-Generating Process

We start by assuming that there exist high-level, temporally extended skills that are responsible
for generating the actions, and thus trajectories, that we see in demonstrations. Because the points
where one skill ends and the next begins are unknown, we adopt the probabilistic graphical model
(PGM) in Fig. 3.1, which allows any possible segmentation of a trajectory to be represented by
a particular assignment of the latent binary random variables m⃗. The vector symbol denotes
the sequence of variables corresponding to all timesteps in an episode, i.e., m⃗ = {m1, ...,mT}.
Similar to VTA [15], when a particular mt takes the value 0, we enforce that the skill zt+1 is
equal to zt, whereas when mt = 1, then zt+1 will take on new value, distinct from zt. For our
particular example in Figure 3.1, this means that skills z1 and z2 represent a single skill that is
responsible for generating actions a1 and a2, and skills z3, z4, and z5 similarly represent a single
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Figure 3.1: Probabilistic graphical model for learning a segmentation model. Here, ot and at represent
the observation and action associated with timestep t, respectively. st, zt, and mt are latent variables. mt

specifically denotes whether the current skill (represented by zt) terminates at timestep t. If not, then the
skill variable remains constant in the next timestep, i.e., zt = zt+1. The left side shows the full PGM
with all latent variables and particular values of mt displayed next to their respective nodes. The right
side shows the simplification of the PGM that occurs once the skills that take the same value due to the
assignment of all mt are grouped together.

skill that generates a3, a4, and a5.

We follow prior work in this area [14, 15] in using a PGM with both high-level latent variables
(⃗z) and low-level latent variables (⃗s), in addition to m⃗. The low-level latent variables allow us to
handle the partial observability of states and represent non-Markovian policies in the computation
of segmentations and the reconstruction of actions. Though the environments we deploy our
model on in this work do not require a non-Markovian treatment, we found it unnecessary to
simplify our segmentation model as full observable MDPs are a special case of POMDPs.

The joint distribution of our assumed data generation process is given by

p(τ, s⃗, z⃗, m⃗) =
T∏
t=1

p(ot|ot−1, at−1)pθ(at|st)pθ(st|ot, st−1, zt,mt−1)pθ(mt|st)pθ(zt|zt−1,mt−1),

(3.6)
where for brevity, we let τ = (o⃗, a⃗). In addition, the conditional distributions with the subscript θ
are components of the data-generating process that we model with neural network parameterized
distributions. Here, θ represents the parameters of those neural networks.

We aim to learn a segmentation model that maximizes the marginal probability of the ob-
served data, p(τ); however, the marginalization process over latent random variables s⃗, z⃗, m⃗ is
intractable in general [16]. Therefore, we optimize a lower bound on the log of our desired ob-
jective instead. To encourage temporally extended skills, we also add a term corresponding to
the average number of skills used in a trajectory.
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ELBO As with other variational inference approaches, we introduce an approximate posterior
qθ(s⃗, z⃗, m⃗|o⃗, a⃗), which we choose to factorize in the following manner:

q(s⃗, z⃗, m⃗|τ) =
T∏
t=1

qθ(mt|m<t, τ)qθ(zt|m⃗, τ)qθ(st|z⃗, m⃗, τ). (3.7)

In order to encode the previously discussed temporal structure, we enforce that if mt−1 is 0, then
the posterior qθ(zt|m⃗, τ) and prior pθ(zt|zt−1,mt−1) are both set to a Dirac delta distribution at
the previous skill, i.e., p(z) = δ(z − zt−1).

We can then write the log of our objective as the log of an expectation with respect to our
approximate posterior

log p(τ) = log

∫∫∫
p(τ, s⃗, z⃗, m⃗)

q(s⃗, z⃗, m⃗|τ)
q(s⃗, z⃗, m⃗|τ)

ds⃗dz⃗dm⃗ = logEs⃗,⃗z,m⃗∼q

[
p(τ, s⃗, z⃗, m⃗)

q(⃗s, z⃗, m⃗|τ)

]
. (3.8)

Since log is a concave function, we can invoke Jensen’s inequality to give us a lower bound on
our objective:

log p(τ) = logEs⃗,⃗z,m⃗∼q

[
p(τ, s⃗, z⃗, m⃗)

q(⃗s, z⃗, m⃗|τ)

]
≥ Es⃗,⃗z,m⃗∼q

[
log

p(τ, s⃗, z⃗, m⃗)

q(⃗s, z⃗, m⃗|τ)

