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Multi-Robot Multi-Room Exploration with
Geometric Cue Extraction and

Circular Decomposition
Seungchan Kim1, Micah Corah1, John Keller1, Graeme Best2, Sebastian Scherer1

Abstract—This work proposes an autonomous multi-robot
exploration pipeline that coordinates the behaviors of robots in
an indoor environment composed of multiple rooms. Contrary to
simple frontier-based exploration approaches, we aim to enable
robots to methodically explore and observe an unknown set of
rooms in a structured building, keeping track of which rooms are
already explored and sharing this information among robots to
coordinate their behaviors in a distributed manner. To this end,
we propose (1) a geometric cue extraction method that processes
3D point cloud data and detects the locations of potential cues
such as doors and rooms, (2) a circular decomposition for free
spaces used for target assignment. Using these two components,
our pipeline effectively assigns tasks among robots, and enables
a methodical exploration of rooms. We evaluate the performance
of our pipeline using a team of up to 3 aerial robots, and show
that our method outperforms the baseline by 33.4% in simulation
and 26.4% in real-world experiments. [Video]a

Index Terms—Aerial Systems: Perception and Autonomy,
Multi-Robot Systems, Vision-Based Navigation

I. INTRODUCTION

MULTI-ROBOT EXPLORATION [1, 2] in unfamiliar,
unknown environments has attracted attention in the

robotics research community, due to its potential to accomplish
duties faster than a single robot, and its wide applicability
in tasks including search & rescue operations [3], hazardous
source detection in turbulent environments [4], and planetary
missions [5]. Recently, in light of the DARPA Subterranean
Challenge, there is a growing attention on exploration of large
underground and indoor environments by teams of robots,
with realistic communication constraints, sensor coverage, and
compute conditions [6–8]. In this work, we aim to develop a
more structured multi-robot autonomous exploration pipeline
for operation in indoor environments, taking advantage of
geometric properties of structures in a building.

Specifically, we aim to build algorithms for multiple robots
exploring inside a building composed of multiple rooms,
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Fig. 1. We present an autonomous multi-robot exploration pipeline that
coordinates the behaviors of robots exploring multiple rooms in a building.
Using our pipeline, robots explore different rooms in a methodical manner.
The traveled trajectory and area covered by each robot is visualized with
different color.

whose locations and sizes are not known in advance. Rather
than following a frontier-based approach [9], we explicitly
model the geometry of rooms to enable a methodical ex-
ploration of structural environments, empowering robots to
explore the rooms one by one, observing each room in-turn
before moving on to another. Furthermore, we also want
coordinated behaviors such that robots select rooms to avoid
redundant observations by multiple robots.

Why do we want this type of multi-room exploration?
First, rooms are usually the parts of the building where
meaningful target objects are placed in, compared to corridors
and hallways. Thus, they warrant focused attention during
exploration. Second, rooms are non-overlapping and structural
units that constitute the building; the entire indoor space can be
segmented using a room-oriented search. One thing to consider
is that, it is inefficient to assign multiple robots to the same
small room; thus, we need a coordinated target assignment
scheme for multi-robot, multi-room exploration.

To this end, we propose our method, Multi-Robot Multi-
Room (MRMR). Unlike learning-based geometry prediction
for exploration, our method does not require an offline dataset
of representative environments to learn from. Instead, we use a
simple yet effective and generalizable technique to extract ge-
ometric cues that indicate the potential locations of doors and
rooms, only from 3D point cloud data. Our pipeline processes
data observed by LiDAR sensors onboard, converting 3D point
clouds into a 2D binary occupancy grid map, and then into
a 2D distance transform map. Using the distance transform
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map, robots perform real-time geometric analysis to discover
structural cues that signal the doors and rooms. Robots update
global plans and execute local planners accordingly, actively
searching for unreached doors and unexplored rooms.

We also propose the idea of representing free spaces within
rooms with circles. We show that circular decomposition
is a compact representation of the environment for robots
exploring rooms and sharing necessary information with other
robots via communication.

