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Abstract

Recent advancements in vision-language foundation models, exemplified
by GPT4-Vision and DALL-E 3, have significantly transformed both
research and practical applications, ranging from professional assistance
to content creation. These models excel with minimal downstream data
and limited human input, primarily leveraging prompt-based interactions.
However, aligning them precisely with specific user goals presents a notable
challenge. This thesis introduces innovative strategies for improving this
alignment. It begins with a novel cross-modal adaptation framework,
utilizing textual data to tailor foundational models such as CLIP more
effectively to tasks such as visual recognition. It then explores an approach
based on ChatGPT for aligning popular proprietary models, like DALL-E
3, to better meet user needs. Lastly, the thesis addresses the challenges in
visio-linguistic reasoning, discussing efforts to assess and enhance model
fidelity in complex tasks requiring advanced compositional reasoning.
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2.2 Adding additional modalities helps few-shot learning. Adding
textual labels to a 2-shot cat-vs-dog classification task leads to better
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task!). We visualize cross-modal CLIP [45] features (projection to 2D
with principal component analysis) and the resulting classifier learned
from them, and observe a large shift in the decision boundary. See
Figure 2.5 for more examples. . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Cross-modality reduces the ambiguity of few-shot learning.
Classic (uni-modal) few-shot learning is often underspecified. Even for
binary classification, when given only a single image per class (left),
it is unclear whether the target class is the animal, the hat, or the
background scene. Adding an extra modality, such as text or audio,
helps clarify the problem setup (right). Notably, language usually
comes “for free” in classification datasets in the form of a textual label
per class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Uni-modal (left) vs. cross-modal adaptation (right). Prior
work [45, 195, 214, 221] performs uni-modal adaptation by calculat-
ing the loss over a single modality. Cross-modal adaptation makes
use of additional training samples from other modalities, exploiting
pre-trained encoders that map different modalities to the same repre-
sentation space. We show that cross-modal learning can also improve
prior art and even extends to audio modalities with AudioCLIP [54]. 10
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Chapter 1

Introduction

The evolution of vision-language foundation models has been pivotal not only in

academic research but also in transforming everyday tasks. Models like CLIP have

revolutionized visual recognition, becoming foundational in a variety of multimodal

systems and downstream applications. GPT4-Vision, with its advanced visual un-

derstanding, is adept at tasks such as chart reading and GUI navigation and can

already serve as a professional assistant. Similarly, models like DALL-E 3 stand

at the forefront of creative generation, turning text prompts into designer-quality

images. This thesis explores innovative methods to enhance the functionality of

vision-language models (VLMs), while also integrating insights from large language

models (LLMs) like ChatGPT to optimize their performance in a wider array of

applications.

The first approach, termed ”cross-modal adaptation,” is a significant breakthrough

in aligning discriminatively-pretrained VLMs with user objectives, particularly in

visual classification tasks. This method leverages textual or audio data to construct-

better visual classifiers with minimal supervision, surpassing concurrent prompting

methods in efficiency and efficacy. It represents a paradigm shift in using multiple

modalities to enhance unimodal recognition capabilities.

Building on this, the second approach introduces a truly black-box method that

employs LLMs, such as ChatGPT, as natural language prompt optimizers for VLMs.

This approach demonstrates superior results in one-shot visual classification and

text-to-image optimization tasks, including image generation and prompt inversion.

1



1. Introduction

By harnessing the strengths of both VLMs and LLMs, this method showcases the

potential of integrated AI systems in complex applications.

While these adaptation methods have shown effectiveness, they do not directly

address the inherent limitations of current vision-language foundation models in

dealing with compositional and complex reasoning. The final part of this thesis

focuses on these fundamental challenges. It presents strategies to assess and enhance

the models’ capabilities in handling detailed compositions of objects, attributes, and

their relationships. This is crucial for applications requiring fine-grained control

and sophisticated reasoning, pushing the limits of what vision-language models can

achieve and better aligning them with nuanced user goals.

2



Chapter 2

Multimodality Helps Unimodality:

Cross-Modal Few-Shot Learning

with Multimodal Models

The ability to quickly learn a new task with minimal instruction – known as few-shot

learning – is a central aspect of intelligent agents. Classical few-shot benchmarks

make use of few-shot samples from a single modality, but such samples may not be

sufficient to characterize an entire concept class. In contrast, humans use cross-modal

information to learn new concepts efficiently. In this work, we demonstrate that one

can indeed build a better visual dog classifier by reading about dogs and listening

to them bark. To do so, we exploit the fact that recent multimodal foundation models

such as CLIP are inherently cross-modal, mapping different modalities to the same

representation space. Specifically, we propose a simple cross-modal adaptation

approach that learns from few-shot examples spanning different modalities. By

repurposing class names as additional one-shot training samples, we achieve SOTA

results with an embarrassingly simple linear classifier for vision-language adaptation.

Furthermore, we show that our approach can benefit existing methods such as prefix

tuning, adapters, and classifier ensembling. Finally, to explore other modalities

beyond vision and language, we construct the first (to our knowledge) audiovisual

few-shot benchmark and use cross-modal training to improve the performance of both

image and audio classification.

3



2. Multimodality Helps Unimodality: Cross-Modal Few-Shot Learning with
Multimodal Models

“A photo of a dog.”

Figure 2.1: Human perception is internally cross-modal. When we perceive
from one modality (such as vision), the same neurons will be triggered in our cerebral
cortex as if we are perceiving the object from other modalities (such as language and
audio) [48, 128, 135]. This phenomenon grants us a strong ability to learn from a few
examples with cross-modal information [96, 128]. In this work, we propose to leverage
cross-modality to adapt multimodal models (such as CLIP [154] and AudioCLIP [54]),
that encode different modalities to the same representation space.

Learning with minimal instruction is a hallmark of human intelligence [163, 176,

190], and is often studied under the guise of few-shot learning. In the context of

few-shot visual classification [34, 42, 56, 86, 150, 156], a classifier is first pre-trained

on a set of base classes to learn a good feature representation and then adapted or

finetuned on a small amount of novel class data. However, such few-shot setups often

face an inherent ambiguity – if the training image contains a golden retriever wearing

a hat, how does the learner know if the task is to find dogs, golden retrievers, or

even hats? On the other hand, humans have little trouble understanding and even

generalizing from as few as one example. How so?

We argue that humans make use of multimodal signals and representations

(Figure 2.1) when learning concepts. For example, verbal language has been shown

to help toddlers better recognize visual objects given just a few examples [81, 175].

Indeed, there exists ample evidence from neuroscience suggesting that cognitive
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representations are inherently multimodal. For instance, visual images of a person

evoke the same neurons as the textual strings of the person’s name [151] and even

audio clips of that person talking [135]. Even for infants as young as 1-5 months old,

there is a strong correspondence between auditory-visual [96] as well as visual-tactile

signals [128]. Such cross-modal or inter-modal representations are fundamental to

the human perceptual-cognitive system, allowing us to understand new concepts even

with few examples [48].

Cross-modal adaptation (our approach). In this paper, we demonstrate that

cross-modal understanding of different modalities (such as image-text or image-audio)

can improve the performance of individual modalities. That is, reading about dogs

and listening to them bark can help build a better visual classifier for them! To do

so, we present a remarkably simple strategy for cross-modal few-shot adaptation: we

treat examples from different modalities as additional few-shot examples. For example,

given the “1-shot” task of learning a dog classifier, we treat both the textual dog

label and the single visual image as training examples for learning a (visual) dog

classifier. Learning is straightforward when using frozen textual and visual encoders,

such as CLIP [154], that map different modalities to the same representational space.

In essence, we have converted the “n-shot” problem to a “(n+1)-shot” problem

(Figure 2.2)! We demonstrate that this basic strategy produces SOTA results across

the board with a simple linear classifier, and can be applied to existing finetuning

methods [195, 214, 221] or additional modalities (e.g. audio).

Why does it work? From one perspective, it may not be surprising that cross-

modal adaptation improves accuracy, since it takes advantage of additional training

examples that are “hidden” in the problem definition, e.g. a label name [201] or

an annotation policy [133] for each class. However, our experiments demonstrate

that multimodal cues are often complementary since they capture different aspects

of the underlying concept; a dog label paired with a single visual example is often

more performant than two images! For example, Figure 2.3 demonstrates a one-shot

example where the target concept is ambiguous, but becomes clear once we add

information from other modalities like language and sound.

Multimodal adaptation (prior art). In contrast to our cross-modal approach,

most prior works simply follow the popular practice of finetuning uni-modal foundation

models, such as large vision [23, 59, 60] or language models [16, 33, 118]. For example,
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CoOp [221] and other prompting methods [121, 220, 223] finetune CLIP via prefix

tuning to replace hand-engineered prompts such as "a photo of a {cls}" with

learned word tokens. Similarly, inspired by parameter-efficient tuning of language

models [73], adapter-based methods [45, 214] finetune CLIP by inserting lightweight

multi-layer-perceptrons (MLPs). However, we aim to study the fundamental question

of how to finetune multi-modal (as opposed to uni-modal) models. A crucial difference

between prior art and ours is the use of textual information, as all existing methods [80,

195, 214, 221] repurpose additional text features as classifier weights instead of training

samples. We demonstrate in this paper that cross-modal adaptation is not only more

performant but can also benefit prior uni-modal approaches.

Problem setup. We begin by replicating the existing evaluation protocol

of other works [154, 214, 221] on few-shot adaptation of vision-language models,

and report performance on 11 diverse downstream datasets. We produce state-of-

the-art accuracy with an embarrassingly simple linear classifier that has access to

additional “hidden” training examples in the form of textual labels, resulting in a

system that is far more lightweight than prior art. Interestingly, we show that existing

approaches [195, 214, 221], despite already repurposing text features as classifier

weights, can still benefit from cross-modal learning. Finally, we extend our work to

the audio domain by taking advantage of AudioCLIP [54] that maps audio to the

same frozen CLIP representation space. We construct the first (to our knowledge)

cross-modal few-shot learning benchmark with audio by intersecting ImageNet [30] and

the ESC-50 audio classification dataset [147]. We show that cross-modal audiovisual

learning helps for both downstream image and audio classification; in summary, one

can train better dog image classifiers by listening to them bark!

2.1 Related Works

Webly-supervised pre-training. Learning foundation models [12] from large-

scale web data is becoming a predominant paradigm in AI. In NLP, models such as

BERT [33] and GPT-3 [16] are pre-trained on a massive web text corpus with language-

modeling objectives and can be transferred to a wide range of downstream tasks, even

without explicit supervised finetuning [115, 183]. Self-supervision [20, 23, 59] is also

a trending topic in the vision community, and recent methods [50, 60] demonstrate
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+ Text

Dog Cat Image TextXX Test

“A photo of a cat.”

“A photo of a dog.”

Figure 2.2: Adding additional modalities helps few-shot learning. Adding
textual labels to a 2-shot cat-vs-dog classification task leads to better test performance
(by turning the problem into a 3-shot cross-modal task!). We visualize cross-modal
CLIP [45] features (projection to 2D with principal component analysis) and the
resulting classifier learned from them, and observe a large shift in the decision
boundary. See Figure 2.5 for more examples.

even stronger visual representations than fully-supervised pre-trained ones such as on

ImageNet [30].

Multimodal foundation models. Recently, foundation models have shifted

towards a multimodal supervision paradigm. For visual representation learning,

early works transform web image captions into structured outputs for supervised

learning, such as multi-label targets [87] or visual n-grams [99]. More recently,

CLIP [154] and ALIGN [83] propose a simple contrastive-based approach to embed

images and captions into the same representation space, and demonstrate impressive

“zero-shot” performance on downstream tasks. Follow-up works enhance multimodal

pre-training by incorporating generative-based objectives [4, 104, 206], consistency

regularization [111, 134], stronger visual priors [210], phrase-grounding tasks [106, 212],

and audiovisual information through videos [54]. In this work, we focus on adapting

CLIP [154] and AudioCLIP [54] for few-shot classification because contrastive-based

multimodal models are stronger classifiers [4]. Adopting other multimodal models [4,
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Figure 2.3: Cross-modality reduces the ambiguity of few-shot learning. Clas-
sic (uni-modal) few-shot learning is often underspecified. Even for binary classification,
when given only a single image per class (left), it is unclear whether the target class
is the animal, the hat, or the background scene. Adding an extra modality, such as
text or audio, helps clarify the problem setup (right). Notably, language usually
comes “for free” in classification datasets in the form of a textual label per class.

206] or adapting to tasks other than classification [177, 212] can be interesting future

directions.

Adaptation of foundation models. As multimodal pre-trained models have

excelled at classic vision tasks [154, 212], there has been surging interest in developing

more efficient adaptation methods. However, we observe that most of the trending

techniques are built upon successful recipes crafted for uni-modal foundation models.

For example, CLIP [154] adopts linear probing [23, 59, 60, 212] and full-finetuning [49,

60, 91, 189, 196, 212] when transferring to downstream tasks. Prompt adaptation of

CLIP [121, 154, 202, 220, 223] is motivated by the success of prefix-tuning for language

models [31, 46, 57, 85, 115, 148, 161, 162, 171]. Similarly, CLIP-Adapter [45] and

Tip-Adapter [214] are inspired by parameter-efficient finetuning methods [73, 84, 213]

that optimize lightweight MLPs while freezing the encoder. Yet, all aforementioned

methods including WiSE-FT [195] use the other modality, e.g. textual labels, as
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classifier weights and still calculate a uni-modal softmax loss on the few-shot images.

We instead show that incorporating other modalities as training samples is far more

effective.

Few-shot classification. Prior successful few-shot learning methods leverage

meta learning [42, 156], metric learning [8, 176, 184], transfer learning [56, 150],

and transductive learning [34, 86]. These classic algorithms usually assume a large

meta-training set for pre-training the network, and then evaluate on multiple episodes

of few-shot train (support) and test (query) sets. In this work, we instead follow

the new evaluation protocol implemented by recent works on few-shot adaptation

with CLIP [154, 214, 221]: (1) the meta-training phase is replaced with pre-trained

CLIP models, and (2) the test sets are the official test splits of each dataset (thus not

few-shot). Notably, none of the prior works [214, 221] we compare to in this paper

perform optimization with test set samples, and we follow this practice to ensure a

fair comparison. We leave semi-supervised [188] or transductive finetuning [34, 77]

techniques as future work.