]
. (3.9)

Then, we need only expand both the joint distribution and our approximate posterior into their
factorized forms and simplify

Es⃗,⃗z,m⃗∼q

log
T∏
t=1

p(ot|ot−1, at−1)pθ(at|st)pθ(st|ot, st−1, zt,mt−1)pθ(mt|st)pθ(zt|zt−1,mt−1)

T∏
t=1

qθ(mt|m<t, τ)qθ(zt|m⃗t, τ)qθ(st|⃗z, m⃗, τ)


=

T∑
t=1

(
log p(ot|ot−1, at−1) + Est∼q [log pθ(at|st)]−DKL (qθ(mt|m<t, τ)∥pθ(mt|st))

−DKL (qθ(zt|m⃗, τ)∥pθ(zt|zt−1,mt−1))−DKL (qθ(st|z⃗, m⃗, τ)∥pθ(st|ot, st−1, zt,mt−1))

)
(3.10)

to get an ELBO for log p(τ). The loss component function LELBO(τ, θ) is simply the negation of
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this ELBO with the environmental dynamics term
∑T

t=1 log p(ot|ot−1, at−1) removed:

LELBO(τ, θ) =
T∑
t=1

[
Est∼qθ [− log pθ(at|st)] +DKL (qθ(mt,m<t|τ)∥pθ(mt|st))

+DKL (qθ(zt|m⃗, τ)∥pθ(zt|zt−1,mt−1)) +DKL (qθ(st|z⃗, m⃗, τ)∥pθ(st|ot, st−1, zt,mt−1))
]

≥ −log(p(τ)) +
T∑
t=1

log p(ot|ot−1, at−1).

(3.11)
We can safely ignore the environmental dynamics term because it is unaffected by the parame-
ters θ we optimize over. Following Kingma and Welling, we approximate the expectation with
respect to our approximate posterior with one-sample Monte Carlo estimates.

Abstraction Bonus With just our ELBO objective it is possible for our model to learn the
degenerate solution where all mt take the value 1, resulting in a separate skill for each time
step. Learning a space of skills with this degenerate segmentation would essentially be learning
an embedding of the original action space and we would not be able to gain the benefits of
temporally extended skills. Therefore, we add the following abstraction bonus term to our loss :

LA(τ, θ) =
T∑
t=1

Emt∼qθ [mt] . (3.12)

Again, this expectation is approximated with a one-sample Monte Carlo estimate. This term
represents the number of skills that trajectory τ is split into, and adding this quantity to our
ELBO loss results in skills of longer length.

Our abstraction bonus differs from the compression loss used by LOVE [14] in that their loss
represents the average number of bits encoded in the skill latents. We found that when applied
to the Maze2d and Kitchen environments, the skills learned by LOVE were trivial in that they
encoded no information. We discuss this further in the evaluation section.

Altogether, the loss that we optimize to learn our segmentation model is given by

L(τ, θ) = LELBO(τ, θ) + λLA(τ, θ), (3.13)

where λ is a positive scalar that we refer to as the abstraction bonus coefficient. In practice, since
scaling the different terms comprising LELBO can effect the representations learned [3, 12], scale
factors for each of those terms are used as well.
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Figure 3.2: A depiction of our skill encoding scheme. The dotted vertical lines are segmentation variables
mt that take values greater than 0. The length of the dots represents the continuous value taken by these
mt, longer dots implying a higher value. The τ̃t represent our original sequential data, ot, at that have
been preprocessed before the skill encoding step. Each zi is encoded from the τ̃t with its corresponding
attention mask, depicted in the same color. These zi are then used to condition the corresponding low-
level latent variables st.

3.3.2 Continuous Relaxation and Architecture

Here we present our transformer-based skill segmentation model architecture and the continuous
relaxation that we use to train the model to generate discrete segmentations.

Our proposed architecture allows for the use of the continuous Concrete random variable
[20], in contrast to the straight-through variant [13] that is employed by many theoretically simi-
lar methods [14, 15, 23, 35]. We find that our approach learns semantically meaningful trajectory
segmentations without enforcing a prior on the length of the learned skills, as many previously
proposed methods call for [15, 17, 23, 31].