We evaluate our autonomous exploration pipeline using
multiple unmanned aerial vehicles (UAV), both in simulation
and real-world experiments. Built upon the multi-robot ex-
ploration and planning component of the complete autonomy
stack [10] of Team Explorer, which showed most successful
exploration by aerial robots in the final round of DARPA
SubT Challenge competition, our methods record significant
performance gain in fast discovery and exploration of multiple
rooms, and coordination of behaviors for multiple robots.

In summary, our contributions are:

• An autonomous multi-robot exploration pipeline that ex-
tends prior works in [10] to coordinate behaviors of
robots in a building composed of multiple rooms.

• Incorporation of two new modules for multi-robot multi-
room exploration: (1) a geometric cue extraction method
that detects the locations of doors and rooms from 3D
LiDAR point cloud data, and (2) circular decomposition
of spaces for room representation, target assignments, and
communication.

• Empirical validation of our multi-robot exploration
pipeline via simulated and real-world experiments.

II. RELATED WORK

A. Multi-robot Exploration

Multi-robot exploration problems have been studied with
various approaches. Many prior works [1, 9] view this problem
as an assignment of frontiers (the boundaries between known
and unknown space), where robots explore environments by
continuously moving toward nearby, unexplored frontiers.
Other approaches include sampling-based [11], information-
theoretic [12, 13], graph search-based [14], recursive tree-
based search [15], and sub-map merging [16]. Recent works
include hybrid approaches, such as combining frontier-based
approach and graph-search [10].

Multi-robot exploration research can also be categorized
by whether decision-making is centralized or decentralized.
In centralized schemes [17, 18], a central entity plans out
tasks for a team of robots with an access to the global
information of the environment, which could hypothetically
produce globally optimal solutions. However, a single failure
of a robot or communication link could lead to the failure of
the entire system. Instead, we follow the decentralized [19, 20]
schemes, which are more robust to the single point of failure.
Each robot makes decisions and optimizes trajectories based
on its own understanding of the environment, with realistic
communication constraints among robots.

B. Space Partitioning and Decomposition

In robotic exploration research, space partitioning ap-
proaches decompose space into subparts or partitions and
seek to cover the whole space by consecutively exploring the
partitions. Wu et al. [21] proposes Voronoi-based partitioning
to coordinate multi-robot exploration, dividing the entire space
into a set of polygons. Solanas and Garcia [22] propose using
unsupervised clustering for multi-robot coordination. Hu et al.
[23] uses the combination of deep reinforcement learning and
Voronoi-based partitions to improve coordination strategies for
multi-robot exploration.

In this work, we focus on decomposing the free space
into a set of circles. Previously, Gao et al. [24] proposed
generating circles from raw point clouds for safe online tra-
jectory optimization in cluttered environments. Ren et al. [25]
improves this idea by generating corridors with larger sphere
volumes and receding schemes that enable high-speed trajec-
tory planning. Most recently, Musil et al. [26] demonstrates
incrementally-built segmented graph of spheres enable safe
and flexible flights. [26] also shows the compressed version of
the graph structure enables efficient communication in multi-
robot setting. While the previous works used the circular or
spherical decomposition in the context of safe trajectory plan-
ning, we focus on generating circular representations in the
context of indoor room exploration, coupled with geometric
cue extraction from distance transform map; we also focus on
the multi-robot exploration, showing circular representation is
an effective information scheme to be shared for decentralized
behavior coordination of multiple robots.

C. Room Detection

Division of a floorplan into rooms, or identifying the
potential location and size of rooms is essential to room-
based search and exploration. Most popular approach to detect
rooms is Voronoi-based approach by Thrun [27], which utilizes
distance transform and Voronoi graph to find critical points in
the map to detect passages to the room. Wurm et al. [28]
uses this idea to divide the space map into segments that can
correspond to individual rooms, and generate Voronoi graph
to assign targets for each robot in the multi-robot teams, in a
centralized manner.