Cross-modal machine learning. Inspired by cross-modal human cognition [18,

93, 135], cross-modal learning [133, 201] is a subfield of multimodal machine learning [1,

5, 19, 70, 97, 109, 122, 142, 143, 167, 211] that aims to use data from additional

modalities to improve a uni-modal task. Cross-modal learning does not require

instance-wise alignment; for example, existing algorithms [133, 201] can benefit from

class-level descriptions as opposed to image-level captions. In this work, we propose

a lightweight cross-modal learning method by treating data from other modalities

as additional training samples. Furthermore, we encourage future works to embrace

cross-modal few-shot learning as opposed to the underspecified uni-modal setup

(Figure 2.3).

2.2 Cross-Modal Adaptation

In this section, we mathematically formalize our approach to cross-modal few-shot

learning.

Uni-modal learning. We begin by reviewing standard uni-modal few-shot

classification, which learns a classifier from a small dataset of (xi, yi) pairs and
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Encoder
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Encoder
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Encoder

Audio
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(                 , 1)

(Vision-Language Adaptation)(Vision-Only Adaptation) (Vision-Audio Adaptation)

(         , 0)

(         , 1)

(         , 0)

(         , 1)

(         , 0)

(         , 1)“A photo of a dog.”

“A photo of a cat.” Meow..

Bark..

Figure 2.4: Uni-modal (left) vs. cross-modal adaptation (right). Prior
work [45, 195, 214, 221] performs uni-modal adaptation by calculating the loss over a
single modality. Cross-modal adaptation makes use of additional training samples
from other modalities, exploiting pre-trained encoders that map different modalities
to the same representation space. We show that cross-modal learning can also improve
prior art and even extends to audio modalities with AudioCLIP [54].

pre-trained feature encoder ϕ(·):

Luni−modal =
∑
i

H(yi, ϕ(xi)) (2.1)

where H is typically the softmax loss

H(y, f) = − log
(
p(y|f)

)
= − log

( ewy ·f∑
y′ e

wy′ ·f

)
. (2.2)

Our notation separates the feature extractor ϕ from the final class weights wy, since

the former is typically pre-trained on a massive source dataset and the latter is trained

on the few-shot target dataset. However, sometimes the representation ϕ can also be

finetuned on the few-shot dataset (as we explore in our experiments). Importantly,

both the class weights and feature extractor must live in the same N -dimensional

space in order to compute their inner product:

wy, ϕ(·) ∈ RN . (2.3)
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Though we focus on classification, class models could be learned via other losses (such

as centroid prototypes [176]).

Cross-modal learning. Our extension to multiple modalities is staightforward;

we assume each training example is accompanied by a discrete label m denoting its

modality:

(xi, yi)→ (xi, yi,mi), xi ∈ Xmi
, mi ∈M. (2.4)

For example, one may define the set of modalities to be M = {visual, language} or
{visual, audio} (Figure 2.4). We can then define an associated loss:

Lcross−modal =
∑
i

H(yi, ϕmi
(xi)), (2.5)

where we crucially assume access to modality-specific feature encoders ϕm for m ∈M .

While the individual datapoints xi may come from different modalities with different

dimensions, our formulation requires that the encoders map all modalities to the

same fixed-dimensional space.

wy, ϕm(·) ∈ RN . (2.6)

Note that this requirement is satisfied by many multimodal foundation models such

as CLIP [154] and ALIGN [83] since they map different modalities into the same

N -dimensional embedding.

Inference: The learned classifier can produce a label prediction for a test example

x from any modality m ∈M :

ŷ = argmax
y′

wy′ · ϕm(x). (2.7)

This means we can use the same classifier to classify different test modalities (e.g.

images and audio clips). In this paper, we mainly evaluate on a single modality (like

images) to emphasize that multimodality helps unimodality.

Cross-modal ensembles. We now show that cross-modal learning produces

classifiers that are ensembles of modality-specific classifiers, exposing a connection to
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related approaches for ensembling (such as WiSE-FT [195]). We begin by appealing

to the well-known Representer Theorem [164], which shows that optimally-trained

classifiers can be represented as linear combinations of their training samples. In the

case of a cross-modal linear probe, weights for class y must be a weighted combination

of all i training features, across all modalities:

wy =
∑
i

αiyϕmi
(xi) =

∑
m∈M

wm
y , where

wm
y =

∑
{i:mi=m}

αiyϕm(xi). (2.8)

Linear classification via cross-modal adaptation solves for all weights αiy jointly, so

as to minimize the empirical risk (or training loss). In contrast, prior art optimizes

for image-specific αiy’s independently of the text-specific αiy’s, linearly combining

them with a single global α (as in WiSE-FT [195]) or via text-based classifier

initialization [45, 214]. Our analysis suggests that the joint optimization enabled by

cross-modal learning may help other adaptation methods, as our experiments do in

fact show.

Extensions. Although we focus on uni-modal inference tasks (e.g. image

classification), the above formulation allows the learned classifier to be applied to

multimodal test sets, such as classifying videos by training on image and audio,

and then ensembling predictions across the two modalities with Equation 2.7. Or,

one can extend image classification by providing additional data such as captions

and/or attributes. We leave these scenarios as future work. Finally, just as one

can optimize uni-modal losses (2.1) by finetuning the encoder ϕ, one can similarly

finetune modality-specific encoders ϕm in the cross-modal setting (2.5). We explore

this finetuning method in the next section.

2.3 Vision-Language Adaptation

We now explore our cross-modal formulation for a particular multimodal setting.

Many prior works [133, 201, 214, 221] explore the intersection of vision and language,

and thus that is our initial focus. Interestingly, the influential “zero-shot” and “few-

shot” evaluation protocols introduced by prior work [154, 198] can be mapped to our
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cross-modal setting, with one crucial difference; the textual label of each class can be

treated as an explicit training sample (xi, yi,mi). From this perspective, “zero-shot”

learning may be more naturally thought of as one-shot cross-modal learning that

learns a few-shot model on text and then infers with it on images.

Few-shot evaluation protocol. To ensure a fair comparison, we strictly follow

the protocol of CoOp [221] by reporting test performance on 11 public image datasets

(Table 2.5), with ResNet50 [58] as the image encoder backbone. For maximal

reproducibility, we use CoOp’s dataset splits [221] and the three-fold few-shot train

sets sampled with the same random seeds. We adopt the given test split of each

dataset as the test set. Some prior works [121, 214] apparently use the large-scale test

set to tune hyperparameters for few-shot learning; we instead exercise due diligence by

tuning hyperparameters (such as the learning rate, weight decay, and early stopping)

on the given few-shot validation set with min(n, 4) examples, where n is the number

of training shots.

Cross-modal adaptation outperforms SOTA. Table 2.1 shows the effective-

ness of our proposal: we surpass all prior art with an embarrassingly simple linear

classifier that requires significantly less training time than other carefully-crafted

algorithms. In addition, partial finetuning of the last attentional pooling layer from

ϕimage sets the new SOTA. To ensure a fair comparison, we augment the class names

into sentences using hand-engineered templates selected by Tip-Adapter [214] (Ta-

ble 2.5) and follow their practice to initialize the linear layer with text features.

Furthermore, we perform minimal image augmentation with a center crop plus a

flipped view instead of random crops as in prior art [214, 221]. As such, we can

pre-extract features before training the classifier, leading to significantly less training

time as shown in Table 2.8. We also show that our method can benefit from both

image and text augmentation in Table 2.6.

Why does cross-modal learning help? As stated earlier, one reason that cross-

modal learning helps is that it turns the original n-shot problem to an (n+ 1)-shot

one. However, Table 2.1 shows that 1-shot cross-modal linear probing outperforms

the 2-shot results of most prior methods. This suggests that training samples from

other modalities tend to contain complementary cues [133, 195, 201]. One can loosely

observe this in Figure 2.2 and Figure 2.5, whereby visual and text examples lie in

slightly different parts of the embedding space (indicating the potential to aggressively
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Uni-modal Cross-modal

Figure 2.5: Additional PCA projection plots for random pairs of classes in
ImageNet [30]. Adding one-shot text as training samples can oftentimes aggressively
shift the decision boundary.
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Method
Number of shots

Train speed
1 2 4 8 16

Zero-Shot CLIP (58.8) - - - - - -

Linear Probing 36.7 47.6 57.2 65.0 71.1 <1min

WiSE-FT [195] 59.1 61.8 65.3 68.4 71.6 <1min

CoOp [221] 59.6 62.3 66.8 69.9 73.4 14hr

ProGrad [223] 62.6 64.9 68.5 71.4 74.0 17hr

Tip-Adapter [214] 64.5 66.7 69.7 72.5 75.8 5min

Tip-Adapter† [214] 63.3 65.9 69.0 72.2 75.1 5min

Cross-Modal Linear Probing 64.1 67.0 70.3 73.0 76.0 <1min

Cross-Modal Partial Finetuning 64.7 67.2 70.5 73.6 77.1 <3min

Table 2.1: Comparison to SOTA using the CoOp [221] protocol, which reports top-1
accuracy across 11 test sets in Table 2.5. For a fair comparison, we reuse the same few-shot
visual samples and hand-engineered text prompts used by Tip-Adapter [214]. The original
Tip-Adapter searches over hyperparameters (e.g. early stopping) on the large-scale test
set, which may not be realistic for few-shot scenarios. Instead, we rerun their codebase and
early-stop on a few-shot validation set (as we do), denoted by †. We reproduce WiSE-FT
in our codebase since the original work does not provide few-shot results. In summary, by
incorporating one-shot text samples into our training set, a simple cross-modal linear probe
already outperforms all prior methods across all shots. Additionally, partial finetuning
further improves performance, especially for 8 and 16 shots. Finally, our methods are faster
to train than prior work, sometimes significantly (full report in Table 2.8).

shape the final decision boundary). In fact, WiSE-FT [195] is inspired by similar

reasons to ensemble the uni-modal visual classifier with a “zero-shot” (one-shot-text)

classifier (in the linear probing case). However, Equation 2.8 shows that cross-modal

adaptation can also be seen as jointly learning an ensemble, while WiSE-FT [195]

learns the visual classifier independently of the text classifier. This suggests that

other adaptation methods may benefit from cross-modal learning, as we show next.

Cross-modal adaptation helps prior art (Table 2.2). This includes prompt-

ing (CoOp [221]), adapters (Tip-Adapter [214]), and robust-finetuning (WiSE-FT [195]).

We see a large improvement in the low-data regime (1 and 2 shots). Notably, we do

not need to tune any methods, and simply reuse the reported hyperparameters. For

prompting, we follow CoOp [221] to optimize 16 continuous tokens with the same

training setting. For the Adapter model, we follow the same 2-layer MLP architecture
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Method
Number of shots

1 2 4 8 16

Linear Probing 36.7 47.6 57.2 65.0 71.1
Cross-Modal Linear Probing 64.1 67.0 70.3 73.0 76.0

∆ 27.4 19.4 13.1 8.0 4.9
WiSE-FT [195] 59.1 61.8 65.3 68.4 71.6

Cross-Modal WiSE-FT 63.8 66.4 69.0 71.7 74.1
∆ 4.7 4.6 3.7 3.3 2.5

CoOp [221] 59.6 62.3 66.8 69.9 73.4
Cross-Modal Prompting 62.0 64.9 68.6 71.4 74.0

∆ 2.4 2.6 1.8 1.5 0.6
Tip-Adapter† [214] 63.3 65.9 69.0 72.2 75.1

Cross-Modal Adapter 64.4 67.6 70.8 73.4 75.9
∆ 1.1 1.7 1.8 1.2 0.8

Table 2.2: Cross-modal adaptation improves existing methods. We follow the same
protocol as Table 2.1, reporting the delta accuracy between uni-modal and cross-modal
variants of various state-of-the-art methods. The consistent boost suggests that cross-modal
training is orthogonal to techniques for uni-modal adaptation, such as prompting [221],
adapter [73], and robust finetuning [195].

of CLIP-Adapter [45] with the given residual ratio of 0.2; we outperform Tip-Adapter

without relying on their training-free initialization of MLP. For WiSE-FT, we adopt

the given ratio (0.5) to post-hoc ensemble the learned and the zero-shot classifiers.

Overall, our experiments suggest that cross-modal adaptation is consistently effective,

and should likely be a baseline moving forward given its ease-of-implementation.

For example, instead of separately benchmarking on “zero-shot” (one-shot-text) and

few-shot-vision, a cross-modal linear prob would suffice to evaluate representations of

a multimodal model.
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2.4 Vision-Audio Adaptation

We now explore cross-modal adaption for other modalities such as audio. We pose

the following question: can one learn a better dog visual classifier by listening to a

dog barking? To examine this question, we curate the first audiovisual benchmark

that supports few-shot classification of both image and audio.

Our ImageNet-ESC benchmark.1 We construct our audiovisual benchmark

by intersecting two of the most popular image and audio datasets: ImageNet [30]

with 1000 types of objects and ESC-50 [147] with 50 types of environmental sounds

(including animal, nature, human activity, domestic, and urban noises). We use the

class names of the two datasets for class matching. For each class in ESC-50, we

check whether there is a corresponding ImageNet class that may produce this type of

sound. In this process, we observe that the audio-to-object matching can sometimes

be one-to-many. For example, the clock-alarm class in ESC-50 can be mapped

to either digital clock or analog clock in ImageNet; the dog (barking) class in

ESC-50 can be matched to any of the 120 dog species. In such scenarios, we randomly

match the classes, e.g. clock alarm to digital clock and dog to otterhound.

Also, we find that some audio classes loosely match with some visual objects, such as

drinking-sipping to water bottle and pouring-water to water jug. As such,

we create two versions of the dataset: (1) ImageNet-ESC-27, which represents the

maximal intersection consisting of all loose matches, and (2) ImageNet-ESC-19, a

subset of the former version consisting of more accurate matches.

Few-shot evaluation protocol. We use five-fold few-shot splits sampled

from ImageNet, with each split divided into half for training and validation. Test

performance is recorded on the official ImageNet validation set of the corresponding

classes. We adopt the predefined five folds of ESC-50, where each fold contains 8

samples per class. We construct 5 splits from ESC-50 by selecting one fold for training

and validation, and record test performance on the other 4 folds. We report averaged

performance over 25 runs (since we have 5 random splits for each modality). To keep

consistent with our vision-language experiments, we adopt a uni-modal validation

and test set and leave cross-modal testing for future work.

1Download instructions can be found in our codebase.
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Audio encoding. We use AudioCLIP [54] with an ESResNeXT backbone [55]

as the audio encoder ϕaudio. Because AudioCLIP is trained on a large-scale video

dataset (AudioSet [47]) while freezing the pre-trained CLIP text and image encoder,

it produces audio embeddings in the same representation space. While AudioCLIP

is pretrained on a sizable amount of data, we note that it does not come close

to matching the scale of CLIP pretraining [54, 154]. Thus, it does not perform

favorably compared to the SOTA for downstream “zero-shot” audio (i.e. one-shot

text) classification tasks [54]. However, scaling up audio pretraining is orthogonal to

our investigation.