Figure 3.3: Frames taken from segmentation points discovered by our segmentation model. These frames
occur at semantically meaningful points in the trajectory and thus can be easily labeled with human-
interpretable skills. Many of these frames also occur at points where trajectories deviate from one another
as they accomplish different subsets of kitchen tasks.
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We begin by describing how the posterior distribution over a skill latent variable zt is inferred.
First, our model computes an unnormalized weight vector w⃗t ∈ RT where T is the length of the
trajectory τ . The skill distribution input vector z̃t is then computed using an attention mechanism
over (embedded) trajectories τ̃ ∈ RT×d, where d is a hyperparameter. More specifically,

z̃t =
T∑
i=1

αiτ̃t. (3.14)

where αi are normalized weights computed as

αi =
wti∑T
j=1w

t
j

. (3.15)

The manner in which we compute our normalized weights differs from the softmax normalization
used by a standard attention mechanism.

Note that for any two timesteps i and j, if identical weight vectors are computed for these two
timesteps, then the skill distribution input vectors computed for these two timesteps will also be
identical, i.e., w⃗i = w⃗j =⇒ z̃i = z̃j .This is the case when our model infers that i and j belong
to the same abstract timestep. The parameters for the posterior distribution over the skill latent
variable zt are then deterministically computed from z̃t so z̃i = z̃j implies the distributions for zi
and zj are the same. We then sample zt from the posterior distribution via the reparameterization
trick [16].

We compute attention weights with a special function wtk = f(m⃗, t, k) such that if there are
no segmentation points between timesteps i and j, then z̃i = z̃j . We use the following function,

f(M, t, k) =


∏k−t

i=1(1−mt+i−1) k ≥ t∏t−k
i=1(1−mt−i) k < t

. (3.16)

To make the above process differentiable, we adopt a continuous relaxation wherein the dis-
crete segmentation variables mt are replaced with samples from a Concrete distribution such
that mt ∈ [0, 1]. This gives us a continuous way to merge two distinct adjacent skills into one
skill and compute low-variance reparameterization gradients for our model parameters. A visu-
alization of the construction of these unnormalized attention weights can be seen in Fig. 3.2.
Maddison et al. 2016 empirically showed that, with a sufficiently low-temperature parameter,
latent variable models using Concrete random variables tend to learn solutions where the proba-
bility mass of the Concrete distribution concentrates at the vertices of the simplex rather than in
the interior (that is, the model tends to sample mt ∈ {0, 1}). We also observe this phenomenon
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in our experiments. This means that our continuous relaxation is suitable for learning a discrete
trajectory segmentation model.

While prior work primarily uses RNNs [14, 15, 17], and specifically variants of the RSSM
introduced by [11], we use the transformer equivalent of the RSSM introduced in TECO [33] for
both our high-level skill and low-level state dynamics. Our full implementation can be found at
https://github.com/Thomasw219/thesis_repo

3.4 Evaluation

We demonstrate our approach on the Maze2d and Kitchen tasks from the D4RL offline RL bench-
mark [8]. We show the ability of our segmentation learning model to robustly discover useful
data segmentation schemes and compare the segmentations and reconstructions learned by our
approach to those learned by prior work, as well as the empirical distributions over skill length
learned by our model in both environments.

3.4.1 Learned Segmentations

In both the Maze2d and the Kitchen datasets, our segmentation learning model learns semanti-
cally meaningful segmentation points. An example of segmentation points for one of the Kitchen
trajectories can be seen in Fig. 3.3. In this environment, the segmentation points we learn are
easily interpretable and match with our intuitive definition of a skill in that they correspond to
subtasks such as moving the kettle or flipping the light switch. In the Maze2d environments,
one of the segmentation schemes that our model identifies is to segment trajectories at timesteps
where the underlying PD controller used to generate the data changes setpoints.

The particular segmentation that we learn for a given dataset depends on the abstraction
bonus coefficient. However, we found that a wide range of abstraction bonus coefficients led
to the same skill segmentations, indicating that our approach isn’t particularly sensitive to this
parameter. In Fig. 3.4, we show how the average number of timesteps per segment in the dataset
changes over the learning process for our segmentation learning model and a version of VTA that
has been modified to use an abstraction bonus term, for various abstraction bonus coefficients.
Since the same segmentation of a trajectory will imply the same average number of timesteps
per segment, we use this metric as a proxy for assessing the repeatability with which a particular
segmentation scheme is learned. In our experiments, most of the models that fell into the higher
ratio mode of Fig. 3.4 (top) did in fact learn the same, aforementioned scheme of segmenting at
the points where the underlying PD controller changed setpoints.
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Figure 3.4: Average number of timesteps per trajectory segment vs. epochs for different values of the
abstraction bonus coefficient. Our method (top) finds similar segmentation schemes for many different
coefficient values, resulting in a bimodal distribution. VTA (bottom), which has been modified to use an
abstraction bonus rather than a prior over skill lengths, learns segmentations that are much more sensitive
to the abstraction bonus coefficient.
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There is some degree of volatility in our method, with different random model initializa-
tions converging to different segmentation schemes, given the same abstraction bonus coefficient.
Therefore, when selecting a segmentation model to use for trajectory segmentation, we choose
an abstraction bonus coefficient that results in reproducible segmentation schemes.