Other works include graph-based partitioning which uses
topological map to cluster nodes and build higher-level hier-
archical map [29], sparse graph-based approach to build 3D
skeleton diagrams using 2D Voronoi Diagram [30], or feature-
based room segmentation [31] which learns features and
geometric shapes that match with the characteristic of rooms.
More recently, scene graph-based methods were proposed:
Bavle et al. [32] proposed factor-graph with hierarchical layers
and room segmentation scheme using 3D LiDAR point clouds;
Rosinol et al. [33] proposed 3D dynamics scene graph, with
multiple layers in a hierarchy representing different levels
of semantic structures including rooms, followed by Hughes
et al. [34] which features improved hierarchical scene graph
generated real-time.

In this work, we focus on LiDAR processing approach that
enables high-speed, low-compute processing onboard and ro-
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Fig. 2. Overview of our exploration pipeline. (a): An indoor environment composed of multiple rooms. (b): The robot generates 3D occupancy voxel grid
map from 3D point cloud data. (c): It flattens 3D voxel gid map into 2D binary map, and applies median filtering. (d): The robot generates 2D distance
transform map (e): It computes saddle points (red) and local maxima (yellow) from the distance transform map. (f): Free space is decomposed into circular
representations. In multi-robot setting, the robot shares the circles it explored (blue), and the circles that other robots have explored (yellow circles). (g):
Trajectories traveled by two robots are visualized with different colors, which are results of the coordinated behaviors via shared circular representations.

bust exploration in light-degraded environments, as opposed to
learning-based approaches that often require a large amount of
computations and pretraining on offline datasets. We revisit the
idea of distance transform [27], but improve this idea by using
a different cue detection method and space decompositions that
are compatible with state-of-the-art fully autonomous multi-
robot exploration algorithms.

III. PROBLEM DEFINITION

Consider a team of n robots (i = 1, 2, ..., n) that are explor-
ing an indoor environment. Denote the trajectory traveled by
each robot as ξi. The robots build a map of the environment
with LiDAR, which is represented with a 3D occupancy voxel
grid in a shared coordinate system (each voxel represents a
cube with side length 0.2m). The robots observe surfaces of the
environment with a primary sensor, such as a camera or RGBD
sensor with limited field of view. The intersection between the
occupied voxels of the LiDAR map and the primary sensor
field of view is denoted by the voxel grid Oi (for robot i).
The observation model for the primary sensor can be defined
based on the specifications of the robot and the application; we
model the primary sensor as a forward-facing fish-eye camera
with a 5m detection range, and 170◦ field of view, modelling
occlusions with ray casting, as in [10].

Let us assume that there are total K rooms to be explored
in the building, and denote V rm

j (j = 1, 2, ...,K) as voxels
within each room. Then, the total number of voxels in these
rooms that are observed by the primary sensor of robot i is∣∣∣ ⋃

j=1,...,K

(Oi ∩ V rm
j )

∣∣∣ (1)

(| · | is the number of voxels). In this work, we will reward
robots for exploring rooms in a building rather than increasing
total coverage by traversing corridors and hallways.

In the multi-robot setting, our objective is to maximize the
union of such voxels, explored by all robots collectively. Each

robot finds its own trajectory ξi seeking to maximize the union
of observed voxels in rooms by all robots,

ξ∗1 , ξ
∗
2 , ..., ξ

∗
n = argmax

ξ1,ξ2,...,ξn

∣∣∣ ⋃
i=1..n

( ⋃
j=1..K

(Oi ∩ V rm
j )

)∣∣∣ (2)

given a fixed time. The robots will solve (2) approximately
and in a decentralized manner, so that each robot will plan its
own path ξ∗i while communicating with other robots.

IV. DISTRIBUTED EXPLORATION METHOD

In this section, we present our autonomous distributed ex-
ploration pipeline, which coordinates the behaviors of multiple
robots exploring in a building composed of multiple rooms.
The pipeline overview is displayed in Fig. 2. We first explain
preliminary background on the autonomous robot exploration
baseline [10], which we build upon and improve (Sec. IV-A).
Then, we describe the two main building blocks of our method,
geometric cue extraction (Sec. IV-B, Alg. 1) and circular
decomposition of free space (Sec. IV-C, Alg. 2). We also
explain the multi-robot communication and target assignment
(Sec. IV-D, Alg. 3), and finally explain how they all come to-
gether to form our Multi-Robot Multi-Room (MRMR) method
(Sec. IV-E, Alg. 4).