Audio improves image classification. Table 2.3 shows that adding a random

one-shot-audio improves upon naive image-only linear probing, especially in an

extremely low-shot setting. This reaffirms Figure 2.3’s hypothesis that cross-modality

can reduce the ambiguity of the uni-modal few-shot setup; in other words, one can

learn a better image classifier by listening to object sounds. One exception is the

4-shot performance on ImageNet-ESC-27, where adding audio does not help. We

posit that (1) loosely-matched classes can result in noisier training data, and (2) the

audio representations are not as robust due to smaller-scale pretraining. This suggests

that cross-modal adaptation is less effective when representations are not aligned well

or insufficiently trained. Nevertheless, under most scenarios, cross-modal adaptation

helps. For all experiments, we follow an identical procedure to vision-language

experiments in section 2.2.

Vision improves audio classification. We additionally evaluate the reverse

task – whether adding a random one-shot image sample for downstream audio

classification can improve upon audio-only training. Table 2.4 shows the results,

where we see the same favorable trend. This success concludes that our approachis

modality-agnostic.

2.5 Ablation Studies

We present a few selected ablation studies in this section.

Data augmentation of text samples. Like most prior works [154, 221],

we also find that data augmentation can improve downstream performance during

vision-language adaptation (cf. Table 2.1). Notably, since the class names are included
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Dataset Method
Image Classification

1-shot 2-shot 4-shot

ImageNet-ESC-19
Image-Only Linear 68.0 75.7 83.1

Image-Audio Linear 69.3 76.7 83.2

ImageNet-ESC-27
Image-Only Linear 60.1 71.8 79.0

Image-Audio Linear 60.9 73.3 78.9

Table 2.3: Image classification results on ImageNet-ESC benchmark. Adding
one audio shot can improve image classification under most few-shot scenarios, even
when the audio and vision modalities are only loosely aligned.

Dataset Method
Audio Classification

1-shot 2-shot 4-shot

ImageNet-ESC-19
Audio-Only Linear 31.2 41.1 48.5

Audio-Image Linear 35.7 45.9 51.6

ImageNet-ESC-27
Audio-Only Linear 28.2 39.0 47.1

Audio-Image Linear 35.0 43.5 48.5

Table 2.4: Audio classification results on ImageNet-ESC benchmark. Similar
to Table 2.3, adding one image shot improves few-shot audio classification.

as training samples, one can explore augmentation techniques for text (just as random

cropping for images). Besides the fixed template a photo of a {cls} and hand-

crafted templates (Table 2.5), we also try a template mining strategy that does

not rely on the selected dataset-specific templates. To automatically mine for the

templates, we search among a pool of 180 templates for 21 templates with the best

zero-shot performance on the few-shot validation set of each dataset. For image

augmentation, we perform standard flipping and random cropping. We show a subset

of results in Table 2.6, and find that all text augmentation techniques provide a

sizable boost in performance. The salient conclusions include (1) the performance gain

from image augmentation is saturated after more than two views, and (2) template
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Dataset Classes Train Val Test Hand-crafted Prompt [214]

Caltech101 [41] 100 4,128 1,649 2,465 a photo of a {cls}.
OxfordPets [146] 37 2,944 736 3,669 a photo of a {cls}, a type of pet.

StanfordCars [95] 196 6,509 1,635 8,041 a photo of a {cls}.
Flowers102 [137] 102 4,093 1,633 2,463 a photo of a {cls}, a type of flower.

Food101 [13] 101 50,500 20,200 30,300 a photo of {cls}, a type of food.

FGVCAircraft [126] 100 3,334 3,333 3,333 a photo of a {cls}, a type of aircraft.

SUN397 [199] 397 15,880 3,970 19,850 a photo of a {cls}.
DTD [27] 47 2,820 1,128 1,692 {cls} texture.

EuroSAT [62] 10 13,500 5,400 8,100 a centered satellite photo of {cls}.
UCF101 [178] 101 7,639 1,898 3,783 a photo of a person doing {cls}.

ImageNet [30] 1000 1.28M N/A 50,000

itap of a {cls}.
a bad photo of the {cls}.

a origami {cls}.
a photo of the large {cls}.
a {cls} in a video game.

art of the {cls}.
a photo of the small {cls}.

Table 2.5: Detailed statistics of the 11 datasets. We adopt the hand-engineered
templates selected by Tip-Adapter [214] unless otherwise stated. Note that this set of
templates is identical to the ones selected by CLIP [154] and CoOp [221], except for
ImageNet.

mining can be as competitive as a large number of 36 carefully-tuned prompts. In

fact, prompting [115, 121, 221] can be viewed as another text augmentation technique

under cross-modal adaptation, and we leave this exploration to future work.

Test-time distribution shifts. We examine how robust our approach is against

test-time distribution shifts in Table 2.7. Specifically, we follow the CoOp [221]

protocol to report the test performance of a classifier trained on the source dataset

(16-shot ImageNet) to 4 distribution-shifted target test sets, including ImageNet-

V2 [157], ImageNet-Sketch [185], ImageNet-A [64], and ImageNet-R [63]. As shown in

Table 2.7, cross-modal adaptation can significantly boost the robustness of image-only

linear probing and is competitive against baselines designed to address robustness such

as CoCoOp [220] and WiSE-FT [195]. Cross-Modal adaptation also improves upon

WiSE-FT [195] and sets the new SOTA. We can conclude that language modality

plays an important role in robustness, similar to how humans rely on textual cues for

recognition [64].

Efficiency. As shown in Table 2.8, our approaches are much more lightweight

because we do not rely on deep finetuning [220, 221] or heavy image augmentations.
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Finetuning ImageAugment TextAugment
Number of shots

1 2 4 8 16

Linear
CenterCrop

Classname 61.8 65.3 69.0 72.0 74.9

a photo of a {cls}. 63.2 66.2 69.7 72.5 75.3

Template Mining 63.5 67.2 70.3 73.1 75.7

Hand Engineered [214] 63.7 66.7 70.3 72.9 75.5

+Flipped View Hand Engineered [214] 64.1 67.0 70.3 73.0 76.0

Partial
CenterCrop

Classname 62.5 65.7 69.3 72.9 76.2

a photo of a {cls}. 63.8 66.8 69.8 73.4 76.7

Template Mining 64.3 67.1 70.3 73.5 76.5

Hand Engineered [214] 64.6 67.2 70.2 73.7 76.9

+Flipped View Hand Engineered [214] 64.7 67.7 70.6 73.8 77.2

Table 2.6: Augmentation for cross-modal adaptation. We evaluate the impact of
selected augmentation techniques following the same CoOp protocol as in Table 2.1.

This allows us to speed up training by pre-extracting features, resulting in rather fast

training speeds.

2.6 Discussion and Limitations

We show that cross-modal training is a lightweight and effective approach for adapting

pre-trained multimodal models for downstream uni-modal tasks. One reason for its

effectiveness is that it naturally addresses the underspecification of few-shot learning.

In the context of vision-language adaptation, one can achieve SOTA results by using

existing text labels as free training samples. In the context of vision-audio adapation,

one can learn better visual object classifiers by listening to object sounds (and better

audio classifiers by looking at objects!). One attractive aspect of cross-modal learning

is that the learned models naturally apply to multimodal test data, such as the

classification of videos that contain both visual and audio signals. However, cross-

modal learning is less effective when model representations are not well-aligned or

insufficiently trained. Nevertheless, due to its simplicity and effectiveness, we hope

cross-modal learning becomes a tool for future research on multi-modal adaptation.
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Method
Source Target

ImageNet -V2 -Sketch -A -R

ResNet50

Zero-Shot CLIP 58.2 51.3 33.3 21.7 56.0

Linear Probing 55.9 46.0 19.1 12.7 34.9

CoOp (M=4) 63.0 55.1 32.7 22.1 55.0

CoOp (M=16) 63.3 55.4 34.7 23.1 56.6

WiSE-FT (α=0.5) 62.9 54.2 33.3 20.3 57.4

Cross-Modal WiSE-FT (α=0.5) 65.2 56.6 35.6 22.6 59.5

Cross-Modal Linear Probing 64.5 55.3 33.1 20.0 56.4

ViT-B/16

Zero-Shot CLIP 66.7 60.8 46.2 47.8 74.0

Linear Probing 65.9 56.3 34.8 35.7 58.4

CoOp (M=4) 71.9 64.2 46.7 48.4 74.3

CoOp (M=16) 71.7 64.6 47.9 49.9 75.1

CoCoOp 71.0 64.1 48.8 50.6 76.2

WiSE-FT (α=0.5) 73.0 65.2 49.1 49.8 77.6

Cross-Modal WiSE-FT (α=0.5) 72.9 65.4 49.2 50.5 77.8

Cross-Modal Linear Probing 73.2 64.8 47.9 48.3 76.4

Table 2.7: Robustness under test-time distribution shifts. We follow
CoOp [221]’s protocol for evaluating the test-time performance on variants of Ima-
geNet. We report results with two image encoders (ResNet50 and ViT-B/16), and
mark the best and second best results. Salient conclusions: (a) Cross-modal linear
probing is much more robust than its uni-modal counterpart while being competitive
to previous SOTA methods such as WiseFT and CoOp, and (b) it can be further
augmented with post-hoc modification through WiseFT to achieve new the SOTA.
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Method Iteration Time Accuracy Gain

Zero-shot CLIP [154] 0 0 60.33 0

Image-Only Linear 12k 15sec 56.44 -3.89

CoOp [221] 100k 14h 40min 62.95 +2.62

ProGrad [221] 100k 17hr 63.45 +3.12

Tip-Adapter [214] 10k 5min 65.18 +5.18

Cross-Modal Linear 12k 15sec 64.51 +4.14

Cross-Modal Partial 12k 2.5min 65.95 +5.57

Table 2.8: Efficiency and accuracy for different methods on ImageNet-16-shot.
All experiments are tested with batch size 32 on a single NVIDIA GeForce RTX 3090 GPU.
Our approaches take less time and achieve SOTA performance.
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Chapter 3

Language Models as Black-Box

Optimizers for Vision-Language

Models

Vision-language models (VLMs) pre-trained on web-scale datasets have demonstrated

remarkable capabilities on downstream tasks when fine-tuned with minimal data.

However, many VLMs rely on proprietary data and are not open-source, which

restricts the use of white-box approaches for fine-tuning. As such, we aim to develop

a black-box approach to optimize VLMs through natural language prompts,

thereby avoiding the need to access model parameters, feature embeddings, or even

output logits. We propose employing chat-based LLMs to search for the best text

prompt for VLMs. Specifically, we adopt an automatic “hill-climbing” procedure that

converges to an effective prompt by evaluating the performance of current prompts

and asking LLMs to refine them based on textual feedback, all within a conversational

process without human-in-the-loop. In a challenging 1-shot image classification setup,

our simple approach surpasses the white-box continuous prompting method (CoOp)

by an average of 1.5% across 11 datasets including ImageNet. Our approach also

outperforms both human-engineered and LLM-generated prompts. We highlight the

advantage of conversational feedback that incorporates both positive and negative

prompts, suggesting that LLMs can utilize the implicit “gradient” direction in textual

feedback for a more efficient search. In addition, we find that the text prompts
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generated through our strategy are not only more interpretable but also transfer well

across different VLM architectures in a black-box manner. Lastly, we demonstrate

our framework on a state-of-the-art black-box VLM (DALL-E 3) for text-to-image

optimization.

3.1 Introduction

Vision-language models [3, 105, 153, 186] (VLMs) excel at a wide range of classic

vision and multimodal [6, 30, 51, 112, 205] tasks, surpassing the performance of

their fully-supervised counterparts on downstream tasks even when fine-tuned with

minimal data [114, 219]. However, fine-tuning VLMs typically requires transparent

white-box access to the model weights, such as gradient-based approaches that rely

on backpropagation.

VLMs as black-box services. Despite community efforts to collect web-scale

public datasets [165, 166] and to replicate proprietary VLMs [7, 79], an increasing

number of models [3, 11, 39, 139, 186, 206] are not releasing their weights due to

privacy and legal concerns [108, 124]. Therefore, one cannot use popular white-box

fine-tuning strategies (such as LoRA [75] and Adapter [73]) that rely on model

weights, feature embeddings, and output logits. Given that contemporary black-box

VLMs [139, 141] like DALL-E [11, 155] still offer a language-based user interface and

may be accessed through APIs that facilitate input and output in natural language,

this allows users to customize these models through optimizing textual prompts.

Manual prompting. Manual prompt engineering has been proven successful

in adapting black-box LLMs to language tasks [92, 193]. Similarly, carefully crafted

prompts can enhance the performance of VLMs. For instance, CLIP has demonstrated

improved zero-shot recognition performance using specifically tailored prompts, such

as "a photo of a {class}" for Internet photos and "a satellite image of a

{class}" for satellite imagery. Despite its effectiveness, manual prompting can be a

laborious process, inspiring efforts to explore automated prompt creation and thereby

remove the need for human involvement. These strategies typically leverage an LLM

as a knowledge base to create rich visual descriptors that augment the prompts for

each class [129, 149] in a zero-shot fashion.
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Human-free prompting with conversational LLMs (our approach). We

show how to effectively leverage chat-based LLMs [139] to emulate human-level prompt

engineering without any human input. We first address an illustrative low-shot image

classification task, aiming to find the best class-agnostic prompt (or “template”) for

image classification with CLIP. We start with a random set of prompts and evaluate

the one-shot training accuracy of each. Then, akin to human prompt engineering,

our method repeatedly presents ChatGPT with the best and worst prompts, asking

it to review the results and suggest an improvement (see Figure 3.1).

Learning with implicit “gradients” provided through conversational

feedback. One of our key findings is that LLMs can learn the difference between

effective and ineffective prompts, and can use this implicit “gradient” direction

provided through language to perform more efficient searches. Compared to previous

automatic prompting methods that only use LLMs as a knowledge base [129, 149]

or paraphrasing tool [222], we show a novel use of LLMs as an optimizer that can

utilize the patterns hidden in textual feedback. In our experiments, we find that the

inclusion of such feedback greatly improves the efficiency and accuracy of our method,

sometimes surpassing existing white-box methods [194, 219] on challenging one-shot

scenarios.