In Fig. 3.5 we compare the segmentations learned by our model to those learned by VTA
when given an informative prior [15], LOVE [14], and Directed-Info GAIL [26]. We com-
pare against these prior works in particular since LOVE and Directed-Info GAIL do not use a
prior over skill length, similar to our method, and VTA, like our method, uses continuous latent
variables to represent the learned skills, whereas LOVE and Directed-Info GAIL encode skills
into discrete latent variables. Our method perfectly recovers the locations where the underlying
PD controller changes setpoints, while the segmentation learned by VTA is often off by 1 or
2 timesteps. VTA also exhibits other, less frequent, inconsistencies such as false positives and
false negatives if we take the region around the changepoints of the underlying PD controller
to be ground truth. We also often see consecutive segmentations with VTA, likely due to its
independently factorized segmentation posterior. LOVE learns a trivial segmentation of the sig-
nal into segments of length 3, its minimum allowable skill length, whereas our model is able to
recover meaningful, temporally abstract segmentations. Because LOVE’s compression loss is
a weighted sum of its segmentation points scaled by the amount of information encoded in the
skill latents, it can learn an assignment of skill latents where no information is communicated
via the skills and achieve a low compression loss while not performing any meaningful temporal
abstraction. Directed-Info GAIL learns a degenerate solution where a single skill is used to de-
scribe the entire subsequence. Its reconstruction of the actions taken is generally accurate except
for the points where the controller changes goals, likely due to its segmentation’s degenerate
nature.

3.4.2 Skill Length Distributions

Many prior works in the field of segmentation learning such as VTA [15], CompILE [17], TVI
[23], and SKID RAW [31] regularize the distribution over the length of the skills they learn to
a fixed prior distribution. This prior distribution is typically unimodal, as with the Poisson prior
used by CompILE or the Gaussian distribution used by SKID RAW. The assumption that the
length of skills follow a unimodal distribution does not hold for many tasks of interest. Take
the Maze2d and Kitchen tasks on which we evaluate our method as an example: Figure 3.6
shows the distributions learned by our skill learning approach. Note that even in these relatively
simple benchmarks, the distribution over skill lengths can be very wide and multimodal. We can
expect that in more realistic tasks the distribution over skill lengths could be even wider, e.g.
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Figure 3.5: A comparison of action reconstructions and segmentations learned by our model and a number
of baselines.

baking bread where proofing and baking can take an order of magnitude longer than ingredient
mixing or kneading. Other manners of regularizing skill length, such as those used by TVI and
VTA are not as simple as a unimodal distribution, but nonetheless softly restrict the possible
decompositions of trajectories into skills that their models can learn. Our method imposes no
such restriction on the classes of possible distributions learned by the model, allowing us to learn
whatever decomposition of trajectories best suits the data.
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Figure 3.6: The empirical distributions over skill length learned by our approach in the Maze2d and
Kitchen environments.
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Chapter 4

Learning and Planning Over Variable
Length Skills

4.1 Previous Literature

In sequential decision-making problems, the ability of an agent to execute temporally extended
skills can facilitate much more efficient credit assignment over long periods of time or, when
combined with a skill-conditioned dynamics model, greatly increase an agent’s effective planning
horizon. Because of this, the discovery of skills has long been an area of interest in the field of
RL.

At a high level, we can divide skill-learning approaches into online and offline. Online skill
learning algorithms construct a collection of skills through interaction with the environment but
typically require prohibitively large amounts of data to discover useful skills [6, 24]. On the other
end of the spectrum, offline skill learning algorithms seek to extract skills from demonstrations
and do not require potentially dangerous online exploration in the environment to do so [14, 23,
27]. We primarily focus on methods of the offline variety; in particular, we go into detail on two
recently developed algorithms, OPAL and OPOSM that represent model-free and model-based
approaches to skill-based offline RL, respectively.