A. Preliminary: Autonomous Exploration Baseline

The baseline method we use is the open source autonomous
aerial robot exploration pipeline [10] developed by Team
Explorer, to compete in DARPA Subterranean Challenge.
This baseline enables robots to navigate in a wide range of
challenging underground or indoor environments such as a
mine, subway, tunnel, or cave, with limited communication,
sensor coverage, and light conditions.

The baseline method leverages LiDAR sensors to discover
the geometry of surrounding environments, using OpenVDB
[35] as a data structure for representing map occupancy grids,
and SLAM solutions generated by Super Odometry [36]. As
the robot moves through the environment, it estimates which
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Fig. 3. (a) Saddle point (yellow) is farthest from occupied cells compared
to other points along the wall axis (red), while closest to the occupied cells
compared to other points along the perpendicular axis (blue) (b) Side-view of
drone at a door (c) Drone at saddle point in distance transform space.

voxels have been visually observed according to the camera
model in Sec III. with an OpenVDB map.

The path planning component of the baseline method, which
we focus on in this work, can be loosely categorized as a
frontier-based exploration approach with graph search and
selection heuristics. Using vision and range sensors, the robot
generates a set of viewpoints at the frontiers. The viewpoints
are scored with heuristics, and the viewpoints with high scores
are selected. Then, paths are planned to reach the viewpoints.
RRT-Connect [37] is used to find a feasible global path to
viewpoints, and A* graph search and motion primitives are
used for local path planning.

For multi-robot exploration, onboard communication hard-
ware and DDS networking are used. The plans for robots are
coordinated implicitly by sharing knowledge of the world. This
includes knowing the take-off locations of each robot, and
communicated shared map in a global reference frame.

B. Extracting Geometric Cues of Doors and Rooms

The first component of our method is detection of doors and
rooms via geometric cue extraction, as shown in Alg. 1. The
intuition for this algorithm is that saddle points on the distance
transform are approximately equivalent to the locations of
doors. We also extract local maxima and their distances to
closest wall to decompose free spaces.

The robot incrementally obtains 3D point cloud observations
from onboard sensors which it uses to maintain a voxel grid
map. The 3D voxel grid map O is flattened into 2D binary
map B (occupied cells: 1, unknown/free cells: 0) by setting the
point in 2D as occupied if any voxel within the range of height
z ∈ [zlow, zhigh] is occupied. In practice, we set zlow = 0 and
zhigh = 1.8. The robot applies median filtering1 to the binary
map B, and then converts B into 2D distance transform map
M , which computes the minimal distance to closest occupied
cell for all pixels. Then the robot obtains a second-order partial
derivative matrix of the distance map, or hessian H , from
which it can compute saddle points P sadd and local maxima
Pmax, using the determinant2:

det(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))
2, (3)

1Median filtering of kernel size [1,3] and [3,1]
2We empirically found that the condition det(x, y) < −0.1 (instead of

det(x, y) < 0) works well in practice to find saddle points. Similarly, we set
fxx(x, y) < −0.1 as a threshold for detecting local maxima.

Algorithm 1 ExtractCues
Input: Voxel Grid Map Data O

1: 2D binary map B ← Take O where z ∈ [zlow, zhigh]
2: Distance map M ← distanceTransform(filter(B))
3: Hessian matrix H ← Hessian(M)
4: Obtain two lists P sadd, Pmax ← from H using Eqn.4
5: ∆ = [ ]. ∀c ∈ Pmax, distance δ ← M(c),∆.append(δ)

Output: P sadd, (Pmax,∆)

Fig. 4. (a) We represent a room using a circle for robot observation. (b) We
let the radius of the circle, r, is smaller than the sensor range λ for effective
observations. (c) A larger room is represented by multiple circles. (d) The
robot updates, merges, splits the circles with new sensor information.

and with P sadd and Pmax defined as{
(x, y) ∈ P sadd if det(x, y) < −0.1
(x, y) ∈ Pmax if det(x, y) > 0 & fxx(x, y) < −0.1

(4)

A local maximum m ∈ Pmax is a point, whose distance
δ ∈ ∆ to the wall is the highest compared to other neighboring
pixels. Pairs of (m, δ) will be used as centers and radii of
circles, in the free space decomposition.