Optimizing text-to-image generation with DALL-E 3. We further demon-

strate our optimization framework on a state-of-the-art black-box VLM, DALL-E [11],

for two illustrative one-shot generative tasks: (1) Text-to-image (T2I) generation (see

Figure 3.3), where we sample challenging text queries from Winoground [182] that

involve reasoning over compositions of objects, attributes, and relations. Examples

include “an animal watches a person” and “there is less milk than orange

juice”, which DALL-E 3 might initially fail to generate. (2) Prompt inversion (see

Figure 3.4), which attempts to reverse-engineer the textual prompt to generate a spe-

cific image for later customization [159] (see Table 3.5). To achieve this, we leverage

conversational feedback from a multimodal LLM (GPT4-V [139]) to iteratively refine

the prompts based on the current generated images. We present qualitative results in

Table 3.4 and conduct a user study to demonstrate that our framework can be more

efficient than manual prompting, even for graphical designers experienced with AI

content-generation tools.
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Our contributions. In this work, we introduce a novel prompting method for

VLMs, utilizing an LLM as an optimizer. Our black-box approach can surprisingly

compete with various white-box methods in a low-shot setting. Additionally, we

extensively explore various strategies for conversing with ChatGPT, uncovering several

key factors that significantly enhance the efficiency of this tool. We also show that

our discovered natural language prompts are not only interpretable but also transfer

better across CLIP architectures, eg., from RN50 to ViT/B-16, than continuous

prompts discovered by previous white-box prompting method [219]. Finally, we show

practical applications of our framework on text-to-image generation using black-box

DALL-E 3. We release our code for future research on prompt optimization and

AI-driven content creation 1.

3.2 Related Works

LLMs for multimodal tasks. Cutting-edge LLMs like GPTs [139, 141] have been

successfully applied to multimodal tasks, either through zero-shot composition with

pre-trained multimodal models [107, 209] or by jointly fine-tuning with modality-

specific encoders [3, 105] on large-scale multimodal datasets [166]. LLMs are also

utilized as neuro-symbolic reasoners [53, 120, 170, 218], translating natural language

instructions into modular programs (like Python code) that invoke APIs of multimodal

models. In this work, we show the potential of LLMs as a black-box optimizer for

multimodal foundation models with language interfaces, and more specifically vision-

language models (VLMs).

Prompt optimization of foundation models. Following the success of

in-context learning [17], which appends user-generated natural language instruction

and few-shot samples to text inputs, prompting [116] has emerged as the preferred

fine-tuning paradigm for LLMs due to its superior performance and parameter-

efficiency. However, recent prompt optimization methods, including continuous

prefix-tuning [22, 110, 179, 180, 203] and discrete token-searching [31, 35, 171], still

operate in a white-box manner, requiring access to either the tokenizer or output logits.

Moreover, black-box prompting methods, such as heuristic-based editing [131, 148],

1Project site: llm-can-optimize-vlm.github.io
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are tailored towards language-only tasks and are thus not applicable in VLM settings.

LLMs for prompt optimization. APE [222] leverages an LLM to automati-

cally write prompts using few-shot samples based on instruction induction [72] and

paraphrasing [132, 160]. However, it is only designed to address language tasks, while

we focus on multimodal tasks using black-box VLMs. LLMs have also proven to be an

effective external knowledge base [129, 149, 169] for generating prompts in a zero-shot

setting for multimodal models. For example, DCLIP [129] uses GPT3 to come up

with rich visual descriptions to improve zero-shot classification with CLIP [153]. We

extend this line of work to show that LLMs can iteratively optimize prompts for VLMs

in a black-box fashion given few-shot samples. We further illustrate that prompt

optimization with LLMs can be made more efficient by leveraging conversational

feedback, such as providing ChatGPT with explicit language feedback on how well the

most recent prompt performs. Our findings align with the perspective [28] of LLMs

as meta-optimizers that can implicitly perform gradient search through in-context

learning.

Few-shot adaptation of VLMs. Prompting has also been successfully adopted

in VLMs [44], as demonstrated by methods like CoOp [219] that fine-tune an ensemble

of continuous prefix tokens using cross-entropy loss. [114] achieves state-of-the-art few-

shot performance with a cross-modal (image and text) cross-entropy loss. However,

these methods all require access to model parameters for gradient backpropagation.

We also note that while some concurrent works, such as BlackVIP [138] and LFA [140],

claim to operate in a “black-box” setting, they still require access to privileged

information including output logits and embeddings. In this work, we introduce a

truly black-box and gradient-free approach that yields competitive results to white-box

approaches in extremely low-shot scenarios.

3.3 Prompting VLMs Using Chat-Based LLMs

We now present our approach for prompting VLMs using chat-based LLMs as opti-

mizers.

Preliminaries. Motivated by recent proprietary VLMs [11, 139], we adopt a

stricter yet practical black-box setting compared to prior works [138, 140], requiring

minimal knowledge about the model’s inner workings. This is crucial since releasing
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output logits or embeddings can potentially facilitate unauthorized knowledge extrac-

tion through distillation methods [69]. Our objective is to enhance the performance

of a VLM equipped with a language interface capable of processing a textual prompt

p ∈ T . We assume that the targeted task is accompanied by a training dataset

denoted as Dtrain ⊂ D, and its performance can be evaluated with respect to the

prompt, represented as a function F : D × T → R. For example, in a classification

task, Dtrain = {x, y}n where x is an image and y is its class label. The black-box

VLM takes the image as input and returns a predicted label. We measure the per-

formance of the textual prompt by calculating the average classification accuracy as

F (Dtrain, p). Our goal in prompt engineering is to search for the optimal prompt p∗

without accessing or modifying the black-box VLM.

Background: human prompt engineering. Our method draws inspiration

from the typical workflow of human prompt engineers. Prompt engineering is often

an iterative process that involves: (a) creating an initial prompt U = {p1} based
on the understanding of a task, (b) evaluating the performance of prompts in U ,

(c) refining prompts based on the outcomes, (d) repeating the last two steps until

convergence, and (e) returning the prompt p∗ with the highest F (Dtrain, p
∗). This

hands-on approach helps optimize the model’s performance, but it can be tedious

and labor-intensive. Algorithm 1 formally illustrates this process.

Example: prompting for image classification with CLIP [153]. CLIP

is one of the most popular VLM that takes a set of class-specific prompts when

performing “zero-shot” image classification. [153] details the laborious prompting

procedure over the course of a year. Interestingly, they find that a default class-

agnostic prompt (or so-called “template”), “a photo of a {class}” can provide a

decent boost in accuracy for most datasets compared to using vanilla class labels. In

this scenario, the evaluation function F is the classification accuracy on the test set,

and the prompt p = {“a photo of a {class}”|c ∈ C}, where C is the set of class

names for a given dataset.

Prompting with chat-based LLMs (our approach). Given the strong in-

context reasoning capabilities of LLMs, we envision them as a black-box optimizers

that can improve prompts based on their performance outcomes, akin to how human

prompt engineers iteratively refine prompts. Specifically, we maintain a pool of

prompts U and their corresponding performance outcomes S. In each iteration, we
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Algorithm 1 We formalize human prompt engineering with the following algorithm,
which motivates our LLM-based algorithm (2).

Require: Dtrain = {x, y}n: training samples, F : D × T → R: evaluation function
1: Create initial prompts: U ← {p1}
2: Evaluate prompts on training set: S ← {F (Dtrain, p1)}
3: while not converged do
4: Generate a new prompt p′ based on S
5: Evaluate the new prompt: s′ = F (Dtrain, p

′)
6: U ← U ∪ {p′}
7: S ← S ∪ {s′}
8: end while
9: return optimal prompt p∗ ← argmaxp∈U F (Dtrain, p)

provide the LLM with both positive and negative prompts, such as the highest and

lowest-performing candidates. Such textual feedback through in-context prompts

offers LLMs an implied ”gradient” direction [28], making optimization more efficient

than taking random local steps. We facilitate this feedback mechanism through

conversations with state-of-the-art chat-based LLMs like ChatGPT [141] as illustrated

in Figure 3.1.

3.4 Illustrative Few-Shot Classification Task

We illustrate our approach using a few-shot image classification task. Specifically,

a prompt p ∈ T consists of a set of class-specific prompts – that is, one textual

description per class. The evaluation function F takes the prompt p, along with an

image dataset Dtrain, and returns the accuracy using the black-box VLM. To prevent

overfitting and simplify our search space, we restrict our search to finding a single

class-agnostic template, e.g., a photo of a {}, filling in the blank with label names

provided with the dataset.

Outline of our approach (Alg. 2). To start, we sample entirely random initial

prompts from a text corpus such as LAION-COCO [165] captions. Our approach

follows the classical stochastic hill-climbing framework with random-restart [160], which

prevents ChatGPT from being trapped in local optima by balancing “exploration”

and “exploitation”. Our restart mechanism is implemented by sampling nrestart
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Algorithm 2 LLM-based prompt engineering on the illustrative classification task.
Our algorithm requires a chat-based LLM and a (black-box) evaluation function,
such as accuracy. We highlight mechanisms for “exploration” (restart and reset) in
blue and “exploitation” (iter) in red. We mark the key component of “conversational
feedback” of our approach in violet.

Require: Dtrain = {x, y}n: training samples, F : D × T → R: evaluation function.
Require: nrestart: number of initial sampled prompt sets, nreset: number of resets

for a prompt set, niter: number of hill-climbing iterations, m: size of one initial
prompt set, k: number of prompts send to ChatGPT.

1: p∗ ← ∅
2: for 1::nrestart do
3: Sample a new prompt set, Uinit ← {p1, ..., pm}
4: for 1::nreset do
5: Reset to initial prompt set: U ← Uinit
6: for 1::niter do
7: Sort U by score outcomes {F (Dtrain, p)}p∈U
8: Utop ← top-k prompts in U
9: Ubot ← bottom-k prompts in U

10: Get a new prompt pnew ← LLM(Utop,Ubot)
11: U ← U ∪ {pnew}
12: end for
13: p∗ ← argmaxp∈U∪{p∗} F (Dtrain, p)
14: end for
15: end for
16: return prompt with highest score p∗

initial prompt sets to encourage exploration. Because ChatGPT performs stochastic

top-k sampling for text generation (as we adopt the default temperature of 1.0),

we also implement a reset mechanism to foster additional exploration by retrying

a given prompt set nreset times. For exploitation, we converse with ChatGPT for

niter iterations. Lastly, we present ChatGPT both the top and bottom-performing

prompts, denoted as (Utop,Ubot). We show that this simple adjustment can improve

the efficiency of our approach in Figure 3.2.

Experimental setup. We apply our approach to the few-shot image classification

benchmark introduced in CoOp [219], which is the most commonly studied setup

for fine-tuning VLMs. This benchmark involves a collection of 11 datasets covering

diverse image domains including ImageNet [30] and more niche datasets such as
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FGVC-Aircraft [125]. For each dataset, we adhere to the same three-fold k-shot train

sets in [114], reporting the average accuracy across all folds. Importantly, our method

only utilizes the train set to compute the score and does not require the few-shot

validation set. We use CLIP following prior work [114, 219] to emulate a black-box

VLM, and we employ ChatGPT (GPT3.5) as the chat-based LLM.

Implementation details. To start, we sample entirely random 1M initial

prompts from a text corpus (LAION-COCO [165] captions). For each caption, we

extract all the noun phrases using spaCy part-of-speech tagging [71]. Subsequently,

we replace one noun phrase in the caption with ‘‘{}’’ (a placeholder where the

class name will be inserted) to create a template. Given that each caption contains

an average of 2 noun phrases, our initial prompt pool consists of approximately 2M

templates. We run our algorithm with nrestart = 20 restarts, nrestart = 50 resets, and

nrestart = 10 iterations. We opt to sample m = 100 prompts per restart and present

the top and bottom k = 15 prompts to ChatGPT. We adopt gpt-3.5-turbo-0301

model for ChatGPT using OpenAI’s official API and keep the default sampling

temperature of 1.0. For a fair comparison, we use CLIP-RN50 for our experiments

following prior work [114, 219]. We will open-source our code and release the initial

prompt pool (LAIONCOCO-1M) to the public.

Oracle white-box baselines. Our black-box setup substantially differs from,

and is more constrained than, the scenarios considered in previous white-box baselines.

Specifically, we do not expose the pre-trained weights, model architectures, feature

embeddings, or even output logits of VLMs. These constraints render many estab-

lished gradient-based fine-tuning baselines inapplicable. Among the oracle white-box

approaches we later compare to, CoOp [219] performs continuous prompting and

requires backpropagation across all layers. WiSE-FT [194] ensembles fine-tuned

weights with the original CLIP weights. Cross-Modal Adaptation [114] fine-tunes

a linear classifier leveraging both image and text embeddings from CLIP. Finally,

while DCLIP [129] queries GPT3 for rich visual descriptors for each class and

does not require gradient-based fine-tuning, it performs prompt ensembling using 4-6

class-specific prompts, which breaches our black-box assumption for accessing the

output logits.

Black-box methods. We additionally benchmark our method against truly black-

box solutions, including the vanilla class-agnostic templates “{class}” and “a photo
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of a {class}”. Also, we compare our approach to the best Hand-Engineered

templates released by OpenAI, searched using test set performance to represent

the theoretical upper bound of human performance, eg., “a centered satellite

photo of {class}.” for EuroSAT [61]. Finally, we present two versions of conver-

sational feedback of our approach: (a) using 30 positive (P only) or (b) using 15

positive and 15 negative prompts (P+N) in each iteration. For a fair comparison,

both of our approaches start with the same initial sampled prompts, referred to

as LAIONCOCO-1M. We also show the performance of the best initial sampled

prompt searched using trainset performance.

SOTA one-shot performance against existing methods on 11 datasets.

We report the test set performance of our method versus the aforementioned baselines

in a challenging 1-shot classification scenario in Table 3.1. First, compared to the

top-performing initial prompts selected from LAIONCOCO-1M based on train

set performance, our prompt optimization using ChatGPT notably improves the

initial prompts by an average of 5% (56% to 61%). Remarkably, our black-box

approach surpasses the two white-box gradient-based fine-tuning techniques CoOp

and WiSE-FT by at least 1.5%. Given that both CoOp and our method optimize

a single class-agnostic template, we attribute this gap in performance to reduced

overfitting. More specifically, we posit that our optimization space of natural language

effectively acts as a regularizer in extremely low-shot tasks, standing as a more robust

alternative to the continuous prompting approach of CoOp. Furthermore, our method

benefits from textual feedback and shows improved performance by 1.0% when using

both positive and negative prompts.

Incorporating negative prompts leads to more efficient optimization. In

Figure 3.2, we demonstrate that incorporating both positive and negative prompts

fosters better optimization efficiency, achieving higher accuracy within a much fewer

number of resets. Specifically, we hypothesize that LLMs can leverage the implicit

“gradient” direction suggested in textual feedback to achieve faster convergence.