OPAL [2] uses a conditional autoencoding approach with a KL-Divergence constraint on the
learned latent variables to get its skills and skill-conditioned policies. Their approach bears a
resemblance to the objective for a conditional VAE where the prior is conditioned on the skill’s
initial state, and the reconstructions of the actions are conditioned on the state at that timestep.
After the skill-conditioned policies are learned, a dataset of initial states, skills, terminal states,
and cumulative rewards is given to any offline RL algorithm to learn a policy over skills.

OPOSM [7] uses a variational objective to learn skills in the style of a conditional VAE, sim-
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ilar to OPAL. However, OPOSM also learns an abstract dynamics model to infer the distribution
over terminal states induced by a learned skill. This facilitates planning over skills online, given a
new reward function. The formulation used by OPOSM is similar to that learned by SkiMo [27],
which also uses a variational objective to learn a skill-conditioned policy and termination state
distribution. However, OPOSM also uses a modified expectation maximization (EM) procedure
to ensure that the learned skills respect the causal structure of the environment.

OPAL, OPOSM, SKiMo, and many other prior works sample fixed-length segments of trajec-
tories uniformly at random from the given dataset. Even under the condition that the fixed-length
skill assumption holds, given most reasonable skill representations and a fixed length greater
than one, it is unlikely that a randomly sampled segment from a trajectory will align with the
beginning and end of an executed skill.

While OPOSM and OPAL both use fixed-length skills, there do exist a few variable-length
model-free skill learning approaches that have been demonstrated on smaller problems [14, 15,
17, 26, 31]. We compared the most relevant among these as alternative segmentation methods
to our own in Chapter 3. Other variable-length model-free skill learning methods either require
a prior over skill length [15, 17, 31], do not scale to the more complex and temporally abstract
problems that we evaluate our algorithm on [14, 26], or both. This necessitated the development
of our own segmentation learning approach, described and evaluated further in Chapter 3.

4.2 Preliminaries

Our skill learning approach extends the algorithm introduced by OPOSM [7]. After learning a
space of skills, we plan over our learned skills with the cross entropy method (CEM) [22] in order
to maximize a given reward function online. We provide background on both of these algorithms
in this section.

In this chapter, we follow prior skill learning work [2, 7] in assuming full observability.
Therefore st no longer represents an unobserved latent random variable but rather the full envi-
ronment state at time t.

4.2.1 Learning Fixed-Length Skills from Offline Data

OPOSM [7] uses a modified conditional VAE objective to jointly learn a space of skills Z , a
skill-conditioned policy πθ(at|st, z), a state-conditioned prior over the skill space pω(z|s1), and
the temporally abstract dynamics induced by those skills pψ(sH |s1, z).

Assuming skills to be latent random variables that condition both the policy and the induced
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dynamics results in the following variational objective:

log p(sH , a⃗|s⃗)≥Ez∼qϕ(z|τH)

[(
H∑
t=1

log πθ(at|st, z)

)
+log pψ(sH |s1, z)

]
−DKL(qϕ(z|τH)∥pω(z|s1))

(4.1)
where a⃗ = a1:H , s⃗ = s1:H , τH = (⃗a, s⃗) and qθ(z|τH) is a skill encoder that outputs the posterior
distribution of a particular skill. Here, H is a fixed hyperparameter denoting the length of the
skills learned by OPOSM. Freed et al. show that naively optimizing this lower bound does not
respect the actual causal structure of the environment which can result in the overestimation of
the agent’s influence on the environment. For example, a state transition that was not a result
of the agent’s action but instead due to uncontrollable stochasticity in the environment could be
wrongly attributed as the result of a skill executed by the agent.

To remedy this, Freed et al. propose a modified EM procedure that minimizes the KL diver-
gence between the approximate skill posterior and the true posterior over skills given by

p(z|τ) = 1

η

(
H∏
t=1

log πθ(at|st, z)

)
pθ(z|s1) (4.2)

where η is a normalization constant. In the expectation step of the procedure, the parameters ϕ
are updated to minimize the KL divergence between the approximate and true skill posteriors. In
the maximization step θ, ψ and ω are updated to maximize the lower bound in Equation 4.1.

4.2.2 Planning with the Cross-Entropy Method

The cross-entropy method (CEM) [22] is a stochastic, iterative algorithm that can be used for rare
event simulation or optimization. In its simplist form, it is parameterized by a population size
N , a keep fraction ρ, and a sample evaluation function L(·). OPOSM [7] uses CEM as a planner
by sampling possible skill trajectories and iteratively refining the distribution over trajectories to
maximize a given reward function.