The more interesting part is the use of saddle points (Fig. 3).
A saddle point refers to a critical point that is not a local
extremum; any point that is a relative minimum along one
axis and relative maximum along another perpendicular axis
is classified as saddle points. In our setting, a door (yellow
dot in Fig. 3(a)) can be classified as a saddle point3, because
it is farthest from occupied cells(walls) compared to other
points placed along the wall-axis (red), while it is closest to
the occupied cells(walls) compared to other free points placed
along the perpendicular axis (blue).

C. Circular Decomposition of Free Space

We represent the free space in rooms by decomposing it into
circles. The motivation behind this is that visiting the centers
of the circles will enable the robot to observe most of the room.
Due to the limited camera FoV, some parts may be missed.
However, in practice, the robot usually turns when going to
and from the centers. If full visual coverage is particularly
important, a spinning behavior can be added at each center,

3In practice, multiple saddle points can be detected for a single door;
however, points within distance ϵd = 1.0m are handled the same.
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Algorithm 2 UpdateCircles
Input: C, (Pmax,∆)

1: for each (m, δ) pair: ▷ m ∈ Pmax, δ ∈ ∆
2: c← GenerateCircle(m, δ)
3: for each c′ ∈ C:
4: r1 ← δ, r2 ← c′.r, d← dist(c.center, c′.center)
5: if d < 0.5(r1 + r2): C ← C ∪ {c} if r1 > r2
6: elif d < ϵ(r1 + r2): c′′ ←Merge(c, c′);C ← C ∪ {c′′}
7: if not c.merged : C ← C ∪ {c}
8: ∀c ∈ C, SplitCircle(c ) if c .r > rthresh

Output: C

but we found this unnecessary in the considered scenarios. We
note 360◦ FoV can also help for full coverage.

As in Fig.4(a)(b), we can generate a circle that is tangent to
the inner wall of the room, and make the robot reach the center
of the circle to observe the surroundings with a camera of
sensor range λ; during this process, it is important to maintain
that radius r is smaller than a threshold value. For example,
if r > λ, even if the robot goes to the center, there must exist
a part in circle that is not covered by the sensor even within
the FoV. In practice, we set the radius threshold for circle-split
rthresh = 2.5m (r ≤ rthresh), which is admissible with our
sensor range λ = 5.0m. In a larger room like Fig.4(c), the
Alg.1 often outputs a longer distance δ > λ. In this case, we
split the circle into a set of circles with smaller radius r, and
let the robot reach the centers of smaller circles one by one.

The circular decomposition of the space is not static, as
the robot updates the map by incrementally obtaining more
information of the surrounding (e.g. discovers a new wall). As
shown in Fig. 4(d), the robot updates the size of the circles so
that they adjoin the newly observed walls, merge the circles if
they overlap significantly, and split the circles if their radii are
above the threshold rthresh. This process of maintaining and
updating a set of circles is shown in the Alg.2. Given each
pair of local maxima and distance, the robot generates a circle
c of center m and radius r1 = δ, which is compared with
the circles c′ of center ct and radius r2 in the previous set of
circles C. If they overlap too closely, we save the larger one
between the two; if distance d between centers of c and c′ are
smaller than ϵ(r1 + r2) where ϵ = 0.95, we merge these two
into a new circle c′′.4 We simply save c if this isn’t merged
to any of the previous circles in C. Lastly, we split the circles
if the circle’s radius is above the threshold rthresh = 2.5, by
setting the first split circle’s radius as 2.5 and the other circle
to be adjoining to the first one.

D. Multi-Robot Communication and Target Assignment

As discussed in Sec. IV-B, the robot extracts geometric
cues and detects saddle points in 2D as potential doors,
and it also represents rooms with circular decomposition of
spaces as discussed in Sec. IV-C. We send this 2D saddle
points and centers of circle to 3D, by simply setting5 their

4Although the merging methods vary, we empirically find that setting new
center as (r1·m+r2·ct)

(r1+r2)
and radius as (r1+r2+d)·d

2(r1+r2)
effective.