3.5 More Benefits of Natural Language Prompts

In this section, we delve deeper into the advantages of utilizing natural language

prompts compared to the continuous prompts [219]. We highlight that the prompts
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derived through our method are interpretable; for instance, they often contain de-

scriptions of the targeted image domain. Our prompts can also transfer across CLIP

architectures in a black-box manner, such as from RN50 to ViT/B-16.

Interpretable natural language prompts. While CoOp [219] concedes that

continuous prompts can be difficult to interpret, our method – without explicitly

instructing ChatGPT to generate interpretation – often yields interpretable results.

Table 3.2 showcases the templates returned by our algorithm for each dataset, fre-

quently including keywords that reflect the targeted image domain. For example,

the template for Food101 [14] mentions “diverse cuisine and ingredients”, and the

template for UCF101 [178] (an action recognition dataset) mentions “in motion”.

Likewise, these templates identify general stylistic attributes of the datasets; they refer

to “bright and natural lighting” for ImageNet [30] and note images that “emphasize

the subject” for Caltech101 [98]. These prompts are particularly intriguing because

we do not provide ChatGPT with any information about the downstream task, yet it

manages to generate prompts containing domain-specific keywords that are similar

to those engineered by human experts.

Black-box prompt transfer. Our text prompts also maintain consistently high

performance across different CLIP backbones. For comparison, since CoOp uses the

same tokenizer for all CLIP architectures (including RN50, RN101, ViT/B-32, and

ViT/B-16) and optimizes continuous prompts of the same shape (16 x 512), we assess

the transferability of these learned continuous prompts from RN50 to other backbones

using the official weights on 16-shot ImageNet. Table 3.3 showcases the results of

this experiment, where we also include the baseline prompt “a photo of a {}” for

reference. We observe a significant decline in accuracy when transferring CoOp’s

prompts (up to a 40% decrease despite utilizing more powerful backbones), implying

that continuous prompts tend to overfit to the specific CLIP model. In contrast, our

natural language prompts maintain their performance and outperform the baseline

across all backbones.

3.6 Application: Text-to-Image Generation

In this section, we present a direct application of our prompt optimization framework

to generative tasks using a truly black-box text-to-image (T2I) VLM, DALL-E 3 [11].
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Optimizing T2I using a multimodal LLM. DALL-E 3 can generate high-

fidelity images following diverse user queries, but crafting effective prompts is tricky

even for designers experienced with AI content generation tools [117]. Therefore, we

are motivated to implement our LLM-based optimization framework to assist with

creative visual design. Our framework is shown in Figure 3.3 for the illustrative task

of text-to-image generation. In this task, the user specifies a query (topic) in text,

such as “an animal watches a person”, and the goal is to write a prompt that can

generate an image reflecting this topic. We adopt a multimodal LLM GPT4-V [139]

(gpt-4-1106-preview) to provide feedback on the generated image and optimize the

prompt. We find that this framework is surprisingly effective due to GPT4-V’s strong

visual reasoning capabilities, which can often spot subtle errors in generated images

and offer more accurate prompts.

Task setup. For T2I generation, we experiment with a subset of 100 text queries

from Winoground [182] that involve complex attribute and relation reasoning, which

DALL-E might initially fail to generate. Our framework refines the prompts to

capture the user-specified topics using a few (three) iterations. We also attempt

a reverse task of prompt inversion: given a user-specified reference (query) image,

our framework reverse-engineers the prompt to have DALL-E generate the same

object or scene in the query image (see Figure 3.4). This enables users to easily

make customizations [159] (see Table 3.5), such as having the character in a reference

image perform various actions or change scenes. For this task, we sample 100 random

queries from DiffusionDB [192]. We provide qualitative results in Table 3.4. We hire

two volunteers to assess the faithfulness of the images generated by our method, and

to compare these with the images manually prompted by two designers (each with

one year of experience in AI content generation), as shown in Table 3.6.

Remarks on limitations. While we show promising results, we also note some

failure cases due to the inherent limitations of foundation models. For example,

GPT4-V might fail to describe abstract and artistic details, and DALL-E 3 often

fails to generate the correct number of objects. We believe that our framework can

benefit from more capable foundation models in the future.
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3.7 Discussion and Limitations

Summary. We present the first attempt to leverage LLMs as prompt engineers

for VLMs. On the well-studied setup of one-shot image classification, our method

surpasses existing human-engineered prompts and even rivals white-box approaches.

Central to the success of our method is the utilization of conversational feedback,

enabling chat-based LLMs to efficiently steer VLMs in the right direction. This

process leads to a set of interpretable prompts bearing considerable resemblance to

those crafted by humans. Importantly, our natural language prompting setup is a

lot more constrained than the assumed scenarios of previous white-box or even some

black-box settings [138], because we do not expose the model weights and outputs of

VLMs. We finally apply our framework to illustrative generative tasks using a truly

black-box text-to-image VLM (DALL-E 3).

Limitations and future work. As with any work utilizing LLMs, there are

various ethical concerns, including biases in the LLM’s output prompts. Moreover,

while we try to minimize the overall cost and the total number of API calls, the

energy consumption associated with LLMs remains a substantial concern. It is vital

to note that we do not intend to compete directly with white-box baselines that can

improve visual and text representations with more data. Lastly, we are limited to

costly human evaluation for T2I generation in this study. Future work may adopt

automatic evaluation [24, 68, 76, 113] for large-scale experiments.
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Figure 3.1: Prompting VLMs using chat-based LLMs. Similar to how human
prompt engineers iteratively test and refine prompts, we employ ChatGPT [139,
141] to continuously optimize prompts for vision-language models (VLMs). Our
iterative approach assesses the performance of ChatGPT-generated prompts on a
few-shot dataset (highlighted in blue) and provides feedback (marked in violet)
to ChatGPT through simple conversations, as depicted in the illustrative figure.
This straightforward method delivers state-of-the-art results for one-shot image
classification across 11 datasets using CLIP, operated in a black-box manner without
accessing model weights, feature embeddings, or output logits. We show that providing
both positive (in green) and negative prompts (in red) enhances efficiency. Remarkably,
our approach outperforms both white-box methods such as gradient-based continuous
prompting (CoOp [219]) and human-engineered prompts [153] in this extremely low-
shot scenario. This figure only shows a typical conversation using ChatGPT’s web
user interface. Our code implementation follows this pattern using the ChatGPT
API.
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Method
Dataset

Avg
Caltech ImageNet Aircraft Food Pets Cars SUN UCF DTD EuroSAT Flowers

Cross-Modal [114] 89.1 61.6 20.6 77.1 85.7 59.0 63.4 64.7 49.9 61.8 76.3 64.7

WiSE-FT [194] 85.5 58.3 18.6 71.9 81.7 55.7 56.6 59.4 44.2 52.3 65.8 59.1

CoOp [219] 87.5 57.2 9.6 74.3 85.9 55.6 60.3 61.9 44.4 50.6 68.1 59.6

DCLIP [129] - 59.6 - 76.4 83.8 - - - 41.7 34.7 - -

{} 78.5 55.3 15.5 74.0 78.9 52.2 53.4 55.5 41.4 32.1 57.3 54.0

a photo of a {} 84.5 57.9 15.9 74.0 83.2 53.9 58.0 56.9 38.8 28.6 60.2 55.6

Hand-Engineered [153] 86.3 58.2 17.3 77.3 85.8 55.6 58.5 61.5 42.3 37.6 66.1 58.8

LAIONCOCO-1M 81.4 56.2 17.4 76.5 79.6 51.3 54.9 55.8 43.1 38.6 61.3 56.0

Ours (P only) 89.0 59.4 17.9 77.8 85.7 55.7 60.4 58.7 43.6 46.7 66.6 60.1

Ours (P+N) 89.1 59.6 18.1 78.3 88.1 56.2 61.0 60.2 44.8 49.0 67.2 61.1

Oracle white-box approaches

Manual prompting approaches

Our black-box approaches

Table 3.1: Comparison of our method with other baselines on one-shot
classification tasks. We report the average accuracy of each method across three
folds, optimized using 1-shot training sets. We bold the best black-box result for each
dataset, and underline the second best result. First, we note that our approach can
effectively improve upon the initial prompts selected from LAIONCOCO-1M from
56% to 61%. Our approach is also competitive against the best Human-Engineered
prompts released by OpenAI [153] searched using test set performance. Additionally,
we show that using both positive and negative prompts improves the overall accuracy
by 1%. For reference, we report oracle white-box approaches in gray. Remarkably,
we also surpass white-box solutions such as WiSE-FT [194] and CoOp [219] by 1.5%.
These methods require either gradient-based fine-tuning (CoOp/WiSE-FT/Cross-
Modal) or prompt ensembling using output logits (DCLIP). While our approach is
less effective than the SOTA white-box method (Cross-Modal Adaptation), we stress
that our black-box setup is significantly more challenging, because we restrict the
optimization space to natural language and do not access the pre-trained weights,
model architectures, feature embeddings, and output logits of VLMs.
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Figure 3.2: Conversational feedback incorporating both positive and negative
prompts leads to improved efficiency. We fix the number of restarts to 20 and
iterations to 10, and ablate different numbers of resets on all 11 datasets (left) and
ImageNet (right). Notably, our approach using “P+N” (both top-15 and bottom-15
prompts) can optimize faster within a much fewer number of resets than using “P-
Only” (top-30 prompts), resulting in the highest overall performance.

Dataset Example of Top Templates

Caltech [98] An image of a {} with a blurred background that emphasizes the subject

DTD [26] The essential elements of {} are amplified with visual simplicity

EuroSAT [61] A top-down view of {} arranged in a pattern {}
Aircraft [125] A clear, high-quality image of a single {} with a white background

Food [14] A {} featuring diverse cuisine and ingredients

ImageNet [30] An image of a {} with bright and natural lighting

Flowers [136] A clear and vivid photograph of the {} in its natural setting

Pets [145] A {} with distinct and recognizable characteristics

Cars [94] A {} featuring a wide range of color options for easy selection

SUN [200] A high-resolution photo of a {} with clear background and natural lighting

UCF [178] A black and white photo of a {} in motion

Table 3.2: Example templates returned by our algorithm on each dataset.
Although we do not provide ChatGPT with any information regarding the targeted
dataset, we observe that the resulting templates are remarkably similar to human-
engineered templates, with many domain-specific details such as “motion” and
“cuisine”, and stylistic elements such as “bright and natural lighting”.
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Method RN50 →RN101 →ViT-B/32 →ViT-B/16

a photo of a {} 57.9 60.6 61.9 66.6

CoOp 63.0 20.6 31.7 39.5

Ours 59.9 60.7 62.2 67.0

Table 3.3: Black-box prompt transfer from ResNet-50 to other CLIP archi-
tectures. We evaluate both our natural language prompts and CoOp’s continuous
prompts on 16-shot ImageNet, which are trained using the RN50 CLIP backbone.
As a reference point, we include the baseline prompt “a photo of a {}”, and show
that the prompts derived from our method using RN50 consistently surpass it after
transferring to different backbones. In contrast, while CoOp achieves better 16-shot
ImageNet performance using RN50, its performance plummets during the transfer,
e.g., from 63% to a mere 21% for RN101.

Figure 3.3: Improving text-to-image (T2I) generation using chat-based
multimodal LLMs. We apply our framework to optimize prompts for the state-
of-the-art black-box generative VLM, DALL-E 3 [11], using the multimodal GPT4-
V [139]. For complicated user queries that DALL-E 3 may initially fail to generate,
we send the generated image (in violet) along with the current prompt to GPT4-V
to ask for feedback on improvements (in red) and then generate a new prompt (in
blue). We show that such a simple framework is surprisingly effective at correcting
DALL-E 3 mistakes on some challenging Winoground [182] text queries that involve
action, logical, and spatial reasoning. We conduct a human evaluation on the quality
of generated images in Table 3.6. We open-source our code at link to facilitate future
research on AI-driven content generation.
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Figure 3.4: Prompt inversion using chat-based multimodal LLMs. We apply
our framework to reverse engineer the text prompt to generate the same user-queried
image. We send the generated image (in violet) along with the original image to
GPT4-V to ask for feedback on improvements (in red) and then generate a new
prompt (in blue).

User Query Init. Image LLM Feedback Final Image

There is less milk than
orange juice.

Incorrect, the milk bottle
appears full, more than
orange juice...

A shorter person is
covering the eyes of a
taller person.

Incorrect, the taller person
is covering the shorter
person’s eyes. Instead, ...

The scarf should feature red
and white stripes, and the
fur is fluffy...

The coat should be
buttoned and the lighting
exhibits a stronger
contrast...

Text-to-image generation

Prompt inversion

Table 3.4: Examples of T2I optimization. We show that our framework (Fig-
ure 3.3) can automatically improve the faithfulness of images generated by DALL-E 3,
with respect to user-specified textual topics (for T2I generation) or reference images
(for prompt inversion). This is achieved through three rounds of prompt optimization,
using feedback from the multimodal LLM (GPT4-V).
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User Query
Inverted
Image

Example 1 Example 2 Example 3 Example 4 Example 5

Give the dog
a cat friend.

Make the dog
be in the
middle of a
jump.

Make the dog
do a
handstand.

Make the dog
lie down on
its side.

Make the dog
swim in
water.

Make the owl
fight a hawk.

Make the owl
flap its wings.

Make the owl
fully green.

Make the owl
stand in front
of the moon.

Make the owl
walk in the
city.

Table 3.5: Customization via prompt inversion. Users can simply append extra
descriptions to the inverted prompts to customize their main characters in queried
images.

Task Method Init. (std) Final (std) ∆

Human 2.28 (.45) 2.86 (.61) 0.58
Text-to-Image

Ours 2.62 (.36) 3.56 (.54) 0.94

Human 1.58 (.48) 2.76 (.53) 1.18
Prompt Inversion

Ours 1.94 (.39) 3.68 (.47) 1.74

Table 3.6: Our method enhances faithfulness in T2I generation. We hire two
human annotators to assess the faithfulness of images generated from user queries,
e.g., textual topics for Text-to-Image, or reference images for Prompt Inversion. The
scores are measured on a 1-to-5 Likert scale, with 1 signifying contradiction and 5
indicating perfect alignment with the user’s goal. Our approach benefits from three
iterations of prompt optimization and consistently outperforms human-engineered
prompts by designers who have one year of experience in AI content generation.
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Chapter 4

Revisiting the Role of Language

Priors in Vision-Language Models

Vision-language models (VLMs) are impactful in part because they can be applied

to a variety of visual understanding tasks in a zero-shot fashion, without any fine-

tuning. We study generative VLMs that are trained for next-word generation given an

image. We explore their zero-shot performance on the illustrative task of image-text

retrieval across 9 popular vision-language benchmarks. Our first observation is that

they can be repurposed for discriminative tasks (such as image-text retrieval) by

simply computing the match score of generating a particular text string given an

image. We call this probabilistic score the Visual Generative Pre-Training Score

(VisualGPTScore). While the VisualGPTScore produces near-perfect accuracy on

some retrieval benchmarks, it yields poor accuracy on others. We analyze this behavior

through a probabilistic lens, pointing out that some benchmarks inadvertently capture

unnatural language distributions by creating adversarial but unlikely text captions.