Rather than planning in the raw skill space, OPOSM uses CEM to plan in the space of
standardized deviations from the mean skill given by the prior. More specifically, let ϵ⃗ =[
ϵ1, . . . , ϵL

]
, where ϵi ∈ RdZ , be a particular trajectory of skill deviations, and s1 be our ini-

tial state. Then, the trajectory of skills executed z⃗ and terminal states visited s⃗ corresponding to
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ϵ⃗ is computed by iteratively using the learned skill prior and abstract dynamics as follows:

µi = Ez∼pω(z|si))[z], σ
2
i = Varz∼pω(z|si))(z) (4.3)

zi = µi + σiϵi (4.4)

si+1 = Es∼pψ(si+1|si,zi))[s]. (4.5)

Given a reward functionR(·), we can write the sample evaluation function S (⃗ϵ) used by OPOSM
as

S (⃗ϵ) = max
i∈{1,...,L}

R(si). (4.6)

CEM begins with an initial distribution over ϵ⃗. Because OPOSM learns a continuous skill
space, the family of distributions over which CEM optimizes is chosen to be joint Gaussian
distributions with diagonal covariances. First, N samples, ϵ⃗1, . . . , ϵ⃗N are drawn i.i.d from the
initial distribution, which is parameterized by mean µϵ1 and covariance Σϵ

1. Then, a value γ
delineating the top performing ρ fraction of trajectories among the samples is computed as

γ = max

{
γ′ :

1

N

N∑
i=1

I{S(ϵ⃗i)>γ′} ≥ ρ

}
, (4.7)

where I{·} is the indicator function. With γ computed, new parameters for the distribution over ϵ⃗
are computed by finding the highest likelihood mean and variance for the samples {ϵ⃗i : S(ϵi) > γ}.
In the case of the Gaussian distribution, this is simply the sample mean and sample variance. This
process repeats until some stopping criterion is met; the particular criterion OPOSM uses is sim-
ply reaching a fixed number of iterations. The skill z1 = µ1 + σ1E[ϵ1] is then executed until
termination, after which CEM is used to replan in the style of model predictive control (MPC).

4.3 Method

Our skill-learning process differs from OPOSM in a couple of important ways. First, while
OPOSM samples fixed-length segments uniformly from its dataset, our approach uses a learned
segmentation model from Chapter 3 to split trajectories from the dataset into variable-length
segments. Next, we learn a similar skill model to OPOSM but with an additional state-dependent
skill termination condition that uses the segmentation model’s learned skill termination points as
supervision. Our particular optimization approach also differs from the modified EM approach
used by OPOSM in that we utilize the stop gradient operator to jointly compute gradients for the
posterior and the rest of the model while retaining the property that our learned skills will not
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overestimate the agent’s influence on the environment.

4.3.1 Training Data Preprocessing

Given a trained segmentation model, we take the original offline learning dataset and prepare it
for variable-length skill learning. We first apply the segmentation model on each trajectory in the
dataset to get skill termination points. Since the segmentation model may have been trained on
shorter subsequences of trajectories, to get these termination points we apply the segmentation
model on subsequences of the size that it was trained on, taken in a sliding-window fashion from
the full-length trajectory. It is possible that a particular timestep will be labeled a termination
event in one subsequence and not in another, so we compute the proportion of the subsequences
in which a given timestep was labeled a termination event and threshold the proportions to get
our final termination points.

We then split each trajectory into contiguous subsequences at these termination points. To
facilitate batch training of variable length sequences, we pad the trajectories to the length of
the maximum subsequence length and generate masks to indicate which timesteps the posterior
should take as input. For practicality, we choose an upper limit to the length of the skills so an
outlier segment of extremely long length will not require us to pad and mask all other segments
to that same length. We also choose a lower limit to save computation. These maximums and
minimums are manually chosen after looking at the distribution of learned skills, visualized in
Figure 3.6. We ended up using a maximum length of 50 in the Maze2d environment, 75 in the
Kitchen environment, and the same minimum length of 5 in both environments.