5Any z around the middle of the range (zlow, zhigh) is fine.

Algorithm 3 TargetDoor, TargetCircle, Communication
Input: C, D, Cr, Dr, Co, Do, ϵd = 1.0, ϵc = 1.5

1: D ← D \Dr, C ← C \ Cr

2: def TargetDoor():
3: for each d ∈ D:
4: if ∃d′ ∈ Do s.t. dist(d, d′) < ϵd: then D ← D \ {d}
5: dnear = argmind∈D dist(robot, d); return dnear
6: def TargetCircle():
7: for each c ∈ C:
8: if ∃c′ ∈ Co s.t. dist(c.center, c′.center) < ϵc · c′.r:
9: then C ← C \ {c}

10: cnear = argminc∈C dist(robot, c); return cnear
11: def Communication(Cr, Dr):
12: robot.Publish(Cr, Dr)
13: Co, Do ← robot.Subscribe(other robots′ Cr, Dr)
14: return Co, Do

z value as 1.0, and update the set of doors D and circles
C. For distributed target assignment among multiple robots,
we utilize the doors and circles as information to be shared.
Each robot not only maintains D and C, but also updates
a set of doors Dr and circles Cr it has reached; as shown
in Communication() function of Alg. 3, Cr, Dr are shared
with other robots bidirectionally. Receiving Cr, Dr from other
robots, the robot updates a set of doors and circles, Co, Do,
that were reached by other robots. The information shared
for communication, Dr and Cr, are just a set of points in 3D
coordinates and a set of pairs of point and radius. This compact
representation enables efficient communication among robots.

When targeting a new door, a robot not only excludes doors
Dr reached by itself but also doors Do reached by other robots.
Any candidate door d ∈ D that is distanced less than ϵd from
any of the doors reached by other robots Do is excluded.
This is possible because the robots share a common global
coordinate frame. Likewise, when targeting a new circle, a
robot excludes circles reached by itself and other robots, both
Cr and Co. The details are explained in TargetDoor() and
TargetCircle() methods in Alg. 3.

E. Multi-Robot Multi-Room (MRMR) Exploration

Here, we explain how the previous algorithms come together
and fit into one method, Multi-Robot Multi-Room (MRMR)
exploration. The detailed procedure is in Alg. 4. Each timestep
is a fixed timestep of 0.1s. At every timestep, the robot extracts
geometric cues (saddle points, local maxima, and distances to
the walls), and updates the circular decomposition of the space.
Then the robot targets a door, moves to the door, and explores
a room by targeting a circle that composes the room. When
there exists a circle c′ that is adjacent to the current circle c (we
set µ = 1.1, and if distance between c′.center and c.center
is smaller than µ(c′.r + c.r), we regard them adjacent), we
set it as a next target circle. This is effective when exploring
a larger type of room, composed of multiple adjacent circles.
After completing this, the robot marks the doors and circles as
reached, and shares this information Dr, Cr with other robots
to avoid re-targeting of doors and circles that were already
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Algorithm 4 Multi-robot Multi-room (MRMR) exploration.
Algorithm is run on each robot at 10Hz.
Input: Initialize O,C,D,Cr, Dr, Co, Do with empty sets {}

1: for each timestep:
2: P sadd, (Pmax,∆)← ExtractCues(O)
3: D ← P sadd; C ←UpdateCircles(C, (Pmax,∆))
4: if not robot.is targeting:
5: d← TargetDoor(); robot.is targeting ← True
6: MoveTo(d)
7: if robot.reached the target door :
8: Dr ← Dr ∪ {d}
9: c← TargetCircle(); MoveTo(c.center)

10: while ∃c′ s.t. dist(c′.center, c.center) < µ(c′.r + c.r)
11: c← TargetCircle(); MoveTo(c.center)
12: robot.is targeting ← False
13: for ∀c s.t. c.is reached: Cr ← Cr ∪ {c}
14: Co, Do ← Communication(Cr, Dr)
Output: Path trajectory traveled by robot

Fig. 5. Aerial robot system hardware. Left: top-view, Right: side-view.
Custom-built quadrotor robot equipped with sensors and computer onboard.

explored. This sharing of information through communication
enables effective distributed target assignment.