In fact, we demonstrate that even a “blind” language model that ignores any image

evidence can sometimes outperform all prior art, reminiscent of similar challenges

faced by the visual-question answering (VQA) community many years ago. We derive

a probabilistic post-processing scheme that controls for the amount of linguistic bias

in generative VLMs at test time without having to retrain or fine-tune the model. We

show that the VisualGPTScore, when appropriately debiased, is a strong zero-shot

baseline for vision-language understanding, oftentimes producing state-of-the-art
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accuracy.

4.1 Introduction

Vision-language models (VLMs) trained on web-scale datasets will likely serve as

the foundation for next-generation visual understanding systems. One reason for

their widespread adoption is their ability to be used in an “off-the-shelf” (OTS)

or zero-shot manner without fine-tuning for specific target applications. In this

study, we explore their OTS use on the task of image-text retrieval (e.g., given an

image, predict the correct caption out of K options) across a suite of 9 popular

benchmarks [30, 74, 112, 123, 182, 187, 205, 208, 216].

Challenges. While the performance of foundational VLMs is impressive, many

open challenges remain. Recent analyses [88, 208] point out that leading VLMs such

as CLIP [153] may often degrade to “bag-of-words” that confuse captions such as

“the horse is eating the grass” and “the grass is eating the horse”. This

makes it difficult to use VLMs to capture compositions of objects, attributes, and

their relations. But somewhat interestingly, large-scale language models (LLMs)

trained for autoregressive next-token prediction [17] seem to be able to discern such

distinctions, which we investigate below. A related but under-appreciated difficulty is

that of benchmarking the performance of visio-linguistic reasoning. Perhaps the most

well-known example in the community is that of the influential VQA benchmarks [6],

which could be largely solved by exploiting linguistic biases in the dataset – concretely,

questions about images could often be answered by “blind” language-only models

that did not look at the image [51]. Notably, we find that such blind algorithms

still excel on many contemporary image-text retrieval benchmarks where VLMs may

struggle.

Generative models for discriminative tasks. We tackle the above challenges

by revisiting the role of language priors through a probabilistic lens. To allow for a

probabilistic treatment, we focus on generative VLMs that take an image as input and

stochastically generate text via next-token prediction [103, 105]. We first demonstrate

that such models can be easily repurposed for discriminative tasks (such as retrieval)

by setting the match score for an image-text pair to be the probability that the

VLM would generate that text from the given image, or P (text|image). We call
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Scenario 1 Scenario 2

Figure 4.1: Two train-test shifts encountered in image-to-text retrieval tasks.
Scenario 1 (left) constructs negative captions by shuffling words in the true caption (as
in ARO-Flickr), but this produces implausible text such as “white a duck spreads its

wings in while the water”. Here, exploiting the language bias of the training set will
help since it will downweight the match score for such implausible negative captions. In
fact, we show that a blind language-only model can easily identify the correct caption.
Scenario 2 (right) constructs negative captions that are curated to be plausible (as in
SugarCrepe). Here, the language bias of the training set may hurt, since it will prefer to
match common captions that score well under the language prior; i.e., the incorrect caption
of “people are cooking in a kitchen” is more likely than the true caption of “people
are posing in a kitchen” under the language prior, and so removing the language bias
improves performance.

this probability score the Visual Generative Pre-Training Score, or VisualGPTScore.

Computing the VisualGPTScore is even more efficient than next-token generation

since given an image, all tokens from a candidate text string can be evaluated in

parallel. Though conceptually straightforward, such an approach (to our knowledge)

has not been proposed in the literature. In fact, the generative VLMs [103] that

we analyze train separate discriminative heads for matching/classifying image-text

pairs, but we find that their language generation head itself produces better scores

for matching (since it appears to better capture compositions). Indeed, the OTS

VisualGPTScore performs surprisingly well on many benchmarks, even producing

near-perfect accuracy on ARO [208]. But it still struggles on other benchmarks such

as Winoground [182]. We analyze this below.

The role of language priors. We analyze the discrepancy in performance

across benchmarks from a probabilistic perspective. Our key insight is that many

benchmark biases can be formalized as mismatching distributions over text between

train and test data - Ptrain(text) versus Ptest(text). We use a first-principles analysis
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to account for distribution shift by simply reweighting the VisualGPTScore with

the Bayes factor Ptest(text)/Ptrain(text), a process we call debiasing. To compute

the Bayes reweighting factor, we need access to both the train and test language

prior. We compute Ptrain(text) from an OTS VLM by drawing Monte-Carlo samples

of Ptrain(text|image) from trainset or Guassian noise images. Because Ptest(text)

may require access to the test set, we explore simplifying assumptions that it is (a)

identical to Ptrain(text), (b) uninformative/uniform, or (c) tunable from a held-out

val set. Our analysis helps explain the strong performance of the VisualGPTScore

on certain benchmarks and its poor performance on others. Moreover, our analysis

offers simple strategies to improve performance through debiasing. We conclude by

showing a theoretical connection between debiasing and mutual information, which

can be seen as a method for removing the effect of marginal priors when computing

joint probability scores.

Empirical Analysis. We conduct a thorough empirical evaluation of the OTS

VisualGPTScore (and its debiased variants) for open-sourced image-conditioned

language models [103, 105] across 9 popular vision-language benchmarks. We first

point out that the VisualGPTScore by itself produces SOTA accuracy on certain

benchmarks like ARO [208] where their inherent language biases help remove incorrect

captions that are also unnatural (such as "a white duck the its wings while in

water" as shown in Fig. 4.1). In fact, we show that blind baselines also do quite well

on these benchmarks, since language-only models can easily identify such implausible

captions. However, such language biases do not work well on benchmarks where

incorrect captions are also realistic. Here, VisualGPTScore should be debiased so

as not to naively prefer more common captions that score well under its language

prior. When given access to a validation set that reveals the amount of language

bias in the benchmark, debiasing consistently improves performance on benchmarks

such as Flickr30K [205] and Winoground [182]. Interestingly, we find that debiasing

can also improve accuracy on the train set used to learn the generative VLMs,

indicating that such models learn biased estimates of the true conditional distribution

Ptrain(text|image). We describe this further in our appendix.
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4.2 Related Works

Vision-language modelling. State-of-the-art VLMs like CLIP [153] are pre-trained

on web-scale image-text datasets [165, 166] using discriminative objectives including

image-text contrastive (ITC) [82, 153] and image-text matching (ITM) [102, 103]

loss, typically formulated as P (match|image, text). These pre-trained models exhibit

robust zero-shot and few-shot [114, 195] performance on traditional discriminative

tasks [30, 112], often on par with fully-supervised models. More recently, image-

conditioned language models like Flamingo [3] and BLIP [103, 105] incorporate

generative objectives [9] primarily for downstream tasks such as captioning [2] and

VQA [51].

Visio-linguistic compositionality. Benchmarks like ARO [208], Crepe [123],

Winoground [182], EqBen [187], VL-CheckList [216], and SugarCrepe [74] show that

discriminative scores of VLMs, such as ITCScore and ITMScore, fail on their image-

text retrieval tasks that assess compositional reasoning. Concurrently, advances on

these tasks often involve fine-tuning discriminative VLMs with more data. One of the

most popular approaches, NegCLIP [208], augments CLIP using programmatically

generated negatives from original texts. Extending this, subsequent studies propose

more expensive and heavily-engineered solutions. SyViC [21] fine-tunes VLMs on

million-scale synthetic images to augment spatial, attributive, and relation under-

standing. SGVL [66] and Structure-CLIP [78] sample negatives using costly scene

graph annotations. MosaiCLIP [173] and SVLC [37] use linguistic tools such as

scene graph parsers and LLMs to design better negative captions. The most recent

DAC [38] leverages a combination of foundation models including BLIP2, ChatGPT,

and SAM to rewrite and augment image captions.

Generative pre-training and scoring. Vision models trained with dis-

criminative objectives often lack incentives to learn structure information [15, 181].

Similarly, early LLMs trained with discriminative approaches, such as BERT [32] and

RoBERTa [119], have also been criticized as bag-of-words models insensitive to word

order [10, 67, 144, 174]. Conversely, generative pre-trained LLMs [152] demonstrate

exceptional compositional understanding while pre-trained solely with a next-token

prediction [9] loss. Furthermore, generative scores of LLMs [25, 139, 215] have flexible

usage in downstream tasks, such as text evaluation [43, 207] and reranking [90].
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4.3 The role of language priors

In this section, we present a simple probabilistic treatment for analyzing the role

of language priors in image-conditioned language models (or generative VLMs).

Motivated by their strong but inconsistent performance across a variety of image-text

retrieval benchmarks, we analyze their behavior when there exists a mismatch between

training and test distributions, deriving simple schemes for addressing the mismatch

with reweighting. We conclude by exposing a connection to related work on mutual

information.

Computing P (t|i). To begin our probabilistic treatment, we first show that

image-conditioned language models (that probabilistically generate text based on an

image) can be repurposed for computing a score between a given image i and text

caption t. The likelihood of a text sequence t = {t1, t2, · · · , tm} conditioned on image

i is naturally factorized as an autoregressive product [9]:

P (t|i) =
m∏
k=1

P (tk|t<k, i) (4.1)

Image-conditioned language models return back m softmax distributions correspond-

ing to the m terms in the above expression. Text generation requires sequential

token-by-token prediction, since token tk must be generated before it can be used as

an input to generate the softmax distribution over token tk+1. Interestingly, given

an image i and a text sequence t, the above probability can be computed in parallel

because the entire sequence of tokens {tk} is already available as input. We provide

a visual illustration in Figure 4.2-a.

Train-test shifts. Given the image-conditioned model of P (t|i) above, we now

analyze its behavior when applied to test data distributions that differ from the

trainset, denoted as Ptest versus Ptrain. Recall that any joint distribution over images

and text can be factored into a product over a language prior and an image likelihood

P (t, i) = P (t)P (i|t). Our analysis makes the strong assumption that the image

likelihood P (i|t) is identical across the train and test data, but the language prior

P (t) may differ. Intuitively, this assumes that the visual appearance of entities (such

as a "white duck") remains consistent across the training and test data, but the
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frequency of those entities (as manifested in the set of captions P (t)) may vary. We

can now derive Ptest(t|i) via Bayes rule:

Ptest(t|i) ∝ P (i|t)Ptest(t) (4.2)

= P (i|t)Ptrain(t)

Ptrain(t)
Ptest(t) (4.3)

∝ Ptrain(t|i)
Ptest(t)

Ptrain(t)
(4.4)

The above shows that the generative pre-training score Ptrain(t|i) need simply be

weighted by the ratio of the language priors in the testset versus trainset. Intuitively,

if a particular text caption appears more often in the testset than the trainset, one

should increase the score reported by the generative model. However, one often

does not have access to the text distribution on the testset. For example, real-world

deployments and benchmark protocols may not reveal this. In such cases, one can

make two practical assumptions; either the language distribution on test is identical

to train, or it is uninformative/uniform (see Figure 4.1):

Scenario 1:

Ptest(t) = Ptrain(t) ⇒ Optimal score is Ptrain(t|i) (4.5)

Scenario 2:

Ptest(t) is uniform. ⇒ Optimal score is
Ptrain(t|i)
Ptrain(t)

(4.6)

Tunable α. In reality, a testset might be a mix of both scenarios. To model this,

we consider a soft combination where the language prior on the testset is assumed to

be a flattened version of the language prior on the trainset, for some temperature

parameter α ∈ [0, 1]:

Ptest(t) ∝ Ptrain(t)
1−α ⇒ Optimal score is

Ptrain(t|i)
Ptrain(t)α

(4.7)

By setting α to 0 or 1, one can obtain the two scenarios described above. Some

deployments (or benchmarks) may benefit from tuning α on a held-out validation set.
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Implications for retrieval benchmarks. We speculate some benchmarks

like ARO-Flickr [208] are close to scenario 1 because they include negative cap-

tions that are implausible, such as “a white duck the its wings while in water

spreads”. Such captions will have a low score under the language prior Ptrain(t) and

so reporting the raw generative score Ptrain(t|i) (that keeps its language prior or bias)
will improve accuracy. In fact, we show that applying a blind language model (that

ignores all image evidence) can itself often identify the correct caption. On the other

hand, for test datasets with more realistic negative captions (scenario 2), it may be

useful to remove the language bias of the trainset, since that will prefer to match

to common captions (even if they do not necessarily agree with the input image).

This appears to be the case for SugarCrepe [74], which uses LLMs like ChatGPT to

ensure that the negative captions are realistic.

Relationship to prior approaches. Our approach to debiasing is reminiscent

of mutual information, which can also be seen as a method for removing the effect

of marginal priors when computing joint probability scores. In fact, our section 4.6

derives that α-debiasing is equivalent to a form of pointwise mutual information

(PMI) known as PMIk for k = 1
α
.

4.4 Experimental results on I-to-T retrieval

In this section, we verify our hypothesis on I-to-T retrieval benchmarks using state-

of-the-art multimodal generative VLMs. In particular, we adopt image-conditioned

language models such as BLIP [103] as the learned estimator of Ptrain(t|i). Then,

we discuss how we perform Monte Carlo estimation of Ptrain(t), including a novel

efficient sampling method based on “content-free” Gaussian noise images. Finally,

we show the state-of-the-art results of our generative approach on existing I-to-T

retrieval tasks.

Preliminaries. We leverage OTS image-conditioned language models [3, 105, 206]

to estimate Ptrain(t). For ablation, we use the open-sourced BLIP models [103], trained

on public image-text corpora using discriminative (ITC and ITM) and generative

(captioning) objectives. Discriminative objectives typically model P (match|t, i). For
example, ITCScore calculates cosine similarity scores between image and text features

using a dual-encoder; ITMScore jointly embeds image-text pairs via a fusion-encoder
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(a) Ptrain(t|i) through generative VLMs (b) Ptrain(t) via Monte Carlo sampling

Figure 4.2: Estimating Ptrain(t|i) and Ptrain(t) from generative VLMs. Figure (a)
shows how image-conditioned language models such as Li et al. [103] that generate text
based on an image can be repurposed for computing Ptrain(t|i), which is factorized as a
product of

∏m
k=1 P (tk|t<k, i) for a sequence of m tokens. These terms can be efficiently

computed in parallel, unlike sequential token-by-token prediction for text generation. Figure
(b) shows two approaches for Monte Carlo sampling of Ptrain(t). While the straightforward
approach is to sample trainset images, we find that using as few as three “null” (Gaussian
noise) images can achieve more robust estimates.

and returns softmax scores from a binary classifier. Lastly, we term the generative

score as Visual Generative Pre-Training Score (VisualGPTScore). While BLIP is

pre-trained using all three objectives, this generative score has not been applied to

discriminative tasks before our work.