4.3.2 Learning Variable-Length Skills from Offline Data

With the dataset of variable-length segments prepared, we move on to learning our skill model,
the architecture of which can be seen in Figure 4.1. Our skill model consists of the approximate
posterior qϕ(z|τ), a low level policy πϕ(at|st, z), a termination decoder pϕ(mt|st, zt), the abstract
dynamics induced by the skills pϕ(sL(τ)|s1, z), and a state-conditioned prior pϕ(z|s1). We denote
the length of trajectory segment τ withL(τ). Although a skill encoder and termination conditions
were learned as part of the segmentation model, we re-learn these as part of the skill model
learning process because the skill representation may change. To learn our skill model, we
maximize an ELBO given by
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Figure 4.1: The various components of our skill model. Here L(τ) is the length of the particular trajectory
segment τ .

LSM(ϕ, τ) = Ez∼q(τ |z)

L(τ)∑
t=1

(log πϕ(at|st, z) + log pϕ(mt|st, ⌊z⌋)) + log pϕ(sL(τ)|s1, ⌊z⌋)


−DKL(qϕ(z|τ)||pϕ(z|s)),

(4.8)

where ⌊⌋ denotes a stop grad operator, through which gradients are not backpropagated. We use
the stop grad operator to accomplish a similar purpose as the modified EM algorithm proposed in
OPOSM [7]. Without the stop grad operator, the model is encouraged to encode the terminal state
sL(τ) directly into z, resulting in an overly confident model. Using stop grad operators removes
this incentive and captures the fact that z influences state transitions only indirectly through its
influence on actions.

Once the skill model is learned, we use the temporally abstract dynamics model pϕ(s′|s, z)
to iteratively re-plan sequences of skills, in a similar manner to OPOSM. The primary difference
being that at each timestep during the execution of skills, termination variables mt are sampled in
addition to actions. The current skill is terminated once mt = 1. Skill sequences are re-planned
upon termination of each skill in the style of MPC.
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Figure 4.2: The empirical distributions of the error between the induced terminal state from rolling out a
learned skill-conditioned policy and the estimated terminal state from skill-conditioned abstract dynamics
for both the Maze2d and Kitchen environments. Outliers beyond the range of the graph are clamped to
within the range (right-hand side of both graphs).

4.4 Evaluation

After learning our set of variable-length skills, we assess the quality of individual variable-length
skills compared to fixed-length skills and compare the efficacy of planning over our learned
skills with our abstract dynamics to other offline RL approaches. We additionally provide a
comparison with variable-length skills learned with a segmentation from VTA rather than our
proposed segmentation learning method.

4.4.1 Quality of Learned Skills

To test our hypothesis that variable-length skills enable the learning of more accurate abstract
dynamics models, we compare our learned skills to an identically trained fixed-length skill model
that does not use a state-dependent termination condition. For all experiments, the fixed length
we choose is the average length of our learned segmentations.

We evaluate the quality of individual skills by sampling a skill, predicting the skill’s terminal
state with the learned abstract dynamics, and then running the skill-conditioned policy from the
initial state until termination in the real environment. We visualize the empirical distribution of
the error between the predicted and ground-truth state transitions in Fig. 4.2. We observe that
more mass is concentrated at lower-error values for variable-length skills than for fixed-length
skills, indicating that variable-length skills result in more accurate temporally abstract dynamics
models.
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Task Ours OPOSM LLP CQL+OPAL BC EMaQ CQL PLAS COMBO
Maze2d Medium 99.9± 0.1 98.6± 1.6 95.3± 2.4 - - - - - -

Maze2d Large 94.6± 8.9 80.8± 4.7 77.3± 4.7 - - - - - -
Kitchen Partial 70.2± 10.9 57.2± 5.8 39.0± 4.6 52.0± 2.6 33.8 74.6± 0.6 50.1± 1.0 45 24.3± 2.0
Kitchen Mixed 69.6± 2.5 66.3± 2.7 46.0± 3.8 32.5± 7.6 47.5 70.8± 2.3 52.4± 2.5 40 2.3± 0.8

Table 4.1: Maze2d and Kitchen D4RL task scores with the default goal specified by the original
task. We evaluate Maze2d environments by the percent of episodes where the goal is reached
and the Kitchen environments with normalized scores.

Task Ours OPOSM LLP
Maze2d Medium 98.2± 1.1 94.6± 2.6 94.7± 2.5

Maze2d Large 96.3± 2.2 78.2± 3.0 91.7± 3.1
Kitchen Partial 67.1± 2.1 64.0± 3.0 43.1± 4.5
Kitchen Mixed 64.3± 5.6 62.2± 2.5 35.5± 4.5

Table 4.2: Scores for the Maze2d and Kitchen D4RL tasks with randomized goals.