V. EXPERIMENTS & RESULTS

In this section, we explain the experimental setup and
display results to evaluate our algorithm, MRMR. We first
elaborate on the experimental setup and discuss results for
simulation environments. Then we discuss the experimental
setup and results for real-robot experiments. For comparison,
we chose the previous frontier-based exploration [10] as a
baseline, both in simulation and real-robot experiments.

A. Simulation Experiments

1) Experimental Setup: We used the SubT UAV code
released by [10], developed to simulate real subterranean envi-
ronments. We designed eight indoor simulation environments
with different configurations; Table I displays the details of
each environment. First five environments (Env1 to Env5) fea-
ture simple, idealized settings with doors, rooms and corridors.
Env6 features larger sizes of rooms. Env7 includes objects (e.g.
table, bookshelf, cabinet) in each room. Lastly, Env8 includes
a scenario where the wall-axes are not aligned with x,y-axis
of the global coordinate frame.

We tested with different numbers of robots (n = 1, 2, 3)
and measured the number of voxels collectively observed by
the robots’ camera sensors over 2 minutes. Each graph curve

TABLE I
THE DETAILS OF THE SIMULATION TEST ENVIRONMENTS.

Name Images Rooms Volume(m3) Voxels

Env1 6 462.6 9587

Env2 8 776.7 21313

Env3 5 402.9 11869

Env4 9 729.1 20105

Env5 12 1179.1 33371

Env6 9 1226.9 38807

Env7 10 932.4 23734

Env8 12 1024.9 31082

TABLE II
THE SUMMARY OF SIMULATION EXPERIMENTS

Method 1 Robot 2 Robots 3 Robots
Vxl. Rm. Vxl. Rm. Vxl. Rm.

Baseline 27.15% 19.17% 39.08% 41.14% 52.88% 58.76%
MRMR 35.57% 34.58% 55.43% 51.49% 67.4% 66.68%
Improvement 31.01% 80.38% 41.84% 25.16% 27.45% 13.48%

is an average of three independent runs. We also measured
percentages of observed voxels (out of total voxels in rooms)
and number of rooms (out of total number of rooms) by each
method, and displayed the results in a separate table.

2) Results: The results of the simulation experiments are
displayed in Fig. 6. The plots in the first row of the figure
are single-robot case, and the plots in the second and third
row are multi-robot cases (2-robots and 3-robots). These plots
demonstrate that our Method (MRMR) observes more voxels
in the rooms than frontier-based baseline, across different
environments and different number of robots. In average,
MRMR observes 31.01%, 41.84%, 27.45% more room grid
voxels than baseline in single-robot, two-robots, and three-
robots cases. In the Table II, we reported how MRMR observes
more voxels (out of total room voxels; denoted Vxl.) and
explore more rooms (out of total number of rooms; denoted
Rm.) than baseline; MRMR outperforms the baseline both in
terms of voxels and number of rooms. MRMR shows larger
outperformance compared to baseline in the case of two-robots
than three-robots. While outperformance is still significant,
adding more robots to the same space results in necessary
overlap of their sensor coverage.

More qualitative explanations of difference between the
baseline and MRMR are following: as shown in Fig. 7(a),
using the baseline, robots first choose to travel corridors fast by
moving straight to increase the coverage area without turning
to the doors or rooms. In contrary, as in Fig. 7(b), the robots
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Fig. 6. The comparison of baseline and our method (MRMR). The first, second, third row is 1-robot, 2-robots, and 3-robots case respectively, and each
column represents each different environment. Results show that our MRMR method observes more voxels in rooms than the baseline.

Fig. 7. Visualization of baseline’s and our method’s behaviors. (a) Using the
baseline, the robots travel the corridor first by moving straight, while (b) using
our method, robots quickly turn directions to find doors and enter the rooms.
(c),(e): multiple robots often enter the same rooms redundantly. (d),(f): each
room is uniquely visited by each robot using our method.

quickly turn directions to reach the doors and enter rooms,
rather than traveling along the corridor. Using the baseline
(Fig. 7(c),(e)), multiple robots often enter the same rooms
redundantly and sometimes miss exploring rooms; in contrary
our method (Fig. 7(d),(f)) enables robots to uniquely visit each
room without redundancy.