Implementing VisualGPTScore. Our method calculates an average of the

log-likelihoods of tk at each token position k and applies an exponent to cancel the

log:

VisualGPTScore(t, i) := e
1
m

∑m
k=1 log(P (tk|t<k,i)) (4.8)

To condition on an input image, BLIP uses a multimodal casual self-attention

mask [103] in its image-grounded text decoder, i.e., each text token attends to all its

preceding vision and text tokens. We emphasize that VisualGPTScore has the same

computational cost as ITMScore, which uses the same underlying transformer but

with a bi-directional self-attention mask to encode an image-text pair. We address

potential biases of this estimator in section 4.8.

Estimating Ptrain(t) using Monte Carlo sampling (oracle approach).

Given Ptrain(t|i), we can estimate Ptrain(t) via classic Monte Carlo sampling [168], by
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drawing n images from the train distribution, such as LAION114M [165] for BLIP:

Ptrain(t) ≈
1

n

n∑
k=1

Ptrain(t|ik) (4.9)

Reducing sampling cost with content-free images (our approach). The

above Equation 4.9 requires many trainset samples to achieve robust estimates. To

address this, we draw inspiration from [217], which uses a content-free text prompt

“N/A” to calibrate the probability of a text from LLMs, i.e., P (t|“N/A”). To apply this

to our generative VLMs, we choose to sample “null” inputs as Gaussian noise images.

As a result, our approach requires as few as three images to compute Eq. 4.9 by

sampling from Gaussian noise images with a mean of 0.4 and a standard deviation of

0.25. We find this method to be less computationally demanding and just as effective

as sampling thousands of images from trainset. We provide a visual illustration of

this method in Figure 4.2-b. We include sampling details in section 4.7.

Benchmarks and evaluation protocols. We comprehensively report on

four popular I-to-T retrieval benchmarks, including ARO [208], Crepe [123], Sugar-

Crepe [74], and VL-CheckList [216]. In these datasets, each image has a single positive

caption and multiple negative captions. ARO [208] has four datasets: VG-Relation,

VG-Attribution, COCO-Order, and Flickr30k-Order. SugarCrepe [74] has three

datasets: Replace, Swap, and Add. For Crepe [123], we use the entire productivity

set and report on three datasets: Atom, Negate, and Swap. VL-CheckList [216] has

three datasets: Object, Attribute, and Relation.

SOTA performance on all four benchmarks. In Table 4.1, we show that our

OTS generative approaches, based on the BLIP model pre-trained on LAION-114M

with ViT-L image encoder, achieves state-of-the-art results on all benchmarks. We

outperform the best discriminative VLMs, including LAION5B-CLIP, and consistently

surpass other heavily-engineered solutions, including NegCLIP, SyViC, MosaiCLIP,

DAC, SVLC, SGVL, Structure-CLIP, all of which fine-tune CLIP on much more data.

For reference, we also include results of text-only Vera and Grammar from Hsieh et al.

[74]. To show that even the most recent SugarCrepe is not exempt from language

biases, we run two more text-only methods:

1. PLLM(t): passing captions into a pure LLM, such as BART-base [207], FLAN-
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T5-XL [25], and OPT-2.7B [215], to compute a text-only GPTScore [43].

2. Ptrain(t): passing both captions and Gaussian noise images to BLIP as shown

in Figure 4.2.

Visualization of α-debiasing. Finally, we observe that α-debiasing can consis-

tently improve the performance. For visualization, we attach the results of α-debiasing

in Table 4.2. We show side-by-side frequency charts of Ptrain(t) for positive and

negative captions.

4.5 Additional Experimental Results

In this section, we apply our OTS generative approaches to more benchmarks,

including two compositionality benchmarks Winoground [182] and EqBen [187], two

classic large-scale retrieval benchmarks COCO [112] and Flickr30K [205], and zero-

shot image classification on ImageNet [30]. While naively applying VisualGPTScore

leads to bad performance on these benchmarks, our training-free debiasing solution

can consistently improve its performance with a held-out validation set. Furthermore,

we derive the optimal text-to-image (T-to-I) retrieval objective and show that OTS

generative scores can achieve robust T-to-I performance.

Evaluation protocols of Thrush et al. [182]. While prior analysis [36, 208]

suggests that Winoground is too out-of-distribution to evaluate compositionality,

we argue that evaluation protocols of Winoground and EqBen are more robust for

future evaluations of VLMs. In these two benchmarks, each sample consists of two

image-text pairs, ensuring uniform image and text priors. For simplicity, we

consider a single Winoground sample: (i0, t0) and (i1, t1). The joint probabilities are

Ptest(i0, t0) = Ptest(i1, t1) = 0.5. Meanwhile, Ptest(i0, t1) = Ptest(i1, t0) = 0. Applying

the law of total probability gives Ptest(t0) = Ptest(t1) = 0.5. A similar derivation can

show that image priors are uniform too. In addition, Winoground’s evaluation metrics

(text score and image score) penalize unimodal shortcut solutions. For example, in

I-to-T retrieval, the text score gets 1 point only if both images are matched to the

correct caption. Therefore, “blind” solutions that choose the same text regardless

of images will get 0 text score. Similarly, for T-to-I retrieval, the image score gets 1

point only if both captions are matched to the correct image.
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Tuning α through cross validation. In Table 4.3-a, we first show that OTS

generative scores without debiasing (α=0) lead to inferior performance on these I-to-T

benchmarks. This confirms the importance of α-debiasing; even a simple α = 1 can

consistently and often significantly improve their I-to-T results. Furthermore, we try

to use a held-out validation set to tune for optimal α ∈ [0, 1]. We sample half of the

data as validation set to search for α∗
val (using a step size of 0.001) and report the

performance on the other half. We repeat this process 10 times to and report the

mean and std. We observe that the optimal alpha is usually stable under the same

dataset, regardless of the sampled val set. For COCO and Flickr30K, we perform

α-debiasing using Recall@1 (R@1) on the official validation split. Because sampling

additional Gaussian noise images can be too costly on these large-scale benchmarks,

we directly approximate Ptrain(t) by averaging the scores of testset images, without

incurring any computational cost. More ablation studies such as α-debiasing using

testset can be found in section 4.7. We also include the results of the ITMScore

of BLIP for reference. While our debiasing solution can always boost performance,

we observe that generative approaches still lag behind the ITMScore for these two

retrieval benchmarks. This motivates us to study biases of generative scores towards

more “common” texts in section 4.8. Finally, we report the zero-shot classification

accuracy on ImageNet1K, which can be viewed as an image-to-text retrieval task that

selects the most fit textual label (out of 1000) for each image. For cross validation

results on ImageNet, we simply use one-shot trainset samples from [114].

Extending to T-to-I retrieval. Though not the focus of our work, we also show

that image-conditioned language models can be applied to T-to-I retrieval. Given a

text caption t, we can rewrite the Bayes optimal T-to-I retrieval objective as:

Ptest(i|t) ∝ Ptrain(t|i) ∗ Ptrain(i) (4.10)

Equation 4.10 is hard to implement because we do not have access to Ptrain(i).

However, when Ptrain(i) is approximately uniform, one can directly apply Ptrain(t|i)
for optimal performance. We report T-to-I performance on all four benchmarks in

Table 4.3-b, where our generative approach obtain competitive results compared

against ITMScore, presumably because T-to-I retrieval is less affected by language

biases.
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Results with BLIP-2 [105]. In Table 4.4, we show that our α-debiasing

approach generalize to the SOTA captioning model BLIP-2. BLIP-2 leverages powerful

frozen pre-trained image encoders [40] and large language models [25, 215] to bootstrap

vision-language pre-training. It proposes a lightweight Querying Transformer (Q-

Former) that is trained in two stages. Similar to BLIP [103], Q-Former is a mixture-

of-expert model that can calculate ITC, ITM, and captioning loss given an image-text

pair. Additionally, it introduces a set of trainable query tokens, whose outputs

serve as visual soft prompts prepended as inputs to LLMs. In its first training

stage, Q-Former is fine-tuned on the same LAION dataset using the same objectives

(ITC+ITM+captioning) as BLIP. In the second stage, the output query tokens from

Q-Former are fed into a frozen language model, such as FLAN-T5 [25], after a

linear projection trained only with captioning loss. We report results for both the

first-stage model (denoted as Q-Former) and the second-stage model which employs

FLAN-T5 [25] as the frozen LLM.

4.6 Comparison to PMIk

By assuming Ptest(t) to be a “flatten” version of Ptrain(t), our Equation 4.7 can

interpolate between scenario 1 (same train and test priors) and 2 (balanced test

priors):

Ptest(t) ∝ Ptrain(t)
1−α ⇒ Optimal score is

Ptrain(t|i)
Ptrain(t)α

(4.11)

In fact, the above equation can be rewritten using the language of PMIk [29, 158], a

well-known variant of PMI that controls the amount of debiasing [100, 101, 191] in

information retrieval:

Ptrain(t|i)
Ptrain(t)α

=
Ptrain(t, i)

Ptrain(i)Ptrain(t)α
(4.12)

∝ Ptrain(t, i)
1
α

Ptrain(i)Ptrain(t)
, as Ptrain(i) (4.13)

= pmikPtrain
(t, i), where k =

1

α
≥ 1 (4.14)
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where

pmiP (t, i) =
P (t, i)

P (t)P (i)
=

P (t|i)
P (t)

=
P (i|t)
P (i)

(4.15)

PMI is an information-theoretic measure that quantifies the association between two

variables [65, 172, 204]. In the context of image-text retrieval, it measures how much

more (or less) likely the image-text pair co-occurs than if the two were independent.

Eq. 4.15 has found applications in diverse sequence-to-sequence modelling tasks [100,

101, 191] as a retrieval (reranking) objective. Compared to the conditional likelihood

P (t|i), PMI reduces the learned bias for preferring ”common” texts with high marginal

probabilities P (t) [100, 101, 191]. This can be an alternative explanation for the

effectiveness of our debiasing solutions.

4.7 Ablation Studies on α-Debiasing

Estimating Ptrain(t) via null (Gaussian noise) images is more sample-efficient.

We use Winoground to show that sampling Gaussian noise images to calculate Ptrain(t)

can be more efficient than sampling trainset images. As demonstrated in Table 4.5,

a limited number of Gaussian noise images (e.g., 3 or 10) can surpass the results

obtained with 1000 LAION images. Moreover, using null images produces less variance

in the results.

Details of Gaussian noise samples. Unless otherwise specified, the Gaussian

noise images are sampled with a mean of 1.0 and a standard deviation of 0.25.

By default, we use 100 images for Winoground, 30 images for EqBen, 1 image for

ImageNet, and 3 images for the rest of the benchmarks. We leave more advanced

techniques of generating null images to future work.

Alternative approach on COCO/Flickr30k: estimating Ptrain(t) using

testset images. For large-scale retrieval benchmarks like COCO [112] and

Flickr30k [205], we can directly average scores of all candidate images (in the order of

thousands) to efficiently approximate Ptrain(t) without the need to sample additional

images. This approach incurs zero computation cost as we have already pre-computed

scores between each candidate image and text. We show in Table 4.6 that using

testset images indeed results in better performance than sampling 3 Gaussian noise
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images.

Tuning α with a validation set. In Table 4.7, similar performance trends are

observed across validation and test splits of COCO and Flickr30k I-to-T retrieval

benchmarks using the same α ∈ [0, 1]. Furthermore, α∗
test and α∗

val are empirically

close. As such, our method can function as a reliable training-free debiasing method.

Future studies may explore fine-tuning methods to further improve the debiasing

performance.

4.8 Is VisualGPTScore a Biased Estimator?

Retrieval performance on trainset (LAION). This paper is built on the as-

sumption that VisualGPTScore is a reliable estimator of Ptrain(t|i). However, this
simplifying assumption does not completely hold for the BLIP model we examine.

We speculate that such OTS generative scores are biased towards more common

texts. We witness this same phenomenon in Table 4.8, where we perform image-text

retrieval on random subsets from training distribution LAION-114M [103].

Modelling the language bias in VisualGPTScore. As evidenced in Table 4.8,

we believe VisualGPTScore is biased towards more common texts due to modelling

error. To consider this error in our analysis, we rewrite the VisualGPTScore as:

VisualGPTScore(t, i) := P̂train(t|i) = Ptrain(t|i) · Ptrain(t)
β (4.16)

where P̂ represents the (biased) model estimate and P represents the true distribution.

The model bias towards common texts is encoded by an unknown parameter β.

Monte Carlo estimation using P̂ . Because our Monte Carlo sampling method

relies on P̂train(t|i), it is also a biased estimator of Ptrain(t):

P̂train(t) :=
1

n

n∑
k=1

P̂train(t|ik) = Ptrain(t)
1+β. (4.17)
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Rewriting optimal I-to-T objective with P̂ . We can rewrite Equation 4.4 as:

Ptest(t|i) ∝ Ptrain(t|i)
Ptest(t)

Ptrain(t)
(4.18)

= P̂train(t|i)
Ptest(t)

Ptrain(t)1+β
(4.19)

= P̂train(t|i)
Ptest(t)

P̂train(t)
(4.20)

α-debiasing with P̂ . Using Equation 4.20, we can reformulate α-debiasing

(Equation 4.7) as follows:

Ptest(t) ∝ Ptrain(t)
1−α̂ ⇒ Optimal score is

P̂train(t|i)
P̂train(t)α

(4.21)

where α = α̂+β
1+β

. Notably, the above equation has the same structure as before

(Equation 4.7). This implies that even if Ptrain(t) = Ptest(t), we still anticipate

α = β
1+β
̸= 0. This accounts for why the optimal α is not 0 when we perform I-to-T

retrieval on trainset in Table 4.8.

Implication for vision-language modelling. Our analysis indicates that

similar to generative LLMs [100, 101], contemporary image-conditioned language

models also experience issues related to imbalanced learning [89]. Potential solutions

could be: (a) refined sampling techniques for Monte Carlo estimation of P (t) such

as through dataset distillation [197], and (b) less biased modelling of P (t|i) such as

through controllable generation [90].