4.4.2 Skill Planning on Downstream Tasks

To verify that higher-quality skills lead to higher planning performance on downstream tasks,
we compare our method’s performance on D4RL [8] tasks with fixed-length skills (OPOSM), in
addition to other offline RL algorithms. We evaluate our method on the default goals given by
the D4RL datasets and on goals sampled uniformly from the space of possible goals in a given
environment.

We compare against both skill-based and standard environment timescale offline RL algo-
rithms. Low-Level Planning (LLP) is a model-based approach that uses provided offline RL data
to train a dynamics model conditioned on single actions. This dynamics model is then used to
optimize over action sequences with CEM. LLP can be thought of as a special case of OPOSM
[7] where the skill length hyperparameter H is set to 1. We also compare to CQL+OPAL, which
uses skills learned by OPAL [2] in combination with Conservative Q-Learning (CQL) [18], in ad-
dition to Behavioral Cloning (BC) [21], Expected Max Q-Learning (EMaQ) [9], CQL with base
level actions, Policy in Latent Action Space (PLAS) [36], and Conservative Offline Model-Based
Policy Optimization (COMBO) [34].

Planning over our variable-length skills performs at least as well as OPOSM in every task and
often performs significantly better. We also find that our approach is competitive with state-of-
the-art offline RL algorithms in the Kitchen tasks while naturally generalizing to random goals, a
property that most other offline RL algorithms do not natively support. We were unable to repro-
duce the performance figures for CQL+OPAL reported by [2]. No code for OPAL is publically
available; the numbers we report were generated using partially complete code provided by the
authors.
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Task Ours OPOSM VTA
Medium Default 99.9± 0.1 98.6± 1.6 80.6± 15.9
Medium Random 98.2± 1.1 94.6± 2.6 82.3± 8.9

Table 4.3: Scores for the Maze2d Medium environment for variable length skills with segmenta-
tion points learned by our model, fixed length skills (OPOSM), and variable length skills learned
by VTA with an informative prior. Results for both the default goal specified by the task and
randomly sampled goals.

Since VTA is the only alternative segmentation learning algorithm that didn’t learn a degen-
erate solution, we only continue our pipeline and learn a skill model for the segmentation output
by VTA. We show the results of planning over skills learned from VTA segmentations in Table
4.3. Note that not only do skills learned with VTA-learned segmentations perform worse than
those learned from our segmentation model, but they also perform worse than fixed length skills.
This implies that not just any variable length segmentation will improve downstream task perfor-
mance and that poor or inconsistent segmentations can actually lead to performance worse than
the fixed length skill assumption.

All of the results from D4RL task experiments performed by us in this section were averaged
over 5 random seeds and displayed with a 95% confidence interval.
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Chapter 5

Conclusion and Future Work

We have presented a method for offline RL using temporal abstraction. Our approach is novel in
that it is a model-based method that learns variable-length skills with state-dependent termination
conditions, allowing agents to dynamically adjust the level of temporal abstraction at which
they plan. We have shown that our approach enables agents to learn semantically meaningful
skills, and more accurate temporally abstract dynamics models, compared to a fixed-length skill-
learning approach. Furthermore, we show that our approach outperforms fixed-length skills on
downstream tasks, and is competitive with state-of-the-art offline RL algorithms.

The approach we adopted in this work is primarily a result of the desire to stay close to prior
work for practicality’s sake. We ultimately would like to jointly learn a segmentation, policy,
termination condition, and temporally abstract dynamics, in place of the segmentation and skill
learning phases presented here. In addition, our work relies on the assumption that a task can
be completed by maximizing a state-based reward function evaluated only at the terminal states
of our skills. We would like to extend our approach to generate intermediate states and actions
in a manner that preserves temporally abstract state transitions in order to make the learned skill
model more generally applicable.

More high-level extensions to our work focus on expanding our approach to include multi-
level hierarchies. As humans, we are capable of planning on many levels of abstraction simul-
taneously and frequently compose plans to form meta-level plans. It may be possible to further
enhance agents’ abilities to plan flexibly at various levels of temporal abstraction by including
multiple levels of abstraction in a single model and allowing agents to determine which levels
are most suitable for a given situation. Additionally, we are interested in investigating methods
to help better align the skill-learning objective with the task objective, as currently skills are
learned in a purely task-agnostic manner. Intuitively, we expect that an agent may be able to
achieve higher task performance by allowing its skills to specialize to particular tasks.
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