We briefly report the measured runtime of new modules.
The average runtimes of distance transform, geometric cue
extraction, and circular decomposition are 480.5µs, 1.962ms,
and 35.8µs. We also report the accuracy of door detection
using saddle points extraction: The average precision and
recall over all environments are 0.94 and 0.97.

Lastly, we discuss the behaviors of robots in challenging
environments. When objects are in rooms, (Fig. 8(a)), robots
generate circles that are tangential to the objects, as these
objects serve as occupied cells when generating 2D distance
transform map. When wall axes are not aligned with global
frame (Fig 8(b)), our saddle point detection is still robust and

Fig. 8. (a) When objects are in rooms, the robot generates circles that adjoin
the objects. (b) Our saddle point detection is robust to the case where door
axis is not aligned with global coordinate frame. (c) Robot generates multiple
circles while exploring a large room.

accurate at detecting doors. In the setting with a larger room
(Fig. 8(c)), the robot generates multiple circles and reaches
the centers of the circles one by one to cover the room.

B. Real-Robot Experiments

1) Experimental Setup: For real-world experiments, we
use custom quadrotors as shown in Fig. 5. Each drone is
68cm wide, 81cm long, weighs 5.2kg, and is equipped with
a Velodyne VLP-16 Lidar, Realsense RGBD sensors, Rajant
DX2, Intel NUC computer with Intel Core i7-8550U CPU. No
additional data filtering or clean-ups are required compared
to simulation. We run experiments in an abandoned hospital
in Pittsburgh, PA. The main results compare our method to
the baseline with two to three robots; drones fly sequentially
as the mechanism for inter-robot collision avoidance for real
robots is limited. Additionally, we report results of a trial with
three robots flying simultaneously with our method only. We
report the number of voxels (Vxl.) and number of rooms (Rm.)
collectively observed by the robots for both experiments.

2) Results: The results are displayed in the Table III. In
the comparative tests, both in two-robots and three-robots
cases, the robots generally observe more voxels and explore
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TABLE III
THE SUMMARY OF REAL-ROBOT EXPERIMENTS OVER THREE TRIALS

2 Robots 3 Robots

# Baseline MRMR Baseline MRMR
Vxl. Rm. Vxl. Rm. Vxl. Rm. Vxl. Rm.

1. 6204 3 10285 5 11584 5 15732 8
2. 10721 5 9428 5 14336 7 17320 9
3. 8437 4 11724 6 14561 7 15976 8

Fig. 9. Visualization of covered areas and traveled trajectories in real-
robot experiments: (a) baseline (two-robots) (b) MRMR (two-robots). MRMR
observes more rooms than baseline. (c) MRMR (three-robots)

more rooms using MRMR. The exception is trial 2 of the
two-robot case where the baseline outperforms MRMR but
by an insignificant amount. On average, MRMR observes
30.66%, 22.09% more voxels in rooms than the baseline, in
two-robot and three-robot cases respectively. Fig. 9(a),(b) are
the results of running both methods with two robots. Finally, in
the simultaneous execution experiment (Fig. 9(c)), the robots
successfully explored 8 rooms using MRMR, observing 16793
voxels in the rooms, with three drones.

VI. CONCLUSION & FUTURE WORK

We proposed a multi-robot multi-room autonomous explo-
ration pipeline (MRMR) that methodically explores rooms in
a building and coordinates behaviors of robots. To this end,
we presented a geometric cue extraction method that detects
locations of doors and rooms from point clouds, and circular
decomposition of spaces for target assignment. We validated
performance of our method in simulated and real experiments.
Some limitations are that the approach is only applicable to
single story buildings due to flattening of 3D voxels into 2D
distance transform, and that the collision avoidance among
aerial robots is implicit, rather than explicit. For future work,
we plan to extend our approach to multi-floor buildings
and to consider exploration with heterogeneous multi-robot
systems and to improve such systems with advanced vision
and learning modules.
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