4.9 Discussion and Limitations

Summary. Our study shows the efficacy of generative pre-training scores in solving

discriminative tasks. With the rise of generative pre-training in recent models like

GPT-4 [139], we see our work as a reliable starting point for future tasks. We present

a first-principles analysis to account for mismatching distributions over text between

train and test data. Based on this, we introduce a robust training-free (zero-shot)

solution to debias linguistic priors in generative scores, achieving consistent and often
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significant improvement on all I-to-T retrieval tasks. Our thorough analysis also

explains the performance discrepancy of generative scores on different benchmarks,

and we hope it can encourage future work to revisit the issue of language biases in

vision-language benchmarks.

Limitations and future work. Our approach depends on generative VLMs

pre-trained on noisy web datasets, which may result in inherited biases [127]. We do

not explore fine-tuning techniques due to computational constraints, but it is possible

to improve the I-to-T retrieval performance using hard negative samples, such as

with controllable generation [90]. Furthermore, our analysis is based on simplified as-

sumptions. For instance, the image-conditioned language model might not accurately

represent Ptrain(t|i), a phenomenon we examine in section 4.8. Estimating Ptrain(t)

by sampling Gaussian noise images can be suboptimal; future VLMs could directly

model Ptrain(t), or use techniques like coreset selection [52] or dataset distillation [197]

to sample more representative images. While VisualGPTScore shows competitive

performance, it still suffers from a high inference cost compared to ITCScore especially

for large-scale retrieval tasks; therefore, distilling it into dual-encoder head [130] can

be a promising future direction. Finally, we leave debiasing on the T-to-I retrieval

task for future work.
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Score Method
ARO

Rel Attr COCO Flickr

Random - 50.0 50.0 20.0 20.0

Text-Only
Vera 61.7 82.6 59.8 63.5
Grammar 59.6 58.4 74.3 76.3

PLLM(t)
BART 81.1 73.6 95.0 95.2
Flan-T5 84.4 76.5 98.0 98.2
OPT 84.7 79.8 97.9 98.6

Ptrain(t) BLIP 87.6 80.7 98.6 99.1

P (match|t, i)

CLIP 59.0 62.0 59.0 46.0
LAION2B-CLIP 51.6 61.9 25.2 30.2
LAION5B-CLIP 46.1 57.8 26.1 31.0
NegCLIP 81.0 71.0 91.0 86.0
Structure-CLIP 83.5 85.1 - -
SyViC 80.8 72.4 92.4 87.2
SGVL - - 87.2 91.0
MosaiCLIP 82.6 78.0 87.9 86.3
DAC-LLM 81.3 73.9 94.5 95.7
DAC-SAM 77.2 70.5 91.2 93.9
BLIP-ITC 63.1 81.6 34.3 41.7
BLIP-ITM 58.7 90.3 45.1 51.3

Ptrain(t|i)
Ptrain(t)α

Ours (α = 0) 89.1 95.3 99.4 99.5
Ours (α = 1) 68.1 87.9 32.4 44.5
Ours (α = α∗) 89.1 95.4 99.4 99.5

Score Method
VL-CheckList

Object Attribute Relation

Random - 50.0 50.0 50.0

Text-Only
Vera 82.5 74.0 85.7
Grammar 58.0 52.4 68.5

PLLM(t)
BART 52.0 51.0 45.1
Flan-T5 60.3 55.0 49.3
OPT 59.3 48.8 60.0

Ptrain(t) BLIP 68.2 58.7 75.9

P (match|t, i)

CLIP 81.6 67.6 63.1
LAION2B-CLIP 84.7 67.8 66.5
LAION5B-CLIP 87.9 70.3 63.9
NegCLIP 81.4 72.2 63.5
SyViC - 70.4 69.4
SGVL 85.2 78.2 80.4
SLVC 85.0 72.0 69.0
DAC-LLM 87.3 77.3 86.4
DAC-SAM 88.5 75.8 89.8
BLIP-ITC 90.6 80.3 73.5
BLIP-ITM 89.9 80.7 67.7

Ptrain(t|i)
Ptrain(t)α

Ours (α = 0) 92.6 78.7 90.8
Ours (α = 1) 90.4 77.6 77.8
Ours (α = α∗) 94.4 82.1 92.8

(a) Accuracy on ARO (b) Accuracy on VL-CheckList

Score Method
SugarCrepe

Replace Swap Add

Random - 50.0 50.0 50.0

Text-Only
Vera 49.5 49.3 49.5
Grammar 50.0 50.0 50.0

PLLM(t)
BART 48.4 51.9 61.2
Flan-T5 51.4 57.6 40.9
OPT 58.5 66.6 45.8

Ptrain(t) BLIP 75.9 77.1 70.9

P (match|t, i)

CLIP 80.8 63.3 75.1
LAION2B-CLIP 86.5 68.6 88.4
LAION5B-CLIP 85.0 68.0 89.6
NegCLIP 88.3 76.2 90.2
BLIP-ITC 85.8 73.8 85.7
BLIP-ITM 88.7 81.3 87.6

Ptrain(t|i)
Ptrain(t)α

Ours (α = 0) 93.3 91.0 91.0
Ours (α = 1) 83.2 85.5 85.9
Ours (α = α∗) 95.1 92.4 97.4

Score Method
Crepe

Atom Swap Negate

Random - 16.7 16.7 16.7

Text-Only
Vera 43.7 70.8 66.2
Grammar 18.2 50.9 9.8

PLLM(t)
BART 38.8 53.3 44.4
Flan-T5 43.0 69.5 13.6
OPT 53.3 72.7 5.0

Ptrain(t) BLIP 55.4 69.7 60.8

P (match|t, i)

CLIP 22.3 26.6 28.8
LAION2B-CLIP 23.6 24.8 18.0
LAION5B-CLIP 24.2 23.9 20.1
BLIP-ITC 24.8 17.7 26.5
BLIP-ITM 29.5 20.7 25.5

Ptrain(t|i)
Ptrain(t)α

Ours (α = 0) 73.2 78.1 79.6
Ours (α = 1) 20.6 28.3 35.6
Ours (α = α∗) 73.3 78.1 79.6

(c) Accuracy on SugarCrepe (d) Accuracy on Crepe

Table 4.1: OTS generative VLMs are SOTA on image-to-text retrieval bench-
marks. We begin by evaluating blind language models ( in red ). Surprisingly, this already
produces SOTA accuracy on certain benchmarks such as ARO-Flickr, compared to the
best discriminative approaches ( in gray ). We also find that blind inference of generative

VLMs, Ptrain(t) via sampling Gaussian noise images (in blue) , often performs better and
achieve above-chance performance even on the most recent SugarCrepe. Next, we show that
simply repurposing a generative VLM’s language generation head for computing image-text
scores (VisualGPTScore in yellow) , which corresponds to α = 0, consistently produces
SOTA accuracy across all benchmarks. Finally, debiasing this score by tuning α on val set
(in green) further improves performance, establishing the new SOTA.
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Alpha-Tuning Prior Frequency Alpha-Tuning Prior Frequency

ARO (VG-Relation) Crepe (Atom-Foils)

ARO (VG-Attribution) Crepe (Negate)

ARO (Flickr30K-Order) Crepe (Swap)

SugarCrepe (Add) VL-CheckList (Relation)

SugarCrepe (Replace) SugarCrepe (Swap)

Table 4.2: α-debiasing on I-to-T benchmarks and Ptrain(t) frequency charts of
both positive and negative captions. Increasing α from 0 to 1 hurts performance on
benchmarks with non-sensical negative captions such as ARO and Crepe. Such negative
captions are easier to identify because of their low score under the language prior Ptrain(t),
implying such benchmarks may even be solved with blind algorithms that avoid looking at
images. On the other hand, for benchmarks like SugarCrepe with more balanced Ptrain(t)
between positives and negatives, tuning α may lead to performance gain.
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Metric Benchmark ITMScore

Ptrain(t|i)
Ptrain(t)α

α=0 α=1 α=α∗
val α∗

val

Text Score
Winoground 35.5(2.4) 27.5(2.3) 33.7(2.4) 36.6(2.6) 0.855(0.023)
EqBen 26.1(0.3) 9.6(0.2) 19.8(0.3) 19.8(0.3) 0.992(0.007)

R@1 / R@5
COCO 71.9 / 90.6 19.7 / 40.6 46.2 / 73.1 48.0 / 74.2 0.819
Flickr30k 88.8 / 98.2 34.6 / 59.0 58.7 / 88.0 63.6 / 89.2 0.719

Accuracy ImageNet1K 37.4 18.6 36.2 40.0 0.670

Metric Benchmark ITMScore Ptrain(t|i)

Image Score
Winoground 15.8 21.5
EqBen 20.3 26.1

R@1 / R@5
COCO 54.8 / 79.0 55.6 / 79.2
Flickr30k 77.8 / 93.9 76.8 / 93.4

(a) α-debiasing on val sets for I-to-T retrieval (b) T-to-I retrieval

Table 4.3: Additional results on Winoground/EqBen/COCO/Flickr30K/ImageNet1K.
Table (a) shows the importance of α-debiasing on these compositionality and large-scale
retrieval benchmarks. While OTS generative scores do not work well, debiasing with a
larger α close to 1 can consistently and often significantly improve I-to-T performance.
To highlight the improvement, we mark results without debiasing (α = 0) (in yellow) ,

debiasing with a fixed α = 1 (in pink) , and cross-validation using held-out val sets

(α = α∗
val) (in green) . Table (b) shows that OTS generative scores can obtain favorable

results on all T-to-I retrieval tasks, competitive with the ITMScore.

Benchmark Model
Ptrain(t|i)
Ptrain(t)α

α=0 α=1 α=α∗ α∗

Winoground
BLIP 27.0 33.0 36.5 0.836
BLIP2-QFormer 24.3 29.3 33.0 0.882
BLIP2-FlanT5 25.3 31.5 34.3 0.764

EqBen (Val)
BLIP 9.6 19.8 19.8 0.982
BLIP2-QFormer 12.2 21.9 22.2 0.969
BLIP2-FlanT5 8.5 22.0 22.0 1.000

Table 4.4: α-debiasing consistently improves BLIP-2 on balanced VL benchmarks.
We show that α-debiasing, even with a fixed α=1, can consistently improve BLIP-2
performance on challenging Winoground and EqBen.

Sample Size
Guassian Noise Images Trainset Images

α=α∗
test α∗

test α=α∗
test α∗

test

3 35.95(0.5) 0.821(0.012) 32.20(1.6) 0.706(0.150)
10 36.25(0.4) 0.827(0.016) 33.60(0.9) 0.910(0.104)
100 36.35(0.1) 0.840(0.010) 34.70(0.6) 0.910(0.039)
1000 36.25(0.0) 0.850(0.000) 35.15(0.3) 0.960(0.033)

Table 4.5: Comparing sampling of Gaussian noise images and trainset images for
estimating Ptrain(t). We report text scores of α-debiasing on Winoground I-to-T retrieval
task. We ablate 3/10/100/1000 Gaussian noise and LAION samples and report both mean
and std using 5 sampling seeds. The optimal α∗ ∈ [0, 1] is searched on testset via a step
size of 0.001. The Gaussian noise images are sampled with a mean calculated from the
LAION subset and a fixed std of 0.25.
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Metric Benchmark Ptrain(t|i) Sampling Method
Ptrain(t|i)
Ptrain(t)α

α=1 α=α∗
val α∗

val

R@1 / R@5

COCO 19.7 / 40.6
Testset Images 46.2 / 73.1 48.0 / 74.2 0.819
Null Images 24.4 / 52.6 40.4 / 66.6 0.600

Flickr30k 34.6 / 59.0
Testset Images 58.7 / 88.0 63.6 / 89.2 0.719
Null Images 27.8 / 62.2 48.5 / 79.0 0.427

Table 4.6: I-to-T retrieval on COCO/Flickr30k using different sampling methods.
Estimating Ptrain(t) by averaging the scores of testset images (with zero computational
cost) demonstrates superior performance compared to sampling additional Gaussian noise
images.

(b) Alpha-tuning on COCO Retrieval (c) Alpha-tuning on Flickr Retrieval

Table 4.7: α-debiasing results on both val set and test set for COCO/Flickr30k
I-to-T retrieval. We observe that validation and test performance are strongly correlated
while we interpolate α ∈ [0, 1].

Dataset Size
I-to-T Retrieval T-to-I Retrieval

ITM
Ptrain(t|i)
Ptrain(t)α ITM Ptrain(t|i)

α=0 α=1 α=α∗ α∗

100 96.0 59.0 94.0 95.0 0.535 95.0 97.0
1000 90.9 37.1 71.7 85.7 0.733 92.0 93.1
2000 87.2 32.8 62.3 64.3 0.840 87.8 89.8
5000 79.8 25.1 50.9 54.1 0.727 81.9 84.4

(a) Performance on LAION trainset retrieval (b) Alpha-tuning on LAION

Table 4.8: Retrieval performance on randomly sampled LAION114M subsets
with varied sizes. Table (a) shows that while OTS generative scores are robust for T-to-I
retrieval, its performance degrades on I-to-T retrieval tasks when the number of candidate
texts increases. This implies that OTS generative scores suffer from language biases towards
certain texts even in the training set. Nonetheless, we show that our debiasing solution
using either α = 1 or optimal α∗ ∈ [0, 1] with a step size of 0.001, can consistently boost
the performance. Figure (b) visualizes α-debiasing results on LAION subsets, where each
curve represents a different sample size.
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Chapter 5

Conclusions

This thesis has introduced novel advancements in vision-language models (VLMs),

significantly enhancing their alignment with user objectives and broadening their

application scope. The ”cross-modal adaptation” method represents a major stride in

visual classification, utilizing minimal data and integrating textual and audio inputs

to refine VLMs. Additionally, the novel black-box approach leveraging large language

models (LLMs) like ChatGPT has shown remarkable improvements in one-shot visual

classification and text-to-image tasks, demonstrating the potential of synergizing

VLMs and LLMs.

However, despite these advancements, the thesis also highlights the inherent

limitations of current VLMs in handling complex compositional reasoning. The

strategies developed to assess and improve the models’ abilities in managing detailed

object compositions, attributes, and relationships underscore the ongoing need for

research in this area. This work not only contributes to a deeper understanding of the

capabilities and limitations of VLMs but also lays a foundation for future research

aimed at refining these models for more nuanced and sophisticated tasks.

In summary, the research presented in this thesis not only pushes the boundaries

of current vision-language modeling but also provides valuable insights and tools for

the continued advancement of AI. It underscores the importance of interdisciplinary

approaches in AI research and paves the way for more intelligent, efficient, and

user-aligned AI systems in the future.
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